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Abstract

High dimensional statistics are used when n < 5p where n is the sample size
and p is the number of predictors. Useful techniques include a) use a sparse fitted

model, b) use principal component analysis for dimension reduction, c) use alterna-
tive multivariate dispersion estimators instead of the sample covariance matrix, d)

eliminate weak predictors, and e) stack low dimensional estimators into a vector.
Some variants and theory for these techniques will be given or reviewed.
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Outliers, PCA, PLS.

1 Introduction

High dimensional statistics are used when n < 5p where n is the sample size and p is
the number of variables. Such a model is overfitting: the model does not have enough
data to estimate p parameters accurately. Then n tends to not be large enough for the
classical statistical method to be useful. An alternative (but less general) definition of
high dimensional statistics is that p is large. Sometimes p > Kn with K ≥ 10 is called
ultrahigh dimensional statistics.

Some important statistical methods include regression, multivariate statistics, and
classification. These methods are important for statistical learning ≈ machine learning,
an important part of artificial intelligence. Let predictor variables for regression or mul-
tivariate statistics be x = (x1, ..., xp)

T . Let Y be a response variable for regression or
classification. Important regression models include generalized linear models, nonlinear
regression, nonparametric regression, and survival regression models. Inference for mul-
tivariate regression where there are m response variables Y1, ..., Ym is also of interest.
Useful references for the following statistical methods include James et al. (2021) and
Cook and Forzani (2024).

∗David J. Olive is Professor, School of Mathematical & Statistical Sciences, Southern Illinois Univer-

sity, Carbondale, IL 62901, USA.
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Let the population covariance matrices

Cov(x) = E[(x − E(x))(x− E(x))T ] = Σx, and

Cov(x, Y ) = E[(x− E(x))(Y − E(Y ))] = ΣxY .

Let the sample covariance matrices be

Σ̂x =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n − 1

n
∑

i=1

(xi − x)(Yi − Y ).

Let the population correlation ρij = ρxi,xj
= Cor(xi, xj) and the sample correlation rij =

rxi,xj
. Let the population correlation matrices Cor(x) = ρx = (ρij) and Cor(x, Y ) =

ρxY = (ρx1,Y , ..., ρxp,Y )T . Let the sample covariance matrices be Rx = (rij) and rxY =

(rx1,Y , ..., rxp,Y )T . Then Σ̂x and R are dispersion estimators, and (x, Σ̂x) is an estimator
of multivariate location and dispersion. Also let rij = cor(xi, xj).

Suppose the positive semidefinite dispersion matrix Σ has eigenvalue eigenvector pairs
(λ1, d1), ..., (λp, dp) where λ1 ≥ λ2 ≥ · · · ≥ λp. Let the eigenvalue eigenvector pairs of Σ̂

be (λ̂1, d̂1), ..., (λ̂p, d̂p) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. These vectors are important quantities
for principal component analysis (PCA).

Let the multiple linear regression model

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (1)

for i = 1, ..., n. In matrix form, this model is Y = Xδ +e, where Y is an n× 1 vector of
dependent variables, X is an n×(p+1) matrix of predictors, δ = (α, βT )T is a (p+1)×1
vector of unknown coefficients, and e is an n× 1 vector of unknown errors. Assume that
the ei are independent and identically distributed (iid) with expected value E(ei) = 0
and variance V (ei) = σ2.

Principal components regression (PCR), partial least squares (PLS), and several other
dimension reduction models use p linear combinations γT

1 x, ..., γT
p x. Estimating the γ i

and performing the ordinary least squares (OLS) regression of Y on (γ̂T
1 x, γ̂T

2 x, ..., γ̂T
k x)

and a constant gives the k-component estimator, e.g. the k-component PLS estimator
or the k-component PCR estimator, for k = 1, ..., J where J ≤ p and the p-component
estimator is the OLS estimator β̂OLS. Let γi(PCR) = di and γ i = γi(PLS). The
model selection estimator chooses one of the k-component estimators, e.g. using cross
validation, and will be denoted by β̂MSPLS or β̂MSPCR.

