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Abstract

A useful multivariate linear regression model is yi = BTxi + εi for i = 1, ..., n.
The model has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. One technique is to fit the m univariate multiple linear regressions of

Yj on the predictors x to get B̂U = [β̂1 β̂2 · · · β̂m]. Testing is considered for the

estimators B̂U that use the the one component partial least squares estimators and

marginal maximum likelihood estimators, including some high dimensional tests.
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1 INTRODUCTION

A useful multivariate linear regression model is yi = BTxi + εi for i = 1, ..., n. The
model has m ≥ 2 response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp.
The εi are assumed to be independent and identically distributed (iid). The ith case
is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim), where the constant xi1 = 1. The model is

written in matrix form as Z = XB + E where the matrices are defined below. The
model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while
Cov(ei, ej) = σijIn for i, j = 1, ..., m where In is the n × n identity matrix and ei is
defined below. Then the p × m coefficient matrix B = [β

1
β

2
· · · βm] and the m × m

covariance matrix Σε are to be estimated, and E(Z) = XB while E(Yij) = xT
i βj.

The n ×m matrix of response variables and n ×m matrix of errors are

Z =
[

Y 1 Y 2 . . . Y m

]
=




yT
1

...
yT

n


 and E =

[
e1 e2 . . . em

]
=




εT
1

...
εT

n


 ,

while the n × p design matrix of predictor variables is X.
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Least squares is the classical method for fitting the multivariate linear model. The
least squares estimators are B̂ = (XTX)−1XTZ =

[
β̂

1
β̂

2
. . . β̂m

]
. The matrix

of predicted values or fitted values Ẑ = XB̂ =
[

Ŷ 1 Ŷ 2 . . . Ŷ m

]
. The matrix of

residuals Ê = Z − Ẑ = Z −XB̂ =
[

r1 r2 . . . rm

]
. These quantities can be found

from the m multiple linear regressions of Yj on the predictors: β̂j = (XTX)−1XT Y j,

Ŷ j = Xβ̂j and rj = Y j − Ŷ j for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j =

(Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε =
(Z − Ẑ)T (Z − Ẑ)

n − p
=

(Z − XB̂)T (Z −XB̂)

n − p
=

Ê
T
Ê

n − p
=

1

n − p

n∑

i=1

ε̂iε̂
T
i .

There are many other estimators. One technique is to fit the m univariate multiple
linear regressions of Yj on the predictors x to get B̂U = [β̂

1
β̂

2
· · · β̂m]. A second

technique is to let Wij = η̂T
ijx for i = 1, ..., m and j = 1, ..., k. This results in mk

predictors. Perform the OLS multivariate linear regression of Y1, ..., Ym on W11, ..., Wmk

to get B̂M = [β̂1 β̂2 · · · β̂m].

1.1 Multiple Linear Regression Estimators

One multiple linear regression model is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error.
Assume that the ei are independent and identically distributed (iid) with expected value
E(ei) = 0 and variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of
unknown errors.

Let the second multiple linear regression model be Y |xTβ = α + xTβ + e or Yi =
α + xT

i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (2)

for i = 1, ..., n. Let the ei be as for model (1). In matrix form, this model is

Y = Xφ + e, (3)

X is an n × (p + 1) matrix with ith row (1, xT
i ), φ = (α, βT )T is a (p + 1) × 1 vector ,

and e is an n × 1 vector of unknown errors. Also E(e) = 0 and Cov(e) = σ2In where
In is the n × n identity matrix.

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =
Σx = E[(x−E(x))(x−E(x))T ] = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =
E[(x−E(x)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].
Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )
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and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (3) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid)
cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY under mild regularity condi-
tions, while α̂OLS is a consistent estimator of E(Y ) − βT

OLSE(x).
Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xY
Σ̂xY

Σ̂
T

xY
Σ̂xΣ̂xY

(4)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos
(2024), Cook and Forzani (2024), and Wold (1975). Olive and Zhang (2024) derived the
large sample theory for η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than
those in the previous literature, where ηOPLS = ΣxY . The OPLS estimator is computed

from the OLS simple linear regression of Y on W = Σ̂
T

xY x, giving Ŷ = α̂OPLS + λ̂W =

α̂OPLS + β̂
T

OPLSx.
The marginal maximum likelihood estimator (MMLE or marginal least squares esti-

mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes
the marginal regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p.

Then β̂MMLE = (β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators

are the simple linear regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR).
Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂xY . (5)

If the ti are the predictors that are scaled or standardized to have unit sample variances,
then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂tY = I−1Σ̂tY = η̂OPLS(t, Y ) (6)

where (t, Y ) denotes that Y was regressed on t, and I is the p × p identity matrix.
High dimensional regression has n/p small. A fitted or population regression model is

sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression model is
abundant or dense if the regression information is spread out among the p predictors
(nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

The Tibshirani (1996) lasso estimator and Hoerl and Kennard (1970) ridge regression
estimator are also interesting. The k component partial least squares (PLS) estimator

β̂kPLS can be found from the OLS regression of Y on W1, ..., Wk where Wi = Σ̂
T

xY Σ̂
i−1

x x =

η̂
T
i x with η̂i = Σ̂

i−1

x Σ̂
T

xY .
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Olive and Zhang (2024) proved that there are often many valid population models
for multiple linear regression, gave theory for Σ̂xY and OPLS, and gave some theory for
the MMLE for multiple linear regression under the constant variance assumption. Olive
et al. (2024) gave more theory for the MMLE.

