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Abstract

Poisson regression, negative binomial regression, and related regression methods

are often used when the response variable is a count. A log transformation often

results in a linear model with heterogeneity. Then testing can be done with the one

component partial least squares estimator for multiple linear regression, including

some high dimensional tests. For prediction, a simple method that uses information

from several estimators, is also considered.

KEY WORDS: Data splitting, dimension reduction, high dimensional

data, lasso.

1 INTRODUCTION

This section reviews regression models where the nonnegative integer count response
variable is Y that is independent of the p× 1 vector of predictors x = (x1, ..., xp)

T given
xTβ, written Y x|xT β. Then there are n cases (Yi, x

T
i )T , and the sufficient predictor

SP = α + xTβ. For the regression models, the conditioning and subscripts, such as i,
will often be suppressed. A useful Poisson regression (PR) model is Y ∼ Poisson

(
eSP

)
.

This model has E(Y |SP ) = V (Y |SP ) = exp(SP ).
Some notation is needed for the negative binomial regression model. If Y has a

(generalized) negative binomial distribution, Y ∼ NB(µ, κ) , then the probability mass
function (pmf) of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(
κ

µ + κ

)κ (
1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.
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The negative binomial regression model states that Y1, ..., Yn are independent random
variables with

Y |SP ∼ NB(exp(SP), κ).

This model has E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the negative
binomial regression model converges to the Poisson regression model.

The quasi-Poisson regression model has E(Y |SP ) = exp(SP ) and V (Y |SP ) = φ exp(SP )
where the dispersion parameter φ > 0. Note that this model and the Poisson regression
model have the same conditional mean function, and the conditional variance functions
are the same if φ = 1.

Next, some notation is needed for the zero truncated Poisson regression model. See
Olive (2017, pp. 430–431). Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),
if the probability mass function of Y is

f(y) =
e−µ µy

(1 − eµ) y!

for y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distribution
where y = 0 values are truncated, so not allowed. Now E(Y ) = µ/(1 − e−µ), and

V (Y ) =
µ2 + µ

1 − e−µ
−

(
µ

1 − e−µ

)2

.

The zero truncated Poisson regression model has Y |SP ∼ ZTP (exp(SP )). Hence the
parameter µ(SP ) = exp(SP ),

E(Y |SP ) =
exp(SP )

1 − exp(− exp(SP ))
, and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1 − exp(− exp(SP ))
−

(
exp(SP )

1 − exp(− exp(SP ))

)2

.

Other alternatives include the zero truncated negative binomial regression model, the
hurdle or zero inflated Poisson regression model, and the hurdle or zero inflated negative
binomial regression model. See Zuur et al. (2009), Simonoff (2003), and Hilbe (2011).

Variable selection estimators include forward selection or backward elimination when
n ≥ 10p. When n/p is not large, the Chen and Chen (2008) EBIC criterion with forward
selection can be useful. Sparse regression methods can also be used for variable selection
even if n/p is not large: the regression submodel, such as a Nelder and Wedderburn (1972)
generalized linear model (GLM), uses the predictors that had nonzero sparse regression
estimated coefficients. For Poisson rgression, these methods include lasso and elastic net.
See Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Tibshirani (1996),
and Zou and Hastie (2005).
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Following Olive and Hawkins (2005), a model for variable selection can be described
by

xT β = xT
SβS + xT

EβE = xT
SβS (1)

where x = (xT
S , xT

E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector. Given that
xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated
given that the subset S is in the model. Let xI be the vector of a terms from a candidate
subset indexed by I , and let xO be the vector of the remaining predictors (out of the
candidate submodel). Suppose that S is a subset of I and that model (1) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I . The model using xT β is the full model.
To clarify notation, suppose p = 3, a constant α is always in the model, and β =

(β1, 0, 0)
T . Then the J = 2p = 8 possible subsets of {1, 2, ..., p} are I1 = ∅, S = I2 = {1},

I3 = {2}, I4 = {3}, I5 = {1, 2}, I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There
are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ Ij. Let β̂I7 = (β̂2, β̂3)

T and
xI7 = (x2, x3)

T .
Let Imin correspond to the set of predictors selected by a variable selection method

such as forward selection or lasso variable selection. If β̂I is a×1, use zero padding to form
the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik,0 with probabilities πkn =

P (Imin = Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p.
Theory for the variable selection estimator β̂V S is complicated. See Pelawa Watagoda

and Olive (2021) for multiple linear regression, and Rathnayake and Olive (2021) for
models such as generalized linear models. For fixed p, these two papers showed that β̂V S

is
√

n consistent with a complicated nonnormal limiting distribution.
Let the log transformation Zi = log(Yi) if Yi > 0 and Zi = log(0.5) if Yi = 0. This

transformation often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (2)

where the ei are independent with expected value E(Zi) = 0 and variance V (Zi) = σ2
i .

