
Chapter 1

Introduction

All models are wrong, but some are useful.
Box (1979)

This chapter provides a preview of the book but is presented in a rather
abstract setting and will be much easier to follow after the reading the rest of
the book. The reader may omit this chapter on first reading and refer back
to it as necessary.

In data analysis, an investigator is presented with a problem and data
from some population. The population might be the collection of all possible
outcomes from an experiment while the problem might be predicting a future
value of the response variable Y or summarizing the relationship between Y
and the p×1 vector of predictor variables x. A statistical model is used to
provide a useful approximation to some of the important underlying charac-
teristics of the population which generated the data. Many of the most used
models for 1D regression, defined below, are families of conditional distribu-
tions Y |x = xo indexed by x = xo. A 1D regression model is a parametric
model if the conditional distribution is completely specified except for a fixed
finite number of parameters, otherwise, the 1D model is a semiparametric
model.

Definition 1.1. Regression investigates how the response variable Y
changes with the value of a p×1 vector x of nontrivial predictors. Often this
conditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given βT x, written

Y x|βT x or Y x|(α + βTx). (1.1)
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This class of models is very rich. Generalized linear models (GLMs) are
a special case of 1D regression, and an important class of parametric or
semiparametric 1D regression models has the form

Yi = g(α + βT xi, ei) (1.2)

for i = 1, ..., n where g is a bivariate function, β is a p × 1 unknown vector
of parameters, and ei is a random error. Often the errors e1, ..., en are iid
(independent and identically distributed) from a distribution that is known
except for a scale parameter. For example, the ei’s might be iid from a normal
(Gaussian) distribution with mean 0 and unknown standard deviation σ. For
this Gaussian model, estimation of α, β and σ is important for inference and
for predicting a new value of the response variable Yf given a new vector of
predictors xf .

Notation. Often the index i will be suppressed. For example, model
(1.2) could be written as Y = g(α + βTx, e). More accurately, Y |x =
g(α + βTx, e), but the conditioning on x will often be suppressed.

Many of the most used statistical models are 1D regression models. A
single index model with additive error uses g(α+βTx, e) = m(α+βTx)+ e,
and thus

Y = m(α + βTx) + e. (1.3)

An important special case is multiple linear regression

Y = α + βT x + e (1.4)

where m is the identity function. The response transformation model uses

g(α + βTx, e) = t−1(α + βTx + e) (1.5)

where t−1 is a one to one (typically monotone) function. Hence

t(Y ) = α + βT x + e. (1.6)

Several important survival models have this form. In a 1D binary regres-
sion model, the Y |x are independent Bernoulli[ρ(α+βTx)] random variables
where

P (Y = 1|x) ≡ ρ(α + βTx) = 1 − P (Y = 0|x) (1.7)
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In particular, the logistic regression model uses

ρ(α + βTx) =
exp(α + βT x)

1 + exp(α + βT x)
.

In a 1D Poisson regression model, the Y |x are independent

Poisson[µ(α + βTx)]

random variables. In particular, the loglinear regression model uses

µ(α + βTx) = exp(α + βT x). (1.8)

In the literature, the response variable is sometimes called the dependent
variable while the predictor variables are sometimes called carriers, covari-
ates, explanatory variables, or independent variables. The ith case (Yi, x

T
i )

consists of the values of the response variable Yi and the predictor variables
xT

i = (xi,1, ..., xi,p) where p is the number of predictors and i = 1, ..., n. The
sample size n is the number of cases.

Box (1979) warns that “all models are wrong, but some are useful.” For
example the function g or the error distribution could be misspecified. Di-
agnostics are used to check whether model assumptions such as the form of
g and the proposed error distribution are reasonable. Often diagnostics use
residuals ri. If m is known, then the single index model (1.3) uses

ri = Yi −m(α̂ + β̂
T
xi)

where (α̂, β̂) is an estimate of (α, β).

Exploratory data analysis (EDA) can be used to find useful models when
the form of the regression or multivariate model is unknown. For example,
suppose g is a monotone function t−1 :

Y = t−1(α + βTx + e). (1.9)

Then the transformation

Z = t(Y ) = α + βT x + e (1.10)

follows a multiple linear regression model.
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Definition 1.2: If the 1D model (1.1) holds, then Y x|(a + cβTx)
for any constants a and c �= 0. The quantity a + cβTx is called a sufficient
predictor (SP), and a sufficient summary plot is a plot of any SP versus Y .

An estimated sufficient predictor (ESP) is α̃ + β̃
T
x where β̃ is an estimator

of cβ for some nonzero constant c. An estimated sufficient summary plot
(ESSP) or response plot is a plot of any ESP versus Y .

