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Abstract

Poisson regression, negative binomial regression, and related regression methods

are often used when the response variable is a count. A log transformation often

results in a linear model with heterogeneity. Then testing can be done with the one

component partial least squares estimator for multiple linear regression, including

some high dimensional tests.
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1 INTRODUCTION

This section reviews regression models where the nonnegative integer count response
variable is Y that is independent of the p× 1 vector of predictors x = (x1, ..., xp)

T given
xTβ, written Y x|xT β. Then there are n cases (Yi,x

T
i )T , and the sufficient predictor

SP = α + xTβ. For the regression models, the conditioning and subscripts, such as i,
will often be suppressed. A useful Poisson regression (PR) model is Y ∼ Poisson

(
eSP

)
.

This model has E(Y |SP ) = V (Y |SP ) = exp(SP ).
Some notation is needed for the negative binomial regression model. If Y has a

(generalized) negative binomial distribution, Y ∼ NB(µ, κ) , then the probability mass
function (pmf) of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(
κ

µ+ κ

)κ (
1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.
The negative binomial regression model states that Y1, ..., Yn are independent random

variables with
Y |SP ∼ NB(exp(SP), κ).
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This model has E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the negative
binomial regression model converges to the Poisson regression model.

The quasi-Poisson regression model hasE(Y |SP ) = exp(SP ) and V (Y |SP ) = φ exp(SP )
where the dispersion parameter φ > 0. Note that this model and the Poisson regression
model have the same conditional mean function, and the conditional variance functions
are the same if φ = 1.

Next, some notation is needed for the zero truncated Poisson regression model. See
Olive (2017, pp. 430–431). Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),
if the probability mass function of Y is

f(y) =
e−µ µy

(1 − e−µ) y!

for y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distribution
where y = 0 values are truncated, so not allowed. Now E(Y ) = µ/(1 − e−µ), and

V (Y ) =
µ2 + µ

1 − e−µ
−

(
µ

1 − e−µ

)2

.

The zero truncated Poisson regression model has Y |SP ∼ ZTP (exp(SP )). Hence the
parameter µ(SP ) = exp(SP ),

E(Y |SP ) =
exp(SP )

1 − exp(− exp(SP ))
, and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1 − exp(− exp(SP ))
−

(
exp(SP )

1 − exp(− exp(SP ))

)2

.

Other alternatives include the zero truncated negative binomial regression model, the
hurdle or zero inflated Poisson regression model, and the hurdle or zero inflated negative
binomial regression model. See Zuur et al. (2009), Simonoff (2003), and Hilbe (2011).

Variable selection estimators include forward selection or backward elimination when
n ≥ 10p. When n/p is not large, the Chen and Chen (2008) EBIC criterion with forward
selection can be useful. Sparse regression methods can also be used for variable selection
even if n/p is not large: the regression submodel, such as a Nelder and Wedderburn (1972)
generalized linear model (GLM), uses the predictors that had nonzero sparse regression
estimated coefficients. For Poisson rgression, these methods include lasso and elastic net.
See Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Tibshirani (1996),
and Zou and Hastie (2005).

Following Olive and Hawkins (2005), a model for variable selection can be described
by

xT β = xT
SβS + xT

EβE = xT
SβS (1)
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where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p− aS)× 1 vector. Given that

xS is in the model, βE = 0 and E denotes the subset of terms that can be eliminated
given that the subset S is in the model. Let xI be the vector of a terms from a candidate
subset indexed by I , and let xO be the vector of the remaining predictors (out of the
candidate submodel). Suppose that S is a subset of I and that model (1) holds. Then

xT β = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I . The model using xT β is the full model.
To clarify notation, suppose p = 3, a constant α is always in the model, and β =

(β1, 0, 0)
T . Then the J = 2p = 8 possible subsets of {1, 2, ..., p} are I1 = ∅, S = I2 = {1},

I3 = {2}, I4 = {3}, I5 = {1, 2}, I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There
are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ Ij. Let β̂I7

= (β̂2, β̂3)
T and

xI7 = (x2, x3)
T .

