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Abstract

Inference after model selection is a very important problem. This paper derives the

asymptotic distribution of some model selection estimators for autoregressive moving aver-

age time series models. Under strong regularity conditions, the model selection estimators

are asymptotically normal, but generally the asymptotic distribution is a nonnormal mixture

distribution. Hence bootstrap confidence regions that can handle this complicated distribu-

tion were used for hypothesis testing. A bootstrap technique to eliminate selection bias is to

fit the model selection estimator β̂
∗

MS to a bootstrap sample to find a submodel, then draw

another bootstrap sample and fit the same submodel to get the bootstrap estimator β̂
∗

MIX.

1. Introduction

There are several useful results given in this paper. Model selection for autoregressive

moving average (ARMA) time series models is frequently used. The main result of this

paper is to derive large sample theory for some ARMA model selection estimators, proving

that the estimators are
√
n consistent. Although the time series model selection literature is

enormous, it has not been previously shown that the time series model selection estimators

are consistent. See Section 2. Some bootstrap theory is given in Section 3.
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The remainder of this section reviews ARMA time series models, model selection, and

some recent results on bootstrap confidence regions. We will use the R software notation and

write a moving average parameter θ with a positive sign. Many references and software will

write the model with a negative sign for the moving average parameters. A moving average

MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · · + θqet−q + et

where θq 6= 0. An autoregressive AR(p) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + et

where φp 6= 0. An autoregressive moving average ARMA(p, q) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + θ1et−1 + θ2et−2 + · · · + θqet−q + et (1)

where θq 6= 0 and φp 6= 0. The results in this paper also apply to a time series Xt that follows

an ARIMA(p, d, q) model with known d if the differenced time series model Yt follows an

ARMA(p, q) model. See Box and Jenkins (1976) for more on these models. We will assume

that the et are independent and identically distributed (iid) with zero mean and variance σ2.

The observed time series is {Yt} = Y1, ..., Yn.

We usually want the ARMA(p, q) model to be weakly stationary, causal, and invertible.

Let Zt = Yt − µ where µ = E(Yt) if {Yt} is weakly stationary. Then the causal property

implies that Zt =
∑

∞

j=1 ψjet−j + et, which is an MA(∞) representation, where the ψj → 0

rapidly as j → ∞. Invertibility implies that Zt =
∑

∞

j=1 χjZt−j + et, which is an AR(∞)

representation, where the χj → 0 rapidly as j → ∞. We will make the usual assumption

that the AR(∞) and MA(∞) parameters are square summable. Thus if the ARMA(p, q)

model is weakly stationary, causal, and invertible, then Yt depends almost entirely on nearby

lags of Yt and et, not on the distant past.

This paper considers model selection where it is assumed that it is known that the model

is ARMA, AR, or MA, but the order needs to be determined. For ARMA model selection,

let the full model be an ARMA(pmax, qmax) model. For AR model selection qmax = 0, while
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for MA model selection pmax = 0. Granger and Newbold (1977, p. 178) suggested using

pmax = 13 for AR model selection, and we may use pmax = qmax = 5 for ARMA model

selection, and qmax = 13 for MA model selection. For ARMA model selection, there are

J = (pmax +1)(qmax +1) ARMA(p, q) submodels where p ranges from 0 to pmax and q ranges

from 0 to qmax. For AR and MA model selection there are J = pmax + 1 and J = qmax + 1

submodels, respectively. Assume the true (optimal) model is an ARMA(pS, qS) model with

pS ≤ pmax and qS ≤ qmax. Let the selected model I be an ARMA(pI, qI) model. Then the

model underfits unless pI ≥ pS and qI ≥ qS. For AR model selection, the probability of

underfitting goes to 0 if the Akaike (1973) AIC, Schwartz (1978) BIC, or Hurvich and Tsai

(1989) AICC criterion are used. See Hannan (1980) for similar results for ARMA models.

Also see Claeskens and Hjort (2008, pp. 39, 40, 45, 46), Hannan and Kavalieris (1984),

Hannan and Quinn (1979), Huang et al. (2022), and Shibata (1976).

More notation is needed for model selection. Let the full model be the AR(pmax),

MA(qmax), or ARMA(pmax, qmax) model. Let β be a b × 1 vector. For ARMA model

selection, let β = (φT , θT )T = (φ1, ..., φpmax, θ1, ..., θqmax)
T with b = pmax + qmax. For

AR model selection, let β = (φ1, ..., φpmax)
T with b = pmax, and for MA model selection,

let β = (θ1, ..., θqmax)
T with b = qmax. Hence β = (β1, ..., βpmax, βpmax+1, ..., βpmax+qmax)

T .

Let S = {1, ..., pS, pmax + 1, ..., pmax + qS} index the true ARMA(pS, qS) model. If S =

∅ is the empty set, then the time series random variables Y1, ..., Yn are iid. Let I =

{1, ..., pI, pmax + 1, ..., pmax + qI} index the ARMA(pI, qI) model. Let β̂I,0 be a b × 1 es-

timator of β which is a obtained by padding β̂I with zeroes. If βI = (φ1, ..., φpI
, θ1, ..., θqI

)T ,

then β̂I,0 = (φ̂1, ..., φ̂pI
, 0, .., 0, θ̂1, ..., θ̂qI

, 0, ..., 0)T . If qI = 0, then β̂I,0 = (φ̂1, ..., φ̂pI
, 0, .., 0)T .

If pI = 0 then β̂I,0 = (0, ..., .., 0, θ̂1, ..., θ̂qI
, 0, ..., 0)T . If I = ∅ with pI = qI = 0, then define

β̂I,0 = 0, the b× 1 vector of zeroes. The submodel I underfits unless S ⊆ I .

For example, if pmax = qmax = 5, then S = {1, 6, 7} corresponds to the ARMA(1,2)

model, and I = {1, 6, 7, 8} corresponds to the ARMA(1,3) model. Then β̂S = (φ̂1, θ̂1, θ̂2)
T ,

β̂S,0 = (φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, 0, 0, 0)
T , and β̂I,0 = (φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, θ̂3, 0, 0)

T .

