
Chapter 2

Multiple Linear Regression

2.1 The MLR Model

Definition 2.1. The response variable is the variable that you want to
predict. The predictor variables are the variables used to predict the
response variable.

Notation. In this text the response variable will usually be denoted by Y
and the p predictor variables will often be denoted by x1, ..., xp. The response
variable is also called the dependent variable while the predictor variables
are also called independent variables, explanatory variables or covariates.
Often the predictor variables will be collected in a vector x. Then xT is the
transpose of x.

Definition 2.2. Regression is the study of the conditional distribution
Y |x of the response variable Y given the vector of predictors x = (x1, ..., xp)

T .

Definition 2.3. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.

Example 2.1. Archeologists and crime scene investigators sometimes
want to predict the height of a person from partial skeletal remains. A
model for prediction can be built from nearly complete skeletons or from
living humans, depending on the population of interest (eg ancient Egyptians
or modern US citizens). The response variable Y is height and the predictor
variables might be x1 ≡ 1, x2 = femur length and x3 = ulna length. The
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heights of individuals with x2 = 200mm and x3 = 140mm should be shorter
on average than the heights of individuals with x2 = 500mm and x3 =
350mm. In this example Y , x2 and x3 are quantitative variables. If x4 =
gender is a predictor variable, then gender (coded as male = 1 and female =
0) is qualitative.

Definition 2.4. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (2.1)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xTβ + e.

In matrix notation, these n equations become

Y = Xβ + e, (2.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,

Y1

Y2
...

Yn

 =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p




β1

β2
...

βp

+


e1

e2
...
en

 . (2.3)

Often the first column of X is X1 = 1, the n × 1 vector of ones. The ith
case (xT

i , Yi) corresponds to the ith row xT
i of X and the ith element of Y .

In the MLR model Y = xT β + e, the Y and e are random variables, but
we only have observed values Yi and xi. If the ei are iid (independent and
identically distributed) with zero mean and variance σ2, then regression is
used to estimate the unknown parameters β and σ2.

Definition 2.5. The iid error MLR model uses the assumption that
the errors e1, ..., en are iid with E(ei) = 0 and VAR(ei) = σ2 < ∞. Also
assume that the errors are independent of the predictor variables xi. The
predictor variables xi are assumed to be fixed and measured without error.
The cases (xT

i , Yi) are independent for i = 1, ..., n.
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If the predictor variables are random variables, then the above MLR
model is conditional on the observed values of the xi. That is, observe the
xi and then act as if the observed xi are fixed.

Definition 2.6. The iid symmetric error MLR model has the same
assumptions as the iid error MLR model but adds the assumption that the
iid errors come from a symmetric distribution.

Definition 2.7. The normal MLR model or Gaussian MLR model has
the same assumptions as the iid error MLR model but adds the assumption
that the errors e1, ..., en are iid N(0, σ2) random variables. That is, the ei

are iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 2.8. Given an estimate b of β, the corresponding vector of
predicted or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · · + xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.

Most regression methods attempt to find an estimate β̂ of β which min-
imizes some criterion function Q(b) of the residuals.

Definition 2.9. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑
i=1

r2
i (b), (2.4)

and β̂OLS = (XT X)−1XTY .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.
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There are many statistical models besides the MLR model, and you
should learn how to quickly recognize an MLR model. A “regression” model
has a response variable Y and the conditional distribution of Y given the
predictors x = (x1, ..., xp)

T is of interest. Regression models are used to pre-
dict Y and to summarize the relationship between Y and x. If a constant
xi,1 ≡ 1 (this notation means that xi,1 = 1 for i = 1, ..., n) is in the model,
then xi,1 is often called the trivial predictor, and the MLR model is said to
have a constant or intercept. All nonconstant predictors are called nontrivial
predictors. The term “multiple” is used if the model uses one or more non-
trivial predictors. The simple linear regression model is a special case that
uses exactly one nontrivial predictor. Suppose the response variable is Y and
data has been collected on additional variables x1, ..., xp.