Let Imin correspond to the set of predictors selected by a variable selection method
such as forward selection or lasso variable selection. If β̂I is a×1, use zero padding to form
the p× 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik,0 with probabilities πkn =

P (Imin = Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p.
Theory for the variable selection estimator β̂V S is complicated. See Pelawa Watagoda

and Olive (2021) for multiple linear regression, and Rathnayake and Olive (2023) for
models such as generalized linear models. For fixed p, these two papers showed that β̂V S

is
√
n consistent with a complicated nonnormal limiting distribution.

Let the log transformation Zi = log(Yi) if Yi > 0 and Zi = log(0.5) if Yi = 0. This
transformation often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (2)

where the ei are independent with expected value E(Zi) = 0 and variance V (Zi) = σ2
i .

For Poisson regression, the minimum chi-square estimator is the weighted least squares
estimator from the regression of Zi on xi with weights wi = eZi. See Agresti (2002, pp.
611–612) and Olive (2013, 2017: pp. 406–407).

Hence multiple linear regression models will be useful. Now let the response variable
Y be for multiple linear regression, so Y need not be a nonnegative integer. A useful
multiple linear regression model is Y |xTβ = α + xTβ + e or Yi = α + xT

i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α+ xT
i β + ei (3)

for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with
expected value E(ei) = 0 and variance V (ei) = σ2. In matrix form, this model is

Y = Xφ + e, (4)

where Y is an n× 1 vector of dependent variables, X is an n× (p + 1) matrix with ith
row (1,xT

i ), φ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown
errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.
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For a multiple linear regression model with heterogeneity, assume model (4) holds with
E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2
1, ..., σ

2
n) is an n × n positive definite

matrix. When the σ2
i are known, weighted least squares (WLS) is often used. Under reg-

ularity conditions, the ordinary least squares (OLS) estimator φ̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of φ. See, for example, White (1980).
For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x−E(x))(x−E(x))T ] = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =
E[(x−E(x)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].
Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (3) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid)
cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY under mild regularity condi-
tions, while α̂OLS is a consistent estimator of E(Y ) − βT

OLSE(x).
Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(5)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos
(2024), Cook and Forzani (2024), and Wold (1975). Olive and Zhang (2025) derived the
large sample theory for η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than
those in the previous literature, where ηOPLS = ΣxY . Olive et al. (2025) showed that
for iid cases (xi, Yi), these results still hold for multiple linear regression models with
heterogeneity. Thus the OPLS regression of Zi on xi is useful to model (2).

The marginal maximum likelihood estimator (MMLE or marginal least squares esti-
mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes
the marginal regression of Y on xi, such as Poisson regression, resulting in the estimator
(α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .

For multiple linear regression, the marginal estimators are the simple linear regression
(SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (6)

If the ti are the predictors that are scaled or standardized to have unit sample variances,
then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (7)
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where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix. Olive
et al. (2025) derived large sample theory for the MMLE for the multiple linear regression
models, including models with heterogeneity.

If the regression model for Y depends on x only through α+ βTx, and if the predic-
tors xi are independent and identically distributed (iid) from a large class of elliptically
contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that,
under regularity conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if
Σx = τ 2Ip for some constant τ 2 > 0. If β = βOLS in this case, then βi = 0 implies
that Cov(xi, Y ) = 0. The constant c is typically nonzero unless m has a lot of symmetry
about the distribution of α + βTx. Chang and Olive (2010) considered OLS tests for
these models. Simulation with Σ̂xY can be difficult if the population values of c and d
are unknown. Results from Cameron and Trivedi (1998, p. 89) suggest that if a Poisson
regression model is fit using OLS software for multiple linear regression, then a rough
approximation is β̂PR ≈ β̂OLS/Y .

Data splitting divides the training data set of n cases into two sets: H and the
validation set V where H has nH of the cases and V has the remaining nV = n − nH

cases i1, ..., inV
. An application of data splitting is to use a variable selection method,

such as forward selection or lasso, on H to get submodel Imin with a predictors, then fit
the selected model to the cases in the validation set V using standard inference. See, for
example, Olive and Zhang (2024) and Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is
sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression model is
abundant or dense if the regression information is spread out among the p predictors
(nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

Section 2 gives some large sample theory, while Section 3 considers tests of hypotheses.

