
Chapter 12

Generalized Linear Models

12.1 Introduction

Generalized linear models are an important class of parametric 1D regression
models that include multiple linear regression, logistic regression and loglin-
ear Poisson regression. Assume that there is a response variable Y and a
k × 1 vector of nontrivial predictors x. Before defining a generalized linear
model, the definition of a one parameter exponential family is needed. Let
f(y) be a probability density function (pdf) if Y is a continuous random
variable and let f(y) be a probability mass function (pmf) if Y is a discrete
random variable. Assume that the support of the distribution of Y is Y and
that the parameter space of θ is Θ.

Definition 12.1. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (12.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by
m. Many other parameterizations are possible. If h(y) = g(y)IY(y), then
usually k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY(y) (12.2)
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where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.

Definition 12.2. Assume that the data is (Yi, xi) for i = 1, ..., n. An
important type of generalized linear model (GLM) for the data states
that the Y1, ..., Yn are independent random variables from a 1-parameter ex-
ponential family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (12.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(α + βT xi). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The
GLM also states that g(µ(xi)) = α + βTxi where the link function g is a
differentiable monotone function. Then the canonical link function uses
the function c given in (12.3), so g(µ(xi)) ≡ c(µ(xi)) = α + βT xi, and
the quantity α + βT x is called the linear predictor and the sufficient
predictor (SP).

The GLM parameterization (12.3) can be written in several ways. By
Equation (12.2),

f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY(y)

= exp

[
c(θ(xi))

a(φ)
yi − b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi − b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(α + βT xi). (12.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,
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and notice that the value of the parameter θ(xi) = η(α + βT xi) depends
on the value of xi. Since the model depends on x only through the linear
predictor α+βTx, a GLM is a 1D regression model. Thus the linear predictor
is also a sufficient predictor.

The following three sections illustrate three of the most important gener-
alized linear models. After selecting a GLM, the investigator will often want
to check whether the model is useful and to perform inference. Several things
to consider are listed below.

i) Show that the GLM provides a simple, useful approximation for the
relationship between the response variable Y and the predictors x.

ii) Estimate α and β using maximum likelihood estimators.
iii) Estimate µ(xi) = diτ (xi) or estimate τ (xi) where the di are known

constants.
iv) Check for goodness of fit of the GLM with an estimated sufficient

summary plot = response plot.
v) Check for lack of fit of the GLM (eg with a residual plot).
vi) Check for overdispersion with an OD plot.
vii) Check whether Y is independent of x; ie, check whether β = 0.
viii) Check whether a reduced model can be used instead of the full model.
ix) Use variable selection to find a good submodel.
x) Predict Yi given xi.

12.2 Multiple Linear Regression

Suppose that the response variable Y is quantitative. Then the multiple
linear regression model is often a very useful model and is closely related to
the GLM based on the normal distribution. To see this claim, let f(y|µ) be
the N(µ, σ2) family of pdfs where −∞ < µ < ∞ and σ > 0 is known. Recall
that µ is the mean and σ is the standard deviation of the distribution. Then
the pdf of Y is

f(y|µ) =
1√
2πσ

exp

(−(y − µ)2

2σ2

)
.

Since

f(y|µ) =
1√
2πσ

exp(
−1

2σ2
µ2)︸ ︷︷ ︸

k(µ)≥0

exp(
−1

2σ2
y2)︸ ︷︷ ︸

h(y)≥0

exp(
µ

σ2︸︷︷︸
c(µ)/a(σ2)

y),
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this family is a 1-parameter exponential family. For this family, θ = µ =
E(Y ), and the known dispersion parameter φ = σ2. Thus a(σ2) = σ2 and
the canonical link is the identity link c(µ) = µ.

Hence the GLM corresponding to the N(µ, σ2) distribution with canonical
link states that Y1, ..., Yn are independent random variables where

Yi ∼ N(µ(xi), σ
2) and E(Yi) ≡ E(Yi|xi) = µ(xi) = α + βT xi

for i = 1, ..., n. This model can be written as

Yi ≡ Yi|xi = α + βTxi + ei

where ei ∼ N(0, σ2).
When the predictor variables are quantitative, the above model is called a

multiple linear regression (MLR) model. When the predictors are categorical,
the above model is called an analysis of variance (ANOVA) model, and when
the predictors are both quantitative and categorical, the model is called an
MLR or analysis of covariance model.

