
Chapter 15

1D Regression

... estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.

Brillinger (1977, p. 509)
After computing β̂, one may go on to prepare a scatter plot of the points

(β̂xj, yj), j = 1, ..., n and look for a functional form for g(·).
Brillinger (1983, p. 98)

Regression is the study of the conditional distribution Y |x of the response
Y given the (p − 1) × 1 vector of nontrivial predictors x. The scalar Y is a
random variable and x is a random vector. A special case of regression is
multiple linear regression. In Chapter 2 the multiple linear regression model
was Yi = wi,1η1 +wi,2η2 + · · ·+wi,pηp + ei = wT

i η+ ei for i = 1, . . . , n. In this
chapter, the subscript i is often suppressed and the multiple linear regression
model is written as Y = α + x1β1 + · · · + xp−1βp−1 + e = α + βTx + e. The
primary difference is the separation of the constant term α and the nontrivial
predictors x. In Chapter 2, wi,1 ≡ 1 for i = 1, ..., n. Taking Y = Yi, α = η1,
βj = ηj+1, and xj = wi,j+1 and e = ei for j = 1, ..., p − 1 shows that the
two models are equivalent. The change in notation was made because the
distribution of the nontrivial predictors is very important for the theory of
the more general regression models.

Definition 15.1: Cook and Weisberg (1999a, p. 414). In a 1D
regression model, the response Y is conditionally independent of x given a
single linear combination βT x of the predictors, written

Y x|βT x or Y x|(α + βTx). (15.1)
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The 1D regression model is also said to have 1–dimensional structure or
1D structure. An important 1D regression model, introduced by Li and Duan
(1989), has the form

Y = g(α + βTx, e) (15.2)

where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.

Special cases of the 1D regression model (15.1) include many important
generalized linear models (GLMs) and the additive error single index model

Y = m(α + βTx) + e. (15.3)

Typically m is the conditional mean or median function. For example if all
of the expectations exist, then

E[Y |x] = E[m(α + βTx)|x] + E[e|x] = m(α + βTx).

The multiple linear regression model is an important special case where m is
the identity function: m(α + βTx) = α + βT x. Another important special
case of 1D regression is the response transformation model where

g(α + βTx, e) = t−1(α + βTx + e) (15.4)

and t−1 is a one to one (typically monotone) function. Hence

t(Y ) = α + βT x + e.

Chapter 16 shows that many survival models are 1D regression models, in-
cluding the Cox (1972) proportional hazards model. Li and Duan (1989, p.
1014) note that the class of 1D regression models also includes binary re-
gression models, censored regression models, and certain projection pursuit
models.

Definition 15.2. Regression is the study of the conditional distribution
of Y |x. Focus is often on the mean function E(Y |x) and/or the variance
function VAR(Y |x). There is a distribution for each value of x = xo such
that Y |x = xo is defined. For a 1D regression,

E(Y |x = xo) = E(Y |βT x = βTxo) ≡ M(βTxo)

and
VAR(Y |x = xo) = VAR(Y |βT x = βTxo) ≡ V (βTxo)
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where M is the kernel mean function and V is the kernel variance function.

Notice that the mean and variance functions depend on the same linear
combination if the 1D regression model is valid. This dependence is typical
of GLMs where M and V are known kernel mean and variance functions
that depend on the family of GLMs. See Cook and Weisberg (1999a, section
23.1). A heteroscedastic regression model

Y = M(βT
1 x) +

√
V (βT

2 x) e (15.5)

is a 1D regression model if β2 = cβ1 for some scalar c.

In multiple linear regression, the difference between the response Yi and

the estimated conditional mean function α̂ + β̂
T
xi is the residual. For more

general regression models this difference may not be the residual, and the

“discrepancy” Yi−M(β̂
T
xi) may not be estimating the error ei. To guarantee

that the residuals are estimating the errors, the following definition is used
when possible.

Definition 15.3: Cox and Snell (1968). Let the errors ei be iid with
pdf f and assume that the regression model Yi = g(xi, η, ei) has a unique
solution for ei :

ei = h(xi, η, Yi).

Then the ith residual
êi = h(xi, η̂, Yi)

where η̂ is a consistent estimator of η.

Example 15.1. Let η = (α, βT )T . If Y = m(α + βT x) + e where m is

known, then e = Y − m(α + βTx). Hence êi = Yi − m(α̂ + β̂
T
xi) which is

the usual definition of the ith residual for such models.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y |x. If a 1D regression model is appropriate, then the
(p − 1)–dimensional vector x can be replaced by the 1–dimensional scalar
βT x with “no loss of information about the conditional distribution.” Cook
and Weisberg (1999a, p. 411) define a sufficient summary plot (SSP) to be a
plot that contains all the sample regression information about the conditional
distribution Y |x of the response given the predictors.
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Definition 15.4: If the 1D regression model holds, then Y x|(a+cβTx)
for any constants a and c �= 0. The quantity a + cβTx is called a sufficient
predictor (SP), and a sufficient summary plot is a plot of any SP versus Y .

An estimated sufficient predictor (ESP) is α̂ + β̂
T
x where β̂ is an estimator

of cβ for some nonzero constant c. A response plot or estimated sufficient
summary plot (ESSP) is a plot of any ESP versus Y .

If there is only one predictor x, then the plot of x versus Y is both a
sufficient summary plot and a response plot, but generally only a response
plot can be made. Since a can be any constant, â = 0 is often used. The
following section shows how to use the OLS regression of Y on x to obtain
an ESP.

15.1 Estimating the Sufficient Predictor

Some notation is needed before giving theoretical results. Let x, a, t, and β
be (p − 1) × 1 vectors where only x is random.

Definition 15.5: Cook and Weisberg (1999a, p. 431). The predic-
tors x satisfy the condition of linearly related predictors with 1D structure
if

E[x|βT x] = a + tβT x. (15.6)

If the predictors x satisfy this condition, then for any given predictor xj,

E[xj|βTx] = aj + tjβ
Tx.

Notice that β is a fixed (p− 1)× 1 vector. If x is elliptically contoured (EC)
with 1st moments, then the assumption of linearly related predictors holds
since

E[x|bTx] = ab + tbb
Tx

for any nonzero (p − 1) × 1 vector b (see Lemma 14.4). The condition of
linearly related predictors is impossible to check since β is unknown, but the
condition is far weaker than the assumption that x is EC. The stronger EC
condition is often used since there are checks for whether this condition is
reasonable, eg use the DD plot. The following proposition gives an equivalent
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definition of linearly related predictors. Both definitions are frequently used
in the dimension reduction literature.

Proposition 15.1. The predictors x are linearly related iff

E[bT x|βTx] = ab + tbβ
Tx (15.7)

for any (p − 1) × 1 constant vector b where ab and tb are constants that
depend on b.

Proof. Suppose that the assumption of linearly related predictors holds.
Then

E[bT x|βT x] = bT E[x|βTx] = bT a + bT tβT x.

Thus the result holds with ab = bT a and tb = bT t.
Now assume that Equation (15.7) holds. Take bi = (0, ..., 0, 1, 0, ..., 0)T ,

the vector of zeroes except for a one in the ith position. Then by Definition
15.5, E[x|βT x] = E[Ip−1x|βTx] =

E[

 bT
1 x
...

bT
p−1x

 | βT x] =

 a1 + t1β
T x

...
ap−1 + tp−1β

Tx

 ≡ a + tβTx.

QED

Following Cook (1998a, p. 143-144), assume that there is an objective
function

Ln(a, b) =
1

n

n∑
i=1

L(a + bT xi, Yi) (15.8)

where L(u, v) is a bivariate function that is a convex function of the first
argument u. Assume that the estimate (â, b̂) of (a, b) satisfies

(â, b̂) = arg min
a,b

Ln(a, b). (15.9)

For example, the ordinary least squares (OLS) estimator uses

L(a + bT x, Y ) = (Y − a − bTx)2.

Maximum likelihood type estimators such as those used to compute GLMs
and Huber’s M–estimator also work, as does the Wilcoxon rank estima-
tor. Assume that the population analog (α∗, β∗) is the unique minimizer of
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E[L(a+bTx, Y )] where the expectation exists and is with respect to the joint
distribution of (Y, xT )T . For example, (α∗, β∗) is unique if L(u, v) is strictly
convex in its first argument. The following result is a useful extension of
Brillinger (1977, 1983).

Theorem 15.2 (Li and Duan 1989, p. 1016): Assume that the x are
linearly related predictors, that (Yi, x

T
i )T are iid observations from some joint

distribution with Cov(xi) nonsingular. Assume L(u, v) is convex in its first
argument and that β∗ is unique. Assume that Y x|βTx. Then β∗ = cβ
for some scalar c.

Proof. See Li and Duan (1989) or Cook (1998a, p. 144).

Remark 15.1. This theorem basically means that if the 1D regression
model is appropriate and if the condition of linearly related predictors holds,
then the (eg OLS) estimator b̂ ≡ β̂

∗ ≈ cβ. Li and Duan (1989, p. 1031)
show that under additional conditions, (â, b̂) is asymptotically normal. In
particular, the OLS estimator frequently has a

√
n convergence rate. If the

OLS estimator (α̂, β̂) satisfies β̂ ≈ cβ when model (15.1) holds, then the
response plot of

α̂ + β̂
T
x versus Y

can be used to visualize the conditional distribution Y |(α + βT x) provided
that c �= 0.

Remark 15.2. If b̂ is a consistent estimator of β∗, then certainly

β∗ = cxβ + ug

where ug = β∗ − cxβ is the bias vector. Moreover, the bias vector ug = 0
if x is elliptically contoured under the assumptions of Theorem 15.2. This
result suggests that the bias vector might be negligible if the distribution of
the predictors is close to being EC. Often if no strong nonlinearities are
present among the predictors, the bias vector is small enough so that

b̂
T
x is a useful ESP.

Remark 15.3. Suppose that the 1D regression model is appropriate and
Y x|βTx. Then Y x|cβT x for any nonzero scalar c. If Y = g(βT x, e)
and both g and β are unknown, then g(βT x, e) = ha,c(a + cβTx, e) where

ha,c(w, e) = g(
w − a

c
, e)
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for c �= 0. In other words, if g is unknown, we can estimate cβ but we can
not determine c or β; ie, we can only estimate β up to a constant.

