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Abstract

This paper gives large sample theory for the one component partial least squares estima-

tor, including some hypothesis tests for high dimensional data, under much weaker conditions

than those in the literature. Simple theory is also given for some data splitting estimators

and the marginal maximum likelihood estimators. It is shown that lasso, one component

partial least squares, and ordinary least squares often estimate different population multiple

linear regression models. The paper also proves that there are often many valid population

models for regression methods such as binary regression.

1. Introduction

This section reviews regression models, including variable selection and data splitting.

Many regression models have a response variable Y that is independent of the p×1 vector of

predictors x = (x1, ..., xp)
T given xT β, written Y x|xTβ. Then there are n cases (Yi,x

T
i )T ,

and the sufficient predictor SP = α + xT β. For the regression models, the conditioning

and subscripts, such as i, will often be suppressed. The multiple linear regression model

is Y |xTβ = α + xT β + e or Yi = α + xT
i β + ei for i = 1, ..., n. Consider a parametric

regression model Y |xT β ∼ D(α+xTβ,γ) where D is a parametric distribution that depends
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on x only through xTβ, and γ is a q × 1 vector of parameters. Three examples follow.

The binomial logistic regression model is Yi ∼ binomial

(
mi, ρ(SP) =

eSP

1 + eSP

)
. The binary

logistic regression model has mi ≡ 1 for i = 1, ..., n. A useful Poisson regression model

is Y ∼ Poisson
(
eSP

)
. If the Yi follow a Weibull regression model, then the log(Yi) follow

an accelerated failure time model: log(Yi) = δ + βT
Axi + σei. Let λ0 = exp(−δ/σ) and

β = −βA/σ. Then for SP = βT x, the Weibull proportional hazards regression model is

Y |SP ∼W (γ = 1/σ, λ0 exp(SP ))

where Y has a Weibull W (γ, λ) distribution if the probability density function of Y is

f(y) = λγyγ−1 exp[−λyγ] for y > 0.

Variable selection estimators include forward selection or backward elimination. Sparse

regression methods can also be used for variable selection even if n/p is not large: the

regression submodel, such as a Nelder and Wedderburn (1972) generalized linear model

(GLM), uses the predictors that had nonzero sparse regression estimated coefficients. These

methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse regression

by projection. See Efron et al. (2004, p. 421), Meinshausen (2007, p. 376), Qi et al. (2015),

Tay, Narasimhan, and Hastie (2023), Tibshirani (1996), and Zou and Hastie (2005).

A model for variable selection can be described by

xTβ = xT
SβS + xT

EβE (1)

where xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Here E denotes the subset

of terms that can be eliminated, without much loss of information, given that the subset S

is in the model. Let xI be the vector of a terms from a candidate subset indexed by I , and

let xO be the vector of the remaining predictors (out of the candidate submodel). Then βS

corresponds to the optimal reduced model. If I 6= S and S ⊆ I , then βI corresponds to a

nonoptimal reduced model: overfitting, while S 6⊆ I corresponds to underfitting.

To clarify notation, suppose p = 3, a constant α is always in the model, and S = I2 = {1}.
Then the J = 2p = 8 possible subsets of {1, 2, ..., p} are I1 = ∅, S, I3 = {2}, I4 = {3},
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I5 = {1, 2}, I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There are 2p−aS = 4 subsets I2, I5, I6,

and I8 such that S ⊆ Ij. Let β̂I7
= (β̂2, β̂3)

T and xI7 = (x2, x3)
T .

Let Imin correspond to the set of predictors selected by a variable selection method such

as forward selection or lasso variable selection. If β̂I is a × 1, use zero padding to form

the p × 1 vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then the observed variable selection estimator

β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)
T . As a statistic, β̂V S = β̂Ik ,0 with probabilities πkn = P (Imin =

Ik) for k = 1, ..., J where there are J subsets, e.g. J = 2p.

Theory for the variable selection estimator β̂V S is complicated. See Pelawa Watagoda

and Olive (2021) for multiple linear regression, and Rathnayake and Olive (2023) for models

such as GLMs and Cox (1972) proportional hazards regression. For fixed p, these two papers

showed that β̂V S is
√
n consistent with a complicated nonnormal limiting distribution.

Principal components regression (PCR) and partial least squares (PLS) models use p

conditional distributions Y |(ηT
1 x,ηT

2 x, ...,ηT
k x) for k = 1, ..., p. Estimating the ηi and per-

forming the ordinary least squares (OLS) regression of Y on (η̂T
1 x, η̂T

2 x, ..., η̂T
k x) gives the

k-component estimator, e.g. the k-component PLS estimator β̂kPLS , for k = 1, ..., J where

J ≤ p and the p-component estimator is the OLS estimator β̂OLS. Denote the one compo-

nent PLS (OPLS) estimator by β̂OPLS. The model selection estimator chooses one of the

k-component estimators, e.g. using a holdout sample or cross validation, and will be denoted

by β̂MSPLS . See Cook (2018) and Wold (1975) for more on these and related estimators.

For estimation with OLS, let the covariance matrix of x be Cov(x) = Σx = E[(x −
E(x))(x−E(x))T = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY = E[(x−E(X)(Y −
E(Y ))] = E(xY ) − E(x)E(Y ) = E[(x− E(x))Y ] = E[x(Y − E(Y ))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi−x)(Yi−Y ), η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi−x)(Yi−Y ),

Σ̂x =
1

n− 1

n∑

i=1

(xi − xn)(xi − xn)T , and Σ̃x =
n − 1

n
Σ̂x.
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Then the OLS estimators are α̂OLS = Y − β̂
T

OLSx and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases,

β̂OLS is a consistent estimator of βOLS = Σ−1
x ΣxY under mild regularity conditions, while

α̂OLS is a consistent estimator of E(Y ) − βT
OLSE(x).