Let X = [1 X1]. Chun and Keleş (2010) noted that one way to formulate PLS is to
solve an optimization problem by forming bj iteratively where

bk = arg max
b

{[Cor(Y , X1b)]2V (X1b)} (2)

subject to bT b = 1 and bT Σxbj = 0 for j = 1, ..., k − 1. So PLS is a model free way to
get predictors γ̂T

i x that are fairly highly correlated with the response, and the absolute
correlations tend to decrease quickly.
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In high dimensions, it is very difficult to estimate a p × 1 vector θ. This result is a
form of “the curse of dimensionality.” If a

√
n consistent estimator of θ is available, then

the squared norm

‖θ̂ − θ‖2 =
p
∑

i=1

(θ̂i − θi)
2 ∝ p/n. (3)

When p is fixed, p/n → 0 as n → ∞ and θ̂ is a consistent estimator of θ. In high
dimensions, often the estimator has not been shown to be consistent, except under very
strong regularity condition.

2 Model Selection Estimators in Low Dimensions

This section explains why “sensible model selection estimators, including variable selec-
tion estimators,” produce fitted values (predictions) similar to that of the full OLS model
when n is much larger than p. The result in Equation 4) that the residuals from the model
selection model and the full OLS model are highly correlated was a property of OLS and
Mallow’s Cp criterion, not of any underlying model, but linearity forces the fitted values
to be highly correlated. Hence the result works if OLS is consistent and the population
model is linear, so for weighted least squares, AR(p) time series, serially correlated errors,
et cetera. In particular, the cases do not need to be iid from some distribution. Since
the correlation gets arbitrarily close to 1, the model selection estimator and full OLS
estimator are estimating the same population parameter β, but it is possible that the
model selection estimator picks the full OLS model with probability going to one.

Consider the OLS regression of Y on a constant and w = (W1, ..., Wp)
T where, for

example, Wj = xj, Wj = γ̂T
j x, or Wj = d̂

T

j x. Let I index the variables in the model so
I = {1, 2, 4} means that wI = (W1, W2, W4)

T was selected. The full model I = F uses
all p predictors and the constant with βI = βF = β = βOLS. Let r be the residuals
from the full OLS model and let rI be the residuals from model I that uses β̂I . Suppose
model I uses k predictors including a constant with 2 ≤ k ≤ p + 1. Olive and Hawkins
(2005) proved that the model I with k predictors that minimizes Mallows (1973) Cp(I)
maximizes cor(r, rI), that

cor(r, rI) =

√

√

√

√

n − (p + 1)

Cp(I) + n − 2k
,

and under linearity, cor(r, rI) → 1 forces

cor(α̂ + wTβ̂, α̂I + wT
I β̂I) = cor(ESP, ESP(I)) = cor(Ŷ, ŶI) → 1.

Thus Cp(I) ≤ 2k implies that

cor(r, rI) ≥
√

1 − p + 1

n
. (4)

Let the model Imin minimize the Cp criterion among the models considered with Cp(I) ≤
2kI . Then Cp(Imin) ≤ Cp(F ) = p+1, and if PLS or PCR is selected using model selection
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(on models I1, ..., Ip with Ij = {1, 2, ..., j} corresponding to the j-component regression)

with the Cp(I) criterion, and n ≥ 20(p+1), then cor(r, rI) ≥
√

19/20 = 0.974. Hence the

correlation of ESP(I) and ESP(F) will typically also be high. (For PCR, the following

variant should work better: take Uj = d̂
T

j x and W1 the Uj with the highest absolute
correlation with Y , W2 the Uj with the second highest absolute correlation, etc.)

Machine learning methods for the multiple linear regression model can be incorporated
as follows. Let k be the number of predictors selected by lasso. Standardize the predictors
to have unit sample variance, and run the method. Let model I contain the variables
corresponding to the k − 1 predictors variables that have the largest |β̂i|. Fit the OLS
model I to these predictors and a constant. If Cp(I) < min(2k, p + 1) use model I ,
otherwise use the full OLS model. Many variants are possible. In low dimensions,
comparisons between methods like lasso, PCR, PLS, and envelopes might use prediction
intervals, the amount of dimension reduction, and standard errors if available.

If the above procedure is used, then model selection estimators, such as β̂MSPLS,
produce predictions that are similar to those of the OLS full model if n ≥ 20(p + 1).
Empirically, variable selection estimators and model selection estimators often do not
select the full model. Equation 4) suggests that “weak” predictors will often be omitted,
as long as cor(r, rI) stays high. (If the predictors are not orthogonal, ‘weak” might mean
the predictor is not very useful given that the other predictors are in the model.)