An MLR model is “linear” in the unknown coefficients β. Thus the model
is an MLR model in Y and β if we can write Yi = xT

i β + ei or Yi = wT
i β+ ei

where each wi is a function of x1, ..., xp. Symbols other than w or x may be
used. Alternatively, the model is linear in the parameters β if ∂Y/∂βi does
not depend on the parameters. If Y = xTβ + e = x1β1 + · · ·+xpβp + e, then
∂Y/∂βi = xi. Similarly, if Y = wT β + e, then ∂Y/∂βi = wi.

Example 2.2. a) Suppose that interest is in predicting a function of Z
from functions of w1, ..., wk. If Y = t(Z) = xTβ + e where t is a function
and each xi is some function of w1, ..., wk, then there is an MLR model in Y
and β. Similarly, Z = t(Y ) = wTβ + e is an MLR model in Z and β.

b) To see that Y = β1 + β2x + β3x
2 + e is an MLR model in Y and β,

take w1 = 1, w2 = x and w3 = x2. Then Y = wTβ + e.
c) If Y = β1 + β2 exp(β3x) + e, then the model is a nonlinear regression

model that is not an MLR model in Y and β. Notice that the model can
not be written in the form Y = wTβ + e and that ∂Y/∂β2 = exp(β3x) and
∂Y/∂β3 = β2x exp(β3x) depend on the parameters.

2.2 Checking Goodness of Fit

It is crucial to realize that an MLR model is not necessarily a useful
model for the data, even if the data set consists of a response variable and
several predictor variables. For example, a nonlinear regression model or
a much more complicated model may be needed. Let p be the number of
predictors and n the number of cases. Assume that n > 5p, then plots can
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be used to check whether the MLR model is useful for studying the data.
This technique is known as checking the goodness of fit of the MLR model.

Notation. Plots will be used to simplify regression analysis, and in this
text a plot of W versus Z uses W on the horizontal axis and Z on the vertical
axis.

Definition 2.10. A scatterplot of X versus Y is a plot of X versus Y
and is used to visualize the conditional distribution Y |X of Y given X.

Definition 2.11. A response plot is a plot of a variable wi versus Yi.
Typically wi is a linear combination of the predictors: wi = xT

i η where η is
a known p × 1 vector. The most commonly used response plot is a plot of
the fitted values Ŷi versus the response Yi.

Proposition 2.1. Suppose that the regression estimator b of β is used
to find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

Definition 2.12. A residual plot is a plot of a variable wi versus the
residuals ri. The most commonly used residual plot is a plot of Ŷi versus ri.

Notation: For MLR, “the residual plot” will often mean the residual
plot of Ŷi versus ri, and “the response plot” will often mean the plot of Ŷi

versus Yi.

If the iid error MLR model as estimated by least squares is useful, then
in the response plot the plotted points should scatter about the identity line
while in the residual plot of Ŷ versus r the plotted points should scatter
about the r = 0 line (the horizontal axis) with no other pattern. Figures 1.2
and 1.3 show what a response plot and residual plot look like for an artificial
MLR data set where the MLR regression relationship is rather strong in that
the sample correlation corr(Ŷ , Y ) is near 1. Figure 1.4 shows a response plot
where the response Y is independent of the nontrivial predictors in the model.
Here corr(Ŷ , Y ) is near 0 but the points still scatter about the identity line.
When the MLR relationship is very weak, the response plot will look like
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Figure 1.4.
The above ideal shapes for the response and residual plots are for when

the iid symmetric error MLR model gives a good approximation for the data.
If the plots have the ideal shapes and n ≥ 5p, then expect inference, except
for prediction intervals, to be approximately correct.

If the response and residual plots suggest a MLR model with iid skewed
errors, then add lowess to both plots. The scatterplot smoother tries to
estimate the mean function E(Y |Ŷ ) or E(r|Ŷ ) without using any model.
If the lowess curve is close to the identity line in the response plot and
close to the r = 0 line in the residual plot, then the iid error MLR model
may be a good approximation to the data, but sample sizes much larger
than n = 5p may be needed before inference is approximately correct. Such
skewed data sets seem rather rare, but see Chen, Bengtsson and Ho (2009)
and see Problem 2.27.