Cook, Helland, and Su (2013) showed that β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS

where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(2)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Let η̂OPLS = Σ̂xY . Large sample theory for

OPLS is given in Section 2, and see Section 3.1 for earlier theory.

The marginal maximum likelihood estimator (MMLE or marginal least squares estimator)

is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the marginal

regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE =

(β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators are the simple linear

regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y .

If the wi are the predictors standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = I−1Σ̂w,Y = η̂OPLS(w, Y )

where (w, Y ) denotes that Y was regressed on w, and I is the p× p identity matrix.

Data splitting divides the training data set of n cases into two sets: H and the validation

set V where H has nH of the cases and V has the remaining nV = n−nH cases i1, ..., inV
. An

application of data splitting is to use a variable selection method, such as forward selection

or lasso, on H to get submodel Imin with a predictors, then fit the selected model to the cases

in the validation set V using standard inference. See, for example, Rinaldo et al. (2019).
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High dimensional regression has n/p small. A fitted or population regression model is

sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.

Otherwise the model is nonsparse. A high dimensional population full regression model is

abundant or dense if the regression information is spread out among the p predictors (nearly

all of the predictors are active). Hence an abundant model is a nonsparse model.

Section 2 gives the large sample theory for Σ̂x,Y and OPLS. Section 3 proves that there

are a multitude of regression models and gives more theory for regression estimators. Section

4 explains a sequential data splitting method that was used for Section 5. The simulation

in Section 5 shows that lasso with k-fold cross validation often selects models that are not

the population generating model, but which are useful for prediction.

2. Large sample theory and testing

The following theorem gives the large sample theory for η̂ = Ĉov(x, Y ). This theory

needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a consistent estimator of η. Let

xi = (xi1, ..., xip)
T and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY )2)] − ΣxY ΣT
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 1 Assume the cases (xT
i , Yi)

T are iid. Assume E(xk
ij Y

m
i ) exist for j = 1, ..., p

and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi − µx)(Yi − µY ) with

sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (3)

and
√

n(η̃n − η)
D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z = Σ̂v. Hence

Σ̃w = Σ̃z = Σ̃v.

c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is true,

and assume λ̂
P→ λ 6= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (4)
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Proof. a) Note that
√
n(wn −η)

D→ Np(0,Σw) by the multivariate central limit theorem

since the wi are iid with E(wi) = η = Cov(x, Y ) and Cov(w) = Σw. Now nη̃n =
n∑

i=1

(xi − µx + µx − x)(Yi − µY + µY − Y ) =
∑

i

(xi − µx)(Yi − µY )

+
∑

i

(xi − µx)(µY − Y ) + (µx − x)
∑

i

(Yi − µY ) + n(µx − x)(µY − Y )

=
∑

i

wi − nan − nan + nan =
∑

i

wi − n(µx − x)(µY − Y ).

Thus
√

nη̃n =
√

n
1

n

∑

i

wi −
√

n(x − µx)
√

n(Y − µY)√
n

=
√

n wn + oP(1).

Hence
√

n(η̃n − η) =
√

n(wn − η) + oP(1).

Thus
√

n(η̃n − η)
D→ Np(0,Σw)

by Slutsky’s theorem. Now

√
n(η̂ − η) =

√
n

(
n

n− 1
η̃ − η

)
=

√
n

(
n

n− 1
η̃ − n

n− 1
η +

n

n− 1
η − η

)

=
√
n

n

n− 1
(η̃ − η) +

√
n

(
η

n− 1

)
.

Thus
√

n(η̂n − η)
D→ Np(0,Σw).

b) Now
∑

i

wi =
∑

i

(xi − x + x − µx)(Yi − Y + Y − µY) =
∑

i

(xi − x)(Yi −Y)+

∑

i

(xi − x)(Y − µY ) + (x −µx)
∑

i

(Yi − Y ) + n(x − µx)(Y − µY ) =

∑

i

zi + n(x − µx)(Y − µY ) =
∑

i

zi + nan =
∑

i

(zi + an).

Hence
∑

i

(wi − w)(wi − w)T =
∑

i

[(zi + an − (zn + an))(zi − zn)
T] =

∑

i

(zi − z)(zi − z)T .

Thus Σ̂w = Σ̂z =
1

n − 1

n∑

i=1

(zi − z)(zi − z)T and Σ̃w = Σ̃z =
n − 1

n
Σ̂z .
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c) If H0 is true, then Aη = 0, and

√
nA(β̂OPLS − βOPLS) =

√
nA(λ̂η̂ − λ̂η + λ̂η − βOPLS) =

λ̂A
√
n(η̂ − η) + A

√
n(λ̂− λ)η = Zn + bn

D→ Nk(0, λ
2AΣwAT )

since bn = 0 when H0 is true. �

In Theorems 1 and 2, the scalars λ and λ̂ are given by Equation (2), η = (η1, ..., ηp)
T ,

and Ση = Σw. Results from Su and Cook (2012), for example, show that elements of a

sample covariance matrix can be stacked to get large sample theory. Then λ̂ and η̂ can be

stacked as in Theorem 2 by the multivariate delta method. Theorem 1 c) and Theorem 2 c)

are equivalent with different notation.

