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Abstract

Consider regression models where the response variable Y only depends on the
p × 1 vector of predictors x = (x1, ..., xp)

T through the sufficient predictor SP =

α+xT β. Let the covariance vector Cov(x, Y ) = ΣxY . Assume the cases (xT
i , Yi)

T

are independent and identically distributed random vectors for i = 1, ..., n. Then

for many such regression models, β = 0 if and only if ΣxY = 0 where 0 is the p×1
vector of zeroes.

The test of H0 : ΣxY = 0 versus H1 : ΣxY 6= 0 is equivalent to the high
dimensional one sample test H0 : µ = 0 versus HA : µ 6= 0 applied to u1, ..., un

where ui = xi(Yi −µY ) and the expected value E(Y ) = µY . Since µY is unknown,
the test of H0 : β = 0 versus H1 : β 6= 0 is implemented by applying the one
sample test to zi = xi(Yi − Y ) for i = 1, ..., n.

KEY WORDS: Generalized Linear Models, Multiple Linear Regression, One
Sample Test, Two Sample Test, U-Statistics.

1 Introduction

This section reviews regression models where the response variable Y depends on the
p × 1 vector of predictors x = (x1, ..., xp)

T only through the sufficient predictor SP =
α + xTβ. Then there are n cases (Yi,x

T
i )T . For the regression models, the conditioning

and subscripts, such as i, will often be suppressed. This paper gives a high dimensional
test for H0 : β = 0 versus H1 : β 6= 0 where 0 = (0, ..., 0)T is the p× 1 vector of zeroes.

A useful multiple linear regression model is Y |xTβ = α+xTβ+e or Yi = α+xT
i β+ei

or
Yi = α + xi,1β1 + · · · + xi,pβp + ei = α+ xT

i β + ei (1)

for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with
expected value E(ei) = 0 and variance V (ei) = σ2. In matrix form, this model is

Y = Xφ + e, (2)
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where Y is an n× 1 vector of dependent variables, X is an n× (p + 1) matrix with ith
row (1,xT

i ), φ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown
errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.

For a multiple linear regression model with heterogeneity, assume model (1) holds
with E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2
1, ..., σ

2
n) is an n × n positive

definite matrix. Under regularity conditions, the ordinary least squares (OLS) estimator
φ̂OLS = (XT X)−1XT Y can be shown to be a consistent estimator of β.

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =
Σx = E[(x−E(x))(x−E(x))T ] = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =
E[(x−E(x)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].
Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n
∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n
∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (1) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with iid cases, β̂OLS is a consistent estimator of
βOLS = Σ−1

x ΣxY under mild regularity conditions, while α̂OLS is a consistent estimator
of E(Y ) − βT

OLSE(x).
Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(3)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa et al. (2024), Cook
and Forzani (2024), and Wold (1975). Olive and Zhang (2025) derived the large sample
theory for η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the
previous literature, where ηOPLS = ΣxY . Olive et al. (2025) showed that for iid cases
(xi, Yi), these results still hold for multiple linear regression models with heterogeneity.

The marginal maximum likelihood estimator (MMLE or marginal least squares esti-
mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes
the marginal regression of Y on xi, such as Poisson regression, resulting in the estimator
(α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .

For multiple linear regression, the marginal estimators are the simple linear regression
(SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (4)

If the ti are the predictors that are scaled or standardized to have unit sample variances,
then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (5)
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where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix. Olive
et al. (2025) derived large sample theory for the MMLE for the multiple linear regression
models, including models with heterogeneity.

For Poisson regression and related models, the respnse variable Y is a nonnegative
count variable. A useful Poisson regression (PR) model is Y ∼ Poisson

(

eSP
)

. This
model has E(Y |SP ) = V (Y |SP ) = exp(SP ). The quasi-Poisson regression model has
E(Y |SP ) = exp(SP ) and V (Y |SP ) = φ exp(SP ) where the dispersion parameter φ > 0.
Note that this model and the Poisson regression model have the same conditional mean
function, and the conditional variance functions are the same if φ = 1.

Some notation is needed for the negative binomial regression model. If Y has a
(generalized) negative binomial distribution, Y ∼ NB(µ, κ) , then the probability mass
function (pmf) of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(

κ

µ+ κ

)κ(

1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.
The negative binomial regression model states that Y1, ..., Yn are independent random

variables with
Y |SP ∼ NB(exp(SP), κ).

This model has E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(

1 +
exp(SP )

κ

)

= exp(SP ) + τ exp(2 SP ).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the negative
binomial regression model converges to the Poisson regression model.

Let the log transformation Zi = log(Yi) if Yi > 0 and Zi = log(0.5) if Yi = 0. This
transformation often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (6)

where the ei are independent with expected value E(Zi) = 0 and variance V (Zi) = σ2
i .

For Poisson regression, the minimum chi-square estimator is the weighted least squares
estimator from the regression of Zi on xi with weights wi = eZi. See Agresti (2002, pp.
611–612) and Olive (2013).

If the regression model for Y depends on x only through α+ xT β, and if the predic-
tors xi are independent and identically distributed (iid) from a large class of elliptically
contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that,
under regularity conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if
Σx = τ 2Ip for some constant τ 2 > 0. If β = βOLS in this case, then βi = 0 implies
that Cov(xi, Y ) = 0. The constant c is typically nonzero unless m has a lot of symmetry
about the distribution of α+xTβ. Simulation with Σ̂xY can be difficult if the population
values of c and d are unknown. Results from Cameron and Trivedi (1998, p. 89) suggest
that if a Poisson regression model is fit using OLS software for multiple linear regression,
then a rough approximation is β̂PR ≈ β̂OLS/Y .
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Zhao et al. (2024) have an interesting result for the multiple linear regression model
(1). Assume that the cases (xT

i , Yi)
T are iid with E(Y ) = µY , E(x) = µx and nonsingular

Cov(x) = Σx. Let β = βOLS . Then testing H0 : β = β0 versus H1 : β 6= β0 is
equivalent to testing H0 : µ = 0 versus H1 : µ 6= 0 with µ = E(wi) = Σx(β − β0)
where wi = (xi − µx)(Yi − µY − (xi − µx)T β0), and a one sample test can be applied
to vi = (xi − x)(Yi − Y − (xi − x)Tβ0).