It is common in the model selection literature to assume, for the full model, that there
is a model S such that βi 6= 0 for i ∈ S, and βi = 0 for i 6∈ S. Then model I underfits
unless S ⊆ I . If S 6⊆ I , then an “important” predictor has been left out of the model.
Under the model xTβ = xT

SβS , cor(r, rI) will not converge to 1 as n → ∞, and for large
enough n, [cor(r, rI)]

2 ≤ γ < 1. Thus Cp(I) → ∞ as n → ∞. Hence P (S ⊆ Imin) → 1
as n → ∞. Thus the probability that the model selection estimator underfits goes to
zero as n → ∞ if p is fixed, the full model is one of the models considered, and the Cp

criterion is used, as noted by Rathnayake and Olive (2023).
For real data, an important question in variable selection is whether βi = 0 is a

reasonable assumption. If X has full rank p + 1, then having βi equal to zero for 20
decimal places may not be reasonable. See, for example, Tukey (1991), Nester (1996),
and Gelman and Carlin (2017). Then the probability that the variable selection estimator
chooses the full model goes to one if the probability of underfitting goes to 0 as n → ∞.
Let Imin correspond to the set of predictors selected by a variable selection method such
as forward selection or lasso variable selection. If β̂I is a × 1, use zero padding to form
the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik,0 with probabilities πkn =

P (Imin = Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p − 1.

3 Sparse Fitted Models

A fitted or population regression model is sparse if a of the predictors are active (have
nonzero β̂i or βi) where n ≥ Ja with J ≥ 10. Otherwise the model is nonsparse. A
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high dimensional population full regression model is abundant or dense if the regression
information is spread out among the p predictors (nearly all of the predictors are active).
Hence an abundant model is a nonsparse model. Under the above definitions, most
classical low dimensional models use sparse fitted models, and statisticians have over one
hundred years of experience with such models.

The literature for high dimensional sparse regression models often assumes that i)
βI,0 = β = βF , that ii) S ⊆ I where I uses k predictors including a constant, and that
iii) n ≥ 10k. When these assumptions hold, the population model is sparse, the fitted
model is sparse, and Equation 3) becomes ‖β̂I,0 − β‖2, which can be small. Getting rid
of assumption i) and the assumption that S ⊆ I greatly increases the applicability of
variable selection estimators, such as forward selection, lasso, and the elastic net, for high
dimensional data, even if ‖β̂I,0−β‖2 is huge. As argued in the following paragraphs, the

sparse fitted model often fits the data well, and often β̂I is a good estimator of βI .
A sparse fitted model transforms a high dimensional problem into a low dimensional

problem, and the sparse fitted model can be checked with the goodness of fit diagnostics
available for that low dimensional model. If the predictors used by the sparse fitted
regression model are xI , and if the regression model depends on xI only through the
sufficient predictor SP = αI + xT

I βI , then a useful diagnostic is the response plot of
ESP (I) = α̂I + xT

I β̂I versus the response Y on the vertical axis. If there is goodness of
fit, then β̂I tends to estimate βI regardless of whether the population model is sparse or
nonsparse. Data splitting may be needed for valid inference such as hypothesis testing.

Suppose the cases (xT
i , Yi)

T are iid for i = 1, ..., n. Then Y1, ..., Yn are iid, resulting
in a valid sparse fitted model regardless of whether the population model is sparse or
nonsparse. This null model omits all of the predictors. For high dimensional data, a
reasonable goal is to find a model that greatly outperforms the null model.

The sparse fitted model using (Y, xI) is often useful when there are one or more strong
predictors. The following Olive and Zhang (2025) theorem gives two more situations
where a sparse fitted model can greatly outperform the null model. The population
models in Theorem 1 can be sparse or nonsparse. The high dimensional multiple linear
regression literature often assumes that the cases are iid from a multivariate normal
distribution, and that the population model is sparse. Let ΣY = σ2

Y . For multiple linear
regression, note that σ2

O < σ2
Y = ΣY unless ηTΣxY = 0.