Theorem 2 Assume

√
n





 λ̂

η̂


 −


 λ

η





 D→ Np+1





 0

0


 ,


 Σλ Σλη

Σηλ Ση





 ∼ Np+1(0,Σ).

a)
√
n(η̂ − η)

D→ Np(0,Ση).

b)
√
n(λ̂η̂ − λη) =

√
n(β̂OPLS − βOPLS)

D→ Np

(
0,DΣDT

)
with D = [η λIp] where Ip

is the p× p identity matrix.

c) Let A be a k × p full rank constant matrix with k ≤ p and AβOPLS = 0 = Aη. Then

√
n(Aβ̂OPLS − 0)

D→ Nk

(
0, λ2AΣηAT

)
.

Proof. a) Follows by Equation (3) or since joint convergence in distribution implies marginal

convergence in distribution.

b) Follows by the Multivariate Delta Method with

g


 λ

η


 = λη =

(λη1, ..., ληp)
T , and the Jacobian matrix of partial derivatives D = Dg.

c) By b),
√

n(Aβ̂OPLS − Aβ)
D→ Nk

(
0,ADΣDTAT

)
,
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but AD = [0 λA]. Hence ADΣDTAT = λ2AΣηAT . �

Remark 1: Notice that Theorems 1 and 2 depend on the theory of both the sample

covariance vector and the sample covariance matrix, not on any other model such as linearity.

It is possible that Y |x does not follow a linear model, but Y |βT
Ex does follow a linear model.

If the population generating model Y = α+βT x+e is a linear model, then Y |x = α+βTx+e

is a linear model. Suppose the cases are iid, and the predictors have nonsingular covariance

matrix Σx. Suppose a linear model holds with Y |x = α + βT x + e. If the iid errors e are

independent of the predictors x, then under mild conditions, linearity implies that β = βOLS

and that the covariance structure is Σx,Y = ΣxβOLS. Suppose (α̂E , β̂E) estimates (αE ,βE).

If Y |x = αE + βT
Ex + e, then by the above discussion, βOLS = βE.

Some additional useful OPLS and OLS formulas are derived next if the cases are iid. Let

β = βOLS. Then Σx,Y = Cov(x, Y ) = Cov(x)β = Σxβ. Since Σx,Y = ΣxβOLS,

βOPLS = λΣx,Y = λΣxβOLS , βOPLS = λCov(x)βOLS, and βOLS =
1

λ
[Cov(x)]−1βOPLS.

2.1 High dimensional tests

The following simple testing method reduces a possibly high dimensional problem to a

low dimensional problem. Testing H0 : AβOPLS = 0 versus H1 : AβOPLS 6= 0 is equivalent

to testing H0 : Aη = 0 versus H1 : Aη 6= 0 where A is a k × p constant matrix. Let

Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymptotic covariance matrix of η̂ = Σ̂xY . In high di-

mensions where n < 5p, we can’t get a good nonsingular estimator of Cov(Σ̂xY ), but we can

get good nonsingular estimators of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)
T ) with u = (xi1, ..., xik)

T

where n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed if some of the

k predictors and/or Y are skewed.) Simply apply Theorem 1 to the predictors u used in the

hypothesis test, and thus use the sample covariance matrix of the vectors ui(Yi −Y ). Hence

we can test hypotheses like H0 : βi − βj = 0. In particular, testing H0 : βi = 0 is equivalent

to testing H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

Note that the tests with η̂ using k predictors xij do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the

tests can have considerable resistance to underfitting and overfitting.
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3. The multitude of models

This section shows that there are often a multitude of population regression models that

are estimating different population parameters. Note that when j predictors each satisfy

a marginal regression model with the response Y (such as simple linear regression), then

subsets of those j predictors will often satisfy a regression model with the response Y (such

as multiple linear regression). Under multivariate normality, it is known that Y |xI follows

a multiple linear regression model where xI = (xi1, ..., xik)
T is a vector corresponding to a

subset of the predictors. Theorem 3a) gives a similar result for every linear combination of

the predictors ηTx, including sparse and nonsparse models. Let ΣY = σ2
Y .

Theorem 3 Suppose the cases (Yi,x
T
i )T are iid from some distribution.

a) If the joint distribution of (Y,xT )T is multivariate normal,

 Y

x


 ∼ Np+1





 µY

µx


 ,


 ΣY ΣY x

ΣxY Σx





 ,

then Y |x ∼ Y |(αOLS + βT
OLSx) ∼ N(αOLS + βT

OLSx, σ2) follows a multiple linear regression

model, but so does Y |ηTx ∼ N(αO + βT
Ox, σ2

O) where αO = µY − βT
Oµx, βO = λη, σ2

O =

ΣY − βT
OΣxY , and

λ =
ΣT

xY η

ηTΣxη
.

b) If the response Y is binary, then Y |(αO+βT
Ox) ∼ binomial(m = 1, ρ(αO +βT

Ox)) where

E[Y |(αO + βT
Ox)] = ρ(αO + βT

Ox) = P [Y = 1|(αO + βT
Ox)]. Hence every linear combination

of the predictors satisfies a binary regression model.

Proof. a) 
 1 0T

0 ηT





 Y

x


 =


 Y

ηT x




∼ N2





 µY

ηTµx


 ,


 ΣY ΣT

xY η

ηTΣxY ηT Σxη





 .