This paper modifies the above test for β0 = 0. The resulting test can be used for
many regression models, not just multiple linear regression. Suppose βD = D−1ΣxY

where D is a p× p positive definite matrix. Then βD = 0 if and only if ΣxY = 0. Then
D−1 = λI for OPLS, D−1 = Σ−1

x for OLS, and D−1 = [diag(Σx)]−1 for the MMLE. The
k-component partial least squares estimator can be found by regressing Y on a constant

and on Wi = η̂T
i x for i = 1, ..., k where η̂i = Σ̂

i−1

x Σ̂xY for i = 1, ..., k. See Helland
(1990). Hence βkPLS = 0 if ΣxY = 0. Thus if the cases (xT

i , Yi)
T are iid, then using

β0 = 0 gives tests for H0 : β = 0, H0 : βMMLE = 0, H0 : ΣxY = 0, H0 : βOPLS = 0,
and H0 : βkPLS = 0. For multiple linear regression with heterogeneity, β̂OLS is still a
consistent estimator of β = βOLS = Σ−1

x ΣxY . Hence the test can be used when the
constant variance assumption is violated.

For a generalized linear model and several other regression models that depend on
the predictors x only through SP = α + xTβ, if β = 0, then the Yi are iid and do
not depend on x, and thus satisfy a multiple linear regression model with βOLS = 0.
Typically, if β 6= 0, then ΣxY 6= 0. An exception is when there is a lot of symmetry
which rarely occurs with real data. For example, suppose Y = m(SP ) + e where the iid
errors ei ∼ N(0, σ2

1) are independent of the predictors, SP ∼ N(0, σ2
2), and the function

m is symmetric about 0, e.g. m(SP ) = (SP )2. Then βOLS = 0 and ΣxY = 0 even if
β 6= 0.

If β0 = 0, then wi = (xi−µx)(Yi−µY ), and E(wi) = E(ui) = E[xi(Yi−µY )] = ΣxY .
Hence we replace vi = (xi−x)(Yi−Y ) by zi = xi(Yi−Y ) and apply a high dimensional
one sample test on the zi. Then µx does not need to be estimated by x.

Section 2 reviews and derives some results for the one sample test that will be used.
Section 3 reviews some two sample tests. Section 4 gives theory for the test given in the
above paragraph.

2 A High Dimensional One Sample Test

This section reviews and derives some results for the one sample test that will be used.
Suppose x1, ...,xn are iid random vectors withE(x) = µ and covariance matrix Cov(x) =
Σ. Then the test H0 : µ = 0 versus H1 : µ 6= 0 is equivalent to the test H0 : µTµ = 0
versus H1 : µT µ 6= 0. Let S = Σ̂x. A U-statistic for estimating µT µ is

Tn = Tn(x) =
1

n(n − 1)

∑

i6=j

xT
i xj =

nxT x − tr(S)

n
(7)

where tr() is the trace function

4



To see that the last equality holds, note that

Tn =
1

n(n− 1)

[

∑

i

∑

j

xT
i xj −

∑

i

xT
i xi

]

=
n2xTx −

∑

i x
T
i xi

n(n− 1)
.

Now

S =
1

n− 1

n
∑

i=1

(xi − x)(xi − x)T =
1

n− 1

[

∑

i

xix
T
i − nx xT

]

.

Thus

tr(S) =
1

n− 1

[

∑

i

tr(xix
T
i ) − ntr(x xT )

]

=
1

n− 1

[

∑

i

xT
i xi − nxT x

]

.

Thus

nxT x − tr(S) = nxT x +
n

n− 1
xTx − 1

n− 1

∑

i

xT
i xi =

n2xTx −∑i x
T
i xi

n− 1
.

Next we derive a simple test. Let the variance V (xT
i xj) = σ2

W for i 6= j. Let
m = floor(n/2) = bn/2c be the integer part of n/2. So floor(100/2) = floor(101/2) =
50. Let the iid random variables Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1,W2, ...,Wm =
xT

1 x2,x
T
3 x4, ...,x

T
2m−1x2m. Note that E(Wi) = µT µ and V (Wi) = σ2

W . Let S2
W be the

sample variance of the Wi:

S2
W =

1

m− 1

m
∑

i=1

(Wi −W )2.

If σ2
W ∝ τ 2p where p > n, then n may not be large enough for the normal approximation

to hold. The following theorem follows from the univariate central limit theorem.

Theorem 1. Assume x1, ...,xn are iid, E(xi) = µ, and the variance V (xT
i xj) = σ2

W

for i 6= j. Let W1, ...,Wm be defined as above. Then

a)
√
m(W −µTµ)

D→ N(0, σ2
W ).

b)

√
m(W − µTµ)

SW

D→ N(0, 1)

as n→ ∞.
The following theorem derives the variance V (Tn) under much simpler regularity

conditions than those in the literature, and the proof of the theorem is also simpler.

Theorem 2. Assume x1, ...,xn are iid, E(xi) = µ, and the variance V (xT
i xj) = σ2

W

for i 6= j. Let Wij = xT
i xj for i 6= j. Let θ = Cov(Wij,Wid) = µTΣµ where j 6= d, i < j,

and i < d. Then

a) V (Tn) =
2σ2

W

n(n − 1)
+

4(n− 2)θ

n(n− 1)
.
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b) If H0 : µ = 0 is true, then θ = 0 and

V0 = V (Tn) =
2σ2

W

n(n − 1)
.

Proof. a) To find the variance V (Tn) with Tn from Equation (7), let Wij = xT
i xj =

Wji, and note that

Tn =
2

n(n− 1)
Hn where Hn =

∑

i <

∑

j

xT
i xj =

∑

i<j

xT
i xj.

Then V (Hn) = Cov(Hn, Hn) =

Cov

(

∑

i <

∑

j

Wij,
∑

k <

∑

d

Wkd

)

=
∑

i <

∑

j

∑

k <

∑

d

Cov(Wij,Wkd). (8)

Let V (Wij) = σ2
W for i 6= j. The covariances are of 3 types. First, if (ij) = (kd) with

i < j, then Cov(Wij,Wkd) = V (Wij) = σ2
W . Second, if i, j, k, d are distinct with i < j and

k < d, thenWij andWkd are independent with Cov(Wij,Wkd) = 0. Third, there are terms
where exactly three of the four subscripts are distinct, which have Cov(Wij,Wid) = θ
where j 6= d, i < j, and i < d or Cov(Wij,Wkj) = θ where i 6= k, i < j, and k < j. These
covariance terms are all equal to the same number θ since Wij = Wji. The number of
ways to get three distinct subscripts is

a− b− c =

(

n

2

)2

−
(

n

2

)(

n− 2

2

)

−
(

n

2

)

= n(n− 1)(n − 2)

since a is the number of terms on the right hand side of (3), b is the number of terms
where i, j, k, d are distinct with i < j and k < d, and c is the number of terms where
(ij) = (kd) with i < j. [Note that n(n − 1) terms have i and j distinct. Half of these
terms have i < j and half have i > j. Similarly, n(n− 1)(n − 2)(n − 3) terms have ijkd
distinct, and half of the n(n− 1) terms have i < j, while half of the (n− 2)(n− 3) terms
have k < d.] Thus

V (Hn) = 0.5n(n − 1)σ2
W + n(n− 1)(n − 2)θ.

