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Abstract

Let the response variable Y be the time until an event such as death. Assume

that there are p predictors x1, ..., xp and that the response variable is right censored.
Several survival regression models, including accelerated failure time models, have

the form Z = log(Y ) = αZ + xT
i βZ + e. This paper gives a simple method for

estimating the covariances Cov(xi, Z) for some of these models.
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1 INTRODUCTION

This section reviews some survival regression models. The response variable Y > 0
is the time until an event such as death. Let the p × 1 vector of predictor variables
x = (x1, ..., xp)

T . Let the sufficient predictor SP = xT β, and let the estimated sufficient

predictor ESP = xT β̂.
Assume that the response variable is right censored so Y is not observed. Instead, the

right censored survival time Ti = min(Yi,Wi) where Yi is independent of the censoring
time Wi. Also δi = 0 if Ti = Wi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi,xi) for i = 1, ..., n.

For an accelerated failure time model, the log transformation of the response variable
results in a multiple linear regression model. Hence multiple linear regression models
will be useful. Now let the response variable Y be for multiple linear regression, so Y
need not be a nonnegative time until event. A useful multiple linear regression model is
Y |xTβ = α + xTβ + e or Yi = α + xT

i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α+ xT
i β + ei (1)
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for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with
expected value E(ei) = 0 and variance V (ei) = σ2. In matrix form, this model is

Y = Xφ + e, (2)

where Y is an n× 1 vector of dependent variables, X is an n× (p + 1) matrix with ith
row (1,xT

i ), φ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown
errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n× n identity matrix.

For a multiple linear regression model with heterogeneity, assume model (1) holds with
E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) = diag(σ2

1
, ..., σ2

n) is an n × n positive definite
matrix. When the σ2

i are known, weighted least squares is often used. Under regularity
conditions, the ordinary least squares (OLS) estimator φ̂OLS = (XT X)−1XT Y can be
shown to be a consistent estimator of φ. See, for example, White (1980).

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =
Σx = E[(x − E(x))(x − E(x))T ] and Cov(x, Y ) = ΣxY = E[(x − E(x)(Y − E(Y ))].
Let

Σ̂x =
1

n− 1

n∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (1) are φ̂OLS = (XT X)−1XTY , α̂OLS = Y −β̂
T

OLSx,
and

β̂OLS = Σ̂
−1

x Σ̂xY .

For a multiple linear regression model with iid cases, β̂OLS is a consistent estimator of
βOLS = Σ−1

x ΣxY under mild regularity conditions, while α̂OLS is a consistent estimator
of E(Y ) − βT

OLSE(x).
For a parametric accelerated failure time (AFT) model,

Zi = log(Yi) = α+ βT
Axi + σei (3)

where the ei are iid from a location scale family. The parameters are estimated by
maximum likelihood.

The Weibull proportional hazards regression model or Weibull regression model is

Y |SP ∼ W (γ = 1/σ, λ0 exp(SP ))

where Y has a Weibull W (γ, λ) distribution if the probability density function of Y is

f(y) = λγyγ−1 exp[−λyγ] for y > 0.

This regression model can also be fit using the nonparametric Cox (1972) proportional
hazards regression model. Let the sufficient predictor SP = xT βP . If Y |xTβP satisfies
a Weibull regression model, then Z = log(Y ) = α + xT βA + ei satisfies a Weibull AFT
with λ0 = exp(−α/σ) and βP = −βA/σ. Exponential regression is the special case where
σ = 1.

Two other important AFTs are i) the lognormal AFT where log(Y )|xTβA ∼ N(α +
xTβA, σ

2) where the Yi are lognormal and the ei ∼ N(0, 1) are normal, and ii) the
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loglogistic AFT where log(Y )|xT βA ∼ L(α + xTβA, σ) where the Yi are loglogistic and
the ei ∼ L(0, 1) are logistic. For the loglogistic AFT, Y follows a proportional odds
model. Y does not follow a proportional hazards regression model for the loglogistic and
lognormal AFTs.

The Buckley and James (1979) estimator (α̂BJ , β̂BJ) is a nonparametric survival
regression method for models of the form (3), and is a competitor for the parametric
AFTs. When there is no censoring, this estimator is equivalent to the ordinary least
squares estimator for multiple linear regression.

Often the log transformation results in a linear model with heterogeneity:

Zi = log(Yi) = αZ + xT
i βZ + ei (4)

where the ei are independent with expected value E(ei) = 0 and variance V (ei) = σ2

i .
For the AFT and the Buckley James estimator, the variance is constant: V (ei) = σ2 does
not depend on i.

