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Abstract

Regression is the study of the conditional distribution y|x of the response y

given the predictors x. Consider models of the form y = m(x) + e. Many anova,

categorical, multi–index, nonlinear regression, nonparametric regression, semipara-

metric and time series models have this form. Assume that the model is a good

approximation of the data and that m̂ is a good estimator of m. Then the plotted

points in a fit response plot of m̂ versus y will scatter about the identity line. Appli-

cations of this plot include checking the goodness of fit of the model and detecting

influential cases and outliers.
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1 INTRODUCTION

Regression is the study of the conditional distribution y|x of the response y given the

p × 1 vector of predictors x. Many important statistical models have the form

yi = m(xi) + ei ≡ mi + ei (1.1)

for i = 1, ..., n where the zero mean error ei is independent of xi. Additional assumptions

on the errors are often made. Let m̂ be an estimator of m, let the ith predicted or fitted

value ŷi = m̂i = m̂(xi), and let the ith residual ri = yi − ŷi.

The above class of models is very rich. Many anova, categorical, nonlinear regression,

nonparametric regression, semiparametric and time series models have this form. An

additive error single index model uses

y = h(βT x) + e. (1.2)

The multiple linear regression model is an important special case where h is the identity

function: h(βT x) = βT x. See Härdle, Hall, and Ichimura (1993), Naik and Tsai (2001),

Simonoff and Tsai (2002), Stoker (1986) and Weisberg and Welsh (1994). An additive

error multi–index model has the form

y = h(βT
1 x, ...,βT

k x) + e (1.3)

where k ≥ 1 is as small as possible. See Hristache, Juditsky, Polzehl, and Spokoiny

(2001).

Another important special case of model (1.1) is the response transformation model

where

zi ≡ t−1(yi) = t−1(βT xi + ei)
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and thus

yi = t(zi) = βT xi + ei. (1.4)

Koenker and Geling (2001) note that if zi is an observed survival time, then many survival

models have the above form, including the Cox (1972) proportional hazards model.

There are several important regression models that do not have additive errors in-

cluding generalized linear models. If

y = g(βTx, e) (1.5)

then the regression has 1–dimensional structure while

y = g(βT
1 x, ...,βT

k x, e) (1.6)

has k–dimensional structure if k ≥ 1 is as small as possible. These models do not

necessarily have additive errors although the additive error single index and multi–index

models are important exceptions. See Li and Duan (1989), Li (1991, 2000), Cook (1998,

p. 49), Cook and Weisberg (1999, p. 414) and Cook and Ni (2005).

Several authors have suggested that plotting aT x versus y for various choices of a

is useful for model assessment. Cook and Weisberg (1997, 1999, ch. 17) call this plot

a model checking plot. In particular, plot each predictor xj versus y, and also plot β̂
T
x

versus y if model (1.5) holds. Suppose that ordinary least squares (OLS) is used to fit the

multiple linear regression model, then the forward response plot of ŷ versus y can be used

to visualize the coefficient of determination R2. See, for example, Chambers, Cleveland,

Kleiner and Tukey (1983, p. 280). For models of the form (1.5), an estimated sufficient

summary plot (ESSP) is a plot of β̂
T
x versus y, and is used to visualize the conditional
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distribution of y|x. An amazing result is that if the OLS fitted values ŷOLS are produced

from regressing y on x, then the plot of ŷOLS versus y is an ESSP and can be often used

to visualize g even if g is unknown or misspecified. See Brillinger (1977, 1983), Li and

Duan (1989) and Cook and Weisberg (1999, p. 432).

Residual plots are also used for model assessment, but residual plots emphasize lack

of fit and can not be used to visualize y|x. Cook and Weisberg (1997) discuss why plots

such as the ESSP and model checking plot that emphasize the goodness of fit are needed.

In addition to the usual model checks, we suggest making a plot of m̂ versus y, called

a fit response plot or FY plot. To understand the information contained in the FY plot,

first consider a plot of mi versus yi. Ignoring the error in the model yi = mi + ei gives

y = m which is the equation of the identity line with unit slope and zero intercept. The

vertical deviations from the identity line are yi −mi = ei. The reasoning for the FY plot

is very similar. The line y = m̂ is the identity line and the vertical deviations from the

line are the residuals yi − m̂i = yi − ŷi = ri. Suppose that the model yi = mi + ei is a

good approximation to the data and that m̂ is a good estimator of m. If the identity line

is added to the plot as a visual aid, then the plotted points will scatter about the line

and the variability of the residuals can be examined.

For a given data set, it will often be useful to generate the FY plot, residual plots,

and model checking plots. An advantage of the FY plot is that if the model is not a good

approximation to the data or if the estimator m̂ is poor, then detecting deviations from

the identity line is simple. Similarly, residual variability is easier to judge against a line

than a curve. On the other hand, model checking plots such as the ESSP may provide

information about the form of the conditional mean function E(y|x) = m(x).