This calculation was adapted from Lehmann (1975, pp. 336-337). Thus

V (Tn) =
4

[n(n− 1)]2
V (Hn) =

2σ2
W

n(n− 1)
+

4(n − 2)θ

n(n− 1)
.

b) Now θ = Cov(xT
i xj,x

T
i xk) where xi,xj, and xk are iid. Hence θ =

Cov(
∑

d

xidxjd,
∑

t

xitxkt) =
∑

d

∑

t

Cov(xidxjd, xitxkt) =

∑

d

∑

t

[E(xidxjdxitxkt) − E(xidxjd)E(xitxkt)] =
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∑

d

∑

t

[E(xidxit)E(xjd)E(xkt) − E(xid)E(xjd)E(xit)E(xkt)] =

∑

d

∑

t

[E(xjd)E(xkt)(E(xidxit) − E(xid)E(xit))] =

∑

d

∑

t

[E(xjd)E(xkt) Cov(xid, xit)] = µT Σµ.

Under H0, µ = 0 and thus θ = 0. �

Note that Tn is the sample mean of the 0.5n(n − 1) distinct, identically distributed
Wij = xT

i xj for i 6= j. When µ = 0, Theorem 2 proves that the Wij are uncorrelated.
Hence when H0 is true, V (Tn) satisfies Theorem 2b). Chen and Qin (2010) obtained

V (Tn) =
2

n(n − 1)
tr(Σ2) +

4µTΣµ

n
,

omitting (n− 2)/(n − 1) from the second term. Since

V0(Tn) =
2

n(n − 1)
tr(Σ2),

V (xT
i xj) = σ2

W = tr(Σ2).
For example, Li (2023) finds V (Tn) when H0 is true, using much stronger regularity

conditions than in Theorem 2. In the simulations, we use a variant of the Li (2023)
variance estimator σ̂2

W , and also use the estimator S2
W that is much easier to compute.

Srivastava and Du (2008), Bai and Saranadasa (1996), Chen and Qin (2010), and others

use Tn/

√

V̂ (Tn)
D→ N(0, 1), while Li (2023) uses Tn/

√

V̂0(Tn)
D→ N(0, 1). Theorem 2

and the following result show that the second statistic has more power. Adapting an
argument from Lehmann (1999, pp. 367-368), let Z(a) = E(aTxj) = aT µ. Then it can
be shown that θ = V (Z(xi)) = V (xT

i µ) ≥ 0. Also, by Theorem 2, θ = µT Σµ ≥ 0. Let
s2

n = V̂ be a consistent estimator of V (Tn) and let

V̂0 =
2σ̂2

W

n(n− 1)
.

The test statistics

t1 =
Tn
√

V̂0

D→ N(0, 1) and t2 =
Tn
√

V̂

D→ N(0, 1)

if H0 : µ = 0 is true. However, when H0 is not true,

V̂ ≈ V̂0 +
4(n − 2)θ̂

n(n− 1)

where the second term is positive. If H0 is not true and n and p are such that the second
term dominates, then |t1| tends to be proportional to

√
n|t2|, greatly increasing the power

of the test that uses t1.

7



For power, we expect V0(Tn) → 0 if p/n2 → 0 as n → ∞. The high dimensional
literature often gives very strong regularity conditions where V (Tn) → 0 if p = pn = nγ

where γ is often much larger than 0.5 and µ = 0. Suppose µ = δ1 where the constant
δ > 0 and 1 is the p× 1 vector of ones. Then µTµ = δ2p, and the test using V̂0(Tn) may

have good power for Tn/
√

V̂0(Tn) > 1.96 ≈ 2 or for

δ2 p
√

2σ2

W

n(n−1)

> 2 or δ2 >
2
√

2 σW

n p
.

The above theory can also be applied to the zi = ss(xi) to test H0 : E(z) = 0. As
noted near the end of Section 1, for elliptically contoured distributions, E(z) = µz = 0

if E(x) = µ = µx = 0.
Let V0(Tn) be the variance of Tn when H0 : µ = 0 is true. Let the variance V (xT

i xj) =
σ2

W for i 6= j. Abid and Olive (2025) give a straight forward proof that

V0(Tn) =
2σ2

W

n(n− 1)
.

Chen and Qin (2010) proved that

V0(Tn) =
2

n(n− 1)
tr(Σ2)

where tr() is the trace function. Thus V (xT
i xj) = σ2

W = tr(Σ2). Srivastava and Du
(2008), Bai and Saranadasa (1996), Chen and Qin (2010), Li (2023) and others proved

that under mild regularity conditions when H0 is true, Tn/

√

V̂0(Tn)
D→ N(0, 1). Under

regularity conditions when H0 is true, Li (2023) proved that Tn/

√

V̂0(Tn)
D→ tk as p → ∞

for fixed n ≥ 3 where k = 0.5n(n − 1) − 1.
Two estimators of σ2

W are simple to compute. Let Wij = xT
i xj for i 6= j. Let

s2
n = V̂0(Tn). An estimator nearly the same as the one used by Li (2023) is

n(n− 1)s2
n = σ̂2

W =
1

n(n− 1)

∑∑

i6=j

(xT
i xj − Tn)

2 =
1

n(n− 1)

∑∑

i6=j

(Wij − Tn)
2.

Ahlam and Olive (2025) proposed the following estimator. Letm = floor(n/2) = bn/2c be
the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid random variables
Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1,W2, ...,Wm = xT
1 x2,x

T
3 x4, ...,x

T
2m−1x2m. Note

that E(Wi) = µT µ and V (Wi) = σ2
W . Let n(n − 1)s2

n = S2
W be the sample variance of

the Wi.
Consider testing H0 : µ = 0 versus HA : µ 6= 0 using independent and identically

distributed (iid) x1, ...,xn where the xi are p × 1 random vectors and p may be much
larger than n. Assume the expected value E(xi) = µ and nonsingular covariance matrix
Cov(xi) = Σ. Replace xi by wi = xi−µ0 to test H0 : µ = µ0 versus HA : µ 6= µ0. This
section reviews some tests while the following section gives simpler large sample theory
for some of the tests, including a new test that has very simple large sample theory.
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Suppose p is fixed, and consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g× 1

statistic Tn satisfies
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ). If Σ̂
−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0

(Tn, Σ̂/n) = n(Tn − θ0)
T Σ̂

−1
(Tn − θ0)

D→ uTΣ−1u ∼ χ2
g

as n→ ∞. Then a Wald type test rejects H0 at significance level δ if D2
n > χ2

g,1−δ where
P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g, a chi-square distribution with g degrees of freedom.

It is common to implement a Wald type test using

D2
n = D2

θ0

(Tn,Cn/n) = n(Tn − θ0)
T C−1

n (Tn − θ0)
D→ uTC−1u

as n→ ∞ if H0 is true, where the g×g symmetric positive definite matrix Cn
P→ C 6= Σ.