For Poisson regression, the minimum chi-square estimator is the weighted least squares
estimator from the regression of Zi on xi with weights wi = eZi. See Agresti (2002, pp.
611–612) and Olive (2013, 2017: pp. 406–407).

Hence multiple linear regression models will be useful. Now let the response variable
Y be for multiple linear regression, so Y need not be a nonnegative integer. A useful
multiple linear regression model is Y |xTβ = α + xTβ + e or Yi = α + xT

i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (3)

for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with
expected value E(ei) = 0 and variance V (ei) = σ2. In matrix form, this model is

Y = Xφ + e, (4)
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where Y is an n × 1 vector of dependent variables, X is an n × (p + 1) matrix with ith
row (1, xT

i ), φ = (α, βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown
errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n × n identity matrix.

For a multiple linear regression model with heterogeneity, assume model (4) holds with
E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2
1, ..., σ

2
n) is an n × n positive definite

matrix. When the σ2
i are known, weighted least squares (WLS) is often used. Under reg-

ularity conditions, the ordinary least squares (OLS) estimator φ̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of φ. See, for example, White (1980).
For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x−E(x))(x−E(x))T = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =
E[(x−E(X)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].
Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (3) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid)
cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY under mild regularity condi-
tions, while α̂OLS is a consistent estimator of E(Y ) − βT

OLSE(x).
Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(5)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos
(2022) and Wold (1975). Olive and Zhang (2024) derived the large sample theory for
η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the previous
literature, where ηOPLS = ΣxY . Olive and Alshammari (2024) showed that for iid cases
(xi, Yi), these results still hole for multiple linear regression models with heterogeneity.
Thus the OPLS regression of Zi on xi is useful to model (2).

The marginal maximum likelihood estimator (MMLE or marginal least squares esti-
mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes
the marginal regression of Y on xi, such as Poisson regression, resulting in the estimator
(α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .

For multiple linear regression, the marginal estimators are the simple linear regression
(SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (6)

4



If the ti are the predictors that are scaled or standardized to have unit sample variances,
then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (7)

where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix. Olive
and Alshammari (2024) derived large sample theory for the MMLE for the multiple linear
regression models, including models with heterogeneity.

If the regression model for Y depends on x only through α + βTx, and if the predic-
tors xi are independent and identically distributed (iid) from a large class of elliptically
contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that,
under regularity conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if
Σx = τ 2Ip for some constant τ 2 > 0. If β = βOLS in this case, then βi = 0 implies
that Cov(xi, Y ) = 0. The constant c is typically nonzero unless m has a lot of symmetry
about the distribution of α + βTx. Chang and Olive (2010) considered OLS tests for
these models. Simulation with Σ̂xY can be difficult if the population values of c and d
are unknown. Results from Cameron and Trivedi (1998, p. 89) suggest that if a Poisson
regression model is fit using OLS software for multiple linear regression, then a rough
approximation is β̂PR ≈ β̂OLS/Y .

Data splitting divides the training data set of n cases into two sets: H and the
validation set V where H has nH of the cases and V has the remaining nV = n − nH

cases i1, ..., inV
. An application of data splitting is to use a variable selection method,

such as forward selection or lasso, on H to get submodel Imin with a predictors, then fit
the selected model to the cases in the validation set V using standard inference. See, for
example, Olive and Zhang (2024) and Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is
sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression model is
abundant or dense if the regression information is spread out among the p predictors
(nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

Section 2 gives some large sample theory, while Section 3 considers tests of hypotheses.

2 Large Sample Theory

This section reviews the Olive and Zhang (2024) large sample theory for η̂OPLS = Σ̂xY

and OPLS for the multiple linear regression model, including some high dimensional
tests for low dimensional quantities such as HO : βi = 0 or H0 : βi − βj = 0. These
tests depended on iid cases, but not on linearity or the constant variance assumption.
Hence the tests are useful for multiple linear regression with heterogeneity. Data splitting
uses model selection (variable selection is a special case) to reduce the high dimensional
problem to a low dimensional problem. Also see the large sample theory given in Olive
and Alshammari (2024).

Remark 1. The following result is useful for several multiple linear regression es-
timators. Let wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with
1 ≤ k ≤ p.
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a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗

w = AnΣ
∗

xAT
n and Σ∗

wY = AnΣ
∗

xY .
b) If An is a constant matrix, then Σw = AnΣxAT

n and ΣwY = AnΣxY .

