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Abstract

In a 1D regression, the response variable is independent of the predictors given a single

linear combination of the predictors. Theory for ordinary least squares (OLS) is reviewed,

and it is shown that much of the OLS output originally meant for multiple linear regression

is still relevant for a much wider class of regression models including single index models.

Ellipsoidal trimming can be combined with OLS to create outlier resistant methods.

1. Introduction

Regression is the study of the conditional distribution Y |x of the response Y given the

(p − 1) × 1 vector of nontrivial predictors x. In a 1D regression model, Y is conditionally

independent of x given a single linear combination βTx of the predictors, written

Y x|βTx or Y x|α + βTx. (1)

Many of the most commonly used regression models are 1D regression models, and the

additive error single index model has the form

Y = m(βT x) + e (2)

where e is a zero mean error that is independent of x. The multiple linear regression model
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is the special case where m(βT x) = α + βT x:

Y = α + βT x + e. (3)

Important theoretical results for the additive error single index model were given by Brillinger

(1977, 1983), and Li and Duan (1989) extended these results to single index models of the

form Y = g(α + βT x, e) where g is a bivariate inverse link function.

A key condition for several of the theoretical results is the condition of linearly related

predictors which holds if E(x|βTx) is a linear function of βT x. This condition holds if x is

elliptically contoured (EC) with a nonsingular covariance matrix. Hall and Li (1993) show

that the linearity condition often approximately holds in large dimensions even if x is not

EC.

Section 2 reviews OLS theory for 1D regression. Section 3 shows ellipsoidal trimming

can be used to create outlier resistant 1D methods that can give useful results when the

assumption of linearly related predictors is violated, while Section 4 gives examples and

simulations.

2. Some OLS Theory

This section reviews OLS theory for 1D regression. Let Cov(x) = Σx and Cov(x, Y ) =

ΣxY . The population coefficients from an OLS regression of Y on x are αOLS = E(Y ) −

βT
OLSE(x) and βOLS = Σ−1

x ΣxY .

Let the data be (Yi,xi) for i = 1, ..., n. Let the p × 1 vector η = (α,βT )T , let X be

the n× p OLS design matrix with ith row (1,xT
i ), and let Y = (Y1, ..., Yn)

T . Then the OLS

estimator η̂ = (XT X)−1XT Y . The sample covariance of x is

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T where the sample mean x =
1

n

n∑

i=1

xi.

Similarly, define the sample covariance of x and Y to be

Σ̂xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The first result shows that η̂ is a consistent estimator of η.
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i) Suppose that (Yi,x
T
i )T are iid random vectors such that Σ−1

x and ΣxY exist. Then

α̂OLS = Y − β̂
T

OLSx
D→ αOLS

and

β̂OLS =
n

n − 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞.

The following notation will be useful. Many 1D regression models have an error e with

σ2 = Var(e) = E(e2). Let the population OLS residual v = Y − αOLS − βT
OLSx with

τ 2 = E[(Y − αOLS − βT
OLSx)2] = E(v2), (4)

and let the OLS residual be r = Y − α̂OLS − β̂
T

OLSx. Typically the OLS residual r is not

estimating the error e and τ 2 6= σ2, but the following results show that the OLS residual is

of great interest for 1D regression models. Assume that a 1D model (1) holds. Then under

regularity conditions, results ii) – v) below hold.

ii) Li and Duan (1989): βOLS = cβ for some constant c.

iii) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂OLS − cβ)

D→ Np−1(0,COLS) (5)

where

COLS = Σ−1
x E[(Y − αOLS − βT

OLSx)2(x− E(x))(x − E(x))T ]Σ−1
x . (6)

iv) Chen and Li (1998): Let A be a known full rank constant k × (p − 1) matrix. If the

null hypothesis H0: Aβ = 0 is true, then

√
n(Aβ̂OLS − cAβ) =

√
nAβ̂OLS

D→ Nk(0,ACOLSAT )

and

ACOLSAT = τ 2AΣ−1
x AT . (7)

If the multiple linear regression (MLR) model holds or if E[v2(x−E(x))(x−E(x))T ] =

