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Abstract

A Wald type test with the wrong dispersion matrix is used when the dispersion matrix is

not a consistent estimator of the asymptotic covariance matrix of the test statistic. One class

of such tests occurs when there are p groups and it is assumed that the population covariance

matrices from the p groups are equal, but the common covariance matrix assumption does

not hold. The pooled t test, one-way ANOVA F test, and one-way MANOVA F test are

examples of this class. Another class of such tests is used for weighted least squares. Two

bootstrap confidence regions are modified to obtain large sample Wald type tests with the

wrong dispersion matrix.

1. Introduction

This section reviews Wald type tests and Wald type tests with the wrong dispersion

matrix. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g × 1 statistic Tn satisfies
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ). If Σ̂
−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0

(Tn, Σ̂/n) = n(Tn − θ0)
T Σ̂

−1
(Tn − θ0)

D→ uT Σ−1u ∼ χ2
g

as n → ∞. Then a Wald type test rejects H0 at significance level δ if D2
n > χ2

g,1−δ where
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P (X ≤ χ2
g,1−δ) = 1 − δ if X ∼ χ2

g, a chi-square distribution with g degrees of freedom.

It is common to implement a Wald type test using

D2
n = D2

θ0

(Tn,Cn/n) = n(Tn − θ0)
TC−1

n (Tn − θ0)
D→ uT C−1u

as n → ∞ if H0 is true, where the g × g symmetric positive definite matrix Cn
P→ C 6= Σ.

Hence Cn is the wrong dispersion matrix, and uTC−1u does not have a χ2
g distribution when

H0 is true. Often Cn is a regularized estimator of Σ, or C−1
n is a regularized estimator of the

precision matrix Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g×g identity matrix. Another

example is Cn = Sp, where Sp is a pooled covariance matrix, and it is assumed that the p

groups have the same covariance matrix Σ. When this assumption is violated, Cn is usually

not a consistent estimator of Σ. When the bootstrap is used, often Cn = nS∗
T where S∗

T is

the sample covariance matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. The assumption that nS∗

T

is a consistent estimator of Σ is strong. See, for example, Machado and Parente (2005).

Some examples include the pooled t test and one-way ANOVA test. Rupasinghe Arachchige

Don and Pelawa Watagoda (2018) and Rupasinghe Arachchige Don and Olive (2019) gave

Wald type tests for analogs of the two sample Hotelling’s T 2 and one-way MANOVA tests

using a consistent estimator Σ̂ of Σ. These tests could greatly outperform the classical tests

that used the pooled covariance matrix when the sample sizes were large enough to give good

estimates of the covariance matrix of each group, but for small sample sizes, the classical

tests (with the wrong dispersion matrix) sometimes did better in the simulations.

If
√
n(Tn−θ)

D→ u and
√
n(T ∗

n−Tn)
D→ u, then the percentiles of n(Tn−θ0)

T C−1
n (Tn−θ0)

can be estimated with the sample percentiles of n(T ∗
n − Tn)

T C−1
n (T ∗

n − Tn). Section 2 shows

how to use this idea with bootstrap confidence regions. Section 3 reviews large sample theory

for one-way MANOVA type tests, Section 4 considers weighted least squares, and Section 5

gives some simulation results.

2. Bootstrap Confidence Regions

This section modifies the Bickel and Ren (2001) and Olive (2017ab, 2018) confidence

regions to work if C−1
n

P→ C−1 6= Σ−1. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g × 1 vector. Then a large sample 100(1 − δ)% confidence region for θ
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is a set An such that P (θ ∈ An) is eventually bounded below by 1 − δ as the sample size

n→ ∞. Then reject H0 if θ0 is not in the confidence region An.

For a confidence region, let the g × 1 vector Tn be an estimator of the g × 1 parameter

vector θ. Let T ∗
1 , ..., T

∗
B be the bootstrap sample for Tn. Let A be a full rank g× q constant

matrix where g ≤ q, and consider testing H0 : Aµ = θ0 versus H1 : Aµ 6= θ0 with θ = Aµ

where often θ0 = 0. Then let Tn = Aµ̂, and let T ∗
i = Aµ̂∗ for i = 1, ..., B.

For a bootstrap confidence region, Mahalanobis distances will be useful. Let the g × 1

column vector T be a multivariate location estimator, and let the g × g symmetric positive

definite matrix C be a dispersion estimator. Then the ith squared sample Mahalanobis

distance is the scalar

D2
i = D2

i (T,C) = D2
zi

(T,C) = (zi − T )TC−1(zi − T ) (1)

for each observation zi. Notice that the Euclidean distance of zi from the estimate of center

T isDi(T, Ig). The classical Mahalanobis distance Di uses (T,C) = (z,S), the sample mean

and sample covariance matrix, where

z =
1

B

B∑

i=1

zi and S =
1

B − 1

B∑

i=1

(zi − z)(zi − z)T. (2)

Correction factors are often used to help prevent undercoverage. For example, suppose the

limiting distribution is N(0,1) or χ2
p. Then often a tdn

or pFp,dn
cutoff is used where dn → ∞ as

n→ ∞. These t and F tests are asymptotically correct since tdn

D→ N(0, 1) and pFp,dn

D→ χ2
p

as n→ ∞. Obtaining correction factors for good coverage can be complicated. See Hall and

Rieck (2001) and Ueki and Fueda (2007). For the correction factor below, and a nominal

95% confidence region, instead of using D2
(d0.95Be) as the cutoff where D2

(c) is the cth order

statistic of the D2
i , the 100qBth sample quantile of the D2

i , denoted by D2
(UB), is used where

0.95B ≤ UB ≤ 0.975B and UB → 0.95B as B increases. Let qB = min(1−δ+0.05, 1−δ+b/B)

for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δb/B), otherwise. (3)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. We often use b = g or b = q if
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θ = Aµ and µ is a q × 1 vector. This correction factor helps reduce undercoverage when

B ≥ 50b.

