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Abstract

We consider hypothesis tests for the multiple linear regression model with ordi-

nary least squares if the predictor variables have been scaled to have unit sample

variance. Some tests are unchanged, but confidence intervals, confidence regions,

and some tests are no longer valid.
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1 INTRODUCTION

This section reviews multiple linear regression models. Consider a multiple linear regres-
sion model with response variable Y and predictors x = (x1, ..., xp) where a constant
x1 ≡ 1 is in the model. Then there are n cases (Yi,x

T
i )T , and the sufficient predictor

SP = xTβ. For these regression models, the conditioning and subscripts, such as i, will
often be suppressed. Ordinary least squares (OLS) is often used for the multiple linear
regression (MLR) model.

Let the multiple linear regression model be

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error.
Assume that the ei are independent and identically distributed (iid) with expected value
E(ei) = 0 and variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an n× p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector
of unknown errors. Also E(e) = 0 and the covariance matrix Cov(e) = σ2In where
In is the n × n identity matrix. The OLS estimator for β is β̂ = (XTX)−1XTY ,
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the vector of fitted values is Ŷ = Xβ̂, the vector of residuals is r = Y − Ŷ , and
σ̂2 = MSE =

∑n
i=1

r2

i /(n− p).
There are many multiple linear regression methods, and it is often convenient to

use centered or scaled data. See James et al. (2021). Suppose U has observed values
U1, ..., Un. Let g be an integer near 0. If the sample variance of the Ui is

σ̂2

g =
1

n − g

n
∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all the same,
then σ̂g > 0. Using g = 1 gives an unbiased estimator s2 of σ2, while g = 0 gives the
method of moments estimator.

Next consider scaling the predictors. If Y = Xβ(X,Y ) + e, the model with scaled
predictors is Y = Wβ(W ,Y ) + ε where β(X,Y ) denotes the population coefficients
from the OLS regression of Y on X. Here W = XD̂n where the p × p matrix D̂n =
diag(1, 1/s2, ..., 1/sp) where sj = σ̂j for the jth predictor xj, and j = 2, ..., p. Since OLS

is affine equivariant and D̂n is nonsingular, β̂(W ,Y ) = β̂(XD̂n,Y ) = D̂
−1

n β̂(X,Y ).
Then HW = W (W T W )−1W T = X(XTX)−1XT = HX , and the residuals and fitted
values are the same for both models. See, for example, Olive (2017, p. 413).

Now consider centered data Yi − Y = β∗

1
+ (xi,2 − x2)β2 + · · · + (xi,p − xp)βp + εi or

Zi = β∗

1
+ wi,2β2 + · · · + wi,pβp + εi. Do the OLS regression. Since the sample means

of the centered response and centered predictors are 0, β̂∗

1
= 0. In terms of the original

predictors, Ŷi = β̃1 + xi,2β̃2 + · · · + xi,pβ̃p where β̃1 = Y − β̃2x2 − · · · − β̃pxp. Then

β̃ = β̂ since OLS estimators minimize the sum of squared residuals (if β̃ 6= β̂, then
one of the estimators has a smaller sum of squared residuals, contradicting the fact that
both estimators are OLS estimators). Hence centering the response and predictors gives
an equivalent method for computing β̂, and the large sample theory for the equivalent
estimators is unchanged.

Often inference for the the scaled data (W ,Y ) is done using output from OLS soft-
ware. The large sample theory from Section 2 shows that confidence intervals and some
hypothesis tests are no longer valid. Section 3 gives a small simulation study illustrating
the results.

2 Large Sample Theory

There are many large sample theory results for ordinary least squares. The following
theorem is important. See, for example, Sen and Singer (1993, p. 280). Let H = HX ,
and let hi be the ith diagonal element of H . Theorem 1 acts if the xi are constant even
if the xi are random vectors. The literature says the xi can be constants, or condition
on xi if the xi are random vectors. Let the leverages hi = H ii be the diagonal elements
of H .

Theorem 1. Consider the MLR model and assume that the zero mean errors are
iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are random vectors, assume that the
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cases (xi, Yi) are independent, and that the ei and xi are independent. Also assume that
maxi(h1, ..., hn) → 0 and

XT X

n
→ V −1

as n→ ∞ where the convergence is in probability if the xi are random vectors (instead
of nonstochastic constant vectors). Then the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 V ). (2)

Consider testing H0 : Lβ = c where L is a full rank k× p constant matrix and c is a

k× 1 constant vector. If H0 is true, then by Theorem 1,
√
nL(β̂ −β) =

√
n(Lβ̂ − c)

D→
Nk(0, σ

2 LV LT ). Hence
√
n(Lβ̂ − c)T (σ2 LV LT )−1

√
n(Lβ̂ − c)