Hence Cn is the wrong dispersion matrix, and uT C−1u does not have a χ2
g distribution

when H0 is true. Often Cn is a regularized estimator of Σ, or C−1
n is a regularized

estimator of the precision matrix Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g × g
identity matrix.

Rajapaksha and Olive (2024) showed how to bootstrap Wald tests with the wrong
dispersion matrix. When Cn = Ig, the bootstrap tests often became conservative as g
increased to n. For some of these tests, the m out of n bootstrap, which draws a sample of
size m without replacement from the n, works better than the nonparametric bootstrap.

When n is much larger than p, the one sample Hotelling (1931) T 2 test is often used
to test H0 : µ = µ0 versus HA : µ 6= µ0. The sample mean

x =
1

n

n
∑

i=1

xi,

and the sample covariance matrix

S =
1

n− 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij. If the xi are iid with expected value
E(xi) = µ and nonsingular covariance matrix Cov(xi) = Σ, then by the multivariate
central limit theorem √

n(x − µ)
D→ Np(0,Σ).

If H0 is true, then

T 2
H = n(x −µ0)

T S−1(x − µ0)
D→ χ2

p.

The one sample Hotelling’s T 2 test rejects H0 if T 2
H > D2

1−δ where D2
1−δ = χ2

p,δ and
P (Y ≤ χ2

p,δ) = δ if Y ∼ χ2
p. Alternatively, use

D2
1−δ =

(n − 1)p

n− p
Fp,n−p,1−δ

where P (Y ≤ Fp,d,δ) = δ if Y ∼ Fp,d. The scaled F cutoff can be used since T 2
H

D→ χ2
p if

H0 holds, and
(n − 1)p

n− p
Fp,n−p,1−δ → χ2

p,1−δ

9



as n→ ∞.
The next two high dimensional tests are described in Srivastava and Du (2008). Also

see Hu and Bai (2015). Let tr(A) be the trace of square matrix A. Let R be the sample
correlation matrix. Consider testing H0 : µ = 0 versus HA : µ 6= 0. Let D = diag(S).
Let

cp,n = 1 +
tr(R2)

p3/2
.

Let n = O(pδ) where 0.5 < δ ≤ n. Then under regularity conditions

Z1 =
nxT D−1x − (n−1)p

n−3
√

2
(

tr(R2) − p2

n−1

)

cp,n

D→ N(0, 1)

as n, p→ ∞. The next test is attributed to Bai and Saranadasa (1996). Under regularity
conditions,

Z2 =
nxT x− tr(S)

[

2(n−1)n
(n−2)(n+1)

(

tr(S2) − 1
n
[tr(S)]2

)

]1/2

D→ N(0, 1)

as n, p→ ∞. Both of these test statistics used p/n → c > 0 or p/n2 → 0.
Note that H0 : µ = 0 holds if and only if ‖µ‖2 = µTµ = 0. The Tn in Equation (1)

below can be viewed as a modification of ‖x‖2 = xT x that is a better estimator of µT µ

in high dimensions. Note that E(xT
i xj) = µTµ if xi and xj are iid with E(xi) = µ and

i 6= j. Let V (Tn) be the variance of Tn and let s2
n = V̂ (Tn) be a consistent estimator of

V (Tn).
The following test is due to Chen and Qin (2010). Also see Hu and Bai (2015). Let

a =
∑n

i=1 xi and let X = (xij) be the data matrix with ith row = xT
i and ij element =

xij. Let vec(A) stack the columns of matrix A so that c = vec(XT ) = [xT
1 ,x

T
2 , ...,x

T
n ]T .

Then

cTc =
n
∑

i=1

xT
i xi =

n
∑

i=1

‖xi‖2 =
n
∑

i=1

p
∑

j=1

(xij)
2.

Let

Tn =
1

n(n− 1)
[aTa − cT c] =

1

n(n − 1)

∑∑

i6=j

xT
i xj =

1

n(n− 1)

∑

i6=j

xT
i xj. (9)

The terms in cT c =
∑n

i=1 xT
i xi are the terms that cause the restriction on p for asymp-

totic normality for the previous two tests. Under H0 : µ = 0 and additional regularity
conditions,

Tn
√

V (Tn)

D→ N(0, 1) and
Tn

sn

D→ N(0, 1) (10)

where sn is rather hard to compute. Here

s2
n =

2

n(n− 1)
tr

[

∑

i6=j

(xi − x(i,j))x
T
i (xj − x(i,j))x

T
j

]

10



is a consistent estimator of V (Tn) where x(i,j) is the sample mean computed without xi

or xj :

x(i,j) =
1

n− 2

∑

k 6=i,j

xk.

We will also consider replacing xi by zi = ss(xi) where the spatial sign function
ss(xi) = 0 if xi = 0, and ss(xi) = xi/‖xi‖ otherwise. This function projects the
nonzero xi onto the unit p-dimensional hypersphere centered at 0. Let Tn(w) denote
the statistic Tn computed from an iid sample w1, ...,wn. Since the zi are iid if the xi

are iid, use Tn(z) to test H0 : µz = 0 versus HA : µz 6= 0 where µz = E(zi). In
general, µz 6= µ = µx = E(xi), but µz = µ = 0 can occur if the xi have a lot of
symmetry about 0. In particular, µz = µ = 0 if the xi are iid from an elliptically
contoured distribution with center µ = 0. The test based on the statistic Tn(z) can be
useful if the second moment of the xi does not exist, for example if the xi are iid from a
multivariate Cauchy distribution. These results may be useful for understanding papers
such as Wang, Peng, and Li (2015)

Section 2 considers two estimators s2
n of V (Tn) that are easier to compute when H0

is true, and gives a new test with very simple large sample theory. Section 3 considers
two sample tests.

3 Estimating V (Tn)

The nonparametric bootstrap draws a bootstrap data set x∗
1, ...,x

∗
n with replacement

from the xi and computes T ∗
1 by applying Tn on the bootstrap data set. This process is

repeated B times to get a bootstrap sample T ∗
1 , ..., T

∗
B. For the statistic Tn, the nonpara-

metric bootstrap fails in high dimensions because terms like xT
j xj need to be avoided,

and the nonparametric bootstrap has replicates: the proportion of cases in the bootstrap
sample that are not replicates is about 1 − e1 ≈ 2/3 ≈ 7/11. The m out of n bootstrap
draws a sample of size m without replacement from the n cases. For B = 1, this is a data
splitting estimator, and T ∗

m ≈ N(0, s2
m) for large enough m and p. Sampling without

replacement is also known as subsampling and the delete d jackknife.
Theory for subsampling is given by Politis and Romano (1994) and Wu (1990). Sub-

sampling tends to work well for a large variety of statistics if m/n→ 0 with m → ∞. A
linear statistic has the form

1

n

n
∑

i=1

t(Ui)

where θ = E[t(Ui)] and the Ui are iid. For a linear statistic, subsampling tends to
work well if m/n → τ ∈ [0, 1) with m → ∞. For the Wi = Ui in Theorem 1,
t(Ui) = Ui = xT

2i−1x2i. If different blocks were taken such that the Wi are still iid,
then subsampling would still work, but the statistics from the different blocks are es-
timating the same quantiles. Hence subsampling from all of the data may also work
well. That is, subsampling may work well for a U-statistic that is the analog of a linear
statistic. Using m = floor(2n/3) worked well in simulations.