For the following two new confidence regions, let a statistic T = Tn estimate θ. Assume
√
n(Tn−θ)

D→ u and
√
n(T ∗

n −Tn)
D→ u. Let the bootstrap sample be T ∗

1 , ..., T
∗
B. Let T

∗
and

S∗
T be the sample mean and sample covariance matrix of the bootstrap sample. The names

of these confidence regions were chosen since they are similar to the Bickel and Ren and

prediction region method confidence regions described after the following paragraph. The

large sample 100(1 − δ)% BR confidence region is

{w : n(w − Tn)
T C−1

n (w − Tn) ≤ D2
(UBT )} = {w : D2

w(Tn,Cn/n) ≤ D2
(UBT )} (4)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = n(T ∗
i −Tn)

TC−1
n (T ∗

i −Tn)

where qB is found from (3) with zi = T ∗
i . Note that the corresponding test for H0 : θ = θ0

rejects H0 if n(Tn − θ0)
TC−1

n (Tn − θ0) > D2
(UBT ).

The large sample 100(1 − δ)% PR confidence region for θ is

{w : n(w − T
∗
)T C−1

n (w − T
∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,Cn/n) ≤ D2

(UB)} (5)

where D2
(UB) is computed from D2

i = n(T ∗
i − T

∗
)T C−1

n (T ∗
i − T

∗
) for i = 1, ..., B. Note that

the corresponding test for H0 : θ = θ0 rejects H0 if n(T
∗ − θ0)

TC−1
n (T

∗ − θ0) > D2
(UB).

If nC−1
n = [S∗

T ]−1, then (4) and (5) are the modified Bickel and Ren (2001) and Olive

(2017ab, 2018) prediction region method large sample 100(1 − δ)% confidence regions for

θ. The hybrid confidence region replaces D2
(UBT ) by D2

(UB) in the modified Bickel and Ren

confidence region. Under regularity conditions, Bickel and Ren (2001) and Olive (2017b,

2018) proved that (4) and (5) are large sample confidence regions when nC−1
n = [S∗

T ]−1.

Pelawa Watagoda and Olive (2021) gave simpler proofs. The Smaga (2017) bootstrap method

replaces Cn by C∗
n and uses a different cutoff, but C∗

n = I if Cn = I.

The ratio of the volumes of regions (5) and (4) is

(
D(UB)

D(UBT )

)g

. (6)
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Hence region (5) has smaller volume than region (4) if D(UB) < D(UBT ). See Johnson and

Wichern (1988, p. 103) and Olive (2017b, p. 33) for the volume of a hyperellipsoid.

The theory for confidence regions (4) and (5) is simple. Pelawa Watagoda and Olive

(2021) showed that under reasonable regularity conditions, i)
√
n(Tn −θ)

D→ u, ii)
√
n(T ∗

i −
Tn)

D→ u, iii)
√
n(T

∗ − θ)
D→ u, and iv)

√
n(T ∗

i − T
∗
)

D→ u. Usually i) and ii) are proven

using large sample theory. If u ∼ Ng(0,Σu) with Σu nonsingular, then Pelawa Watagoda

and Olive (2021) showed
√
n(Tn − T

∗
)

P→ 0. Thus iii) and iv) hold if i) and ii) hold. If Tn

is the sample mean or sample coordinatewise median, then see Bickel and Freedman (1981)

and Rupasinghe Arachchige Don and Olive (2019). Then

D2
1 = D2

T ∗

i

(T
∗
,Cn/n) =

√
n(T ∗

i − T
∗
)T C−1

n

√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,Cn/n) =
√
n(Tn − θ)TC−1

n

√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,Cn/n) =

√
n(T

∗ − θ)T C−1
n

√
n(T

∗ − θ), and

D2
4 = D2

T ∗

i

(Tn,Cn/n) =
√
n(T ∗

i − Tn)
TC−1

n

√
n(T ∗

i − Tn),

are well behaved. If C−1
n

P→ C−1, then D2
j

D→ D2 = uT C−1u, and (4) and (5) are large

sample confidence regions. If C−1
n is “not too ill conditioned,” then D2

j ≈ uT C−1
n u for large

n, and the confidence regions (4) and (5) will have coverage near 1 − δ.

Confidence regions (4) and (5) use sample percentiles of D2
4 or D2

1 from a bootstrap

sample to get better cutoffs for Wald type tests that use the wrong dispersion matrix. If

g = 1, then confidence intervals are special cases of confidence regions. Suppose there is a

bootstrap sample T ∗
1 , ..., T

∗
B where the statistic T = Tn is an estimator of θ based on a sample

of size n. Let T ∗
(1), ..., T

∗
(n) be the order statistics of the bootstrap sample. The large sample

100(1 − δ)% percentile confidence interval (CI) for θ is an interval [T ∗
(kL), T

∗
(KU )] containing

UB ≈ dB(1 − δ)e of the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (7)

See Efron (1982, p. 78) and Chen (2016).
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The large sample 100(1 − δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] (8)

uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here

c = min(B, dB[1− δ + 1.12
√
δ/B ] e) (9)

for the shorth CI was obtained by applying the Frey (2013) prediction interval to the boot-

strap sample. The shorth CI is the shortest percentile CI covering c = cn cases, and the

shorth CI can be regarded as the shortest large sample 100(1 − δ)% percentile CI, asymp-

totically. Hence the shorth CI is a practical implementation of the Hall (1988) shortest

bootstrap interval based on all possible bootstrap samples. Olive (2014: p. 283, 2017b: p.