Remark 2.1. For any MLR analysis, always make the response
plot and the residual plot of Ŷi versus Yi and ri, respectively.

Definition 2.13. An outlier is an observation that lies far away from
the bulk of the data.

Remark 2.2. For MLR, the response plot is the single most impor-
tant plot that can be made because MLR is the study of the conditional
distribution of Y |xT β, and the response plot is used to visualize the
conditional distribution of Y |xT β since Ŷ = xT β̂ is a good estimator of
xTβ if β̂ is a good estimator of β.

If the MLR model is useful, then the plotted points in the response plot
should be linear and scatter about the identity line with no gross outliers.
Suppose the fitted values range in value from wL to wH with no outliers. Fix
the fit = w in this range and mentally add a narrow vertical strip centered at
w to the response plot. The plotted points in the vertical strip should have a
mean near w since they scatter about the identity line. Hence Y |fit = w is
like a sample from a distribution with mean w. The following example helps
illustrate this remark.

Example 2.3. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable Y .
Along with a constant xi,1 ≡ 1, the five additional predictor variables used
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Figure 2.1: Residual and Response Plots for the Tremearne Data
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were height when sitting, height when kneeling, head length, nasal breadth,
and span (perhaps from left hand to right hand). Figure 2.1 presents the
OLS response and residual plots for this data set. These plots show that an
MLR model should be a useful model for the data since the plotted points
in the response plot are linear and follow the identity line while the plotted
points in the residual plot follow the r = 0 line with no other pattern (except
for a possible outlier marked 44).

To use the response plot to visualize the conditional distribution of Y |xT β,
use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1675 to 1725. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases
have heights near w, on average.

Cases 3, 44 and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers. Mentally draw a box about the bulk of the data ignoring any
outliers. Double the width of the box (about the identity line for the response
plot and about the horizontal line for the residual plot). Cases outside of this
imaginary doubled box are potential outliers. Alternatively, visually estimate
the standard deviation of the residuals in both plots. In the residual plot
look for residuals that are more than 5 standard deviations from the r = 0
line. In Figure 2.1, the standard deviation of the residuals appears to be
around 10. Hence cases 3 and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers
and the bulk of the data. See Figure 3.14.

2.3 Checking Lack of Fit

The response plot may look good while the residual plot suggests that the iid
error MLR model can be improved. Examining plots to find model violations
is called checking for lack of fit. Again assume that n > 5p.

The iid error MLR model often provides a useful model for the data, but
the following assumptions do need to be checked.
i) Is the MLR model appropriate?
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ii) Are outliers present?
iii) Is the error variance constant or nonconstant? The constant variance
assumption VAR(ei) ≡ σ2 is known as homoscedasticity. The nonconstant
variance assumption VAR(ei) = σ2

i is known as heteroscedasticity.
iv) Are any important predictors left out of the model?
v) Are the errors e1, ..., en iid?
vi) Are the errors ei independent of the predictors xi?

Make the response plot and the residual plot to check i), ii) and iii). An
MLR model is reasonable if the plots look like Figures 1.2, 1.3, 1.4 and 2.1.
A response plot that looks like Figure 1.13 suggests that the model is not
linear. If the plotted points in the residual plot do not scatter about the
r = 0 line with no other pattern (ie if the cloud of points is not ellipsoidal or
rectangular with zero slope), then the iid error MLR model is not sustained.

The ith residual ri is an estimator of the ith error ei. The constant vari-
ance assumption may have been violated if the variability of the point cloud
in the residual plot depends on the value of Ŷ . Often the variability of the
residuals increases as Ŷ increases, resulting in a right opening megaphone
shape. (Figure 4.1b has this shape.) Often the variability of the residu-
als decreases as Ŷ increases, resulting in a left opening megaphone shape.
Sometimes the variability decreases then increases again (like a stretched or
compressed bone), and sometimes the variability increases then decreases
again.

2.3.1 Residual Plots

Remark 2.3. Residual plots magnify departures from the model while the
response plot emphasizes how well the MLR model fits the data.