A very useful result is that if Y = m(x) for some function m, then m
can be visualized with both a plot of x versus Y and a plot of cx versus
Y if c �= 0. In fact, there are only three possibilities, if c > 0 then the two
plots are nearly identical: except the labels of the horizontal axis change.
(The two plots are usually not exactly identical since plotting controls to
“fill space” depend on several factors and will change slightly.) If c < 0,
then the plot appears to be flipped about the vertical axis. If c = 0, then
m(0) is a constant, and the plot is basically a dot plot. Similar results hold
if Yi = g(α + βTxi, ei) if the errors ei are small. OLS often provides a useful
estimator of cβ where c �= 0, but OLS can result in c = 0 if g is symmetric
about the median of α + βTx.

Definition 15.6. If the 1D regression model (15.1) holds, and a specific
estimator such as OLS is used, then the ESP will be called the OLS ESP
and the response plot will be called the OLS response plot.

Example 15.2. Suppose that xi ∼ N3(0, I3) and that

Y = m(βT x) + e = (x1 + 2x2 + 3x3)
3 + e.

Then a 1D regression model holds with β = (1, 2, 3)T . Figure 1.11 shows the
sufficient summary plot of βTx versus Y , and Figure 1.12 shows the sufficient
summary plot of −βTx versus Y . Notice that the functional form m appears
to be cubic in both plots and that both plots can be smoothed by eye or with
a scatterplot smoother such as lowess. The two figures were generated with
the following R/Splus commands.

X <- matrix(rnorm(300),nrow=100,ncol=3)

SP <- X%*%1:3

Y <- (SP)^3 + rnorm(100)

plot(SP,Y)

plot(-SP,Y)

We particularly want to use the OLS estimator (α̂, β̂) to produce an
estimated sufficient summary plot. This estimator is obtained from the usual
multiple linear regression of Yi on xi, but we are not assuming that the
multiple linear regression model holds; however, we are hoping that the 1D
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regression model Y x|βT x is a useful approximation to the data and that
β̂ ≈ cβ for some nonzero constant c. In addition to Theorem 15.2, nice
results exist if the single index model is appropriate. Recall that

Cov(x, Y ) = E[(x− E(x))((Y − E(Y ))T ].

Definition 15.7. Suppose that (Yi, x
T
i )T are iid observations and that

the positive definite (p − 1) × (p − 1) matrix Cov(x) = ΣX and the (p −
1)× 1 vector Cov(x, Y ) = ΣX,Y . Let the OLS estimator (α̂, β̂) be computed

from the multiple linear regression of Y on x plus a constant. Then (α̂, β̂)
estimates the population quantity (αOLS, βOLS) where

αOLS = E(Y ) − βT
OLSE(x) and βOLS = Σ−1

X ΣX,Y. (15.10)

The following notation will be useful for studying the OLS estimator.
Let the sufficient predictor z = βTx and let w = x − E(x). Let r =
w − (ΣXβ)βTw.

Theorem 15.3. In addition to the conditions of Definition 15.7, also
assume that Yi = m(βTxi) + ei where the zero mean constant variance iid
errors ei are independent of the predictors xi. Then

βOLS = Σ−1
X ΣX,Y = cm,Xβ + um,X (15.11)

where the scalar
cm,X = E[βT (x − E(x)) m(βTx)] (15.12)

and the bias vector
um,X = Σ−1

X E[m(βTx)r]. (15.13)

Moreover, um,X = 0 if x is from an EC distribution with nonsingular ΣX,
and cm,X �= 0 unless Cov(x, Y ) = 0. If the multiple linear regression model
holds, then cm,X = 1, and um,X = 0.

The proof of the above result is outlined in Problem 15.2 using an ar-
gument due to Aldrin, Bφlviken, and Schweder (1993). If the 1D regression
model is appropriate, then typically Cov(x, Y ) �= 0 unless βT x follows a
symmetric distribution and m is symmetric about the median of βTx.

Definition 15.8. Let (α̂, β̂) denote the OLS estimate obtained from the
OLS multiple linear regression of Y on x. The OLS view is a response plot

of a + β̂
T
x versus Y . Typically a = 0 or a = α̂.
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Remark 15.4. All of this awkward notation and theory leads to a rather
remarkable result, perhaps first noted by Brillinger (1977, 1983) and called
the 1D Estimation Result by Cook and Weisberg (1999a, p. 432). The result
is that if the 1D regression model is appropriate, then the OLS view will
frequently be a useful estimated sufficient summary plot (ESSP). Hence the

OLS predictor β̂
T
x is a useful estimated sufficient predictor (ESP).

Although the OLS view is frequently a good ESSP if no strong nonlinear-
ities are present in the predictors and if cm,X �= 0 (eg the sufficient summary
plot of βTx versus Y is not approximately symmetric), even better estimated
sufficient summary plots can be obtained by using ellipsoidal trimming. This
topic is discussed in the following section and follows Olive (2002) closely.

15.2 Visualizing 1D Regression

If there are two predictors, even with a distribution that is not EC, Cook
and Weisberg (1999a, ch. 8) demonstrate that a 1D regression can be visual-
ized using a three–dimensional plot with Y on the vertical axes and the two
predictors on the horizontal and out of page axes. Rotate the plot about the
vertical axes. Each combination of the predictors gives a two dimensional
“view.” Search for the view with a smooth mean function that has the small-
est possible variance function and use this view as the estimated sufficient
summary plot.

For higher dimensions, Cook and Nachtsheim (1994) and Cook (1998a, p.
152) demonstrate that the bias um,X can often be made small by ellipsoidal
trimming. To perform ellipsoidal trimming, an estimator (T, C) is computed
where T is a (p − 1) × 1 multivariate location estimator and C is a (p −
1) × (p − 1) symmetric positive definite dispersion estimator. Then the ith
squared Mahalanobis distance is the random variable

D2
i = (xi − T )TC−1(xi − T ) (15.14)

for each vector of observed predictors xi. If the ordered distances D(j) are
unique, then j of the xi are in the hyperellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (15.15)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Thus if j ≈ 0.9n, then about

10% of the cases are trimmed.
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We suggest that the estimator (T, C) should be the classical sample mean
and covariance matrix (x, S) or a robust estimator such as covfch. When
j ≈ n/2, the covfch estimator attempts to make the volume of the hyperel-
lipsoid given by Equation (15.15) small.

Ellipsoidal trimming seems to work for at least three reasons. The trim-
ming divides the data into two groups: the trimmed cases and the remaining
cases (xM , YM ) where M% is the amount of trimming, eg M = 10 for 10%
trimming. If the distribution of the predictors x is EC then the distribution
of xM still retains enough symmetry so that the bias vector is approximately
zero. If the distribution of x is not EC, then the distribution of xM will
often have enough symmetry so that the bias vector is small. In particular,
trimming often removes strong nonlinearities from the predictors and the
weighted predictor distribution is more nearly elliptically symmetric than
the predictor distribution of the entire data set (recall Winsor’s principle:
“all data are roughly Gaussian in the middle”). Secondly, under heavy trim-
ming, the mean function of the remaining cases may be more linear than the
mean function of the entire data set. Thirdly, if |c| is very large, then the bias
vector may be small relative to cβ. Trimming sometimes inflates |c|. From
Theorem 15.3, any of these three reasons should produce a better estimated
sufficient predictor.

Example 15.3. Cook and Weisberg (1999a, p. 351, 433, 447) gave a
data set on 82 mussels sampled off the coast of New Zealand. The variables
are the muscle mass M in grams, the length L and height H of the shell
in mm, the shell width W and the shell mass S. The robust and classical
Mahalanobis distances were calculated, and Figure 15.1 shows a scatterplot
matrix of the mussel data, the RDi’s, and the MDi’s. Notice that many
of the subplots are nonlinear. The cases marked by open circles were given
weight zero by the cov.mcd algorithm, and the linearity of the retained cases
has increased. Note that only one trimming proportion is shown and that
a heavier trimming proportion would increase the linearity of the cases that
were not trimmed.

The two ideas of using ellipsoidal trimming to reduce the bias and choos-
ing a view with a smooth mean function and smallest variance function can
be combined into a graphical method for finding the estimated sufficient sum-
mary plot and the estimated sufficient predictor. Trim the M% of the cases
with the largest Mahalanobis distances, and then compute the OLS estima-
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Figure 15.1: Scatterplot for Mussel Data, o Corresponds to Trimmed Cases
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tor (α̂M , β̂M ) from the cases that remain. Use M = 0, 10, 20, 30, 40, 50, 60,

70, 80, and 90 to generate ten plots of β̂
T

Mx versus Y using all n cases. In
analogy with the Cook and Weisberg procedure for visualizing 1D structure
with two predictors, the plots will be called “trimmed views.” Notice that
M = 0 corresponds to the OLS view.

Definition 15.9. The best trimmed view is the trimmed view with a
smooth mean function and the smallest variance function and is the estimated
sufficient summary plot. If M∗ = E is the percentage of cases trimmed that

corresponds to the best trimmed view, then β̂
T

Ex or α̂E+β̂
T

Ex is the estimated
sufficient predictor.

The following examples illustrate the R/Splus regpack function trviews

that is used to produce the ESSP. If R is used instead of Splus, the command

library(MASS)

needs to be entered to access the function cov.mcd called by trviews. The
robust estimators cov.fch and cov.mbacan also be used. The function
trviews is used in Problem 15.6. The estimator can be used to simultane-
ously detect whether the data is following a multiple linear regression model

or some other single index model. Plot α̂E + β̂
T

Ex versus Y and add the iden-
tity line. If the plotted points follow the identity line then the MLR model is
reasonable, but if the plotted points follow a nonlinear mean function, then
a nonlinear single index model may be reasonable.

Example 15.2 continued. The command

trviews(X, Y)

produced the following output.