Hence W = Y |ηT x ∼ N(µW , σ
2
W ) where

µW = µY +
ΣT

xY η

ηTΣxη
(ηT x − ηT µx) = µY − ληT µx + ληT x,

9



and

σ2
W = σ2

O = σ2
Y − ΣT

xY ηηT ΣxY

ηTΣxη
= σ2

Y − (ΣT
xY η)2

ηT Σxη
= σ2

Y − ληTΣxY .

b) E[Y |(αO + βT
Ox)] = 0P [Y = 0|(αO + βT

Ox)] + 1P [Y = 1|(αO + βT
Ox)]

= P [Y = 1|(αO + βT
Ox)] = ρ(αO + βT

Ox). �

For multiple linear regression, note that σ2
O < σ2

Y = ΣY unless ηTΣxY = 0. If η = βOLS,

then λ = 1 and σ2
O = σ2

Y − ΣT
xY Σ−1

x ΣxY . The population quantity estimated by the one

component partial least squares estimator corresponds to η = Cov(x, Y ) = Σx,Y .

3.1 Consequences

Although Theorems 1–3 have simple proofs, the theorems have important consequences.

One consequence is the testing theory in Section 2.1.

Data splitting: To help understand data splitting when the cases in H are randomly

selected, let I denote the predictors selected using H, possibly after variable selection or

after looking at the data and building the model. Let β̂E(xI , Y ) be the estimator obtained

by regressing Y on xI using the cases in V . Then β̂E(xI , Y ) estimates βI = βI(xI , Y ). For

example, if the cases are iid with enough low order moments, then β̂OLS(xI , Y ) estimates

βI = Σ−1
xI

ΣxI ,Y while β̂OPLS(xI , Y ) estimates βI = λIΣxI ,Y . If the model is sparse, check

the fitted model with the same checks used for low dimensional data. For data splitting

in low dimensions, if the full model is good, then often model (1) works well in that we

can eliminate predictors and often do nearly as well or better than the full model. In high

dimensions, we often do not know if the full model, that regresses Y on x, is good. The data

splitting and high dimensional regression literature often claims that βI,0(xI , Y ) = βE(x, Y ).

For example, βOPLS = βOLS = βOLS(x, Y ), or model (1) holds with S ⊆ Imin and βImin
a

k × 1 vector with aS ≤ k ≤ n/10. While these claims can be true, the regularity conditions

often become too strong as n/p→ 0.

MMLE and the oracle property: The MMLE is interesting since if each predictor

satisfies a marginal model, then the marginal model theory can be used to find a confidence

interval for βi for i = 1, ..., p where βi is the ith component of βMMLE. For multiple linear

regression, let V = diag(Σx) = diag(σ2
1, ..., σ

2
p). For iid cases, βMMLE = V −1Σx,Y =
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V −1ΣxβOLS, and βMMLE = βOLS if βOLS = 0, or if (V −1 − Σ−1
x )Σx,Y = 0, or if βOLS is

an eigenvector of V −1Σx with eigenvalue 1.

For standardized predictors, let sj and σj be the sample and population standard devia-

tions of xj. Let wi = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi = diag(1/σ1, ..., 1/σp)xi.

Note that
√
n(Σ̂w,Y −Σu,Y ) =

√
n(Σ̂w,Y −Σ̂u,Y ) +

√
n(Σ̂u,Y −Σu,Y ) = OP (1)+

√
n(Σ̂u,Y −

Σu,Y ) under mild regularity conditions for iid cases. Hence Σ̂w,Y is a
√
n consistent esti-

mator of Σu,Y that is not asymptotically equivalent to Σ̂u,Y unless Σx,Y = 0. The algebra

given in the following theorem proves the theorem. Note that Σu is the correlation matrix

of x.

Theorem 4 Consider the MMLE for multiple linear regression. Suppose the cases

(Yi,x
T
i )T are iid from some distribution. Let wi be the standardized predictors and assume

Σ̂w,Y
P→ Σu,Y and Σ̂w

P→ Σu where the Σ̂w are nonsingular for large enough n and Σu

is nonsingular.

a)β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = η̂OPLS(w, Y )
P→ Σu,Y =

ηOPLS(u, Y ) = βMMLE = Σu[Σu]−1Σu,Y = ΣuβOLS(u, Y ).

b) Let βOLS = βOLS(u, Y ). Then βMMLE = ΣuβOLS = βOLS if βOLS = 0 or if βOLS is

an eigenvector of Σu with eigenvalue = 1.

The oracle property for model selection, including variable selection, is P (Imin = S) → 1

as n → ∞ for model (1). For this property to hold, S needs to be one of the subsets

considered by the model selection method with probability going to 1 as n → ∞. For fixed

p and “fast” estimators such as lasso and forward selection, the oracle property tends to

hold if the predictors are nearly orthogonal. See Wieczorek and Lei (2022) for references.

The MMLE can be used for variable selection with OLS by taking the k predictors with

the largest |β̂j,MMLE|. The oracle property for the MMLE tends not to hold for correlated

predictors by Theorem 4. MMLE variable selection often gives a useful submodel since

predictors that satisfy a marginal regression model with the response Y (such as SLR) will

often satisfy a regression model with the response Y (such as multiple linear regression).
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OPLS and OLS: Chun and Keleş (2010) suggested that β̂OPLS only estimates βOLS

under very strong regularity conditions. Cook and Forzani (2018, 2019) showed that the

regularity condition is Σ−1
x Σx,Y = λΣx,Y , in which case

√
n(β̂OPLS − βOLS)

D→ Np(0,C).