Assume that the data has been collected and that a 1D regression model
(1.1) has been fitted. Suppose that the sufficient predictor

SP = α + βTx = α + βT
RxR + βT

OxO (1.11)

where the r× 1 vector xR consists of the nontrivial predictors in the reduced
model. Then the investigator will often want to check whether the model is
useful and to perform inference. Several things to consider are listed below.

i) Use the response plot (and/or the sufficient summary plot) to explain
the 1D regression model to consulting clients, students or researchers.

ii) Goodness of fit: use the response plot to show that the model provides
a simple, useful approximation for the relationship between the response
variable Y and the nontrivial predictors x. The response plot is used to
visualize the conditional distribution of Y |(α+βT x) when the 1D regression
model holds.

iii) Check for lack of fit of the model (eg with a residual plot of the ESP
versus the residuals).

iv) Check whether Y is independent of x by testing Ho : β = 0, that is,
check whether the nontrivial predictors x are needed in the model.

v) Test Ho : βO = 0, that is, check whether the reduced model can be
used instead of the full model.

vi) Use variable selection to find a good submodel.

vii) Estimate the mean function E(Yi|xi) = µ(xi) = diτ (xi) or estimate
τ (xi) where the di are known constants.

viii) Predict Yi given xi.

The field of statistics known as regression graphics gives useful results
for examining the 1D regression model (1.1) even when it is unknown or
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misspecified. The following sections show that the sufficient summary plot
is useful for explaining the given 1D model while the response plot can often
be used to visualize the conditional distribution of Y |(α + βT x). If there is
only one predictor x, then the plot of x versus Y is both a sufficient summary
plot and a response plot, but generally β is unknown and only a response
plot can be made. In Definition 1.2, since α̃ can be any constant, α̃ = 0 is
often used.

1.1 Multiple Linear Regression

Suppose that the response variable Y is quantitative and that at least one
predictor variable xi is quantitative. Then the multiple linear regression
(MLR) model is often a very useful model. For the MLR model,

Yi = α+xi,1β1+xi,2β2+· · ·+xi,pβp+ei = α+xT
i β+ei = α+βTxi+ei (1.12)

for i = 1, . . . , n. Here Yi is the response variable, xi is a p × 1 vector of
nontrivial predictors, α is an unknown constant, β is a p×1 vector of unknown
coefficients, and ei is a random variable called the error.

The Gaussian or normal MLR model makes the additional assumption
that the errors ei are iid N(0, σ2) random variables. This model can also be
written as Y = α + βT x + e where e ∼ N(0, σ2), or Y |x ∼ N(α + βT x, σ2)
or Y |x ∼ N(SP, σ2). The normal MLR model is a parametric model since,
given x, the family of conditional distributions is completely specified by the
parameters α, β and σ2. Since Y |SP ∼ N(SP, σ2), the conditional mean
function E(Y |SP ) ≡ M(SP ) = µ(SP ) = SP = α + βT x. The MLR model
is discussed in detail in Chapters 2, 3 and 4.

A sufficient summary plot (SSP) of the sufficient predictor SP = α+βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the multiple linear regression model. This plot
can not be used for real data since α and β are unknown. To make Figure 1.1,
the artificial data used n = 100 cases with k = 5 nontrivial predictors. The
data used α = −1, β = (1, 2, 3, 0, 0)T , ei ∼ N(0, 1) and x from a multivariate
normal distribution x ∼ N5(0, I).

In Figure 1.1, notice that the identity line with unit slope and zero in-
tercept corresponds to the mean function since the identity line is the line
Y = SP = α + βTx = µ(SP ) = E(Y |SP ). The vertical deviation of Yi
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Figure 1.2: ESSP = Response Plot for MLR Data
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Figure 1.4: Response Plot when Y is Independent of the Predictors
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from the line is equal to ei = Yi − (α + βT xi). For a given value of SP ,
Yi ∼ N(SP, σ2). For the artificial data, σ2 = 1. Hence if SP = 0 then
Yi ∼ N(0, 1), and if SP = 5 then Yi ∼ N(5, 1). Imagine superimposing the
N(SP, σ2) curve at various values of SP . If all of the curves were shown,
then the plot would resemble a road through a tunnel. For the artificial data,
each Yi is a sample of size 1 from the normal curve with mean α + βT xi.

The estimated sufficient summary plot (ESSP) is a plot of α̂ + β̂
T
xi

versus Yi with the identity line added as a visual aid. For MLR, the ESP =

α̂ + β̂
T
x and the estimated conditional mean function is µ̂(ESP ) = ESP.