Intercept X1 X2 X3

0.6701255 3.133926 4.031048 7.593501

Intercept X1 X2 X3

1.101398 8.873677 12.99655 18.29054

Intercept X1 X2 X3

0.9702788 10.71646 15.40126 23.35055

Intercept X1 X2 X3

0.5937255 13.44889 23.47785 32.74164
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Intercept X1 X2 X3

1.086138 12.60514 25.06613 37.25504

Intercept X1 X2 X3

4.621724 19.54774 34.87627 48.79709

Intercept X1 X2 X3

3.165427 22.85721 36.09381 53.15153

Intercept X1 X2 X3

5.829141 31.63738 56.56191 82.94031

Intercept X1 X2 X3

4.241797 36.24316 70.94507 105.3816

Intercept X1 X2 X3

6.485165 41.67623 87.39663 120.8251

The function generates 10 trimmed views. The first plot trims 90% of the
cases while the last plot does not trim any of the cases and is the OLS view.
To advance a plot, press the right button on the mouse (in R, highlight
stop rather than continue). After all of the trimmed views have been
generated, the output is presented. For example, the 5th line of numbers in

the output corresponds to α̂50 = 1.086138 and β̂
T

50 where 50% trimming was
used. The second line of numbers corresponds to 80% trimming while the

last line corresponds to 0% trimming and gives the OLS estimate (α̂0, β̂
T

0 ) =
(â, b̂). The trimmed views with 50% and 90% trimming were very good.
We decided that the view with 50% trimming was the best. Hence β̂E =
(12.60514, 25.06613, 37.25504)T ≈ 12.5β. The best view is shown in Figure
15.2 and is nearly identical to the sufficient summary plot shown in Figure
1.11. Notice that the OLS estimate = (41.68, 87.40, 120.83)T ≈ 42β. The
OLS view is shown in Figure 1.13, and is again very similar to the sufficient
summary plot, but it is not quite as smooth as the best trimmed view.

The plot of the estimated sufficient predictor versus the sufficient predic-
tor is also informative. Of course this plot can usually only be generated for
simulated data since β is generally unknown. If the plotted points are highly
correlated (with |corr(ESP,SP)| > 0.95) and follow a line through the origin,
then the estimated sufficient summary plot is nearly as good as the sufficient
summary plot. The simulated data used β = (1, 2, 3)T , and the commands

SP <- X %*% 1:3

ESP <- X %*% c(12.60514, 25.06613, 37.25504)

plot(ESP,SP)
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generated the plot shown in Figure 15.3.

Example 15.4. An artificial data set with 200 trivariate vectors xi

was generated. The marginal distributions of xi,j are iid lognormal for
j = 1, 2, and 3. Since the response Yi = sin(βT xi)/β

Txi where β =
(1, 2, 3)T , the random vector xi is not elliptically contoured and the func-

tion m is strongly nonlinear. Figure 15.5 shows the OLS view where β̂
T

0 =
(0.0032, 0.0011, 0.0047)T and Figure 15.4 shows the best trimmed view where

β̂
T

90 = (0.086, 0.182, 0.338)T ≈ 0.1β, roughly. Notice that it is difficult to vi-
sualize the mean function with the OLS view, and notice that the correlation
between Y and the ESP is very low. By focusing on a part of the data where
the correlation is high, it may be possible to improve the estimated sufficient
summary plot. For example, in Figure 15.4, temporarily omit cases that
have ESP less than 0.3 and greater than 0.75. From the untrimmed cases,
obtained the ten trimmed estimates β̂90, ..., β̂0. Then using all of the data,
obtain the ten views. The best view could be used as the ESSP.

Application 15.1. Suppose that a 1D regression analysis is desired on
a data set, use the trimmed views as an exploratory data analysis technique
to visualize the conditional distribution Y |βT x. The best trimmed view is
an estimated sufficient summary plot. If the single index model (15.3) holds,
the function m can be estimated from this plot using parametric models
or scatterplot smoothers such as lowess. Notice that Y can be predicted
visually using up and over lines.

Application 15.2. The best trimmed view can also be used as a diag-
nostic for linearity and monotonicity.

For example in Figure 15.2, if ESP = 0, then Ŷ = 0 and if ESP = 100,
then Ŷ = 500. Figure 15.2 suggests that the mean function is monotone but
not linear, and Figure 15.4 suggests that the mean function is neither linear
nor monotone.

Application 15.3. Assume that a known 1D regression model is as-
sumed for the data. Then the best trimmed view can be used as a diagnostic
for whether the assumed model is appropriate.

The trimmed views are sometimes useful even when the assumption of
linearly related predictors fails. OLS frequently performs well if there are no
strong nonlinearities present in the predictors.

447



ESP

Y

0 1 2 3 4

-0
.2

0.
0

0.
2

0.
4

0.
6

90%

Figure 15.4: OLS View with 90% Trimming

ESP

Y

0.01 0.02 0.03 0.04 0.05

-0
.2

0.
0

0.
2

0.
4

0.
6

0%

Figure 15.5: OLS View with 0% Trimming

448



15.3 Predictor Transformations

As a general rule, inferring about the distribution of Y |X from a lower
dimensional plot should be avoided when there are strong nonlinearities

among the predictors.
Cook and Weisberg (1999b, p. 34)

Even if the multiple linear regression model is valid, a model based on a
subset of the predictor variables depends on the predictor distribution. If the
predictors are linearly related (eg EC), then the submodel mean and vari-
ance functions are generally well behaved, but otherwise the submodel mean
function could be nonlinear and the submodel variance function could be
nonconstant. For 1D regression models, the presence of strong nonlinearities
among the predictors can invalidate inferences. A necessary condition for
x to have an EC distribution (or for no strong nonlinearities to be present
among the predictors) is for each marginal plot of the scatterplot matrix of
the predictors to have a linear or ellipsoidal shape if n is large.

One of the most useful techniques in regression is to remove gross nonlin-
earities in the predictors by using predictor transformations. Power trans-
formations are particularly effective. A multivariate version of the Box–Cox
transformation due to Velilla (1993) can cause the distribution of the trans-
formed predictors to be closer to multivariate normal, and the Cook and
Nachtsheim (1994) procedure can cause the distribution to be closer to ellip-
tical symmetry. Marginal Box-Cox transformations also seem to be effective.
Power transformations can also be selected with slider bars in Arc.

There are several rules for selecting marginal transformations visually.
(Also see discussion in Section 3.1.) First, use theory if available. Suppose
that variable X2 is on the vertical axis and X1 is on the horizontal axis and
that the plot of X1 versus X2 is nonlinear. The unit rule says that if X1 and
X2 have the same units, then try the same transformation for both X1 and
X2.

Power transformations are also useful. Assume that all values of X1 and
X2 are positive. Let λ be the power of the transformation. Then the following
four rules are often used.

The log rule states that positive predictors that have the ratio between
their largest and smallest values greater than ten should be transformed to
logs. See Cook and Weisberg (1999a, p. 87).

Secondly, if it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are
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such that this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. This

relationship frequently occurs if there is a volume present. For example let
X2 be the volume of a sphere and let X1 be the circumference of a sphere.
The plot of log(X1) versus log(X2) will also be linear.

Thirdly, the bulging rule states that changes to the power of X2 and the
power of X1 can be determined by the direction that the bulging side of the
curve points. If the curve is hollow up (the bulge points down), decrease the
power of X2. If the curve is hollow down (the bulge points up), increase the
power of X2 If the curve bulges towards large values of X1 increase the power
of X1. If the curve bulges towards small values of X1 decrease the power of
X1. See Tukey (1977, p. 173–176).

Finally, Cook and Weisberg (1999a, p. 86) give the following rule.
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

For example, in Figure 15.10c, small values of Y and large values of FESP
need spreading, and using log(Y ) would make the plot more linear.

15.4 Variable Selection

A standard problem in 1D regression is variable selection, also called subset or
model selection. Assume that model (15.1) holds, that a constant is always
included, and that x = (x1, ..., xp−1)

T are the p − 1 nontrivial predictors,
which we assume to be of full rank. Then variable selection is a search for
a subset of predictor variables that can be deleted without important loss of
information. This section follows Olive and Hawkins (2005) closely.

Variable selection for the 1D regression model is very similar to variable
selection for the multiple linear regression model (see Section 3.4). To clarify
ideas, assume that there exists a subset S of predictor variables such that
if xS is in the 1D model, then none of the other predictors are needed in
the model. Write E for these (‘extraneous’) variables not in S, partitioning
x = (xT

S , xT
E)T . Then

SP = α + βT x = α + βT
SxS + βT

ExE = α + βT
SxS. (15.16)
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The extraneous terms that can be eliminated given that the subset S is in
the model have zero coefficients.

Now suppose that I is a candidate subset of predictors, that S ⊆ I and
that O is the set of predictors not in I . Then

SP = α + βTx = α + βT
SxS = α + βT

SxS + βT
(I/S)xI/S + 0TxO = α + βT

I xI ,

(if I includes predictors from E, these will have zero coefficient). For any
subset I that contains the subset S of relevant predictors, the correlation

corr(α + βTxi, α + βT
I xI,i) = 1. (15.17)

This observation, which is true regardless of the explanatory power of
the model, suggests that variable selection for 1D regression models is simple
in principle. For each value of j = 1, 2, ..., p − 1 nontrivial predictors, keep
track of subsets I that provide the largest values of corr(ESP,ESP(I)). Any
such subset for which the correlation is high is worth closer investigation
and consideration. To make this advice more specific, use the rule of thumb
that a candidate subset of predictors I is worth considering if the sample
correlation of ESP and ESP(I) satisfies

corr(α̂ + β̂
T
xi, α̂I + β̂

T

I xI,i) = corr(β̂
T
xi, β̂

T

I xI,i) ≥ 0.95. (15.18)

The difficulty with this approach is that fitting all of the possible sub-
models involves substantial computation. An exception to this difficulty is
multiple linear regression where there are efficient “leaps and bounds” algo-
rithms for searching all subsets when OLS is used (see Furnival and Wilson
1974). Since OLS often gives a useful ESP, the following all subsets procedure
can be used for 1D models when p < 20.

• Fit a full model using the methods appropriate to that 1D problem to

find the ESP α̂ + β̂
T
x.

• Find the OLS ESP α̂OLS + β̂
T

OLSx.

• If the 1D ESP and the OLS ESP have “a strong linear relationship”
(for example |corr(ESP, OLS ESP)| ≥ 0.95), then infer that the 1D
problem is one in which OLS may serve as an adequate surrogate for
the correct 1D model fitting procedure.
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• Use computationally fast OLS variable selection procedures such as
forward selection, backward elimination and the leaps and bounds al-
gorithm along with the Mallows (1973) Cp criterion to identify pre-
dictor subsets I containing k variables (including the constant) with
Cp(I) ≤ min(2k, p).

• Perform a final check on the subsets that satisfy the Cp screen by using
them to fit the 1D model.

For a 1D model, the response, ESP and vertical discrepancies V =
Y −ESP are important. When the multiple linear regression (MLR) model
holds, the fitted values are the ESP: Ŷ = ESP , and the vertical discrepancies
are the residuals.

