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Abstract

Analogs of the classical one way MANOVA model have recently been suggested that do

not assume that population covariance matrices are equal or that the error vector distri-

bution is known. These tests are based on the sample mean and sample covariance matrix

corresponding to each of the p populations. We show how to extend these tests using other

measures of location such as the trimmed mean or coordinatewise median. These new boot-

strap tests can have some outlier resistance, and can perform better than the tests based on

the sample mean if the error vector distribution is heavy tailed.

1. Introduction

Suppose there are p independent random samples from p groups or populations. Multi-

variate tests are often used to test whether the mean measurements are the same or differ

across p groups. The one way MANOVA test has null hypothesis H0 : µ1 = µ2 = · · · = µp,

and the test assumes that each group has the same population covariance matrix. Zhang

and Liu (2013) and Konietschke, Bathke, Harrar, and Pauly (2015) developed analogs of

the one way MANOVA test that do not assume that the population covariance matrices are

equal or that the error vector distribution is known. These tests are based on the sample

mean and sample covariance matrix (yi, Si) corresponding to the random sample from the
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ith population. We show how to extend these tests using other measures of location such as

the trimmed mean or coordinatewise median. Bootstrap confidence regions are used since

estimating the asymptotic covariance matrix can be difficult. These new bootstrap tests can

have some outlier resistance, and can perform better than the tests based on the sample

mean if the error vector distribution is heavy tailed or skewed.

The analogs of the one way MANOVA model use independent random samples of size ni

from p different populations (treatments), or ni cases are randomly assigned to p treatment

groups where n =
∑p

i=1 ni. Assume that m response variables yij = (Yij1, ..., Yijm)T are

measured for the ith treatment group and the jth case (often an individual or thing) in the

group. Hence i = 1, ..., p and j = 1, ..., ni. Then

yij = µi + εij

where εi1, ..., εini
are independent and identically distributed (iid), and it is often assumed

that E(yij) = µi and Cov(yij) = Cov(εij) = Σi for i = 1, ..., p.

The classical one way MANOVA model assumes that Cov(εij) = Σε is the same for each

of the p populations or groups. This homogeneity assumption is very strong. Fujikoshi (2002)

and Kakizawa (2009) derived the large sample theory, assuming that the error vectors are

iid with unknown distribution, for the one way MANOVA tests based on the Pillai’s trace

statistic, Hotelling Lawley trace statistic, and Wilks’ lambda. This theory is reviewed in

Olive (2017a, ch. 10).

Large sample theory can be used to derive a test that does not need the equal population

covariance matrix assumption Σi ≡ Σε. Let the statistic Ti be a location estimator such as

the sample mean or coordinatewise median. This test was used by Zhang and Liu (2013)

and Konietschke, Bathke, Harrar, and Pauly (2015) with Ti = yi and Σ̂i = Si.

The large sample theory for the test that uses Ti for each group is much simpler than the

large sample theory for the one way MANOVA test. To simplify the large sample theory,

assume ni = πin where 0 < πi < 1 and
∑p

i=1 πi = 1. Assume H0 is true, and let µi = µ for
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i = 1, ..., p. Suppose
√

ni(Ti − µ)
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Then
√

nw
D→ Nm(p−1)(0,Σw) with Σw = (Σij) where Σij =

Σp

πp

for i 6= j, and Σii =
Σi

πi

+
Σp

πp

for i = j. Hence the Wald-type statistic

t0 = nwT Σ̂
−1

ww = wT

(

Σ̂w

n

)−1

w
D→ χ2

m(p−1)

as the ni → ∞ if H0 is true. Here

Σ̂w

n
=























ˆΣ1

n1

+
ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

ˆΣp

np

ˆΣ2

n2

+
ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

...
...

...
...

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp−1

np−1

+
ˆΣp

np























is a block matrix where the off diagonal block entries equal Σ̂p/np and the ith diagonal block

entry is
Σ̂i

ni

+
Σ̂p

np

for i = 1, ..., (p − 1).

Reject H0 if

t0 > m(p − 1)Fm(p−1),dn
(1 − δ) (2)

where dn = min(n1, ..., np). It may make sense to relabel the groups so that np is the largest

ni or Σ̂p/np has the smallest generalized variance of the Σ̂i/ni. This test may start to

outperform the one way MANOVA test if n ≥ (m + p)2 and ni ≥ 40m for i = 1, ..., p.

