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Abstract

We derive some large sample theory for the marginal maximum likelihood esti-

mator for multiple linear regression. Then testing is considered for that estimator

and the one component partial least squares estimator, including some high dimen-

sional tests. Testing with these two estimators for the multiple linear regression

model with heterogeneity and for the single index model is also considered.

KEY WORDS: Data splitting, dimension reduction, high dimensional

data, lasso, single index model.

1 INTRODUCTION

This section reviews multiple linear regression models, including variable selection and
data splitting. Consider a multiple linear regression model with response variable Y and
predictors x = (x1, ..., xp). Then there are n cases (Yi,x

T
i )T , and the sufficient predictor

SP = α + xT β. For these regression models, the conditioning and subscripts, such as
i, will often be suppressed. Ordinary least squares (OLS) is often used for the multiple
linear regression (MLR) model.

Let the first multiple linear regression model be

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error.
Assume that the ei are independent and identically distributed (iid) with expected value
E(ei) = 0 and variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an n× p matrix
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of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of
unknown errors.

Let the second multiple linear regression model be Y |xTβ = α + xTβ + e or Yi =
α+ xT

i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α+ xT
i β + ei (2)

for i = 1, ..., n. Let the ei be as for model (1). In matrix form, this model is

Y = Xφ + e, (3)

where Y is an n× 1 vector of dependent variables, X is an n× (p + 1) matrix with ith
row (1,xT

i ), φ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown
errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =
Σx = E[(x−E(x))(x−E(x))T = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =
E[(x−E(X)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].
Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (3) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid)
cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY under mild regularity condi-
tions, while α̂OLS is a consistent estimator of E(Y ) − βT

OLSE(x).
Cook, Helland, and Su (2013) showed that the one component partial least squares

(OPLS) estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(4)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos
(2022) and Wold (1975). Olive and Zhang (2024) derived the large sample theory for
η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the previous
literature, where ηOPLS = ΣxY . The OPLS estimator is computed from the OLS simple

linear regression of Y on W = Σ̂
T

xY x, giving Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx.
The marginal maximum likelihood estimator (MMLE or marginal least squares esti-

mator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes
the marginal regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p.
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Then β̂MMLE = (β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators

are the simple linear regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR).
Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (5)

If the ti are the predictors that are scaled or standardized to have unit sample variances,
then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (6)

where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix.
Sparse regression methods can be used for variable selection even if n/p is not large:

the OLS submodel uses the predictors that had nonzero sparse regression estimated
coefficients. These methods include least angle regression, lasso, relaxed lasso, elastic
net, and sparse regression by projection. See Efron et al. (2004, p. 421), Meinshausen
(2007, p. 376), Qi et al. (2015), Tay, Narasimhan, and Hastie (2023), Rathnayake and
Olive (2023), Tibshirani (1996), and Zou and Hastie (2005).

Data splitting divides the training data set of n cases into two sets: H and the
validation set V where H has nH of the cases and V has the remaining nV = n − nH

cases i1, ..., inV
. An application of data splitting is to use a variable selection method,

such as forward selection or lasso, on H to get submodel Imin with a predictors, then fit
the selected model to the cases in the validation set V using standard inference. See, for
example, Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is
sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression model is
abundant or dense if the regression information is spread out among the p predictors
(nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for
multiple linear regression, gave theory for Σ̂x,Y and OPLS, gave theory for data splitting
estimators, and gave some theory for the MMLE for multiple linear regression under the
constant variance assumption.

Section 2 gives some large sample theory, while Section 3 considers tests of hypotheses.

2 Large Sample Theory

Olive and Zhang (2024) derived the large sample theory for η̂OPLS = Σ̂xY and OPLS,
including some high dimensional tests for low dimensional quantities such as HO : βi = 0
or H0 : βi − βj = 0. These tests depended on iid cases, but not on linearity or the
constant variance assumption. Hence the tests are useful for multiple linear regression
with heterogeneity. Data splitting uses model selection (variable selection is a special
case) to reduce the high dimensional problem to a low dimensional problem.