4



Many numerical diagnostics for detecting outliers and influential cases on the fit have

been suggested, and often this research generalizes results from Cook (1977, 1986) to

various models of form (1.1). Information from these diagnostics can be incorporated

into the FY plot by highlighting cases that have large values of the diagnostic. Section

2 provides some examples illustrating applications of the FY plot.

2 Examples

When the bulk of the data follows model (1.1), the following rules of thumb for the FY

plot are useful for finding influential cases and outliers. 1) Look for points with large

absolute residuals and for points far away from y. 2) Also look for gaps separating the

data into clusters.

Rule 1) suggests that the FY plot can be viewed as a graphical analog of Cook’s

distance for the model. If the multiple linear regression (MLR) model is used along with

Cook’s distance Di (Cook 1977), assume that OLS is used to fit the model and to make

the FY plot ŷ versus y. Then Di tends to be large if ŷi is far from the sample mean y

and if the corresponding absolute residual |ri| is not small. If ŷi is close to y then Di

tends to be small unless |ri| is large. An exception to these rules of thumb occurs if a

group of cases form a cluster and the OLS fit passes through the cluster. Then the Di’s

corresponding to these cases tend to be small even if the cluster is far from y.

To see why gaps are important, suppose that OLS was used to obtain ŷ = m̂. Recall

that the squared correlation r2 between y and ŷ is equal to the coefficient of determination

R2. Even if an alternative MLR estimator is used, r2 over emphasizes the strength of the
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MLR relationship when there are two clusters of data since much of the variability of y

is due to the smaller cluster. To determine whether small clusters are outliers or good

leverage points, give zero weight to the clusters, and fit an MLR estimator to the bulk of

the data. Denote the weighted estimator by β̂w. Then plot ŷw versus y using the entire

data set. If the identity line passes through the bulk of the data but not the cluster, then

the cluster points may be outliers.

Now suppose that the MLR model is incorrect. If OLS is used in the FY plot, then

the plot is also an ESSP, and if y = g(βT x, e), then the plot can be used to visualize g

for many data sets. Hence the plotted points may be very far from linear. The plotted

points in FY plots created from other MLR estimators may not be useful for visualizing

g, but will also often be far from linear.

An advantage of the FY plot over numerical diagnostics is that while it depends

strongly on the model m, defining numerical diagnostics for different fitting methods can

be difficult while the FY plot is simply a plot of m̂ versus y. For the MLR model, the

FY plot can be made from any good MLR estimator such as OLS.

The most important example is the MLR model. For this model, the FY plot is the

forward response plot. If the MLR model holds and the errors ei are iid with zero mean

and constant variance σ2, then the plotted points should scatter about the identity line

with no other pattern.

Example 1. Buxton (1920) gives 20 measurements (in mm) of 88 men. We chose

to predict stature using an intercept, head length, nasal height, bigonal breadth and

cephalic index. Observation 9 was deleted since it had missing values. Five individuals,
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numbers 62-66, were reported to be about 0.75 inches tall with head lengths well over

five feet! For these cases, stature was incorrectly recorded as head length and 18 or 19

mm given for stature, making the cases massive outliers with enormous leverage. Figure

1 shows the forward response plot and residual plot based on the OLS MLR model.

Although an index plot of Cook’s distance Di may be useful for flagging influential cases,

the index plot provides no direct way of judging the model against the data. As a remedy,

cases in the FY plot with Di > min(0.5, 2p/n) were highlighted. Notice that the OLS

fit passes through the outliers, but the FY plot is resistant to y-outliers since y is on

the vertical axis. Also notice that although the outlying cluster is far from y, only two

of the outliers had large Cook’s distance. FY plots using other MLR estimators such

as lmsreg were similar. The Buxton data set can be downloaded from the web site

(www.math.siu.edu/olive/ol-bookp.htm).

The above example is typical of many “benchmark” outlier data sets for MLR robust

regression. In these data sets traditional OLS diagnostics such as index plots of Cook’s

distances and residuals often fail to detect the outliers, but the combination of the FY

plot and residual plot is usually able to detect the outliers.

Two important models can be transformed into the MLR model yi = βT xi + ei

where the iid errors have constant variance Var(ei) = σ2. The first model is the response

transformation model (1.4). If the transformation yi = t(zi) is correct, then the plotted

points ŷi versus yi in the FY plot will follow the identity line. Cook and Olive (2001) use

a similar idea and provide several examples.
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The second model is the generalized linear squares (GLS) model

Y = Xβ + e, (2.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

Following Seber and Lee (pp. 66-68), assume E(e) = 0 and Var(e) = σ2V where V is a

known n×n positive definite matrix. Hence there is a nonsingular n× n matrix K such

that V = KKT . The OLS model uses V = In where In is the n×n identity matrix and

V is diagonal for weighted least squares. Let Z = K−1Y , U = K−1X and ε = K−1e.