E(v2)Σx, then COLS = τ 2Σ−1
x . If the MLR model holds, τ 2 = σ2. To create test statistics,

the estimator

τ̂ 2 = MSE =
1

n − p

n∑

i=1

r2
i =

1

n − p

n∑

i=1

(Yi − α̂OLS − β̂
T

OLSxi)
2
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will be useful. Notice that MSE estimates τ 2, not σ2. The estimator

ĈOLS = Σ̂
−1

x

[
1

n

n∑

i=1

[(Yi − α̂OLS − β̂
T

OLSxi)
2(xi − x)(xi − x)T ]

]
Σ̂

−1

x (8)

can also be useful.

v) Chen and Li (1998): A test statistic for H0 : Aβ = 0 is

WOLS = nβ̂
T

OLSAT [AΣ̂
−1

x AT ]−1Aβ̂OLS/τ̂ 2 D→ χ2
k, (9)

the chi–square distribution with k degrees of freedom.

Before presenting the next result, some results from OLS MLR theory are needed. Let

the known k× p constant matrix Ã = [a A] where a is a k× 1 vector, and let c be a known

k × 1 constant vector. Following Seber and Lee (2003, pp. 99–106), the usual F statistic for

testing H0 : Ãη = c is

F0 =
(SSE(H0) − SSE)/k

SSE/(n − p)
= (Ãη̂ − c)T [Ã(XT X)−1Ã

T
]−1(Ãη̂ − c)/(kτ̂ 2) (10)

where MSE = τ̂ 2 = SSE/(n − p), SSE =
∑n

i=1 r2
i and SSE(H0) =

∑n
i=1 r2

i (H0) is the

minimum sum of squared residuals subject to the constraint H0 : Ãη = c. Recall that if

H0 is true, the MLR model holds and the errors ei are iid N(0, σ2), then F0 ∼ Fk,n−p, the

F distribution with k and n − p degrees of freedom. Also recall that if a random variable

Zn ∼ Fk,n−p, then as n → ∞

Zn
D→ χ2

k/k. (11)

Theorem 2.1 below and (11) suggest that OLS output, originally meant for testing with

the MLR model, can also be used for testing with many 1D regression data sets. Let the 1D

model Y x|α + βT x be written as Y x|αR + βT
RxR + βT

OxO where the reduced model

is Y x|αR + βT
RxR and xO denotes the terms outside of the reduced model. Notice that

OLS ANOVA F test corresponds to H0: β = 0 and uses A = Ip−1 where I j is the j × j

identity matrix. The tests for H0: βi = 0 use A = (0, ..., 0, 1, 0, ..., 0) where the 1 is in the

ith position and are equivalent to the OLS t tests. The test H0: βO = 0 uses A = [0 Ij]

if βO is a j × 1 vector, and the test statistic (10) can be computed by running OLS on the
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full model to obtain SSE and on the reduced model to obtain SSE(R) ≡ SSE(H0). In the

theorem below, it is crucial that H0: Aβ = 0. Tests for H0: Aβ = 1, say, may not be valid.

Theorem 2.1. Assume that a 1D regression model (1) holds and that Equation (9) holds

when H0 : Aβ = 0 is true. Then as n → ∞, the test statistic (10) satisfies

F0 =
n − 1

kn
WOLS

D→ χ2
k/k.

To see this, notice that by (9), the result follows if F0 = (n−1)WOLS/(kn). Let Ã = [0 A]

so that H0:Ãη = 0 is equivalent to H0:Aβ = 0. Following Seber and Lee (2003, p. 106),

(XTX)−1 =




1
n

+ xT D−1x −xT D−1

−D−1x D−1


 (12)

where the (p − 1) × (p − 1) matrix

D−1 = [(n − 1)Σ̂x]−1 = Σ̂
−1

x /(n − 1). (13)

Using Ã and (12) in (10) shows that

F0 = (Aβ̂OLS)T


[0 A]




1
n

+ xTD−1x −xTD−1

−D−1x D−1







0T

AT







−1

Aβ̂OLS/(kτ̂ 2),

and the result follows from (13) after algebra.