As a GLM, the MLR model states that Y |SP ∼ N(SP, σ2), and the
assumption that σ2 is known is too strong. As a semiparametric model, the
MLR model states that Y = SP + e where the ei are iid with zero mean and
unknown constant variance σ2. The semiparametric model is much more
important than the GLM because the theory is similar for both models but
the semiparametric model does not need the error distribution to be known.
The semiparametric MLR model is discussed in detail in Chapters 2 and
3. Semiparametric ANOVA models also have theory similar to the normal
GLM, and these models are discussed in Chapters 5 to 9.

12.3 Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as
a 1 or a “success,” while the nonoccurrence of the category that is counted
is labelled as a 0 or a “failure.” For example, a “success” = “occurrence”
could be a person who contracted lung cancer and died within 5 years of
detection. For a binary response variable, a binary regression model is often
appropriate.
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Definition 12.3. The binomial regression model states that Y1, ..., Yn

are independent random variables with

Yi ∼ binomial(mi, ρ(xi)).

The binary regression model is the special case where mi ≡ 1 for i =
1, ..., n while the logistic regression (LR) model is the special case of
binomial regression where

P (success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
. (12.5)

If the sufficient predictor SP = α + βTx, then the most used binomial
regression models are such that Y1, ..., Yn are independent random variables
with

Yi ∼ binomial(mi, ρ(α + βTxi)),

or
Yi|SPi ∼ binomial(mi, ρ(SPi)). (12.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)). Note that
the LR model has

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

To see that the binary logistic regression model is a GLM, assume that
Y is a binomial(1, ρ) random variable. For a one parameter family, take
a(φ) ≡ 1. Then the pmf of Y is

f(y) = P (Y = y) =

(
1

y

)
ρy(1 − ρ)1−y =

(
1

y

)
︸︷︷︸
h(y)≥0

(1 − ρ)︸ ︷︷ ︸
k(ρ)≥0

exp[log(
ρ

1 − ρ
)︸ ︷︷ ︸

c(ρ)

y].

Hence this family is a 1-parameter exponential family with θ = ρ = E(Y )
and canonical link

c(ρ) = log

(
ρ

1 − ρ

)
.
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This link is known as the logit link, and if g(µ(x)) = g(ρ(x)) = c(ρ(x)) =
α + βTx then the inverse link satisfies

g−1(α + βTx) =
exp(α + βT x)

1 + exp(α + βT x)
= ρ(x) = µ(x).

Hence the GLM corresponding to the binomial(1, ρ) distribution with canon-
ical link is the binary logistic regression model.

Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1 − ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary
regression,

ρ(x) = P (Y = 1|x) = 1 − P (Y = 0|x).

If this population proportion ρ = ρ(α + βT x), then the model is a 1D re-
gression model. The model is a GLM if the link function g is differentiable
and monotone so that g(ρ(α + βT x)) = α + βT x and g−1(α + βT x) =
ρ(α + βTx). Usually the inverse link function corresponds to the cumula-
tive distribution function of a location scale family. For example, for logistic
regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the logistic
L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the cdf
of the Normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1 − ρ(x))] = α + βT x.

Binomial logistic regression models are discussed in detail in Chapter 10.

12.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a
region is divided into subregions and Yi is the number of a specified type of
animal found in the subregion.

Definition 12.4. The Poisson regression model states that Y1, ..., Yn

are independent random variables with

Yi ∼ Poisson(µ(xi)).
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The loglinear Poisson regression model is the special case where

µ(xi) = exp(α + βTxi). (12.7)

To see that the loglinear regression model is a GLM, assume that Y is
a Poisson(µ) random variable. For a one parameter family, take a(φ) ≡ 1.
Then the pmf of Y is

f(y) = P (Y = y) =
e−µµy

y!
= e−µ︸︷︷︸

k(µ)≥0

1

y!︸︷︷︸
h(y)≥0

exp[log(µ)︸ ︷︷ ︸
c(µ)

y]

for y = 0, 1, . . . , where µ > 0. Hence this family is a 1-parameter exponential
family with θ = µ = E(Y ), and the canonical link is the log link

c(µ) = log(µ).

Since g(µ(x)) = c(µ(x)) = α + βTx, the inverse link satisfies

g−1(α + βT x) = exp(α + βTx) = µ(x).

Hence the GLM corresponding to the Poisson(µ) distribution with canonical
link is the loglinear regression model.

Poisson regression models are discussed in detail in Chapter 11.

12.5 Inference and Variable Selection

This section gives a brief discussion of inference and variable selection for
GLMs with emphasis on the logistic regression (LR) and loglinear regression
(LLR) models. See Chapters 10 and 11 for more details. Inference for these
two models is very similar to inference for the multiple linear regression
(MLR) model and survival regression models. For all of these models, Y
is independent of the k × 1 vector of predictors x = (x1, ..., xk)

T given the
sufficient predictor α + βT x:

Y x|(α + βTx).