11



Now let Wi be an indicator random variable with Wi = 1 if x∗
i is in the sample and

Wi = 0, otherwise, for i = 1, ..., n. The Wi are binary and identically distributed, but
not independent. Hence P (Wi = 1) = m/n. Let Wij = WiWj with i 6= j. Again, the
Wij are binary and identically distributed. P (Wij = 1) = P(ordered pair (xi,xj)) was
selected in the sample. Hence P (Wij = 1) = m(m−1)/[n(n−1)] since m(m−1) ordered
pairs were selected out of n(n− 1) possible ordered pairs. Then

T ∗
m =

1

m(m− 1)

∑∑

k 6=d

xT
ik
xid =

1

m(m− 1)

∑∑

i6=j

WiWjx
T
i xj

where the xi1, ...,xim are the m vectors xi selected in the sample. The first double sum
has m(m− 1) terms while the second double sum has n(n− 1) terms. Hence

E(T ∗
m) =

1

m(m− 1)

∑∑

i6=j

E[WiWj ]x
T
i xj = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V (T ∗
m) = E([T ∗

m]2) −
[Tn]

2 = Cov(T ∗
m, T

∗
m).

4 High Dimensional Two Sample Tests

If (x1i,x2i) come in correlated pairs, a high dimensional analog of the paired t test applies
the one sample test on zi = x1i − x2i.

Now suppose there are two independent random samples x1,1, ...,x1,n1
and x2,1, ...,x2,n2

from two populations or groups, and that it is desired to test H0 : µ1 = µ2 versus
H1 : µ1 6= µ2 where E(xi) = µi are p×1 vectors. Let n = n1 +n2. Let Si be the sample
covariance matrix of xi and let Cov(xi) = Σi for i = 1, 2.

The classical two sample Hotelling’s T 2 test uses

T 2
C = (x1 − x2)

T

[(

1

n1
+

1

n2

)

Σ̂pool

]−1

(x1 − x2)

where

Σ̂pool =
(n1 − 1)S1 + (n2 − 1)S2

n− 2
.

Then reject H0 if T 2
C > mFm,n−2,1−α.

The large sample test uses

T 2
L = (x1 − x2)

T

(

S1

n1
+

S2

n2

)−1

(x1 − x2).

Let dn = min(n1 − p, n2 − p). Then reject H0 if T 2
L > mFm,dn,1−α.

Note that T 2
C ≈ T 2

L if n1 ≈ n2 ≥ 20p and the two tests are asymptotically equivalent
if ni/n→ 0.5 as n1, n2 → ∞. If the ni/n are not close to 0.5, then the test based on T 2

C

is useful if Σ1 = Σ2, a very strong assumption. Rajapaksha and Olive (2024) show how
to get a bootstrap test based on T 2

C where the assumption Σ1 = Σ2 is not needed.
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There are test statistics Tn for testing H0 : µ1 = µ2 where p can be much larger than
n with

Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute. A simple
test takes m = min(n1, n2) and zi = x1i−x2i for i = 1, ..., m. Then apply the one sample
test from Theorem 2 to the zi. This test might work well in high dimensions because of
the superior power of the Theorem 2 test, but in low dimensions, it is known that there
are better tests.

Let x1 be the xi that has n1 ≤ n2. Then let

yi = x1i −
√

n1

n2
x2i +

1√
n1n2

n1
∑

j=1

x2j − x2 = x1i −
√

n1

n2
x2i + an1,n2

− x2

for i = 1, ..., n1. Note that yi = zi = x1i − x2i if n1 = n2. Anderson (1984, pp. 177-178)
proved that y = x1−x2, that yi and yj are uncorrelated for i 6= j, that E(yi) = µ1−µ2,
and that Cov(yi) = Cov(x1) + (n1/n2)Cov(x2) for i = 1, ..., n1. Li (2023) showed that

Tn(y)/
√

V̂0(y)
D→ N(0, 1) where the y denotes that the one sample test was computed

using the yi.
Note that H0 : µ1 = µ2 holds if and only if ‖µ1 −µ2‖2 = µT

1 µ1 +µT
2 µ2 −2µT

1 µ2 = 0.
These terms can be estimated by Tn = Tn(x,y) = T1 +T2 − 2T3 where T1 and T2 are the
one sample test statistic applied to samples 1 and 2 and n1n2T3 =

∑n1

i=1

∑n2

j=1 xT
1ix2j. Let

a =
∑n1

i=1 x1i and let X1 = (x1ij) be the data matrix with ith row = xT
1i and ij element

= x1ij. Let c = vec(XT
1 ) = [xT

11,x
T
12, ...,x

T
1n1

]T . Then

cTc =
n1
∑

i=1

xT
1ix1i =

n1
∑

i=1

‖x1i‖2 =
n1
∑

i=1

p
∑

j=1

(x1ij)
2.

Let b =
∑n2

i=1 x2i and let X2 = (x2ij) be the data matrix with ith row = xT
2i and ij

element = x2ij. Let d = vec(XT
2 ) = [xT

21,x
T
22, ...,x

T
2n2

]T . Then

dTd =
n2
∑

i=1

xT
2ix2i =

n2
∑

i=1

‖x2i‖2 =
n2
∑

i=1

p
∑

j=1

(x2ij)
2.

Thus

Tn = T1 + T2 − 2T3 =
1

n1(n1 − 1)
[aT a − cTc] +

1

n2(n2 − 1)
[bTb − dT d] − 2aT b

n1n2
.

The terms in cTc and dT d are the terms that cause the restriction on p for asymptotic
normality. Under H0 : µ1 = µ2 and additional regularity conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. See Hu and Bai (2015) and Chen and Qin (2010).
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5 SIMULATIONS

Remark 1. Let N = n1 + n2 and assume ni/N → πi ∈ (0, 1) for i = 1, 2. In Theorem
2, V0(Tn) ∝ 1/n2 while V (Tn) ∝ 1/n if µ 6= 0, resulting in a large increase in power
compared to tests that use V (Tn). The Li (2023) two sample test has V0(Tn) ∝ 1/N2.
For the Chen and Qin (2010) two sample test with Tn = Tn(x,y), we conjecture that
V0(Tn) ∝ 1/N2 and V (Tn) ∝ 1/N . See Abid (2025) for details. Programs based on the
conjecture failed because often V̂0(Tn) < 0, perhaps because the plug in estimators had
too much variability. The bootstrap test did work fairly well in the simulations.