The estimated or fitted value of Yi is equal to Ŷi = α̂ + β̂
T
x. Now the

vertical deviation of Yi from the identity line is equal to the residual ri =

Yi − (α̂ + β̂
T
xi). The interpretation of the ESSP is almost the same as that

of the SSP, but now the mean SP is estimated by the estimated sufficient
predictor (ESP). This plot is also called the response plot and is used as
a goodness of fit diagnostic. The residual plot is a plot of the ESP versus
ri and is used as a lack of fit diagnostic. These two plots should be made
immediately after fitting the MLR model and before performing inference.
Figures 1.2 and 1.3 show the response plot and residual plot for the artificial
data.

The response plot is also a useful visual aid for describing the ANOVA
F test (see

∮
2.4) which tests whether β = 0, that is, whether the nontrivial

predictors x are needed in the model. If the predictors are not needed in the
model, then Yi and E(Yi|xi) should be estimated by the sample mean Y . If
the predictors are needed, then Yi and E(Yi|xi) should be estimated by the

ESP Ŷi = α̂ + β̂
T
xi. If the identity line clearly fits the data better than the

horizontal line Y = Y , then the ANOVA F test should have a small pvalue
and reject the null hypothesis Ho that the predictors x are not needed in the
MLR model. Figure 1.2 shows that the identity line fits the data better than
any horizontal line. Figure 1.4 shows the response plot for the artificial data
when only X4 and X5 are used as predictors with the identity line and the
line Y = Y added as visual aids. In this plot the horizontal line fits the data
about as well as the identity line which was expected since Y is independent
of X4 and X5.

It is easy to find data sets where the response plot looks like Figure 1.4,
but the pvalue for the ANOVA F test is very small. In this case, the MLR
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model is statistically significant, but the investigator needs to decide whether
the MLR model is practically significant.

1.2 Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on
two values: 0 or 1. The binary regression model states that Y1, ..., Yn are
independent random variables with

Yi ≡ Yi|xi ∼ binomial(1, ρ(xi)).

The binary logistic regression model is the special case where

P (Y = 1|xi) = 1 − P (Y = 0|xi) = ρ(xi) =
exp(α + βT xi)

1 + exp(α + βTxi)
. (1.13)

The artificial data set used in the following discussion used α = −1.5
and β = (1, 1, 1, 0, 0)T . Let Ni be the number of cases where Y = i for
i = 0, 1. For the artificial data, N0 = N1 = 100, and hence the total sample
size n = N1 + N0 = 200.

Again a sufficient summary plot (SSP) of the sufficient predictor SP =
α + βT xi versus the response variable Yi with the mean function added as
a visual aid can be useful for describing the logistic regression (LR) model.
The artificial data described above was used because the plot can not be used
for real data since α and β are unknown.

Unlike the SSP for multiple linear regression where the mean function
is always the identity line, the mean function in the SSP for LR can take a
variety of shapes depending on the range of the SP. For the LR SSP, Y |SP ∼
binomial(1,ρ(SP )) where the mean function is

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

If the SP = 0 then Y |SP ∼ binomial(1,0.5). If the SP = −5, then Y |SP ∼
binomial(1,ρ ≈ 0.007) while if the SP = 5, then Y |SP ∼ binomial(1,ρ ≈
0.993). Hence if the range of the SP is in the interval (−∞,−5), then the
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mean function is flat and ρ(SP ) ≈ 0. If the range of the SP is in the interval
(5,∞), then the mean function is again flat but ρ(SP ) ≈ 1. If −5 < SP < 0
then the mean function looks like a slide. If −1 < SP < 1 then the mean
function looks linear. If 0 < SP < 5 then the mean function first increases
rapidly and then less and less rapidly. Finally, if −5 < SP < 5 then the
mean function has the characteristic “ESS” shape shown in Figure 1.5.

The estimated sufficient summary plot (ESSP or ESS plot or response

plot) is a plot of ESP = α̂ + β̂
T
xi versus Yi with the estimated mean

function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. The interpretation of the ESS plot is almost the same
as that of the SSP, but now the SP is estimated by the estimated sufficient
predictor (ESP).

The response plot is very useful as a goodness of fit diagnostic. Divide
the ESP into J “slices” each containing approximately n/J cases. Compute
the sample mean = sample proportion of the Y ’s in each slice and add the
resulting step function to the response plot. This is done in Figure 1.6 with
J = 10 slices. This step function is a simple nonparametric estimator of the
mean function ρ(SP ). If the step function follows the estimated LR mean
function (the logistic curve) closely, then the LR model fits the data well.
The plot of these two curves is a graphical approximation of the goodness of
fit tests described in Hosmer and Lemeshow (2000, p. 147–156).

The deviance test described in Chapter 10 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If
the LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator

ρ̂(xi) =
exp(α̂ + β̂

T
xi)

1 + exp(α̂ + β̂
T
xi)

.