D→ χ2

k as n→ ∞. Let

σ̂2 = MSE
P→ σ2 and V̂ = n(XT X)−1 P→ V as n→ ∞ where convergence in probability

indicates a consistent estimator. Then
√
n(Lβ̂ − c)T (σ̂2 LV̂ LT )−1

√
n(Lβ̂ − c) =

kF1 =
1

MSE
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c)

D→ χ2

k (3)

as n→ ∞ ifH0 is true. IfH0 is true, then an F1−α,k,n−p cutoff can be used for F1 = kF1/k

since kFk,n−p
D→ χ2

k as n→ ∞. See Seber and Lee (2003, p. 100).
If Y = Xβ(X,Y ) + e, the model with scaled predictors is Y = Wβ(W ,Y ) + ε

where β(X,Y ) denotes the population coefficients from the OLS regression of Y on X.
Here W = XD̂n. As noted in Section 1, and the residuals and fitted values are the same
for both models. Thus Ŷ =

β̂1+β̂2x2+· · ·+β̂pxp = β̂1+β̂2s2

x2

s2

+· · ·+β̂psp
xp

sp
= β̂1+β̂2(W , Y )w2+· · ·+β̂p(W , Y )wp.

Hence β̂(W ,Y ) = (β̂1, β̂2s2, ..., β̂psp)
T = D̂

−1

n β̂(X, Y ) where β̂(X, Y ) = (β̂1, β̂2, ..., β̂p)
T .

For the scaled predictors, assume D̂n
P→ D = diag(1, 1/σ2, ..., 1/σp) where each σi >

0. This assumption often holds if the xi are iid from some population. Let β = β(X,Y ).
Then √

n(β̂(W ,Y ) − D−1β) =
√
n(D̂

−1

n β̂ − D̂
−1

n β + D̂
−1

n β − D−1β)

=
√
nD̂

−1

n (β̂ − β) +
√
n(D̂

−1

n − D−1)β = zn + bn

where zn =
√
nD̂

−1

n (β̂ − β)
D→ Np(0, σ

2D−1V xD−1) if
√
n(β̂ − β)

D→ Np(0, σ
2V x).

Note that D̂
−1

n β̂
P→ D−1β = β(W ,Y ). Now

bn =











0√
n(σ̂2 − σ2)β2

...√
n(σ̂p − σp)βp











=











0
b2,n
...
bp,n











= Op(1)
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if
√
n(σ̂i −σi)

D→ N(0, τ 2

i ). Then bi,n
D→ N(0, β2

i τ
2

i ) for i = 2, ..., p. Thus
√
n(β̂(W ,Y )−

D−1β) does not converge in distribution to z ∼ Np(0, σ
2D−1V xD−1) unless bn

P→ 0.
Using the scaled data (W , Y ) in the OLS software gives an incorrect normal approx-

imation β̂(W , Y ) ≈ Np(β(W , Y ),MSE n (W T W )−1) =

Np(D
−1β(X, Y ),MSE n D̂

−1

n (XTX)−1D̂
−1

n ).

Hence confidence intervals, confidence regions, and many tests of hypotheses will no
longer be valid. An important exception occurs for the partial F tests of the form
H0 : LOβ = 0 with c = 0 and LO a full rank k × p matrix where LOβ = βO =
(βi1, ..., βik)

T and O = {i1, ..., ik}. For such a test, we would like to leave the predictors
LOx = xO = (xi1, ..., xik)

T out of the regression model, resulting in a reduced model.
Note that the jth row of LO has a 1 in the ijth position, with all other entries equal to
0.

Let the ijth element of a p × m matrix A be aij. Then A = (aij). Thus LOA =
AO = (aia,j) where the ath row of AO is the iath row of A for a = 1, ..., k. Similarly, if
C = (cij) is a p× p matrix, then

LOCLT
O = COO =











ci1,i1 ci1,i2 ... ci1,ik

ci2,i1 ci2,i2 ... ci2,ik
...

... ...
...

cik,i1 cik,i2 ... cik,ik











= (cia,ib).

Let Q = diag(d1, ..., dp) be a p × p diagonal matrix with diagonal elements d1, ..., dp.
Let H = QA = (hij) = (diaij). Then LOQA = LOH = HO = (hia,j) = (diaaia,j) =
QOOAOO. Let B = QCQ = (bij) = (didjcij). Then LOBLT

O = BOO = (bia,ib) =
(diadibcia,ib) = QOOCOOQOO.

Theorem 2. For the test H0 : LOβ = 0, the partial F test statistics from the scaled
data and the unscaled data are the same.

Proof. The result holds if

(LOβ̂)T [LO(XTX)−1LT
O]−1(LOβ̂) = (LOβ̂(W , Y ))T [LO(W T W )−1LT

O]−1(LOβ̂(W , Y )).