168, 2018) recommended using the shorth CI for the percentile CI.

If ai = |T ∗
i − T

∗|, then the CI corresponding to (5) is [T
∗ − a(UB), T

∗
+ a(UB)], which is

a percentile CI centered at T
∗

just long enough to cover UB of the T ∗
i . Efron (2014) used

a similar large sample 100(1 − δ)% confidence interval assuming that T
∗

is asymptotically

normal. The CI [Tn − b(UBT ), Tn + b(UBT )] corresponding to (4) is a percentile CI centered at

Tn just long enough to cover UBT of the T ∗
i with bi = |T ∗

i − Tn|.
Note that the two CIs corresponding to (4) and (5) can be computed without finding

Cn, D(UB), or D(UBT ). Hence these CIs correspond to the prediction region method CI and

the modified Bickel and Ren CI. Suppose
√
n(µ̂ − µ)

D→ Ng(0,Σ). Then confidence regions

(4) and (5) do not depend on whether C−1
n or dnC

−1
n is used if the scalar dn > 0. Let

θ = aT µ and Tn = aT µ̂. Then aTC−1
n a = dna

TΣ−1a where dn = aC−1
n a/aT Σ−1a. Hence

the confidence intervals do not depend on whether the wrong dispersion matrix is used.

As noted by Pelawa Watagoda and Olive (2021), if g = 1, if
√
n(Tn − θ)

D→ U , and if
√
n(T ∗

i − Tn)
D→ U where U has a unimodal probability density function symmetric about

zero with E(U) = 0, then the confidence intervals from the two confidence regions (4)

and (5), the shorth confidence interval (8), and the “usual” percentile method confidence

interval (7) are asymptotically equivalent (use the central proportion of the bootstrap sample,

asymptotically).
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3. One-Way MANOVA Type Tests

One-way MANOVA type tests give a large class of Wald type tests and Wald type tests

with the wrong dispersion matrix. Using double subscripts will be useful for describing

these models. Suppose there are independent random samples of size ni from p different

populations (treatments), or ni cases are randomly assigned to p treatment groups. Then

n =
∑p

i=1 ni and the group sample sizes are ni for i = 1, ..., p. Assume that m response

variables yij = (Yij1, ..., Yijm)T are measured for the ith treatment group and the jth case

in the group. Hence i = 1, ..., p and j = 1, ..., ni. Assume the p treatments have possibly

different population location vectors µi, such as E(yij) = µi. Coordinatewise population

medians and coordinatewise population trimmed means are also useful. Then a one-way

MANOVA type test is used to test H0 : µ1 = µ2 = · · · = µp versus the alternative that not

all of the µi are equal.

Large sample theory can be used to derive Wald type tests, although large sample theory

is not the only solution. Let Cov(yij) = Σi be the nonsingular population covariance matrix

of the ith treatment group or population. To simplify the large sample theory, assume

ni = πin where 0 < πi < 1 and
∑p

i=1 πi = 1. Let Ti be a multivariate location estimator such

that
√
ni(Ti−µi)

D→ Nm(0,Σi), and
√
n(Ti−µi)

D→ Nm

(
0,

Σi

πi

)
. Let T = (T T

1 , T
T
2 , ..., T

T
p )T ,

ν = (µT
1 ,µ

T
2 , ...,µ

T
p )T , and A be a full rank r×mp matrix with rank r, then a large sample

test of the form H0 : Aν = θ0 versus H1 : Aν 6= θ0 uses

A
√
n(T − ν)

D→ u ∼ Nr

(
0,A diag

(
Σ1

π1

,
Σ2

π2

, ...,
Σp

πp

)
AT

)
. (10)

Let the Wald type statistic

t0 = [AT − θ0]
T

[
A diag

(
Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)
AT

]−1

[AT − θ0]. (11)

These results prove the following theorem.

Theorem 1. Under the above conditions, t0
D→ χ2

r if H0 is true.

A useful fact for the F and chi-square distributions is dnFg,dn,1−δ → χ2
g,1−δ as dn → ∞.

Here P (X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn
. Reject H0 if t0/r > Fg,dn,1−δ where dn =

min(ni) = min(n1, ..., np).
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This one-way MANOVA type test was used by Rupasinghe Arachchige Don and Olive

(2019), and a special case was used by Zhang and Liu (2013) and Konietschke et al. (2015)

with Ti = yi and Σ̂i = Si, the sample covariance matrix corresponding to the ith treatment

group. The p = 2 case gives analogs to the two sample Hotelling’s T 2 test. See Rupasinghe

Arachchige Don and Pelawa Watagoda (2018).

Several tests use the common covariance matrix assumption Σi ≡ Σ for i = 1, ..., p.

These tests are Wald type tests with the wrong dispersion matrix if the common covariance

matrix assumption is wrong. Examples include the pooled t test with m = p = 1, the one-

way ANOVA test with m = 1, the two sample Hotelling’s T 2 test (with common covariance

matrix) with p = 2, and the one-way MANOVA test.

For the Rupasinghe Arachchige Don and Olive (2019) one-way MANOVA type test, let

A be the m(p− 1) ×mp block matrix

A =




I 0 0 . . . -I

0 I 0 . . . -I
...

...
...

...

0 0 . . . I -I




.

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let

w = AT =




T1 − Tp

T2 − Tp

...