Table 1: OPLS Results Under Theorem 1 Assumptions

General βOLS = Σ−1
x Σx,Y = λΣx,Y = βOPLS

βOLS = Σ−1
x Σx,Y =

1

λ
[Cov(x)]−1βOPLS βOLS is an eigenvector of Σx

βOPLS = λΣx,Y = λCov(x)βOLS βOPLS is an eigenvector of Σx

Σx,Y = Cov(x)βOLS Σx,Y is an eigenvector of Σx

β̂kPLS estimates βkPLS β̂kPLS estimates βOLS

In much of the OPLS literature, an assumption is Y |x = αOPLS + βT
OPLSx + e. Then

βOPLS = βOLS by the Remark 1 in Section 2, and the results in Table 1 hold. To see

some problems with the assumption, consider multiple linear regression with Cov(x) =

diag(1, 2, ..., p). First consider OPLS with βOLS = βOPLS . Then at most one element of

Cov(x, Y ) = Σx,Y is nonzero since Σx,Y is an eigenvector of Cov(x). Hence at most one

predictor is correlated with Y , regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y |x = αOLS +βT
OLSx+e

and Y |βT
OPLSx = αOPLS + βT

OPLSx + e are both linear models by Theorem 3 where e

depends on the model. Since βOPLS = βOLS forces βOLS to be an eigenvector of Σx,

if βOLS 6= 0 is not an eigenvector of Σx, then βOPLS 6= βOLS. For a computational

example, let x ∼ Np(0, diag(1, 2, 3, 4)) with Σx = diag(1, 2, 3, 4), and let the population

generating model be Yi = xi1 + xi2 + ei for i = 1, ..., n where the ei are iid N(0, 1) and

independent of the xi. Then α = 0 and β = (1, 1, 0, 0)T . Hence βOLS = β = (1, 1, 0, 0)T ,

Σx,Y = ΣxβOLS = (1, 2, 0, 0)T , and

λ =
ΣT

x,Y Σx,Y

ΣT
x,Y ΣxΣx,Y

= 5/9.

Thus βOPLS = λΣx,Y = λΣxβOLS = (5/9, 10/9, 0, 0)T 6= βOLS. Thus OLS and OPLS

usually give different valid population multiple linear regression models with βOPLS 6= βOLS.
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However, model Y |βT
OPLSx = αOPLS +βT

OPLSx+e is often a useful multiple linear regression

model with large sample theory given in Section 2. The claims in the OPLS literature that

βOLS = βOPLS = an eigenvector of Σx under mild regularity conditions are incorrect. See,

for example, Basa et al. (2022), Cook and Forzani (2018, 2019), and Cook, Helland and Su

(2013). In the OLS literature, βOLS can be any vector in R
p. If βOLS, Σx,Y , and βOPLS

were restricted to be eigenvectors of Σx, then the OLS and OPLS estimators would often

not fit the data well.

The Bet on Sparsity Principle: Hastie, Tibshirani, and Wainwright (2015, p. 2) state

that the “bet on sparsity principle” is use a procedure that does well in sparse problems, since

no procedure does well in dense problems. Here the dense (or abundant) problem refers to

the population generating model. Estimating the optimal population generating model or

the model Y |x may be too difficult for a given dense problem, but many suboptimal models,

including sparse fitted models, may be useful. For regression models with iid cases, the

Y1, ..., Yn are iid, and the useful suboptimal null model omits all of the predictors. For high

dimensional data, a reasonable goal is to find a regression model that greatly outperforms

the null model.

Next, consider sparse high dimensional estimators with βE = βOLS, such as E=lasso.

Suppose model (1) holds with iid cases, Cov(x) = diag(1, 2, ..., p), and n ≥ 10aS. Hence

p − aS of the elements of βOLS are equal to zero. Then Cov(x, Y ) = Cov(x)βOLS, and at

least 90% of the predictors are uncorrelated with Y . If p > 100n, then for lasso, at least 99%

of the predictors are uncorrelated with Y since lasso uses at most a = n predictors. Hence

for sparse models, often βE 6= βOLS for high dimensional data. However, if data splitting

with lasso variable selection is used to find model I , the model Y |βT
I xI will often be useful.

Rathnayake and Olive (2023) proved that for fixed p and model (1), lasso and elastic net

variable selection estimators are
√
n consistent estimators of βOLS if lasso and elastic net

are consistent estimators of βOLS .

Theorem 3 showed that sparse fitted models can do well in dense problems. The multitude

of models result also helps explain why sparse fitted models can be useful even when the
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population generating model is not sparse. Sparse variable selection models are interesting,

since data splitting can be used for testing and confidence regions, and the submodel can

often be checked with response and residual plots. See Olive (2013). The sparse fitted lasso

model I can be more useful than the sparse lasso variable selection model if that model is

ill conditioned. For example for multiple linear regression, if (XT
I XI)

−1 is ill conditioned.

The following two sections help illustrate that k-fold cross validation with lasso often

selects a model useful for prediction. Also see Chetverikov, Liao, and Chernozhukov (2022).

4. Sequential data splitting

The sequential data splitting algorithm is simple. Let bxc be the integer part of x, e.g.

b7.7c = 7. Denote the ceiling function by dxe, e.g. d7.7e = 8. Initially, randomly divide

the data set into two sets: H1 with n1 ≤ n/2 cases and V1 with n − n1 cases. Apply lasso

on H1 to get a set of a1 predictors, including a constant if a constant is in the model. If

n1 ≥ 10a1, set H = H1 and V = V1. Otherwise, randomly select n1 cases from V1 to add

to H1 to form H2. Let V2 have the remaining cases from V1. Apply lasso on H2 to get a

set of a2 predictors. If n2 ≥ 10a2, set H = H2 and V = V2. Continue in this manner,

forming sets (H1, V1), (H2, V2), ..., (Hd, Vd) where Hi has ni = in1. Stop when nd ≥ 10ad or

nd+1 > b(n− J)/2c where J = 5 was often used in the simulations. For the second case, use

nd = b(n − J)/2c. Then H = Hd and V = Vd. Use the model Id with ad predictors as the

full model for inference with the data in V = Vd.