If the sequence of positive integers dn → ∞ and Wn ∼ Fr,dn
, then rWn

D→ χ2
r. Using an

Fr,dn
cutoff instead of a χ2

r cutoff is similar to using a tdn
cutoff instead of a standard normal

N(0, 1) cutoff for inference. Instead of rejecting H0 when t0 > χ2
r,1−δ, reject H0 when

t0 > rFr,dn,1−δ =
rFr,dn,1−δ

χ2
r,1−δ

χ2
r,1−δ.
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The term
rFr,dn,1−δ

χ2
r,1−δ

can be regarded as a small sample correction factor that improves the

test’s performance for small samples. Here P (Wn ≤ χ2
r,δ) = δ if Wn has a χ2

r distribution,

and P (Wn ≤ Fr,dn,δ) = P (Wn ≤ Fr,dn
(δ)) = δ if Wn has an Fr,dn

distribution.

If T = (T T
1 , T T

2 , ..., T T
P )T , ν = (µT

1 , µT
2 , ..., µT

p )T , c is a constant vector, and A is a full

rank r × mp matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus

H1 : Aν 6= θ0 uses

A
√

n(T − ν)
D→ u ∼ Nr

(

0, A diag

(

Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)

AT

)

. (3)

When H0 is true, the Wald-type statistic

t0 = [AT − θ0]
T

[

A diag

(

Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)

AT

]−1

[AT − θ0]
D→ χ2

r.

Section 2 shows how to get a bootstrap confidence region that can be used to test H0

when Σ̂w or the Σ̂i are unknown or difficult to estimate. Section 3 gives some simulations

and an example.

2. Bootstrapping Hypothesis Tests and the Prediction Region Method

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known r× 1 vector. Given

training data z1, ..., zn, a large sample 100(1 − δ)% confidence region for θ is a set An such

that P (θ ∈ An) → 1− δ as n → ∞. Then reject H0 if θ0 is not in the confidence region An.

We will use the Olive(2017a, 2018) prediction region method to make a confidence region,

and some notation is needed. Let Zn = θ̂ be an r×1 vector. Let Z∗

1 , ..., Z
∗

B be the bootstrap

sample. Let

Z
∗

=
1

B

B
∑

i=1

Z∗

i and S∗

Z =
1

B − 1

B
∑

i=1

(Z∗

i − Z
∗

)(Z∗

i − Z
∗

)T

be the sample mean and sample covariance matrix of the bootstrap sample. Let the ith

squared sample Mahalanobis distance be the scalar

D2
i = D2

i (Z
∗

, S∗

Z) = D2
Z∗

i
(Z

∗

, S∗

Z) = (Z∗

i − Z
∗

)T [S∗

Z ]−1(Z∗

i − Z
∗

) (4)

for each observation Z∗

i . Similarly,

D2
i = D2

Zi
(W, C) = (Zi − W )TC−1(Zi − W ).
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Let qB = min(1 − δ + 0.05, 1 − δ + r/B) for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δr/B), otherwise. (5)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the 100qBth sample

quantile of the Di. This correction factor helps correct undercoverage when B ≥ 50r is finite.

Following Bickel and Ren (2001), let the vector of parameters θ = Z(F ), the statistic

Zn = Z(Fn), and Z∗ = Z(F ∗

n) where F is the cdf of iid x1, ..., xn, Fn is the empirical cdf, and

F ∗

n is the empirical cdf of x∗

1, ..., x
∗

n, a sample from Fn using the nonparametric bootstrap.

If
√

n(Fn − F )
D→ zF , a Gaussian random process, and if Z is sufficiently smooth (has a

Hadamard derivative Ż(F )), then
√

n(Zn−θ)
D→ u and

√
n(Z∗

i −Zn)
D→ u with u = Ż(F )zF .

