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Abstract

Inference after model selection is a very important problem. Model selection algorithms

for ARIMA time series, with criterion such as AIC and BIC, tend to select an inconsistent

model with positive probability, making data splitting inference unreliable. One technique

was fairly reliable for sample sizes greater than 600, and a modification also worked. When

consistent estimators are used, the forecast residuals are consistent estimators of the forecast

errors. Find a prediction interval for a future forecast error, then shift the interval to be

centered at the point estimator of the h-step ahead forecast. A few prediction intervals

perform fairly well even after model selection.

1. Introduction

The abstract gives the main results of this paper. This section reviews some time series

models, and model selection for ARIMA time series models. We will use the R software
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notation and write a moving average parameter θ with a positive sign. Many references and

software will write the model with a negative sign for the moving average parameters. A

moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · · + θqet−q + et

where θq 6= 0. An autoregressive AR(p) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + et

where φp 6= 0. An autoregressive moving average ARMA(p, q) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + θ1et−1 + θ2et−2 + · · · + θqet−q + et (1)

where θq 6= 0 and φp 6= 0. A time series Xt follows an ARIMA(p, d, q) model with known

d if the differenced time series model Yt follows an ARMA(p, q) model. See Box and Jenk-

ins (1976) for more on these models. We will assume that the et are independent and

identically distributed (iid) with zero mean and variance σ2. The observed time series is

{Yt} = Y1, ..., Yn.

We usually want the ARMA(p, q) model to be weakly stationary, causal, and invertible.

Let Zt = Yt − µ where µ = E(Yt) if {Yt} is weakly stationary. Then the causal property

implies that Zt =
∑

∞

j=1 ψjet−j + et, which is an MA(∞) representation, where the ψj → 0

rapidly as j → ∞. Invertibility implies that Zt =
∑

∞

j=1 χjZt−j + et, which is an AR(∞)

representation, where the χj → 0 rapidly as j → ∞. We will make the usual assumption

that the AR(∞) and MA(∞) parameters are square summable. Thus if the ARMA(p, q)

model is weakly stationary, causal, and invertible, then Yt depends almost entirely on nearby

lags of Yt and et, not on the distant past.

This paper considers model selection where it is assumed that it is known that the model

is ARMA, AR, or MA, but the order needs to be determined. For ARMA model selection,

let the full model be an ARMA(pmax, qmax) model. For AR model selection qmax = 0, while

for MA model selection pmax = 0. Granger and Newbold (1977, p. 178) suggested using

pmax = 13 for AR model selection, and we may use pmax = qmax = 5 for ARMA model
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selection, and qmax = 13 for MA model selection. For ARMA model selection, there are

J = (pmax +1)(qmax +1) ARMA(p, q) submodels where p ranges from 0 to pmax and q ranges

from 0 to qmax. For AR and MA model selection there are J = pmax + 1 and J = qmax + 1

submodels, respectively. Assume the true (optimal) model is an ARMA(pS, qS) model with

pS ≤ pmax and qS ≤ qmax. Let the selected model I be an ARMA(pI, qI) model. Then the

model underfits unless pI ≥ pS and qI ≥ qS.

More notation is needed for model selection. Let the full model be the AR(pmax),

MA(qmax), or ARMA(pmax, qmax) model. Let β be a b × 1 vector. For ARMA model

selection, let β = (φT , θT )T = (φ1, ..., φpmax, θ1, ..., θqmax)
T with b = pmax + qmax. For

AR model selection, let β = (φ1, ..., φpmax)
T with b = pmax, and for MA model selection,

let β = (θ1, ..., θqmax)
T with b = qmax. Hence β = (β1, ..., βpmax, βpmax+1, ..., βpmax+qmax)

T .

Let S = {1, ..., pS, pmax + 1, ..., pmax + qS} index the true ARMA(pS, qS) model. If S =

∅ is the empty set, then the time series random variables Y1, ..., Yn are iid. Let I =

{1, ..., pI, pmax + 1, ..., pmax + qI} index the ARMA(pI, qI) model. Let β̂I,0 be a b × 1 es-

timator of β which is a obtained by padding β̂I with zeroes. If βI = (φ1, ..., φpI
, θ1, ..., θqI

)T ,

then β̂I,0 = (φ̂1, ..., φ̂pI
, 0, .., 0, θ̂1, ..., θ̂qI

, 0, ..., 0)T . If qI = 0, then β̂I,0 = (φ̂1, ..., φ̂pI
, 0, .., 0)T .

If pI = 0 then β̂I,0 = (0, ..., .., 0, θ̂1, ..., θ̂qI
, 0, ..., 0)T . If I = ∅ with pI = qI = 0, then define

β̂I,0 = 0, the b× 1 vector of zeroes. The submodel I underfits unless S ⊆ I .

For example, if pmax = qmax = 5, then S = {1, 6, 7} corresponds to the ARMA(1,2)

model, and I = {1, 6, 7, 8} corresponds to the ARMA(1,3) model. Then β̂S = (φ̂1, θ̂1, θ̂2)
T ,

β̂S,0 = (φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, 0, 0, 0)
T , and β̂I,0 = (φ̂1, 0, 0, 0, 0, θ̂1, θ̂2, θ̂3, 0, 0)

T .

The model Imin corresponds to the model that minimizes the AIC, AICC, or BIC crite-

rion. Then the model selection estimator β̂MS = β̂Imin,0. Haile and Olive (2023) gave the

large sample theory for β̂MS.

For AR model selection, the probability of underfitting goes to 0 if the Akaike (1973) AIC,

Schwartz (1978) BIC, or Hurvich and Tsai (1989) AICC criterion are used. See Hannan and

Quinn (1979) and Shibata (1976). Although Hannan (1980), Hannan and Kavalieris (1984),

and Huang et al. (2022) gave similar results for ARMA models, in simulations, BIC did not
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appear to select a consistent model with probability going to one. AIC and AICC appear to

fail due to the following Theorem 1 for the Gaussian maximum likelihood estimator (GMLE).

Let the ri be the m (one step ahead) residuals where often m = n or m = n− p. Under

regularity conditions,

σ̃2 =

∑m
i=1 r

2
i

m− p− q − c
(2)

is a consistent estimator of σ2 where often c = 0 or c = 1. See Davis (1977), Granger and

Newbold (1977, p. 85), and Huang et al. (2022). Let σ̂2 be the estimator of σ2 produced by

the time series model, and let γk = Cov(Yt, Yt−k). Let

Γn =





















γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0





















.