Li and Duan (1989) suggest that OLS F tests are asymptotically valid if x is multivariate

normal and if Σ−1
x ΣxY 6= 0. Freedman (1981), Brillinger (1983) and Chen and Li (1998)

also discuss Cov(β̂OLS).

The above sufficient conditions are very restrictive, but the following remarks suggest

that the OLS F tests for H0 : Aβ = 0 are useful for exploratory purposes under very

mild conditions. First some notation will be useful. If Y x|βTx, then Y x|a + cβTx

where a and c 6= 0 are constants. A sufficient predictor SP = a + cβT x and an estimated

sufficient predictor ESP = â + β̂
T
x. Let a candidate model xR contain k terms including

a constant. Let the full model x have design matrix X and residual sum of squares SSE.

Let the corresponding terms for the candidate model be the n × k design matrix XR and
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SSE(R). If FR is the test statistic for testing whether the p − k predictor variables xO not

in xR can be deleted, then the statistic Cp(R) = (p − k)(FR − 1) + k.

Olive and Hawkins (2005), in the context of variable selection, note that if the full 1D

model using x is good and β̂ is good estimator of dβ for d 6= 0, then a candidate model

using xR is worth considering if the correlation corr(β̂
T

RxR, β̂
T
x) is high. For example, the

maximum likelihood estimator would be used as β̂ for generalized linear models. Suppose

the OLS estimator is such that |corr(β̂T

OLSx, β̂
T
x)| = |corr(OLS ESP,ESP)| ≥ 0.95. Then

corr(β̂
T

RxR, β̂
T
x) should be high if corr(β̂

T

OLS,RxR, β̂
T

OLSx) is high.

To force high correlation, Olive and Hawkins (2005) showed that the following results are

properties of OLS and hold even if the data does not follow a 1D model. Let OLS ESP(R)

= α̂OLS,R + β̂
T

OLS,RxR be the ESP for the submodel and let rR,i = Yi − α̂OLS,R − β̂
T

OLS,RxR,i.

Let OLS ESP and r denote the corresponding quantities for the full model. Then

corr(r, rR) =

√
n − p

Cp(R) + n − 2k
=

√
n − p

(p − k)FR + n − p
,

and Cp(R) ≤ 2k corresponds to

corr(r, rR) ≥
√

1 − p

n
.

If Cp(R) ≤ 2k and n ≥ 10p, then 0.9 ≤ corr(r, rR), and both corr(r, rR) → 1.0 and corr(OLS

ESP, OLS ESP(R)) → 1.0 as n → ∞.

If |corr(OLS ESP,ESP)| ≥ 0.95, then often OLS variable selection can be used for

the 1D data. If the FR statistic is large, then OLS ESP for the full and reduced model

will not have high absolute correlation, suggesting that the reduced model is not good. A

screen for “good” candidate submodels xR is Cp(R) ≤ min(2k, p). The p-values from OLS

output are often a useful benchmark. To see this, suppose that n > 5p and first consider

the model Rj that deletes the predictor xj. Then the model has k = p − 1 predictors

including the constant, and the test statistic is tj where t2j = FRj . It can be shown that

Cp(Rj) = Cp(Rfull) + (t2j − 2) = p + (t2j − 2) where Rfull is the full model. Using the Cp

screen suggests that the predictor xj can probably be deleted if |tj| <
√

2 ≈ 1.414.
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More generally, it can be shown that Cp(R) ≤ 2k iff FR ≤ p/(p−k). Now k is the number

of terms in the model including a constant while p − k is the number of terms set to 0. As

k → 0, the OLS F test will reject H0: Aβ = 0 (ie, say that the full model should be used

instead of the submodel R) unless FR is not much larger than 1.

3. Resistant 1D methods

Olive (2002) showed that ellipsoidal trimming can be used to create outlier resistant 1D

methods that can give useful results when the assumption of linearly related predictors is

violated. To perform ellipsoidal trimming, a robust estimator of multivariate location and

dispersion (T,C) is computed and used to create the squared Mahalanobis distances D2
i ≡

D2
i (T,C) = (xi − T )TC−1(xi − T ) for each vector of observed predictors xi. If the ordered

distance D(j) is unique, then j of the xi’s are in the ellipsoid {x : (x−T )TC−1(x−T ) ≤ D2
(j)}.