If the logistic curve clearly fits the step function better than the line Y = Y ,
then Ho will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
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Figure 1.5: SSP for LR Data
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Figure 1.6: Response Plot for LR Data
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Figure 1.7: Response Plot When Y Is Independent Of The Predictors

Figure 1.7 shows the response plot when only X4 and X5 are used as predic-
tors for the artificial data, and Y is independent of these two predictors by
construction. It is possible to find data sets that look like Figure 1.7 where
the pvalue for the deviance test is very small. Then the LR relationship
is statistically significant, but the investigator needs to decide whether the
relationship is practically significant.

For binary data the Yi only take two values, 0 and 1, and the residuals do
not behave very well. Thus the response plot is both a goodness of fit plot
and a lack of fit plot. For binomial regression, described in Chapter 10, the
Yi take on values 0, 1, ..., mi, and residual plots may be useful if mi ≥ 5 for
some of the cases.

1.3 Poisson Regression

If the response variable Y is a count, then the Poisson regression model
is often useful. This model states that Y1, ..., Yn are independent random
variables with

Yi ≡ Yi|xi ∼ Poisson(µ(xi)).
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The loglinear regression model is the special case where

µ(xi) = exp(α + βTxi). (1.14)

A sufficient summary plot (SSP) of the sufficient predictor SP = α+βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the loglinear regression (LLR) model. Artificial
data needs to be used because the plot can not be used for real data since
α and β are unknown. The data used in the discussion below had n = 100,
x ∼ N5(1, I/4) and

Yi ∼ Poisson(exp(α + βTxi))

where α = −2.5 and β = (1, 1, 1, 0, 0)T .
The shape of the mean function µ(SP ) = exp(SP ) for loglinear regression

depends strongly on the range of the SP. The variety of shapes occurs because
the plotting software attempts to fill the vertical axis. If the range of the
SP is narrow, then the exponential function will be rather flat. If the range
of the SP is wide, then the exponential curve will look flat in the left of the
plot but will increase sharply in the right of the plot. Figure 1.8 shows the
SSP for the artificial data. Notice that Y |SP = 0 ∼ Poisson(1). In general,
Y |SP ∼ Poisson(exp(SP)).

The estimated sufficient summary plot (ESSP or response plot) is a plot

of the ESP = α̂ + β̂
T
xi versus Yi with the estimated mean function

µ̂(ESP ) = exp(ESP )

added as a visual aid. The interpretation of the response plot is almost
the same as that of the SSP, but now the SP is estimated by the estimated
sufficient predictor (ESP).

The response plot is very useful as a goodness of fit diagnostic. The lowess
curve is a nonparametric estimator of the mean function called a “scatterplot
smoother.” The lowess curve is represented as a jagged curve to distinguish
it from the estimated LLR mean function (the exponential curve) in Figure
1.9. If the lowess curve follows the exponential curve closely (except possibly
for the largest values of the ESP), then the LLR model fits the data well. A
useful lack of fit plot is a plot of the ESP versus the deviance residuals that
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Figure 1.10: Response Plot when Y is Independent of the Predictors

are often available from the software. Additional plots are given in Chapter
11.

The deviance test described in Chapter 11 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If
the LLR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and µ̂(xi) ≡ µ̂ = Y (the sample
mean) should be used instead of the LLR estimator

µ̂(xi) = exp(α̂ + β̂
T
xi).

If the exponential curve clearly fits the lowess curve better than the line
Y = Y , then Ho should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if the
exponential curve is approximately linear with a small slope), then Y may
be independent of the predictors. Figure 1.10 shows the ESSP when only X4

and X5 are used as predictors for the artificial data, and Y is independent of
these two predictors by construction. It is possible to find data sets that look
like Figure 1.10 where the pvalue for the deviance test is very small. Then
the LLR relationship is statistically significant, but the investigator needs to
decide whether the relationship is practically significant.
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1.4 Single Index Models

The single index model with additive error

Y = m(α + βTx) + e = m(SP ) + e (1.15)

includes the multiple linear regression model as a special case. In the suffi-
cient summary plot of SP = α+βT x versus Y , the plotted points fall about
the curve m(SP ). The vertical deviation from the curve is Y − m(SP ) = e.
If the ei are iid N(0, 1) random variables, then Y |SP ∼ N(m(SP ), σ2). Often
m and/or the distribution of e is unknown, and then the single index model
is a semiparametric model. See Chapter 15.

The response plot of the ESP versus Y can be used to visualize the
conditional distribution Y |SP and to visualize the conditional mean function
E(Y |SP ) ≡ M(SP ) = m(SP ). The response plot can also be used to
check the goodness of fit of the single index model. If m is known, add the
estimated mean function M̂ (x) = m(ESP ) to the plot. If m is unknown, add
a nonparametric estimator of the mean function M̂(x) = m̂(ESP ) such as
lowess to the response plot. If the data randomly scatters about the estimated
mean function, then the single index model may be a useful approximation to
the data. The residual plot of the ESP versus the residuals r = Y −m̂(ESP )
should scatter about the horizonal line r = 0 if the errors are iid with mean
zero and constant variance σ2. The response plot can also be used as a
diagnostic for Ho : β = 0. If the estimated mean function m̂(ESP ) fits the
data better than any horizontal line, then Ho should be rejected.