The following large sample theorem for the AR(p) model is due to Mann and Wald (1943).

Also see McElroy and Politis (2020, p. 333) and Anderson (1971, pp. 210-217). For large

sample theory for MA and ARMA models, see Hannan (1973), Kreiss (1985), and Yao and

Brockwell (2006).

There is a strong regularity condition for the GMLE for the ARMA model. Assume the

ARMA(pS, qS) model is the true model. If both p > pS and q > qS, then the GMLE is not

a consistent estimator. See Chan, Ling, and Yau (2020) and Hannan (1980).

Theorem 1 Let the iid zero mean ei have variance σ2, and let the time series have mean

E(Yt) = µ.

a) Let Y1, ..., Yn be a weakly stationary and invertible AR(p) time series, and let β =

(φ1, ..., φp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D→ Np(0,V ) (3)

where V = V (β) = σ2Γ−1
p . Equation (3) also holds under mild regularity conditions for the

least squares estimator, and the GMLE of β.
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b) Let Y1, ..., Yn be a weakly stationary, causal, and invertible MA(q) time series, and let

β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D→ Nq(0,V ) (4)

where V is given, for example, by McElroy and Politis (2022, pp. 340-341).

c) Let Y1, ..., Yn be a weakly stationary, causal, and invertible ARMA(p, q) time series,

and let β = (φ1, ..., φp, θ1, ..., θq) with g = p + q. Let β̂ be the GMLE. Under regularity

conditions,
√
n(β̂ − β)

D→ Ng(0,V ) (5)

where V depends on the autocorrelation function and σ2.

The main point of Theorem 1 is that the theory can hold even if the et are not iidN(0, σ2).

The basic idea for the GMLE is that {Yt} satisfies an AR(∞) model which is approximately

an AR(py) model, and the large sample theory for the AR(py) model depends on the zero

mean error distribution through σ2 by Theorem 1a). See Anderson (1971: ch. 5, 1977),

Durbin (1959), Hamilton (1994, pp. 117, 429), and Hannan and Rissanen (1982, p. 85).

When the et are iid N(0, σ2), V = V (β) = I−1
1 (β), the inverse information matrix. Then

for the AR(p) model, V (φ) = σ2Γ−1
p (φ) = I−1

1 (φ). See Box and Jenkins (1976, p. 241) and

McElroy and Politis (2020, pp. 340-344).

Pötscher (1990) showed how to estimate rS = max(pS, qS) consistently. Section 2 reviews

this method and gives a modification that can lead to a more parsimonious model. Section

3 illustrates h-step ahead prediction intervals with ARIMA models. Section 4 gives some

examples and simulations.

2. Model Selection Algorithms

In the literature and software, the AIC and BIC criteria can take many forms since the

criterion can be multiplied by a positive constant, such as 1/n, and a constant dn can be

added to the criterion without changing the model that minimizes the criterion. Parameters

that are in every model, such as σ2 and possibly a constant, can be absorbed in a constant

dn. For ARMA(p, q) models, let log(L̂) be the log likelihood for the GMLE. Then the
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AIC and BIC criteria have the form −2 log(L̂) + (p + q)c(n) where c(n) = 2 for AIC and

c(n) = log(n) for BIC. From McElroy and Politis (2020, p. 360) and Huang et al. (2022),

−2 log(L̂) ≈ n log(σ̂2
I )+ an where σ̂2

I is the GMLE of the error variance of model I and an is

a constant that depends on n. Hence if I is an ARMA(p, q) model, take

AIC(I) = n log(σ̂2
I) + 2(p + q) and BIC(I) = n log(σ̂2

I ) + (p + q) log(n). (6)

For AIC given by (6), let ∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are

good, and models with 4 ≤ ∆(I) ≤ 7 are borderline. See Duong (1984). Claeskens and

Hjort (2008, pp. 39, 111) use slightly different formulas for AR(p) models. Pötscher and

Srinivasan (1994) multiply the Equation (6) formulas by 1/n.

In simulations for ARMA model selection, the model selection methods often failed to

select a consistent model with high probability in that an inconsistent model was selected

with probability > 0.1. A model I is inconsistent due to underfitting if pI < pS or qI < qS.

A model I is inconsistent due to overfitting if pI > pS and qI > qS. A model I is consistent if

pI = pS and qI ≥ qS or if qI = qS and pI ≥ pS . If the model selection procedure was restricted

to AR models or MA models, then model I is only inconsistent due to underfitting. The BIC

criterion appeared to work for large n if the only models considered were the ARMA(k, k)

models for k = 0, ..., kmax. Then the only consistent model is the ARMA(rS, rS) model. For

this set of restricted models, AIC and AICC tend to overfit with positive probability, and

hence do not select a consistent model with probability going to one as n→ ∞.

In simulations, the Pötscher (1990) method to estimate rS = max(pS , qS) often worked

rather well. Also see Pötscher and Srinivasan (1994). Chan, Ling, and Yau (2020) suggested

that this method is reliable for n ≥ 1000. In our simulations, the method was fairly reliable

for n ≥ 600, but some models needed much larger n, and there were some models where the

method did not simulate well. For the Pötscher (1990) method, let kmax be a positive integer

such as pmax = qmax = kmax = 5. Fit the ARMA(k, k) model for k = 0, 1, ..., kmax. For each

of these kmax +1 models, compute the BIC–type criterion z(k) = log(σ̂2
k)+2k log(n)/n where

σ̂2
k is the GMLE estimator of the error (or innovation) variance σ2. This criterion is Equation

(6) divided by n, and thus (6) could be used instead. The estimator r̂ of rS is the first local
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minimum of the series z(0), z(1), ..., z(kmax). Hence r̂ = 0 if z(0) ≤ z(1); r̂ = 1 if z(0) > z(1)

and z(1) ≤ z(2); r̂ = 2 if z(0) > z(1), z(1) > z(2), and z(2) ≤ z(3); r̂ = k if z(r) > z(r + 1)

for 0 ≤ r < k and z(k) ≤ z(k + 1) for k = 0, ..., kmax − 1; and r̂ = kmax if z(k) is not a local

minimum for any k = 0, 1, ..., k−1. Note that rS ≤ kmax is necessary for r̂ to be a consistent

estimator of rS.

The following method is new, and can have fewer parameters than the ARMA(r̂, r̂)

model. Use the AIC(I) criterion of Equation (6) after finding r̂ as above. Then a decrease

of AIC > 2 when one parameter is omitted suggests that the parameter was not needed.