Theorem 1 Suppose the cases (Yi, x
T
i )T are iid from some distribution.

a) If the joint distribution of (Y, xT )T is multivariate normal,
(

Y
x

)

∼ Np+1

( (

µY

µx

)

,

(

ΣY ΣY x
ΣxY Σx

) )

,

then Y |x ∼ Y |(αOLS + βT
OLSx) ∼ N(αOLS + βT

OLSx, σ2) follows a multiple linear regres-
sion model, but so does Y |ηT x ∼ N(αO + βT

Ox, σ2
O) where αO = µY − βT

Oµx, βO = λη,
σ2

O = ΣY − βT
OΣxY , and

λ =
ΣT

xY η

ηT Σxη
.

b) If the response Y is binary, then Y |(αO + βT
Ox) ∼ binomial(m = 1, ρ(αO + βT

Ox))
where E[Y |(αO + βT

Ox)] = ρ(αO + βT
Ox) = P [Y = 1|(αO + βT

Ox)]. Hence every linear
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combination of the predictors satisfies a binary regression model.

4 PCA-PLS

Another technique is to use PCA for dimension reduction. Let U1, ..., Up be the PCA
linear combinations (Ui = γ̂T

i x) ordered with respect to the largest eigenvalues. Then
use U1, ..., Uk in the regression or classification model where k is chosen in some manner.
This method can be used for models with m response variables Y1, ..., Ym.

Consider a low or high dimensional regression or classification method with a univari-
ate response variable Y . Let W1, ..., Wp be the linear combinations ordered with respect
to the highest squared correlations r2

1, ..., r
2
p where the sample correlation ri = cor(xi, Y ).

From a model selection viewpoint, using W1, ..., Wk should work much better than using
U1, ..., Uk. Also, the PLS components Wi should be used instead of the PCA Wi, since
the PLS components are chosen to be fairly highly correlated with Y . See Equation 2).
Brown (1993, pp. 71-72) shows that an equivalent way to compute the k-component
PLS estimator is to maximize γ̂T Σ̂xY under some constraints. If the predictors are stan-
dardized to have unit sample variance, then this method becomes a correlation vector
optimization problem.

From canonical correlation analysis (CCA), if (Yi, x
T
i )T are iid, then

M = max
γ 6=0

Cor(γTx, Y ) = max
γ 6=0

γTΣxY√
ΣY

√

γTΣxγ
.

This optimization problem is equivalent to maximizing

ΣY M2 = max
γ 6=0

γTΣxY ΣT
xY γ

γTΣxγ

which has a maximum at γ = Σ−1
x ΣxY = βOLS. See Mardia, Kent, and Bibby (1979,

pp. 168, 282). Hence PLS is a lot like CCA but with more constraints, and PLS can
be computed in high dimensions. From the dimension reduction literature, if Y depends
on x only through α + βTx, then under the assumption of “linearly related predictors”
β̂OLS estimates βOLS = cβ for some constant c which is often nonzero. See, for example
Cook and Weisberg (1999, p. 432).

The above results suggest computing the lasso for multiple linear regression, find the
number of predictors k chosen by lasso, and take k linear combinations. An SC scree
plot of i versus r2

i behaves like a scree plot of i versus the eigenvalues. Hence quantities
like

∑j
i=1 r2

i /
∑p

i=1 r2
i are of interest for j = 1, ..., p, and scree plot techniques could be

adapted to choose k. Many other possibilities exist, and there are many possibilities for
models with m response variables Y1, ..., Ym.

Another useful technique is to eliminate weak predictors before finding W1, ..., Wk.
By Equation 3), γ̂ i may not be close to γ i in high dimensions, e.g. p = n6. For example,
the sample eigenvectors d̂i tend to be poor estimators of the population eigenvectors di

of Σx. An exception is when the correlation Cor(xi, xj) = ρ for i 6= j where ρ is close to
1. See Jung and Marron (2009). One possibility is to take the j predictors xi with the
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highest squared correlations with Y . The SC scree plot is useful. Then do lasso (meant
for the multiple linear regression model) to further reduce the number of xi. Here j
should be proportional to n, for example j = min(Kn, p), where K = 1 is an interesting
choice.