Since the residuals ri = êi are estimators of the errors, the residual plot
is used to visualize the conditional distribution e|SP of the errors given the

sufficient predictor SP = xTβ, where SP is estimated by Ŷ = xT β̂. For the
iid error MLR model, there should not be any pattern in the residual plot:
as a narrow vertical strip is moved from left to right, the behavior of the
residuals within the strip should show little change.

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 2.1. If the residual plot would look good after several
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points have been deleted, and if these deleted points were not gross outliers
(points far from the point cloud formed by the bulk of the data), then the
residual plot is probably good. Beginners often find too many things wrong
with a good model. For practice, use the computer to generate several MLR
data sets, and make the response and residual plots for these data sets. This
exercise will help show that the plots can have considerable variability even
when the MLR model is good.

Rule of thumb 2.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

The residual plot of Ŷ versus r should always be made. It is also a
good idea to plot each nontrivial predictor xj versus r and to plot potential
predictors wj versus r. If the predictor is quantitative, then the residual

plot of xj versus r should look like the residual plot of Ŷ versus r. If the
predictor is qualitative, eg gender, then interpreting the residual plot is much
more difficult; however, if each category contains many observations, then the
plotted points for each category should form a vertical line centered at r = 0
with roughly the same variability (spread or range).

Rule of thumb 2.3. Suppose that the MLR model uses predictors xj

and that data has been collected on variables wj that are not included in
the MLR model. To check whether important predictors have been left out,
make residual plots of xj and wj versus r. If these plots scatter about the
r = 0 line with no other pattern, then there is no evidence that x2

j or wj are
needed in the model. If the plotted points scatter about a parabolic curve,
try adding x2

j or wj and w2
j to the MLR model. If the plot of the potential

predictor wj versus r has a linear trend, try adding wj to the MLR model.

Rule of thumb 2.4. To check that the errors are independent of the
predictors, make residual plots of xj versus r. If the plot of xj versus r
scatters about the r = 0 line with no other pattern, then there is no evidence
that the errors depend on xj. If the variability of the residuals changes with
the value of xj, eg if the plot resembles a left or right opening megaphone,
the errors may depend on xj. Some remedies for nonconstant variance are
considered in Chapter 4.
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To study residual plots, some notation and properties of the least squares
estimator are needed. MLR is the study of the conditional distribution of
Yi|xT

i β, and the MLR model is Y = Xβ + e where X is an n × p matrix
of full rank p. Hence the number of predictors p ≤ n. The ith row of X
is xT

i = (xi,1, ..., xi,p) where xi,k is the value of the ith observation on the
kth predictor xk. We will denote the jth column of X by Xj ≡ xj which
corresponds to the jth variable or predictor xj.

Example 2.4. If Y is brain weight in grams, x1 ≡ 1, x2 is age and x3 is
the size of the head in (mm)3, then for the Gladstone (1905-6) data

Y =


3738
4261

...
3306

 , X =


1 39 149.5
1 35 152.5
...

...
...

1 19 141

 .

Hence the first person had brain weight = 3738, age = 39 and size = 149.5.
After deleting observations with missing values, there were n = 267 cases
(people measured on brain weight, age and size), and x267 = (1, 19, 141)T .
The second predictor x2 = age corresponds to the 2nd column of X and is
X2 = (39, 35, ..., 19)T . Notice that X1 ≡ x1 = 1 = (1, ..., 1)T corresponds to
the constant x1.

The results in the following proposition are properties of least squares
(OLS), not of the underlying MLR model. Definitions 2.8 and 2.9 define the
hat matrix H , vector of fitted values Ŷ and vector of residuals r. Parts
f) and g) make residual plots useful. If the plotted points are linear with
roughly constant variance and the correlation is zero, then the plotted points
scatter about the r = 0 line with no other pattern. If the plotted points in
a residual plot of w versus r do show a pattern such as a curve or a right
opening megaphone, zero correlation will usually force symmetry about either
the r = 0 line or the w = median(w) line. Hence departures from the ideal
plot of random scatter about the r = 0 line are often easy to detect.

Warning: If n > p, as is usually the case, X is not square, so (XT X)−1 �=
X−1(XT )−1 since X−1 does not exist.