The ith case (Yi,xi) is trimmed if Di > D(j). For example, if j ≈ 0.9n, then about M% =

10% of the cases are trimmed, and a 1D method can be computed from the cases (YM ,xM)

that remain. We used the Olive (2004) MBA estimator (TMBA,CMBA) for (T,C).

Several authors have noted that applying 1D methods to a subset (YM ,xM) of the data

with the xM distribution closer to being elliptically contoured is an effective method for

making 1D methods such as OLS resistant to the presence of strong nonlinearities. See Li

and Duan (1989, p. 1011), Brillinger (1991), Cook (1994, p. 188; 1998, p. 152), Cook and

Nachtsheim (1994) and Li, Cook and Nachtsheim (2004).

The choice of M is important, and the Rousseeuw and Van Driessen (1999) DD plot

of classical Mahalanobis distances MDi vs MBA distances RDi can be used to choose M .

The MDi use (T,C) = (x, Σ̂x). Olive (2002) shows that the plotted points in the DD plot

will follow the identity line with zero intercept and unit slope if the predictor distribution

is multivariate normal (MVN), and will follow a line with zero intercept but non–unit slope

if the distribution is EC (with nonsingular covariance matrix) but not MVN. Delete M% of

the cases with the largest MBA distances so that the remaining cases follow the identity line

(or some line through the origin) closely. Let (YMi,xMi) denote the data remaining after

trimming where i = 1, ..., nM . Then apply OLS on these nM cases.
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As long as M is chosen only using the predictors, OLS theory will apply if the data

(YM ,xM ) satisfies the regularity conditions. Let φM = limn→∞ n/nM , let cM be a constant

and let β̂M denote the OLS estimator applied to (YMi,xMi) with

√
n(β̂M − cMβ) =

√
n

√
nM

√
nM (β̂M − cMβ)

D→ Np−1(0, φMCM). (14)

If H0 : Aβ = 0 is true and ĈM is a consistent estimator of CM , then from (9)

WM = nM β̂
T

MAT [AĈMAT ]−1Aβ̂M/τ̂ 2
M

D→ χ2
k.

For example, if the MLR model holds and the errors are iid N(0, σ2), then the OLS estimator

η̂M = (XT
MXM)−1XT

MY M ∼ Np(η, σ2(XT
MXM )−1).

A tradeoff is that low amounts of trimming may not work while large amounts of trimming

may be inefficient. For 1D models, Olive (2002) suggested plotting β̂
T

Mx versus Y for M =

0, 10, ..., 90 and choosing MTV such that the plot (called a trimmed view) has a smooth mean

function and the smallest variance function. Notice that all n cases are used in the plot.

Suppose
√

n(β̂M − cMβ)
D→ N(0,CM) for M = 0, 10, ..., 90. Then β̂M,TV is

√
n consistent

if cM ≡ c0, e.g., for MLR cM ≡ 1. But if β̂M,TV oscillates between β̂0 and β̂10, then β̂M,TV

need not be asymptotically normal. If there is oscillation and the cM are not equal, then

β̂M,TV is inconsistent.

Adaptive trimming can be used to obtain an asymptotically normal estimator that may

avoid large efficiency losses. First, choose an initial amount of trimming MI by using, e.g.,

the DD plot or trimmed views. Next compute |corr(β̂
T

Mx, β̂
T

MI
x)| for M = 0, 10, ..., 90 and

find the smallest value MA ≤ MI such that the absolute correlation is greater than 0.95.

If no such value exists, then use MA = MI . The resulting adaptive trimming estimator

is asymptotically equivalent to the estimator that uses 0% trimming if β̂0 is a consistent

estimator of c0β and if β̂MI
is a consistent estimator of cMI

β for c0 6= 0 and cMI
6= 0.