Remark 1. The following result is useful for several multiple linear regression es-
timators. Let wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with
1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗

w = AnΣ
∗

xAT
n and Σ∗

wY = AnΣ
∗

xY .
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b) If An is a constant matrix, then Σw = AnΣxAT
n and ΣwY = AnΣxY .

The following Olive and Zhang (2024) theorem gives the large sample theory for

η̂ = Ĉov(x, Y ), but the proof in this paper is new. This theory needs η = ηOPLS = Σx,Y

to exist for η̂ = Σ̂x,Y to be a consistent estimator of η. Let xi = (xi1, ..., xip)
T and let

wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 1. Assume the cases (xT
i , Yi)

T are iid. Assume E(xk
ij Y

m
i ) exist for j =

1, ..., p and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi −µx)(Yi −µY )
with sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (7)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n−1/2) =
Σ̂v +OP (n−1/2). Hence Σ̃w = Σ̃z +OP (n−1/2) = Σ̃v +OP (n−1/2).
c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is

true, and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (8)

Proof. Part a) is a special case of Theorem 2.
b) wi = (xi − x + x −µx)(Yi − Y + Y − µY ) =

vi + (xi − x)(Y − µY ) + (x − µx)(Yi − Y ) + (x − µx)(Y − µY ).

Thus wi −w = vi − v + ai where

ai = (xi − x)(Y − µY ) + (x− µx)(Yi − Y ) = OP (n−1/2).

Thus

Σ̃w =
1

n

n∑

i=1

(wi−w)(wi−w)T =
1

n

n∑

i=1

(vi−v)(vi−v)T +OP (n−1/2) = Σ̃v+OP (n−1/2).

c) If H0 is true, then Aη = 0. Hence

√
nA(η̂ − η) =

√
nAη̂

D→ Nk(0,AΣwAT ).

Then λAη = 0 under H0, and

√
nλ̂Aη̂ =

√
nA(λ̂η̂ − λη) =

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). �
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For the following theorem, consider a subset of k distinct elements from Σ̃ or from
Σ̂. Stack the elements into a vector, and let each vector have the same ordering. For
example, the largest subset of distinct elements corresponds to

vech(Σ̃) = (σ̃11, ..., σ̃1p, σ̃22, ..., σ̃2p, ..., σ̃p−1,p−1, σ̃p−1,p, σ̃pp)
T = [σ̃jk].

For random variables x1, ..., xp, use notation such as xj = the sample mean of the xj,
µj = E(xj), and σjk = Cov(xj, xk). Let

n vech(Σ̃) = [n σ̃jk] =

n∑

i=1

[(xij − xj)(xik − xk)].

For general vectors of elements, the ordering of the vectors will all be the same and be
denoted vectors such as c̃ = [σ̃jk], c = [σjk], zi = [(xij − xj)(xik − xk)], and
wi = [(xij−µj)(xik−µk)]. Let wn =

∑n
i=1

wi/n be the sample mean of the wi. Assuming
that Cov(wi) = Σw exists, then E(wi) = E(wn) = c.

The following theorem proves that sample covariance matrices are asymptotically
normal. The theorem may be a special case of the Su and Cook (2012) theory for the
multivariate linear regression estimator when there are no predictors. When p = 1, the
theory gives the large sample theory for the sample variance. See Olive (2014, pp. 276-
277) and Bickel and Doksum (2007, p. 279). The Olive and Zhang (2024) large sample
theory for Σ̂xY and Σ̃xY is also a special case. We use Cov(wi) = Σd to avoid confusion
with the Σw used in Theorems 1 and 3.

Theorem 2. Assume the cases xi are iid and that Cov(wi) = Σd exists. Using the
above notation with c a k × 1 vector,

i)
√
n(c̃ − c)

D→ Nk(0,Σd).

ii)
√
n(ĉ − c)

D→ Nk(0,Σd).

iii) Σ̂d = Σ̂z +OP (n−1/2) and Σ̃d = Σ̃z +OP (n−1/2).

