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Abstract

Suppose Yi,...,Y, are independent and identically distributed with mean p
and variance o2. Let Y be the sample mean, and let S? = 532/ be the sample
variance of the Y;. Then a 100(1 — )% confidence interval for the mean p is
Y + tn—1,1-a/25/v/n. It will be shown that a 100(1 — «)% confidence interval for
the variance o2 is 5% + th—1,1—a/252/+/n where S% is the sample variance of the
Z; =Y;(Y; = Y).

KEY WORDS: ¢t confidence interval.

1 INTRODUCTION

This section review some confidence intervals that have been suggest for the mean and
the variance. Assume Y7, ..., Y, are independent and identically distributed (iid) with
mean /4 and variance o?. Let zs be the ¢ percentile of the N(0,1) distribution where
0 <9 <1 Hence P(Z < z5) =0 if Z ~ N(0,1). Similarly, let t,,_1 5 be the d percentile
of the t,,_; distribution. Hence P(X < t5) = § if X ~ ¢,,_. For a 100(1 — )% confidence
interval (CI), take § = 1 — .. Note that ¢,_11-a/2 > Z1-a/2, DUt ty_11-a/2 = Zi_a/2 a5
n — oo.

_ 1<
Let the sample mean Y =Y, = — E Y;, let the sample variance
n
i=1

n

7 Z(YZ —Y)?, and let the method of moments estimator of the varaiance
i=1

1
n_

1 _
be 52, = = Y; — Y)?. Let the population skewness of the distribution be
M=
i=1

52252:

E[(Yi — p)°]

v = 3
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Let u3 = E[(Y — p)?] and
) RS —
fiz = 54 = — E (Yi-Y)°.

n
i=1

Let the population (excess) kurtosis of the distribution be

E[(Y; — p)Y]
I{:T—g
Let e —
D >0 1 O L
k= i — 3.
Let R
0 Y
p=—1=

6y/n’
Then the large sample 100(1 — a)% t CI for u is
Y £ty 11-a2 S/Vn. (1)
A competitor is the Johnson (1978) 100(1 — «)% CI for u

~

[ ?‘l‘ 65—27’1, - tn—l,l—a/2 S/\/ﬁ> Y + 6»,;271 + tn—l,l—a/2 S/\/ﬁ ] (2)

Hesterberg (2014) gave the following two competitors of the ¢ CI given by Equation
(1.1): the skewness adjusted t interval is

— S . S
[ Y + —[w(l + Qti—m—a/z) - tn—l,l—a/2]> Y + —[w(l + Qti—m—a/z) + tn—l,l—a/2] ]> (3)
NZD NZD

and the asymptotic percentile ¢t CI is

(Y + %W’(tn—l,l—am - 1)2 - tn—l,l—a/2]> Y + ﬁ[w(tn—Ll—a/? - 1)2 + t"—lvl—a/z] (4)
The t-interval (1) may perform better than the three alternatives if the distribution
has second moments but does not have third moments. In simulations, these confidence
interval performed fairly well for a large variety of distribution with n = 100. The
lognormal distribution needed n = 400. For any n > 50, distributions can be found
where the Cls do not perform well for n but do perform well if the sample size is doubled
to 2n.

Next, we discuss confidence intervals for o2. Bickel and Doksum (2007, p. 279)
suggest that
o —1/2 (n— 1)52
W, =n"" {T —n
can be used as an asymptotic pivot for o2 if E(Y*) < co. Notice that W,, =

-y {zm-u)z T n}

o2 o2




\/ﬁ[%‘:u)z - 1] - %n (?;“):Xn—zn.

Since \/nZ, 2 X2, the term Z, = 0. Note that U; = [(V; — 1)/o]? has mean E(U;) = 1
and variance
ElY =]

ok

V(U,) =1 = E(U?) — (E(U))? = —l=k42

where & is the kurtosis of Y;. Hence X,, = /n(U — 1) £ N(0,7) by the CLT. Thus
W, 2 N(0, 7).
Hence

l—ax= P(—Z1—a/2 < 7: < Z1—a/2) = P(_Zl—a/2\/7_- <W,< Zl—a/z\/F)
(n—1)5?
= P(—=21_q/2v/nT < —
n—1)52

% <N+ 21— 2V/NT).

Hence a large sample 100(1 — )% CI for o2 is

n < Zi_aj2V/NT)

= P(n — zi—ajov/nt <

(n—1)5? (n—1)52
n+ zl_a/gx/nf" n— Zi_a/2VNT
Py (YY)
G4
Notice that this CI needs n > z;_,/2v/n7 for the right endpoint to be positive. It can be

shown that y/n (length CI) converges to 202z1_4/2y/7 in probability.
Olive (2014, pp. 276-278, 289-290) uses an asymptotically equivalent 100(1 — )% CI

of the form
(n —a)S? (n + b)S?
N+t 11-a;2V nt n— tn—1,1—a/2VNT

where a and b depend on 7. The goal was to make a 95% CI with good coverage for a
wide variety of distributions (with 4th moments) for n > 100. The price is that the CI is
too long for some of the distributions with small kurtosis. The N(u, 0?) distribution has
7 = 2, while the EXP()) distribution has 02 = A\* and 7 = 8. The quantity 7 is small for
the uniform distribution but large for the lognormal LN(0,1) distribution.