Tp−2 − Tp

Tp−1 − Tp




. (12)

Then
√
nw

D→ Nm(p−1)(0,Σw) if H0 is true with Σw = (Σij) where Σij =
Σp

πp

for i 6= j,

and Σii =
Σi

πi

+
Σp

πp

for i = j. Hence

t0 = nwT Σ̂
−1

ww = wT

(
Σ̂w

n

)−1

w
D→ χ2

m(p−1)
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as the ni → ∞ if H0 is true. Here
Σ̂w

n
is a block matrix where the off diagonal block entries

equal Σ̂p/np and the ith diagonal block entry is
Σ̂i

ni
+

Σ̂p

np
for i = 1, ..., (p− 1). Reject H0 if

t0 > m(p− 1)Fm(p−1),dn
(1 − δ) (13)

where dn = min(n1, ..., np). This Wald type test may start to outperform the one-way

MANOVA test if n ≥ (m+ p)2 and ni ≥ 40m for i = 1, ..., p.

If H0 : Aν = θ0 is true, if the Σi ≡ Σ for i = 1, ..., p, and if Σ̂ is a consistent estimator

of Σ, then by Theorem 1

t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, then we get a bootstrap cutoff by using

t∗0i = [AT ∗
i − AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ∗
i − AT ] =

D2

AT
∗

i

(
AT ,A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

Let F0 = t0/r. Then we can get a bootstrap cutoff using F ∗
0i = t∗0i/r. For Ti = yi, let Σ̂ be

the usual pooled covariance matrix estimator.

For Theorem 2, (n−p)U = t0
D→ χ2

m(p−1) follows trivially from Theorem 1, under the equal

covariance matrix assumption. Fujikoshi (2002) also showed (n− p)U
D→ χ2

m(p−1). Kakizawa

(2009) also gave large sample theory for some MANOVA tests. Lengthy calculations show

(n− p)U = t0. See Rajapaksha (2021) for details.

Theorem 2. For the one-way MANOVA test using θ0 = 0, A as defined above Equation

(12), and Ti = yi,

(n− p)U = t0 = [AT ]T
[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ]

where U is the Hotelling Lawley trace statistic. Hence if the Σi ≡ Σ and H0 : µ1 = · · · = µp

is true, then (n− p)U = t0
D→ χ2

m(p−1).
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4. Weighted Least Squares

The weighted least squares (WLS) model is Yi = β1+xi,2β2+· · ·+xi,pβp+ei for i = 1, ..., n

where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors, β

is a p× 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors. Also

E(e) = 0 and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n×n positive definite matrix.

A common assumption is that the ei = σiẽi where the ẽi are independent and identically

distributed with V (ẽi) = 1.

Under regularity conditions, the least squares estimator β̂ = β̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of β with Cov(β̂) = (XTX)−1XTΣeX(XT X)−1

and E(β̂) = β. See, for example, White (1980). Assume nCov(β̂) → V as n → ∞. If

XT X/n→ W−1 and XT ΣeX/n→ U , then V = WUW . We assume that a constant β1

corresponding to x1 ≡ 1 is in the model so that the OLS residuals sum to 0.

A sandwich estimator is Ĉov(β̂OLS) = (XT X)−1XT D̂X(XT X)−1. Often D̂ is not a

consistent estimator of Σe, but often XT D̂X/n
P→ U under regularity conditions. For

the wild bootstrap, we will use D̂W = n diag(r2
1, ..., r

2
n)/(n − p) where the ri are the OLS

residuals. Often D̂ = diag(d2
i r

2
i ), where D̂W uses d2

i = n/(n − p).

The nonparametric bootstrap = pairs bootstrap samples the cases (Yi,xi) with replace-

ment, and uses

Y ∗ = X∗β̂ + e∗

with e∗ = r∗ where (Yi,xi, ri) are selected with replacement to form Y ∗,X∗, and r∗.

Then β̂
∗

= (X∗TX∗)−1X∗T Y ∗ = β̂ + (X∗T X∗)−1X∗T r∗ = β̂ + b∗ is obtained from

the OLS regression of Y ∗ on X∗. Thus E(β̂
∗
) = β̂ + E[(X∗TX∗)−1X∗Tr∗] = β̂ + b

where the expectation is with respect to the bootstrap distribution and the bias vector

b = E(b∗). Freedman (1981) showed that the nonparametric bootstrap can be useful

for the WLS model with the ei independent, suggesting that b∗ = op(n
−1/2) or b∗ =
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Op(n
−1/2). With respect to the bootstrap distribution, Cov(β̂

∗
) = Cov[(X∗TX∗)−1X∗Tr∗] =

E[(X∗TX∗)−1X∗Tr∗r∗T X∗(X∗T X∗)−1] − bbT .

A version of the wild bootstrap uses

Y ∗ = Xβ̂ + e∗

with e∗i = Wicnri where P (Wi = ±1) = 0.5, E(Wi) = 0, V (Wi) = 1 and cn =
√
n/(n− p).

Note that Wi = 2Zi − 1 where Zi ∼ binomial(m = 1, p = 0.5) ∼ Bernoulli(p = 0.5). See

Flachaire (2005). With respect to the bootstrap distribution, the cnri are constants, and the

e∗i are independent with E(e∗i ) = E(Wi)cnri = 0, and V (e∗i ) = E(e∗2i ) = E(W 2
i )c2nr

2
i = c2nr

2
i .

Thus E(e∗) = 0 and Cov(e∗) = D̂W . Then β̂
∗

= (XTX)−1XTY ∗ with E(β̂
∗
) = β̂ and

Cov(β̂
∗
) = Ĉov(β̂OLS) = (XT X)−1XT D̂WX(XT X)−1, a sandwich estimator. Note that

Cov(β̂
∗
) = Cov(β̂) + (XT X)−1XT [D̂W − Σe]X(XT X)−1.