To perform inference for LR and LLR, computer output is needed. Point
estimators for the mean function are important. Given x = (x1, ..., xk)

T , a
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major goal of binary logistic regression is to estimate the success probability
P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(α̂ + β̂

T
x)

1 + exp(α̂ + β̂
T
x)

. (12.8)

Similarly, a major goal of loglinear regression is to estimate the mean
E(Y |x) = µ(x) with the estimator

µ̂(x) = exp(α̂ + β̂
T
x). (12.9)

Investigators also sometimes test whether a predictor Xj is needed in the
model given that the other k − 1 nontrivial predictors are in the model with
the following 4 step Wald test of hypotheses.
i) State the hypotheses Ho: βj = 0 Ha: βj �= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or obtain it from output.
iii) The p–value = 2P (Z < −|zoj|) = 2P (Z > |zoj|). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the GLM model for
Y given that the other k− 1 predictors are in the model. If you fail to reject
Ho, then conclude that Xj is not needed in the GLM model for Y given that
the other k − 1 predictors are in the model. Note that Xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained from the

output: the large sample 100 (1 − δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j).

For a GLM, often 3 models are of interest: the full model that uses all k
of the predictors xT = (xT

R, xT
O), the reduced model that uses the r predic-

tors xR, and the saturated model that uses n parameters θ1, ..., θn where
n is the sample size. For the full model the k + 1 parameters α, β1, ..., βk are
estimated while the reduced model has r +1 parameters. Let lSAT (θ1, ..., θn)
be the likelihood function for the saturated model and let lFULL(α, β) be the
likelihood function for the full model. Let

LSAT = log lSAT (θ̂1, ..., θ̂n)
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be the log likelihood function for the saturated model evaluated at the max-
imum likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let

LFULL = log lFULL(α̂, β̂)

be the log likelihood function for the full model evaluated at the MLE (α̂, β̂).
Then the deviance

D = G2 = −2(LFULL − LSAT ).

The degrees of freedom for the deviance = dfFULL = n − k − 1 where n is
the number of parameters for the saturated model and k + 1 is the number
of parameters for the full model.

The saturated model for logistic regression states that Y1, ..., Yn are in-
dependent binomial(mi, ρi) random variables where ρ̂i = Yi/mi. The sat-
urated model for loglinear regression states that Y1, ..., Yn are independent
Poisson(µi) random variables where µ̂i = Yi.

Assume that the response plot has been made and that the logistic or
loglinear regression model fits the data well in that the nonparametric step
or lowess estimated mean function follows the estimated model mean function
closely and there is no evidence of overdispersion. The deviance test is used
to test whether β = 0. If this is the case, then the predictors are not needed
in the GLM model. If Ho : β = 0 is not rejected, then for loglinear regression
the estimator µ̂ = Y should be used while for logistic regression

ρ̂ =

n∑
i=1

Yi/

n∑
i=1

mi

should be used. Note that ρ̂ = Y for binary logistic regression.

The 4 step deviance test follows.
i) Ho : β = 0 HA : β �= 0
ii) test statistic G2(o|F ) = G2

o − G2
FULL

iii) The p–value = P (χ2 > G2(o|F )) where χ2 ∼ χ2
k has a chi–square

distribution with k degrees of freedom. Note that k = k + 1 − 1 = dfo −
dfFULL = n − 1 − (n − k − 1).

iv) Reject Ho if the p–value < δ and conclude that there is a GLM
relationship between Y and the predictors X1, ..., Xk. If p–value ≥ δ, then
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fail to reject Ho and conclude that there is not a GLM relationship between
Y and the predictors X1, ..., Xk.

If the reduced model leaves out a single variable Xi, then the change in
deviance test becomes Ho : βi = 0 versus HA : βi �= 0. This change in
deviance test is usually better than the Wald test if the sample size n is not
large, but for large n the test statistics from the two tests tend to be very
similar (asymptotically equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = α̂R+β̂
T

RxRi

versus ESP = α̂ + β̂
T
xi should be highly correlated with the identity line

with unit slope and zero intercept.

After obtaining an acceptable full model where

SP = α + β1x1 + · · · + βkxk = α + βTx = α + βT
RxR + βT

OxO

try to obtain a reduced model

SP = α + βR1xR1 + · · · + βRrxRr = αR + βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of k − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for loglinear regression the reduced
model is Yi|xRi ∼ independent Poisson(µ(xRi)) for i = 1, ..., n.