Lasso uses up to nd active predictors and a constant. If J is an integer between 0 and 5,

set n1 = max(1, b(n − J)/2c) if n < 40. Otherwise, we often used n1 = 30, but changed n1

to bn/2000c if initially bn/(2n1)c > 1000. If n >> p, let n1 = Kp with K a positive integer,

such as K = 10 or K = 20, or use n1 ≈ Kp ≈ n/(2M) with M = dn/(2Kp)e. If n/p is

not large, options include M = 10 or n1 = Ka0 where a0 is, for example, a guess of a lower

bound for the number of active predictors.

5. Example and simulation

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia in

1843. Let Y = the number of women married to civilians in the district with a constant

14



and predictors x1 = the population of the district in 1843, x2 = the number of married

civilian men in the district, x3 = the number of married men in the military in the dis-

trict, and x4 = the number of women married to husbands in the military in the district.

Sometimes the person conducting the survey would not count a spouse if the spouse was

not at home. Hence Y and x2 are highly correlated but not equal. Similarly, x3 and x4 are

highly correlated but not equal. Then β̂OLS = (0.00035, 0.9995,−0.2328, 0.1531)T , forward

selection with OLS and the Cp criterion used β̂I,0 = (0, 1.0010, 0, 0)T , lasso had β̂L =

(0.0015, 0.9605, 0, 0)T , lasso variable selection β̂LV S = (0.00007, 1.006, 0, 0)T , β̂MMLE =

(0.1782, 1.0010, 48.5630, 51.5513)T , and β̂OPLS = (0.1727, 0.0311, 0.00018, 0.00018)T . The es-

timators had β̂3 ≈ β̂4, and all six estimators produced fitted values Ŷi that are very highly

correlated with the response Yi. For OPLS, the largest |β̂i| corresponds to the largest

|Ĉov(xi, Y )|, and β̂i/β̂j = Ĉov(xi, Y )/Ĉov(xj, Y ) does not depend on any other variables

that may be in or out of the model. Similar properties hold for the OPLS population βi.

This example illustrates that the OLS, OPLS, and MMLE estimators β̂E are quite different,

as expected from Theorems 1 and 4.

Next we did a small simulation study to illustrate that the model I selected by lasso was

often good for prediction even when underfitting was common (S 6⊆ I), since the prediction

intervals still had good coverage with short length. The simulation also illustrates the multi-

tude of models. Underfitting occurs when a predictor that generated the full model was not

selected. The sequential data splitting of Section 4 was used with n1 = 30. The programs

give the mean nd (mnnd): the number of cases used in Hd, and the mean ad (mnad): the

number of nonzero lasso coefficients β̂i, including the constant if the model contains a con-

stant, for lasso applied to the nd cases inHd. The program computed the Olive, Rathnayake,

and Haile (2022) large sample 95% prediction intervals (PIs) for lasso applied to all n cases

(lsapi), lasso variable selection applied to all n cases (LVSpi), lasso applied to Vd (lsplitpi),

and the model selected using Hd applied to Vd (splitpi). The second and fourth models used

OLS, a GLM, or Weibull regression applied to the n cases or the cases in Vd. Two lines per

run are shown in each table. The first line gives the average coverage (cov) of the prediction
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intervals while the second line gives the average length (len). The value of undfit gives the

proportion of times that the lasso model I underfit: S 6⊆ I . Since 5000 runs were used, if

that proportion is 0.05, in 250 of the 5000 runs, lasso underfit, while then the proportion of

times that lasso did not underfit is 0.95. More simulations are in Zhang (2022).

The prediction intervals were computed roughly as follows. If Y ∼ D(xTβ, θ), then

apply a prediction interval to a bootstrap sample of size B: Y ∗

1 , ..., Y
∗

B where the Y ∗

i are iid

D(xT β̂, θ̂). For multiple linear regression, obtain the nc residuals rj and apply a prediction

interval to Ŷf + r1, ..., Ŷf + rnc
where Ŷf = xT

f β̂ and nc = n or n = nV depending on whether

all n cases or data splitting was used for the prediction interval.

Table 2: Poisson regression data splitting: underfitting and PI coverage and length

n p/k psi= ψ mnnd/mnad cov/len lsapi LVSpi lsplitpi splitpi undfit

100 20 0.6000 38.6768 cov 0.9986 0.9909 0.9898 0.9783 0.2332

1 3.3482 len 8.1733 8.2308 8.7990 8.2294

100 100 0.3000 44.5573 cov 0.9799 0.9819 0.9870 0.9580 0.1670

1 7.1632 len 8.0935 7.1896 7.8179 7.6183

100 20 0.0000 43.6966 cov 0.9841 0.9733 0.9685 0.9574 0.5224

19 10.6884 len 8.1987 7.7602 8.7657 7.9307

1000 20 0.5000 56.4071 cov 0.9834 0.9915 0.9849 1.0000 0.3164

1 3.9243 len 7.9746 8.1575 7.1918 7.2256

1000 1000 0.1000 110.0411 cov 0.9880 0.9884 0.9902 0.9881 0.3520

1 8.8354 len 7.3550 8.5021 8.2190 8.1900

1000 10 0.3160 74.3965 cov 0.9920 0.9920 0.9899 0.9836 0.9952

9 7.0638 len 7.5158 7.9454 8.1729 8.1484

The full model was simulated as in Pelawa Watagoda and Olive (2021) and Olive, Rath-

nayake, and Haile (2022). This section and the programs use a change in notation: if