Let pen be a penalty such as pen = 2 (used in the simulations) or pen = 0. The algorithm

computes the crit = AIC(I)− pen for the ARMA(r̂, r̂) model, and fits the ARMA(r̂− i, r̂)

and ARMA(r̂, r̂ − i) models for i = 0, ..., r̂ − 1. If one of the models has AIC(I) < crit,

then the set crit = AIC(I) −pen. This process is repeated at each step. The value of crit is

updated only if a decrease of more than pen from the current value of crit is observed. The

final model I is the model selected by this algorithm. This additional penalty decreased the

amount of underfitting. Note that 2r̂ models are fitted after finding r̂, which fits kmax + 1

models. This method is faster than computing the AIC for (kmax + 1)2 models. Take the

ARMA(p, r̂) or ARMA(r̂, q) model that has the smallest value of crit. Then at least one of

p and q will equal r̂. Huang et al. (2022) use a similar method with BIC.

3. Prediction Intervals

For forecasting, predict the test data Yn+1, ..., Yn+L given the past training data Y1, ..., Yn.

A large sample 100(1 − δ)% prediction interval (PI) for Yn+h is [Ln, Un] where the coverage

P (Ln ≤ Yn+h ≤ Un) = 1 − δn is eventually bounded below by 1 − δ as n → ∞. We often

want 1 − δn → 1 − δ as n→ ∞. By construction, some of the prediction intervals will have

training data coverage ≈ 1 − αn where 1 − αn ≥ 1 − δ, and 1 − αn → 1 − δ as n → ∞.

A large sample 100(1 − δ)% PI is asymptotically optimal if it has the shortest asymptotic

length: the length of [Ln, Un] converges to Us−Ls as n→ ∞ where [Ls, Us] is the population

shorth: the shortest interval covering at least 100(1 − δ)% of the mass.

The shorth estimator of the population shorth will be defined below and used to create
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large sample PIs that do not require knowing the distribution of the errors et. If the data

are Z1, ..., Zn, let Z(1) ≤ · · · ≤ Z(n) be the order statistics. Let dxe denote the smallest

integer greater than or equal to x (e.g., d7.7e = 8). Consider intervals that contain c

cases [Z(1), Z(c)], [Z(2), Z(c+1)], ..., [Z(n−c+1), Z(n)]. Compute Z(c) −Z(1), Z(c+1) −Z(2), ..., Z(n) −
Z(n−c+1). Then the estimator shorth(c) = [Z(s), Z(s+c−1)] is the interval with the shortest

length.

Suppose the data Z1, ..., Zn are iid and a large sample 100(1−δ)% PI is desired for a future

value Zf such that P (Zf ∈ [Ln, Un]) → 1 − δ as n → ∞. The shorth(c) interval is a large

sample 100(1− δ)% PI if c/n→ 1− δ as n→ ∞, that often has the asymptotically shortest

length. Frey (2013) showed that for large nδ and iid data, the shorth(kn = dn(1 − δ)e)
prediction interval has maximum undercoverage ≈ 1.12

√

δ/n, and used the large sample

100(1 − δ)% PI shorth(c) =

[Z(s), Z(s+c−1)] with c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (7)

Some more notation is needed before deriving PIs for time series. Suppose the training

data set is Y1, ..., Yt. The h-step ahead forecast for a future value Yt+h is Ŷt(h) and the

h-step ahead forecast residual is êt(h) = Yt+h − Ŷt(h). For example, a common choice for

model Yt = τ +
∑

i ψiYt−iki +
∑

j νjet−jkj + et is Ŷt(h) = τ̂ +
∑

i ψ̂iY
∗

t+h−iki
+

∑

j ν̂j ê
∗

t+h−jkj

where êt is the tth residual, Y ∗

t+h−iki
= Yt+h−iki if h − iki ≤ 0, Y ∗

t+h−iki
= Ŷt(h − iki) if

h − iki > 0, ê∗t+h−jkj
= êt+h−jkj if h − jkj ≤ 0, and ê∗t+h−jkj

= 0 if h − jkj > 0, and the

forecasts Ŷt(1), Ŷt(2), ..., Ŷt(L) are found recursively if there is data Y1, ..., Yt. Typically the

residuals êt = êt−1(1) are the 1-step ahead forecast residuals and the fitted or predicted

values Ŷt = Ŷt−1(1) are the 1-step ahead forecasts.

Example 1 is useful to illustrate the forecasts. The R software produces êt and Ŷt = Yt−êt

for t = m + 1, ..., m + n1 where there are n1 1-step ahead forecast residuals êt = êt−1(1)

available, often with m = 0 and n1 = n. In the examples, we get the formulas Ŷn(h), and

then replace n by t so that the test data formula is applied to the training data. Then the

general formula for an ARMA(p, q) model is Ŷt(h) = τ̂ + φ̂1Ŷt(h− 1) + φ̂2Ŷt(h− 2) + · · · +
φ̂h−1Ŷt(1)+ φ̂hYt + · · ·+ φ̂pYt+h−p + θ̂hêt + · · ·+ θ̂qêt+h−q for 1 < h ≤ min(p, q). Assume there

8



are nh forecast residuals êt(h) available from the training data.

Example 1. Suppose the training data is Y1, ..., Yn. a) Consider an MA(2) model:

Yt = τ + θ1et−1 + θ2et−2 + et. The R software produces êt and Ŷt = Yt − êt for t = 1, ..., n

where Ŷt = Ŷt−1(1) = τ̂ + θ̂1êt−1 + θ̂2êt−2 and êt(1) = Yt+1 − Ŷt(1) for t = 3, ..., n. Also,

Ŷn(1) = τ̂+ θ̂1ên+ θ̂2ên−1. Hence there are n1 = n 1-step ahead forecast residuals êt = êt−1(1)

available. Similarly, Ŷt(2) = τ̂+θ̂2êt for t = 1, ..., n. Hence the 2-step ahead forecast residuals

are available for t = 3, ..., n− 2. Now Ŷt(h) = τ̂ ≈ Y for h > 2. Hence there are n h-step

ahead forecast residuals Yt − Y for h > 2 and t = 1, ..., n.

b) Consider an ARMA(1,1) model: Yt = τ + φ1Yt−1 + θ1et−1 + et. For h = 1, Ŷt(1) =

τ̂ + φ̂1Yt + θ̂1êt. For h > 1, Ŷt(h) = τ̂ + φ̂1Ŷt(h− 1).

c) Consider an AR(1) model: Yt = τ+φ1Yt−1 +et. For h = 1, Ŷt(1) = τ̂ + φ̂1Yt. If Ŷt(0) = Yt,

then Ŷt(h) = τ̂ + φ̂1Ŷt(h− 1) = τ̂ (1+ φ̂1 + · · ·+ φ̂h−1
1 )+ φ̂h

1Yt =
1 − φ̂h

1

1 − φ̂1

τ̂ + φ̂h
1Yt. For a weakly

stationary AR(1) time series, a good estimation method will have |φ̂1| < 1.

d) Consider an ARIMA(1,1,1) model with τ = 0: Yt = (1 + φ1)Yt−1 − φ1Yt−2 + θ1et−1 + et.