There is a large literature on WLS and sandwich estimators. See, for example, Buja

et al. (2019), Eicker (1963, 1967), Hinkley (1977), Huber (1967), Long and Ervin (2000),

MacKinnon and White (1985), Romano and Wolf (2017), White (1980), and Wu (1986). For

more on the wild bootstrap, see Mammen (1992, 1993) and Wu (1986). Flachaire (2005)

compares the wild and nonparametric bootstrap.

The following method is new. For the OLS model, V (ei) = V (Yi|xi) = V (Yi|xT
i β) = σ2.

Hence Yi = Yi|xi = Yi|xT
i β = xT

i β + ei with V (ei) = σ2. For the WLS model, Yi = Yi|xi =

xT
i β + ei with V (ei) = σ2

i , while Yi = Yi|xT
i βi = xT

i β + εi with V (εi) = τ 2
i . The τ 2

i can be

estimated as follows. Divide the ordered xT
i β̂ into ms slices each containing approximately

n/ms cases, and find the variance of the residuals v2
j in the jth slice for j = 1, ..., ms. Then

τ̂ 2
i = nv2

j/(n−p) if case i is in the jth slice. If the xi are bounded, the maximum slice width

→ 0, if V (Y |xT β) is smooth, and the number of cases in each slice → ∞ as n → ∞, then

τ̂ 2
i is a consistent estimator of τ 2

i . This method acts as if the variance τ 2
j is constant within

each slice j, and replaces D̂W = n diag(r2
1, ..., r

2
n)/(n − p) by diag(τ̂ 2

1 , ..., τ̂
2
n), a smoothed

version of D̂W . Another option would use a scatterplot smoother in a plot of Ŷi vs. r2
i .

11



The parametric bootstrap does not assume that the ei are normal, but uses

Y ∗ = Xβ̂ + e∗

where the e∗i ∼ N(0, τ̂ 2
i ) are independent. Hence β̂

∗
= (XT X)−1XT Y ∗ ∼

Np[β̂, (X
T X)−1XT diag(τ̂ 2

1 , ..., τ̂
2
n) X(XTX)−1].

5. Simulations

This section simulates one-way MANOVA type tests and WLS tests. Rajapaksha (2021)

has a much larger simulation (including simulations for analogs of the pooled t test, two

sample Hotelling’s T 2 test, and one-way ANOVA test), and has some real data examples.

Rajapaksha (2021) sometimes used coordinatewise medians in addition to sample means.

5000 runs were used, and B was the number of bootstrap replications used.

One-Way MANOVA

We used 3 groups for the one-way MANOVA type tests. Four types of data distributions

wi were considered that were identical for i = 1, 2, and 3. Then y1 = σ1Cw1 + δ11,

y2 = σ2Cw2 + δ21, and y3 = σ3Cw3 + δ31 or y3 = w3 where 1 = (1, .., 1)T is a vector

of ones and C = diag(1,
√

2, ...,
√
m). The wi distributions were the multivariate normal

distributionNm(0, I), the mixture distribution 0.6Nm(0, I)+0.4Nm(0, 25I), the multivariate

t distribution with 4 degrees of freedom, and the multivariate lognormal distribution shifted

to have zero mean. If σ1 = 1 and δi = 0 for i = 1, 2, 3, note that Cov(y2) = σ2
2 Cov(y1), and

E(yi) = E(wi) = 0. If y3 = w3 then Cov(y3) = cIm for some constant c > 0. If σ1 = 1 and

y3 = σ3Cw3 + δ31, then Cov(y3) = σ2
3 Cov(y1).

Tables 1-3 give the coverage = proportion of times the test failed to reject H0. The

classical test (mancov), bootstrap classical test (bootcov) described above Theorem 2, large

sample test (manLScov), and bootstrap test with Cn = I where the PR (prcv) and BR (brcv)

confidence regions were used. For power, group i has mean µi = δi1 where δ2 = 2 δ1 and

δ3 = 3 δ1. When δ1 increases, the distance between the mean vectors increases. The nominal

coverage was 0.95. With 5000 runs, observed coverage between 0.94 and 0.96 suggests

coverage is close to the nominal value.
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Since the classical test uses the wrong dispersion matrix unless the Σi are equal, some-

times the test statistic tends to be smaller than the cutoff, resulting in higher than nominal

coverage or a conservative test. This result sometimes happened in Tables 1 and 2. Some-

times the test statistic tends to be larger than the cutoff, resulting in lower than nominal

coverage or a liberal test: H0 is rejected too often whenH0 is true. This result often happened

in Table 3 and sometimes in Table 2.

The bootstrap classical test had coverage near the nominal in the tables, and sometimes

outperformed the large sample test for skewed data, as in Table 3. This good performance

occurred because the ni were rather large. When the ni are not large enough, the bootstrap

classical test can have undercoverage: the bootstrap cutoff is poor.

The large sample test tends to have a confidence region with smaller volume than the

other tests if the ni are large enough. For sample means, the lognormal distribution is a

distribution with all moments that is known to need large sample sizes when the covariance

matrix is estimated. See Hesterberg (2015).

The tests with Cn = I controlled the type I error very well, at the expense of using a high

volume hypersphere instead of a smaller volume hyperellipsoid, resulting in lower power. For

skewed data, estimating covariance matrices is much more difficult than estimating means.

In the simulations as the ni approached m ≥ 50 (need ni > m to compute the large sample

test), the Cn = I tests became conservative (not shown). The Cn = I tests depend on the

units of measurement.

WLS

Next, we describe a small WLS simulation study that is similar to that for the full OLS

model done by Pelawa Watagoda and Olive (2021). The simulation used p = 4 and 8,

ψ = 0, 0.5, 1/
√
p, and 0.9; and k = 1 and p− 2 where k and ψ are defined in the following

paragraph.