1.2 More Multivariate Estimators

Let the first multivariate linear regression model be

Z = XB + E. (7)

Let the second multivariate linear regression model be

Z = α + XB + E (8)

where α is the n × m matrix of constants with ith row equal to the vector of constants
(α1, ..., αm)T . Use the second model for the following three estimators.

Then
B̂MMLE = [diag(Σ̂x)]−1Σ̂x,y.

The MMLE tends to estimate pY i for i = 1, ..., m.
The multivariate estimator obtained from the univariate OPLS regressions is

B̂UOPLS = [β̂
1

β̂
2
· · · β̂m] = [λ̂1Σ̂xY1

, · · · , λ̂mΣ̂xYm
]. (9)

There are PLS estimators B̂PLS for multivariate linear regression. Obtain the mk

predictors Wij = Σ̂
i−1

x Σ̂
T

xYi
x for i = 1, ..., m and j = 1, ..., k. Then perform the OLS

multivariate linear regression of Y1, ..., Ym on the Wij to get B̂MkPLS = [β̂
1
, ..., β̂m] which

is not the PLS estimator.

2 Large Sample Theory

For the following theorem, consider a subset of k distinct elements from Σ̃ or from Σ̂.
Stack the elements into a vector, and let each vector have the same ordering. For example,
the largest subset of distinct elements corresponds to

vech(Σ̃) = (σ̃11, ..., σ̃1p, σ̃22, ..., σ̃2p, ..., σ̃p−1,p−1, σ̃p−1,p, σ̃pp)
T = [σ̃jk].

For random variables x1, ..., xp, use notation such as xj = the sample mean of the xj,
µj = E(xj), and σjk = Cov(xj, xk). Let

n vech(Σ̃) = [n σ̃jk] =
n∑

i=1

[(xij − xj)(xik − xk)].

For general vectors of elements, the ordering of the vectors will all be the same and be
denoted vectors such as c̃ = [σ̃jk], c = [σjk], zi = [(xij − xj)(xik − xk)], and
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wi = [(xij−µj)(xik−µk)]. Let wn =
∑n

i=1
wi/n be the sample mean of the wi. Assuming

that Cov(wi) = Σw exists, then E(wi) = E(wn) = c.
The following Olive et al. (2024) theorem proves that sample covariance matrices are

asymptotically normal. We use Cov(wi) = Σd to avoid confusion with the Σw used in
OPLS theory.

Theorem 1. Assume the cases xi are iid and that Cov(wi) = Σd exists. Using the
above notation with c a k × 1 vector,

i)
√

n(c̃ − c)
D→ Nk(0,Σd).

ii)
√

n(ĉ − c)
D→ Nk(0,Σd).

iii) Σ̂d = Σ̂z + OP (n−1/2) and Σ̃d = Σ̃z + OP (n−1/2).

3 Testing

Consider model (8) with iid cases where d is a vector of distinct elements of B = BMMLE

or B = BUOPLS. Then H0 : d = 0 is true iff H0 : c = 0 is true where the cij

are the covariances corresponding to the dij . As an illustration, some of important
tests are whether a subset of rows of B are equal to 0. See Olive, Pelawa Watagoda,
and Rupasinghe Arachchige Don (2015). Let the ith row of B in model (8) be bi =
(βi1, ..., βim). Consider B̂UOPLS where λi 6= 0 for i = 1, ..., m. Testing H0 : bT

i = 0 is
equivalent to testing H0 : (Cov(xiY1), ..., Cov(xiYm))T = Σxiy = 0. Under iid cases, this
test is similar to testing ΣxY = 0 with the x replaced by y and Y replaced by xi. Tests
for rows i1, i2, ..., ik use H0 : (bi1, ..., biK )T = 0, and are similar. If m and K are small,
high dimensional tests can be done.

If m is small, rows of BUOPLS can be tested. If p is small, columns of BUOPLS can
be tested. If both p and m are large, Bij can be tested.

4 EXAMPLES AND SIMULATIONS

5 CONCLUSIONS

There are many multivariate linear regression estimators, including envelope estimators
and partial least squares. See, for example, Cook (2018), Cook and Forzani (2024), Cook
and Su (2013), Cook, Helland, and Su (2013), and Su and Cook (2012). Univariate meth-
ods like ridge regression and lasso can also be extended to multivariate linear regression.
See, for example, Obozinski, Wainwright, and Jordan (2011).
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