Olive (2017ab) used these results to show that if u ∼ Nr(0,ΣA), then
√

n(Z
∗ − Zn)

D→ 0,
√

n(Z∗

i − Z
∗

)
D→ u,

√
n(Z

∗ − θ)
D→ u, and that the prediction region method large sample

100(1 − δ)% confidence region for θ is {w : (w − Z
∗

)T [S∗

Z ]−1(w − Z
∗

) ≤ D2
(UB)} =

{w : D2
w(Z

∗

, S∗

Z) ≤ D2
(UB)} (6)

where D2
(UB) is computed from D2

i = (Z∗

i − Z
∗

)T [S∗

Z ]−1(Z∗

i − Z
∗

) for i = 1, ..., B. Note that

the corresponding test for H0 : θ = θ0 rejects H0 if (Z
∗ − θ0)

T [S∗

Z ]−1(Z
∗ − θ0) > D2

(UB).

Simpler proofs are in Pelawa Watagoda and Olive (2018). This procedure is basically the one

sample Hotelling’s T 2 test applied to the Z∗

i using S∗

Z as the estimated covariance matrix

and replacing the χ2
r,1−δ cutoff by D2

(UB).

The modified Bickel and Ren (2001) large sample 100(1 − δ)% confidence region for θ is

{w : (w − Zn)
T [S∗

Z ]−1(w − Zn) ≤ D2
(UB,Z)} =

{w : D2
w(Zn, S∗

Z) ≤ D2
(UB,Z)} (7)

where D2
(UB,Z) is computed from D2

i = (Z∗

i − Zn)T [S∗

Z ]−1(Z∗

i − Zn).

These two confidence regions are asymptotically equivalent if u ∼ Nr(0,ΣA), so that
√

n(Z
∗ − Zn)

D→ 0. Bickel and Ren (2001) showed that their method can work when

Hadamard differentiability fails. The location model with means, medians, and trimmed

means is one example where the Bickel and Ren (2001, p. 96) method works.
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Next we will check some of the sufficient conditions for (6) to be a confidence region if
√

n(Ti − µi)
D→ Nm(0,Σi/πi) and if each coordinate Tij is Hadamard differentiable. Since

the univariate sample mean, sample median, and sample trimmed mean are Hadamard

differentiable and asymptotically normal, each coordinate satisfies
√

n(Tij − T
∗

ij)
D→ 0 for

j = 1, ..., m. Hence
√

n(Ti − T
∗

i )
D→ 0 for i = 1, ..., p, and

√
n(T − T

∗

)
D→ 0 where T

∗

=

(T
∗T

1 , ..., T
∗T

p )T . Thus
√

n(Zn−Z
∗

)
D→ 0 where Zn = AT . If θ = Aν, then

√
n(Zn−θ)

D→ u

and
√

n(Z
∗ − θ)

D→ u where u is given by Equation (3). Hence

D2
θ = (Z

∗ − θ)T [S∗

Z ]−1(Z
∗ − θ)T =

√
n(Z

∗ − θ)T [nS∗

Z ]−1
√

n(Z
∗ − θ)T ≈ uT [nS∗

Z ]−1u,

for probability calculations, and there exists a cutoff D̂2
1−δ such that (6) (using cutoff D̂2

1−δ)

is a large sample confidence region for θ provided nS∗

Z does not get too ill conditioned. This

is a much weaker condition than

nS∗

Z

P→ ΣA = A diag

(

Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)

AT .

See Machado and Parente (2005) for regularity conditions for nS∗

Z

P→ ΣA. If
√

n(Ti −µi)
D→

ui ∼ Nm(0,Σi/πi) and
√

n(T ∗

i − Ti)
D→ ui then (6) is a confidence region for θ. If also

nS∗

Z

P→ ΣA, then D2
(UB)

P→ χ2
r,1−δ under H0. In the simulations with H0 true and ni large,

the confidence region coverage was near the nominal and the average value of D2
(UB) tended

to be near χ2
r,1−δ. Hence (6) with D̂2

1−δ = D2
(UB) worked reasonably well.

Fréchet differentiability implies Hadamard differentiability, and many statistics are shown

to be Hadamard differentiable in Bickel and Ren (2001), Clarke (1986, 2000), Fernholtz

(1983), Gill (1989), Ren (1991), and Ren and Sen (1995).