Then Ŷt(1) = (1 + φ̂1)Yt − φ̂1Yt−1 + θ̂1êt, Ŷt(2) = (1 + φ̂1)Ŷt(1) − φ̂1Yt, and Ŷt(h) = (1 +

φ̂1)Ŷt(h− 1) − φ̂1Ŷt(h− 2) for h > 2.

e) Consider an ARIMA(0,1,1) model with τ = 0: Yt = Yt−1 + θ1et−1 + et. Then Ŷt(1) =

Yt + θ̂1êt, and Ŷt(h) = Ŷt(h− 1) = Ŷt(1) for h ≥ 2.

f) Consider an ARIMA(0,2,2) model with τ = 0: Yt = 2Yt−1−Yt−2+θ1et−1+θ2et−2+et. Then

Ŷt(1) = 2Yt−Yt−1 + θ̂1êt+ θ̂2êt−1, Ŷt(2) = 2Ŷt(1)−Yt + θ̂2êt, and Ŷt(h) = 2Ŷt(h−1)− Ŷt(h−2)

for h ≥ 3.

The basic idea for getting prediction intervals for the test data is now given. Find the

forecast formulas for the test data Yn+1, ..., Yn+L, and apply the formulas to the training

data Y1, ..., Yn to get forecast residuals. Assume consistent estimators are used so that

the forecast residuals are consistent estimators of the forecast errors. Apply the shorth

to the nh forecast residuals êt(h) to get [Ln(h), Un(h)], a PI for a future forecast error.

Then the PI for Yn+h is [Ŷn(h) + Ln(h), Ŷn(h) + Un(h)]. Since the forecast residuals tend to

underestimate the forecast errors, small correction factors are needed for small n. This idea is
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illustrated for ARIMA models, but also works for many other time series methods, including

seasonal ARIMA models. Similar PIs and prediction regions were derived for multiple linear

regression, nonlinear models of the form Y = m(x) + e, and multivariate linear regression

by Olive (2007, 2013, 2017ab, 2018).

Often time series PIs assume normality, and do not work well unless the errors et are iid

N(0, σ2
e). For many time series models, a large sample normal 100(1 − δ)% PI for Yt+h is

[Ln, Un] = Ŷt(h) ± t1−δ/2,n−p−qSE(Ŷt(h)). (8)

Suppose that as n → ∞, Ŷt(h)
P→ E(Yt+h) = µt+h and SE(Ŷt(h))

P→ SD(Yt+h) = σt+h.

Thus Ŷt(h) and SE(Ŷt(h)) are consistent estimators of µt+h and σt+h, respectively. These

quantities are conditional on the past, but the conditioning is suppressed. Then

P (Yt+h ∈ [Ln, Un]) ≈ P (Yt+h ∈ [µt+h − z1−δ/2σt+h, µt+h + z1−δ/2σt+h]) =

P [|Yt+h − µt+h| < z1−δ/2σt+h] “ ≥ ” 1 − 1
z2

1−δ/2

assuming Chebyshev’s inequality holds to a

good approximation. Hence a 95% PI could have coverage as low as 74% and a 99.7% PI

could have coverage as low as 89%. If n is large, a nominal 95% PI uses t1−δ/2,n−p−q ≈ 1.96

while using z1−δ/2 = 5 has coverage that is eventually bounded below by 96% as n → ∞.

The t cutoff 1.96 tends to be too low while the Chebyshev cutoff 5 tends to be too high in

that the PI length will be too long and the coverage too high.

The following new PI ignores the time series structure of the data. Let et = Yt − Y , and

let shorth(c1 = dn(1−δ)e) = [Ln(h), Un(h)] be computed from the et. Then the large sample

100(1 − δ)% shorth(c1) PI for Yt+h is

[Ln, Un] = [Y + bnLn(h), Y + bnUn(h)] (9)

where bn =
(

1 +
15

n

)

√

n+ 1

n− 1
. Note that this PI is the same for all h. For weakly stationary,

causal, and invertible ARMA(p, q) models, this PI is too long for h near 1, but should have

short length for large h and if h > q for an MA(q) model. This PI is the Olive (2013) PI

suggested for Yf when Y1, ..., Yn and Yf are iid.

PI (9) works for two reasons. First, a weakly stationary, causal ARMA(p, q) time series

follows an MA(∞) model which is approximately an MA(qy) time series where qy depends
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on the time series but not on n. Such time series tend to be ergodic: see White (1984,

p. 46). For ergodic data from a unimodal distribution, Chen and Shao (1999) proved the

sample shorth converges to the unique population shorth. Second, we show that PI (9)

works for MA(q) models. Thus PI (9) will also work for MA(∞) time series models. For

the MA(q) model, et(h) = θ1et+h−1 + θ2et+h−2 + · · · + θh−1et+1 + et+h for h ≤ q, et(h) =

Yt+h −µ for h > q, the et(h) are identically distributed for fixed h, and the random variables

ej(h), ej+h(h), ej+2(h)(h), ... are iid for fixed h ≤ q. For h ≤ q, there are h iid sequences

starting at j = 1, 2, ..., h, respectively. For h > q there are q + 1 iid sequences starting at

j = 1, ..., (q+1). Since the sample percentiles of the iid sequences converge in probability to

the population percentiles for fixed h, so do the sample percentiles of all of the data. Hence

P (et(h) ∈ [Ln(h), Un(h)]) ≈ 1 − δ as n → ∞ for the MA(q) model if consistent estimators

are used.

The following PI is new and takes into account the time series structure of the data. A

similar idea in Masters (1995, p. 305) is to find the nh h-step ahead forecast residuals and use

percentiles to make PIs for Yt+h for h = 1, ..., L. Let the full model be the ARMA(kmax, kmax)

model. Let Im be the ARMA(pm, qm) model that was selected by the model selection algo-

rithm. Often Im = Imin. Find Ŷn(h) and the forecast residuals êt(h) for the selected model

Im. For h = 1 we will use the residuals êt. Let k = pm + qm, and

ẽt(h) =
(

1 +
15

nh

)

√

nh

nh − k
êt(h).