Assume that the response plot looks good and that there is no evidence
of overdispersion. Then we want to test Ho: the reduced model is good (can
be used instead of the full model) versus HA: use the full model (the full
model is significantly better than the reduced model). Fit the full model and
the reduced model to get the deviances G2

FULL and G2
RED.

The 4 step change in deviance test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic G2(R|F ) = G2

RED − G2
FULL

iii) The p–value = P (χ2 > G2(R|F )) where χ2 ∼ χ2
k−r has a chi–square

distribution with k degrees of freedom. Note that k is the number of non-
trivial predictors in the full model while r is the number of nontrivial pre-
dictors in the reduced model. Also notice that k − r = (k + 1) − (r + 1) =
dfRED − dfFULL = n − r − 1 − (n − k − 1).
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iv) Reject Ho if the p–value < δ and conclude that the full model should
be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

Next some rules of thumb are given for GLM variable selection. Before
performing variable selection, a useful full model needs to be found. The
process of finding a useful full model is an iterative process.

The full model will often contain factors and interactions. If w is a nom-
inal variable with J levels, make w into a factor by using use J − 1 (indica-
tor or) dummy variables x1,w, ..., xJ−1,w in the full model. For example, let
xi,w = 1 if w is at its ith level, and let xi,w = 0, otherwise. An interaction
is a product of two or more predictor variables. Interactions are difficult to
interpret. Often interactions are included in the full model, and then the
reduced model without any interactions is tested.

A scatterplot of x versus Y is used to visualize the conditional distri-
bution of Y |x. A scatterplot matrix is an array of scatterplots and is used
to examine the marginal relationships of the predictors and response. Place
Y on the top or bottom of the scatterplot matrix. Variables with outliers,
missing values or strong nonlinearities may be so bad that they should not be
included in the full model. Suppose that all values of the variable x are posi-
tive. The log rule says add log(x) to the full model if max(xi)/min(xi) > 10.
For the binary logistic regression model, it is often useful to mark the plotted
points by a 0 if Y = 0 and by a + if Y = 1.

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1’s and

N0 = n−N1 = the number of 0’s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
For loglinear regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss of
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information. A model for variable selection for a GLM can be described by

SP = α + βT x = α + βT
SxS + βT

ExE = α + βT
SxS (12.10)

where x = (xT
S , xT

E)T is a k× 1 vector of nontrivial predictors, xS is a rS × 1
vector and xE is a (k − rS) × 1 vector. Given that xS is in the model,
βE = 0 and E denotes the subset of terms that can be eliminated given that
the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of r terms from a candidate subset indexed by I , and let xO be the
vector of the remaining terms (out of the candidate submodel). Then

SP = α + βT
I xI + βT

OxO. (12.11)

Definition 12.5. The model with SP = α + βTx that uses all of the
predictors is called the full model. A model with SP = α + βT

I xI that only
uses the constant and a subset xI of the nontrivial predictors is called a
submodel. The full model is always a submodel.

Suppose that S is a subset of I and that model (12.10) holds. Then

SP = α + βT
SxS = α + βT

SxS + βT
(I/S)xI/S + 0T xO = α + βT

I xI (12.12)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if the set of predictors S is
a subset of I. Let (α̂, β̂) and (α̂I , β̂I) be the estimates of (α, β) and (α, βI)
obtained from fitting the full model and the submodel, respectively. Denote

the ESP from the full model by ESP = α̂ + β̂
T
xi and denote the ESP from

the submodel by ESP (I) = α̂I + β̂IxIi.

Definition 12.6. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in
the model. The AIC(I) statistic is used as an aid in backward elimination
and forward selection. The full model and the model Imin found with the
smallest AIC are always of interest. Burnham and Anderson (2004) suggest
that if ∆(I) = AIC(I)− AIC(Imin), then models with ∆(I) ≤ 2 are good,
models with 4 ≤ ∆(I) ≤ 7 are borderline, and models with ∆(I) > 10 should
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not be used as the final submodel. Create a full model. The full model has
a deviance at least as small as that of any submodel. The final submodel
should have an EE plot that clusters tightly about the identity line. As a
rough rule of thumb, a good submodel I has corr(ESP (I), ESP ) ≥ 0.95.
Look at the submodel II with the smallest number of predictors such that
∆(II) ≤ 2, and also examine submodels I with fewer predictors than II with
∆(I) ≤ 7. Submodel II is the initial submodel to examine.

Backward elimination starts with the full model with k nontrivial vari-
ables, and the predictor that optimizes some criterion is deleted. Then there
are k − 1 variables left, and the predictor that optimizes some criterion is
deleted. This process continues for models with k − 2, k − 3, ..., 2 and 1
predictors.