Proof. Note that
√
n(wn−c)

D→ Nk(0,Σd) by the multivariate central limit theorem.
i) Then

n c̃ =
∑

i

[(xij − xj)(xik − xk)] =
∑

i

[(xij − µj + µj − xj)(xik − µk + µk − xk)] =

∑

i

[(xij − µj)(xik − µk)] +
∑

i

[(xij − µj)(µk − xk)]+

∑

i

[µj − xj)(xik − µk] +
∑

i

[(µj − xj)(µk − xk)] =
∑

i

wi − an

where an = [n(xj − µj)(xk − µk)] = [
√

n(xj − µj)
√

n(xk − µk)] = OP(1).

By the multivariate Slutsky’s theorem,

√
n(c̃ − c) =

√
n(wn − c) + an/

√
n

D→ Nk(0,Σd)

since an/
√
n = oP (1).
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iii) wi = [(xij − µj)(xik − µk)] = [(xij − xj + xj − µj)(xik − xk + xk − µk)] =
[(xij − xj)(xik − xk)] + [(xij − xj)(xk − µk)] +[(xj − µj)(xik − xk)] + [(xj − µj)(xk − µk)].
Hence wi − w = zi − z + ai where

ai = [(xij − xj)(xk − µk)] + [(xj − µj)(xik − xk)] = OP (n−1/2).

Thus

Σ̃d =
1

n

n∑

i=1

(wi−w)(wi−w)T =
1

n

n∑

i=1

(zi−z)(zi−z)T +OP (n−1/2) = Σ̃z+OP (n−1/2). �

For iid cases, βMMLE = V −1Σx,Y = V −1ΣxβOLS where V = diag(σ2
1, ..., σ

2
p) =

diag(Σx). For standardized predictors, let sj and σj be the sample and population

standard deviations of xj. Let ti = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi =

diag(1/σ1, ..., 1/σp)xi. Note that V̂
−1

= D̂
2

and V −1 = D2. Olive and Zhang (2024)

proved that Σ̂t,Y is a
√
n consistent estimator of Σu,Y . For iid cases, βMMLE(t, Y ) =

Σt,Y = ηOPLS(t, Y ).

By Theorems 1 and 2 with iid xi replaced by iid (xT
i , Yi)

T ,

√
n







s2
1
...
s2

p

Σ̂xY


 −




σ2
1
...
σ2

p

ΣxY





 =

√
n(ĉ − c)

D→ N2p

(
0,

(
Σv Σv,w

Σw,v Σw

))
. (9)

Let

g(c) = βMMLE =




g1(c)
...

gp(c)


 =




σ1Y /σ
2
1

...
σpY /σ

2
p


 .

Let Dg = (D1,D2) where D1 = diag(−σ1Y /σ
4
1 ,−σ2Y /σ

4
2 , ...,−σpY /σ

4
p) and D2 =

diag(1/σ2
1 , 1/σ

2
2 , ..., 1/σ

2
p). Typically Σ̂xij

Y = OP (1), but if Σxij
Y = 0, then Σ̂xij

Y =

OP (n−1/2).

Theorem 3. Let the cases (xT
i , Yi)

T be iid such that Equation (9) holds. Then a)

√
n(β̂MMLE − βMMLE)

D→ NP (0,ΣMMLE) ∼ Np

(
0,Dg

(
Σv Σv,w

Σw,v Σw

)
DT

g

)
.

Let A be a full rank k×p constant matrix such that Aβ = (βi1, ..., βik)
T with i1, i2, ..., ik

distinct. Hence the jth row of A has a 1 in the ijth position and zeroes elsewhere.
Assume H0 : AβMMLE = 0. Then b)

√
nA(β̂MMLE − βMMLE)

D→ Nk(0,AD2ΣwD2AT ).

c) For standardized predictors, assume H0 : AβMMLE(t, Y ) = AΣt,Y = 0. Then

√
nA(β̂MMLE(t, Y ) − βMMLE(t, Y )) =

√
nA(Σ̂t,Y − Σu,Y )

D→ Nk(0,ADΣwDAT ).
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Proof. Theorem 3a) holds by the multivariate delta method.

b) Note that
√
nA(β̂MMLE − βMMLE) =

√
nA(D̂

2
Σ̂xY − D2ΣxY ) =√

nA(D̂
2
Σ̂xY −D2Σ̂xY + D2Σ̂xY − D2ΣxY ) =

√
nA(D̂

2 − D2)Σ̂xY +
√
nAD2(Σ̂xY − ΣxY )

where by Theorem 1,

√
nAD2(Σ̂xY − ΣxY )

D→ Nk(0,AD2ΣwD2AT ).