Let qn = min(1 − δ + 0.05, 1 − δ + k/nh) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δk/nh), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the shorth(cmod) PI

[L̂n(h), Ûn(h)] from the nh scaled forecast residuals ẽt(h) with

cmod = min(nh, dnh[qn + 1.12
√

δ/nh ] e). (10)

Then the new large sample 100(1 − δ)% PI for Yn+h is

[Ln, Un] = [Ŷt(h) + L̂n(h), Ŷt(h) + Ûn(h)]. (11)
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Similar correction factors were used by Olive, Rathnayake, and Haile (2022) for prediction

intervals for regression models, such as generalized linear models, after variable selection.

Note that for h = 1, an estimator for σ2 = V (e) is

σ̂2 =
1

n1 − k

n1
∑

i=1

ê2
i ≈

1

n1

n1
∑

i=1

e2
i ,

suggesting that
√

n1

n1 − k
êi ≈ ei.

Why might PIs (11) have good coverage? For both the test data and the training data,

Yt+h = Ŷt(h) + êt(h) = µt+h + et(h). First, consider the training data where nh forecast

residuals êt(h) exist. Then the proportion of Yt+h ∈ [Ŷt(h) + Ln(h), Ŷt(h) + Un(h)] = the

proportion of the nh forecast residuals êt(h) ∈ [Ln(h), Un(h)] ≈ 1−δn ≥ 1−δ by construction.

Hence the training data coverage is good. If the selected fitted model is good, and the test

data behaves like the training data, then we expect the test data coverage to be good. Hence

we need consistent estimators and large n.

Second, assume the time series follow a weakly stationary ARMA model, and suppose

Ŷt(h) is a consistent estimator of µt+h and êt(h) estimates et(h) in that êt(h) − et(h)
D→ 0

as n → ∞. Also assume that the percentiles of êt(h) estimate the percentiles of et(h) such

that P (et(h) ∈ [Ln(h), Un(h)]) → 1 − δ as n → ∞. Then P (Yn+h ∈ [Ŷn(h) + Ln(h), Ŷn(h) +

Un(h)]) ≈ P (et(h) ∈ [Ln(h), Un(h)]) ≈ 1−δ. These assumptions are roughly the assumptions

made when normality is assumed, which makes the time series strictly stationary. For h = 1,

the {êt+1} = {êt(1)} estimate the iid {et}, and these assumptions may be reasonable if

consistent estimators are used and n is large. If the model selection estimator selects a

consistent estimator with probability that goes to 1 as n → ∞, then the model selection

estimator tends to be consistent by Haile and Olive (2023). For weakly stationary ARMA

models, µt+h → µ, Ŷt(h) → µ, and êt(h) estimates Yt+h − µ as h → ∞. Lee and Scholtes

(2014) discuss when the percentiles of forecast errors are consistent for ARMA models.

4. Example and Simulations

Model selection can be done using the R function auto.arima from the Hyndman and

12



Khandakar (2008) forecast package. Also see Hyndman and Athanasopoulos (2018). The

AIC and BIC criteria used by this function differ from those given by Equation (6).

Example 2. The monthly Brent crude oil spot price Yt (dollars per barrel) with 396

observations was collected over the period of 01/1990 - 12/2022. This data set is available

from (https://github.com/rishabh89007/Time Series Datasets). The differenced time series

did not have constant variance. Hence the differenced time series Xt of log(price) was used.

The plot of time series in Figure 1 shows several outliers, cases 7, 8, 362, 363, 364, and 365,

which create white space in the plot. The outliers near 2020 may be due to covid. These

six outliers which were replaced by missing values. Hence if Xt = log(Yt) − log(Yt−1) is the

original time series, then Wt is the new time series with Wt = Xt if Xt is not one of the

outliers, and Wt = NA if Xt was an outlier, where NA is R notation for missing. See Figure

2 for the plot of Wt. The auto.arima function was used for model selection and picked an

AR(1) model, which appeared to be reasonable from ACF and PACF plots. The new model

selection procedure and the Pötscher (1990) method both selected an ARMA(1,1) model,

which is consistent if the AR(1) model is consistent.

For the model selection and PI simulations, there were four error types for the iid et:

1) N(0,1), 2) t5, 3) U(−1, 1), or 4) (EXP(1) - 1), a shifted exponential distribution. All

these distributions have mean 0, but the fourth distribution is not symmetric. The 6 time

series types were tstype=1 for an AR(1) model with φ = 0.5, tstype=2 for an AR(2) model

with φ = (0.5, 0.33)T , tstype=3 for an MA(1) model with θ = −0.5, tstype=4 for an MA(2)

model with θ = (−0.5, 0.5)T , tstype=5 for an ARMA(3,1) model with φ = (0.7, 0.1,−0.4)T

and θ = 0.1. Finally, tstype=6 allows the user to specify φ and θ for an ARMA(p, q) model

with p ≥ 1, q ≥ 1, and p, q ≤ kmax where kmax is the largest value of r for the fitted

ARMA(r, r) models, r = 0, 1, ...,kmax.

Model Selection Simulations

We used the auto.arima function with “AIC”, the Pötscher (1990) method that selects

an ARMA(r̂, r̂) model, and the new ARMA model selection method given in Section 2. In

Tables 1–2, these methods are denoted by R AIC, r̂, and I , respectively. AIC was used with
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Table 1: ARMA, Proportion Consistent Model is Selected, nruns=1000,φ = 0.4,θ = −0.7

n dist R AIC r̂ I

50 N 0.151 0.561 0.561

200 N 0.239 0.979 0.979

500 N 0.152 1.00 1.00

2000 N 0.249 1.00 1.00

50 t 0.151 0.609 0.609

200 t 0.239 0.944 0.944

500 t 0.109 1.00 1.00

2000 t 0.233 1.00 1.00

50 U 0.153 0.559 0.559

200 U 0.241 0.953 0.953

500 U 0.229 0.982 0.982

2000 U 0.309 1.00 1.00

50 sEXP 0.149 0.569 0.569

200 sEXP 0.241 0.959 0.959

500 sEXP 0.179 0.995 0.995

2000 sEXP 0.263 1.00 1.00
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Table 2: Proportion Consistent Model is Selected, nruns=1000, tstype=5