2 Large Sample Theory

This section reviews the Olive and Zhang (2025) large sample theory for η̂OPLS = Σ̂xY

and OPLS for the multiple linear regression model, including some high dimensional
tests for low dimensional quantities such as HO : βi = 0 or H0 : βi − βj = 0. These
tests depended on iid cases, but not on linearity or the constant variance assumption.
Hence the tests are useful for multiple linear regression with heterogeneity. Data splitting
uses model selection (variable selection is a special case) to reduce the high dimensional
problem to a low dimensional problem. Also see the large sample theory given in Olive
et al. (2025).

Remark 1. The following result is useful for several multiple linear regression es-
timators. Let wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with
1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ

∗
xAT

n and Σ∗
wY = AnΣ

∗
xY .

b) If An is a constant matrix, then Σw = AnΣxAT
n and ΣwY = AnΣxY .

The following Olive and Zhang (2025) theorem gives the large sample theory for
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η̂ = Ĉov(x, Y ). This theory needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a
consistent estimator of η. Let xi = (xi1, ..., xip)

T and let wi and zi be defined below
where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.
Theorem 1. Assume the cases (xT

i , Yi)
T are iid. Assume E(xk

ij Y
m
i ) exist for j =

1, ..., p and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi −µx)(Yi −µY )
with sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (8)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n−1/2) =
Σ̂v +OP (n−1/2). Hence Σ̃w = Σ̃z +OP (n−1/2) = Σ̃v +OP (n−1/2).
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (9)

2.1 Testing

As noted by Olive and Zhang (2025), the following simple testing method reduces a pos-
sibly high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0

versus H1 : AβOPLS 6= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη 6= 0

where A is a k × p constant matrix. Let Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymp-
totic covariance matrix of η̂ = Σ̂xY . In high dimensions where n < 5p, we can’t get a
good nonsingular estimator of Cov(Σ̂xY ), but we can get good nonsingular estimators
of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)

T ) with u = (xi1, ..., xik)
T where n ≥ Jk with J ≥ 10.

(Values of J much larger than 10 may be needed if some of the k predictors and/or Y
are skewed.) Simply apply Theorem 1 to the predictors u used in the hypothesis test,
and thus use the sample covariance matrix of the vectors ui(Yi − Y ). Hence we can test
hypotheses like H0 : βi−βj = 0. In particular, testing H0 : βi = 0 is equivalent to testing
H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

Note that the tests with η̂ using k distinct predictors xij do not depend on other
predictors, including important predictors that were left out of the model (underfit-
ting). Hence the tests can have considerable resistance to underfitting and overfit-
ting. The OPLS tests also have some resistance to measurement error: assume that
(xT

i ,u
T
i , vi, Yi)

T are iid but wi = xi +ui and Zi = Yi +vi are observed instead of (xi, Yi).
Then β̂OLS(w, Z) estimates Σ−1

wΣwZ , while Σ̂wZ estimates Cov(x, Y ) if Cov(x, v) +
Cov(u, Y ) + Cov(u, v) = 0, which occurs, for example, if x v, u Y , and u v.
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The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests
with η̂ since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator
if η̂T x is a good estimator of ηT x.

Zhao et al. (2024) have an interesting result for the multiple linear regression model
(3). Assume that the cases (xT

i , Yi)
T are iid with E(Y ) = µY , E(x) = µx and nonsingular

Cov(x) = Σx. Let β = βOLS . Then testing H0 : β = β0 versus H1 : β 6= β0 is
equivalent to testing H0 : µ = 0 versus H1 : µ 6= 0 with µ = E(wi) = Σx(β − β0)
where wi = (xi − µx)(Yi − µY − (xi − µx)T β0), and a one sample test can be applied
to vi = (xi − x)(Yi − Y − (xi − x)Tβ0).