βc = (α βT )T and w = (1 xT )T in Section 1 of this paper, then the program notation is

β = βc and x = w are p × 1 vectors, β1 = α, and u = x is a (p − 1) × 1 vector. For
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Table 3: Binomial regression data splitting: underfitting and PI coverage and length, int=1,

a=4/3, m=4, B=1000

n p/k psi= ψ mnnd/mnad cov/len lsapi LVSpi lsplitpi splitpi undfit

100 20 0.0000 40.9616 cov 0.9932 0.9850 0.9904 0.9752 0.0018

1 4.6866 len 2.8414 2.6524 2.8588 2.5972

100 100 0.2000 45.6434 cov 0.9948 0.9782 0.9886 0.9624 0.2238

1 8.7554 len 2.8426 2.6696 2.8244 2.5558

1000 20 0.5000 56.0040 cov 0.9874 0.9872 0.9890 0.9878 0.3164

1 4.0666 len 2.4560 2.4374 2.4614 2.4392

1000 1000 0.0000 95.0734 cov 0.9902 0.9820 0.9898 0.9822 0.0422

1 5.3892 len 2.6302 2.4922 2.6320 2.4834

1000 10 0.4000 63.4080 cov 0.9870 0.9856 0.9862 0.9858 0.9992

9 5.2826 len 2.5050 2.4854 2.5008 2.4890

the simulations, generating xT β is important for regression models other than multiple lin-

ear regression. For example, for binomial logistic regression, typically −5 ≤ xTβ ≤ 5 or

there can be problems with the maximum likelihood estimator. Let x = (1 uT )T where u

is the (p − 1) × 1 vector of nontrivial predictors. In the simulations, for i = 1, ..., n, we

generated wi ∼ Np−1(0, I) where the m = p − 1 elements of the vector wi are iid N(0,1).

Let the m × m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then the vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal

entries σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence

the correlations are cor(zi, zj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2) for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). For multiple linear regression, let u = z.

For the other regression models, let u = az/v. Then cor(xi, xj) = ρ for i 6= j where xi

and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where

c > 0. As ψ gets close to 1, the predictor vectors ui cluster about the line in the direction

of (1, ..., 1)T . Let SP = xTβ = β1 + 1xi,2 + · · · + 1xi,k+1 ∼ N(β1, a
2) for i = 1, ..., n. Hence
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β = (β1, 1, .., 1, 0, ..., 0)
T with β1, k ones and p−k−1 zeros. The default settings for Poisson

regression use β1 = 1 = a. The default settings for binomial regression with m = 4 trials use

β1 = 1 and a = 4/3. In the Table 3 caption, these values correspond to int=1, a = 4/3, and

m = 4 while psi = ψ. The bootstrap sample for the prediction intervals had size B = 1000.

The terms lsapi, LVSpi, lsplitpi, splitpi, and noundfit appear on the first line of Tables

2, 3, and 5. Table 4 only used the Weibull regression prediction intervals. For the first

two lines of numbers in Table 2, n = 100, p = 20 is the number of predictors including a

constant, k = 1 nontrivial predictors were active, and psi=ψ = 0.6. The ψ value controls the

correlation of the predictors and ψ = 0 means the predictors are uncorrelated. For n = 100,

nd = 30 if ad ≤ 3, and nd = 47, otherwise. The value mnad = 3.3482 indicates the average

number of fitted predictors, including a constant, in the simulation. Since mnnd = 38.68 is

the average of the nd in the simulation, typically data splitting used nd = 30 with ad ≤ 3,

but occasionally used nd = 47. The prediction interval coverage is the proportion of the

large sample 95% prediction intervals that contained Yf where the test data case is (xf , Yf).

With 5000 runs, a coverage < 0.94 indicates that the prediction interval was too short.

For the first two lines of numbers in Table 2, the coverages were near 0.99 and the average

prediction interval lengths were between 8.17 and 8.8. The proportion of the 5000 runs with

underfitting was 0.2332.

For the Weibull regression model, there is no constant since the constant appears in the

corresponding accelerated failure time model, which is a multiple linear regression model with

right censored response log(Y ). The data was generated as for the Poisson and Binomial

regression, but replace u by x and p−1 by p. Let SP = xT
i β = 1xi,1 + · · ·+1xi,k ∼ N(0, a2)

for i = 1, ..., n. The simulations use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones and

p− k zeros. The right censored Weibull regression data was generated in a manner similar

to Zhou (2001) with γ = 1. The caption in Table 4 gives a = 1. The values gam= γ and

clam in the caption control the Weibull distribution and the amount of right censoring.

Data splitting is useful for hypothesis testing and confidence intervals. The nominal 95%

prediction intervals were used as a check for whether lasso was finding a useful model for
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Table 4: Weibull regression data splitting: underfitting and PI coverage and length, n=100,

a=1, gam=1, B=1000, clam=0.1

n p/k psi= ψ mnnd/mnad cov/len LVSpi splitpi undfit

100 4 0.00 31.7646 cov 0.9550 0.9552 0.0174

1 1.8314 len 5.5483 5.5033

100 4 0.80 30.7004 cov 0.9574 0.9576 0.9688

1 1.6076 len 5.5956 5.5384

100 20 0.00 36.3172 cov 0.9326 0.9328 0.0506

1 2.7178 len 5.9745 25.4093

100 20 0.60 33.4238 cov 0.9510 0.9512 0.7422

1 2.2570 len 5.7760 9.8008

100 10 0.00 39.1528 cov 0.9518 0.9520 0.8784

9 4.2938 len 6.9368 6.6001

100 50 0.00 35.1850 cov 0.7750 0.7752 1.0

19 2.1098 len 346.39 332.04
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Table 5: Multiple linear regression data splitting: underfitting and PI coverage and length,