5 Stack Low Dimensional Estimators into a Vector

Another technique is to stack low dimensional estimators into a vector. The MMLE, one
component PLS estimator, x2 − x1, and elements from an estimated covariance matrix
such as c = vech(Σz). Using z = (Y1, ..., Ym, x1, ..., xp)

T can give information about a
multivariate regression. Then tests for low dimensional quantities such as Cov(xi, Y ) or
Cov(xi, xi) = V ar(xi) can be done for i = 1, ..., p. Theory for several of these estimators
appears in Olive et al. (2025).

6 Alternative Dispersion Estimators

Let Σ̂ be a p×p symmetric positive semidefinite matrix such as R, R−1, Σ̂x, Σ̂
−1

x , XT X

or (XTX)−1. When Σ̂ is singular or ill conditioned, some common techniques are to
replace Σ̂ with a symmetric positive definite matrix D̂ such as D̂ = diag(Σ̂), D =
(Σ̂ + λIp) where the constant λ > 0, or D̂ = D = Ip. Regularized estimators are also
used.

For δ ≥ 0, a simple way to regularize a p × p correlation matrix R = (rij) is to use

Rδ =
1

1 + δ
(R + δIp) = (tij) (5)

where tii = 1 and

tij =
rij

1 + δ

for i 6= j. Note that each correlation rij is divided by the same factor 1 + δ. If λi is the
ith eigenvalue of R, then (λi + δ)/(1 + δ) is the ith eigenvalue of Rδ. The eigenvectors
of R and Rδ are the same since if R x = λi x, then

Rδ x =
1

1 + δ
(R + δIp) x =

1

1 + δ
(λi + δ) x.

Note that Rδ = κR+(1−κ)Ip where κ = 1/(1+ δ) ∈ (0, 1]. See Ledoit and Wolf (2004)
and Warton (2008).

Following Datta (1995, pp. 250-254), the condition number of a symmetric positive
definite p × p matrix A is cond(A) = λ1(A)/λp(A) where λ1(A) ≥ λ2(A) ≥ · · · ≥
λp(A) > 0 are the eigenvalues of A. Note that cond(A) ≥ 1. A well conditioned matrix
has condition number cond(A) ≤ c for some number c such as 50 or 500. Hence Rδ is
nonsingular for δ > 0 and well conditioned if

cond(Rδ) =
λ1 + δ

λp + δ
≤ c,
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or

δ = max

(

0,
λ1 − cλp

c − 1

)

(6)

if 1 < c ≤ 500. Taking c = 50 suggests using

δ = max

(

0,
λ1 − 50λp

49

)

.

The matrix can be further regularized by setting tij = 0 if |tij| ≤ τ where τ ∈ [0, 1)
should be less than 0.5. Denote the resulting matrix by R(δ, τ ). We suggest using
τ = 0.05. Note that Rδ = R(δ, 0). Using τ is known as thresholding. We recommend
computing Ip, R(δ, 0) and R(δ, 0.05) for c = 50, 100, 200, 300, 400, and 500. Compute
R if it is nonsingular. Note that a regularized covariance matrix can be found using

S(δ, τ ) = DS R(δ, τ ) DS (7)

where S = Σ̂x and DS = diag(
√

S11, ...,
√

Spp).

A common type of regularization of a covariance matrix S is to use SD = diag(S)
where the ijth element of SD = 0 and SD(i, i) = S(i, i). The corresponding correlation
matrix is the identity matrix, and Mahalanobis distances using the identity matrix cor-
respond to Euclidean distances. These estimators tend to use too much regularization,
and underfit. Note that as δ → ∞, Rδ → Ip, and Ip corresponds to c = 1. Note that
SD corresponds to using R(δ = ∞, 0) = Ip in Equation (7).

For the population correlation matrix ρx and the population precision matrix ρ−1
x ,

the literature often claims that most of the population correlations ρij = 0, so that the

population matrix is sparse, and that D̂ is a good estimator of the population matrix.
Assume that D̂ estimates a population dispersion matrix D. Note that this assump-
tion always holds when D̂ = Ip = D. Note that diag(S) estimates diag(Σx) since
(σ̂2

1, ..., σ̂
2
p)

T estimates (σ2
1 , ..., σ

2
p)

T where σ2
i = V (xi) for i = 1, ..., p. However, by Equa-

tion 3), the estimator tends not to be good in high dimensions.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g × 1 statistic Tn satisfies√

n(Tn − θ)
D→ u ∼ Ng(0,Σ). If Σ̂

−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0

(Tn, Σ̂/n) = n(Tn − θ0)
T Σ̂

−1
(Tn − θ0)