Now
√
nA(D̂

2 − D2)Σ̂xY =

A




√
n

(
1
s2

1

− 1
σ2

1

)
Σ̂x1Y

...
√
n

(
1
s2
p
− 1

σ2
p

)
Σ̂xpY


 =




√
n

(
1

s2

i1

− 1
σ2

i1

)
Σ̂xi1

Y

...
√
n

(
1

s2

ik

− 1

σ2

ik

)
Σ̂xik

Y




= oP (1)

if (Σxi1
Y , ...,Σxik

Y )T = 0. Hence the result follows if H0 is true.

c) Note that
√
nA(Σ̂t,Y − Σu,Y ) =

√
nA(Σ̂t,Y − Σ̂u,Y + Σ̂u,Y − Σu,Y ) =√

nA(Σ̂t,Y − Σ̂u,Y ) +
√
nA(Σ̂u,Y − Σu,Y ) where by Theorem 1 and Remark 1,

√
nA(Σ̂u,Y −Σu,Y ) =

√
nAD(Σ̂x,Y − Σx,Y )

D→ Nk(0,ADΣwDAT ).

Now
√
nA(Σ̂t,Y − Σ̂u,Y ) =

√
nA(D̂Σ̂x,Y − DΣ̂x,Y ) =

√
nA(D̂ −D)Σ̂x,Y =

A




√
n

(
1
s1

− 1
σ1

)
Σ̂x1Y

...
√
n

(
1
sp

− 1
σp

)
Σ̂xpY


 =




√
n

(
1

si1

− 1
σi1

)
Σ̂xi1

Y

...
√
n

(
1

sik

− 1
σik

)
Σ̂xik

Y


 ,

and
√
nA(Σ̂t,Y − Σ̂u,Y ) = op(1) if (Σxi1

Y , ...,Σxik
Y )T = 0. Hence if H0 is true, then

√
nA(Σ̂t,Y − Σu,Y )

D→ Nk(0,ADΣwDAT ). �

3 Testing

As noted by Olive and Zhang (2024), the following simple testing method reduces a pos-
sibly high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0

versus H1 : AβOPLS 6= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη 6= 0

where A is a k × p constant matrix. Let Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymp-
totic covariance matrix of η̂ = Σ̂xY . In high dimensions where n < 5p, we can’t get a
good nonsingular estimator of Cov(Σ̂xY ), but we can get good nonsingular estimators
of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)

T ) with u = (xi1, ..., xik)
T where n ≥ Jk with J ≥ 10.
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(Values of J much larger than 10 may be needed if some of the k predictors and/or Y
are skewed.) Simply apply Theorem 1 to the predictors u used in the hypothesis test,
and thus use the sample covariance matrix of the vectors ui(Yi − Y ). Hence we can test
hypotheses like H0 : βi−βj = 0. In particular, testing H0 : βi = 0 is equivalent to testing
H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

Note that the tests with η̂ using k distinct predictors xij do not depend on other
predictors, including important predictors that were left out of the model (underfit-
ting). Hence the tests can have considerable resistance to underfitting and overfit-
ting. The OPLS tests also have some resistance to measurement error: assume that
(xT

i ,u
T
i , vi, Yi)

T are iid but wi = xi +ui and Zi = Yi +vi are observed instead of (xi, Yi).
Then β̂OLS(w, Z) estimates Σ−1

wΣwZ , while Σ̂wZ estimates Cov(x, Y ) if Cov(x, v) +
Cov(u, Y ) + Cov(u, v) = 0, which occurs, for example, if x v, u Y , and u v.

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests
with η̂ since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator
if η̂T x is a good estimator of ηT x.