To bootstrap the test H0 : Aν = θ0 versus H1 : Aν 6= θ0, use Zn = AT . Take a sample

of size nj with replacement from the nj cases for each group for j = 1, 2, ..., p to obtain T ∗

j

and T ∗

1. Repeat B times to obtain T ∗

1, ..., T
∗

B. Then Z∗

i = AT ∗

i for i = 1, ..., B. We will

illustrate this method with the analog for the one way MANOVA test for H0 : Aθ = 0

which is equivalent to H0 : µ1 = · · · = µp, where 0 is an r × 1 vector of zeroes with

r = m(p − 1). Then Zn = AT = w given by Equation (1). Hence the m(p − 1) × 1 vector
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Z∗

i = AT ∗

i = ((T ∗

1 − T ∗

p )T , ..., (T ∗

p−1 − T ∗

p )T )T where Tj is a robust location estimator, such

as the coordinatewise median or trimmed mean, applied to the cases in the jth treatment

group. The prediction region method fails to reject H0 if 0 is in the resulting confidence

region. Alternative methods for bootstrapping confidence regions are given in Ghosh and

Polanski (2014).

3. Example and Simulations

In our simulations we used large sample sizes. We may need B ≥ 50m(p−1), n ≥ (m+p)2,

and ni ≥ 40m. If the ni are not large, the one way MANOVA test can be regarded as a

regularized estimator, and can perform better than the tests that do not assume equal

population covariance matrices. Konietschke, Bathke, Harrar, and Pauly (2015) give some

bootstrap methods that can simulate well for small ni if the sample means and covariance

matrices (yi, Si) are used.

Example. The Cornwell and Trumbull (1994) North Carolina Crime data consists of 630

observations on 24 variables. This data set is available online from (https://vincentarelbun

dock.github.io/Rdatasets/datasets.html). Region is a categorical variable with three cate-

gories: Central, West, and Other with the number of observations 238, 147, and 245 re-

spectively, and forms the three groups. The m = 5 variables are Y1 = wsta = weekly wage

of state employees, Y2 = avgsen = average sentence days, Y3 = prbarr = ‘probability’ of

arrest, Y5 = prbconv = ‘probability’ of conviction, and Y5 = taxpc = tax revenue per capita.

There were a few outliers and boxplots of the variables, not shown, showed that the sample

medians of the three groups were nearly the same for all 5 variables. The variables were

highly skewed with different amounts of skew for the three groups. Hence the location mea-

sures other than the population coordinatewise median likely do differ. The test with the

coordinatewise median had D0 = 4.086 with the cutoff of D(UB) = 4.32 and failed to reject

H0. Note that
√

χ2
10,0.95 = 4.28 and

√

10F10,147,0.95 = 4.36. The classical one way MANOVA

test had a p-value of 0.001 and rejected the null hypothesis.

The simulation used 5000 runs with B bootstrap samples and p = 3 groups. Olive

(2017ab) suggests that the prediction region method can give good results when the number
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of bootstrap samples B ≥ 50r = 50m(p − 1), and the simulation used various values of B.

The sample mean, coordinatewise median, and coordinatewise 25% trimmed mean were the

statistics T used. The classical one way MANOVA Hotelling Lawley test statistic was also

used.

Four types of data distributions wi were considered that were identical for i = 1, 2, and 3.

Then y1 = σ1Cw1 + δ11, y2 = σ2Cw2 + δ21, and y3 = σ3Cw3 + δ31 or y3 = w3 where 1 =

(1, .., 1)T is a vector of ones and C = diag(1,
√

2, ...,
√

m). The wi distributions were the multi-

variate normal distribution Nm(0, I), the mixture distribution 0.6Nm(0, I)+0.4Nm(0, 25I),

the multivariate t distribution with 4 degrees of freedom, and the multivariate lognormal

distribution shifted to have nonzero mean µ = 0.649 1, but a population coordiatewise me-

dian of 0. If σ1 = 1 and δi = 0 for i = 1, 2, 3, note that Cov(y2) = σ2
2 Cov(y1), and for

the first three distributions, E(yi) = E(wi) = 0. If y3 = w3 then Cov(y3) = cIm for some

constant c > 0. If σ1 = 1 and y3 = σ3Cw3 + δ31, then Cov(y3) = σ2
3 Cov(y1).

