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Abstract

Existing dimension reduction (DR) methods such as ordinary least squares

(OLS) and sliced inverse regression (SIR) often perform poorly in the presence of

outliers. Ellipsoidal trimming can be used to create outlier resistant DR methods

that can also give useful results when the assumption of linearly related predictors

is violated. Theory for SIR and OLS is reviewed, and it is shown that several

important hypothesis tests for an important class of regression models can be done

using OLS output originally meant for multiple linear regression.
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1 INTRODUCTION

Regression is the study of the conditional distribution Y |x of the response Y given the

(p − 1) × 1 vector of nontrivial predictors x. Dimension reduction (DR) replaces x with

a lower dimensional d × 1 vector w without loss of information on the regression Y |x.

Following Cook and Li (2004), if there is a (p − 1) × k matrix B = [β1, ...,βk] such

that the k linear combinations BTx fully describe the conditional distribution Y |x, then

the subspace spanned by the columns of B is a dimension reduction subspace and Y is

independent of x given BTx, written

Y x|BTx or Y x|βT
1 x, ...,βT

k x. (1.1)

If model (1.1) is valid, then βT
1 x, ...,βT

k x is called a set of sufficient predictors.

The structural dimension d is the smallest value of k such that model (1.1) holds and

w = BT x. If d = 0 then Y x, and 0 ≤ d ≤ p − 1 since Y x|Ip−1x where Ip−1 is

the (p − 1) × (p − 1) identity matrix. If k = d, let the minimum dimension reduction

subspace S(B) be the span of the columns of B.

In a 1D regression model, d = 1 and Y is conditionally independent of x given a single

linear combination βTx of the predictors, written

Y x|βT x or Y x|α + βTx. (1.2)

Many of the most commonly used regression models are 1D regression models, and the

additive error single index model has the form

Y = m(α + βTx) + e, (1.3)
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where e is a zero mean error that is independent of x. Important theoretical results for

the single index model were given by Brillinger (1977, 1983), and Li and Duan (1989)

extended these results to models of the form Y = g(α + βT x, e) where g is a bivariate

inverse link function.

A key condition for many theoretical results in dimension reduction is the condition

of linearly related predictors which holds if E(x|BT x) is a linear function of BT x. This

condition holds if x is nondegenerate and elliptically contoured (EC) with second mo-

ments. Hall and Li (1993) show that the linearity condition often approximately holds

in large dimensions even if x is not EC.

In the following sections ordinary least squares (OLS), sliced inverse regression (SIR),

(residual based) principal Hessian directions (PHD), and sliced average variance estima-

tion (SAVE) are used. These well known DR methods were chosen since the Weisberg

(2002) dr library allows computation in R. Following Cook and Li (2002), OLS and SIR

can be shown to be useful when x is EC. SAVE and PHD theory has an additional

constant covariance condition which is satisfied when x is multivariate normal (MVN).

Further information about dimension reduction methods can be found, for example,

in Chen and Li (1998), Cook (1998ab, 2004), Cook and Critchley (2000), Cook and Ni

(2005), Cook and Weisberg (1991), Li (1991, 1992, 2000), Li and Duan (1989), Li and Zhu

(2007) and Xia, Tong, Li and Zhu (2002). Outlier resistance is studied by Prendergast

(2005), Heng-Hui (2001) and Čı́žek and Härdle (2006) who replace local least squares by

local one step M or L smoothers. Gather, Hilker and Becker (2001, 2002) robustify SIR

by replacing the sample covariance estimator by an S estimator that is impractical to

compute.
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Section 2 reviews DR theory for OLS and SIR. Section 3 presents a general method for

obtaining outlier resistant DR methods, while Section 4 gives examples and simulations.

2 Some DR Theory

The following results relating to OLS and SIR dimension reduction will be useful. Let

Cov(x) = Σx and Cov(x, Y ) = ΣxY . The population coefficients from an OLS regression

of Y on x are αOLS = E(Y ) − βT
OLSE(x) and βOLS = Σ−1

x ΣxY .

Let the data be (Yi,xi) for i = 1, ..., n. Let the p × 1 vector η = (α,βT )T , let X be

the n × p OLS design matrix with ith row (1,xT
i ), and let Y = (Y1, ..., Yn)

T . Then the

OLS estimator η̂ = (XT X)−1XTY . The sample covariance of x is

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T where the sample mean x =
1

n

n∑

i=1

xi.

Similarly, define the sample covariance of x and Y to be

Σ̂xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − xY .