4. Examples and Simulations

Example 4.1. The Buxton (1920) data consists of measurements taken on 87 men. Let

height be the response. Figure 1a shows the DD plot made from the four predictors head
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length, nasal height, bigonal breadth, and cephalic index. The five massive outliers correspond

to head lengths that were recorded to be around 5 feet. Figure 1b shows that after deleting

these points, the predictor distribution is much closer to a multivariate normal distribution.

Now 1D methods can be used to investigate the regression.

An estimated sufficient summary plot or response plot is a plot of an ESP versus the

response Y , often with the estimated mean function added as a visual aid. A trimmed view

is also a response plot. If β̂ is a consistent estimator of cβ for c 6= 0, then the response plot

is often useful for visualizing the 1D regression. See Cook (1998, p. 10).

The following example and Tables 1 and 2 show that ellipsoidal trimming can be useful

for 1D regression when x is not EC. There is a myth that transforming predictors is free,

but using a log transformation for the example below will destroy the 1D structure.

Example 4.2. An artificial data set was generated with Y = (α + βT x)3 + e where

n = 100, α = 0,β = (1, 2, 3)T , e ∼ N(0, 1) and xi ∼ lognormal(0, 1) for i = 1, 2, 3 where

the xi are iid. Figure 2 shows the trimmed views for M = 0, 10, 30 and 90. Table 1 shows

the values of β̂M . Notice that the 30% and 90% trimmed views capture the cubic function

much better then the OLS = 0% trimmed view. Notice that β̂30 ≈ 205β and β̂90 ≈ 86β.

In a small simulation, the clean data Y = (α + βTx)3 + e where n = 1000, α = 1,

β = (1, 0, 0, 0)T , e ∼ N(0, 1) and x ∼ N4(0, I4). The outlier percentage γ was either

0% or 49%. The 2 clusters of outliers were about the same size with Y ∼ N(0, 1) and

x ∼ N4(±10(1, 1, 1, 1)T , I4). Table 2 records the averages of β̂i over 100 runs where OLS used

M = 0 or M = 50% trimming. When outliers were present, the average of β̂50 ≈ c(1, 0, 0, 0)T .

The following simulation study is extracted from Chang (2006) who used eight types of

predictor distributions: d1) x ∼ Np−1(0, Ip−1), d2) x ∼ 0.6Np−1(0, Ip−1) + 0.4Np−1(0,

25Ip−1), d3) x ∼ 0.4Np−1(0, Ip−1) + 0.6Np−1(0, 25Ip−1), d4) x ∼ 0.9Np−1(0, Ip−1) +

0.1Np−1(0, 25Ip−1), d5) x ∼ LN(0, I) where the marginals are iid lognormal(0,1), d6) x ∼

MV Tp−1(3), d7) x ∼ MV Tp−1(5) and d8) x ∼ MV Tp−1(19). Here x has a multivariate t

distribution xi ∼ MV Tp−1(ν) if xi = zi/
√

Wi/ν where zi ∼ Np−1(0, Ip−1) is independent

of the chi–square random variable Wi ∼ χ2
ν . Of the eight distributions, only d5) is not
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elliptically contoured. The MVT distribution gets closer to the MVN distribution d1) as

ν → ∞. The MVT distribution has first moments for ν ≥ 3 and second moments for ν ≥ 5.

See Johnson and Kotz (1972, pp. 134-135). All simulations used 1000 runs.

The simulations for single index models used α = 1. Let the sufficient predictor SP =

α + βTx. Then the seven models considered were m1) Y = SP + e, m2) Y = (SP )2 + e,

m3) Y = exp(SP ) + e, m4) Y = (SP )3 + e, m5) Y = sin(SP )/SP + 0.01e, m6) Y =

SP + sin(SP ) + 0.1e and m7) Y =
√
|SP | + 0.1e where e ∼ N(0, 1). Models m2), m3) and

m4) can result in large |Y | values which can cause numerical difficulties for OLS if x is heavy

tailed.