The model Imin corresponds to the model that minimizes the AIC, AICC, or BIC crite-
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rion. Then the model selection estimator β̂MS = β̂Imin,0. With this notation, the ARMA

time series model selection theory developed in this paper is very similar to the variable

selection theory for regression models, such as multiple linear regression and generalized lin-

ear models, developed by Pelawa Watagoda and Olive (2021ab) and Rathnayake and Olive

(2023).

Assume β̂MS = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J . Let β̂MIX

be a random vector with a mixture distribution of the β̂Ik,0 with probabilities equal to πkn.

Hence β̂MIX = β̂Ik,0 with the same probabilities πkn of the model selection estimator β̂MS,

but the Ik are randomly selected. The large sample theory for β̂MIX is useful for explaining

that of β̂MS and for bootstrap confidence regions. Note that β̂MIX can not be computed

since the πkn are unknown. A random vector u has a mixture distribution of random vectors

uj if the cumulative distribution function (cdf) of u is

Fu(t) =
J

∑

j=1

πjFuj
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, and Fuj
(t) is the cdf of uj .

Inference will consider bootstrap hypothesis testing with confidence intervals (CIs) and

regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1 vector.

A large sample 100(1 − δ)% confidence region for θ is a set An such that P (θ ∈ An) is

eventually bounded below by 1 − δ as the sample size n → ∞. Then reject H0 if θ0 is not

in the confidence region. Let the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗

B be the

bootstrap sample for Tn. Let A be a full rank g × b constant matrix. For model selection,

test H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ. Then let Tn = Aβ̂SEL and let

T ∗

i = Aβ̂
∗

SEL for i = 1, ..., B and SEL is MS or MIX. Let dxe be the smallest integer ≥ x.

For g = 1, let the shortest closed interval containing at least c of the T ∗

i be the shorth(c)

estimator. Then the large sample 100(1 − δ)% Frey (2013) shorth(c) CI for θ is

[T ∗

(s), T
∗

(s+c−1)] with c = min(B, dB[1− δ + 1.12
√

δ/n ] e). (2)

The shorth confidence interval is a practical implementation of the Hall (1988) shortest

bootstrap interval based on all possible bootstrap samples.
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Let T be g × 1 and let C be a g × g symmetric positive definite matrix. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T )

for each observation zi.

The confidence regions use Mahalanobis distancesDi and a correction factor to get better

coverage when B ≥ 50g. This result is useful because the bootstrap confidence regions can

be slow to simulate and tend to have undercoverage. Let the correction factor

qB = min(1 − δ + 0.05, 1 − δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δg/B), otherwise. (3)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the 100qBth sample

percentile of the Di. Let T
∗

and S∗

T be the sample mean and sample covariance matrix of

the bootstrap sample.

The Olive (2017ab, 2018) prediction region method (4), modified Bickel and Ren (2001)

(5), and Pelawa Watagoda and Olive (2021a) hybrid (6) large sample 100(1−δ)% confidence

regions for θ are {w : D2
w(T

∗

,S∗

T ) ≤ D2
(UB)} =

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} (4)

whereD2
(UB) is computed from D2

i = (T ∗

i −T
∗

)T [S∗

T ]−1(T ∗

i −T
∗

) for i = 1, ..., B (if g = 1, (4) is

a closed interval centered at T
∗

just long enough to cover UB of the T ∗

i ), {w : D2
w(Tn,S

∗

T ) ≤
D2

(UB,T )} =

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} (5)

where the cutoff D2
(UB,T ) is the 100qBth sample percentile of the D2

i =

(T ∗

i − Tn)
T [S∗

T ]−1(T ∗

i − Tn), and {w : D2
w(Tn,S

∗

T ) ≤ D2
(UB)} =

{w : (w − Tn)
T [S∗

T ]−1(w − Tn) ≤ D2
(UB)}. (6)

Under regularity conditions, Olive (2017b, 2018) proved that (4) is a large sample confi-

dence region. See Bickel and Ren (2001) for (5), while Pelawa Watagoda and Olive (2021a)
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gave simpler proofs and proved that (2) is a large sample CI. Assume un
D→ u where

un =
√
n(T ∗

i − Tn),
√
n(T ∗

i − T
∗

),
√
n(Tn − θ), or

√
n(T

∗ − θ), and nS∗

T
P→ C where C is

nonsingular. Let

D2
1 = D2

T ∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i − T
∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

),

D2
2 = D2

θ(Tn,S
∗

T ) =
√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗

,S∗

T ) =
√
n(T

∗ − θ)T (nS∗

T )−1
√
n(T

∗ − θ), and

D2
4 = D2

T ∗

i
(Tn,S

∗

T ) =
√
n(T ∗

i − Tn)
T (nS∗

T )−1
√
n(T ∗

i − Tn).

Then D2
j ≈ uT (nS∗

T )−1u ≈ uT C−1u, and the percentiles of D2
1 and D2

4 can be used as

cutoffs. Confidence regions (4) and (6) have the same volume.

The ratio of the volumes of regions (4) and (5) is

|S∗

T |1/2

|S∗

T |1/2

(

D(UB)

D(UB,T )

)g

=

(

D(UB)

D(UB ,T )

)g

. (7)

The volume of confidence region (5) tends to be greater than that of (4) since the T ∗

i are

closer to T
∗

than Tn on average.

Section 2 gives large sample theory for β̂MIX and β̂MS. Section 3 shows how to bootstrap

these two estimators, and Section 4 gives a simulation.

2. Large sample theory for some model selection estimators

Theorems 2 and 4 are new and give the large sample theory for the AR, MA, and ARMA

model selection estimators. Some notation and preliminary results are needed. The Gaussian

maximum likelihood estimator (GMLE) will be used. The Yule Walker and least squares

estimators will also be used for AR(p) models. Let the ri be the m (one step ahead) residuals

where often m = n or m = n− p. Under regularity conditions,

σ̃2 =

∑m
i=1 r

2
i

m− p− q − c
(8)

is a consistent estimator of σ2 where often c = 0 or c = 1. See Granger and Newbold (1977,

p. 85) and Pankratz (1983, p. 206). Let σ̂2 be the estimator of σ2 produced by the time
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series model, and let γk = Cov(Yt, Yt−k). Let

Γn =

















γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0

















.