The first result shows that η̂ is a consistent estimator of η.

i) Suppose that (Yi,x
T
i )T are iid random vectors such that Σ−1

x and ΣxY exist. Then

α̂OLS = Y − β̂
T

OLSx
D→ αOLS

and

β̂OLS =
n

n − 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞.

The next result shows that the OLS estimator β̂OLS can be useful for dD regression.
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ii) Cook (1994, p. 184): If x follows a nondegenerate elliptically contoured distribu-

tion with second moments, then βOLS ∈ S(B).

The following results will be for 1D regression and some notation is needed. Many

1D regression models have an error e with σ2 = Var(e) = E(e2). Let the population OLS

residual v = Y − αOLS − βT
OLSx with

τ 2 = E[(Y − αOLS − βT
OLSx)2] = E(v2), (2.1)

and let the OLS residual be r = Y − α̂OLS − β̂
T

OLSx. Typically the OLS residual r is not

estimating the error e and τ 2 6= σ2, but the following results show that the OLS residual

is of great interest for 1D regression models.

Assume that a 1D model holds, Y x|α + βTx, which is equivalent to Y x|βT x.

Then under regularity conditions, results iii) – v) below hold.

iii) Li and Duan (1989): βOLS = cβ for some constant c.

iv) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂OLS − cβ)

D→ Np−1(0,COLS) (2.2)

where

COLS = Σ−1
x E[(Y − αOLS − βT

OLSx)2(x − E(x))(x− E(x))T ]Σ−1
x . (2.3)

v) Chen and Li (1998): Let A be a known full rank constant k × (p − 1) matrix. If

the null hypothesis H0: Aβ = 0 is true, then

√
n(Aβ̂OLS − cAβ) =

√
nAβ̂OLS

D→ Nk(0,ACOLSAT )

and

ACOLSAT = τ 2AΣ−1
x AT . (2.4)
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If the multiple linear regression (MLR) model holds or if E[v2(x−E(x))(x−E(x))T ] =

E(v2)Σx, then COLS = τ 2Σ−1
x . If the MLR model holds, τ 2 = σ2. To create test

statistics, the estimator

τ̂ 2 = MSE =
1

n − p

n∑

i=1

r2
i =

1

n − p

n∑

i=1

(Yi − α̂OLS − β̂
T

OLSxi)
2

will be useful. The estimator

ĈOLS = Σ̂
−1

x

[
1

n

n∑

i=1

[(Yi − α̂OLS − β̂
T

OLSxi)
2(xi − x)(xi − x)T ]

]
Σ̂

−1

x (2.5)

can also be useful. Notice that for general 1D regression models, the OLS MSE estimates

τ 2 rather than the error variance σ2.

vi) Chen and Li (1998): A test statistic for H0 : Aβ = 0 is

WOLS = nβ̂
T

OLSAT [AΣ̂
−1

x AT ]−1Aβ̂OLS/τ̂ 2 D→ χ2
k, (2.6)

the chi–square distribution with k degrees of freedom.

Before presenting the next result, some results from OLS MLR theory are needed.

Let the known k × p constant matrix Ã = [a A] where a is a k × 1 vector, and let c be

a known k × 1 constant vector. Following Seber and Lee (2003, pp. 99–106), the usual

F statistic for testing H0 : Ãη = c is

F0 =
(SSE(H0) − SSE)/k

SSE/(n − p)
= (Ãη̂ − c)T [Ã(XTX)−1Ã

T
]−1(Ãη̂ − c)/(kτ̂ 2) (2.7)

where MSE = τ̂ 2 = SSE/(n − p), SSE =
∑n

i=1 r2
i and SSE(H0) =

∑n
i=1 r2

i (H0) is the

minimum sum of squared residuals subject to the constraint H0 : Ãη = c. Recall that

if H0 is true, the MLR model holds and the errors ei are iid N(0, σ2), then F0 ∼ Fk,n−p,
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the F distribution with k and n − p degrees of freedom. Also recall that if a random

variable Zn ∼ Fk,n−p, then as n → ∞

Zn
D→ χ2

k/k. (2.8)

Theorem 2.1 below and (2.8) suggest that OLS output, originally meant for testing

with the MLR model, can also be used for testing with many 1D regression data sets. Li

and Duan (1989) suggest that OLS F tests are asymptotically valid if x is multivariate

normal and if Σ−1
x ΣxY 6= 0. Freedman (1981), Brillinger (1983) and Chen and Li (1998)

also discuss Cov(β̂OLS). Let the 1D model Y x|α + βT x be written as Y x|αR +

βT
RxR + βT

OxO where the reduced model is Y x|αR + βT
RxR and xO denotes the terms

outside of the reduced model. Notice that OLS ANOVA F test corresponds to H0: β = 0

and uses A = Ip−1. The tests for H0: βi = 0 use A = (0, ..., 0, 1, 0, ..., 0) where the 1

is in the ith position and are equivalent to the OLS t tests. The test H0: βO = 0

uses A = [0 Ij ] if βO is a j × 1 vector, and the test statistic (2.7) can be computed

by running OLS on the full model to obtain SSE and on the reduced model to obtain

SSE(R) ≡ SSE(H0).