Adding the same type and proportion of outliers to all three groups often resulted in

three distributions that were still similar. Hence outliers were added to the first group but

not the second or third, making the covariance structures of the three groups quite different.

The outlier proportion was 100γ%. Let y1 = (y11, ..., y1m)T . The five outlier types for group

1 were type 1: a tight cluster at the major axis (0, ..., 0, z)T , type 2: a tight cluster at the

minor axis (z, 0, ..., 0)T , type 3: Nm(z1, diag(1, ..., m)), type 4: y1m replaced by z, and type

5: y11 replaced by z. The quantity z determines how far the outliers are from the clean data.

Let the coverage be the proportion of times that H0 is rejected. We want the coverage

near 0.05 when H0 is true and the coverage close to 1.0 for good power when H0 is false.

With 5000 runs, an observed coverage inside of (0.04, 0.06) suggests that the true coverage

is close to the nominal 0.05 coverage when H0 is true.

The new tests worked well with all the distributions and with the different covariance

settings. Tables 1 through 4 show simulation results for two distributions with various

covariance settings. We took δ1 = δ3 = 0 and B = the size of the bootstrap sample. Balanced

and unbalanced designs have also been considered. For Tables 1 and 2, Σi ∝ diag(1, 2, .., m)
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for i = 1, 2, 3. For Tables 3 and 4, σ2 = σ3 = 1, and Σ3 = cI does not have the same shape

as Σ1 and Σ2. Tables 1 and 3 are for the multivariate normal (MVN) distribution. The

classical test works well with multivariate normal data when the covariance matrices are the

same, but the type I error tends to be higher than the nominal level when the covariance

matrices differ. The classical test can be too conservative when the design is unbalanced.

Having an unbalanced design and different covariance matrices was the worst case scenario

for the classical test regardless of the data distribution. The bootstrap tests using the mean

and coordinatewise trimmed mean usually performed well but occasionally had coverage near

0.07. Tables 2 and 4 are for the lognormal distribution, where the location measures other

than the coordinatewise median differ if σ2 6= σ3 (then coverage near 1 is desired).

Figures 1, 2, and 3 generated power curves for the bootstrap tests and for the Zhang and

Liu (2013) MANOVA type test (2) based on the sample means yi and Si for the 3 groups.

The bootstrap test based on the sample means bootstraps the test (2). For these power

curves, group i has mean µi = δi1 where δ2 = 2 δ1 and δ3 = 3 δ1. When δ1 increases, the

distance between the mean vectors increases. The power curves for the bootstrap test based

on the sample means and for test (2) were always similar. Figure 1 shows the power curve

for clean MVN data with a balanced design where the groups have the same covariance

matrices. Here the three mean based tests had similar power. The power curve for the

classical test was poor for the next two figures. Figure 2 shows clean MVN data with

m = 5, σ1 = 1, σ2 = 2, σ3 = 5, n1 = 200, n2 = 400, and n3 = 600. Figure 3 used settings

similar to Figure 2 with the multivariate t4 distribution, and the coordinatewise trimmed

mean had the best power.

Simulations were also done for type I error with contamination using the five types

of outliers, and (γ, z) = (0.1, 10) or (0.05, 20). In Table 5 with m = 5, the test with the

coordinatewise median works reasonably well (close to the nominal coverage) for 10% outliers

with all the distributions and for all the outlier types with the exception of outlier type 3.

All the other tests, including the classical test, failed. Results were similar with m = 10,

ni = 800, B = 1000, and γ = 0.05. Increasing z as m increases can help, but if m and γ are