Suppose that the single index model is appropriate and Y x|βTx. Then
Y x|cβT x for any nonzero scalar c. If Y = m(βTx) + e and both m and
β are unknown, then m(βT x) = ha,c(a + cβTx) where

ha,c(w) = m

(
w − a

c

)

for c �= 0. In other words, if m is unknown, we can estimate cβ but we can
not determine c or β; ie, we can only estimate β up to a constant.

A very useful result is that if y = m(x) for some function m, then m can
be visualized with both a plot of x versus y and a plot of cx versus y if c �= 0.
In fact, there are only three possibilities, if c > 0 then the two plots are nearly
identical: except the labels of the horizontal axis change. (The two plots are
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usually not exactly identical since plotting controls to “fill space” depend on
several factors and will change slightly.) If c < 0, then the plot appears to
be flipped about the vertical axis. If c = 0, then m(0) is a constant, and the
plot is basically a dot plot. Similar results hold if Yi = m(α + βTxi) + ei if
the errors ei are small. Ordinary least squares (OLS) often provides a useful
estimator of cβ where c �= 0, but OLS can result in c = 0 if m is symmetric
about the median of α + βTx.

The software packages Splus (MathSoft 1999ab) and R, the free version of
Splus available from (www.r-project.org/), can be used to generate artificial
single index model data sets. The R/Splus commands

X <- matrix(rnorm(300),nrow=100,ncol=3)

SP <- X%*%1:3

Y <- (SP)^3 + rnorm(100)

were used to generate 100 trivariate Gaussian predictors x ∼ N3(0, I3) and
the response Y = (βTx)3 + e = (x1 + 2x2 + 3x3)

3 + e where e ∼ N(0, 1).
This is a single index model where m is the cubic function, β = (1, 2, 3)T and
α = 0. Figure 1.11 shows the sufficient summary plot of βT x versus Y , and
Figure 1.12 shows the sufficient summary plot of −βT x versus Y . Notice
that the functional form m appears to be cubic in both plots and that both
plots can be smoothed by eye or with a scatterplot smoother such as lowess.
The two figures were generated with the following R/Splus commands.

plot(SP,Y)

plot(-SP,Y)

An amazing result is that the unknown function m can often be visualized
by the response plot called the “OLS view,” a plot of the OLS ESP (the
OLS fit, possibly ignoring the constant) versus Y generated by the following
commands.

bols <- lsfit(X,Y)$coef[-1]

plot(X %*% bols, Y)

The OLS view, shown in Figure 1.13, can be used to visualize m and
for prediction. Note that Y appears to be a cubic function of the OLS ESP
and that if the OLS ESP = 0, then the graph suggests using Ŷ = 0 as the
predicted value for Y . Since the plotted points cluster about a smooth curve
better than any horizontal line, the OLS view suggests that a single index
model is appropriate and that β �= 0.
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Figure 1.13: OLS View for m(u) = u3

1.5 Survival Regression Models

The most important survival regression models are 1D models, and are de-
scribed in detail in Chapter 16. For these models, the conditional survival
function SY |SP (t) = P (Y > t|βTx) = P (Y > t|SP ) and the conditional
hazard function hY |SP (t) are of great interest. Hence the response plot is no
longer of great interest. Instead, the slice survival plot is used to visualize
SY |SP (t).

The Cox proportional hazards regression model (Cox 1972) is a semipara-
metric model with SP = βT

Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)

where the baseline hazard function h0(t) is left unspecified. The survival
function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(β

T

Cx) = [S0(t)]
exp(SP )

where S0(t) is the unspecified baseline survival function.
For parametric proportional hazards regression models, the baseline func-

tion is parametric and the parameters are estimated via maximum likelihood.
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Then as a 1D regression model, SP = βT
Px, and

hY |SP (t) ≡ hx(t) = exp(βT
P x)h0,P (t) = exp(SP )h0,P (t)

where the parametric baseline function depends on k unknown parameters
but does not depend on the predictors x. The survival function is

Sx(t) ≡ SY |SP (t) = [S0,P(t)]exp(βT

P x) = [S0,P(t)]exp(SP ),

and

Ŝx(t) = [Ŝ0,P (t)]exp(
ˆβ

T

Px) = [Ŝ0,P(t)]exp(ESP ).

The Weibull regression model is an important special case.