The following Olive and Zhang (2024) theorem gives the large sample theory for

η̂ = Ĉov(x, Y ). This theory needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a
consistent estimator of η. Let xi = (xi1, ..., xip)

T and let wi and zi be defined below
where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.
Theorem 1. Assume the cases (xT

i , Yi)
T are iid. Assume E(xk

ij Y m
i ) exist for j =

1, ..., p and k, m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi −µx)(Yi −µY )
with sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√

n(η̂n − η)
D→ Np(0,Σw), (8)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n−1/2) =
Σ̂v + OP (n−1/2). Hence Σ̃w = Σ̃z + OP (n−1/2) = Σ̃v + OP (n−1/2).
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ2AΣwAT ). (9)

2.1 Testing

As noted by Olive and Zhang (2024), the following simple testing method reduces a pos-
sibly high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0

versus H1 : AβOPLS 6= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη 6= 0

where A is a k × p constant matrix. Let Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymp-
totic covariance matrix of η̂ = Σ̂xY . In high dimensions where n < 5p, we can’t get a
good nonsingular estimator of Cov(Σ̂xY ), but we can get good nonsingular estimators
of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)

T ) with u = (xi1, ..., xik)
T where n ≥ Jk with J ≥ 10.

(Values of J much larger than 10 may be needed if some of the k predictors and/or Y
are skewed.) Simply apply Theorem 1 to the predictors u used in the hypothesis test,
and thus use the sample covariance matrix of the vectors ui(Yi − Y ). Hence we can test
hypotheses like H0 : βi−βj = 0. In particular, testing H0 : βi = 0 is equivalent to testing
H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

Note that the tests with η̂ using k distinct predictors xij do not depend on other
predictors, including important predictors that were left out of the model (underfit-
ting). Hence the tests can have considerable resistance to underfitting and overfit-
ting. The OPLS tests also have some resistance to measurement error: assume that
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(xT
i , uT

i , vi, Yi)
T are iid but wi = xi +ui and Zi = Yi +vi are observed instead of (xi, Yi).

Then β̂OLS(w, Z) estimates Σ−1
wΣwZ , while Σ̂wZ estimates Cov(x, Y ) if Cov(x, v) +

Cov(u, Y ) + Cov(u, v) = 0, which occurs, for example, if x v, u Y , and u v.
The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests

with η̂ since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator
if η̂T x is a good estimator of ηT x.

3 Incorporating Information from Several Regres-

sion Estimators

The theory and tests from the previous section can be applied to model (2) with Z
replacing Y .

There are several ways to compute k-component partial least squares (PLS) estimators
for multiple linear regression. A simple way is to do the OLS regression on W1, ..., Wk

where Wj = η̂
T
j x and η̂j = Σ̂

j−1

x Σ̂xY , and k < n − 1. Then the one component PLS

estimator is OPLS while the 3-component PLS estimator regresses Y on W1 = η̂T
1 x =

Σ̂
T

xY x, W2 = η̂
T
2 x = [Σ̂xΣ̂xY ]Tx, and W3 = η̂

T
3 x = [Σ̂

2

xΣ̂xY ]Tx. See Helland (1990).
This result suggests computing Wi = η̂T

i x for i = 1, ..., J and fit the OLS model
that regresses Z on the Wi or, for example, the Poisson regression model that regresses

Y on the Wi. Some interesting choices are η̂1 = Σ̂xZ , η̂2 = Σ̂xΣ̂xZ , η̂3 = Σ̂
2

xΣ̂xZ ,
η̂4 = β̂L(x, Z)= the lasso estimator from regressing Z on x, η̂5 = β̂RR(x, Z)= the
ridge regression estimator from regressing Z on x, η̂6 = β̂LPR(x, Y )= the lasso Poisson
regression estimator from regressing Y on x. Let xI denote the set of variables selected

using η̂4. Then η̂7 = Σ̂xIZ , η̂8 = Σ̂xI
Σ̂xIZ , η̂9 = Σ̂

2

xI
Σ̂xIZ , η̂10 = β̂RR(xI , Z)= the

ridge regression estimator from regressing Z on xI . Other good choices can easily be
obtained. For example, let xG denote the set of variables selected using η̂6.

4 EXAMPLE AND SIMULATIONS

5 CONCLUSIONS

The response plot of the estimated sufficient predictor α̂ + xT β̂ versus Y is useful for
checking many regression models. See Olive (2013) for more on plots for such models,
including a plot to detect overdispersion.

Software

The R software was used in the simulations. See R Core Team (2020). Programs
will be added to the Olive (2023) collections of R functions slpack.txt, available from
(http://parker.ad.siu.edu/Olive/slpack.txt).
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