n dist R AIC r̂ I

500 N 0.251 0.381 0.364

800 N 0.279 0.692 0.609

1000 N 0.361 0.648 0.619

1500 N 0.357 0.943 0.832

2000 N 0.514 1.00 0.954

500 t 0.219 0.354 0.324

800 t 0.283 0.654 0.584

1000 t 0.354 0.793 0.739

1500 t 0.359 0.939 0.793

2000 t 0.389 0.969 0.904

500 U 0.219 0.409 0.339

800 U 0.229 0.713 0.68

1000 U 0.324 0.839 0.761

1500 U 0.434 0.964 0.879

2000 U 0.524 0.983 0.963

500 sEXP 0.279 0.362 0.301

800 sEXP 0.323 0.619 0.519

1000 sEXP 0.419 0.774 0.663

1500 sEXP 0.369 0.939 0.889

2000 sEXP 0.394 0.994 0.909
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auto.arima since in the simulations for n ≤ 500, underfitting was much more of a problem

than overfitting. The simulations give the proportion of times a consistent model I was

selected. Thus pI = pS and qI ≥ qS or qI = qS and pI ≥ pS .

For the 6 time series types, searching all 36 models with auto.arima would select a

consistent model about 75% to 96% of the time if the true model was AR(p) or MA(q) and

n was large (tstype 1 to 4), but did not perform well for ARMA(1,1) models.

The ARMA models were sensitive the values of φ and θ. For ARMA(1,1) models with

(φ, θ)T = (0.5, 0.2), (0.2, 0.1), (0.4,−0.1), (0.6,−0.3), (−0.2, 0.6), (−0.4, 0.8), (−0.6, 1.0),

(0.2,−0.5), (0.4,−0.7), (−0.2,−0.1), (−0.4, 0.1), (−0.6, 0.4), (−0.8, 0.6), the Pötscher (1990)

method worked well with n = 1000, but (φ, θ)T = (0.5,−0.5) did not. In the simulations,

the Pötscher (1990) model selection method could work fairly well for n as low as 80, and

often worked fairly well for n = 600, but often much larger sample sizes were needed. The

tstype = 5 model needed n ≥ 1500. Chan, Ling, and Yau (2020) suggested that the Pötscher

(1990) method is reliable for n ≥ 1000. More simulations are in Welagedara (2023).

For the simulated ARMA(1,1) time series in Table 1, the Pötscher (1990) and new meth-

ods were reliable for picking a consistent model for n ≥ 200, while auto.arima with AIC

picked an inconsistent model in at least 69% of the 1000 runs. Table 2 used the tstype = 5

model ARMA(1,3) model. The new methods were reliable for n ≥ 1500, while auto.arima

with AIC picked an inconsistent model in at least 47% of the 1000 runs.

Prediction Intervals after Model Selection

For ease of programming, we used one step ahead prediction intervals after model selec-

tion using the auto.arima function, the GMLE, and AICC. Haile (2022) gave additional

prediction intervals and simulations. With 5000 runs, coverages between 0.94 and 0.96 sug-

gest that there is no reason to believe that the nominal coverage is not 0.95. The iid error

distributions for et were N(0,1), t5, U(−1, 1), or (EXP(1) - 1), a shifted exponential distri-

bution. For h = 1, the asymptotic optimal lengths of the 95% PIs are 3.92, 5.141, 1.9, and

2.996, while the asymptotic lengths of the normal (Chebyshev) nominal 95% PIs are 3.92σ

= 3.92, 5.061, 2.263, and 3.92 for the N(0,1), t5, U(−1, 1), and (EXP(1) - 1) distributions,
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Table 3: One Step Ahead PIs after Model Selection, Coverages and Lengths

n dist cov/len PI (11) PI (F) PI (8)

100 N cov 0.9592 0.9442 0.9476

100 len 4.3214 3.8857 3.9341

100 t5 cov 0.9550 0.9412 0.9434

100 len 5.6747 5.0015 5.0637

100 U cov 0.9776 0.9842 0.9860

100 len 2.1992 2.2538 2.2819

100 sEXP cov 0.9540 0.9406 0.9424

100 len 3.7989 3.8504 3.8983

400 N cov 0.9500 0.9470 0.9476

400 len 3.9990 3.9119 3.9239

400 t5 cov 0.9444 0.9404 0.9412

400 len 5.2364 5.0455 5.0609

400 U cov 0.9576 0.9988 0.9992

400 len 1.9644 2.2593 2.2662

400 sEXP cov 0.9578 0.9508 0.9518

400 len 3.2935 3.9047 3.9166

800 N cov 0.9526 0.9514 0.9520

800 len 3.9445 3.9147 3.9206

800 t5 cov 0.9480 0.9452 0.9456

800 len 5.1604 5.0491 5.0568

800 U cov 0.9524 0.9994 0.9994

800 len 1.9255 2.2605 2.2640

800 sEXP cov 0.9438 0.9410 0.9410

800 len 3.1842 3.9147 3.9207

18



respectively. For iid data, and likely MA(∞) errors, the asymptotic coverages of the nominal

95% Chebyshev intervals for the four error distributions are 0.95, 0.948, 1.00, and 0.948.

Table 3 gives some results for nominal 95% PIs. The full model was the ARMA(5,5)

model. The true model was an MA(2) model. PIs (8) and (11) were used, as well as the

normal (Chebyshev) nominal 95% PI given auto.arima, denoted by (F). Two lines per

distribution-sample size combination were given. The first line gives the simulated coverage,

which tended to be higher than 0.94. The second line gives the average PI length. PIs (8)

and (F) were very similar. For n = 800, the PI lengths and coverages were close to the

asymptotic values.

Table 4: One Step Ahead PIs after Model Selection, φ = 0.4, θ = −0.7

n model selection method cov/len PI (9) PI (11) PI (F)

100 A cov 0.9508 0.9510 0.9380

100 A len 5.6964 5.6948 5.0013

100 P cov 0.9574 0.9334

100 P len 5.9887 4.9387

200 A cov 0.9476 0.9508 0.9426

200 A len 5.4792 5.3964 5.0300

200 P cov 0.9554 0.9432

200 P len 5.5153 5.0007

400 A cov 0.9478 0.9514 0.9482

400 A len 5.3971 5.2408 5.0444

400 P cov 0.9516 0.9490

400 P len 5.2918 5.0323

In limited simulations, one step ahead prediction intervals (11) and the Chebyshev

“95%” h-step ahead prediction intervals (8) simulated fairly well after model selection using

auto.arima or the Pötscher method. Prediction interval (9) does not depend on model
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selection. For example, in Table 4, the true model was an ARMA(0.4,−0.7) model, the et

were iid t5, A stands for auto.arima, and P stands for the Pötscher method. PI (9) does

not depend on the model selection method, and hence the coverage and length were given

for A but not for P. For PI (11) and PI (F), the coverages and lengths were similar for A

and P. Note that PI (11) was slightly longer than PI (9) for P and n = 100, 200. Also, the

PI (F) average length is close to the asymptotic length 5.061 while the PI (11) length is not

as close to the asymptotically optimal length 5.141.