By the above remarks, LOD̂nLT
O = D̂OO = diag(1/si1, ..., 1/sik) where we define

s1 = 1. Let Q = D−1

n and C = (XTX)−1.

Then LOβ̂(W , Y ) = LOD̂
−1

n β̂ = β̂O(W , Y ) = D̂
−1

OOβ̂O = D̂
−1

OOLOβ̂, while

LO(W TW )−1LT
O = LO(D̂nXT XD̂n)

−1LT
O = LOD̂

−1

n (XTX)−1D̂
−1

n LT
O

= D̂
−1

OO(XTX)−1

OOD̂
−1

OO = D̂
−1

OOLO(XTX)−1LT
OD̂

−1

OO.

Thus (LOβ̂(W , Y ))T [LO(W TW )−1LT
O]−1(LOβ̂(W , Y )) =

(D̂
−1

OOLOβ̂)T [D̂
−1

OOLO(XT X)−1LT
OD̂

−1

OO]−1D̂
−1

OOLOβ̂ =

(LOβ̂)T [LO(XTX)−1LT
O]−1(LOβ̂),
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proving the theorem. �

Let xT
i be the ith row of X, and let wT

i be the ith row of W . Let β̂i = β̂i(x, Y )
be the ith OLS estimator of βi = βi(x, Y ) where (x, Y ) denotes that the Y were re-
gressed on the x. Similarly, β̂i(w, Y ) is the estimator when the Y are regressed on the
wi. Let [Lin, Uin] = β̂i ± t1−α/2,n−pSE(β̂i) be the large sample 100(1 − α)% confidence
interval CI for βi. Let σ2

i = V ar(xi) for i = 2, ..., p. Then βi(w, Y ) = σiβi(x, Y ) for i =
2, ..., p, and the “CI” for βi(w, Y ) is [siLin, siUin]. This result holds since (W TW )−1 =

D̂
−1

n (XTX)−1D̂
−1

n . Scaling does not change the MSE, hence SE[β̂i(w, Y )] = siSE[β̂i(x, Y )]
for i = 2, ..., p where s2

i is the usual unbiased estimator of σ2

i . If βi(w, Y ) = βi(x, Y ) = 0,
then βi = 0 is in the interval [Lin, Uin] if and only if βi(w, Y ) = σiβi(x, Y ) = 0 is in the
“CI” [siLin, siUin] since si > 0. Hence in the simulation where βi = 0, the coverage of
the CI for βi(x, Y ) and the coverage of the “CI” for βi(w, Y ) will be exactly the same.
When βi 6= 0, we expect that the coverages will differ, and that the “CI” for βi(w, Y )
will often have undercoverage. Here the coverage is the observed proportion of intervals
that contained the population parameter. Hence if 5000 CIs for βi were made, and 4750
of the CIs contained βi, then the (observed) coverage is 4750/5000 = 0.95.

The simulations used L = LO where LOβ = c = βO = (βi1, ..., βik)
T and O =

{i1, ..., ik}.

3 Example and Simulations

Example. The Hebbler (1847) data was collected from n = 26 districts in Prussia
in 1843. Let Y = the number of women married to civilians in the district with a
constant x1 and predictors x2 = the population of the district in 1843, x3 = the num-

ber of married civilian men in the district, x4 = the number of married men in the

military in the district, and x5 = the number of women married to husbands in the

military in the district. Sometimes the person conducting the survey would not count
a spouse if the spouse was not at home. Hence Y and x3 are highly correlated but
not equal. Similarly, x4 and x5 are highly correlated but not equal. Then β̂OLS =
(242.3910, 0.00035, 0.9995,−0.2328, 0.1531)T , and forward selection with OLS and the
Cp criterion used β̂I,0 = (β̂1, 0, 1.0010, 0, 0)

T . With the scaled data, β̂OLS(w, Y ) =
(242.3910, 81.0283, 40877.4086,−104.8576, 66.2739)T .

Next, we describe a small OLS simulation study. The simulation used ψ = 0 and 0.5;
and k = 1 and p− 1 where k and ψ are defined in the following paragraph.

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. In the
simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p− 1 elements
of the vector wi are independent and identically distributed (iid) N(0,1). Let the m×m
matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the
vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal entries
σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the
correlations are cor(xi, xj) = ρ = (2ψ + (m− 2)ψ2)/(1 + (m− 1)ψ2) for i 6= j where xi

and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where

c > 0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction
of (1, ..., 1)T . Let Yi = 1 + 1xi,1 + · · · + 1xi,k + ei for i = 1, ..., n. Hence α = 1 and
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φ = (1, .., 1, 0, ..., 0)T with k + 1 ones and p− k − 1 zeros.
The zero mean iid errors ẽi = εi were iid from five distributions: i) N(0,1), ii) t3, iii)

EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii)
is not symmetric.