Definition 15.10. a) The plot of α̃I + β̃
T

I xI,i versus α̃ + β̃
T
xi is called

an EE plot (often called an FF plot for MLR).

b) The plot of discrepancies Yi − α̃I − β̃
T

I xI,i versus Yi − α̃ − β̃
T
xi is called

a VV plot (often called an RR plot for MLR).

c) The plots of α̃I + β̃
T

I xI,i versus Yi and of α̃ + β̃
T
xi versus Yi are called

estimated sufficient summary plots or response plots.

Many numerical methods such as forward selection, backward elimination,
stepwise and all subset methods using the Cp criterion (Jones 1946, Mallows
1973), have been suggested for variable selection. The four plots in Definition
15.10 contain valuable information to supplement the raw numerical results
of these selection methods. Particular uses include:

• The key to understanding which plots are the most useful is the obser-
vation that a wz plot is used to visualize the conditional distribution
of z given w. Since a 1D regression is the study of the conditional
distribution of Y given α + βTx, the response plot is used to visual-
ize this conditional distribution and should always be made. A major
problem with variable selection is that deleting important predictors
can change the functional form m of the model. In particular, if a mul-
tiple linear regression model is appropriate for the full model, linearity
may be destroyed if important predictors are deleted. When the single
index model (15.3) holds, m can be visualized with a response plot.
Adding visual aids such as the estimated parametric mean function
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m(α̂ + β̂
T
x) can be useful. If an estimated nonparametric mean func-

tion m̂(α̂ + β̂
T
x) such as lowess follows the parametric curve closely,

then often numerical goodness of fit tests will suggest that the model is
good. See Chambers, Cleveland, Kleiner, and Tukey (1983, p. 280) and
Cook and Weisberg (1999a, p. 425, 432). For variable selection, the
response plots from the full model and submodel should be very similar
if the submodel is good.

• Sometimes outliers will influence numerical methods for variable selec-
tion. Outliers tend to stand out in at least one of the plots. An EE plot
is useful for variable selection because the correlation of ESP(I) and
ESP is important. The EE plot can be used to quickly check that the
correlation is high, that the plotted points fall about some line, that
the line is the identity line, and that the correlation is high because the
relationship is linear, rather than because of outliers.

• Numerical methods may include too many predictors. Investigators can
examine the p–values for individual predictors, but the assumptions
needed to obtain valid p–values are often violated; however, the OLS t
tests for individual predictors are meaningful since deleting a predictor
changes the Cp value by t2 − 2 where t is the test statistic for the
predictor. See Section 15.5, Daniel and Wood (1980, p. 100-101) and
the following two remarks.

Remark 15.5. Variable selection with the Cp criterion is closely related
to the partial F test that uses test statistic FI. Suppose that the full model
contains p predictors including a constant and the submodel I includes k pre-
dictors including a constant. If n ≥ 10p, then the submodel I is “interesting”
if Cp(I) ≤ min(2k, p).

To see this claim notice that the following results are properties of OLS
and hold even if the data does not follow a 1D model. If the candidate model
of xI has k terms (including the constant), then

FI =
SSE(I)− SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k

[
SSE(I)

SSE
− 1

]
where SSE is the “residual” sum of squares from the full model and SSE(I)
is the “residual” sum of squares from the candidate submodel. Then

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k (15.19)
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where MSE is the “residual” mean square for the full model. Let ESP(I) =

α̂I + β̂
T

I xI be the ESP for the submodel and let VI = Y − ESP (I) so that

VI,i = Yi − α̂I + β̂
T

I xI,i. Let ESP and V denote the corresponding quantities
for the full model. Using Proposition 3.2 and Remark 3.2 with corr(r, rI)
replaced by corr(V, VI), it can be shown that

corr(V, VI ) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

It can also be shown that Cp(I) ≤ 2k corresponds to corr(V, VI) ≥ dn where

dn =

√
1 − p

n
.

Notice that for a fixed value of k, the submodel Ik that minimizes Cp(I) also
maximizes corr(V, VI ). If Cp(I) ≤ 2k and n ≥ 10p, then 0.948 ≤ corr(V, VI),
and both corr(V, VI) → 1.0 and corr(OLS ESP, OLS ESP(I)) → 1.0 as
n → ∞. Hence the plotted points in both the VV plot and the EE plot will
cluster about the identity line (see Proposition 3.2).

Remark 15.6. Suppose that the OLS ESP and the standard ESP are
highly correlated: |corr(ESP, OLS ESP)| ≥ 0.95. Then often OLS variable
selection can be used for the 1D data, and using the p–values from OLS
output seems to be a useful benchmark. To see this, suppose that n > 5p
and first consider the model Ii that deletes the predictor Xi. Then model Ii

has k = p − 1 predictors including the constant, and the test statistic is ti

where
t2i = FIi.

Using (15.19) and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor Xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p − k
.
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Now k is the number of terms in the model including a constant while p− k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (ie, say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the change in SS F test will tend to suggest that there is a model
I that is about as good as the full model even though model I deletes p − k
predictors.

The Cp(I) ≤ k screen tends to overfit. We simulated multiple linear
regression and single index model data sets with p = 8 and n = 50, 100, 1000
and 10000. The true model S satisfied Cp(S) ≤ k for about 60% of the
simulated data sets, but S satisfied Cp(S) ≤ 2k for about 97% of the data
sets.

In many settings, not all of which meet the Li–Duan sufficient conditions,
the full model OLS ESP is a good estimator of the sufficient predictor. If
the fitted full 1D model Y x|(α + βT x) is a useful approximation to the
data and if β̂OLS is a good estimator of cβ where c �= 0, then a subset I
will produce a response plot similar to the response plot of the full model
if corr(OLS ESP, OLS ESP(I)) ≥ 0.95. Hence the response plots based on
the full and submodel ESP can both be used to visualize the conditional
distribution of Y .

Assuming that a 1D model holds, a common assumption made for variable
selection is that the fitted full model ESP is a good estimator of the sufficient
predictor, and the usual numerical and graphical checks on this assumption
should be made. To see that this assumption is weaker than the assumption
that the OLS ESP is good, notice that if a 1D model holds but β̂OLS estimates
cβ where c = 0, then the Cp(I) criterion could wrongly suggest that all
subsets I have Cp(I) ≤ 2k. Hence we also need to check that c �= 0.

There are several methods are for checking the OLS ESP, including: a) if
an ESP from an alternative fitting method is believed to be useful, check that
the ESP and the OLS ESP have a strong linear relationship: for example
that |corr(ESP, OLS ESP)| ≥ 0.95. b) Often examining the OLS response
plot shows that a 1D model is reasonable. For example, if the data are tightly
clustered about a smooth curve, then a single index model may be appro-
priate. c) Verify that a 1D model is appropriate using graphical techniques
given by Cook and Weisberg (1999a, p. 434-441). d) Verify that x has an
EC distribution with nonsingular covariance matrix and that the mean func-
tion m(α + βT x) is not symmetric about the median of the distribution of
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α + βTx. Then results from Li and Duan (1989) suggest that c �= 0.
Condition a) is both the most useful (being a direct performance check)

and the easiest to check. A standard fitting method should be used when
available (eg, for parametric 1D models such as GLMs). Conditions c) and
d) need x to have a continuous multivariate distribution while the predictors
can be factors for a) and b). Using trimmed views results in an ESP that
can sometimes cause condition b) to hold when d) is violated.

To summarize, variable selection procedures, originally meant for MLR,
can often be used for 1D data. If the fitted full 1D model Y x|(α + βTx)
is a useful approximation to the data and if β̂OLS is a good estimator of cβ
where c �= 0, then a subset I is good if corr(OLS ESP, OLS ESP(I)) ≥ 0.95.
If n is large enough, Remark 15.5 implies that this condition will hold if
Cp(I) ≤ 2k or if FI ≤ 1. This result suggests that within the (large) subclass
of 1D models where the OLS ESP is useful, the OLS partial F test is robust
(asymptotically) to model misspecifications in that FI ≤ 1 correctly suggests
that submodel I is good. The OLS t tests for individual predictors are also
meaningful since if |t| <

√
2 then the predictor can probably be deleted since

Cp decreases while if |t| ≥ 2 then the predictor is probably useful even when
the other predictors are in the model. Section 15.5 provides related theory,
and the following examples help illustrate the above discussion.

Example 15.5. This example illustrates that the plots are useful for
general 1D regression models such as the response transformation model.
Cook and Weisberg (1999a, p. 351, 433, 447, 463) describe a data set on 82
mussels. The response Y is the muscle mass in grams, and the four predictors
are the logarithms of the shell length, width, height and mass. The logarithm
transformation was used to remove strong nonlinearities that were evident
in a scatterplot matrix of the untransformed predictors. The Cp criterion
suggests using log(width) and log(shell mass) as predictors. The EE and VV
plots are shown in Figure 15.6ab. The response plots based on the full and
submodel are shown in Figure 15.6cd and are nearly identical, but not linear.

When log(muscle mass) is used as the response, the Cp criterion suggests
using log(height) and log(shell mass) as predictors (the correlation between
log(height) and log(width) is very high). Figure 15.7a shows the RR plot
and 2 outliers are evident. These outliers correspond to the two outliers in
the response plot shown in Figure 15.7b. After deleting the outliers, the Cp

criterion still suggested using log(height) and log(shell mass) as predictors.
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Figure 15.6: Mussel Data with Muscle Mass as the Response
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Figure 15.7: Mussel Data with log(Muscle Mass) as the Response
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Figure 15.8: Response and Residual Plots for Boston Housing Data

The p–value for including log(height) in the model was 0.03, and making the
FF and RR plots after deleting log(height) suggests that log(height) may not
be needed in the model.

Example 15.6 According to Li (1997), the predictors in the Boston
housing data of Harrison and Rubinfeld (1978) have a nonlinear quasi–helix
relationship which can cause regression graphics methods to fail. Neverthe-
less, the graphical diagnostics can be used to gain interesting information
from the data. The response Y = log(CRIM) where CRIM is the per capita
crime rate by town. The predictors used were x1 = proportion of residential
land zoned for lots over 25,000 sq.ft., log(x2) where x2 is the proportion of
non-retail business acres per town, x3 = Charles River dummy variable (= 1
if tract bounds river; 0 otherwise), x4 = NOX = nitric oxides concentration
(parts per 10 million), x5 = average number of rooms per dwelling, x6 =
proportion of owner-occupied units built prior to 1940, log(x7) where x7 =
weighted distances to five Boston employment centers, x8 = RAD = index
of accessibility to radial highways, log(x9) where x9 = full-value property-tax
rate per $10,000, x10 = pupil-teacher ratio by town, x11 = 1000(Bk − 0.63)2

where Bk is the proportion of blacks by town, log(x12) where x12 = % lower

458



SFIT2

Y

-3 -2 -1 0 1 2 3

-4
-2

0
2

4

a) Response Plot with X4 and X8

NOX

R
A

D

0.4 0.5 0.6 0.7 0.8

5
10

15
20

b) Outliers in Predictors

Figure 15.9: Relationships between NOX, RAD and Y = log(CRIM)

status of the population, and log(x13) where x13 = median value of owner-
occupied homes in $1000’s. The full model has 506 cases and 13 nontrivial
predictor variables.