5.1 One Sample Tests

In the simulations, we examined four one sample tests. The first “test” used the m
out of n bootstrap to compute T ∗

1 , ..., T
∗
B with B = 100. We used the shorth bootstrap

confidence interval described in Olive (2025, chapter 2) and Pelawa Watagoda and Olive
(2021). This “test” has not been proven to have level α. The second test computed the
usual t confidence interval

[W − t1−α/2,m−1SW/
√
m,W + t1−α/2,m−1SW/

√
m]

for µTµ based on the Wi from Theorem 1. The third and fourth tests used Theorem 2

b) and Equation 2): Tn/sn
D→ N(0, 1) if s2

n is a consistent estimator of V (Tn) when H0 is
true. The third test used

n(n− 1)s2
n = σ̂2

W =
1

n(n− 1)

∑∑

i6=j

(xT
i xj − Tn)

2 =
1

n(n− 1)

∑∑

i6=j

(Wij − Tn)
2.

If the denominator n(n−1) was replaced by n(n−1)−1, this statistic would be the usual
sample variance of the Wij, which are not independent. This test is nearly the same as
the Li (2023) test. The fourth test used n(n − 1)s2

n = S2
W based on Theorem 1. These

two tests computed intervals

[Tn − t1−α/2,m−1

√

2s2
n/[n(n− 1)], Tn + t1−α/2,m−1

√

2s2
n/[n(n− 1)]].

The third test computed the usual t confidence interval

[W − t1−α/2,m−1SW/
√
m,W + t1−α/2,m−1SW/

√
m]

for µT µ based on the Wi from Theorem 1. The tests 2–4 use the same cutoff t1−α/2,m−1 so
that the average interval lengths are more comparable. The fifth test used the Theorem
2 test applied to the spatial sign vectors with S2

W .
The estimator σ̂2

W is easy to code in R. Let X be the n× p data matrix with ith row
xT

i . Then the sum of squares and cross products matrix is C = XXT = (cij) with ijth
element cij = xT

i xj. Let A = XXT − Tn11T = (aij) where 11T is the n × n matrix of
ones. Let matrix V = (vij) where vij = a2

ij = (xT
i xj − Tn)

2 is the ijth element of V .
Thus n(n− 1)σ̂2

W =
∑n

i=1

∑n
j=1 vij −

∑n
i=1 vii.
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k <- n*(n-1)

a <- apply(x,2,sum) #a = n xbar and x is the data matrix

Thd <- (t(a)%*%a - sum(x^2))/k

Thd <- as.double(Thd) #Thd = Tn

sscp <- x%*%t(x)

ss <- sscp - Thd

ss <- ss^2

vw1 <- (sum(ss) - sum(diag(ss)))/k #\hat{\sigma}_W^2

The simulation used four distribution types where x = Ay + δ1 with E(x) = δ1
where 1 is the p × 1 vector of ones. Type 1 used y ∼ Np(0, I), type 2 used a mixture
distribution y ∼ 0.6Np(0, I)+0.4Np(0, 25I), type 3 for a multivariate t4 distribution, and
type 4 for a multivariate lognormal distribution where y = (y1, ..., yp) with wi = exp(Z)
where Z ∼ N(0, 1) and yi = wi −E(wi) where E(wi) = exp(0.5). The covariance matrix
type depended on the matrix A. Type 1 used A = Ip, type 2 used A = diag(

√
1, ...,

√
p),

and type 3 used A = ψ11T + (1 − ψ)Ip giving cor(xij, xik) = ρ for j 6= k where ρ = 0
if ψ = 0, ρ → 1/(c + 1) as p → ∞ if ψ = 1/

√
cp where c > 0, and ρ → 1 as p → ∞ if

ψ ∈ (0, 1) is a constant. We used δ = 0 and δ > 0 chosen so at least one test had good
power. The simulation used 5000 runs, the 4 x distributions, and the 3 matrices A. For
the third A, we used ψ = 1/

√
p.

Tables 1-3 summarize some simulation results. There are two lines for each simulation
scenario. The first line gives the simulated power = proportion of times H0 : µ = 0 was
rejected. The second line gives the average length of the confidence interval where H0 is
rejected if 0 is not in the confidence interval. When δ = 0, observed coverage between
0.04 and 0.06 suggests coverage = power = level is close to the nominal value 0.05. For
larger δ, want the coverage near 1 for good power. See Abid (2025) for more simulations.

The bootstrap test corresponds to the boot column, the tests using (w, SW ), (Tn, σ̂W ),
and (Tn, SW ) correspond to the next three columns. The last column corresponds to the
spatial sign test. This test tends to have much shorter lengths because of the trans-
formation of the data. The test using (w, SW ) has simple large sample theory, but low
power compared to the other methods. This test’s length is approximately

√
n− 1 times

the length of that corresponding to (Tn, SW ) where
√

99 ≈ 10 in the tables. The boot-
strap test was sometimes conservative with observed coverage < 0.04 when delta=0. For
xtype=4 and delta=0, H0 was not true for the spatial test. Hence the coverage for the
spatial test was sometimes higher than 0.06 for this scenario. For delta=0, the test with
(Tn, σ̂W ) sometimes had coverage less than 0.04, while the test with (Tn, SW ) sometimes
had coverage greater than 0.06. In the simulations, the spatial test often performed well,
but typically E(zi) = µz 6= µx = E(xi), which makes the spatial test harder to use.
For testing H0 : µx = 0, the test with (Tn, σ̂W ) appeared to perform better than the
three competitors.