Theorem 2 can be used to test H0 : Ac = 0, which can reduce a high dimensional
problem to a low dimensional problem. Suppose n > 10k, p > n, and Aβ = (βi1, ..., βik)

T

with i1, i2, ..., ik distinct. Then Theorem 3a) can be used since no inverse matrices are
required, but the asymptotic covariance matrices of Theorem 3b) and 3c) are much easier
to estimate.

4 REGRESSION WITH HETEROGENEITY

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei (10)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix

form, this model is
Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,
β is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown errors.
Also E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2
1, ..., σ

2
n) is an n × n positive

definite matrix. In Section 2, the constant variance assumption was used: σ2
i = σ2 for

all i. Hence heterogeneity means that the constant variance assumption does not hold.
A common assumption is that the ei = σiεi where the εi are independent and identically
distributed (iid) with V (εi) = 1. See, for example, Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the σ2
i were known. Since the σ2

i are
not known, ordinary least squares (OLS) is often used. The OLS theory for MLR with
heterogeneity often assume iid cases. For the following theorem, see Romano and Wolf
(2017), Freedman (1981), and White (1980).

Theorem 4. Assume Yi = xT
i β + ei for i = 1, ..., n where the cases (Yi,x

T
i )T are iid

with “fourth moments,” Y = Xβ + e, the ei = ei(xi) are independent, E[ei|xi] = 0,

8



V −1 = E[xix
T
i ], E[e2

i |xi] = v(xi) = σ2
i , Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω =

E[v(xi)xix
T
i ] = E[e2

i xix
T
i ]. Then

√
n(β̂OLS − β)

D→ Np(0,V ΩV ). (11)

Remark 2. a) White (1980) showed that the iid cases assumption can be weakened.
Assume the cases are independent,

V n =
1

n

n∑

i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑

i=1

E[e2
i xix

T
i ]

P→ Ω.

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 4,

1

n
XTX =

1

n

n∑

i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1, ..., σ

2
n) = Σe and D̂ = diag(r2

1, ..., r
2
n) where r2

i is the ith residual
from OLS regression of Y on X. Then D̂ is not a consistent estimator of D. The
following theorem, due to White (1980), shows that D̂ can be used to get a consistent
estimator of Ω. This result leads to the sandwich estimators.

Theorem 5. Under strong regularity conditions,

1

n
(XT D̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence
n(XT X)−1(XTD̂X)(XTX)−1 P→ V ΩV .

Now write the linear model as Y = α+ xT β + e. Under iid cases, OPLS theory does
not depend on whether the error variance is constant or not. Hence Theorem 1 and the
Section 3 theory still applies. If the cases are iid and linearity holds (with or without
heterogeneity), then under reasonable conditions, β = βOLS = Σ−1

x ΣxY . Hence

ΣxY = Σxβ, (12)

as noted by Olive and Zhang (2024) for when the iid errors ei had constant variance.
This result is useful for simulation.
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5 SINGLE INDEX MODELS

The distribution of Y |ηT x follows a single index model

Y |ηTx = Y = m(ηTx) + e

where E(Y |ηTx) = m(ηTx), V (Y |ηT x) = v(ηT x), and e = Y − m(ηTx). Note that
the error variance may not be constant. The model is called a single index model
since m depends on a single linear combination ηTx. A multi-index model would use
m(ηT

1 x, ...,ηT
k x) where k > 1.

If η = ηOPLS = ΣxY and the cases are iid, then inference for the single index
model can be done using Theorem 1 and Section 3. When the cases are iid, the OPLS
single index model estimators can have considerable resistance to overfitting, underfit-
ting, heterogeneity, measurement error, highly correlated predictors, and the number of
predictors.

If η̂OPLS = Σ̂xY is a good estimator of ΣxY , which can occur if n ≥ 10p, then the

OPLS single index model can be visualized with a response plot of Σ̂
T

xY x versus Y on the
vertical axis with a scatterplot smoother added as a visual aid. If the variability about
the scatterplot smoother is less than that about any horizontal line, then the model may
be useful compared to simply doing inference on the Y1, ..., Yn without any predictors.