In the theorem below, it is crucial that H0: Aβ = 0. Tests for H0: Aβ = 1, say,

may not be valid.

Theorem 2.1. Assume that a 1D regression model (1.2) holds and that Equation

(2.6) holds when H0 : Aβ = 0 is true. Then as n → ∞, the test statistic (2.7) satisfies

F0 =
n − 1

kn
WOLS

D→ χ2
k/k.

To see this, notice that by (2.6), the result follows if F0 = (n − 1)WOLS/(kn). Let

Ã = [0 A] so that H0:Ãη = 0 is equivalent to H0:Aβ = 0. Following Seber and Lee
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(2003, p. 150),

(XT X)−1 =




1
n

+ xTD−1x −xTD−1

−D−1x D−1


 (2.9)

where the (p − 1) × (p − 1) matrix

D−1 = [(n − 1)Σ̂x]−1 = Σ̂
−1

x /(n − 1). (2.10)

Using Ã and (2.9) in (2.7) shows that

F0 = (Aβ̂OLS)T


[0 A]




1
n

+ xT D−1x −xT D−1

−D−1x D−1







0T

AT







−1

Aβ̂OLS/(kτ̂ 2),

and the result follows from (2.10) after algebra.

Following Chen and Li (1998), SIR produces eigenvalues λ̂i and associated SIR direc-

tions β̂i,SIR for i = 1, ..., p − 1. The SIR directions β̂i,SIR for i = 1, ..., d are used for dD

regression. The following theory for a SIR t type test holds under regularity conditions.

vii) Chen and Li (1998): For a 1D regression and vector A, a test statistic for H0 :

Aβ1 = 0 is

WS = nβ̂
T

1,SIRAT [AΣ̂
−1

x AT ]−1Aβ̂1,SIR/[(1 − λ̂1)/λ̂1]
D→ χ2

1. (2.11)

3 Resistant DR Methods

Ellipsoidal trimming can be used to create outlier resistant DR methods that can give

useful results when the assumption of linearly related predictors is violated. To perform

ellipsoidal trimming, a robust estimator of multivariate location and dispersion (T,C)

is computed and used to create the squared Mahalanobis distances D2
i ≡ D2

i (T,C) =
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(xi − T )TC−1(xi − T ) for each vector of observed predictors xi. If the ordered distance

D(j) is unique, then j of the xi’s are in the ellipsoid {x : (x − T )TC−1(x − T ) ≤ D2
(j)}.

The ith case (Yi,xi) is trimmed if Di > D(j). For example, if j ≈ 0.9n, then about M%

= 10% of the cases are trimmed, and a DR method can be computed from the cases

(YM ,xM ) that remain.

Several authors have noted that applying DR methods to a subset (YM ,xM ) of the

data with the xM distribution closer to being elliptically contoured is an effective method

for making DR methods such as OLS and SIR resistant to the presence of strong nonlin-

earities. See Li and Duan (1989, p. 1011), Brillinger (1991), Cook (1994, p. 188; 1998a,

p. 152) and Li, Cook and Nachtsheim (2004).

The Olive (2004a) MBA estimator (TMBA,CMBA) will be used for (T,C). To compute

MBA, first compute the classical estimator (T1,C1) and the classical estimator (T2,C2)

computed from the half set of cases closest to the coordinatewise median in Euclidean

distance. The distances based on (Ti,Ci) are computed and the classical estimator is

computed from the half set with the smallest distances. This step is iterated 5 times

resulting in two estimators. Then the estimator with the smallest determinant is scaled

to be consistent at multivariate normal data. The scaled estimator is the MBA estimator

which is not affine equivariant.

Cook and Nachtsheim (1994) and Olive (2002, 2004b) used ellipsoidal trimming with

alternative estimators, so it is important to explain why MBA should be used. First,

the MBA estimator is far faster than the Rousseeuw and Van Driessen (1999) FAST-

MCD estimator used by Olive (2002). Second, Olive (2007,
∮

10.7) shows that the MBA

estimator is a
√

n consistent high breakdown estimator of the same quantity estimated
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by the minimum covariance determinant (MCD) estimator if x has a nondegenerate

elliptically contoured distribution with second moments. Third, MBA can be regarded as

a high breakdown 0-1 weighting method for transforming data towards an EC distribution

since if the data distribution is not EC, the MBA estimator finds a compact 50% covering

ellipsoid such that the distribution of the covered cases is closer to being EC. No other

published estimator of multivariate location and dispersion has these three properties.