Proposition 2.2. Suppose that X is an n × p matrix of full rank p.
Then

a) H is symmetric: H = HT .
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b) H is idempotent: HH = H .
c) XT r = 0 so that XT

j r = (xj)T r = 0.
d) If there is a constant X1 ≡ x1 = 1 in the model, then the sum of the

residuals is zero:
∑n

i=1 ri = 0.

e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, xj) = 0 for j = 1, ..., p.

Proof. a) XTX is symmetric since (XTX)T = XT (XT )T = XTX.
Hence (XTX)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XTX)−1]T (XT )T = H .

b) HH = X(XTX)−1XT X(XT X)−1XT = H since (XTX)−1XTX =
Ip, the p × p identity matrix.

c) XTr = XT (Ip − H)Y = [XT − XTX(XT X)−1XT ]Y = [XT −
XT ]Y = 0. Since xj is the jth column of X, (xj)T is the jth row of XT

and (xj)Tr = 0 for j = 1, ..., p.

d) Since x1 = 1, (x1)T r =
∑n

i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.

f) The sample correlation between W and Z is corr(W, Z) =∑n
i=1(wi − w)(zi − z)

(n − 1)swsz

=

∑n
i=1(wi − w)(zi − z)√∑n

i=1(wi − w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = z, w. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =
n∑

i=1

Ŷiri − Ŷ
n∑

i=1

ri =
n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).
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g) Following the argument in f), the result follows if A =
∑n

i=1(xi,j −
xj)(ri − r) = 0 where xj is the mean of the jth predictor. Now r = 0 by d),
and thus

A =
n∑

i=1

xi,jri − xj

n∑
i=1

ri =
n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = (xj)T r = 0 by c). QED

2.3.2 Other Model Violations

Without loss of generality, E(e) = 0 for the iid error MLR model with a
constant, in that if E(ẽ) = µ �= 0, then the MLR model can always be
written as Y = xT β + e where E(e) = 0 and E(Y ) ≡ E(Y |x) = xTβ. To
see this claim notice that

Y = β̃1 + x2β2 + · · · + xpβp + ẽ = β̃1 + E(ẽ) + x2β2 + · · · + xpβp + ẽ − E(ẽ)

= β1 + x2β2 + · · · + xpβp + e

where β1 = β̃1 + E(ẽ) and e = ẽ −E(ẽ). For example, if the errors ẽi are iid
exponential (λ) with E(ẽi) = λ, use ei = ẽi − λ.

For least squares, it is crucial that σ2 exists. For example, if the ei are iid
Cauchy(0,1), than σ2 does not exist and the least squares estimators tend to
perform very poorly.

The performance of least squares is analogous to the performance of Y .
The sample mean Y is a very good estimator of the population mean µ if
the Yi are iid N(µ, σ2) and Y is a good estimator of µ if the sample size is
large and the Yi are iid with mean µ and variance σ2. This result follows from
the cental limit theorem, but how “large is large” depends on the underlying
distribution. The n > 30 rule tends to hold for distributions that are close
to normal in that they take on many values and σ2 is not huge. Errors
distributions that are highly nonnormal with tiny σ2 often need n >> 30.
For example, if Y1, ..., Yn are iid Gamma(1/m, 1), then n > 25m may be
needed. Another example is distributions that take on one value with very
high probability, eg a Poisson random variable with very small variance.
Bimodal and multimodal distributions and highly skewed distributions with
large variances also need larger n.
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There are central limit type theorems for the least squares estimators
that depend on the error distribution of the iid errors ei. We always assume
that the ei are continuous random variables with a probability density func-
tion. Error distributions that are close to normal may give good results for
moderate n if n > 10p and n − p > 30 where p is the number of predictors.
Error distributions that need large n for the CLT to apply for e, will tend to
need large n for the limit theorems for least squares to apply (to give good
approximations).

Checking whether the errors are iid is often difficult. The iid assumption
is often reasonable if measurements are taken on different objects, eg people.
In industry often several measurements are taken on a batch of material.
For example a batch of cement is mixed and then several small cylinders of
concrete are made from the batch. Then the cylinders are tested for strength.
Experience from such experiments suggests that objects (eg cylinders) from
different batches are independent, but objects from the same batch are not
independent.