This paper modifies the above test for β0 = 0. The resulting test can be used for
many regression models, not just multiple linear regression. Suppose βD = D−1ΣxY

where D is a p × p positive definite matrix. Then βD = 0 if and only if ΣxY = 0.
Then D−1 = λI for OPLS, D−1 = Σ−1

x for OLS, and D−1 = [diag(Σx)]−1 for the
MMLE. The k-component partial least squares estimator can be found by regressing Y

on a constant and on Wi = η̂T
i x for i = 1, ..., k where η̂i = Σ̂

i−1

x Σ̂xY for i = 1, ..., k.
See Helland (1990). Hence βkPLS = 0 if ΣxY = 0. Thus if the cases (xT

i , Yi)
T are

iid, then using β0 = 0 gives tests for H0 : β = 0, H0 : βMMLE = 0, H0 : ΣxY = 0,
H0 : βOPLS = 0, and H0 : βkPLS = 0. For multiple linear regression with heterogeneity,
model (3) holds with E(ei) = 0 and V (ei) = σ2

i . Under mild conditions, β̂OLS is still
a consistent estimator of β = βOLS = Σ−1

x ΣxY . Hence the test can be used when the
constant variance assumption is violated.

For a generalized linear model and several other regression models that depend on
the predictors x only through SP = α + βTx, if β = 0, then the Yi are iid and do
not depend on x, and thus satisfy a multiple linear regression model with βOLS = 0.
Typically, if β 6= 0, then ΣxY 6= 0. An exception is when there is a lot of symmetry
which rarely occurs with real data. For example, suppose Y = m(SP ) + e where the iid
errors ei ∼ N(0, σ2

1) are independent of the predictors, SP ∼ N(0, σ2
2), and the function

m is symmetric about 0, e.g. m(SP ) = (SP )2. Then βOLS = 0 and ΣxY = 0 even if
β 6= 0.

If β0 = 0, then wi = (xi−µx)(Yi−µY ), and E(wi) = E(ui) = E[xi(Yi−µY )] = ΣxY .
Hence we replace vi = (xi−x)(Yi−Y ) by zi = xi(Yi−Y ) and apply a high dimensional
one sample test on the zi. Then µx does not need to be estimated by x.

Next, we review some results for the one sample test that will be used. Suppose
x1, ...,xn are iid random vectors with E(x) = µ and covariance matrix Cov(x) = Σ.
Then the test H0 : µ = 0 versus H1 : µ 6= 0 is equivalent to the test H0 : µTµ = 0 versus
H1 : µTµ 6= 0. A U-statistic for estimating µTµ is

Tn = Tn(x) =
1

n(n− 1)

∑

i6=j

xT
i xj. (10)

Let V0(Tn) be the variance of Tn whenH0 : µ = 0 is true. Let the variance V (xT
i xj) = σ2

W

for i 6= j. Abid and Olive (2025) give a straight forward proof that

V0(Tn) =
2σ2

W

n(n− 1)
.
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Chen and Qin (2010) proved that

V0(Tn) =
2

n(n− 1)
tr(Σ2)

where tr() is the trace function. Thus V (xT
i xj) = σ2

W = tr(Σ2). Srivastava and Du
(2008), Bai and Saranadasa (1996), Chen and Qin (2010), Li (2023) and others proved

that under mild regularity conditions when H0 is true, Tn/
√
V̂0(Tn)

D→ N(0, 1). Under

regularity conditions when H0 is true, Li (2023) proved that Tn/
√
V̂0(Tn)

D→ tk as p → ∞
for fixed n ≥ 3 where k = 0.5n(n − 1) − 1.

Two estimators of σ2
W are simple to compute. Let Wij = xT

i xj for i 6= j. Let

s2
n = V̂0(Tn). An estimator nearly the same as the one used by Li (2023) is

n(n− 1)s2
n = σ̂2

W =
1

n(n− 1)

∑∑

i6=j

(xT
i xj − Tn)

2 =
1

n(n− 1)

∑ ∑

i6=j

(Wij − Tn)
2.