The choice of M is important, and the Rousseeuw and Van Driessen (1999) DD plot

of classical Mahalanobis distances MDi vs MBA distances RDi can be used to choose

M . The MDi use (T,C) = (x, Σ̂x). Olive (2002) shows that the plotted points in the

DD plot will follow the identity line with zero intercept and unit slope if the predictor

distribution is MVN, and will follow a line with zero intercept but non–unit slope if the

distribution is EC with second moments but not MVN. Delete M% of the cases with the

largest MBA distances so that the remaining cases follow the identity line (or some line

through the origin) closely. Let (YMi,xMi) denote the data remaining after trimming

where i = 1, ..., nM . Then apply the DR method on these nM cases.

As long as M is chosen only using the predictors, DR theory will apply if the data

(YM ,xM ) satisfies the regularity conditions. Let φM = limn→∞ n/nM , let cM be a con-

stant and let β̂DM denote a DR estimator applied to (YMi,xMi) with

√
n(β̂DM − cMβ) =

√
n

√
nM

√
nM(β̂DM − cMβ)

D→ Np−1(0, φMCDM). (3.1)

If H0 : Aβ = 0 is true and ĈDM is a consistent estimator of CDM , then

WDM = nM β̂
T

DMAT [AĈDMAT ]−1Aβ̂DM
D→ χ2

k.

For example, if the MLR model is valid and the errors are iid N(0, σ2), then the OLS
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estimator

η̂M = (XT
MXM )−1XT

MY M ∼ Np(η, σ2(XT
MXM)−1).

A tradeoff is that low amounts of trimming may not work while large amounts of

trimming may be inefficient (see (3.1)). For 1D models, Olive (2002, 2004b, 2005) sug-

gested plotting β̂
T

Mx versus Y for M = 0, 10, ..., 90 and choosing MTV such that the

plot (called a trimmed view or estimated sufficient summary plot) has a smooth mean

function and the smallest variance function. Suppose
√

n(β̂M − cMβ)
D→ N(0,CM) for

M = 0, 10, ..., 90. Then β̂M,TV is
√

n consistent if cM ≡ c0, e.g., for MLR cM ≡ 1. But if

β̂M,TV oscillates between β̂0 and β̂10, then β̂M,TV need not be asymptotically normal. If

there is oscillation and the cM are not equal, then β̂M,TV is inconsistent.

Adaptive trimming can be used to obtain an asymptotically normal estimator that

may avoid large efficiency losses. First, choose an initial amount of trimming MI by

using, e.g., the DD plot or trimmed views. Let β̂ denote the first direction of the DR

method. Next compute |corr(β̂
T

Mx, β̂
T

MI
x)| for M = 0, 10, ..., 90 and find the smallest

value MA ≤ MI such that the absolute correlation is greater than 0.95. If no such value

exists, then use MA = MI . The resulting adaptive trimming estimator is asymptotically

equivalent to the estimator that uses 0% trimming if β̂0 is a consistent estimator of c0β

and if β̂MI
is a consistent estimator of cMI

β for c0 6= 0 and cMI
6= 0.

4 Examples and Simulations

Example 4.1. The Buxton (1920) data consists of measurements taken on 87 men.

Let height be the response. Figure 1a shows the DD plot made from the four predictors
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head length, nasal height, bigonal breadth, and cephalic index. The five massive outliers

correspond to head lengths that were recorded to be around 5 feet. Figure 1b shows that

after deleting these points, the predictor distribution is much closer to a multivariate

normal distribution. Now DR methods can be used to investigate the regression.

In a small simulation, the clean data Y = (α + βTx)3 + e where α = 1,β =

(1, 0, 0, 0)T , e ∼ N(0, 1) and x ∼ N4(0, I4). The outlier percentage γ was either 0%

or 49%. The 2 clusters of outliers were about the same size and had Y ∼ N(0, 1),

x ∼ N4(±10(1, 1, 1, 1)T , I4). Table 1 records the averages of β̂i over 100 runs where

the DR method used M = 0 or M = 50% trimming. SIR, SAVE and PHD were very

similar except when γ = 49 and M = 0. When outliers were present, the average of

β̂F,50 ≈ cF (1, 0, 0, 0)T where cF depended on the DR method and F was OLS, SIR,

SAVE or PHD. The sample size n = 1000 was used although OLS gave reasonable esti-

mates for much smaller sample sizes. The collection of functions rpack, available from

(www.math.siu.edu/olive/rpack.txt) contains a function drsim7 that can be used to du-

plicate the simulation in R. Olive (2007,
∮

14.2) explains how to use rpack and how to

download the Weisberg (2002) dr library from (www.r-project.org/#doc).