Figure 15.8ab shows the response plot and residual plot for the full model.
The residual plot suggests that there may be three or four groups of data,
but a linear model does seem plausible. Backward elimination with Cp

suggested the “min Cp submodel” with the variables x1, log(x2), NOX, x6,
log(x7), RAD, x10, x11 and log(x13). The full model had R2 = 0.878 and σ̂ =
0.7642. The Cp submodel had Cp(I) = 6.576, R2

I = 0.878, and σ̂I = 0.762.
Deleting log(x7) resulted in a model with Cp = 8.483 and the smallest coeffi-
cient p–value was 0.0095. The FF and RR plots for this model (not shown)
looked like the identity line. Examining further submodels showed that NOX
and RAD were the most important predictors. In particular, the OLS coeffi-
cients of x1, x6 and x11 were orders of magnitude smaller than those of NOX
and RAD. The submodel including a constant, NOX, RAD and log(x2) had
R2 = 0.860, σ̂ = 0.811 and Cp = 67.368. Figure 15.8cd shows the response
plot and residual plot for this submodel.

Although this submodel has nearly the same R2 as the full model, the
residuals show more variability than those of the full model. Nevertheless,

459



SUBV

F
U

LL
V

0 20 40 60

0
20

40
60

a) VV Plot

SESP

F
E

S
P

0 5 10 15

0
5

10
15

b) EE Plot

FESP

Y

0 5 10 15

0
20

40
60

80

c) Full Model EY Plot

SESP

Y

0 5 10 15

0
20

40
60

80

d) Submodel EY Plot

Figure 15.10: Boston Housing Data: Nonlinear 1D Regression Model

we can examine the effect of NOX and RAD on the response by deleting
log(x2). This submodel had R2 = 0.842, σ̂ = 0.861 and Cp = 138.727. Figure
15.9a shows that the response plot for this model is no longer linear. The
residual plot (not shown) also displays curvature. Figure 15.9a shows that
there are two groups, one with high Y and one with low Y . There are
three clusters of points in the plot of NOX versus RAD shown in Figure
15.9b (the single isolated point in the southeast corner of the plot actually
corresponds to several cases). The two clusters of high NOX and high RAD
points correspond to the cases with high per capita crime rate.

The tiny filled in triangles if Figure 15.9a represent the fitted values for
a quadratic. We added NOX2, RAD2 and NOX ∗ RAD to the full model
and again tried variable selection. Although the full quadratic in NOX and
RAD had a linear response plot, the submodel with NOX, RAD and log(x2)
was very similar. For this data set, NOX and RAD seem to be the most
important predictors, but other predictors are needed to make the model
linear and to reduce residual variation.

Example 15.7. In the Boston housing data, now let Y = CRIM. Since
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log(Y ) has a linear relationship with the predictors, Y should follow a nonlin-
ear 1D regression model. Consider the full model with predictors log(x2), x3,
x4, x5, log(x7), x8, log(x9) and log(x12). Regardless of whether Y or log(Y )
is used as the response, the minimum Cp model from backward elimination
used a constant, log(x2), x4, log(x7), x8 and log(x12) as predictors. If Y is the
response, then the model is nonlinear and Cp = 5.699. Remark 15.5 suggests
that if Cp ≤ 2k, then the points in the VV plot should tightly cluster about
the identity line even if a multiple linear regression model fails to hold. Fig-
ure 15.10 shows the VV and EE plots for the minimum Cp submodel. The
response (EY) plots for the full model and submodel are also shown. Note
that the clustering in the VV plot is indeed higher than the clustering in the
EE plot. Note that the response plots are highly nonlinear but are nearly
identical.

15.5 Inference

This section follows Chang and Olive (2010) closely. Inference can be per-
formed for trimmed views if M is chosen without using the response, eg if
the trimming is done with a DD plot, and the dimension reduction (DR)
method such as OLS is performed on the data (YMi, xMi) that remains after
trimming M% of the cases with ellipsoidal trimming based on the MBA or
FCH estimator.

First we review some theoretical results for OLS as a DR method and
give the main theoretical result for OLS. Let

Cov(x) = E[(x− E(x))(x − E(x))T] = Σx

and Cov(x, Y ) = E[(x− E(x))(Y − E(Y ))] = ΣxY . Let the OLS estimator
be (α̂OLS, β̂OLS). Then the population coefficients from an OLS regression of
Y on x are

αOLS = E(Y ) − βT
OLSE(x) and βOLS = Σ−1

x ΣxY. (15.20)

Let the data be (Yi, xi) for i = 1, ..., n. Let the p×1 vector η = (α, βT )T ,
let X be the n × p OLS design matrix with ith row (1, xT

i ), and let Y =
(Y1, ..., Yn)

T . Then the OLS estimator η̂ = (XT X)−1XTY . The sample co-
variance of x is

Σ̂x =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T where the sample mean x =
1

n

n∑
i=1

xi.
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Similarly, define the sample covariance of x and Y to be

Σ̂xY =
1

n

n∑
i=1

(xi − x)(Yi − Y ) =
1

n

n∑
i=1

xiYi − x Y .

The first result shows that η̂ is a consistent estimator of η.
i) Suppose that (Yi, x

T
i )T are iid random vectors such that Σ−1

x and ΣxY

exist. Then
α̂OLS = Y − β̂

T

OLSx
D→ αOLS

and
β̂OLS =

n

n − 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞.

The following OLS results need some notation. Many 1D regression mod-
els have an error e with

σ2 = Var(e) = E(e2). (15.21)

Let ê be the error residual for e. Let the population OLS residual

v = Y − αOLS − βT
OLSx (15.22)

with
τ 2 = E[(Y − αOLS − βT

OLSx)2] = E(v2), (15.23)

and let the OLS residual be

r = Y − α̂OLS − β̂
T

OLSx. (15.24)

Typically the OLS residual r is not estimating the error e and τ 2 �= σ2, but
the following results show that the OLS residual is of great interest for 1D
regression models.

Assume that a 1D model holds, Y x|(α + βT x), which is equivalent to
Y x|βTx. Then under regularity conditions, results ii) – iv) below hold.

ii) Li and Duan (1989): βOLS = cβ for some constant c.
iii) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂OLS − cβ)

D→ Np−1(0, COLS) (15.25)

where

COLS = Σ−1
x E[(Y − αOLS − βT

OLSx)2(x −E(x))(x− E(x))T ]Σ−1
x . (15.26)

462



iv) Chen and Li (1998): Let A be a known full rank constant k × (p− 1)
matrix. If the null hypothesis Ho: Aβ = 0 is true, then

√
n(Aβ̂OLS − cAβ) =

√
nAβ̂OLS

D→ Nk(0, ACOLSAT )

and
ACOLSAT = τ 2AΣ−1

x AT . (15.27)

Notice that COLS = τ 2Σ−1
x if v = Y − αOLS − βT

OLSx x or if the MLR
model holds. If the MLR model holds, τ 2 = σ2.

To create test statistics, the estimator

τ̂ 2 = MSE =
1

n − p

n∑
i=1

r2
i =

1

n − p

n∑
i=1

(Yi − α̂OLS − β̂
T

OLSxi)
2

will be useful. The estimator ĈOLS =

Σ̂
−1

x

[
1

n

n∑
i=1

[(Yi − α̂OLS − β̂
T

OLSxi)
2(xi − x)(xi − x)T ]

]
Σ̂

−1

x (15.28)

can also be useful. Notice that for general 1D regression models, the OLS
MSE estimates τ 2 rather than the error variance σ2.

v) Result iv) suggests that a test statistic for Ho : Aβ = 0 is

WOLS = nβ̂
T

OLSAT [AΣ̂
−1

x AT ]−1Aβ̂OLS/τ̂ 2 D→ χ2
k, (15.29)

the chi–square distribution with k degrees of freedom.

Before presenting the main theoretical result, some results from OLS
MLR theory are needed. Let the p× 1 vector η = (α, βT )T , the known k × p
constant matrix Ã = [a A] where a is a k × 1 vector, and let c be a known
k × 1 constant vector. Following Seber and Lee (2003, p. 99–106), the usual
F statistic for testing Ho : Ãη = c is

F0 =
(SSE(Ho) − SSE)/k

SSE/(n − p)
= (15.30)

(Ãη̂ − c)T [Ã(XTX)−1Ã
T
]−1(Ãη̂ − c)/(kτ̂ 2)
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where MSE = τ̂ 2 = SSE/(n − p), SSE =
∑n

i=1 r2
i and

SSE(Ho) =

n∑
i=1

r2
i (Ho)

is the minimum sum of squared residuals subject to the constraint Ãη = c.
Recall that if Ho is true, the MLR model holds and the errors ei are iid
N(0, σ2), then Fo ∼ Fk,n−p, the F distribution with k and n − p degrees of
freedom. Also recall that if Zn ∼ Fk,n−p, then

Zn
D→ χ2

k/k (15.31)

as n → ∞.
The main theoretical result of this section is Theorem 15.4 below. This

theorem and (15.31) suggest that OLS output, originally meant for testing
with the MLR model, can also be used for testing with many 1D regression
data sets. Without loss of generality, let the 1D model Y x|(α + βTx) be
written as

Y x|(α + βT
RxR + βT

OxO)

where the reduced model is Y x|(αR + βT
RxR) and xO denotes the terms

outside of the reduced model. Notice that OLS ANOVA F test corresponds
to Ho: β = 0 and uses A = Ip−1. The tests for Ho: βi = 0 use A =
(0, ..., 0, 1, 0, ..., 0) where the 1 is in the ith position and are equivalent to the
OLS t tests. The test Ho: βO = 0 uses A = [0 I j] if βO is a j×1 vector, and
the test statistic (15.30) can be computed by running OLS on the full model
to obtain SSE and on the reduced model to obtain SSE(R) ≡ SSE(Ho).