The following large sample theorem for the AR(p) model is due to Mann and Wald (1943).

Also see McElroy and Politis (2020, p. 333) and Anderson (1971, pp. 210-217). For large

sample theory for MA and ARMA models, see Hannan (1973), Kreiss (1985), and Yao and

Brockwell (2006).

There is a strong regularity condition for the GMLE for the ARMA model. Assume the

ARMA(pS, qS) model is the true model. If both p > pS and q > qS, then the GMLE is not a

consistent estimator. See Chan, Ling, and Yau (2020) and Hannan (1980). Pötscher (1990)

showed how to estimate max(pS, qS) consistently.

Theorem 1 Let the iid zero mean ei have variance σ2, and let the time series have mean

E(Yt) = µ.

a) Let Y1, ..., Yn be a weakly stationary and invertible AR(p) time series, and let β =

(φ1, ..., φp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D→ Np(0,V ) (9)

where V = V (β) = σ2Γ−1
p . Equation (9) also holds under mild regularity conditions for the

least squares estimator, and the GMLE of β.

b) Let Y1, ..., Yn be a weakly stationary, causal, and invertible MA(q) time series, and let

β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D→ Nq(0,V ) (10)

where V is given, for example, by McElroy and Politis (2022, pp. 340-341).

c) Let Y1, ..., Yn be a weakly stationary, causal, and invertible ARMA(p, q) time series,

and let β = (φ1, ..., φp, θ1, ..., θq) with g = p + q. Let β̂ be the GMLE. Under regularity
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conditions,
√
n(β̂ − β)

D→ Ng(0,V ) (11)

where V depends on the autocorrelation function and σ2.

The main point of Theorem 1 is that the theory can hold even if the et are not iidN(0, σ2).

The basic idea for the GMLE is that {Yt} satisfies an AR(∞) model which is approximately

an AR(py) model, and the large sample theory for the AR(py) model depends on the zero

mean error distribution through σ2 by Theorem 1a). See Anderson (1971: ch. 5, 1977),

Durbin (1959), Hamilton (1994, pp. 117, 429), Hannan and Rissanen (1982, p. 85), and

Whittle (1953). When the et are iid N(0, σ2), V = V (β) = I−1
1 (β), the inverse information

matrix. Then for the AR(p) model, V (φ) = σ2Γ−1
p (φ) = I−1

1 (φ). See Box and Jenkins

(1976, p. 241) and McElroy and Politis (2020, pp. 340-344).

Next we extend the Pelawa Watagoda and Olive (2021ab) and Rathnayake and Olive

(2023) theory for variable selection estimators to time series model selection estimators.

Suppose the full model is as in Section 1 and that if S ⊆ Ij where the dimension of Ij is

aj, then
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) where V j is the covariance matrix of the asymptotic

multivariate normal distribution. Then

√
n(β̂Ij ,0 − β)

D→ Nb(0,V j,0) (12)

where V j,0 adds columns and rows of zeros corresponding to the βi not indexed by Ij, and

V j,0 is singular unless Ij corresponds to the full model.

The first assumption in Theorem 2 is P (S ⊆ Imin) → 1 as n → ∞. Then the model

selection estimator corresponding to Imin underfits with probability going to zero. This

assumption is supported by Hannan (1980). The assumption also requires pS ≤ pmax and

qS ≤ qmax. The assumption on ujn in Theorem 2 is reasonable by (12) since S ⊆ Ij for each

πj, and since β̂MIX uses random selection. The proofs of Theorems 2, 3, and 4 are exactly

as in Rathnayake and Olive (2023).

Theorem 2 Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂MIX = β̂Ik,0 with probabilities

πkn where πkn → πk as n→ ∞. Denote the positive πk by πj. Assume ujn =
√
n(β̂Ij ,0−β)

D→
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uj ∼ Nb(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (13)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u is a mixture distribution of the uj with

probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.

b) Let A be a g × b full rank matrix with 1 ≤ g ≤ b. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (14)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with probabilities πj.

c) The estimator β̂MS is a
√
n consistent estimator of β. Hence

√
n(β̂MS − β) = OP (1).

d) If πa = 1, then
√
n(β̂SEL − β)

D→ u ∼ Nb(0,V a,0) where SEL is MS or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities πkn, the cdf of

un is Fun
(t) =

∑

k πknFukn
(t) → Fu(t) =

∑

j πjFuj
(t) at continuity points of the Fuj

(t)

as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.

c) The result follows since selecting from a finite number K of
√
n consistent estimators

(even on a set that goes to one in probability) results in a
√
n consistent estimator by Pratt

(1959).

d) If πa = 1, there is no selection bias, asymptotically. The result also follows by Pötscher

(1991, Lemma 1). �

Theorem 2 can be used to justify prediction intervals after model selection. See Haile

(2022). Typically the mixture distribution is not asymptotically normal unless a πa = 1

(e.g. if S is the full model). Theorem 2d) is useful for model selection consistency where

πa = πS = 1 if P (Imin = S) → 1 as n → ∞. See Hannan (1980) and Claeskens and Hjort

(2008) for references.

The following subscript notation is useful. Subscripts before the MIX are used for

subsets of β̂MIX = (β̂1, ..., β̂b)
T . Let β̂i,MIX = β̂i. Similarly, if I = {i1, ..., ia}, then β̂I,MIX =

(β̂i1, ..., β̂ia)
T . Subscripts after MIX denote the ith vector from a sample β̂MIX,1, ..., β̂MIX,B.
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Similar notation is used for other estimators such as β̂MS. The subscript 0 is still used for

zero padding. We may use FULL to denote the full model β̂ = β̂FULL.