The following example shows that ellipsoidal trimming can be useful for DR when x

is not EC. There is a myth that transforming predictors is free, but using a log transfor-

mation for the example below will destroy the 1D structure.

Example 4.2. The artificial data set sinc.lsp is available from (www.math.siu.edu/

olive/ol-bookp.htm). It contains 200 trivariate vectors xi such that the marginal distri-

butions are iid lognormal. The response Yi = sin(βT xi)/β
Txi where β = (1, 2, 3)T .

Trimming with M = 0, 10, ..., 90 was examined. Weisberg (2002) was used (with 4 slices)
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to produce the SIR, PHD and SAVE estimators. Table 2 shows the estimated coefficients

β̂ when the true coefficients are c(1, 2, 3)T . Trimming greatly improved the SIR, SAVE

and PHD estimators of cβ. Figure 2 shows the trimmed views for 0% trimming and

Figure 3 shows the trimmed views estimators where ESP = β̂
T

Mx or α̂M + β̂
T

Mx.

The following simulation study is extracted from Chang (2006) who used eight types

of predictor distributions: d1) x ∼ Np−1(0, Ip−1), d2) x ∼ 0.6Np−1(0, Ip−1)+0.4Np−1(0,

25Ip−1), d3) x ∼ 0.4Np−1(0, Ip−1) + 0.6Np−1(0, 25Ip−1), d4) x ∼ 0.9Np−1(0, Ip−1) +

0.1Np−1(0, 25Ip−1), d5) x ∼ LN(0, I) where the marginals are iid lognormal(0,1), d6)

x ∼ MV Tp−1(3), d7) x ∼ MV Tp−1(5) and d8) x ∼ MV Tp−1(19). Here x has a mul-

tivariate t distribution xi ∼ MV Tp−1(ν) if xi = zi/
√

Wi/ν where zi ∼ Np−1(0, Ip−1)

is independent of the chi–square random variable Wi ∼ χ2
ν. Of the eight distributions,

only d5) is not elliptically contoured. The MVT distribution gets closer to the MVN

distribution d1) as ν → ∞. The MVT distribution has first moments for ν ≥ 3 and

second moments for ν ≥ 5. See Johnson and Kotz (1972, pp. 134-135). All simulations

used 1000 runs.

The simulations for single index models used α = 1. Let the sufficient predictor

SP = α + βTx. Then the seven models considered were m1) Y = SP + e, m2) Y =

(SP )2 + e, m3) Y = exp(SP ) + e, m4) Y = (SP )3 + e, m5) Y = sin(SP )/SP + 0.01e,

m6) Y = SP + sin(SP ) + 0.1e and m7) Y =
√
|SP | + 0.1e where e ∼ N(0, 1). Models

m2), m3) and m4) can result in large |Y | values which can cause numerical difficulties

for OLS if x is heavy tailed.

First, coefficient estimation was examined with β = (1, 1, 1, 1)T , and for OLS the sam-

ple standard deviation (SD) of each entry β̂Mi,j of β̂M,j was computed for i = 1, 2, 3, 4 with
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j = 1, ..., 1000. For each of the 1000 runs, the Chen and Li (1998) formula SEcl(β̂Mi) =

√
n−1

M (ĈM)ii was computed where ĈM is the estimate (2.5) applied to (YM ,xM). The

average of β̂M and of
√

nSEcl were recorded as well as
√

nSD of β̂Mi,j under the labels

βM ,
√

n SEcl and
√

nSD. Under regularity,

√
n SEcl ≈

√
nSD ≈

√√√√ 1

1 − M
100

diag(CM)

where CM is (2.3) applied to (YM ,xM ).

For MVN x, MLR and 0% trimming, all three recorded quantities were near (1,1,1,1)

for n = 60, 500, and 1000. For 90% trimming and n = 1000, the results were β90 =

(1.00, 1.00, 1.01, 0.99),
√

n SEcl = (7.56, 7.61, 7.60, 7.54) and
√

nSD = (7.81, 8.02, 7.76,

7.59), suggesting that β̂90 is asymptotically normal but inefficient.