Ahlam and Olive (2025) proposed the following estimator. Letm = floor(n/2) = bn/2c be
the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid random variables
Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1,W2, ...,Wm = xT
1 x2,x

T
3 x4, ...,x

T
2m−1x2m. Note

that E(Wi) = µT µ and V (Wi) = σ2
W . Let n(n − 1)s2

n = S2
W be the sample variance of

the Wi.

3 Incorporating Information from Several Regres-

sion Estimators

The theory and tests from the previous section can be applied to model (2) with Z
replacing Y .

There are several ways to compute k-component partial least squares (PLS) estimators
for multiple linear regression. A simple way is to do the OLS regression on W1, ...,Wk

where Wj = η̂
T
j x and η̂j = Σ̂

j−1

x Σ̂xY , and k < n − 1. Then the one component PLS

estimator is OPLS while the 3-component PLS estimator regresses Y on W1 = η̂T
1 x =

Σ̂
T

xY x, W2 = η̂T
2 x = [Σ̂xΣ̂xY ]Tx, and W3 = η̂T

3 x = [Σ̂
2

xΣ̂xY ]Tx. See Helland (1990).
This result suggests computing Wi = η̂T

i x for i = 1, ..., J and fit the OLS model
that regresses Z on the Wi or, for example, the Poisson regression model that regresses

Y on the Wi. Some interesting choices are η̂1 = Σ̂xZ , η̂2 = Σ̂xΣ̂xZ , η̂3 = Σ̂
2

xΣ̂xZ ,
η̂4 = β̂L(x, Z)= the lasso estimator from regressing Z on x, η̂5 = β̂RR(x, Z)= the
ridge regression estimator from regressing Z on x, η̂6 = β̂LPR(x, Y )= the lasso Poisson
regression estimator from regressing Y on x. Let xI denote the set of variables selected

using η̂4. Then η̂7 = Σ̂xIZ , η̂8 = Σ̂xI
Σ̂xIZ , η̂9 = Σ̂

2

xI
Σ̂xIZ , η̂10 = β̂RR(xI , Z)= the

ridge regression estimator from regressing Z on xI . Other good choices can easily be
obtained. For example, let xG denote the set of variables selected using η̂6.
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4 EXAMPLE AND SIMULATIONS

Next, we describe a small simulation study. Let x ∼ Np−1(0, I) be the (p−1)×1 vector of
nontrivial predictors. Let ESPi = α+βT xi = 1+1xi,1 + · · ·+1xi,k for i = 1, ..., n. Hence
α = 1 and φ = (α,βT )T = (1, .., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros. Here
β is the Poisson regression parameter vector βPR or the negative binomial regression
parameter vector βNBR. Let Zi = log(Yi) if Yi > 0 and Zi = log(0.5) if Yi = 0. Then a
multiple linear regression model with heterogeneity is Zi = αZ + xT

i βZ + ei where the ei

are independent with expected value E(ei) = 0 and variance V (ei) = σ2
i . Since the cases

(xi, Yi) are iid, the OLS estimator βOLS = coβ = Σ−1
x ΣxZ = ΣxZ because Σx = Ip−1.

Thus ΣxZ = (co, .., co, 0, ..., 0)
T with the first k values equal to co and p− k − 1 zeros.

Let ηOPLS = ΣxZ = (η1, ..., ηp−1)
T . Then the Theorem 1 large sample 100(1 − δ)

CI is η̂i ± tn−1,1−δ/2SE(η̂i) could be computed for each ηi. If 0 is not in the confidence
interval, then H0 : ηi = 0 and H0 : βiE = 0 are both rejected for estimators E =
OPLS and MMLE for the multiple linear regression model with Z. In the simulations
with n = 50, p = 4, and ψ > 0, the maximum observed undercoverage was about
0.05 = 5%. Hence the program has the option to replace the cutoff tn−1,1−δ/2 by tn−1,up

where up = min(1 − δ/2 + 0.05, 1 − δ/2 + 2.5/n) if δ/2 > 0.1,

up = min(1 − δ/4, 1 − δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor
was used in the simulations for the nominal 95% CIs, where the correction factor uses a
cutoff that is between tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5%
CI. The nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and
0.96 suggests coverage is close to the nominal value. Pötscher and Preinerstorfer (2023)
noted that WLS tests tend to reject H0 too often (liberal tests with undercoverage).