The following Pelawa Watagoda and Olive (2021a) theorem is useful for bootstrapping

model selection estimators. Let (T ,ST ) be the sample mean and sample covariance matrix

computed from T1, ..., TB which have the same distribution as Tn where Ti = Tin. Let

D2
(UB) be the cutoff computed from the D2

i (T ,ST ) for i = 1, ..., B. The hyperellipsoids

corresponding to D2(Tn,C) and D2(T ,C) are centered at Tn and T , respectively. Note that

D2
T
(Tn,C) = D2

Tn
(T ,C). Thus D2

T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem

3, since Rp contains Tf with probability 1 − δB, the region Rc contains T with probability

1 − δB. Since Tn depends on the sample size n, we need (nST )−1 to be fairly well behaved,

e.g. (nST )−1 P→ Σ−1
A .

Theorem 3: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u with E(u) = 0

and Cov(u) = Σu 6= 0. Assume T1, ..., TB are iid with nonsingular covariance matrix

ΣTn where (nST )−1 P→ Σ−1
A . Then the large sample 100(1 − δ)% prediction region Rp =

{w : D2
w(T ,ST ) ≤ D2

(UB)} centered at T contains a future value of the statistic Tf with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞. Hence the region

Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)} is a large sample 100(1 − δ)% confidence region for θ

where Tn is a randomly selected Ti.

Examining the iid data cloud T1, ..., TB and the bootstrap sample data cloud T ∗

1 , ..., T
∗

B is

often useful for understanding the bootstrap. If
√
n(Tn−θ) and

√
n(T ∗

i −Tn) both converge

in distribution to u ∼ Ng(0,ΣA), say, then the bootstrap sample data cloud of T ∗

1 , ..., T
∗

B

is like the data cloud of iid T1, ..., TB shifted to be centered at Tn. Then the hybrid region

(6) is a confidence region by the geometric argument (as is region (5) which tends to use a

larger cutoff), and (4) is a confidence region if
√
n(T

∗ − Tn)
P→ 0.

For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (14) where E(v) = 0,

and Σv =
∑

j πjAV j,0A
T . By Theorem 3, if we had iid data T1, ..., TB, then Rc would be a

large sample confidence region for θ. If
√
n(T ∗

n − Tn)
D→ v, then we could use the bootstrap

sample and confidence regions (4) to (6). This condition holds only under strong regularity
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conditions such as πa = 1. Section 3 will explain why the bootstrap confidence regions are

still useful.

Pötscher (1991) used the conditional distribution of β̂MS|(β̂MS = β̂Ik,0) to find the

distribution of wn =
√
n(β̂MS − β). Define P (A|Bk)P (Bk) = 0 if P (Bk) = 0. Let β̂

C

Ik,0

be a random vector from the conditional distribution β̂Ik ,0|(β̂MS = β̂Ik ,0). Let wkn =
√
n(β̂Ik ,0 − β)|(β̂MS = β̂Ik ,0) ∼ √

n(β̂
C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by

P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b) show

Fwn(t) = P [n1/2(β̂MS − β) ≤ t] =

J
∑

k=1

Fwkn
(t)πkn.

Hence β̂MS has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn, and wn has a

mixture distribution of the wkn with probabilities πkn.

Note that both
√
n(β̂MIX−β) and

√
n(β̂MS−β) are selecting from the ukn =

√
n(β̂Ik,0−

β) and asymptotically from the uj. The random selection for β̂MIX does not change the

distribution of ujn, but selection bias does change the distribution of the selected ujn and

uj to that of wjn and wj. The assumption that wjn
D→ wj may not be mild. The proof for

Equation (15) is the same as that for (13).

Theorem 4 Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂MS = β̂Ik,0 with probabilities

πkn where πkn → πk as n → ∞. Denote the positive πk by πj. Assume wjn =
√
n(β̂

C

Ij ,0 −
β)

D→ wj. Then

wn =
√
n(β̂MS − β)

D→ w (15)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution of the wj

with probabilities πj.

3. Bootstrapping ARMA time series model selection estimators

For the bootstrap, we will ignore τ and build the bootstrap time series data set {Y ∗

t }
sequentially. Fit the full model to get the φ̂k and θ̂j. Let

Y ∗

t =

pmax
∑

k=1

φ̂kY
∗

t−k + e∗t ,

11



Y ∗

t =

qmax
∑

k=1

θ̂ke
∗

t−k + e∗t ,

or

Y ∗

t =

pmax
∑

k=1

φ̂kY
∗

t−k +

qmax
∑

k=1

θ̂ke
∗

t−k + e∗t

for t = 1, ..., n. The ARMA and AR bootstrap may use a block of initial values (Y ∗

−p+1, ..., Y
∗

0 )T

= (Yj+1, Yj+2, ..., Yj+p)
T randomly selected from Y1, ..., Yn. For the parametric bootstrap, the

e∗t are iid N(0, σ̂2) where σ̂2 is the estimate from fitting the full model with (pmax, qmax). For

the residual bootstrap, assume the full model produces m residuals r1, ..., rm. Often m = n or

m = n−pmax. Refer to Equation (8) with (p, q) replaced by (pmax, qmax) and b = pmax+qmax.

Let

êj =

√

m

m− b− c
(rj − r)

for j = 1, ..., m. Let the e∗t be obtained by sampling with replacement from the êj. With

respect to this bootstrap distribution, the e∗t are iid with E(e∗t ) = 0 and V (e∗t ) ≈ σ̃2.

The following bootstrap algorithm produces pairs (β̂
∗

MS,i, β̂
∗

MIX,i) for i = 1, ..., B where

the possible submodels Ik are selected with probabilities ρkn by the bootstrap model selection

estimator. Then this bootstrap algorithm bootstraps both β̂MS and β̂MIX with πkn = ρkn.

1) Generate a bootstrap time series data set {Y ∗

i }1,1 = {Y ∗

1 , ..., Y
∗

n }1,1. Instead of computing

the full model, use model selection to compute β̂
∗

MS,1 = β̂
∗

I1,0 = β̂
∗

I1,0({Y ∗

i }1,1).