5.2 Two Sample Tests

In the simulations, we examined three sample tests. The first “test” used the m out of n
bootstrap where mi = 2ni/3 to bootstrap the Chen and Qin (2010) test that estimates
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Table 1: one sample tests, covtyp=1

n p psi/xtype δ boot (w, SW ) (Tn, σ̂W ) (Tn, SW ) spatial
100 100 0 0 0.0230 0.0580 0.0400 0.0452 0.0444

len 1 0.6732 5.6520 0.5711 0.5681 0.0057
100 100 0 0.075 0.8160 0.0688 0.9216 0.9176 0.9166

len 1 0.8081 5.7018 0.5741 0.5731 0.0057
100 100 0 0 0.0236 0.0436 0.0466 0.0776 0.0478

len 2 7.0590 58.2593 6.0094 5.8553 0.0057
100 100 0 0.15 0.1938 0.0506 0.3128 0.3490 0.9988

len 2 7.5830 58.1417 6.0204 5.8435 0.0057
100 100 0 0 0.0222 0.0466 0.0450 0.0680 0.0468

len 3 1.3031 10.6946 1.1140 1.0749 0.0057
100 100 0 0.1 0.7536 0.0544 0.8720 0.8714 0.9956

len 3 1.5563 10.8976 1.1260 1.0953 0.0057
100 100 0 0 0.0206 0.0556 0.0372 0.0656 0.0906

len 4 3.1105 25.4558 2.6543 2.5584 0.0057
100 100 0 0.17 0.9024 0.0546 0.9622 0.9496 0.7668

len 4 3.7816 25.5420 2.6708 2.5671 0.0057
100 1000 0 0 0.0236 0.0482 0.0448 0.0506 0.0506

len 1 2.1403 17.8302 1.8059 1.7920 0.0018
100 1000 0 0.0415 0.872 0.068 0.9438 0.9398 0.9388

len 1 2.2771 17.9004 1.8089 1.7991 0.0018
100 1000 0 0 0.0236 0.0448 0.0458 0.0712 0.0558

len 2 22.4434 185.1105 19.0973 18.6043 0.0018
100 1000 0 0.075 0.142 0.0480 0.2222 0.2616 0.9978

len 2 22.8203 182.6556 18.9772 18.3576 0.0018
100 1000 0 0 0.0214 0.0432 0.0436 0.0650 0.0450

len 3 4.1649 34.1708 3.5444 3.4343 0.0018
100 1000 0 0.05 0.6458 0.0558 0.7642 0.7770 0.9908

len 3 4.3708 34.0483 3.5586 3.4220 0.0018
100 1000 0 0 0.0192 0.0544 0.0378 0.0518 0.0484

len 4 9.9417 82.3953 8.4267 8.2810 0.0018
100 1000 0 0.087 0.8430 0.0576 0.9282 0.9242 0.8774

len 4 10.5664 82.8816 8.4523 8.3299 0.0018
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Table 2: one sample tests, covtyp=2

n p psi/xtype δ boot (w, SW ) (Tn, σ̂W ) (Tn, SW ) spatial
100 100 0 0 0.0212 0.0498 0.0380 0.0430 0.0414

len 1 38.9543 329.1668 33.2225 33.0825 0.0065
100 100 0 0.6 0.8966 0.0758 0.9560 0.9548 0.9556

len 1 46.3236 330.7589 33.3672 33.2425 0.0065
100 100 0 0 0.0214 0.0502 0.0398 0.0726 0.0506

len 2 410.1416 3394.75 350.1749 341.1852 0.0065
100 100 0 1.5 0.5062 0.0526 0.6492 0.6620 1

len 2 455.0242 3396.337 350.6696 341.3447 0.0066
100 100 0 0 0.0230 0.0410 0.0454 0.0684 0.0474

len 3 76.2693 629.0579 65.2686 63.2227 0.0065
100 100 0 0.75 0.7550 0.0600 0.8558 0.8608 0.997

len 3 88.0646 634.0106 65.4900 63.7205 0.0065
100 100 0 0 0.0222 0.0608 0.0420 0.0738 0.1156

len 4 178.6321 1470.551 153.3266 147.7959 0.0064
100 100 0 1.2 0.8532 0.0492 0.9320 0.9214 0.7410

len 4 207.835 1459.873 154.4866 146.7227 0.0063
100 1000 0 0 0.0286 0.0476 0.0438 0.0482 0.0490

len 1 1231.498 10344.15 1043.615 1039.626 0.0021
100 1000 0 0.975 0.8472 0.0648 0.9282 0.9204 0.9208

len 1 1300.17 10379.01 1045.303 1043.129 0.0021
100 1000 0 0 0.0266 0.0386 0.0470 0.0784 0.0536

len 2 12929.72 106330.2 11004.27 10686.59 0.0021
100 1000 0 1.5 0.078 0.0388 0.1286 0.1620 0.9474

len 2 13095.03 106960.8 11016.42 10749.97 0.0021
100 1000 0 0 0.0222 0.0456 0.0446 0.0738 0.0454

len 3 2387.572 19676.47 2033.522 1977.559 0.0021
100 1000 0 1.25 0.7222 0.0616 0.8276 0.8346 0.9986

len 3 2514.451 19835.06 2051.272 1993.498 0.0021
100 1000 0 0 0.0268 0.0522 0.0462 0.0630 0.0546

len 4 5747.818 47479.65 4864.88 4771.884 0.0020
100 1000 0 2.15 0.8958 0.0540 0.9544 0.9466 0.9198

len 4 6064.615 47527.19 4876.035 4776.662 0.0021
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Table 3: one sample tests, covtyp=3

n p psi/xtype δ boot (w, SW ) (Tn, σ̂W ) (Tn, SW ) spatial
100 1000 0 0 0.0282 0.0490 0.0516 0.056 0.0558

len 1 2.1401 17.8831 1.8065 1.7973 0.0018
100 1000 0.0316 0 0.0066 0.0426 0.0512 0.0532 0.0500

len 1 58.4898 591.9678 60.0672 59.495 0.0207
100 1000 0 0.04 0.8196 0.0610 0.9152 0.9124 0.9128

len 1 2.2646 17.9067 1.8088 1.7997 0.0018
100 1000 0.0316 0.4 0.8342 0.1524 0.9732 0.9740 0.9572

len 1 241.2136 672.2661 68.1736 67.5653 0.0218
100 1000 0 0 0.0272 0.0438 0.0484 0.0820 0.0522

len 2 22.3855 182.4873 19.0115 18.3407 0.0018
100 1000 0.0316 0 0.0072 0.0306 0.0524 0.0636 0.0502

len 2 617.6974 5850.04 625.8249 587.9512 0.0208
100 1000 0 0.1 0.3982 0.0460 0.5330 0.5552 1

len 2 23.2021 184.5163 19.0359 18.5446 0.0018
100 1000 0.0316 0.7 0.2628 0.0522 0.5570 0.5734 0.9900

len 2 1373.899 6128.062 652.5555 615.8934 0.0228
100 1000 0 0 0.0276 0.0464 0.0484 0.0742 0.0536

len 3 4.1547 34.0314 3.5458 3.4203 0.0018
100 1000 0.0316 0 0.0082 0.0430 0.0504 0.0610 0.0482

len 3 114.0482 1097.655 115.6618 110.3185 0.0207
100 1000 0 0.05 0.6502 0.0638 0.7662 0.7722 0.9924

len 3 4.3608 34.1752 3.5518 3.4347 0.0018
100 1000 0.0316 0.5 0.7432 0.1282 0.9284 0.9294 0.9880

len 3 419.3617 1241.326 129.0976 124.7579 0.0224
100 1000 0 0 0.0252 0.0486 0.0432 0.0568 0.0548

len 4 9.9698 82.6130 8.4362 8.3029 0.0018
100 1000 0.0316 0 0.0068 0.0448 0.0500 0.0512 0.0800

len 4 272.2052 2776.522 281.1257 279.051 0.0210
100 1000 0 0.09 0.8848 0.0614 0.9534 0.9484 0.9128

len 4 10.5916 82.9419 8.4411 8.3360 0.0018
100 1000 0.0316 0.75 0.7026 0.0962 0.9192 0.9214 0.7900

len 4 978.2186 3071.672 310.7018 308.7147 0.0216
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Table 4: two sample tests, covtyp=3