Then

Z = Uβ + ε (2.2)

follows the OLS model since E(ε) = 0 and Var(ε) = σ2In. Let β̂OLS be the OLS

estimator of β obtained from the OLS regression of Y on X and let β̂GLS be the GLS

estimator. Recall that β̂GLS can be obtained from the OLS regression of Z on U (without

an intercept). Let Ŷ OLS and Ŷ GLS denote the vectors of OLS and GLS fitted values.

Several plots could be made to check the GLS model. The plotted points of ŷi,OLS

versus yi will follow the identity line, but the variability will depend on the value of

ŷi,OLS. Moreover, we cannot check whether V is providing a useful model. A solution

is to make the OLS forward response and residual plots for the OLS regression of Z on

U . If the GLS model is a useful approximation to the data, then OLS model in Z and

U should be appropriate. Hence the plotted points ẑi versus zi in the forward response

plot should follow the identity line in an evenly populated band while the plotted points

ẑi versus rz,i = zi − ẑi in the residual plot should follow the line rz,i = 0 in an evenly
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populated band.

An FF plot is a scatterplot matrix of the response and the fitted values from several

models. The following example shows that the FF plot can be useful for comparing

the various models. Olive and Hawkins (2005) used similar ideas to compare competing

submodels found from numerical methods for variable selection.

Example 2. The lynx data is a well known time series of n = 114 cases concerning the

number zt of lynx trapped in a section of Northwest Canada from 1821 to 1934. Following

Lin and Pourahmadi (1998), let the response Yt = log10(zt). Moran (1953) suggested the

autoregressive AR(2) model Ŷt = 1.05 + 1.41Yt−1 − .77Yt−2. Tong (1977) suggested the

AR(11) model Ŷt = 1.13Yt−1 − .51Yt−2 + .23Yt−3 − .29Yt−4 + .14Yt−5 − .14Yt−6 + .08Yt−7 −

.04Yt−8 + .13Yt−9 + .19Yt−10 − .31Yt−11. Brockwell and Davis (1991, p. 550) suggested

the AR(12) model Ŷt = 1.123 + 1.084Yt−1 − .477Yt−2 + .265Yt−3 − .218Yt−4 + .180Yt−9 −

.224Yt−12. Tong (1983) suggested the following two self–exciting autoregressive models.

The SETAR(2,7,2) model uses Ŷt = .546 + 1.032Yt−1 − .173Yt−2 + .171Yt−3 − .431Yt−4 +

.332Yt−5 − .284Yt−6 + .210Yt−7 if Yt−2 ≤ 3.116 and Ŷt = 2.632 + 1.492Yt−1 − 1.324Yt−2,

otherwise. The SETAR(2,5,2) model uses Ŷt = .768 + 1.064Yt−1 − .200Yt−2 + .164Yt−3 −

.428Yt−4 + .181Yt−5 if Yt−2 ≤ 3.05 and Ŷt = 2.254 + 1.474Yt−1 − 1.202Yt−2, otherwise.

The FF plot and the lynx data is an interesting example for teaching alternative time

series models, measures of model adequacy and diagnostics for outliers and influential

cases. The FF plot shown in Figure 2 used the fitted values and Yt for 13 ≤ t ≤ 114.

The top row of the FF plot gives the FY plots of the five different models. Note that the

fitted values from the AR(11) and AR(12) models were very similar, as were those from

the two SETAR models. The correlations between Yt and the fitted values were 0.9099,
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0.9056, 0.8871, 0.8226 and 0.8739 for the AR(2), AR(11), AR(12), SETAR(2,7,2) and

SETAR(2,5,2) models, respectively. A common way to judge time series models is to

leave out the last k cases and then see how well the model predicts these cases. The FY

plot should be examined to see whether the plotted points follow the identity line and

whether the fitted model systematically fits some values of Yt better than others (e.g.,

sometimes larger values of t are fit better than smaller values).

The fact that the FY plot is useful for model assessment and for detecting influential

cases and outliers for an enormous variety of statistical models does not seem to be well

known. The FY plot is not limited to models of the form (1.1). The plot can be made as

long as fitted values m̂ can be obtained from the model. If m̂i ≈ yi for i = 1, ..., n then

the plotted points will scatter about the identity line.

For multiple linear regression, the forward response plot and the residual plot of fitted

values versus residuals should always be made. The plotted points in the forward response

plot should be linear and the plotted points in the residual plot should cluster about the

horizontal axis with an ellipsoidal or rectangular pattern with no trend. Otherwise the

assumptions needed for OLS inference fail to hold.

The FY plot should be used to complement rather than to replace existing techniques

for model assessment and exploratory data analysis. For example, scan the raw data

and make a scatterplot matrix of the predictors x and the response y to discover gross

outliers and useful information about the conditional distribution of y|x. The literature

for goodness of fit tests is massive. See, for example, references in Kauermann and Tutz

(2001) and Stute and Zhu (2005).
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Figure 1: Plots for Buxton Data
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Figure 2: FF Plot for Lynx Data
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