2) Draw another bootstrap data set {Y ∗

i }1,2 and fit model I1 from step 1) to get β̂
∗

MIX,1 =

β̂
∗

I1,0({Y ∗

i }1,2). (Selection bias is avoided since I1 is selected before generating {Y ∗

i }1,2.)

3) Repeat B times to get the bootstrap samples β̂
∗

MS,1, ..., β̂
∗

MS,B and β̂
∗

MIX,1, ..., β̂
∗

MIX,B.

Following McElroy and Politis (2020, pp. 438-439), consider a weakly stationary and

invertible time series Y1, ..., Yn where the et are iid with mean 0 and variance σ2. A companion

process uses εt that are iid with mean 0 and variance σ̂2. Both the residual bootstrap and

parametric bootstrap produce companion processes {Y ∗

t }. The residual bootstrap for an

AR(pmax) model is closely related to the sieve bootstrap for AR(p) and AR(∞) models. See

McElroy and Politis (2020, pp. 430, 434).
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It is important to note that for the parametric bootstrap, we are not assuming that

the et are iid N(0, σ2). The following theorem is for bootstrapping the full model.

Theorem 5 Assume the time series is such that Theorem 1 holds. Then
√
n(β̂

∗− β̂)
D→

Nb(0,V (β)) if the GMLE is used with the parametric bootstrap. This result also holds for

the AR(p) model if the Yule Walker or least squares estimator is used with the parametric

bootstrap or the residual bootstrap.

Proof. On a set A of probability going to one as n→ ∞, Y ∗

1 , ..., Y
∗

n with β̂ = β̂n satisfies

Theorem 1. Hence if n is fixed and the time series Y ∗

1 , ..., Y
∗

m is generated with β̂n, then

on the set A the estimator β̂
∗

satisfies
√
m(β̂

∗ − β̂n)
D→ Nb(0,V (β̂n)) as m → ∞. Since

V (β̂)
P→ V (β) if β̂n

P→ β as n→ ∞, it follows that
√
n(β̂

∗− β̂n)
D→ Nb(0,V (β)) as n→ ∞.

�

The basic idea is that for the parametric bootstrap, Y ∗

1 , ..., Y
∗

n satisfies the Gaussian time

series model with β̂n as the parameter vector and β̂n is a
√
n consistent estimator of β.

Hence the Gaussian time series Y ∗

1 , ..., Y
∗

n with β̂n will be weakly stationary, causal, and

invertible on a set A going to one in probability. Since β̂n depends on n, convergence along

a triangular array needs to be used. Bootstrap results such as Theorem 5 are rather rare in

the time series literature. Bühlmann (1994) has such a result for the AR(p) model.

If Equation (12) holds so
√
n(β̂Ij ,0 − β)

D→ Nb(0,V j,0), we would like to show that
√
n(β̂

∗

Ij ,0 − β̂Ij ,0)
D→ Nb(0,V j,0) if Ij was selected with random selection. This result holds

for the full model by Theorem 5. Suppose S ⊆ Ij. Then the bootstrap data set {Y ∗

t } satisfies

Y ∗

t =

pIj
∑

k=1

φ̂kY
∗

t−k + e∗t + e∗t (Ij),

Y ∗

t =

qIj
∑

k=1

θ̂ke
∗

t−k + e∗t + e∗t (Ij),

or

Y ∗

t =

pIj
∑

k=1

φ̂kY
∗

t−k +

qIj
∑

k=1

θ̂ke
∗

t−k + e∗t + e∗t (Ij)

where e∗t (Ij) =
∑pmax

k=pIj
+1 φ̂kY

∗

t−k for the AR(pmax) model, e∗t (Ij) =
∑qmax

k=qIj
+1 θ̂ke

∗

t−k for the

MA(qmax) model, and e∗t (Ij) =
∑pmax

k=pIj
+1 φ̂kY

∗

t−k +
∑qmax

k=qIj
+1 θ̂ke

∗

t−k for the ARMA(pmax, qmax)
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model. When S ⊆ Ij, the e∗t (Ij)
P→ 0 rapidly as n → ∞. For the MA model with the

parametric bootstrap, e∗t (Ij) ∼ N(0, σ̂2
∑qmax

k=qIj
+1 θ̂

2
k) which has a variance proportional to

1/n if S ⊆ Ij.

The key idea is to show that the bootstrap data cloud is slightly more variable than the

iid data cloud, so confidence region (5) applied to the bootstrap data cloud has coverage

bounded below by (1 − δ) for large enough n and B. Let Bjn count the number of times

T ∗

i = T ∗

ij in the bootstrap sample. Then the bootstrap sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J .

Denote T ∗

1j, ..., T
∗

Bjn,j as the jth bootstrap component of the bootstrap sample with sample

mean T
∗

j and sample covariance matrix S∗

T,j. Similarly, we can define the jth component of

the iid sample T1, ..., TB to have sample mean T j and sample covariance matrix ST,j.

Let Tn = β̂MIX and Tij = β̂Ij ,0. If S ⊆ Ij, assume
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) and

√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j). Then by Equation (12),

√
n(β̂Ij ,0 − β)

D→ Np(0,V j,0) and
√

n(β̂
∗

Ij,0
− β̂Ij,0

)
D→ Nb(0,V j,0). (16)

This result means that the component clouds have the same variability asymptotically. The

iid data component clouds are all centered at β. If the bootstrap data component clouds

were all centered at the same value β̃, then the bootstrap cloud would be like an iid data

cloud shifted to be centered at β̃, and (5) would be a confidence region for θ = β. Instead,

the bootstrap data component clouds are shifted slightly from a common center, and are each

centered at a β̂Ij ,0. Geometrically, the shifting of the bootstrap component data clouds makes

the bootstrap data cloud similar but more variable than the iid data cloud asymptotically

(we want n ≥ 20b), and centering the bootstrap data cloud at Tn results in the confidence

region (5) having slightly higher asymptotic coverage than applying (5) to the iid data cloud.