5. Conclusions

ARMA and ARIMA model selection that searches all (pmax + 1)(qmax + 1) models was

unreliable in simulations. Using BIC from Equation (6), kmax = pmax = qmax, and fitting

the ARMA(k, k) models for k = 0, 1, ..., kmax with the Pötscher method had much better

performance, but still needed n ≥ 600 to be fairly reliable. For data splitting, suppose the

first nH values of the time series are used to select the ARMA(kI, kI) model I , and the

remaining nV = n−nH values for inference. Then nH ≥ 600 and nV ≥ 20kI should be used.

Hence the time series length needs to be fairly long, n ≥ 600 + 20kmax, in order to use data

splitting inference. Much larger values of nH and nV are sometimes needed.

There is a large literature on ARIMA time series PIs, especially for AR(p) models, and

the bootstrap is often used. Most of the literature assumes that the model and the order

are known, ignoring model selection. Theory needs the model selection estimator to select

a consistent estimator with probability going to one. Hence the Pötscher method is better

for theory than the standard model selection method that searches all (pmax + 1)(qmax + 1)

models. See Haile (2022), Hyndman and Athanasopoulos (2018), Lu and Wang (2020),

and Pan and Politis (2016) for references. See Hong, Kuffner, and Martin (2018) for why

classical PIs after AIC variable selection do not work. Hyndman and Athanasopoulos (2018,

last paragraph of
∮

8.8) note that ARIMA-based prediction intervals tend to be too narrow,

so actual coverage is less than the nominal coverage. See Bhansali (1981) for the effects of

estimating the order of the time series model. Data sets where the future data does not

behave like the past data are common, and then the prediction intervals tend to perform
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poorly.

Plots and simulations were done in R. See R Core Team (2020). Programs are in the

collection of functions tspack.txt. See (http://parker.ad.siu.edu/Olive/tspack.txt). The func-

tion armamsel1 performs Pötscher (1990) ARMA model selection method, and the function

armamsel2 also performs the new ARMA model selection method described in Section 2.

The function armasim3 did the simulation for Tables 1-2.

If Xt = Yt − Yt−1, then Yt+1 = Yt +Xt+1 which is a random walk where Xt+1 follows an

MA(∞) model. If Xt = Yt−2Yt−1 +Yt−2, then Yt+1 = 2Yt−Yt−1 +Xt+1. Apply PI (9) to the

Xt to get [Ln, Un]. Then a nonparametric one step ahead PI for Yn+1 is [Yn + Ln, Yn + Un]

or [2Yn − Yn−1 + Ln, 2Yn − Yn−1 + Un]. The function nonpisim simulates these PIs.

One step ahead prediction intervals (8), (9), and (11) and the Chebyshev “95%” h-step

ahead prediction intervals simulated fairly well after model selection using auto.arima or the

Pötscher method. Huang et al. (2022) show that the variance estimator and the estimator

β̂ are still useful even when the model overfits. PI (9) does not depend on model selection,

and h-step ahead PIs should become similar to PI (9) as h → ∞ for MA(∞) time series.

The Chebyshev “95%” prediction intervals such as (8) are useful even after model selection,

provided that consistent estimators of µt+h and σt+h are used, but the asymptotic coverage

could be between 0.74 and 1.0, depending on the error distribution.

The function locpi gets PI (9). The function locpi2 needs the forecast residuals, and

finds [Ln, Un] used in PI (11). One step ahead PIs similar to (11) are easy to compute if the

one step ahead residuals are given by the model selection output. The function onesteppi

gets the one step ahead PI for seasonal ARIMA(p, d, q) × (P,D,Q)s models with period s

where the 6 estimated parameters need to be given. The function can handle missing values

entered as NA. For Table 3, the function pitsvssim simulates PIs (8) and (11) after model

selection using the GMLE with AICC using the R function auto.arima.

For Table 4, the functions armapisim and arimapisim compare auto.arima and the

Pötscher method for four 1-step ahead methods. The function tspisim compares auto.arima

and the Pötscher method for the normal Chebyshev h-step ahead PIs. These three function
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would often fail if 5000 runs were used.

Acknowledgments

The authors thank the referees and editors.

References

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle.

In Proceedings, 2nd international symposium on information theory, ed. B. N. Petrov and

F. Csakim, 267-281. Budapest: Akademiai Kiado.

Anderson, T. W. 1971. The statistical analysis of time series. Hoboken, NJ: Wiley.

Anderson, T. W. 1977. Estimation for autoregressive moving average models in the time and

frequency domains. The Annals of Statistics 5 (5):842-865. doi:10.1214/aos/1176343942.

Bhansali, R. J. 1981. Effects of not knowing the order of an autoregressive process on

the mean squared error of prediction-I. Journal of the American Statistical Association 76

(375):588-597. doi:10.1080/01621459.1981.10477690.

Box, G., and G. M. Jenkins. 1976. Time series analysis: forecasting and control. revised

ed., Oakland, CA: Holden-Day.

Chan, N. H., S. Ling, and C. Y. Yau. 2020. Lasso-based variable selection of ARMA models.

Statistica Sinica 30 (4):1925-1948. doi:10.5705/ss.202017.0500.

Chen, M.-H., and Q.-M. Shao. 1999. Monte carlo estimation of Bayesian credible and HPD

intervals. Journal of Computational and Graphical Statistics 8 (1):69-92.

doi:10.1080/10618600.1999.10474802.

Claeskens, G., and N. L. Hjort. 2008. Model selection and model averaging. New York, NY:

Cambridge University Press.

Davis, W. W. 1977. Robust interval estimation of the innovation variance of an Arma model.

The Annals of Statistics 5 (4):700-708. doi:10.1214/aos/1176343893.

Duong, Q. P. 1984. On the choice of the order of autoregressive models: A ranking and

selection approach. Journal of Time Series Analysis 5 (3):145-157. doi:10.1111/j.1467-

9892.1984.tb00383.x.

22



Durbin, J. 1959. Efficient estimation of parameters in moving-average models. Biometrika

46 (3/4):306-316. doi:10.2307/2333528.