For single index models with EC x, OLS can fail if m is symmetric about the median θ of

the distribution of SP = α+βTx. If m is symmetric about a, then OLS may become effective

as |θ − a| gets large. This fact is often overlooked in the literature and is demonstrated by

models m7), m5) and m2) where Y = (SP )2 + e with θ = α = 1. OLS has trouble with

Y = (SP − a)2 + e as a gets close to θ = 1 for the EC distributions. The type of symmetry

where OLS fails is easily simulated, but may not occur often in practice.

First, coefficient estimation was examined with β = (1, 1, 1, 1)T , and the sample standard

deviation (SD) of each entry β̂Mi,j of β̂M,j was computed for i = 1, 2, 3, 4 with j = 1, ..., 1000.

For each of the 1000 runs, the Chen and Li (1998) formula SEcl(β̂Mi) =
√

n−1
M (ĈM )ii was

computed where ĈM is the estimate (8) applied to (YM ,xM). The average of β̂M and of
√

nSEcl were recorded as well as
√

nSD of β̂Mi,j under the labels βM ,
√

n SEcl and
√

nSD.

Under regularity,

√
n SEcl ≈

√
nSD ≈

√√√√ 1

1 − M
100

diag(CM)

where CM is (6) applied to (YM ,xM ).

For MVN x, MLR and 0% trimming, all three recorded quantities were near (1,1,1,1)

for n = 60, 500, and 1000. For 90% trimming and n = 1000, the results were β90 =

(1.00, 1.00, 1.01, 0.99),
√

n SEcl = (7.56, 7.61, 7.60, 7.54) and
√

nSD = (7.81, 8.02, 7.76, 7.59),

suggesting that β̂90 is asymptotically normal but inefficient.

For other distributions, Chang (2006) recorded results for 0 and 10% trimming as well
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as a “good” trimming value MB. Results are “good” if all of the entries of both βMB
and

√
n SEcl were approximately equal and if

√
n SEcl was close to

√
nSD. The results were

good for MVN x and all seven models, and the results were similar for n = 500 and n = 1000.

The results were good for models m1 and m5 for all eight distributions. Model m6 was good

for 0% trimming except for distribution d5, and model m7 was good for 0% trimming except

for distributions d5, d6 and d7. Trimming usually helped for models m2, m3 and m4 for

distributions d5 - d8. For n = 500, Table 3 shows that β̂M estimates cMβ and the average

of the Chen and Li (1998) SE is often close to the simulated SD.

Next testing with nominal level 0.05 was considered. Let FM denote the OLS statistic

(10) applied to the nM cases (YM ,xM) that remained after trimming. H0 was rejected if

FM > Fk,nM−p(0.95). Let p̂ be the proportion of runs where H0 was rejected. Since 1000

runs were used, the count 1000p̂ ∼ binomial(1000, 1− δn) where 1− δn converges to the true

large sample level 1 − δ. The standard error for the proportion is
√

p̂(1 − p̂)/1000 ≈ 0.0069

for p = 0.05. An observed coverage p̂ ∈ (0.03, 0.07) suggests that there is no reason to doubt

that the true level is 0.05.

Let Y = m(α + βTx) + e. If Y x, this reduces to Y = m(α) + e = cα + e. For the

corresponding test H0 : β = 0 versus H1 : β 6= 0, the OLS F statistic (10) is invariant with

respect to a constant. Hence this test is interesting because the results do not depend on

the model (2), but only on the distribution of x and the distribution of e. Since βOLS = cβ,

power can be good if c 6= 0. The OLS test is equivalent to the ANOVA F test from MLR of Y

on x. Under H0, the test should perform well provided that the design matrix is nonsingular

and the error distribution and sample size are such that the central limit theorem holds. For

the simulated data with β = 0, the model is linear and normal, and the exact OLS level is

0.05 for n > p. Table 4 illustrates this claim for n = 100 and n = 500.