For other distributions, Chang (2006) recorded results for 0 and 10% trimming as

well as a “good” trimming value MB. Results are “good” if all of the entries of both

βMB
and

√
n SEcl were approximately equal and if the theoretical

√
n SEcl was close

to the simulated
√

nSD. The results were good for MVN x and all seven models, and

the results were similar for n = 500 and n = 1000. The results were good for models

m1 and m5 for all eight distributions. Model m6 was good for 0% trimming except for

distribution d5 and model m7 was good for 0% trimming except for distributions d5, d6

and d7. Trimming usually helped for models m2, m3 and m4 for distributions d5 - d8.

For n = 500 and OLS, Table 3 shows that β̂M estimates cMβ and the average of the

Chen and Li (1998) SE is often close to the simulated SD.

For SIR with h = 4 slices βM was recorded. Chang (2006) shows that the SIR results

were similar to those for OLS, but often more trimming and larger sample sizes were
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needed than those for OLS. Much of the literature suggests that SIR is insensitive to h,

but our simulations suggest that the results depend on h in that the largest sample sizes

were needed for h = 2 slices and then for 3 slices.

Next testing was considered. Let FM denote the OLS statistic (2.7) applied to the nM

cases (YM ,xM ) that remained after trimming. H0 was rejected if FM > Fk,nM−p(0.95).

Let WM denote the SIR statistic (2.11) except that A is the same matrix used for OLS.

Then H0 was rejected if WM > χ2
k(0.95) although theory is only given for k = 1. As h

increased from 2 to 3 to 4, λ̂1 and the SIR chi–square test statistic W0 rapidly increased.

For h > 4 the increase was much slower. For 1D models, 2 slices were used since otherwise

H0 was rejected too often.

For testing the nominal level was 0.05, and we recorded the proportion p̂ of runs

where H0 was rejected. Since 1000 runs were used, the count 1000p̂ ∼ binomial(1000,

1 − δn) where 1 − δn converges to the true large sample level 1 − δ. The standard error

for the proportion is
√

p̂(1 − p̂)/1000 ≈ 0.0069 for p = 0.05. An observed coverage

p̂ ∈ (0.03, 0.07) suggests that there is no reason to doubt that the true level is 0.05.

Let Y = m(α,βT
1 x, ...,βT

p−1x)+e. For a 0D regression, this reduces to Y = m(α, 0, ..., 0)

+e = cα + e. The 0D assumption can be tested with H0 : β = 0 versus H1 : β 6= 0

(use β1 for SIR), and the OLS F statistic (2.7) and SIR W statistic (2.11) are invariant

with respect to a constant. Hence this test is interesting because the results do not de-

pend on the model, but only on the distribution of x and the distribution of e. Since

βOLS ∈ S(B), power can be good if βOLS 6= 0. The OLS test is equivalent to the ANOVA

F test from MLR of Y on x. Under H0, the test should perform well provided that the

design matrix is nonsingular and the error distribution and sample size are such that the
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central limit theorem holds. Table 4 shows the results for OLS and SIR for n = 100, 500

and for the eight different distributions. Since the true model was linear and normal, the

exact OLS level is 0.05 even for n = 10. Table 4 shows that OLS performed as expected

while SIR only gave good results for MVN x. Notice that Table 4 shows that OLS is

useful for testing 0D structure even if a dD additive error model is assumed.

Next the test H0 : β2 = 0 was considered. The OLS test is equivalent to the t test

from MLR of Y on x. The true model used α = 1 and β = (1, 0, 1, 1)T . To simulate

adaptive trimming, |corr(β̂T

Mx,βT x)| was computed for M = 0, 10, ..., 90 and the initial

trimming proportion MI maximized this correlation. This process should be similar to

choosing the best trimmed view by examining 10 plots. The rejection proportions were

recorded for M = 0, ..., 90 and for adaptive trimming. Chang (2006) used the seven

models, eight distributions and sample sizes n = 60, 150, and 500. Table 5 shows some

results for n = 150.

For OLS, the test that used adaptive trimming had proportions ≤ 0.072 except for

model m4 with distributions d2, d3, d4, d6, d7 and d8; m2 with d4, d6 and d7 for n

= 500 and d6 with n = 150; m6 with d4 and n = 60, 150; m5 with d7 and n = 500

and m7 with d7 and n = 500. With the exception of m4, when the adaptive p̂ > 0.072,

then 0% trimming had a rejection proportion near 0.1. Occasionally adaptive trimming

was conservative with p̂ < 0.03. The 0% trimming worked well for m1 and m6 for all

eight distributions and for d1 and d5 for all seven models. Models m2 and m3 usually

benefited from adaptive trimming. For distribution d1, the adaptive and 0% trimming

methods had identical p̂ for n = 500 except for m3 where the values were 0.038 and 0.042.