For a parametric accelerated failure time model,

log(Yi) = α + βT
Axi + σei

where the ei are iid from a location scale family. Let SP = βT
Ax. Then as

a 1D regression model, log(Y )|SP = α + SP + e. The parameters are again
estimated by maximum likelihood and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
,

and

Ŝx(t) = Ŝ0

(
t

exp(β̂
T

Ax)

)

where Ŝ0(t) depends on α̂ and σ̂.

1.6 Variable Selection

A standard problem in 1D regression is variable selection, also called subset
or model selection. Assume that Y x|(α + βT x), that a constant is always
included, that x = (x1, ..., xp−1)

T are the p − 1 nontrivial predictors and
that (1, x)T has full rank. Then variable selection is a search for a subset of
predictor variables that can be deleted without important loss of information.
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To clarify ideas, assume that there exists a subset S of predictor variables
such that if xS is in the 1D model, then none of the other predictors are
needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning x = (xT

S , xT
E)T . Then

SP = α + βTx = α + βT
SxS + βT

ExE = α + βT
SxS. (1.16)

The extraneous terms that can be eliminated given that the subset S is in
the model have zero coefficients.

Now suppose that I is a candidate subset of predictors, that S ⊆ I and
that O is the set of predictors not in I . Then

SP = α + βTx = α + βT
SxS = α + βT

SxS + βT
(I/S)xI/S + 0TxO = α + βT

I xI ,

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if S ⊆ I . Hence for any
subset I that includes all relevant predictors, the population correlation

corr(α + βTxi, α + βT
I xI,i) = 1. (1.17)

This observation, which is true regardless of the explanatory power of
the model, suggests that variable selection for 1D regression models is simple
in principle. For each value of j = 1, 2, ..., p − 1 nontrivial predictors, keep
track of subsets I that provide the largest values of corr(ESP,ESP(I)). Any
such subset for which the correlation is high is worth closer investigation
and consideration. To make this advice more specific, use the rule of thumb
that a candidate subset of predictors I is worth considering if the sample
correlation of ESP and ESP(I) satisfies

corr(α̃ + β̃
T
xi, α̃I + β̃

T

I xI,i) = corr(β̃
T
xi, β̃

T

I xI,i) ≥ 0.95. (1.18)

The difficulty with this approach is that fitting large numbers of possible
submodels involves substantial computation. Fortunately, OLS frequently
gives a useful ESP and methods originally meant for multiple linear regression
using the Mallows’ Cp criterion (see Jones 1946 and Mallows 1973) also work
for more general 1D regression models. As a rule of thumb, the OLS ESP is
useful if |corr(OLS ESP, ESP)| ≥ 0.95 where ESP is the standard ESP (eg, for

generalized linear models, the ESP is α̂+ β̂
T
x where (α̂, β̂) is the maximum

likelihood estimator of (α, β)), or if the OLS response plot suggests that the
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OLS ESP is good. Variable selection will be discussed in much greater detail
in Chapters 3, 10, 11, 12, 15 and 16, but the following methods are useful
for a large class of 1D regression models.

Perhaps the simplest method of variable selection is the t directed search
(see Daniel and Wood 1980, p. 100–101). Let k be the number of predictors
in the model, including the constant. Hence k = p for the full model. Let
X1, ..., Xp−1 denote the nontrivial predictor variables and let W1, W2, ..., Wp−1

be the predictor variables in decreasing order of importance. Use theory if
possible, but if no theory is available then fit the full model using OLS and
let ti denote the t statistic for testing Ho : βi = 0. Let |t|(1) ≤ |t|(2) ≤ · · · ≤
|t|(p−1). Then Wi corresponds to the Xj with |t|(p−i) for i = 1, 2, ..., p − 1.
That is, W1 has the largest t statistic, W2 the next largest, etc. Then use
OLS to compute Cp(Ij) for the p − 1 models Ij where Ij contains W1, ..., Wj

and a constant for j = 1, ..., p− 1.

Forward selection starts with a constant = W0.
Step 1) k = 2: compute Cp for all models containing the constant and a
single predictor Xi. Keep the predictor W1 = Xj , say, that corresponds to
the model with the smallest value of Cp.
Step 2) k = 3: Fit all models with k = 3 that contain W0 and W1. Keep the
predictor W2 that minimizes Cp.
Step j) k = j +1: Fit all models with k = j +1 that contains W0, W1, ..., Wj.
Keep the predictor Wj+1 that minimizes Cp.
Step p − 1) k = p: Fit the full model.