Next the test H0 : β2 = 0 was considered. The OLS test is equivalent to the t test

from MLR of Y on x. The true model used α = 1 and β = (1, 0, 1, 1)T . To simulate

adaptive trimming, |corr(β̂
T

Mx,βTx)| was computed for M = 0, 10, ..., 90 and the initial

trimming proportion MI maximized this correlation. This process should be similar to
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choosing the best trimmed view by examining 10 plots. The rejection proportions were

recorded for M = 0, ..., 90 and for adaptive trimming. Chang (2006) used the seven models,

eight distributions and sample sizes n = 60, 150, and 500.

The test that used adaptive trimming had proportions ≤ 0.072 except for model m4 with

distributions d2, d3, d4, d6, d7 and d8; m2 with d4, d6 and d7 for n = 500 and d6 with

n = 150; m6 with d4 and n = 60, 150; m5 with d7 and n = 500 and m7 with d7 and n =

500. With the exception of m4, if the adaptive p̂ > 0.072, then 0% trimming had a rejection

proportion near 0.1. Occasionally adaptive trimming was conservative with p̂ < 0.03. The

0% trimming worked well for m1 and m6 for all eight distributions and for d1 and d5 for all

seven models. Models m2 and m3 usually benefited from adaptive trimming. For distribution

d1, the adaptive and 0% trimming methods had identical p̂ for n = 500 except for m3 where

the values were 0.038 and 0.042. Table 5 used n = 150 and supports the claim that the

adaptive trimming estimator can be asymptotically equivalent to OLS (0% trimming) and

that trimming can greatly improve the type I error.

There are many competitors to OLS for 1D regression including sliced inverse regression

(SIR) Li (1991), (residual based) principal Hessian directions (PHD) Li (1992), and sliced

average variance estimation (SAVE) Cook and Weisberg (1991). These three methods can

be computed in R using the Weisberg (2002) dr library. Chang (2006) applied ellipsoidal

trimming and adaptive trimming to SIR, and includes much more extensive simulation re-

sults. The collection of functions rpack, available from (www.math.siu.edu/olive/rpack.txt)

contains R functions. The function drsim5 can be used to simulate OLS tests while drsim6

can be used to simulate tests based on adaptive and 0% trimming. Power of the OLS tests

can be examined by modifying the data so that the null hypothesis does not hold.

5. Conclusions

For 1D regression models, suppose that |corr(β̂T

OLSx, β̂
T
x)| ≥ 0.95 where β̂ is a good

estimator of dβ for d 6= 0, or that the 1D regression can be visualized with the OLS response

plot. For example, the plotted points cluster tightly about the estimated mean function.

Then OLS should be a useful 1D estimator and output originally meant for MLR is also

12



often useful for 1D regression (1DR) data. In particular, i) β̂OLS estimates β for MLR and

cβ for 1DR. ii) The F test statistics tend to have a χ2
k/k limiting distribution for MLR, and

the Fk,n−p cutoffs tend to be useful for exploratory purposes for 1DR. iii) Variable selection

with the Cp statistic is effective. iv) The MSE estimates σ2 for MLR and τ 2 for 1DR. v) The

OLS response plot is a very effective tool for visualizing the regression and outlier detection.

The estimated mean function for MLR is the unit slope line through the origin, but tends to

be nonlinear for 1DR. vi) Resistant
√

n consistent estimators based on OLS and ellipsoidal

trimming exist for both MLR and 1DR. vii) Cook’s distance is a useful influence diagnostic.

To see vii) for 1DR, notice that the ith Cook’s distance

CDi =
(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
=

‖ESP (i) − ESP‖2

(p + 1)MSE

where ESP (i) = XT η̂(i) and η̂(i) is computed without the ith case, and the estimated

sufficient predictor ESP = XT η̂ estimates αOLS+c βTxj for some constant c and j = 1, ..., n.

Thus Cook’s distances give useful information on cases that influence the OLS ESP.

Fast exploratory analysis with OLS can be used to complement alternative 1D methods,

especially if tests and variable selection for the 1D method are slow or unavailable from the

software. Tests developed for parametric models such as the deviance tests for generalized

linear models will often have more power than the “model free” OLS tests. Simonoff and

Tsai (2002) suggest tests for single index models.

