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Abstract

Large sample confidence intervals often have the form Dn ± z1−α/2 SE(Dn)

where Dn is an estimator of the parameter and P (Z ≤ zα) = α when Z has a normal

N(0,1) distribution. Replacing z1−α/2 by tp,1−α/2 can be viewed as multiplying

z1−α/2 SE(Dn) by a finite sample correction factor tp,1−α/2/z1−α/2 in order to

improve the performance of the interval for small sample sizes. This technique is

used to modify a large sample confidence interval for the population median. This

interval is compared to the intervals based on the sample mean and 25% trimmed

mean.
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1 Introduction

The population median MED(Y ) is a measure of location and is any value that satisfies

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (1)

This population quantity can be estimated from the sample Y1, . . . , Yn. Let Y(1) ≤

· · · ≤ Y(n) be the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd, (2)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) = MED(Yi, i = 1, . . . , n) will be useful.

Let bxc denote the “greatest integer function” (e.g., b7.7c = 7). Then the β trimmed

mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (3)

where Ln = bnβc and Un = n − Ln.

The trimmed mean is estimating a truncated mean µT . Assume that Y has a prob-

ability density function fY (y) that is continuous and positive on its support. Let yβ be

the number satisfying P (Y ≤ yβ) = β. Then

µT =
1

1 − 2β

∫ y1−β

yβ

yfY (y)dy. (4)

Notice that the 25% trimmed mean is estimating

µT =
∫ y0.75

y0.25

2yfY (y)dy.
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Section 2 modifies the Bloch and Gastwirth (1968) confidence interval for the popu-

lation median. The modified interval is compared to the intervals based on the sample

mean and 25% trimmed mean.

2 A Simple Confidence Interval for MED(Y ).

The large sample theory of the β trimmed mean Tn has been examined by Bickel (1965),

Stigler (1973), Tukey and McLaughlin (1963), Yuen (1974), and Shorack and Wellner

(1986, pp. 680-683). First, find d1, ..., dn where

di =





Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn, and the

scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

[(Un − Ln)/n]2
. (5)

Let p = Un − Ln − 1. Then the standard error (SE) of Tn is SE(Tn) =
√

VSW (Ln, Un)/n

and a large sample 100 (1 − α)% confidence interval (CI) for µT is

Tn ± tp,1−α/2 SE(Tn) (6)

where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p degrees of freedom.

The 100 (1 − α)% confidence interval for the population mean µ is

Y ± tp,1−α/2 S/
√

n
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where p = n − 1 and S is the sample standard deviation. Notice this interval can be

found using (6) with Ln = 0 and Un = n.

Several confidence intervals for the population median have been proposed. Price and

Bonnett (2001), McKean and Schrader (1984) and Bloch and Gastwirth (1968) are useful

references for estimating the SE of the sample median.

The following confidence interval provides considerable resistance to gross outliers

while being very simple to compute. Let dxe denote the smallest integer greater than or

equal to x (e.g., d7.7e = 8). Let Un = n − Ln where Ln = [n/2] − d
√

n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un − Ln − 1 (≈ d
√

n e). Then a 100(1 − α)% confidence interval for the

population median is

MED(n) ± tp,1−α/2 SE(MED(n)).

This SE is due to Bloch and Gastwirth (1968), but the degrees of freedom p is motivated

by the confidence interval for the trimmed mean.

For large samples, the CIs based on the trimmed mean, mean and median could be

written as Dn ± z1−α/2 SE(Dn) where P (Z ≤ zα) = α when Z has a normal N(0,1)

distribution. Notice that

Dn ± tp,1−α/2 SE(Dn) = Dn ± tp,1−α/2

z1−α/2

z1−α/2 SE(Dn),

and the term

an =
tp,1−α/2

z1−α/2

→ 1

as n → ∞. We can regard an as a finite sample correction factor that makes the coverage

of the CI more accurate for small samples.
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Example 1. The Buxton (1920) data contains 87 heights of men, but five of the

men were recorded to be about 0.75 inches tall! The mean height is Y = 1598.862 and

the classical 95% CI is (1514.206, 1683.518). MED(n) = 1693.0 and the resistant 95%

CI based on the median is (1678.517, 1707.483). The 25% trimmed mean Tn = 1689.689

with 95% CI (1672.096, 1707.282).

The heights for the five men were recorded under their head lengths, so the outliers

can be corrected. Then Y = 1692.356 and the classical 95% CI is (1678.595, 1706.118).

Now MED(n) = 1694.0 and the 95% CI based on the median is (1678.403, 1709.597).

The 25% trimmed mean Tn = 1693.200 with 95% CI (1676.259, 1710.141). Notice that

when the outliers are corrected, the three intervals are very similar although the classical

interval length is slightly shorter. Also notice that the outliers roughly shifted the median

confidence interval by about 1 mm while the outliers greatly increased the length of the

classical t–interval.