2 Estimating ΣxZ for Some Censored Survival Re-

gression Models

This section derives an estimator for ΣxZ = Cov(x, Z) where the right censored Zi are
not observed. Let the ordinary least squares (OLS) estimator be β̂OLS. Assume that the
cases (xi, Yi) are iid. Since model (4) is a multiple linear regression model, under mild
regularity conditions, βZ = βOLS = Σ−1

x ΣxZ . Thus ΣxZ = Cov(x)βZ = ΣxβZ . When

the response Yi is censored, several models give consistent estimators β̂Z of βZ . Hence

Σ̂xZ = Σ̂xβ̂Z . (5)

If an accelerated failure time model is used, then two estimators are Σ̂xZ(A) = Σ̂xβ̂A

and Σ̂xZ(B) = Σ̂xβ̂BJ . These two estimators require consistent estimators of βZ =
Σ−1

x ΣxZ , which occurs, for example, if the cases (xi, Yi) are iid from some population
with covariance matrix Σx and covariance vector ΣxZ . The survival times Yi can be
right censored, but the predictor variables x1, ..., xp are not censored. Note that the
predictor variables that have the highest absolute correlation with Z have the highest

values of |Ĉov(xi, Z)|/
√
V̂ (xi).

3 Example and Simulations

It is important to check that a parametric AFT model is reasonable with the Buckley
James before using Equation (5). Make an EE plot of ESPBJ = xT β̂BJ versus ESPA =
xT β̂A. For the Weibull AFT, also plot ESPPH = −σ̂xT β̂P versus the above two ESPs,
where PH stands for the Cox proportional hazards estimator. The plotted points in the
EE plot should scatter tightly about the identity line with zero intercept and unit slope.
The identity line is included in the EE plots as a visual aid.
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Example. The ovarian cancer data is from Collett (2003, p. 187-190) and Edmunson
et al. (1979). The response variable is the survival time of n = 26 ovarian cancer
patients in days with predictors age in years and treat (1 for cyclophosphamide alone
and 2 for cyclophosphamide combined with adriamycin). See Figure 1 for the three EE
plots for the ovarian cancer data, where ESPW=ESPA. The Weibull AFT appears to be
appropriate for this data set. Then Ĉov(age, Z) = −0.1286, Ĉov(treat, Z) = −7.90408,

Ĉov(age, Z)/

√
V̂ (age) = −0.2522, and Ĉov(treat, Z)/

√
V̂ (treat) = −0.7840. Hence

|Ĉor(treat, Z)| ≈ 3|Ĉor(age, Z)|.
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Figure 1: Three EE Plots for the Ovarian Cancer Data

3.1 Σ̂xZ Simulation

R code similar to that of Zhou (2001) was used to generate a Weibull regression data
set with parameter vector βP . Then the Weibull AFT parameter vector β = βZ =
βA = −σβP = −(1/γ)βp. Hence ΣxZ = −γCov(x)βP . The simulation used βA =
−(1/γ, ..., 1/γ, 0, ..., 0)T with p− k zeroes and βP = (1, ..., 1, 0,
..., 0)T with k ones and p− k zeroes. The population ΣxZ = ΣxβA was computed.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np(0, I) where the p elements of
the vector wi are iid N(0,1). Let the p×p matrix A = (aij) with aii = 1 and aij = ψ where
0 ≤ ψ < 1 for i 6= j. Then the vector xi = Awi so that Cov(xi) = Σx = AAT = (σij)
where the diagonal entries σii = [1+pψ2] and the off diagonal entries σij = [2ψ+(p−1)ψ2].
Hence the correlations are cor(xi, xj) = ρ = (2ψ + (p − 1)ψ2)/(1 + pψ2) for i 6= j. If
ψ = 1/

√
cp, then ρ→ 1/(c+1) as p→ ∞ where c > 0. As ψ gets close to 1, the predictor

vectors xi cluster about the line in the direction of (1, ..., 1)T .
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Then 5000 runs are used to get the estimators. The means and standard deviations
of the estimators are given. In the simulation, the uncensored values of Z are known.
Hence the first estimator is the usual sample covariance vector Σ̂xZ . For real data,
this estimator can not be computed since only censored values of Z are known. The
second estimator is Σ̂xZ(A) = Σ̂xβ̂A from the Weibull AFT. The third estimator is
Σ̂xZ(BJ) = Σ̂xβ̂BJ using the Buckley James estimator. Let ΣxZ = (σ1Z , ..., σpZ)T .
Table 1 gives 2 lines per simulation scenario. The first line gives the means while the
second line gives the standard deviations. A value of 0+ means the absolute value was
less that 0.00005.

Table 1: ΣxZ = (−1, 0, 0, 0)T

(n, p, ψ, k) est σ1Z σ2Z σ3Z σ4Z

(100,4,0,1) samp -0.9993 -0.0022 -0.0024 -0.0010
SD 0.1935 0.1620 0.1623 0.1630

(100,4,0,1) AFT -1.0030 -0.0014 -0.0014 0+
SD 0.1855 0.1491 0.1496 0.1505

(100,4,0,1) BJ -1.0019 -0.0023 -0.0016 -0.0009
SD 0.2024 0.1688 0.1689 0.1694

All three estimators worked well. It is not surprising that a correctly specified AFT
would slightly outperform the Buckley James estimator (have the smallest standard de-
viations).