Let x = (1 uT )T where u is the (p − 1) × 1 vector of nontrivial predictors. In the

simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p − 1 elements

of the vector wi are independent and identically distributed (iid) N(0,1). Let the m × m

13



Table 1: One-Way MANOVA Type Test, Coverage for MVN data with Σ3 6= cI

m n1,n2,n3 B σ2, σ3 mancov bootcov manLScov prcv brcv

5 200,200,200 400 1,1 0.955 0.960 0.954 0.946 0.947

1000 1,1 0.952 0.949 0.947 0.945 0.946

400 2,3 0.931 0.959 0.952 0.946 0.946

1000 2,3 0.932 0.950 0.950 0.941 0.943

5 200,400,600 400 1,1 0.958 0.962 0.954 0.949 0.949

1000 1,1 0.954 0.954 0.952 0.961 0.960

400 2,3 0.996 0.958 0.954 0.950 0.953

1000 2,3 0.993 0.948 0.946 0.957 0.957

10 400,400,400 800 1,1 0.953 0.957 0.948 0.948 0.947

2000 1,1 0.947 0.947 0.939 0.949 0.947

800 2,3 0.925 0.952 0.942 0.936 0.937

2000 2,3 0.931 0.949 0.953 0.949 0.950

10 400,800,1200 800 1,1 0.955 0.966 0.952 0.946 0.948

2000 1,1 0.961 0.959 0.958 0.952 0.952

800 2,3 0.998 0.960 0.956 0.948 0.950

2000 2,3 0.998 0.947 0.957 0.949 0.947

20 800,800,800 1600 1,1 0.950 0.954 0.947 0.948 0.950

4000 1,1 0.947 0.947 0.943 0.950 0.950

1600 2,3 0.923 0.954 0.937 0.949 0.951

4000 2,3 0.930 0.951 0.949 0.949 0.947

20 800,1600,2400 1600 1,1 0.952 0.962 0.945 0.950 0.949

4000 1,1 0.957 0.958 0.954 0.956 0.955

1600 2,3 1 0.958 0.951 0.948 0.951

4000 2,3 0.999 0.948 0.944 0.945 0.944
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Table 2: One-Way MANOVA Type Test, Coverage for lognormal data with Σ3 6= cI

m n1,n2,n3 B σ2, σ3 mancov bootcov manLScov prcv brcv

5 200,200,200 400 1,1 0.963 0.974 0.957 0.963 0.965

1000 1,1 0.957 0.962 0.941 0.948 0.951

400 2,3 0.929 0.954 0.909 0.952 0.955

1000 2,3 0.925 0.945 0.912 0.959 0.960

5 200,400,600 400 1,1 0.952 0.963 0.925 0.955 0.955

1000 1,1 0.956 0.961 0.943 0.958 0.958

400 2,3 0.995 0.964 0.956 0.956 0.957

1000 2,3 0.986 0.948 0.941 0.950 0.951

10 400,400,400 800 1,1 0.951 0.966 0.938 0.952 0.952

2000 1,1 0.952 0.957 0.939 0.954 0.955

800 2,3 0.921 0.955 0.920 0.958 0.959

2000 2,3 0.920 0.937 0.908 0.962 0.962

10 400,800,1200 800 1,1 0.942 0.957 0.928 0.948 0.946

2000 1,1 0.951 0.952 0.934 0.956 0.957

800 2,3 0.997 0.963 0.949 0.957 0.958

2000 2,3 0.996 0.949 0.946 0.943 0.944

20 800,800,800 1600 1,1 0.946 0.957 0.932 0.946 0.947

4000 1,1 0.951 0.956 0.940 0.951 0.953

1600 2,3 0.920 0.949 0.899 0.952 0.953

4000 2,3 0.917 0.944 0.907 0.953 0.954

20 800,1600,2400 1600 1,1 0.958 0.972 0.950 0.955 0.956

4000 1,1 0.953 0.958 0.937 0.953 0.953

1600 2,3 0.999 0.964 0.955 0.956 0.956

4000 2,3 0.999 0.944 0.944 0.947 0.947
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Table 3: One-Way MANOVA Type Test, Coverage for lognormal data with Σ3 = cI

m n1,n2,n3 B σ2, σ3 mancov bootcov manLScov prcv brcv

5 200,200,200 400 1,1 0.951 0.966 0.936 0.963 0.963

1000 1,1 0.951 0.963 0.929 0.963 0.961

400 2,3 0.903 0.936 0.908 0.950 0.950

1000 2,3 0.904 0.926 0.912 0.956 0.957

5 200,400,600 400 1,1 0.889 0.971 0.928 0.965 0.966

1000 1,1 0.877 0.957 0.910 0.958 0.958

400 2,3 0.888 0.947 0.906 0.953 0.952

1000 2,3 0.898 0.935 0.909 0.959 0.960

10 400,400,400 800 1,1 0.939 0.964 0.914 0.959 0.960

2000 1,1 0.938 0.954 0.912 0.957 0.957

800 2,3 0.893 0.941 0.900 0.951 0.952

2000 2,3 0.907 0.940 0.906 0.968 0.969

10 400,800,1200 800 1,1 0.773 0.965 0.921 0.961 0.961

2000 1,1 0.772 0.965 0.920 0.970 0.972

800 2,3 0.856 0.951 0.897 0.957 0.958

2000 2,3 0.831 0.929 0.890 0.951 0.953

20 800,800,800 1600 1,1 0.935 0.965 0.912 0.962 0.962

4000 1,1 0.940 0.952 0.910 0.960 0.961

1600 2,3 0.896 0.937 0.909 0.960 0.959

4000 2,3 0.885 0.924 0.897 0.954 0.954

20 800,1600,2400 1600 1,1 0.561 0.959 0.910 0.956 0.957

4000 1,1 0.585 0.948 0.896 0.953 0.953

1600 2,3 0.795 0.949 0.909 0.955 0.956

4000 2,3 0.780 0.926 0.898 0.948 0.948
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matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal entries

σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the

correlations are cor(xi, xj) = ρ = (2ψ + (m− 2)ψ2)/(1 + (m− 1)ψ2) for i 6= j where xi and

xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where c > 0. As

ψ gets close to 1, the predictor vectors cluster about the line in the direction of (1, ..., 1)T .