Table 5 supports the claim that the adaptive trimming estimator can be asymptotically
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equivalent to the non-resistant DR method (0% trimming) and that trimming can greatly

improve the type I error.

For SIR results were not as good. Adaptive trimming failed more often than it worked,

and failed for model m1. 0% trimming performed well for all seven models for the MVN

distribution d1, and there was always an M such the WM did not reject H0 too often.

The rpack function drsim5 can be used to simulate the OLS and SIR tests while

drsim6 can be used to simulate tests based on adaptive and 0% trimming for OLS.

5 Conclusions

For the first time, there are robust multivariate location and dispersion estimators (e.g.,

MBA), which have been shown to be both fast and to have good theoretical properties.

For example MCD has computational complexity greater than O(np) while no theory for

FAST-MCD has been given. By using MBA, outliers in the predictors can be found, the

assumption that x is EC can be checked, and resistant DR methods that have theory

similar to the non–resistant method can be created.

The DD plot should be used to detect outliers and influential cases for regressions

with continuous predictors as well as for multivariate analysis. The DD plot is also a

diagnostic for the linearity condition since for EC data the plotted points will follow a line

through the origin, and for MVN data the plotted points will follow the identity line. In

the case of no outliers, power transformations may be used to remove nonlinearities from

the predictors and to transform the predictor distribution towards a MVN distribution.

A DD plot and scatterplot matrix (when p is not too large) may then be useful tools for
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determining the success of such transformations.

Ellipsoidal trimming can be used to make many DR methods resistant to x outliers.

For 1D regression, the plot of ESP = α̂ + β̂
T
x versus Y is crucial for visualizing the

regression Y |x (where α̂ ≡ 0 may be used). For 2D regression, plot Y versus the two

estimated sufficient predictors β̂
T

1 x and β̂
T

2 x and spin the plot. Trimming combined with

these plots makes the DR methods resistant to Y and x outliers.

For 1D regression models, Theorem 2.1 and the simulations suggest that OLS software

is useful for fast exploratory data analysis. To use the OLS output, the assumption that

OLS is a useful estimator for the 1D model needs to be checked. In addition to plotting the

ESP versus Y , additional methods for checking OLS are suggested by Olive and Hawkins

(2005) who showed that variable selection methods, originally meant for MLR and based

on OLS and the Mallows’ Cp criterion, can also be used for 1D models. Since the Cp

statistic is a one to one function of the F statistic for testing the submodel, Theorem 2.1

provides additional support for using OLS for variable selection for 1D models. After

using OLS for exploratory analysis, alternative 1D methods can be tried.

For single index models with EC x, OLS can fail if m is symmetric about the median

θ of the distribution of SP = α + βT x. If m is symmetric about a, then OLS may

become effective as |θ − a| gets large. This fact is often overlooked in the literature and

is demonstrated by models m7), m5) and m2) where Y = (SP )2 + e with θ = α = 1.

OLS has trouble with Y = (SP − a)2 + e as a gets close to θ = 1. The type of symmetry

where OLS fails is easily simulated, but may not occur often in practice.

Tests developed for parametric models such as the deviance tests for GLMs will often

have more power than the “model free” OLS tests. Simonoff and Tsai (2002) suggest
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tests for single index models while Cook (2004) develops “model free” tests for model

(1.1).

There are many DR methods and methods tailored for 1D regression. As software

becomes available, the three drsim functions from rpack can be modified to examine

the effect of ellipsoidal trimming on these methods. Power of the OLS tests can also be

examined by modifying the data so that the null hypothesis does not hold. Chang (2006)

has much more extensive simulation results, including a simulation for a 2D model.

The simulations suggest that for 1D models, much larger sample sizes are needed to

estimate the sufficient predictor for SIR, SAVE and PHD than for OLS. The Chen and Li

(1998) t type tests for SIR were ineffective unless x was MVN and the number of slices h

was small. Some earlier studies suggest that SIR is insensitive to the value of h. Wang,

Ni and Tsai (2007) showed that p-values for SIR t type tests were accurate for MVN x,

but not for other EC distributions. Their technique of contour projection followed by