9



Table 1: Type I error for clean MVN data with Σ3 6= cI

m n1 n2 n3 B σ2 σ3 Median Mean Tr.Mn Class

5 200 200 200 400 1 1 0.0422 0.0562 0.0552 0.0460

1000 1 1 0.0486 0.0602 0.0598 0.0510

400 2 3 0.0506 0.0670 0.0606 0.0680

1000 2 3 0.0482 0.0580 0.0590 0.0680

5 200 400 600 400 1 1 0.0506 0.0542 0.0598 0.0474

1000 1 1 0.0492 0.0542 0.0554 0.0472

400 2 3 0.0474 0.0580 0.0576 0.0066

1000 2 3 0.0532 0.0626 0.0618 0.0074

10 400 400 400 800 1 1 0.0508 0.0724 0.0712 0.0558

2000 1 1 0.0516 0.0652 0.0644 0.0526

800 2 3 0.0562 0.0640 0.0686 0.0656

2000 2 3 0.0554 0.0624 0.0630 0.0704

10 400 800 1200 800 1 1 0.0510 0.0594 0.0626 0.0456

2000 1 1 0.0470 0.0578 0.0576 0.0494

800 2 3 0.0468 0.0576 0.0572 0.0008

2000 2 3 0.0440 0.0574 0.0534 0.0034

20 800 800 800 1600 1 1 0.0474 0.0724 0.0652 0.0496

4000 1 1 0.0504 0.0662 0.0668 0.0494

1600 2 3 0.0566 0.0728 0.0618 0.0772

4000 2 3 0.0592 0.0644 0.0672 0.0638

20 800 1600 2400 1600 1 1 0.0562 0.0644 0.0648 0.0492

4000 1 1 0.0504 0.0564 0.0618 0.0462

1600 2 3 0.0530 0.0654 0.0650 0.0000

4000 2 3 0.0472 0.0632 0.0620 0.0008
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Table 2: Type I error for clean lognormal data with Σ3 6= cI

m n1 n2 n3 B σ2 σ3 Median Mean Tr.Mn Class

5 200 200 200 400 1 1 0.0368 0.0628 0.0478 0.0436

1000 1 1 0.0402 0.0596 0.0486 0.0452

400 2 3 0.0432 0.9996 0.1004 0.9994

1000 2 3 0.0448 1.0000 0.0980 0.9996

5 200 400 600 400 1 1 0.0446 0.0768 0.0568 0.0476

1000 1 1 0.0426 0.0724 0.0530 0.0530

400 2 3 0.0428 1.0000 0.2068 1.0000

1000 2 3 0.0428 1.0000 0.2002 1.0000

10 400 400 400 800 1 1 0.0450 0.0658 0.0622 0.0450

2000 1 1 0.0472 0.0716 0.0542 0.0498

800 2 3 0.0532 1.0000 0.2858 1.0000

2000 2 3 0.0458 1.0000 0.2706 1.0000

10 400 800 1200 800 1 1 0.0434 0.0754 0.0542 0.0546

2000 1 1 0.0502 0.0708 0.0526 0.0462

800 2 3 0.0438 1.0000 0.6448 1.0000

2000 2 3 0.0372 1.0000 0.6394 1.0000

20 800 800 800 1600 1 1 0.0482 0.0680 0.0580 0.0470

4000 1 1 0.0412 0.0678 0.0582 0.0486

1600 2 3 0.0530 1.0000 0.8714 1.0000

4000 2 3 0.0516 1.0000 0.8622 1.0000

20 800 1600 2400 1600 1 1 0.0470 0.0756 0.0648 0.0532

4000 1 1 0.0520 0.0684 0.0652 0.0464

1600 2 3 0.0480 1.0000 0.9980 1.0000

4000 2 3 0.0442 1.0000 0.9988 1.0000
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Table 3: Type I error for clean MVN data with Σ3 = cI

m n1 n2 n3 B Median Mean Tr.Mn Class

5 200 200 200 400 0.0482 0.0682 0.0638 0.0650

1000 0.0500 0.0684 0.0610 0.0592

5 200 400 600 400 0.0566 0.0604 0.0648 0.1354

1000 0.0472 0.0526 0.0534 0.1278

10 400 400 400 800 0.0512 0.0636 0.0610 0.0604

2000 0.0506 0.0608 0.0632 0.0584

10 400 800 1200 800 0.0570 0.0658 0.0642 0.2422

2000 0.0536 0.0536 0.0536 0.2224

20 800 800 800 1600 0.0662 0.0740 0.0734 0.0638

4000 0.0562 0.0668 0.0600 0.0604

20 800 1600 2400 1600 0.0566 0.0638 0.0628 0.4308

4000 0.0560 0.0702 0.0658 0.4308

0.0 0.1 0.2 0.3 0.4

0
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0
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0
.4

0
.6

0
.8

1
.0

delta1

 