One check on independence can also be made if the time order of the
observations is known. Let r[t] be the residual where [t] is the time order of
the trial. Hence [1] was the 1st and [n] was the last trial. Plot the time order
t versus r[t] if the time order is known. Again, trends and outliers suggest
that the model could be improved. A box shaped plot with no trend suggests
that the MLR model is good. A plot similar to the Durbin Watson test plots
r[t−1] versus r[t] for t = 2, ..., n. Linear trend suggests serial correlation while
random scatter suggests that there is no lag 1 autocorrelation. As a rule of
thumb, if the OLS slope b is computed for the plotted points, b > 0.25 gives
some evidence that there is positive correlation between r[t−1] and r[t].

If it is assumed that the error distribution is symmetric, make a histogram
of the residuals. Check whether the histogram is roughly symmetric or clearly
skewed. If it is assumed that the errors ei are iid N(0, σ2) again check
whether the histogram is mound shaped with “short tails.” A commonly
used alternative is to make a normal probability plot of the residuals. Let
r(1) < r(2) < · · · < r(n) denote the residuals ordered from smallest to largest.
Hence r(1) is the value of the smallest residual. The normal probability plot
plots the ẽ(i) versus r(i) where the ẽ(i) are the expected values of the order
statistics from a sample of size n from a N(0, 1) distribution. (Often the ẽ(i)

are the standard normal percentiles that satisfy P (Z ≤ ẽ(i)) = (i − 0.5)/n
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where Z ∼ N(0, 1).)
Rules of thumb: i) if the plotted points scatter about some straight line

in the normal probability plot, then there is no evidence against the normal
assumption. ii) if the plotted points have an “ess shape” (concave up then
concave down) then the error distribution is symmetric with lighter tails
than the normal distribution. iii) If the plot resembles a cubic function,
then the error distribution is symmetric with heavier tails than the normal
distribution. iv) If the plotted points look concave up (eg like x2 where
x > 0), then the error distribution is right skewed.

2.4 The ANOVA F TEST

After fitting least squares and checking the response and residual plot to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean

Y =
1

n

n∑
i=1

Yi. (2.5)

In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 2.14. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =
n∑

i=1

(Yi − Y )2. (2.6)

b) The regression sum of squares

SSR =
n∑

i=1

(Ŷi − Y )2. (2.7)

c) The residual sum of squares or error sum of squares is
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SSE =

n∑
i=1

(Yi − Ŷi)
2 =

n∑
i=1

r2
i . (2.8)

The result in the following proposition is a property of least squares
(OLS), not of the underlying MLR model. An obvious application is that
given any two of SSTO, SSE and SSR, the 3rd sum of squares can be found
using the formula SSTO = SSE + SSR.

Proposition 2.3. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =
n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2
n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But

A =
n∑

i=1

riŶi − Y
n∑

i=1

ri = 0

by Proposition 2.2 d) and e). �

Definition 2.15. Assume that a constant is in the MLR model and that
SSTO �= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.
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iv) R2 tends to be too high if n is small.
v) R2 tends to be too high if there are two or more separated clusters of

data in the response plot.
vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 propositions suggest that R2 does not behave well when
many predictors that are not needed in the model are included in the model.
Such a variable is sometimes called a noise variable and the MLR model is
“fitting noise.” Proposition 2.5, appears, for example, in Cramér (1946, p.
414-415), and suggests that R2 should be considerably larger than p/n if the
predictors are useful.

Proposition 2.4. Assume that a constant is in the MLR model. Adding
a variable to the MLR model does not decrease (and usually increases) R2.

Proposition 2.5. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a)R2 follows a beta distribution: R2 ∼ beta(p−1
2

, n−p
2

).

b)

E(R2) =
p − 1

n − 1
.

c)

VAR(R2) =
2(p − 1)(n − p)

(n − 1)2(n + 1)
.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e and SSR/n ≈ S2

Ŷ
.