J=5, type=3

n p/k psi= ψ mnnd/mnad cov/len lsapi LVSpi lsplitpi splitpi undfit

100 4 0.8000 33.3354 cov 0.9676 0.9672 0.9768 0.9764 0.1388

1 2.6874 len 4.0502 4.0545 4.6570 4.6614

1000 4 0.8000 36.0180 cov 0.9558 0.9564 0.9562 0.9562 0.1358

1 2.6694 len 3.1302 3.1306 3.1333 3.1333

1000 20 0.0000 55.7820 cov 0.9516 0.9474 0.9514 0.9490 0.0170

1 3.5346 len 3.2048 3.2349 3.2139 3.2449

1000 20 0.5000 64.9500 cov 0.9548 0.9548 0.9536 0.9528 0.0098

1 4.7108 len 3.1909 3.1942 3.2011 3.2054

1000 1000 0.0000 82.3860 cov 0.9558 0.9460 0.9572 0.9440 0.0898

1 4.5362 len 3.3778 3.4472 3.4008 3.4644

prediction (coverage near 0.95) even if underfitting was present. This result could occur for at

least two reasons. First, as ψ increases to 1, the predictor variables are roughly xi = xj + eij

where the error magnitude rapidly gets close to 0 as ψ → 1. Hence omitting some good

predictors may not be a problem for prediction. Second, for some regression models, there

are many linear combinations that give a good fit. See Theorem 3.

For multiple linear regression, the zero mean errors ei were iid from five distributions: i)

N(0,1), ii) t3, iii) EXP(1) − 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only

distribution iii) is not symmetric. The lengths of the asymptotically optimal 95% PIs are i)

3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95), and v) 13.490.

For the regression methods, first consider k = 1. Often there was little underfit for ψ = 0.

The amount of underfitting tended to increase with ψ, and to be worse with larger p. With

n = 1000, not much more than 10% of the cases were used for H. For larger values of k,

lasso often underfit, especially if k = p−1 and n/k < 10. See Table 2 for Poisson regression,

see Table 3 for Binomial regression, where with m=4, a 100% PI for Yf is [0,4] with length
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4. The nominal 95% PIs were shorter than 4 in Table 3. See Table 4 for proportional

hazards regression where the two prediction intervals were made for Weibull regression. In

Table 4, sometimes the two PI lengths differed. For the last two lines of Table 4, there was

serious underfitting with low PI coverage and large PI length. See Table 5 for multiple linear

regression where usually the data splitting PI and PI using all n cases had similar average

lengths, but there were data configurations where using all n cases can give a much smaller

length and better coverage.

6. Conclusions

Regression models, such as Y |βTx, tend to be useful when they fit the data well. This

paper shows that nonsparse models, such as OPLS, can be useful for inference even when n/p

is not large. There are many problems with assuming that the regression model estimates a

population generating model. Removing this assumption greatly increases the scope of data

splitting, sparse fitted models, and nonsparse dimension reduction model selection estimators

such as partial least squares. In particular, sparse fitted models, like lasso, tend to give poor

approximations to a nonsparse population generating model, but this paper shows that the

sparse fitted model can still be useful if data splitting is used.

Table 6: Regression Summary

low dimensions data splitting high dim. regularity

with sparse I conditions are too strong

general: β(x, Y ) = βI,0(xI , Y ) βI(xI , Y ) β(x, Y ) = βI,0(xI , Y )

data splitting: β(x, Y ) = βI,0(xI , Y ) βI(xI , Y ) β(x, Y ) = βI,0(xI , Y )

lasso: βlasso βI(xI , Y ) β(x, Y ) = βI,0(xI , Y )

OPLS: βOPLS = λΣx,Y βI,OPLS = λIΣxI ,Y βOPLS = βOLS

MMLE: βMMLE = Σu,Y βI,MMLE = ΣuI ,Y βMMLE = βOLS

The multitude of models result is useful and simple. For fixed p, lasso in glmnet tends to

be at best n1/4 consistent for multiple linear regression, while large sample theory for lasso

and elastic net does not appear to be available for GLMs and Cox regression. See Guan
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and Tibshirani (2020). For fixed p, Rathnayake and Olive (2023) have the interesting result

that if the sparse estimator is consistent for β, then the sparse variable selection estimator

(that applies OLS, the GLM, or the Cox regression estimator to the predictors with nonzero

coefficients) is
√
n consistent for β. Thus β = β(x, Y ) = βI,0(xI , Y ).

Table 6 summarizes what the regression estimators tend to estimate in low dimensions

or after data splitting with a sparse fitted model I . The third column of Table 6 gives some

results in the high dimensional literature where the regularity conditions are often too strong.

In particular, often the regularity conditions are too strong for low dimensional results to

hold in high dimensions.

Yüzbaşi, Arashi, and Ahmed (2020) has an interesting test. Taavoni and Arashi (2021)

has useful references for high dimensional statistics.

Simulations were done in R. See R Core Team (2020). The collection of Olive (2023) R

functions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has some useful

functions for the inference. The functions for regression data splitting are mlrsplitsim,

prsplit, brsplitsim, and PHsplitsim. These functions used the Friedman et al. (2015)

glmnet package. The data set for the Hebbler (1847) example is available from the Olive

(2017) website (http://parker.ad.siu.edu/Olive/lregdata.txt).
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