Frey, J. 2013. Data-driven nonparametric prediction intervals. Journal of Statistical Plan-

ning and Inference 143 (6):1039-1048. doi:10.1016/j.jspi.2013.01.004.

Granger, C. W. J., and P. Newbold. 1977. Forecasting economic time series. New York,

NY: Academic Press.

Haile, M. G. 2022. Inference for Time Series after Variable Selection. (Ph.D. Thesis),

Southern Illinois University, USA, at (http://parker.ad.siu.edu/Olive/shaile.pdf).

Haile, M. G., and D. J. Olive. 2023. Bootstrapping ARMA time series models after model

selection. Communications and Statistics - Theory and Methods to appear.

doi:10.1080/03610926.2023.2280546.

Hamilton, J. D. 1994. Time series analysis. Princeton NJ: Princeton University Press.

Hannan, E. J. 1973. The asymptotic theory of linear time-series models. Journal of Applied

Probability 10 (1):130-145. doi:10.2307/3212501.

Hannan, E. J. 1980. The estimation of the order of an ARMA process. The Annals of

Statistics 8 (5):1071-1081. doi:10.1214/aos/1176345144.

Hannan, E. J., and L. Kavalieris. 1984. A method for autoregressive-moving average esti-

mation. Biometrika 71 (2):273-280. doi:10.1093/biomet/71.2.273.

Hannan, E. J., and B. G. Quinn. 1979. The determination of the order of an autore-

gression. Journal of the Royal Statistical Society, B 41 (2):190-195. doi:10.1111/j.2517-

6161.1979.tb01072.x.

Hannan, E. J., and J. Rissanen. 1982. Recursive estimation of mixed autoregressive-moving

average order. Biometrika 69 (1): 81-94. doi:10.1093/biomet/69.1.81.

Hong, L., T. A. Kuffner, and R. Martin. 2018. On overfitting and post-selection uncertainty

assessments. Biometrika 105 (1):221-224. doi:10.1093/biomet/asx083.

Huang, H. H., N. H. Chan, K. Chen, and C. K. Ing. (2022). Consistent order selection for

ARFIMA processes. The Annals of Statistics 50 (3):1297-1319. doi:10.1214/21-AOS2149.

Hurvich, C., and C. L. Tsai. 1989. Regression and time series model selection in small

23



samples. Biometrika 76 (2):297-307. doi:10.1093/biomet/76.2.297.

Hyndman, R. J., and G. Athanasopoulos. 2018. Forecasting: Principles and practice. 2nd

ed., Melbourne, Aus.: OTexts. (https://OTexts.org/fpp2/).

Hyndman, R. J., and Y. Khandakar. 2008. Automatic time series forecasting: The forecast

package for R. Journal of Statistical Software 27 (3):1-22. doi:10.18637/jss.v027.i03.

Kreiss, J. P. 1985. A note on M-estimation in stationary ARMA processes. Statistics & Risk

Modeling 3 (3-4):317-336. doi:10.1524/strm.1985.3.34.317.

Lee, Y. S., and S. Scholtes, S. 2014. Empirical prediction intervals revisited. International

Journal of Forecasting 30 (2):217-234. doi:10.1016/j.ijforecast.2013.07.018.

Lu, X., and L. Wang. 2020. Bootstrap prediction interval for ARMA models with unknown

orders. Revstat-Statistical Journal 18 (3):375-396.

Mann, H. B., and A. Wald 1943. On the statistical treatment of linear stochastic difference

equations. Econometrica 11 (3/4):173-220. doi:10.2307/1905674.

Masters, T. 1995. Neural, novel, & hybrid algorithms for time series prediction. New York,

NY: Wiley.

McElroy, T. S., and D. N. Politis. 2020. Time series: A first course with bootstrap starter.

Boca Raton, FL: CRC Press Taylor & Francis.

Olive, D. J. 2007. Prediction intervals for regression models. Computational Statistics &

Data Analysis 51 (6):115-3122. doi:0.1016/j.csda.2006.02.006.

Olive, D. J. 2013. Asymptotically optimal regression prediction intervals and prediction

regions for multivariate data. International Journal of Statistics and Probability, 2 (1):90-

100. doi:10.5539/ijsp.v2n1p90.

Olive, D. J. 2017a. Robust multivariate analysis. New York, NY: Springer.

Olive, D. J. 2017b. Linear regression. New York, NY: Springer.

Olive, D. J. 2018. Applications of hyperellipsoidal prediction regions. Statistical Papers 59

(3):913-931. doi:10.1007/s00362-016-0796-1.

Olive, D. J., R. C. Rathnayake, and M. G. Haile. 2022. Prediction intervals for GLMs,

GAMs, and some survival regression models. Communication in Statistics: Theory and

24



Methods 51 (22): 8012-8026. doi:10.1080/03610926.2021.1887238.

Pan, L., and D. N. Politis. 2016. Bootstrap prediction intervals for linear, nonlinear,

and nonparametric autoregressions. Journal of Statistical Planning and Inference 177 1-

27. doi:10.1016/j.jspi.2014.10.003.

Pötscher, B. M. 1990. Estimation of autoregressive moving-average order given an infinite

number of models and approximation of spectral densities. Journal of Time Series Analysis

11 (2):165-179. doi:10.1111/j.1467-9892.1990.tb00049.x.

Pötscher, B. M., and S. Srinivasan. 1994. A comparison of order estimation procedures for

ARMA Models. Statistica Sinica 4 (1):29-50.

R Core Team. 2020. R: A language and environment for statistical computing. Vienna: R

Foundation for Statistical Computing. www.R-project.org.

Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6 (2):461-

464. doi:10.1214/aos/1176344136.

Shibata, R. 1976. Selection of the order of an autoregressive model by Akaike’s information

criterion. Biometrika 63 (1):117-126. doi:10.1093/biomet/63.1.117.

Welagedara, W. A. D. M. (2023), Model Selection, Data Splitting for ARMA Time Se-

ries, and Visualizing Some Bootstrap Confidence Regions. (Ph.D. Thesis), Southern Illinois

University, USA, at (http://parker.ad.siu.edu/Olive/swelagedara.pdf).

White, H. 1984. Asymptotic theory for econometricians. San Diego, CA: Academic Press.

Yao, Q., and P. J. Brockwell. 2006. Gaussian maximum likelihood estimation for ARMA

models I: Time series. Journal of Time Series Analysis 27 (6): 857-875. doi:10.1111/j.1467-

9892.2006.00492.x.

25