To summarize the p−1 confidence intervals, the average length of the p−1 confidence
intervals over 5000 runs was computed. Then the minimum, mean, and maximum of
the average lengths was computed. The proportion of times each confidence interval
contained zero was computed. These proportions were the observed coverages of the p−1
confidence intervals. Then the minimum observed coverage was found. The percentage
of the observed coverages that were ≥ 0.9, 0.92, 0.93, 0.94, and 0.96 were also recorded.
The test H0 : (ηi, ηj)

T = (0, 0)T was also done where H0 was true. The coverage of the
test was recorded and a correction factor was not used. Negative binomial regression and
Poisson regression were used, where κ = ∞ indicates that Poisson regression was used.

Tables 1 and illustrates Theorem 1a) where k = 1 and Table 1 replaces Y with Z.
Confidence intervals were made for ηi = Cov(xi, Z) for i = 1, ..., 99 and the coverage was
the percentage of the 5000 CIs that contained 0. Here η1 6= 0, but ηi = 0 for i = 2, ..., 99.
The first two lines of Table 1 correspond to Poisson regression. The confidence interval for
η1 never contained 0, hence the minimum coverage was 0 with observed power = 1−0 = 1.
The proportion of CIs that had coverage ≥ 0.94 was 0.9898 (98/99 CIs). Hence this was
also the proportion of CIs with coverage ≥ 0.90, 0.92 and 0.93. The proportion of CIs
that had coverage ≥ 0.96 was 0.8081 (80/99 CIs). The typical coverage was near 0.965,
hence the correction factor was slightly too large. The test H0 : (η98, η99)

T = (0, 0)T did
not use a correction factor, and coverage was 0.9438. The minimum average CI length
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Table 1: Cov(x,Z), n=100, p=100, k=1, κ=1,0.5,10,100,1000,10000

κ mincov cov90 cov92 cov93 cov94 cov96 testcov
∞ 0.0000 0.9899 0.9899 0.9899 0.9899 0.8081 0.9438
len 0.4166 0.4187 0.4875
0.5 0.0062 0.9899 0.9899 0.9899 0.9899 0.7576 0.9440
len 0.5050 0.5084 0.5686

1 0.0000 0.9899 0.9899 0.9899 0.9899 0.7475 0.9410
len 0.4809 0.4834 0.5421
10 0.0000 0.9899 0.9899 0.9899 0.9899 0.6970 0.9412
len 0.4258 0.4279 0.4929
100 0.0000 0.9899 0.9899 0.9899 0.9899 0.6566 0.9464
len 0.4174 0.4195 0.4882

1000 0.0000 0.9899 0.9899 0.9899 0.9899 0.7071 0.9430
len 0.4164 0.4181 0.4848

10000 0.0000 0.9899 0.9899 0.9899 0.9899 0.9899 0.9450
len 0.4163 0.4190 0.4875

was 0.4166, the sample mean of the average CI lengths was 0.4187, and the maximum
average length was 0.4875, corresponding to η1. The second two lines and below for Table
1 were for the negative binomial regression with kappa = κ = 0.5, 1, 10, 100, 1000, 10000.
The interpretation of Table 2 is similar, but Y is used instead of Z, resulting in longer
lengths.

5 CONCLUSIONS

The response plot of the estimated sufficient predictor α̂ + xT β̂ versus Y is useful for
checking many regression models. See Olive (2013) for more on plots for such models,
including a plot to detect overdispersion.

Software

The R software was used in the simulations. See R Core Team (2024). Programs are
from the Olive (2025) collections of R functions slpack.txt, available from (http://parker.ad.
siu.edu/Olive/slpack.txt). For Table 1, the function nbinroplssim was used to create
negative binomial regression data sets for finite κ, while the function proplssimwas used
to create the Poisson regression data sets corresponding to κ = ∞.
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