Let Yi = 1 + 1xi,2 + · · · + 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k + 1

ones and p− k − 1 zeros.

The zero mean iid errors ẽi = εi were iid from five distributions: i) N(0,1), ii) t3, iii)

EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii)

is not symmetric. Then wtype = 1 if ei = εi (the WLS model is the OLS model), 2 if

ei = |xT
i β − 5|εi, 3 if ei =

√
(1 + 0.5x2

i2)εi, 4 if ei = exp[1 + log(|xi2|) + ...+ log(|xip|)]εi, 5 if

ei = [1 + log(|xi2|) + ...+ log(|xip|)]εi, 6 if ei = [exp([log(|xi2|) + ...+ log(|xip|)]/(p− 1))]εi, 7

if ei = [[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]εi, The last four types were special cases of types

suggested by Romano and Wolf (2017). For type 6, the weighting function is the geometric

mean of |xi2|, ..., |xip|.
When ψ = 0 and wtype = 1, the least squares confidence intervals for βi should have

length near 2t96,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and the iid zero mean

errors have variance σ2. The simulation computed the shorth(c) CI for each βi and used

bootstrap confidence regions to testH0 : βS = 1 (whether first k+1 βi = 1) and H0 : βE = 0

(whether the last p− k− 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed

coverage between 0.94 and 0.96 suggests coverage is close to the nominal value.

The tables have two rows for each model giving the observed confidence interval coverages

and average lengths of the confidence intervals. The terms “npar”, “wild”, and “par” are

for the nonparametric, wild, and parametric bootstrap using 7 slices. The last six columns

give results for the tests. The terms pr, hyb, and br are for the prediction region method,

hybrid, and Bickel and Ren regions. For terms such as pr0 or br1, the 0 indicates the test

was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1. The length and
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coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UBT )] where D(UB) or D(UBT )

is the cutoff for the confidence region. The cutoff will often be near
√
χ2

g,0.95 if the statistic T

is asymptotically normal. Note that
√
χ2

2,0.95 = 2.448. Since Cn = nS∗
T , we need B ≥ 25p.

For the wild bootstrap and the parametric bootstrap, Cn = Cov(β̂
∗
) could be used with B

near 100.

Pötscher and Preinerstorfer (2021) note that WLS tests tend to reject H0 too often

(liberal tests with undercoverage), and suggest that there is always a WLS model where the

wild bootstrap is poor. These tests use a (scaled) χ2 or F cutoff. Hence simulation results

likely depend on the WLS models used.

Rajapaksha (2021) made 90 tables for WLS with n = 100 and B = 200. The wild boot-

strap had the worst undercoverage for 62 tables, the parametric bootstrap for 13 tables, and

there was little undercoverage for 15 tables. Coverage less than 0.87 was uncommon in the 90

tables. The mixture distribution sometimes had overcoverage, but was often the distribution

where the parametric bootstrap had undercoverage worse than the nonparametric and wild

bootstrap. Coverage was often poor for the shifted exponential distribution where n much

larger than 100 is often needed. The nonparametric bootstrap gave good coverages for the

confidence intervals for βi while the wild and parametric bootstrap had occasional undercov-

erage. When the coverage ≥ 0.94, the wild CIs tended to be shorter than the nonparametric

CIs which tended to be shorter than the parametric CIs. The nonparametric bootstrap also

worked best for the tests for ψ < 0.9. When the nonparametric bootstrap had undercoverage

for a test or CI, the wild bootstrap tended to have greater undercoverage. The parametric

bootstrap performed well for ψ = 0.9. In Table 4, the parametric bootstrap was the worst.

In Table 5, the nonparametric bootstrap worked best, with occasional overcoverage. The

wild and parametric bootstrap had test undercoverage for ψ = 0.

6. Conclusions

The theory showing that the bootstrap BR and PR confidence regions give large sample

tests is simple if
√
n(Tn − µ)

D→ u,
√
n(T ∗

n − Tn)
D→ u, and C−1

n
P→ C−1. An interesting

result is that the BR and PR confidence intervals do not depend on whether the wrong or
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Table 4: Bootstrapping WLS, n=100, B=200, wtype = 6, p=4, k=p-2, etype= N(0, 1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