4 Conclusions

The Harrell (2015) rms library is useful for the Buckley James estimator. For more on
estimators for model (4), see, for example, Heller and Simonoff (1990), Lai and Ying
(1991), Lin and Wei (1992), and Yu, Liu, and Chen (2024).

Under iid cases, β̂OLS still estimates Σ−1

x ΣxY when heterogeneity is present. Hence

Σ̂xZ = Σ̂xβ̂Z where, for example, β̂Z is one of the estimators studied by Yu, Liu, and
Chen (2024).

In the literature, there are several estimators for the correlation Cor(X, Y ) where X
and Y are survival times. These estimators usually use maximum likelihood estimation or
multiple imputation assuming that (X, Y ) are iid from a bivariate normal distribution.
See, for example, Barchard and Russell (2024), Li, Gillespie, Shedden, and Gillespie
(2018), and Lyles, Fan, and Chuachoowong (2001).

Software

The R software was used in the simulations. See R Core Team (2024). Programs are in
the Olive (2025) collection of R functions survpack.txt, available from (http://parker.ad.
siu.edu/Olive/survpack.txt). The function BJcovxz generates a Weibull regression data
set with right censored survival times using a method similar to that of Zhou (2001).
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Some R code for producing the simulation and Figure 1 appears in Johana Lemonge
(2025). The data set is available from (http://parker.ad.siu.edu/Olive/survdata.txt).

References

Barchard, K.A., and Russell, J.A. (2024), “Distorted Correlations among Censored
Data: Causes, Effects, and Correction,” Behavior Research Methods, 56, 1207-1228.

Buckley, J. and James, I. (1979), “Linear Regression with Censored data,” Biometrika,
66, 429-436.

Collett, D. (2003), Modelling Survival Data in Medical Research, 2nd ed., Chapman
& Hall/CRC, Boca Raton, FL.

Cox, D.R. (1972), “Regression Models and Life-Tables,” Journal of the Royal Statis-

tical Society, B, 34, 187-220.
Edmunson, J.H., Fleming, T.R., Decker, D.G., Malkasian, G.D., Jorgenson, E.O.,

Jeffries, J.A., Webb, M.J., and Kvols, L.K. (1979), “Different Chemotherapeutic Sen-
sitivities and Host Factors Affecting Prognosis in Advanced Ovarian Carcinoma Versus
Minimal Residual Disease,” Cancer Treatment Reports, 63, 241-247.

Harrell, F.E. (2015), Regression Modeling Strategies: with Applications to Linear

Models, Logistic Regression, and Survival Analysis, 2nd ed., Springer, New York, NY.
Heller, G., and Simonoff, J. S. (1990), “A Comparison of Estimators for Regression

with a Censored Response Variable,” Biometrika, 77, 515-520.
Johana Lemonge, S. (2025), OLS Testing with Predictors Scaled to Have Unit Sample

Variance, PhD thesis, Southern Illinois University, (http://parker.ad.siu.edu/Olive/
sSanjuka.pdf).

Lai, T.L., and Ying, Z. (1991), “Large-Sample Theory of a Modified Buckley-James
Estimator for Regression Analysis with Censored Data,” Annals of Statistics, 19, 1370-
1402.

Li, Y., Gillespie, B.W., Shedden, K. and Gillespie, J.A. (2018), “Profile Likelihood
Estimation of the Correlation Coefficient in the Presence of Left, Right or Interval Cen-
soring and Missing Data,” The R Journal, 10, 159-179.

Lin, J.S., and Wei, L.J. (1992), “Linear Regression Analysis Based on Buckley-James
Estimating Equation,” Biometrics, 48, 679-681.

Lyles, R.H., Fan, D., and Chuachoowong, R. (2001), “Correlation Coefficient Estima-
tion Involving a Left Censored Laboratory Assay Variable,” Statistics in Medicine, 20,
2921-2933.

Olive, D.J. (2025), Survival Analysis, online course notes, see (http://parker.ad.siu.
edu/Olive/survbk.htm).

R Core Team (2024), “R: a Language and Environment for Statistical Computing,”
R Foundation for Statistical Computing, Vienna, Austria, (www.R-project.org).

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity,” Econometrica, 48, 817-838.

Yu, L., Liu, L., and Chen, D.G. (2024), “Extending BuckleyJames Method for Het-
eroscedastic Survival Data,” Journal of Statistical Computation and Simulation, 94, 1776-
1792.

Zhou, M. (2001), “Understanding the Cox Regression Models with Time–Change
Covariates,” The American Statistician, 55, 153-155.

6