Table 1 presents the results from a small simulation study. In order for a location

estimator to be used for inference, there must exist a useful SE and a useful cutoff

value tp where the degrees of freedom p is a function of n. Two criteria will be used

to evaluate the CI’s. First, the observed coverage is the proportion of the K = 500

runs for which the CI contained the parameter µD estimated by Dn. This proportion

should be near the nominal coverage 0.95. Notice that if W is the proportion of runs

where the CI contains the parameter, then KW is a binomial random variable. Hence

the SE of W is
√

p̂(1 − p̂)/K ≈ 0.013 for the observed proportion p̂ ∈ [0.9, 0.95], and an

observed coverage between 0.92 and 0.98 suggests that the observed coverage is close to
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the nominal coverage of 0.95.

The second criterion is the scaled length of the CI =
√

n CI length =

√
n(2)(tp,0.975)(SE(Dn)) ≈ 2(1.96)(σD)

where the approximation holds if p > 30, if
√

n(Dn − µD)
D→ N(0, σ2

D), and if SE(Dn) is

a good estimator of σD/
√

n for the given value of n.

Table 1 can be used to examine the three different interval estimators. A good

estimator should have an observed coverage p̂ ∈ [.92, .98], and a small scaled length. In

Table 1, coverages were good for normal N(0, 1) data, except the median interval where

SE(MED(n)) is slightly too small for n ≈ 100. The coverages for the Cauchy C(0,1)

and double exponential DE(0,1) data were all good even for n = 10. The exponential

EXP(1) distribution is skewed, so the central limit theorem is not a good approximation

for n = 10. For this skewed distribution, the estimators Y ,MED(n) and the 25% trimmed

mean are estimating the population parameters 1, log(2) and 0.73838 respectively.

Examining Table 1 for N(0,1) data shows that the median interval and 25% trimmed

mean interval are noticeably larger than the classical interval. Since the degrees of

freedom p ≈
√

n for the median interval, tp,0.975 is considerably larger than 1.96 = z0.975

for n ≤ 100. The rows labeled ∞ give the scaled length 2(1.96)(σD) expected if
√

nSE

is a good estimator of σD.

The intervals for the C(0,1) and DE(0,1) data behave about as expected. The classical

interval is very long at C(0,1) data since the first moment of C(0,1) data does not exist.

Notice that the two resistant intervals are shorter than the classical intervals for DE(0,1)

data.
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Table 1: Simulated 95% CI Coverages and lengths, 500 Runs

F n Y MED 25% TM Y len MEDlen 25% TMlen

N(0,1) 10 0.960 0.948 0.938 4.467 7.803 5.156

N(0,1) 50 0.948 0.936 0.926 4.0135 5.891 4.419

N(0,1) 100 0.932 0.900 0.938 3.957 5.075 4.351

N(0,1) 1000 0.942 0.940 0.936 3.930 5.035 4.290

N(0,1) ∞ 0.95 0.95 0.95 3.920 4.913 4.285

DE(0,1) 10 0.966 0.970 0.968 6.064 7.942 5.742

DE(0,1) 50 0.948 0.958 0.954 5.591 5.360 4.594

DE(0,1) 100 0.956 0.940 0.938 5.587 4.336 4.404

DE(0,1) 1000 0.948 0.936 0.944 5.536 4.109 4.348

DE(0,1) ∞ 0.95 0.95 0.95 5.544 3.920 4.343

C(0,1) 10 0.974 0.980 0.962 54.590 12.682 9.858

C(0,1) 50 0.984 0.960 0.966 94.926 7.734 6.794

C(0,1) 100 0.970 0.940 0.968 243.4 6.542 6.486

C(0,1) 1000 0.978 0.952 0.950 515.9 6.243 6.276

C(0,1) ∞ 0.95 0.95 0.95 ∞ 6.157 6.255

EXP(1) 10 0.892 0.948 0.916 4.084 6.012 3.949

EXP(1) 50 0.938 0.940 0.950 3.984 4.790 3.622

EXP(1) 100 0.938 0.930 0.954 3.924 4.168 3.571

EXP(1) 1000 0.952 0.926 0.936 3.914 3.989 3.517

EXP(1) ∞ 0.95 0.95 0.95 3.92 3.92 3.51
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For EXP(1) data, 2(1.96)(σD) = 3.9199 for Y and MED(n) while 2(1.96)(σD) ≈ 3.51

for the 25% trimmed mean. The 25% trimmed mean may be the best of the three intervals

for these four distributions since the scaled length was small with good coverage.

The median interval was chosen so that Ln ≈ n/2 outliers are needed to drive

SE(MED(n)) to ∞. (This resistant interval is not a high breakdown method since about

√
n maliciously placed outliers can drive SE(MED(n)) to zero.) Since the two resistant

intervals are easy to compute, they can be included with computer output along with

the warning to examine the data for outliers if the classical and resistant intervals differ

greatly. This application is useful since statistical consulting clients all too often obtain

their software output without plotting the data.

The median interval is useful for symmetric distributions and for one parameter fami-

lies such as the exponential, power, and truncated extreme value distributions. See Patel,

Kapadia and Owen (1976). The median interval may not need to be adjusted if there

are censored observations present. Suppose that Y(R+1), ..., Y(n) have been right censored

(similar results hold for left censored data). Then create a pseudo sample Z(i) = Y(R) for

i > R and Z(i) = Y(i) for i ≤ R. Then compute the median interval based on Z1, ..., Zn.

This CI will be identical to the CI based on Y1, ..., Yn (no censoring) if R + 1 > Un.
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