D→ uTΣ−1u ∼ χ2
g

as n → ∞. Then a Wald type test rejects H0 if D2
n > χ2

g,1−δ where P (X ≤ χ2
g,1−δ) = 1−δ

if X ∼ χ2
g, a chi-square distribution with g degrees of freedom. Note that D2

θ0

(Tn, Σ̂/n)

is a squared Mahalanobis distance.
It is common to implement a Wald type test using

D2
n = D2

θ0

(Tn, Cn/n) = n(Tn − θ0)
T C−1

n (Tn − θ0)
D→ uTC−1u

as n → ∞ if H0 is true, where the g × g symmetric positive definite matrix D̂ = Cn
P→

C 6= Σ. Hence Cn is the wrong dispersion matrix, and uTC−1u does not have a χ2
g

distribution when H0 is true. Rajapaksha and Olive (2024) showed how to bootstrap
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Wald tests with the wrong dispersion matrix. When Cn = Ig, the bootstrap tests often
became conservative as g increased to n. For some methods, better high dimensional tests
are reviewed by Hu and Bai (2015). For some of these tests, the m out of n bootstrap,
which draws a sample of size m without replacement from the n, works better than the
nonparametric bootstrap. Sampling without replacement is also known as subsampling
and the delete d jackknife. See Abid and Olive (2025).

Using a high dimensional dispersion estimator with considerable outlier resistance
is another useful technique. Let W be a data matrix, where the rows wi correspond
to cases. For example, wi = xi or wi = zi = (Yi1, ..., Yim, xi1, ..., xip)

T . One of the
simplest outlier detection methods uses the Euclidean distances of the xi from the co-
ordinatewise median Di = Di(MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). We often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let Wi = 1
if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn) where k ≥ 0 and k = 5 is the default
choice. Let Wi = 0, otherwise. Using k ≥ 0 insures that at least half of the cases get
weight 1. This weighting corresponds to the weighting that would be used in a one sided
metrically trimmed mean (Huber type skipped mean) of the distances. Here, the sam-
ple median absolute deviation is MAD(n) = MED(|Di − MED(n)|, i = 1, . . . , n) where
MED(n) = MED(D1, ..., Dn) is the sample median of D1, ..., Dn.

Let the covmb2 set B of at least n/2 cases correspond to the cases with weight Wi = 1.
Then the Olive (2017, p. 120) covmb2 estimator (T, C) is the sample mean and sample
covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi
∑n

i=1 Wi

and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

This estimator was built for speed, applications, and outlier resistance. In low dimen-
sions, the population dispersion matrix is the population covariance matrix of a spher-
ically truncated distribution. In high dimensions, spherical truncation is still used, but
the sample weighted median varies about the population weighted median by Equation
3).

A useful application is to apply high (and low) dimensional methods to the cases
that get weight 1. If the ith case wi = (yT

i , xT
i )T where y = (Y1, ..., Ym)T , then this

application can be used if all of the variables are continuous. For a variant, let the
continuous predictors from xi be denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the method on the m cases wi corresponding to the
covmb2 set B indices i1, ..., im, where m ≥ n/2. If the estimator has large sample theory
“conditional” on the predictors x, then typically the same theory applies for the “robust
estimator” since the response variables were not used to select the cases in B. These two
applications can be used for regression, classification, neural networks, et cetera.
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7 Conclusions

The covmb2 estimator attempts to give a robust dispersion estimator that reduces the
bias by using a big ball about MEDj instead of a ball that contains half of the cases. The
weighting is the default method, but you can also plot the squared Euclidean distances
and estimate the number m ≥ n/2 of cases with the smallest distances to be used.
The median ball is the hypersphere centered at the coordinatewise median with radius
r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain (n + 1)/2 of the cases if
n is odd. The slpack function medout makes the plot, and the slpack function getB gives
the set B of cases that got weight 1 along with the index indx of the case numbers that
got weight 1.

The function ddplot5 plots the Euclidean distances from the coordinatewise median
versus the Euclidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear in the upper
right corner of the plot with a gap between the bulk of the data and the outliers.
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