Backward elimination starts with the full model. All models contain
a constant = U0. Hence the full model contains U0, X1, ..., Xp−1. We will also
say that the full model contains U0, U1, ..., Up−1 where Ui need not equal Xi

for i ≥ 1.
Step 1) k = p− 1: fit each model with p− 1 predictors including a constant.
Delete the predictor Up−1, say, that corresponds to the model with the small-
est Cp. Keep U0, ..., Up−2.
Step 2) k = p − 2: fit each model with p − 2 predictors including the con-
stant. Delete the predictor Up−2 that corresponds to the smallest Cp. Keep
U0, U1, ..., Up−3.
Step j) k = p− j: fit each model with p− j predictors and a constant. Delete
the predictor Up−j that corresponds to the smallest Cp. Keep U0, U1, ..., Up−j−1.
Step p− 2) k = 2: The current model contains U0, U1 and U2. Fit the model
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U0, U1 and the model U0, U2. Assume that model U0, U1 minimizes Cp. Then
delete U2 and keep U0 and U1.
(Step p− 1) which finds Cp for the model that only contains the constant U0

is often omitted.)

All subsets variable selection examines all subsets and keeps track of
several (up to three, say) subsets with the smallest Cp(I) for each group of
submodels containing k predictors including a constant. This method can be
used for p ≤ 30 by using the efficient “leaps and bounds” algorithms when
OLS and Cp is used (see Furnival and Wilson 1974).

Rule of thumb for variable selection (assuming that the cost of each
predictor is the same): find the submodel Im with the minimum Cp. If Im

uses km predictors including a constant, do not use any submodel that has
more than km predictors. Since the minimum Cp submodel often has too
many predictors, also look at the submodel Io with the smallest value of k,
say ko, such that Cp ≤ 2k. This submodel may have too few predictors.
So look at the predictors in Im but not in Io and see if they can be deleted
or not. (If Im = Io, then it is a good candidate for the best submodel.)

Variable selection with the Cp criterion is closely related to the partial
F test for testing whether a reduced model should be used instead of the
full model. The following results are properties of OLS and hold even if the
data does not follow a 1D model. If the candidate model of xI has k terms
(including the constant), then the partial F test for reduced model I uses
test statistic

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k

[
SSE(I)

SSE
− 1

]

where SSE is the residual sum of squares from the full model and SSE(I) is
the residual sum of squares from the candidate submodel. Then

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k (1.19)

where MSE is the residual mean square for the full model. Let ESP(I) =

α̂I + β̂
T

I x be the ESP for the submodel and let VI = Y − ESP (I) so that

VI,i = Yi−α̂I+β̂
T

I xi. Let ESP and V denote the corresponding quantities for
the full model. Then Olive and Hawkins (2005) show that corr(VI , V ) → 1
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forces corr(OLS ESP, OLS ESP(I)) → 1 and that

corr(V, VI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Also Cp(I) ≤ 2k corresponds to corr(VI , V ) ≥ dn where

dn =

√
1 − p

n
.

Notice that the submodel Ik that minimizes Cp(I) also maximizes corr(V, VI)
among all submodels I with k predictors including a constant. If Cp(I) ≤ 2k
and n ≥ 10p, then 0.948 ≤ corr(V, V (I)), and both corr(V, V (I)) → 1.0 and
corr(OLS ESP, OLS ESP(I)) → 1.0 as n → ∞.

If a 1D model holds, a common assumption made for variable selection is
that the fitted full model ESP is a good estimator of the sufficient predictor,
and the usual graphical and numerical checks on this assumption should be
made. Also assume that the OLS ESP is useful. This assumption can be
checked by making an OLS response plot or by verifying that |corr(OLS
ESP, ESP)| ≥ 0.95. Then we suggest that submodels I are “interesting” if
Cp(I) ≤ min(2k, p).

Suppose that the OLS ESP and the standard ESP are highly correlated:
|corr(ESP, OLS ESP)| ≥ 0.95. Then often OLS variable selection can be used
for the 1D data, and using the pvalues from OLS output seems to be a useful
benchmark. To see this, suppose that n > 5p and first consider the model
Ii that deletes the predictor Xi. Then the model has k = p − 1 predictors
including the constant, and the test statistic is ti where

t2i = FIi.

Using (1.19) and Cp(Ifull) = p, notice that

Cp(Ii) = (p − (p − 1))(t2i − 1) + (p − 1) = t2i − 1 + Cp(Ifull) − 1,

or
Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor Xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.
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If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
More generally, for the partial F test, notice that by (1.19), Cp(I) ≤ 2k

iff (p − k)FI − p + 2k ≤ 2k iff (p − k)Fi ≤ p iff

FI ≤ p

p − k
.

Now k is the number of terms in the model including a constant while p− k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho
(ie, say that the full model should be used instead of the submodel I) unless
FI is not much larger than 1. If p is very large and p − k is very small, then
the partial F test will tend to suggest that there is a model I that is about
as good as the full model even though model I deletes p − k predictors.