In the theorem below, it is crucial that Ho: Aβ = 0. Tests for Ho:
Aβ = 1, say, may not be valid even if the sample size n is large. Also,
confidence intervals corresponding to the t tests are for cβi, and are usually
not very useful when c is unknown.

Theorem 15.4. Assume that a 1D regression model (15.1) holds and
that Equation (15.29) holds when Ho : Aβ = 0 is true. Then the test
statistic (15.30) satisfies

F0 =
n − 1

kn
WOLS

D→ χ2
k/k

as n → ∞.
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Proof. Notice that by (15.29), the result follows if F0 = (n−1)WOLS/(kn).
Let Ã = [0 A] so that Ho:Ãη = 0 is equivalent to Ho:Aβ = 0. Following
Seber and Lee (2003, p. 106),

(XTX)−1 =

(
1
n

+ xTD−1x −xTD−1

−D−1x D−1

)
(15.32)

where the (p − 1) × (p − 1) matrix

D−1 = [(n − 1)Σ̂x]−1 = Σ̂
−1

x /(n − 1). (15.33)

Using Ã and (15.32) in (15.30) shows that F0 =

(Aβ̂OLS)T

[
[0 A]

(
1
n

+ xTD−1x −xT D−1

−D−1x D−1

) (
0T

AT

)]−1

Aβ̂OLS/(kτ̂ 2),

and the result follows from (15.33) after algebra. QED

Ellipsoidal trimming can be used to create outlier resistant 1D methods
that can give useful results when the assumption of linearly related predictors
(15.6) is violated. To perform ellipsoidal trimming, a robust estimator of
multivariate location and dispersion (T, C) is computed and used to create
the Mahalanobis distances Di(T, C). The ith case (Yi, xi) is trimmed if
Di > D(j). For example, if j ≈ 0.9n, then about M% = 10% of the cases are
trimmed, and OLS can be computed from the cases that remain.

For theory and outlier resistance, the choice of (T, C) and M are im-
portant. The MBA estimator (TMBA, CMBA) will be used for (T, C) (al-
though the FCH estimator may be a better choice because of its combination
of speed, robustness and theory). The classical Mahalanobis distance uses
(T, C) = (x, Σ̂x). Denote the robust distances by RDi and the classical dis-
tances by MDi. Then the DD plot of the MDi versus the RDi can be used
to choose M . The plotted points in the DD plot will follow the identity line
with zero intercept and unit slope if the predictor distribution is multivariate
normal (MVN), and will follow a line with zero intercept but non–unit slope
if the distribution is elliptically contoured with nonsingular covariance ma-
trix but not MVN. Delete M% of the cases with the largest MBA distances
so that the remaining cases follow the identity line (or some line through the
origin) closely. Let (YMi, xMi) denote the data that was not trimmed where
i = 1, ..., nM . Then apply OLS on these nM cases.
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As long as M is chosen only using the predictors, OLS theory will apply
if the data (YM , xM) satisfies the regularity conditions. For example, if the
MLR model is valid and the errors are iid N(0, σ2), then the OLS estimator

η̂M = (XT
MXM )−1XT

MY M ∼ Np(η, σ2(XT
MXM)−1).

More generally, let φM = limn→∞ n/nM , let cM be a constant and let β̂M

denote the OLS estimator applied to (YMi, xMi) with

√
n(β̂M − cMβ) =

√
n√

nM

√
nM (β̂M − cMβ)

D→ Np−1(0, φMCM ). (15.34)

If Ho : Aβ = 0 is true and ĈM is a consistent estimator of CM , then

WM = nM β̂
T

MAT [AĈMAT ]−1Aβ̂M/τ̂ 2
M

D→ χ2
k.

Notice that M = 0 corresponds to the full data set and n0 = n.

A tradeoff is that low amounts of trimming may not work while large
amounts of trimming may be inefficient if low amounts of trimming work
since n/nM ≥ 1 and the diagonal elements of CM typically become larger
with M .

Trimmed views can also be used to select M ≡ MTV . If the MLR model
holds and OLS is used, then the resulting trimmed views estimator β̂M,TV is√

n consistent, but need not be asymptotically normal.
Adaptive trimming can be used to obtain an asymptotically normal esti-

mator that may avoid large efficiency losses. First, choose an initial amount
of trimming MI by using, eg, MI = 50 or the DD plot. Let β̂ denote

the first direction of the DR method. Next compute |corr(β̂T

Mx, β̂
T

MI
x)| for

M = 0, 10, ..., 90 and find the smallest value MA ≤ MI such that the absolute
correlation is greater than 0.95. If no such value exists, then use MA = MI .
The resulting adaptive trimming estimator is asymptotically equivalent to
the estimator that uses 0% trimming if β̂0 is a consistent estimator of c0β
and if β̂MI

is a consistent estimator of cMI
β.

The following example and Tables 15.1 and 15.2 show that ellipsoidal
trimming can be useful for 1D regression when x is not EC. There is a myth
that transforming predictors is free, but using a log transformation for the
example below will destroy the 1D structure.
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Figure 15.11: Trimmed Views

Example 15.8. An artificial data set was generated with Y = (α +
βT x)3 + e where n = 100, α = 0, β = (1, 2, 3)T , e ∼ N(0, 1) and xi ∼
lognormal(0, 1) for i = 1, 2, 3 where the xi are iid. Figure 15.11 shows the
trimmed views for M = 0, 10, 30 and 90. Table 15.1 shows the values of β̂M .
Notice that the 30% and 90% trimmed views capture the cubic function
much better then the OLS = 0% trimmed view. Notice that β̂30 ≈ 205β and
β̂90 ≈ 86β.

Table 15.1: Trimming with Non-EC Predictors, β = c(1, 2, 3)T

M β̂1 β̂2 β̂3

0 346.034 3394.260 9000.226
10 292.575 731.751 1616.625
30 191.516 421.577 616.201
90 86.024 160.877 258.987
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Table 15.2: Trimming with Outlier Percentage = γ, β = c(1, 0, 0, 0)T

γ M β̂1 β̂2 β̂3 β̂4

0 0 5.974 .0083 −.0221 .0008
0 50 4.098 .0166 .0017 −.0016
49 0 2.269 −.7509 −.7390 −.7625
49 50 5.647 .0305 .0011 .0053

In a small simulation, the clean data Y = (α + βT x)3 + e where n =
1000, α = 1, β = (1, 0, 0, 0)T , e ∼ N(0, 1) and x ∼ N4(0, I4). The outlier
percentage γ was either 0% or 49%. The 2 clusters of outliers were about
the same size with Y ∼ N(0, 1) and x ∼ N4(±10(1, 1, 1, 1)T , I4). Table 15.2
records the averages of β̂i over 100 runs where OLS used M = 0 or M = 50%
trimming. When outliers were present, the average of β̂50 ≈ c(1, 0, 0, 0)T .

The following simulation study is extracted from Chang (2006) who used
eight types of predictor distributions: d1) x ∼ Np−1(0, Ip−1), d2) x ∼
0.6Np−1(0, Ip−1) + 0.4Np−1(0, 25Ip−1), d3) x ∼ 0.4Np−1(0, Ip−1) +
0.6Np−1(0, 25Ip−1), d4) x ∼ 0.9Np−1(0, Ip−1) + 0.1Np−1(0, 25Ip−1), d5) x ∼
LN(0, I) where the marginals are iid lognormal(0,1), d6) x ∼ MV Tp−1(3),
d7) x ∼ MV Tp−1(5) and d8) x ∼ MV Tp−1(19). Here x has a multivariate t

distribution xi ∼ MV Tp−1(ν) if xi = zi/
√

Wi/ν where zi ∼ Np−1(0, Ip−1)
is independent of the chi–square random variable Wi ∼ χ2

ν . Of the eight
distributions, only d5) is not elliptically contoured. The MVT distribution
gets closer to the MVN distribution d1) as ν → ∞. The MVT distribution
has first moments for ν ≥ 3 and second moments for ν ≥ 5. See Johnson and
Kotz (1972, pp. 134-135). All simulations used 1000 runs.

The simulations for single index models used α = 1. Let the sufficient
predictor SP = α + βTx. Then the seven models considered were m1) Y =
SP + e, m2) Y = (SP )2 + e, m3) Y = exp(SP ) + e, m4) Y = (SP )3 + e,
m5) Y = sin(SP )/SP + 0.01e, m6) Y = SP + sin(SP ) + 0.1e and m7)
Y =

√|SP | + 0.1e where e ∼ N(0, 1). Models m2), m3) and m4) can result
in large |Y | values which can cause numerical difficulties for OLS if x is heavy
tailed.

For single index models with EC x, OLS can fail if m is symmetric about
the median θ of the distribution of SP = α + βTx. If m is symmetric
about a, then OLS may become effective as |θ − a| gets large. This fact is
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often overlooked in the literature and is demonstrated by models m7), m5)
and m2) where Y = (SP )2 + e with θ = α = 1. OLS has trouble with
Y = (SP −a)2+e as a gets close to θ = 1 for the EC distributions. The type
of symmetry where OLS fails is easily simulated, but may not occur often in
practice.

First, coefficient estimation was examined with β = (1, 1, 1, 1)T , and for
OLS the sample standard deviation (SD) of each entry β̂Mi,j of β̂M,j was
computed for i = 1, 2, 3, 4 with j = 1, ..., 1000. For each of the 1000 runs, the
formula

SEcl(β̂Mi) =

√
n−1

M (ĈM )ii

was computed where

ĈM = Σ̂
−1

xM

[
1

nM

nM∑
i=1

[(YMi − α̂M − β̂
T

MxMi)
2(xMi − xM )(xMi − xM)T ]

]
Σ̂

−1

xM

is the estimate (15.28) applied to (YM , xM ). The average of β̂M and of√
nSEcl were recorded as well as

√
nSD of β̂Mi,j under the labels βM ,√

n SEcl and
√

nSD. Under regularity,

√
n SEcl ≈

√
nSD ≈

√
1

1 − M
100

diag(CM)

where CM is (15.26) applied to (YM , xM).

For MVN x, MLR and 0% trimming, all three recorded quantities were
near (1,1,1,1) for n = 60, 500, and 1000. For 90% trimming and n = 1000, the
results were β90 = (1.00, 1.00, 1.01, 0.99),

√
n SEcl = (7.56, 7.61, 7.60, 7.54)

and
√

nSD = (7.81, 8.02, 7.76, 7.59), suggesting that β̂90 is asymptotically
normal but inefficient.