When ψ = 0, the OLS confidence intervals for βi should have length near 2t96,0.975σ/
√
n.

Hence the scaled CI length =
√
n CI length ≈ 2(1.96)σ = 3.92σ when the iid zero mean

errors have variance σ2. The simulation gave the average scaled CI lengths.
For the unscaled predictors, the simulation computed the large sample 95% CIs

[Lin, Uin] for βi and i = 1, ..., p. The test for H0 : (βi1, βi2)
T = (βi1,0, βi2,0)

T was also
performed using equation (11) with {i1, i2} = {p − 1, p}. 5000 CIs were generated for
each βi, and the coverage was the proportion of times βi was in its CI. Hence if β1 was
in its interval 4750/5000 = 0.95, then the observed coverage was 0.95.

For the scaled predictors, the simulation computed the “95% CIs” [siLin, siUin] for
σiβi and i = 1, ...p with {i1, i2} = {p− 1, p}. The coverage was the proportion of times
σiβi was in its “CI.” The “test” for H0 : (βi1(w, Y ), βi2(w, Y ))T = (σi1βi1,0, σi2βi2,0)

T was
also performed using equation (11) on the scaled data W . The “test” is a valid large
sample test if (βi1, βi2)

T = (0, 0)T . When k = 1, the test is valid and the “95% CI” can be
used as a large sample test for H0 : σiβi = 0 except for β2 since β3 = · · · = βp = 0. When
k = p− 1 the “test” and “95% CIs” are not valid large sample tests and CIs (except for
β1). The undercoverage can be rather large when the test is not valid.

Table 1: n=100,p=5,indices=(4,5), k=1

psi etype β1 β2 β3 β4 β5 testcov
0, cov 1 0.9488 0.9452 0.9536 0.9482 0.9540 0.9526
u, len 4.0386 4.0676 4.0651 4.0634 4.0705
0, cov 1 0.9488 0.8874 0.9536 0.9482 0.9540 0.9526
s, len 4.0386 4.0382 4.0396 4.0393 4.0380

0.5, cov 1 0.9484 0.9530 0.9484 0.9510 0.9514 0.9504
u, len 4.0413 7.1015 7.1073 7.0910 7.1041

0.5, cov 1 0.9484 0.9332 0.9484 0.9510 0.9514 0.9504
s, len 4.0413 9.3737 9.3807 9.3653 9.3790

Each table has 4 lines for each type. The first line gives the coverages for the βi while
the second line gives the scaled CI lengths. There is not a length for testcov since the test
corresponds to a confidence region instead of a confidence interval. The third and fourth
lines are for the scaled data where cov is the proportion of times σiβi was in its interval.
With 5000 runs, coverage between 0.94 and 0.96 suggests that the actual coverage is near
the nominal large sample coverage of 0.95.

For Table 1, H0 is true except for the scaled data with σ2β2. With error type 1 and
psi = ψ = 0, the average scaled CI lengths were near 4.07 which is not too far from 3.92
considering that n = 100 and p = 5. In the third line under β2, the coverage is 0.8874.
With ψ = 0.5, the sixth line under β2 has coverage 0.9333. Increasing ψ often decreased
the undercovaerage.
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Table 2: n=100,p=5,indices=(4,5), k=5

psi etype β1 β2 β3 β4 β5 testcov
0, cov 1 0.9448 0.9448 0.9536 0.9492 0.9500 0.9528
u, len 4.0419 4.0730 4.0797 4.0690 4.0689
0, cov 1 0.9448 0.8976 0.8984 0.8882 0.8902 0.8654
s, len 4.0419 4.0421 4.0417 4.0422 4.0424

0.5, cov 1 0.9548 0.9582 0.9486 0.9530 0.9472 0.9506
u, len 4.0431 7.0952 7.1066 7.1151 7.1100

0.5, cov 1 0.9548 0.9360 0.9354 0.9338 0.9310 0.9130
s, len 4.0431 9.3555 9.3679 9.3722 9.3643

For Table 2 with the scaled data, H0 is only true for β1. For the scaled data, the “CI”
undercoverage was more severe for ψ = 0 than for ψ = 0.5, and the testcov was worse
than that for the CIs. With the unscaled data, H0 was always true.

4 Conclusions

For multiple linear regression with standardized data, OLS software tests of the form
H0 : βO = 0 are valid large sample tests where βO = (βi1, ..., βik)

T . However, OLS
software does not give correct confidence intervals for βi(w, Y ) = σiβi for i = 2, ..., p
unless βi = 0.

Software

The R software was used in the simulations. See R Core Team (2024). Programs are in
the Olive (2025) collections of R functions slpack.txt, available from (http://parker.ad.siu.
edu/Olive/slpack.txt). The function mlrsim was used to make the tables.
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