The Cp(I) ≤ k screen tends to overfit. We simulated multiple linear
regression and single index model data sets with p = 8 and n = 50, 100, 1000
and 10000. The true model S satisfied Cp(S) ≤ k for about 60% of the
simulated data sets, but S satisfied Cp(S) ≤ 2k for about 97% of the data
sets.

1.7 Other Issues

The 1D regression models offer a unifying framework for many of the most
used regression models. By writing the model in terms of the sufficient pre-
dictor SP = α + βTx, many important topics valid for all 1D regression
models can be explained compactly. For example, the previous section pre-
sented variable selection, and equation (1.19) can be used to motivate the
test for whether the reduced model can be used instead of the full model.
Similarly, the sufficient predictor can be used to unify the interpretation of
coefficients and to explain models that contain interactions and factors.

Interpretation of Coefficients
One interpretation of the coefficients in a 1D model is that βi is the rate

of change in the SP associated with a unit increase in xi when all other
predictor variables x1, ..., xi−1, xi+1, ..., xp are held fixed. Denote a model by
SP = α + βTx = α + β1x1 + · · · + βpxp. Then

βi =
∂ SP

∂xi
for i = 1, ..., p.
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Of course, holding all other variables fixed while changing xi may not be
possible. For example, if x1 = x, x2 = x2 and SP = α + β1x + β2x

2, then x2

can not be held fixed when x1 increases by one unit, but

d SP

dx
= β1 + 2β2x.

The interpretation of βi changes with the model in two ways. First,
the interpretation changes as terms are added and deleted from the SP.
Hence the interpretation of β1 differs for models SP = α + β1x1 and SP =
α + β1x1 + β2x2. Secondly, the interpretation changes as the parametric or
semiparametric form of the model changes. For multiple linear regression,
E(Y |SP ) = SP and an increase in one unit of xi increases the conditional
expectation by βi. For binary logistic regression,

E(Y |SP ) = ρ(SP ) =
exp(SP )

1 + exp(SP )
,

and the change in the conditional expectation associated with a one unit
increase in xi is more complex.

Factors for Qualitative Variables
The interpretation of the coefficients also changes if interactions and fac-

tors are present. Suppose a factor W is a qualitative random variable that
takes on c categories a1, ..., ac. Then the 1D model will use c − 1 indicator
variables Wi = 1 if W = ai and Wi = 0 otherwise, where one of the levels ai

is omitted, eg, use i = 1, ..., c− 1.

Interactions
Suppose X1 is quantitative and X2 is qualitative with 2 levels and X2 = 1

for level a2 and X2 = 0 for level a1. Then a first order model with interaction
is SP = α+β1x1+β2x2+β3x1x2. This model yields two unrelated lines in the
sufficient predictor depending on the value of x2: SP = α + β2 + (β1 + β3)x1

if x2 = 1 and SP = α + β1x1 if x2 = 0. If β3 = 0, then there are two
parallel lines: SP = α + β2 + β1x1 if x2 = 1 and SP = α + β1x1 if x2 = 0.
If β2 = β3 = 0, then the two lines are coincident: SP = α + β1x1 for
both values of x2. If β2 = 0, then the two lines have the same intercept:
SP = α + (β1 + β3)x1 if x2 = 1 and SP = α + β1x1 if x2 = 0. In general, as
factors have more levels and interactions have more terms, eg x1x2x3x4, the
interpretation of the model rapidly becomes very complex.
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1.8 Complements

To help explain the given 1D model, use the sufficient summary plot (SSP)
of SP = α+βT xi versus Yi with the mean function added as a visual aid. If
p = 1, then Y x|x and the plot of xi versus Yi is a SSP and has been widely
used to explain the simple linear regression (SLR) model and the logistic
regression model with one predictor. See Agresti (2002, cover illustration
and p. 169) and Collett (1999, p. 74). Replacing x by SP has two major
advantages. First, the plot can be made for k ≥ 1 and secondly, the possible
shapes that the plot can take is greatly reduced. For example, in a plot of
xi versus Yi, the plotted points will fall about some line with slope β and
intercept α if the SLR model holds, but in a plot of SP = α + βTxi versus
Yi, the plotted points will fall about the identity line with unit slope and zero
intercept if the multiple linear regression model holds.

Important theoretical results for the single index model were given by
Brillinger (1977, 1983) and Aldrin, Bφlviken and Schweder (1993). Li and
Duan (1989) extended these results to models of the form

Y = g(α + βTx, e) (1.20)

where g is a bivariate inverse link function. Olive and Hawkins (2005) discuss
variable selection while Chang (2006) and Chang and Olive (2009) discuss
OLS tests. Severini (1998) discusses when OLS output is relevant for the
Gaussian additive error single index model.

1.9 Problems

1.1. Explain why the model Y = g(α + βTx, e) can also be written as
Y = g(α + xT β, e).
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