References for methods for single index models can be found in Patilea (2007), Kong

and Xia (2007) and Hristache, Juditsky and Spokoiny (2001). Xia, Tong, Li, and Zhu

(2002) describe additional methods, including the the minimum average conditional vari-

ance and refined minimum average conditional variance estimators (MAVE and rMAVE).

Matlab implementations of several of these methods, including rMAVE, are available from

(www.stat.nus.edu.sg/∼staxyc/). Xia (2006) tailors rMAVE to single index models (2), and

shows with simulations and theory that rMAVE is an attractive method for obtaining an

estimated sufficient predictor.

The DD plot should be used to detect outliers and influential cases for regressions with

continuous predictors. The DD plot is also a diagnostic for the linearity condition since for

13



EC data the plotted points will follow a line through the origin, and for MVN data the

plotted points will follow the identity line. In the case of no outliers, power transformations

may be used to remove nonlinearities from the predictors and to transform the predictor

distribution towards a MVN distribution. A DD plot and scatterplot matrix (when p is not

too large) may then be useful tools for determining the success of such transformations.

Ellipsoidal trimming can be used to make many 1D methods resistant to x outliers. The

response plot of ESP = α̂+β̂
T
x versus Y is crucial for visualizing the regression Y |x (where

α̂ ≡ 0 may be used). Trimming combined with the response plot makes the 1D methods

resistant to Y and x outliers.
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Figure 1: DD Plots for Buxton Data
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Figure 2: Trimmed Views

Table 1: Trimming with Non-EC Predictors, β = c(1, 2, 3)T

M β̂1 β̂2 β̂3

0 346.034 3394.260 9000.226

10 292.575 731.751 1616.625

30 191.516 421.577 616.201

90 86.024 160.877 258.987
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Table 2: Trimming with Outlier Percentage = γ, β = c(1, 0, 0, 0)T

γ M β̂1 β̂2 β̂3 β̂4

0 0 5.974 .0083 −.0221 .0008

0 50 4.098 .0166 .0017 −.0016

49 0 2.269 −.7509 −.7390 −.7625

49 50 5.647 .0305 .0011 .0053

Table 3: OLS Coefficient Estimation with Trimming

m x M βM

√
n SEcl

√
nSD

m2 d1 0 2.00,2.01,2.00,2.00 7.81,7.79,7.76,7.80 7.87,8.00,8.02,7.88

m3 d2 50 9.06,9.05,9.04,9.08 37.56,37.00,37.31,37.41 55.35,54.02,53.35,55.03

m4 d3 0 291.9,294.0,293.7,292.1 859.7,866.6,877.9,850.8 933.0,957.9,964.9,957.2

m5 d4 0 −.03,−.03,−.03,−.03 .30,.30,.30,.30 .31,.32,.33,.31

m6 d5 0 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.40

m7 d6 10 .11,.11,.11,.11 .58,.57,.57,.57 .60,.58,.62,.61
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Table 4: Rejection Proportions for H0: β = 0

x n p̂ n p̂

d1 100 0.041 500 0.050

d2 100 0.050 500 0.045

d3 100 0.047 500 0.050

d4 100 0.045 500 0.048

d5 100 0.055 500 0.061

d6 100 0.042 500 0.036

d7 100 0.054 500 0.047

d8 100 0.044 500 0.060

Table 5: Rejection Proportions for H0: β2 = 0

m x 90 80 70 60 50 40 30 20 10 0 ADAP

1 1 .065 .073 .061 .056 .062 .051 .046 .050 .044 .043 .043

5 1 .025 .017 .019 .023 .019 .019 .020 .022 .027 .037 .029

2 2 .045 .033 .023 .024 .026 .070 .183 .182 .142 .166 .040

4 3 .044 .032 .027 .058 .096 .081 .071 .057 .062 .123 .120

6 4 .040 .023 .026 .024 .030 .032 .028 .044 .051 .088 .088

7 5 .056 .053 .058 .058 .053 .054 .046 .044 .051 .037 .037

3 6 .041 .030 .021 .024 .019 .025 .025 .034 .080 .374 .036

6 7 .041 .032 .027 .032 .023 .041 .047 .053 .052 .055 .055
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