Forward selection starts with the model with 0 variables, and the pre-
dictor that optimizes some criterion is added. Then there is 1 variable in the
model, and the predictor that optimizes some criterion is added. This pro-
cess continues for models with 2, 3, ..., k − 1 and k predictors. Both forward
selection and backward elimination result in a sequence, often different, of k
models {x∗

1}, {x∗
1, x

∗
2}, ..., {x∗

1, x
∗
2, ..., x

∗
k−1}, {x∗

1, x
∗
2, ..., x

∗
k} = full model.

All subsets variable selection can be performed with the following
procedure. Compute the ESP of the GLM and compute the OLS ESP found
by the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.
This high correlation will exist for many data sets. Then perform multiple
linear regression and the corresponding all subsets OLS variable selection
with the Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2(r + 1)
where the subset I has r + 1 variables including a constant, then corr(OLS
ESP, OLS ESP(I)) will be high by the proof of Proposition 3.2, and hence
corr(ESP, ESP(I)) will be high. In other words, if the OLS ESP and GLM
ESP are highly correlated, then performing multiple linear regression and
the corresponding MLR variable selection (eg forward selection, backward
elimination or all subsets selection) based on the Cp(I) criterion may provide
many interesting submodels.

Know how to find good models from output. Neither the full model nor
the final submodel should show evidence of overdispersion. The following
rules of thumb (roughly in order of decreasing importance) may be useful. It
is often not possible to have all 10 rules of thumb to hold simultaneously. Let
submodel I have rI + 1 predictors, including a constant. Do not use more
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predictors than submodel II , which has no more predictors than the minimum
AIC model. It is possible that II = Imin = Ifull. Then the submodel I is
good if i) the response plot for the submodel looks like the response plot for
the full model.
ii) Want corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the change in deviance test that uses I as
the reduced model.
v) Want rI + 1 ≤ n/10, but for binary LR want rI + 1 ≤ min(N1, N0)/10
where N0 is the number of 0s and N1 is the number of 1s.
vi) Want the deviance G2(I) close to G2(full) (see iv): G2(I) ≥ G2(full)
since adding predictors to I does not increase the deviance).
vii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
viii) Want hardly any predictors with p-values > 0.05.
ix) Want few predictors with p-values between 0.01 and 0.05.
x) Want G2(I) ≤ n − rI − 1 + 3

√
n − rI − 1.

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4 and M5 be candidate submodels found after forward selection, backward
elimination, et cetera. Make a scatterplot matrix of the ESPs for M2, M3,
M4, M5 and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y .

The final submodel should have few predictors, few variables with large
Wald p–values (0.01 to 0.05 is borderline), a good response plot, no evidence
of overdispersion and an EE plot that clusters tightly about the identity line.
If a factor has J−1 dummy variables, either keep all J−1 dummy variables or
delete all J−1 dummy variables, do not delete some of the dummy variables.

12.6 Complements

GLMs were introduced by Nelder and Wedderburn (1972). Most of the mod-
els in the first 12 chapters of this text are GLMs. Other books on generalized
linear models (in roughly decreasing order of difficulty) include McCullagh
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and Nelder (1989), Fahrmeir and Tutz (2001), Myers, Montgomery and Vin-
ing (2002), Dobson and Barnett (2008). Also see Fox (2008), Hardin and
Hilbe (2007), Hoffman (2003), Hutcheson and Sofroniou (1999) and Lindsey
(2000). Cook and Weisberg (1999a, ch. 21-23) also has an excellent dis-
cussion. Texts on categorical data analysis that have useful discussions of
GLMs include Agresti (2002), Le (1998), Lindsey (2004), Simonoff (2003)
and Powers and Xie (2000) who give econometric applications.

Barndorff-Nielsen (1982) is a very readable discussion of exponential fam-
ilies. Also see Olive (2008, 2009b).

The response plot of the ESP versus Y is crucial for visualizing the GLM.
The estimated mean function and a scatterplot smoother (a nonparametric
estimator of the mean function) can be added as visual aids. Model and non-
parametric estimators estimated SD function can also be computed. Then
the estimated mean function ± the estimated SD function can be plotted.

Olive and Hawkins (2005) give a simple all subsets variable selection
procedure that can be applied to generalized linear models, such as logistic
regression and Poisson regression, using readily available OLS software.

12.7 Problems

PROBLEMS WITH AN ASTERISK * ARE USEFUL.
12.1. Draw a typical response plot for the following models.
a) multiple linear regression
b) logistic regression for a binary response variable
c) loglinear Poisson regression
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