If Y |x = m(α+βTx)+e and if the predictors xi are iid from a large class of elliptically
contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that,
under regularity conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if
Σx = τ 2Ip for some constant τ 2 > 0. If β = βOLS in this case, then βi = 0 implies
that Cov(xi, Y ) = 0. The constant c is typically nonzero unless m has a lot of symmetry
about the distribution of α + βTx. Chang and Olive (2010) considered OLS tests for
these models. Simulation with Σ̂xY can be difficult if the population values of c and d
are unknown.

6 EXAMPLE AND SIMULATIONS

Example. This example was used by Olive and Zhang (2024). The Hebbler (1847) data
was collected from n = 26 districts in Prussia in 1843. Let Y = the number of women

married to civilians in the district with a constant and predictors x1 = the population of

the district in 1843, x2 = the number of married civilian men in the district, x3 = the
number of married men in the military in the district, and x4 = the number of women

married to husbands in the military in the district. Sometimes the person conducting the
survey would not count a spouse if the spouse was not at home. Hence Y and x2 are highly
correlated but not equal. Similarly, x3 and x4 are highly correlated but not equal. Then
β̂OLS = (0.00035, 0.9995,−0.2328, 0.1531)T , forward selection with OLS and the Cp crite-

rion used β̂I,0 = (0, 1.0010, 0, 0)T , lasso had β̂L = (0.0015, 0.9605, 0, 0)T , lasso variable se-

lection β̂LV S = (0.00007, 1.006, 0, 0)T , β̂MMLE = (0.1782, 1.0010, 48.5630, 51.5513)T , and
β̂OPLS = (0.1727, 0.0311, 0.00018, 0.00018)T . The fitted values from the MMLE estimator
tend not to estimate Y . Let W = xT β̂MMLE and perform the simple linear regression of
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Y on W to get the reweighted or scaled estimators α̂R and b. Then β̂R = bβ̂MMLE. Then
the fitted values Ŷi = α̂R + xT

i β̂R can be used for prediction. If the scaled predictors u

have unit sample variances, then β̂OPLS(u, Y ) = β̂R(u, Y ).
Next, we describe a small WLS simulation study that done by Rajapaksha and Olive

(2024). The simulation used ψ = 0, 0.5, 1/
√
p, and 0.9; and k = 1, p− 2, and p− 1 where

k and ψ are defined in the following paragraph.
Let u = (1 xT )T where x is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p− 1 elements
of the vector wi are independent and identically distributed (iid) N(0,1). Let the m×m
matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the
vector xi = Awi so that Cov(xi) = Σx = AAT = (σij) where the diagonal entries
σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the
correlations are cor(xi, xj) = ρ = (2ψ + (m− 2)ψ2)/(1 + (m− 1)ψ2) for i 6= j where xi

and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where

c > 0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction
of (1, ..., 1)T . Let Yi = 1 + 1xi,1 + · · · + 1xi,k + ei for i = 1, ..., n. Hence α = 1 and
φ = (1, .., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros.

The zero mean iid errors ẽi = εi were iid from five distributions: i) N(0,1), ii) t3, iii)
EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii)
is not symmetric. Then wtype = 1 if ei = εi (the WLS model is the OLS model), 2 if
ei = |xT

i β−5|εi, 3 if ei =
√

(1+0.5x2
i2)εi, 4 if ei = exp[1+log(|xi2|)+ ...+log(|xip|)]εi, 5 if

ei = [1+ log(|xi2|)+ ...+log(|xip|)]εi, 6 if ei = [exp([log(|xi2|)+ ...+log(|xip|)]/(p−1))]εi,
7 if ei = [[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]εi, The last four types were special cases of
types suggested by Romano and Wolf (2017). For type 6, the weighting function is the
geometric mean of |xi2|, ..., |xip|. For n = 100 and p = 100 with ψ 6= 0, the CI lengths
were too long for wtype = 4.