SIR greatly improved inference.
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Figure 1: DD Plots for Buxton Data
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Figure 2: Estimated Sufficient Summary Plots Without Trimming
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Table 1: DR Coefficient Estimation with Trimming

type γ M β̂1 β̂2 β̂3 β̂4

SIR 0 0 .0400 .0021 −.0006 .0012

SIR 0 50 −.0201 −.0015 .0014 .0027

SIR 49 0 .0004 −.0029 −.0013 .0039

SIR 49 50 −.0798 −.0014 .0004 −.0015

SAVE 0 0 .0400 .0012 .0010 .0018

SAVE 0 50 −.0201 −.0018 .0024 .0030

SAVE 49 0 −.4292 −.2861 −.3264 −.3442

SAVE 49 50 −.0797 −.0016 −.0006 −.0024

PHD 0 0 .0396 −.0009 −.0071 −.0063

PHD 0 50 −.0200 −.0013 .0024 .0025

PHD 49 0 −.1068 −.1733 −.1856 −.1403

PHD 49 50 −.0795 .0023 .0000 −.0037

OLS 0 0 5.974 .0083 −.0221 .0008

OLS 0 50 4.098 .0166 .0017 −.0016

OLS 49 0 2.269 −.7509 −.7390 −.7625

OLS 49 50 5.647 .0305 .0011 .0053
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Table 2: DR Coefficient Estimation of c(1, 2, 3)T

method β̂1 β̂2 β̂3

OLS 0.0032 0.0011 0.0047

M = 90% OLS 0.0321 0.0366 0.2329

SIR −0.4066 −0.3916 −0.8254

M=10% SIR 0.3032 0.5003 0.8110

SAVE 0.0845 −0.7280 0.6804

M = 60% SAVE −0.2116 −0.5657 −0.7970

PHD 0.9995 0.0097 −0.0316

M = 60% PHD −0.2928 −0.6154 −0.7318

Table 3: OLS Coefficient Estimation with Trimming

m x M βM

√
nSEcl

√
nSD

m2 d1 0 2.00,2.01,2.00,2.00 7.81,7.79,7.76,7.80 7.87,8.00,8.02,7.88

m3 d2 50 9.06,9.05,9.04,9.08 37.56,37.00,37.31,37.41 55.35,54.02,53.35,55.03

m4 d3 0 291.9,294.0,293.7,292.1 859.7,866.6,877.9,850.8 933.0,957.9,964.9,957.2

m5 d4 0 −.03,−.03,−.03,−.03 .30,.30,.30,.30 .31,.32,.33,.31

m6 d5 0 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.40

m7 d6 10 .11,.11,.11,.11 .58,.57,.57,.57 .60,.58,.62,.61
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Table 4: Rejection Proportions for H0: β = 0

x n F SIR n F SIR

d1 100 0.041 0.057 500 0.050 0.048

d2 100 0.050 0.908 500 0.045 0.930

d3 100 0.047 0.955 500 0.050 0.930

d4 100 0.045 0.526 500 0.048 0.599

d5 100 0.055 0.621 500 0.061 0.709

d6 100 0.042 0.439 500 0.036 0.472

d7 100 0.054 0.214 500 0.047 0.197

d8 100 0.044 0.074 500 0.060 0.077
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Figure 3: 1D Regression with Trimming
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Table 5: Rejection Proportions for H0: β2 = 0

m x Test 90 80 70 60 50 40 30 20 10 0 ADAP

1 1 F .065 .073 .061 .056 .062 .051 .046 .050 .044 .043 .043

1 1 W .004 .001 .007 .013 .015 .020 .027 .032 .045 .056 .056

5 1 F .025 .017 .019 .023 .019 .019 .020 .022 .027 .037 .029

5 1 W .006 .001 .002 .003 .006 .005 .010 .014 .025 .055 .026

2 2 F .045 .033 .023 .024 .026 .070 .183 .182 .142 .166 .040

2 2 W .010 .012 .007 .010 .021 .067 .177 .328 .452 .576 .050

4 3 F .044 .032 .027 .058 .096 .081 .071 .057 .062 .123 .120

4 3 W .024 .028 .028 .069 .152 .263 .337 .378 .465 .541 .539

6 4 F .040 .023 .026 .024 .030 .032 .028 .044 .051 .088 .088

6 4 W .009 .006 .012 .009 .013 .016 .030 .040 .076 .386 .319

7 5 F .056 .053 .058 .058 .053 .054 .046 .044 .051 .037 .037

7 5 W .003 .002 .001 .000 .005 .005 .034 .080 .118 .319 .250

3 6 F .041 .030 .021 .024 .019 .025 .025 .034 .080 .374 .036

3 6 W .004 .005 .003 .008 .007 .021 .019 .041 .084 .329 .264

6 7 F .041 .032 .027 .032 .023 .041 .047 .053 .052 .055 .055

6 7 W .009 .003 .007 .006 .013 .022 .019 .025 .054 .176 .169
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