(n1, n2, σ, p) xtype covtype delta boot pair Li
(100,100,1,100) 1 1 0 0.0246 0.0494 0.0494

len 1 1 0 1.3426 1.1389 1.1389
(100,100,1,100) 1 1 0.1 0.7224 0.8586 0.8586

len 1 1 0.1 1.5789 1.1417 1.1417
(100,200,1,100) 1 1 0 0.0256 0.0456 0.0462

len 1 1 0 1.0019 1.1360 0.8535
(100,200,1,100) 1 1 0.1 0.9166 0.8602 0.9612

len 1 1 0.1 1.2396 1.1432 0.8609

‖µ1 − µ2‖2 = µT
1 µ1 + µT

2 µ2 − 2µT
1 µ2. The second test was the “paired test” with

m = min(n1, n2) and zi = x1i−x2i for i = 1, ..., m. Then apply the one sample test from
Theorem 2 to the zi. The third test was the Li (2023) test. Both of these tests used S2

W

applied to the zi or the yi.
The simulation used four distribution types where x1 = A1y1 + δ1 and x2 = A2y2

where y1 and y2 had the same distribution, withE(x1) = δ1 and E(x2) = 0. Type 1 used
y ∼ Np(0, I), type 2 used a mixture distribution y ∼ 0.6Np(0, I) + 0.4Np(0, 25I), type
3 for a multivariate t4 distribution, and type 4 for a multivariate lognormal distribution
where y = (y1, ..., yp) with wi = exp(Z) where Z ∼ N(0, 1) and yi = wi − E(wi) where
E(wi) = exp(0.5). The covariance matrix type depended on the matrix A.

For the covariance types, Cov(x1) = I, Cov(x2) = σ2Cov(x1) for covtyp=1. Cov(x1) =
diag(1, 2, ..., p), Cov(x2) = σ2Cov(x1) for covtyp=2. Cov(x1) = I , Cov(x2) = σ2diag(1, 2,
..., p) for covtyp=3. Table 4 shows some results. Two lines were used for each simulation
scenario, with coverages on the first line and lengths on the second line. When n1 = n2,
the paired test and Li test gave the same results. When n1/n2 was not near 1, the Li
test had better power and shorter length. Increasing δ could greatly increase the length
for the bootstrap test, but the coverage would be 1.

6 CONCLUSIONS

The one sample test statistic Tn estimates µTµ and V (Tn) is easy to estimate when
H0 : µ = 0 is true. Under regularity conditions when H0 is true, Li (2023) proved that

Tn/
√

V (Tn)
D→ tk as p→ ∞ for fixed n ≥ 3 where k = 0.5n(n − 1) − 1.

Zhao, Li, Li and Zhang (2024) have an interesting result for the multiple linear re-
gression model

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α+ xT
i β + ei (11)

for i = 1, ..., n. Assume that the cases (xT
i , Yi)

T are iid with E(Y ) = µY , E(x) = µx
and nonsingular Cov(x) = Σx. Let Cov(x, Y ) = ΣxY . Then testing H0 : β = β0

versus H1 : β 6= β0 is equivalent to testing H0 : µ = 0 versus H1 : µ 6= 0 with
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µ = E(zi) = Σx(β − β0) where zi = (xi − µx)(Yi − µY − (xi − µx)T β0), and the one
sample test from Theorem 2 can be applied to wi = (xi − x)(Yi − Y − (xi − x)Tβ0).
Since β = Σ−1

x ΣxY , using β0 = 0 gives both a test for H0 : β = 0 and H0 : ΣxY = 0.
See Olive and Quaye (2025) for applications.

For classification with two groups, let Σ be the pooled covariance matrix. Then
β = Σ−1(µ1 −µ2) = 0 iff µ1 −µ2 = 0, which can be tested with a two sample test. For
the importance of β in discriminant analysis, see, for example, Wang, Wu, and Wang
(2025).

Let the “fail to reject region” be the compliment of the rejection region. Often the
fail to reject region is a confidence region for the parameter or parameter vector of
interest, where a confidence interval is a special case of a confidence region. For the
one sample test, the fail to reject region using V0 has much more power than using a
confidence interval for µT µ. The two sample test statistic TN(x,y) could be used to get
a confidence interval for ‖µ1 − µ2‖2.

The literature for high dimensional one and two sample tests is rather large. Hu,
Tong, and Genton (2024) have many references. Some high dimensional one sample tests
include Chen et al. (2011), Feng and Sun (2016), Hyodo and Nishiyama (2017), Park and
Ayyala (2013), Srivastava and Du (2008), Wang, Peng, and Li (2015), and Zhao (2017).
Hu and Bai (2015) also describes some tests. Chakraborty and Chaudhuri (2017) suggest
a method for obtaining a k-sample test of µ1 = · · · = µk from a one sample test statistic.

Some high dimensional two sample tests include Ahmad (2014), Chen, Li, and Zhong
(2019), Feng and Sun (2015), Gregory et al. (2015), Jiang et al. (2022), Xue and Yao
(2020), and Zhang et al. (2020). For more on the use of U-statistics for high dimensional
methods, see, for example, Xu, Zhu, and Shao (2024).

Two sample tests that assume Σ1 = Σ2 may not work well since the assumption
of equal covariance matrices rarely holds. This assumption is typically stronger than
assuming that µ1 = µ2. See, for example, Huang et al. (2022), Hu and Bai (2015), and
Yang, Zheng, and Li (2024).

Simulations were done in R. See R Core Team (2024). The collection of Olive (2025)
R functions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has some
useful functions for the inference. The function hdhot1sim was used to simulate the
four tests, while the function hdhot1sim2 simulates the first test, which is rather fast.
The function hdhot1sim3 added the test based on sample signs using the fast test. The
function hdhot2sim simulates the two sample test which applies the fast one sample test
on the zi = xi1 − xi2 for i = 1, ..., m, the Li (2023) test, and the two sample test based
on subsampling with mi = floor(2ni/3) for i=1,2.

The spatial sign vectors have a some outlier resistance. If the predictor variables are
all continuous, the covmb2 and ddplot5 functions are useful for detecting outliers in high
dimensions. See Olive (2025,

∮

1.4.3) and Olive (2017, pp. 120-123).
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