Median

Mean
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Figure 1: Power curve for clean MVN data with m = 5, σ1 = 1, σ2 = 1, σ3 = 1, n1 = 200, n2 =

200, and n3 = 200.
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Table 4: Type I error for clean lognormal data with Σ3 = cI

m n1 n2 n3 B Median Mean Tr.Mn Class

5 200 200 200 400 0.0424 0.8744 0.0652 0.7208

1000 0.0446 0.8790 0.0686 0.7220

5 200 400 600 400 0.0470 0.9950 0.0864 0.9980

1000 0.0460 0.9976 0.0884 0.9990

10 400 400 400 800 0.0440 1.0000 0.2404 1.0000

2000 0.0438 1.0000 0.2424 1.0000

10 400 800 1200 800 0.0524 1.0000 0.4256 1.0000

2000 0.0520 1.0000 0.4384 1.0000

20 800 800 800 1600 0.0576 1.0000 0.9674 1.0000

4000 0.0602 1.0000 0.9668 1.0000

20 800 1600 2400 1600 0.0588 1.0000 0.9994 1.0000

4000 0.0504 1.0000 0.9996 1.0000

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

delta1

 

Median

Mean
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Figure 2: Power curve for clean MVN data with m = 5, σ1 = 1, σ2 = 2, σ3 = 5, n1 = 200, n2 =

400, and n3 = 600.
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Figure 3: Power curve for clean multivariate t4 data with m = 5, σ1 = 1, σ2 = 2, σ3 = 5, n1 =

200, n2 = 400, and n3 = 600.

large enough, then the outliers move the coordinatewise median of the first group enough so

that the test tends to reject H0.

4. Conclusions

Bootstrapping different estimators of multivariate location provides an alternative to the

one way MANOVA test that assumes the population covariance matrices of the p groups are

the same. The bootstrap test and test (2) were similar when the sample means yi were used.

A larger simulation is in Rupasinghe Arachchige Don (2017). Rupasinghe Arachchige Don

and Pelawa Watagoda (2017) consider bootstrapping analogs of the two sample Hotelling’s T 2

test, and Konietschke, Bathke, Harrar, and Pauly (2015) suggest a method for bootstrapping

analogs of the one way MANOVA model that may be useful even if the ni are not all large.

References for robust one way MANOVA tests are in Finch and French (2013), Todorov and

Filzmoser (2010), Van Aelst and Willems (2011), Wilcox (1995), and Zhang and Liu (2013).

The R software was used in the simulation. See R Core Team (2016). Programs are in the

Olive (2017a) collection of R functions mpack.txt available from (http://lagrange.math.siu.edu

/Olive/mpack.txt). The function manbtsim2 was used to simulate the tests of hypotheses,
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Table 5: Type I error with contaminated data: m = 5, γ = 0.1

Dist. n1 = n2 = n3 B outlier Median Mean Tr.Mn Class

1 200 1000 1 0.0638 0.8034 0.1572 0.9302

2 0.0504 0.9826 0.1488 1.0000

3 0.2720 0.9994 0.4024 1.0000

4 0.0966 0.7862 0.1546 0.9236

5 0.0840 0.9854 0.1268 1.0000

2 200 1000 1 0.0488 0.1832 0.1068 0.1812

2 0.0376 0.4880 0.1042 0.5428

3 0.1994 0.7502 0.2206 0.8978

4 0.0858 0.1848 0.1080 0.1830

5 0.0780 0.4688 0.0974 0.5400

3 200 1000 1 0.0598 0.6046 0.1554 0.7094

2 0.0464 0.9356 0.1366 0.9946

3 0.2590 0.9944 0.3882 1.0000

4 0.0946 0.5824 0.1486 0.6926

5 0.0828 0.9216 0.1270 0.9928

4 200 1000 1 0.0426 0.9880 0.1998 0.9624

2 0.0416 0.9924 0.1396 0.9884

3 0.1762 1.0000 0.3980 1.0000

4 0.0708 0.9902 0.1892 0.9674

5 0.0766 0.9950 0.1508 0.9932
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and predreg computes the confidence region given the bootstrap values. The function

manbtsim4 adds the test given by Equation (2) using the (yi, Si), which is very similar to

the bootstrap test with the sample means.
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