By the binomial theorem, if F(Y?) exists and F(Y) = u then

4
4 . »
B =)' = 3 () )t -
J=0 J
it — 4P E(Y) + 62V (V) + [BOO)P) — 4uB(Y?) + B(Y?),
This fact can be useful for computing

E[(Y; — p)?
TZM-lZI{—I—Q.
o

where

— 1.

7=




2 Large Sample Theory for the New Confidence In-
terval

Part a) of the following theorem can be derived from the results in Bickel and Doksum
(2007, p. 279). Theorem 1 with the V; is a special case of Theorem 2 from Olive et
al. (2025) which finds the limiting distribution of \/n(é¢ — ¢) where ¢ stacks k distinct
elements of the sample covariance matrix into the vector ¢. Note that the proof of
Theorem 1 shows that if W; = Z; + Op(n~%/2), then S%, = S% + Op(n=1/2).

Theorem 1. Assume the cases Yi,..., Y, are iid with E(Y;) = u, V(Y;) = o2, and
that E(Y;) exists. Let W; = (Y; — )% Then a)

V(W = 0?) 5 NO, o' (5 +2)), Va(S? — 0%) 5 N(0,0%(k +2)), (5)

and /(S — 02) 2 N(0, 0 (ks + 2)).

b) Let Z; = Y;(Y;=Y) and V; = (Y;—Y)2 Then S, = 52 +O0p(n~?) = SZ +Op(n~Y/?).
Denote the method of moments estimator of o by 2. Then 63, = 6% + Op(n~'/?) =
5"2/ + Op(n_l/z).

Proof. a) E(W) =¢% and V(W) = E(W?) — [E(W)]? =

1 1
4 0o (EY —p)] 4_ 4
Hence /n(W, — 02) 2 N(0,0%(x + 2)) by the central limit theorem. By the delta
method,
n(Y —p) p
o

Then nSy =noy =30 (Yi-Y)? =30 (Yi—p+p—Y) =31, (Y — p)*+

23, (Vi ) (a= V) o (0= ) = S0, Wi (¥ — ). Thus 8, = W — (V= )2
Hence /n(S%, — 0?%) =

VAW —o2) = ME O R — 0?) 4 Op(n ).

Hence /n(S2, — 02) 2 N(0, 0% (k + 2)).

b) W; = (Y; — ?—I—Y—N)(Yi—?—l-?—,u) =
Vit Yi=V)Y =) + (¥ =) (Yi =Y) + (Y =) (Y — p).
Thus W; — W =V, — V + a; where

a; =2(Y; = Y)(Y — p) = Op(n~'/?).
Thus

3

n

(W, — )2 = % SOV = V)2 + Op(n12) = 62 + Op(n~1/2).
=1 =1

%Ql
N
I
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Similarly, Wi = (Y; = ) (Y; =Y +Y — p) = Yi(Yi = Y) + Yi(Y — p) + p(Y; — ) =

Zi+ (Y; = )Y — p) = Z; + a; = Zi + Op(n~"/?). Thus

] — — 1 — _ 1 — _

— WZ—sz— Zz i Z a 2:— ZZ—Z i__2:
n;( ) n;( +a; — (Z +7a)) n;( +a; —a)
li(z--?)%rgi(z-—7)(a-—a)+gi(a-—a)2:

ni:l Z ni:l Z Z ni:l Z

n

1 ¢ 7\2 1 —1/2 1 —1/2 —1/2\ __ 1 7\2 —1/2
E;(Zi—Z) +-n0p(1)0p(n™"*)+-nOp(n™/)0p(n"%) = E;(Zi—Z) +0p(n~Y?).
]

Hence a 100(1 — a)%CT for o2 is

S?+ tn—11-a/2Sz/V/n (6)

where S% is the sample variance of the Z; = Y;(V; — Y). If the CI is [L,,U,], then
[maz (0, L,), U,] is shorter with the same coverage since 0% > 0.. Sz can be replaced by
Sy, but Sy tends to be larger than S in small samples, and hence gives better coverage.

3 Conclusions

Outliers affect the confidence interval (6) even more that outliers effect the t CI for p. It
is useful to check for outliers by making a dot plot of the data.

McKinney (2021) gave some more competitors for the ¢ CI for u. The Johnson (1978)
CI (2) appeared to be best, but only very slightly better than the usual ¢ CI (1).

Simulations were done in R. See R Core Team (2024). The collection of R functions
Ispack, available from (http://parker.ad.siu.edu/Olive/lspack.txt), has some useful func-
tions. The function varci computes the CI (6). The function varcisim3 simulates CI
(6). The function varcisim was used to produce Table 1.
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