Also, (5) tends to have higher coverage than (6) since the cutoff for (5) tends to be larger than

the cutoff for (6). Region (4) has the same volume as region (6), but tends to have higher

coverage since empirically, the bagging estimator T
∗

tends to estimate θ at least as well as
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Tn for a mixture distribution. A similar argument holds if Tn = Aβ̂MIX, Tij = Aβ̂Ij ,0, and

θ = Aβ.

In the simulations of Section 4 for H0 : Aβ = BβS = θ0 with n ≥ 20b, the coverage

tended to get close to 1−δ for B ≥ max(200, 50b) so that S∗

T is a good estimator of Cov(T ∗).

The matrix S∗

T can be singular due to one or more columns of zeros in the bootstrap

sample for β1, ..., βb. The βj corresponding to these columns are likely not needed in the

model given that the other predictors are in the model. A simple remedy is to add k

bootstrap samples of the full model estimator β̂
∗

= β̂
∗

FULL to the bootstrap sample. For

example, take k = dcBe with c = 0.01. Getting a good full model for the ARMA model can

be difficult. A confidence interval [Ln, Un] can be computed without S∗

T for (4), (5), and

(6). Using the confidence interval [max(Ln, T
∗

(1)),min(Un, T
∗

(B))] can give a shorter covering

region.

Undercoverage can occur if bootstrap sample data cloud is less variable than the iid

data cloud, e.g., if (n − b)/n is not close to one. Coverage can be higher than the nominal

coverage for two reasons: i) the bootstrap data cloud is more variable than the iid data cloud

of T1, ..., TB, and ii) zero padding.

4. Examples and simulations

Example 1. The WWWusage data set, available from the R software, is from Durbin

and Koopman (2001). This data set is a time series of the numbers of users connected to

the Internet through a server every minute, and has n = 100. First differences were taken.

The ARIMA(3,1,0) and ARIMA(1,1,1) models were potential models for the data. The

second model minimized the BIC criterion for ARIMA(p,1,q) models with 0 ≤ p, q,≤ 5, and

BIC(model 1) - BIC(model 2) = 0.29. Let Y be the differenced time series of length n = 99,

and consider model selection with AR(pmax=10) since n = 99 is small. The parameter

φ3 was not statistically significant at the 0.05 level using the full AR(10) model output,

but was significant at the 0.1 level. The bootstrap often selected the AR(1), AR(2), and

AR(3) models, but rarely selected the AR(8), AR(9), or AR(10) models. The parametric

and residual bootstrap were both used with model selection and MIX to get 90% confidence
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intervals for φj for j = 1,...,10. The confidence intervals for the full AR(10) model did not

use the bootstrap. Table 1 shows that the bootstrap confidence intervals were often much

shorter than those of the full model. We also used the bootstrap confidence regions to test

φI = (φk, ..., φ10)
T = 0 for k = 1, ..., 10.

D0: 12.100,2.284,1.575,...,0.227,0.224,0.084

DUB
: 5.223,5.094,4.952,...,0.227,0.224,0.084.

Shown above are the test statistics D0 and the cutoffs DUB
where H0 : φI = 0 is rejected

if D0 > DUB
. For k = 8, 9, 10, D0 = DUB

, which means that the 90% prediction region

method confidence region only contained φ∗

I = 0 where βI = φI . The full AR(10) model

was fit for 10 bootstrap samples with c = 0.01, and B = 1000 bootstrap samples used model

selection with the parametric bootstrap. See the second to last paragraph in Section 3.

Table 1: 90% Bootstrap Confidence Intervals for φj,B=1000,c=0.01,pmax=10

j par boot par mix res boot res mix full

1 [0.767,1.163] [0.752,1.167] [0.764,1.174] [0.741,1.164] [0.987,1.322]

2 [−0.772,−0.140] [−0.646,0] [−0.640,0] [−0.637,0] [−0.907,−0.397]

3 [−0.004,0.411] [−0.0003,0.354] [−0.004,0.408] [0,0.362] [0.069,0.627]

4 [−0.175,0.220] [−0.083,0.160] [−0.153,0.217] [−0.081,0.154] [−0.247,0.328]

5 [−0.152,0.165] [−0.117,0.066] [−0.165,0.173] [−0.118,0.066] [−0.404,0.180]

6 [−0.243,0.033] [−0.103,0.034] [−0.278,0] [−0.116,0.037] [−0.140,0.452]

7 [−0.203,0.003] [−0.107,0.005] [−0.202,0] [−0.065,0.003] [−0.505, 0.089]

8 [0,0] [0,0] [0,0] [0,0] [−0.314,0.273]

9 [0,0] [0,0] [0,0] [0,0] [−0.138,0.402]

10 [0,0] [0,0] [0,0] [0,0] [−0.202,0.145]

We simulated AR model selection with the Yule Walker estimators and AIC. For MA

and ARMA model selection, the GMLE with AICC was used. Let b = pmax + qmax. We
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recommend n ≥ 10b and B ≥ 20b. We used 5000 runs. Then coverage within [0.94,0.96]

suggests that the true coverage is near the nominal coverage 0.95. Often B, pmax, and qmax

were rather small to make the simulation time shorter. More simulations are in Haile (2022).

For the AR simulations, the true model was an AR(1) model with pS = 1 and φ1 = 0.5,

or an AR(2) model with pS = 2 and φ = (0.5, 0.33)T corresponding to tstype = 1 or 2.

For the MA simulations, the true model was an MA(1) model with pS = 1 and θ1 = −0.5,

or an MA(2) model with pS = 2 and θ = (−0.5, 0.5)T corresponding to tstype = 1 or 2.