For other distributions, results for 0 and 10% trimming were recorded as
well as a “good” trimming value MB. Results are “good” if all of the entries
of both βMB

and
√

n SEcl were approximately equal, and if the theoretical√
n SEcl was close to the simulated

√
nSD. The results were good for MVN x

and all seven models, and the results were similar for n = 500 and n = 1000.
The results were good for models m1 and m5 for all eight distributions. Model
m6 was good for 0% trimming except for distribution d5 and model m7 was
good for 0% trimming except for distributions d5, d6 and d7. Trimming
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Table 15.3: OLS Coefficient Estimation with Trimming

m x M βM

√
nSEcl

√
nSD

m2 d1 0 2.00,2.01,2.00,2.00 7.81,7.79,7.76,7.80 7.87,8.00,8.02,7.88
m5 d4 0 −.03,−.03,−.03,−.03 .30,.30,.30,.30 .31,.32,.33,.31
m6 d5 0 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.40
m7 d6 10 .11,.11,.11,.11 .58,.57,.57,.57 .60,.58,.62,.61

usually helped for models m2, m3 and m4 for distributions d5 – d8. For
n = 500, Table 15.3 shows that β̂M estimates cMβ and the average of the
Chen and Li (1998) SE is often close to the simulated SD.

Next testing was considered. Let FM denote the OLS statistic (15.30)
applied to the nM cases (YM , xM) that remained after trimming. Ho was
rejected for OLS if FM > Fk,nM−p(0.95). Let p̂ be the proportion of runs
where H0 was rejected. Since 1000 runs were used, the count 1000p̂ ∼ bi-
nomial(1000, 1 − δn) where 1 − δn converges to the true large sample level
1 − δ. The standard error for the proportion is

√
p̂(1 − p̂)/1000 ≈ 0.0069

for p = 0.05. An observed coverage p̂ ∈ (0.03, 0.07) suggests that there is no
reason to doubt that the true level is 0.05.

Suppose a 1D model holds but Y x. Then the Yi are iid and the model
reduces to Y = E(Y )+ e = cα + e where e = Y −E(Y ). As a special case, if
Y = m(α+βT x)+e and if Y x, then Y = m(α)+e. For the corresponding
test H0 : β = 0 versus H1 : β �= 0, the OLS F statistic (15.30) is invariant
with respect to a constant. This test is interesting since if Ho holds, then the
results do not depend on the 1D model (15.1), but only on the distribution
of x and the distribution of e. Since βOLS = cβ, power can be good if
c �= 0. The OLS test is equivalent to the ANOVA F test from MLR of Y on
x. Under H0, the test should perform well provided that the design matrix
is nonsingular and the error distribution and sample size are such that the
central limit theorem holds. For the simulated data with β = 0, the model
is linear and normal, and the exact OLS level is 0.05 for n > p. Table 15.4
illustrates this claim for n = 100 and n = 500.

Next the test Ho : β2 = 0 was considered. The OLS test is equivalent
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Table 15.4: Rejection Proportions for H0: β = 0

x n F n F
d1 100 0.041 500 0.050
d2 100 0.050 500 0.045
d3 100 0.047 500 0.050
d4 100 0.045 500 0.048
d5 100 0.055 500 0.061
d6 100 0.042 500 0.036
d7 100 0.054 500 0.047
d8 100 0.044 500 0.060

Table 15.5: Rejection Proportions for Ho: β2 = 0

m x 70 60 50 40 30 20 10 0 ADAP
1 1 .061 .056 .062 .051 .046 .050 .044 .043 .043
5 1 .019 .023 .019 .019 .020 .022 .027 .037 .029
2 2 .023 .024 .026 .070 .183 .182 .142 .166 .040
4 3 .027 .058 .096 .081 .071 .057 .062 .123 .120
6 4 .026 .024 .030 .032 .028 .044 .051 .088 .088
7 5 .058 .058 .053 .054 .046 .044 .051 .037 .037
3 6 .021 .024 .019 .025 .025 .034 .080 .374 .036
6 7 .027 .032 .023 .041 .047 .053 .052 .055 .055
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to the t test from MLR of Y on x. The true model used α = 1 and β =

(1, 0, 1, 1)T . To simulate adaptive trimming, |corr(β̂T

Mx, βTx)| was computed
for M = 0, 10, ..., 90 and the initial trimming proportion MI maximized this
correlation. This process should be similar to choosing the best trimmed view
by examining 10 plots. The rejection proportions were recorded for M =
0, ..., 90 and for adaptive trimming. The seven models, eight distributions
and sample sizes n = 60, 150, and 500 were used.

The test that used adaptive trimming had proportions ≤ 0.072 except for
model m4 with distributions d2, d3, d4, d6, d7 and d8; m2 with d4, d6 and
d7 for n = 500 and d6 with n = 150; m6 with d4 and n = 60, 150; m5 with
d7 and n = 500 and m7 with d7 and n = 500. With the exception of m4,
when the adaptive p̂ > 0.072, then 0% trimming had a rejection proportion
near 0.1. Occasionally adaptive trimming was conservative with p̂ < 0.03.
The 0% trimming worked well for m1 and m6 for all eight distributions and
for d1 and d5 for all seven models. Models m2 and m3 usually benefited
from adaptive trimming. For distribution d1, the adaptive and 0% trimming
methods had identical p̂ for n = 500 except for m3 where the values were
0.038 and 0.042. Table 15.5 used n = 150 and supports the claim that the
adaptive trimming estimator can be asymptotically equivalent to OLS (0%
trimming) and that trimming can greatly improve the type I error.

15.6 Complements

For 1D regression models, suppose that |corr(β̂T

OLSx, β̂
T
x)| ≥ 0.95 where β̂

is a good estimator of dβ for d �= 0, or that the 1D regression can be visualized
with the OLS response plot. For example, the plotted points cluster tightly
about the mean function m. Then OLS should be a useful 1D estimator
and output originally meant for MLR is also often useful for 1D regression
(1DR) data. In particular, i) β̂OLS estimates β for MLR and cβ for 1DR.
ii) The F test statistics tend to have a χ2

k/k limiting distribution for MLR,
and the Fk,n−p cutoffs tend to be useful for exploratory purposes for 1DR. iii)
Variable selection with the Cp statistic is effective. iv) The MSE estimates
σ2 for MLR and τ 2 for 1DR. v) The OLS response plot is a very effective
tool for visualizing the regression and outlier detection. The estimated mean
function for MLR is the unit slope line through the origin, but tends to be
nonlinear for 1DR. vi) Resistant

√
n consistent estimators based on OLS and

ellipsoidal trimming exist for both MLR and 1DR. vii) Cook’s distance is a
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useful influence diagnostic.
To see vii) for 1DR, notice that the ith Cook’s distance

CDi =
(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
=

‖ESP (i) − ESP‖2

(p + 1)MSE

where ESP (i) = XT η̂(i) and η̂(i) is computed without the ith case, and the

estimated sufficient predictor ESP = XT η̂ estimates αOLS+c βTxj for some
constant c and j = 1, ..., n. Thus Cook’s distances give useful information on
cases that influence the OLS ESP.

Fast exploratory analysis with OLS can be used to complement alternative
1D methods, especially if tests and variable selection for the 1D method are
slow or unavailable from the software.

An excellent introduction to 1D regression and regression graphics is Cook
and Weisberg (1999a, ch. 18, 19, and 20) and Cook and Weisberg (1999b).
More advanced treatments are Cook (1998a) and Li (2000). Important papers
include Brillinger (1977, 1983), Li and Duan (1989) and Stoker (1986). Xia,
Tong, Li and Zhu (2002) provides a method for single index models (and
multi–index models) that does not need the linearity condition.

The response plot is crucial for checking the goodness of fit of the model.
Also see Stute and Zhu (2005) and Xia, Li, Tong and Zhang (2004). One goal
for future research is to develop better methods for visualizing 1D regression.
Trimmed views seem to become less effective as the number of predictors
k = p − 1 increases. Consider the sufficient predictor SP = x1 + · · · + xk.
With the sin(SP)/SP data, several trimming proportions gave good views
with k = 3, but only one of the ten trimming proportions gave a good
view with k = 10. In addition to problems with dimension, it is not clear
which regression estimator and which multivariate location and dispersion
(MLD) estimator should be used. We suggest using the FCH = covfchMLD
estimator or classical MLD estimator with OLS as the regression estimator.
See Olive (2009a,

∮
10.7).

There are many ways to estimate 1D models, including maximum likeli-
hood for parametric models. The literature for estimating cβ when model
(15.1) holds is growing, and OLS frequently performs well if there are no
strong nonlinearities present in the predictors. In addition to OLS, special-
ized methods for 1D models with an unknown inverse link function (eg models
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(15.2) and (15.3)) have been developed, and often the focus is on develop-
ing asymptotically efficient methods. See the references in Cavanagh and
Sherman (1998), Delecroix, Härdle and Hristache (2003), Härdle, Hall and
Ichimura (1993), Horowitz (1998), Hristache, Juditsky, Polzehl, and Spokoiny
(2001), Stoker (1986), Weisberg and Welsh (1994), Xia (2006) and Xia, Tong,
Li and Zhu (2002).

Some of these methods standardize β̂ so β̂1 = 1. This standardization
may cause problems for testing β = 0 and β1 = 0.

Several papers have suggested that outliers and strong nonlinearities need
to be removed from the predictors. See Brillinger (1991), Cook (1998a, p.
152), Cook and Nachtsheim (1994) and Li and Duan (1989, p. 1011, 1041,
1042). Trimmed views were introduced by Olive (2002, 2004b). Li, Cook
and Nachtsheim (2004) find clusters, fit OLS to each cluster and then pool
the OLS estimators into a final estimator. This method uses all n cases
while trimmed views gives M% of the cases weight zero. The trimmed views
estimator will often work well when outliers and influential cases are present.

Section 15.4 follows Olive and Hawkins (2005) closely. The literature
on numerical methods for variable selection in the OLS multiple linear re-
gression model is enormous, and the literature for other given 1D regression
models is also growing. Li, Cook and Nachtsheim (2005) give an alternative
method for variable selection that can work without specifying the model.
Also see, for example, Claeskins and Hjort (2003), Efron, Hastie, Johnstone
and Tibshirani (2004), Fan and Li (2001, 2002), Hastie (1987), Kong and
Xia (2007), Lawless and Singhai (1978), Leeb and Pötscher (2006), Naik and
Tsai (2001), Nordberg (1982) and Tibshirani (1996). For generalized linear
models, forward selection and backward elimination based on the AIC crite-
rion are often used. See Chapters 11, 12 and 13, Agresti (2002, p. 211-217),
Cook and Weisberg (1999a, p. 485, 536-538). Again, if the variable selection
techniques in these papers are successful, then the estimated sufficient pre-
dictors from the full and candidate model should be highly correlated, and
the EE, VV and response plots will be useful. Survival regression models
also use AIC. See Chapter 16.