npar,0 0.953 0.943 0.937 0.935 0.929 0.928 0.926 0.924 0.918 0.922

len 0.287 0.361 0.363 0.362 1.959 1.959 1.965 2.835 2.835 2.844

wild,0 0.950 0.936 0.931 0.927 0.918 0.925 0.925 0.908 0.907 0.909

len 0.288 0.356 0.356 0.355 1.930 1.930 1.936 2.732 2.732 2.737

par,0 0.954 0.906 0.906 0.880 0.872 0.874 0.875 0.885 0.884 0.883

len 0.295 0.324 0.325 0.303 1.959 1.959 1.965 2.826 2.826 2.834

npar,0.5 0.950 0.951 0.949 0.955 0.951 0.951 0.951 0.941 0.933 0.935

len 0.444 0.752 0.750 0.750 1.963 1.963 1.969 2.854 2.854 2.863

wild,0.5 0.949 0.943 0.943 0.940 0.932 0.932 0.933 0.907 0.910 0.910

len 0.443 0.728 0.726 0.723 1.925 1.925 1.930 2.726 2.726 2.731

par,0.5 0.948 0.954 0.965 0.950 0.945 0.947 0.946 0.941 0.941 0.942

len 0.454 0.786 0.785 0.761 1.959 1.959 1.964 2.826 2.826 2.832

npar,0.9 0.958 0.951 0.947 0.943 0.941 0.937 0.938 0.950 0.947 0.948

len 0.644 5.292 5.327 5.293 1.965 1.965 1.970 2.855 2.855 2.865

wild,0.9 0.951 0.944 0.946 0.938 0.931 0.932 0.935 0.924 0.926 0.924

len 0.643 5.132 5.143 5.119 1.926 1.926 1.932 2.729 2.729 2.735

par,0.9 0.956 0.955 0.955 0.957 0.950 0.949 0.950 0.938 0.941 0.943

len 0.658 5.447 5.477 5.436 1.957 1.957 1.963 2.823 2.823 2.831
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Table 5: Bootstrapping WLS, n=100, B=200, wtype = 6, p=8, k=1, etype= t3

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1

npar,0 0.946 0.961 0.955 0.940 0.939 0.934 0.935 0.930 0.928 0.928

len 0.253 0.282 0.279 0.279 3.740 3.740 3.754 2.466 2.466 2.475

wild,0 0.934 0.954 0.945 0.939 0.868 0.871 0.873 0.913 0.911 0.910

len 0.250 0.270 0.269 0.269 3.459 3.459 3.468 2.389 2.389 2.394

par,0 0.941 0.954 0.935 0.919 0.875 0.879 0.878 0.919 0.922 0.922

len 0.259 0.283 0.264 0.262 3.627 3.627 3.635 2.457 2.457 2.464

npar,0.5 0.944 0.961 0.944 0.948 0.976 0.974 0.975 0.937 0.935 0.936

len 0.588 1.099 1.094 1.103 3.807 3.807 3.820 2.479 2.479 2.485

wild,0.5 0.935 0.951 0.937 0.946 0.908 0.911 0.908 0.914 0.916 0.918

len 0.576 1.030 1.031 1.036 3.443 3.443 3.450 2.379 2.379 2.383

par,0.5 0.940 0.965 0.948 0.955 0.946 0.946 0.948 0.940 0.940 0.941

len 0.600 1.184 1.129 1.130 3.623 3.623 3.632 2.461 2.461 2.467

npar,0.9 0.933 0.959 0.951 0.954 0.978 0.975 0.976 0.934 0.929 0.931

len 0.985 9.110 9.143 9.152 3.810 3.810 3.823 2.478 2.478 2.487

wild,0.9 0.929 0.949 0.937 0.947 0.919 0.921 0.920 0.913 0.915 0.915

len 0.963 8.600 8.614 8.621 3.448 3.448 3.455 2.378 2.378 2.384

par,0.9 0.932 0.955 0.953 0.957 0.955 0.955 0.957 0.929 0.928 0.931

len 0.999 9.339 9.360 9.383 3.629 3.629 3.639 2.456 2.456 2.464
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consistent dispersion matrix was used.

Tests with the wrong dispersion matrix tend to be inferior to tests that use a consistent

estimator of the correct covariance matrix if the sample sizes are large enough. Hence tests

based on (11) and (13) are better than tests that make the common covariance matrix

assumption if the ni ≥ 20m are large enough. A useful diagnostic for tests that make the

common covariance matrix assumption is to check whether the test cutoff is close to the

bootstrap PR or BR cutoff when Cn = Sp. If the ni are not large or if a test that uses a

consistent estimator of the covariance matrix is not available, then the PR and BR tests can

be useful, using, for example, Cn = I .

The Rupasinghe Arachchige Don and Olive (2019) bootstrap one-way MANOVA type

tests needed B ≥ 50m(p − 1), n ≥ (m + p)2, and ni ≥ 40m. Large B was needed so S∗
T

would be a good estimator when the test statistic T is an m(p− 1) × 1 vector.

The new tests can use much smaller B if C−1
n does not depend on the bootstrap sample.

The wrong dispersion matrix Cn = I appeared to be useful for one-way MANOVA type

tests when the ni were small or the data was highly skewed. If (Tn−µ0)
TIg(Tn−µ0) is used

to test H0 : µ = µ0, we could use (ATn − θ0)
TIq(ATn − θ0) to test H0 : θ = θ0 if θ = Aµ

and θ0 = Aµ0 where A is a q × g matrix with full rank q, and µ is a g × 1 population

location vector.

Large sample Wald type tests are fairly common, but need large sample sizes. See, for

example, Zhang et al. (2016) for the two-way MANOVA model, Duchesne and Francq (2015),

Konietschke et al. (2015), and Smaga (2017).

The R software was used in the simulations. See R Core Team (2019). Programs were

added to the Olive (2017b) collection of R functions mpack.txt available from (http://parker.ad.

siu.edu/Olive/mpack.txt). See Rajapaksha (2021) for more details and simulations.

one-way MANOVA: The function manovasim was used to simulate the tests of hy-

potheses, using the Bates and Maechler (2016) R library. See Tables 1-3.

weighted least squares: The function wildboot was used to bootstrap the nonpara-

metric, wild, and parametric bootstrap. The function wlsbootsim was used for the simu-
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lation. See Tables 4 and 5. The function wlsbootsim2 simulates the wild and parametric

bootstrap using Cn = Cov(β̂
∗
) instead of Cn = nS∗

T .
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