The error types were N(0,1), t5, uniform(−1,1), and e ∼ W − 1 where W ∼ exponential(1)

corresponding to etype = 1, 2, 3, or 4. These error types are denoted by N , t, U , and E in

the first column of Tables 2–4. The parametric bootstrap and residual bootstrap were used

corresponding to btype =1 or 2. Nominal 95% confidence regions and intervals were used

with 1% augmentation from the bootstrapped full model. The simulations bootstrapped the

full model estimator, the model selection estimator β̂MS, and β̂MIX.

The tables give two rows for each of the three estimators giving the observed CI coverage

and average CI length. For the tests, the length gives the average cutoff D(UB). The term

“full” is for the full model, the term “MS” is for model selection, and the term “MIX” for

random selection. The terms pr, hyb and br are for the prediction region method, hybrid

region, and Bickel and Ren region. The 0 indicates that the test was H0 : βE = 0 where

βE = (βpS+1, ..., βk)
T . The 1 indicates the test H0 : βS = (φ1, ..., φS)T . Note that H0 is true

for both tests.

Coverage was often low for n = 100. Coverage tended to be lower for the residual

bootstrap than for the parametric bootstrap and lower for the two parameter true model

than for the 1 parameter true model. For n = 400, coverage tended to be near or higher than

the nominal 0.95. The MIX coverage was often better than the model selection coverage,

which was not the case for regression variable selection simulations in Rathnayake and Olive

(2023). Coverage could be near 1 if many zeroes were produced, but then the model selection

CI length tended to be shorter than the full model CI length. See Table 2 for the AR

simulation and Table 3 for the MA simulation. An entry of 1− means the coverage was more
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Table 2: AR(p) MS, residual bootstrap,n=400,φ = (0.5, 0.33),B=200,pmax=5

e φ1 φ2 φpmax−1 φpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.959 0.950 0.964 0.962 0.955 0.955 0.966 0.940 0.953 0.965

len 0.215 0.234 0.230 0.204 2.851 2.851 3.465 2.475 2.475 2.648

N,MS 0.959 0.955 1− 1− 0.998 0.994 0.999 0.954 0.962 0.968

len 0.215 0.233 0.201 0.152 3.545 3.545 3.827 2.493 2.493 2.648

N,MIX 0.962 0.947 1.000 1− 0.999 0.997 0.999 0.954 0.959 0.970

len 0.213 0.224 0.161 0.111 3.970 3.970 4.212 2.509 2.509 2.655

t,full 0.950 0.948 0.959 0.968 0.957 0.953 0.966 0.944 0.958 0.968

len 0.215 0.234 0.229 0.204 2.857 2.857 3.463 2.479 2.479 2.657

t,MS 0.955 0.952 0.999 1.000 0.997 0.992 0.998 0.955 0.963 0.973

len 0.215 0.233 0.201 0.152 3.560 3.560 3.837 2.499 2.499 2.656

t,MIX 0.955 0.946 0.999 1.000 0.998 0.996 0.998 0.954 0.961 0.969

len 0.213 0.223 0.160 0.108 3.992 3.992 4.231 2.511 2.511 2.653

U,full 0.953 0.949 0.962 0.963 0.950 0.952 0.963 0.937 0.954 0.963

len 0.215 0.235 0.230 0.204 2.854 2.854 3.460 2.477 2.477 2.641

U,MS 0.956 0.951 1− 1.000 0.997 0.991 0.997 0.952 0.959 0.966

len 0.215 0.234 0.202 0.152 3.539 3.539 3.820 2.495 2.495 2.611

U,MIX 0.959 0.943 1− 1.000 0.999 0.995 0.998 0.952 0.958 0.967

len 0.213 0.224 0.162 0.111 3.968 3.968 4.208 2.508 2.507 2.650

E,full 0.956 0.954 0.958 0.962 0.953 0.953 0.965 0.944 0.954 0.966

len 0.215 0.236 0.229 0.203 2.865 2.865 3.466 2.485 2.485 2.661

E,MS 0.961 0.957 1− 1− 0.998 0.993 0.998 0.954 0.961 0.973

len 0.215 0.235 0.201 0.150 3.563 3.563 3.841 2.501 2.501 2.653

E,MIX 0.956 0.950 1− 1− 0.999 0.996 0.999 0.951 0.959 0.968

len 0.213 0.225 0.160 0.107 3.984 3.984 4.220 2.519 2.519 2.663
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than 0.9995 but less than 1.0.

ARMA models are much harder to bootstrap since it is much harder to get a consistent

full model. In the simulation, we used a consistent full model. Estimating the order of the

full model with Pötscher (1990) would likely cause the coverages to be worse. There were

also convergence problems with the program, which would run with 1000 runs but not for

5000. Hence we ran the program 5 times with 1000 runs, and averaged the results. The true

model was the ARMA(3,1) model with φ = (0.7, 0.1,−0.4)T and θ = 0.1. The CI coverages

for φ1, φ2 and θ1 were too high. With n = 100, the coverages for tests were sometimes low.

See Table 4.

6. Conclusions

Although there is a massive literature for variable selection and model selection, this paper

may give the first large sample theory for ARMA time series model selection estimators.

More theory is needed for the assumption P (S ⊆ Imin) → 1 as n→ ∞ and for the regularity

conditions for the asymptotic normality of the GMLE for MA and ARMA time series. More

bootstrap theory for Equation (16) is also needed.

A competitor for model selection is data splitting. Perform model selection on Y1, ..., Ynh

to obtain model I . Then fit model I on the remaining cases Ynh+1, ..., Yn and perform

inference. Inference is correct provided S ⊆ I , and if I satisfies the regularity condition

above Theorem 1. See Hurvich and Tsai (1989).

Bhansali (1981) discusses the effects of estimating the time series order, and there is

a large literature for bootstrapping time series. See, for example, Bühlmann (1994, 1997,

2002), Härdle, Horowitz, and Kreiss (2003), Kreiss and Lahiri (2012), Kreiss, Paparoditis,

and Politis (2011), and Lahiri (2003).