The variable selection model with x = (xT
S , xT

E)T and SP = α + βT x =
α + βT

SxS is not the only variable selection model. Burnham and Anderson
(2004) note that for many data sets, the variables can be ordered in decreasing
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importance from x1 to xp−1. The “tapering effects” are such that if n >> p,
then all of the predictors should be used, but for moderate n it is better to
delete some of the least important predictors.

Section 15.5 followed Chang and Olive (2010) closely. More examples
and simulations are in Chang (2006). Severini (1998) discusses when OLS
output is relevant for the Gaussian additive error single index model. Li and
Duan (1989) and Li (1997) suggest that OLS F tests are asymptotically valid
if x is multivariate normal and if βOLS = Σ−1

x ΣxY �= 0. Freedman (1981),

Brillinger (1983) and Chen and Li (1998) also discuss Cov(β̂OLS). Formal
testing procedures for the single index model are given by Simonoff and Tsai
(2002) and Gao and Liang (1997). Chang and Olive (2007) shows how to
apply ellipsoidal trimming to general 1D methods, including OLS.

The mussel data set is included as the file mussel.lsp in the Arc software
and can be obtained from the web site (http://www.stat.umn.edu/arc/).
The Boston housing data can be obtained from the text website or from the
STATLIB website (http://lib.stat.cmu.edu/datasets/boston).

15.7 Problems

15.1. Refer to Definition 15.3 for the Cox and Snell (1968) definition for
residuals, but replace η by β.

a) Find êi if Yi = µ + ei and T (Y ) is used to estimate µ.
b) Find êi if Yi = xT

i β + ei.
c) Find êi if Yi = β1 exp[β2(xi − x̄)]ei where the ei are iid exponential(1)

random variables and x̄ is the sample mean of the x′
is.

d) Find êi if Yi = xT
i β + ei/

√
wi.

15.2∗. (Aldrin, Bφlviken, and Schweder 1993). Suppose

Y = m(βTx) + e (15.35)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = βTx and let w = x −E(x). Let Σx,Y =
Cov(x, Y ), and let Σx =Cov(x) = Cov(w). Let r = w − (Σxβ)βT w.

a) Recall that Cov(x, Y ) = E[(x − E(x))(Y − E(Y ))T ] and show that
Σx,Y = E(wY ).
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b) Show that E(wY ) = Σx,Y = E[(r + (Σxβ)βT w) m(z)] =

E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using βOLS = Σ−1
x Σx,Y , show that βOLS = c(x)β + u(x) where the

constant
c(x) = E[βT (x − E(x))m(βTx)]

and the bias vector u(x) = Σ−1
x E[m(βT x)r].

d) Show that E(wz) = Σxβ. (Hint: Use E(wz) = E[(x−E(x))xTβ] =
E[(x− E(x))(xT − E(xT ) + E(xT ))β].)

e) Assume m(z) = z. Using d), show that c(x) = 1 if βT Σxβ = 1.

f) Assume that βTΣxβ = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that βT Σxβ = 1 and that the distribution of x is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that u(x) = 0.

(Note: the assumption βT Σxβ = 1 can be made without loss of gen-
erality since if βTΣxβ = d2 > 0 (assuming Σx is positive definite), then
y = m(d(β/d)T x) + e ≡ md(η

T x) + e where md(u) = m(du), η = β/d and
ηTΣxη = 1.)

15.3. Suppose that you have a statistical model where both fitted values
and residuals can be obtained. For example this is true for time series and
for nonparametric regression models such as Y = f(x1, ..., xp) + e where

ŷ = f̂(x1, ..., xp) and the residual ê = Y − f̂(x1, ..., xp). Suggest graphs for
variable selection for such models.
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Output for Problem 15.4.

BEST SUBSET REGRESSION MODELS FOR CRIM

(A)LogX2 (B)X3 (C)X4 (D)X5 (E)LogX7 (F)X8 (G)LogX9 (H)LogX12

3 "BEST" MODELS FROM EACH SUBSET SIZE LISTED.

ADJUSTED

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- ---------------

1 379.8 0.0000 0.0000 37363.2 INTERCEPT ONLY

2 36.0 0.3900 0.3913 22744.6 F

2 113.2 0.3025 0.3039 26007.8 G

2 191.3 0.2140 0.2155 29310.8 E

3 21.3 0.4078 0.4101 22039.9 E F

3 25.0 0.4036 0.4059 22196.7 F H

3 30.8 0.3970 0.3994 22442.0 D F

4 17.5 0.4132 0.4167 21794.9 C E F

4 18.1 0.4125 0.4160 21821.0 E F H

4 18.8 0.4117 0.4152 21850.4 A E F

5 10.2 0.4226 0.4272 21402.3 A E F H

5 10.8 0.4219 0.4265 21427.7 C E F H

5 12.0 0.4206 0.4252 21476.6 A D E F

6 5.7 0.4289 0.4346 21125.8 A C E F H

6 9.3 0.4248 0.4305 21279.1 A C D E F

6 10.3 0.4237 0.4294 21319.9 A B E F H

7 6.3 0.4294 0.4362 21065.0 A B C E F H

7 6.3 0.4294 0.4362 21066.3 A C D E F H

7 7.7 0.4278 0.4346 21124.3 A C E F G H

8 7.0 0.4297 0.4376 21011.8 A B C D E F H

8 8.3 0.4283 0.4362 21064.9 A B C E F G H

8 8.3 0.4283 0.4362 21065.8 A C D E F G H

9 9.0 0.4286 0.4376 21011.8 A B C D E F G H

15.4. The output above is for the Boston housing data from software
that does all subsets variable selection. The full model is a 1D transformation
model with response variable Y = CRIM and uses a constant and variables
A, B, C, D, E, F, G and H. (Using log(CRIM) as the response would give an
MLR model.) From this output, what is the best submodel? Explain briefly.

477



15.5∗. a) Show that Cp(I) ≤ 2k if and only if FI ≤ p/(p − k).

b) Using (15.19), find E(Cp) and Var(Cp) assuming that an MLR model
is appropriate and that Ho (the reduced model I can be used) is true.

c) Using (15.19), Cp(Ifull) = p and the notation in Section 15.4, show
that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

R/Splus Problems

Warning: Use the command source(“A:/regpack.txt”) to download
the programs. See Preface or Section 17.2. Typing the name of the
regpack function, eg trviews, will display the code for the function. Use the
args command, eg args(trviews), to display the needed arguments for the
function.

15.6. Use the following R/Splus commands to make 100 N3(0, I3) cases
and 100 trivariate non-EC cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)

ln3x <- exp(n3x)

In R, type the command library(MASS).

a) Using the commands pairs(n3x) and pairs(ln3x) and include both scat-
terplot matrices in Word. (Click on the plot and hit Ctrl and c at the same
time. Then go to file in the Word menu and select paste.) Are strong
nonlinearities present among the MVN predictors? How about the non-EC
predictors? (Hint: a box or ball shaped plot is linear.)

b) Make a single index model and the sufficient summary plot with the
following commands

ncy <- (n3x%*%1:3)^3 + 0.1*rnorm(100)

plot(n3x%*%(1:3),ncy)

and include the plot in Word.
c) The command trviews(n3x, ncy) will produce ten plots. To advance the

plots, click on the rightmost mouse button (and in R select stop) to advance
to the next plot. The last plot is the OLS view. Include this plot in Word.
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d) After all 10 plots have been looked at the output will show 10 estimated
predictors. The last estimate is the OLS (least squares) view and might look
like

Intercept X1 X2 X3

4.417988 22.468779 61.242178 75.284664

If the OLS view is a good estimated sufficient summary plot, then the
plot created from the command (leave out the intercept)

plot(n3x%*%c(22.469,61.242,75.285),n3x%*%1:3)

should cluster tightly about some line. Your linear combination will be dif-
ferent than the one used above. Using your OLS view, include the plot using
the command above (but with your linear combination) in Word. Was this
plot linear? Did some of the other trimmed views seem to be better that
the OLS view, that is, did one of the trimmed views seem to have a smooth
mean function with a smaller variance function than the OLS view?

e) Now type the R/Splus command

lncy <- (ln3x%*%1:3)^3 + 0.1*rnorm(100).

Use the command trviews(ln3x,lncy) to find the best view with a smooth
mean function and the smallest variance function. This view should not be
the OLS view. Include your best view in Word.

f) Get the linear combination from your view, say (94.848, 216.719, 328.444)T ,
and obtain a plot with the command

plot(ln3x%*%c(94.848,216.719,328.444),ln3x%*%1:3).

Include the plot in Word. If the plot is linear with high correlation, then
your response plot in e) should be good.

15.7. (At the beginning of your R/Splus session, use the
source(“A:/regpack.txt”) command (and library(MASS) in R.))

a) Perform the commands

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)
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For parts b), c) and d) below, to make the best trimmed view with
trviews, ctrviews or lmsviews, you may need to use the function twice.
The first view trims 90% of the data, the next view trims 80%, etc. The last
view trims 0% and is the OLS view (or lmsreg view). Remember to advance
the view with the rightmost mouse button (and in R, highlight “stop”). Then
click on the plot and next simultaneously hit Ctrl and c. This makes a copy
of the plot. Then in Word, use the menu commands “Copy>paste.”

b) Find the best trimmed view with OLS and covfch with the following
commands and include the view in Word.

> trviews(lnx,lnsincy)

(With trviews, suppose that 40% trimming gave the best view. Then
instead of using the procedure above b), you can use the command

> essp(lnx,lnsincy,M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”. Click the rightmost mouse button (and in
R, highlight “stop”) to return the command prompt.)

c) Find the best trimmed view with OLS and (x, S) using the following
commands and include the view in Word. See the paragraph above b).

> ctrviews(lnx,lnsincy)

d) Find the best trimmed view with lmsreg and cov.mcd using the fol-
lowing commands and include the view in Word. See the paragraph above
b).

> lmsviews(lnx,lnsincy)

e) Which method or methods gave the best response plot? Explain briefly.
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