When ψ = 0 and wtype = 1, the OLS confidence intervals for βi should have length
near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and the iid zero mean errors

have variance σ2.
The simulation computed ηOPLS = ΣxY = (η1, ..., ηp−1)

T = ΣxβOLS where Σx =
AAT is a (p − 1) × (p − 1) matrix. Storage problems can occur if p > 10000. Then
the Theorem 1 large sample 100(1 − δ) CI is η̂i ± tn−1,1−δ/2SE(η̂i) could be computed
for each ηi. If 0 is not in the confidence interval, then H0 : ηi = 0 and H0 : βiE = 0
are both rejected for estimators E = OPLS and MMLE. In the simulations with n = 50
and ψ > 0, the maximum observed undercoverage was about 0.05 = 5%. Hence the
program has the option to replace the cutoff tn−1,1−δ/2 by tn−1,up where up = min(1 −
δ/2 + 0.05, 1 − δ/2 + 2.5/n) if δ/2 > 0.1,

up = min(1 − δ/4, 1 − δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor
was used in the simulations for the nominal 95% CIs, where the correction factor uses a
cutoff that is between tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5%
CI. The nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and
0.96 suggests coverage is close to the nominal value. Pötscher and Preinerstorfer (2023)
noted that WLS tests tend to reject H0 too often (liberal tests with undercoverage).
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To summarize the p−1, confidence intervals, the average length of the p−1 confidence
intervals over 5000 runs was computed. Then the minimum, mean, and maximum of
the average lengths was computed. The proportion of times each confidence interval
contained its population parameter was computed. These proportions were the observed
coverages of the p − 1 confidence intervals. Then the minimum observed coverage was
found. The percentage of the observed coverages that were ≥ 0.9, 0.92, 0.93, 0.94, and
0.96 were also recorded.

7 CONCLUSIONS

There is a large literature for multiple linear regression models with heterogeneity. See,
for example, Buja et al. (2019), Eicker (1963, 1967), Flachaire (2005), Hinkley (1977),
Huber (1967), Long and Ervin (2000), MacKinnon and White (1985), Rajapaksha and
Olive (2024), Romano and Wolf (2017), and White (1980). The response plot of φ̂OPLS

versus Y and the EE plot of φ̂
T

OPLSx versus φ̂
T

OLSx can be used to check whether OPLS
is useful for WLS. See Olive (2013) for more on these two plots.

Tests for high dimensional covariance matrices include Chen, Zhang, and Zhong
(2010), and Himeno and Yamada (2014).

Software

The R software was used in the simulations. See R Core Team (2020). Programs
are available from the Olive (2023) collections of R functions slpack.txt, available from
(http://parker.ad.siu.edu/Olive/slpack.txt). The function OPLSplot make the response
plot and residual plot for multiple linear regression based on one component partial least
squares. The function OPLSEEplot plots the OPLS fitted values versus the OLS fitted
values. Let up ≈ 1 − α/2 be the correction factor used for the confidence intervals.
The function covxycis obtains the large sample 100(1 − α)% confidence intervals ≈
η̂j ± tn−1,upSE(η̂j) for ηj = Cov(xj, Y ) for j = 1, ..., p. The function oplscis obtains the

large sample 100(1−α)% confidence intervals ≈ β̂j ± tn−1,upSE(β̂j) for βj = λCov(xj, Y )

for j = 1, ..., p. If [Lj, Uj] is the confidence interval for ηj, then [λ̂Lj, λ̂Uj ] is the confidence
interval for βj. The function oplswls generates a weighted least squares data set of types
used by the simulation, the OPLS response plot, the OLS response plot, and the plot of
the OPLS fitted values versus the OLS fitted values. In the literature, simulated WLS
data set often contain outliers and are often not very linear. The response plot can be
used to check for these two problems. The function oplswsimwas used for the simulation
of confidence intervals for ηi. The function rcovxy makes the classical and three robust
estimators of η, and makes a scatterplot matrix of the four estimated sufficient predictors
η̂Tx and Y . Only two robust estimators are made if n ≤ 2.5p. The function oplssim

simulated confidence intervals for ηi when the errors were iid. The function oplssim2

simulated confidence intervals for βi when the errors were iid.
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