Simulations were done in R. See R Core Team (2020). The collection of R functions

tspack, available from (http://parker.ad.siu.edu/Olive/tspack.txt), has some useful functions

for the inference. The tspack function arboottest was used to get the confidence intervals

for Example 1. The tspack function msarsim simulates AR model selection using the Yule

Walker equations with AIC and the R function ar.yw for Table 2. The tspack function
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Table 3: MA(q) Model Selection,residual bootstrap,n=400,tstype=2,B=100,qmax=5,btype=2

e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.949 0.953 0.952 0.952 0.931 0.982 0.990 0.932 0.960 0.973

len 0.215 0.242 0.246 0.223 2.876 2.876 3.678 2.478 2.478 2.709

N,MS 0.955 0.961 1.000 1.000 0.999 0.998 0.999 0.950 0.957 0.966

len 0.215 0.231 0.155 0.103 4.321 4.321 4.540 2.499 2.499 2.606

N,MIX 0.952 0.961 1.000 1.000 0.999 0.999 1− 0.948 0.950 0.959

len 0.204 0.217 0.129 0.088 4.598 4.598 4.791 2.496 2.496 2.572

t,full 0.952 0.956 0.958 0.956 0.939 0.987 0.992 0.940 0.962 0.973

len 0.214 0.242 0.246 0.222 2.881 2.881 3.651 2.482 2.482 2.704

t,MS 0.960 0.966 1.000 1.000 0.999 0.999 1− 0.956 0.964 0.970

len 0.214 0.230 0.154 0.102 4.328 4.328 4.546 2.502 2.502 2.607

t,MIX 0.957 0.961 1.000 1.000 1− 0.999 1.000 0.954 0.954 0.962

len 0.203 0.216 0.127 0.087 4.601 4.601 4.791 2.495 2.495 2.571

U,full 0.951 0.957 0.953 0.942 0.938 0.987 0.992 0.943 0.967 0.978

len 0.215 0.243 0.246 0.223 2.874 2.874 3.681 2.479 2.479 2.711

U,MS 0.956 0.971 1.000 1.000 1− 0.999 1− 0.961 0.967 0.972

len 0.215 0.232 0.155 0.104 4.327 4.327 4.549 2.504 2.504 2.611

U,MIX 0.958 0.965 1.000 1.000 1− 1− 1− 0.957 0.955 0.962

len 0.204 0.217 0.129 0.089 4.598 4.598 4.789 2.495 2.495 2.571

E,full 0.959 0.952 0.957 0.954 0.935 0.985 0.993 0.940 0.964 0.975

len 0.213 0.241 0.245 0.222 2.878 2.878 3.673 2.479 2.479 2.701

E,MS 0.967 0.964 1.000 1.000 1− 1− 1− 0.957 0.962 0.969

len 0.213 0.229 0.153 0.102 4.329 4.329 4.550 2.497 2.497 2.604

E,MIX 0.962 0.960 1.000 1.000 1.000 1− 1.000 0.949 0.955 0.962

len 0.204 0.215 0.126 0.087 4.598 4.598 4.791 2.496 2.496 2.569
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Table 4: ARMA(p,q), parametric bootstrap, n=100, runs=5000, B=100, pmax=3, qmax=3

e φ1 φ2 θ1 θ2 pr0 hyb0 br0 pr1 hyb1 br1

N,full 1.000 0.996 0.999 0.971 0.945 0.938 0.969 0.975 0.893 0.985

len 1.782 1.797 1.894 1.565 2.643 2.643 3.020 3.629 3.629 4.163

N,MS 0.998 0.988 0.999 1− 0.994 0.937 0.997 0.970 0.936 0.974

len 1.704 1.518 1.871 1.256 2.996 2.996 3.314 3.530 3.530 3.913

N,MIX 1.000 0.995 1.000 1.000 1− 0.940 0.998 0.964 0.923 0.968

len 1.670 1.387 1.837 1.215 3.095 3.095 3.425 3.582 3.582 4.007

t,full 0.999 0.997 0.998 0.972 0.947 0.937 0.969 0.978 0.903 0.988

len 1.741 1.768 1.846 1.461 2.643 2.643 2.997 3.607 3.607 4.111

t,MS 1.000 0.991 0.999 0.999 0.992 0.950 0.980 0.975 0.944 0.979

len 1.647 1.505 1.793 1.202 3.012 3.012 3.321 3.537 3.537 3.893

t,MIX 1.000 0.996 1.000 0.999 0.994 0.953 0.995 0.971 0.934 0.971

len 1.617 1.371 1.766 1.154 3.101 3.101 3.408 3.595 3.595 3.990

U,full 1.000 0.997 0.999 0.972 0.939 0.930 0.969 0.972 0.883 0.982

len 1.753 1.784 1.867 1.528 2.647 2.647 3.043 3.634 3.634 4.150

U,MS 0.999 0.989 0.998 0.999 0.992 0.937 0.992 0.964 0.930 0.966

len 1.695 1.537 1.859 1.246 2.996 2.996 3.318 3.547 3.547 3.923

U,MIX 1.000 0.996 0.999 1.000 0.995 0.941 0.996 0.963 0.920 0.964

len 1.652 1.398 1.828 1.208 3.091 3.091 3.421 3.606 3.606 4.025

E,full 0.999 0.998 0.998 0.977 0.953 0.941 0.972 0.976 0.900 0.984

len 1.779 1.801 1.895 1.562 2.646 2.646 3.016 3.641 3.640 4.160

E,MS 0.999 0.991 0.998 1.000 0.996 0.945 0.996 0.976 0.941 0.975

len 1.701 1.525 1.866 1.260 3.008 3.008 3.323 3.531 3.531 3.913

E,MIX 0.999 0.998 0.999 0.999 0.998 0.951 0.998 0.970 0.933 0.970

len 1.676 1.394 1.847 1.220 3.113 3.113 3.425 3.594 3.594 4.007
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msmasim simulates MA model selection using the GMLE with AICC for Table 3. The tspack

function msarmamasim4 was used for Table 4. The last two functions used the R function

auto.arima from the Hyndman and Khandakar (2008) forecast package. Also see Hyndman

and Athanasopoulos (2018).
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