Definition 2.16. Assume that a constant is in the MLR model. As-
sociated with each SS in Definition 2.14 is a degrees of freedom (df) and a
mean square = SS/df . For SSTO, df = n− 1 and MSTO = SSTO/(n− 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).
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Seber and Lee (2003, p. 44–47) show that when the MLR model holds,
MSE is often a good estimator of σ2. Under regularity conditions, the MSE
is one of the best unbiased quadratic estimators of σ2. For the normal MLR
model, MSE is the uniformly minimum variance unbiased estimator of σ2.
Seber and Lee also give the following theorem that shows that the MSE is
an unbiased estimator of σ2 under very weak assumptions if the MLR model
is appropriate.

Theorem 2.6. If Y = Xβ+e where X is an n×p matrix of full rank p,
if the ei are independent with E(ei) = 0 and VAR(ei) = σ2, then σ̂2 = MSE
is an unbiased estimator of σ2.

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
ANOVA stands for analysis of variance, and the computer output needed to
perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

Remark 2.4. Recall that for a 4 step test of hypotheses, the p–value is
the probability of getting a test statistic as extreme as the test statistic actu-
ally observed and that Ho is rejected if the p–value < δ. As a benchmark for
this textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model. Follow Example 2.5.

Notation. The p–value ≡ pvalue given by output tends to only be
correct for the normal MLR model. Hence the output is usually only giving
an estimate of the pvalue, which will often be denoted by pval. Often

pval − pvalue
P→ 0

(converges to 0 in probability) as the sample size n → ∞. Then the computer
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output pval is a good estimator of the unknown pvalue.

Be able to perform the 4 step ANOVA F test of hypotheses:
i) State the hypotheses Ho: β2 = · · · = βp = 0 Ha: not Ho
ii) Find the test statistic Fo = MSR/MSE or obtain it from output.
iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject Ho, conclude that there is not a MLR relationship between
Y and the predictors x2, ..., xp.

Example 2.5. For the Gladstone (1905-6) data, the response variable
Y = brain weight, x1 ≡ 1, x2 = size of head, x3 = sex, x4 = breadth of head,
x5 = circumference of head. Assume that the response and residual plots
look good and test whether at least one of the nontrivial predictors is needed
in the model using the output shown below.

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 4 5396942. 1349235. 196.24 0.0000

Residual 262 1801333. 6875.32

Solution: i) Ho: β2 = · · · = β5 = 0 Ha: not Ho
ii) Fo = 196.24 from output.
iii) p–value = 0.0 from output.
iv) The p–value < δ (= 0.05 since δ was not given). So reject Ho. Hence
there is an MLR relationship between brain weight and the predictors size,
sex, breadth, and circumference.

Remark 2.5. There is a close relationship between the response plot
and the ANOVA F test. If n > 10p and n − p > 30 and if the plotted
points follow the identity line, typically Ho will be rejected if the identity
line fits the plotted points better than any horizontal line (in particular, the
line Y = Y ). If a horizontal line fits the plotted points about as well as
the identity line, as in Figure 1.4, this graphical diagnostic is inconclusive
(sometimes the ANOVA F test will reject Ho and sometimes fail to reject
Ho), but the MLR relationship is at best weak. In Figures 1.2 and 2.1, the
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ANOVA F test should reject Ho since the identity line fits the plotted points
better than any horizontal line.

Definition 2.17. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Remark 2.6. If the RR plot of the residuals Yi − Y versus the OLS
residuals ri = Yi − Ŷi shows tight clustering about the identity line, then the
MLR relationship is weak: Y fits the data about as well as the OLS fit.

Example 2.6. Cook and Weisberg (1999a, p. 261, 371) describe a data
set where rats were injected with a dose of a drug approximately proportional
to body weight. The response Y is the fraction of the drug recovered from
the rat’s liver. The three predictors are the body weight of the rat, the dose of
the drug, and the liver weight. A constant was also used. The experimenter
expected the response to be independent of the predictors, and 19 cases
were used. However, the ANOVA F test suggested that the predictors were
important. The third case was an outlier and easily detected in the response
and residual plots (not shown). After deleting the outlier, the response and
residual plots looked ok and the following output was obtained.

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 3 0.00184396 0.000614652 0.10 0.9585

Residual 14 0.0857172 0.00612265

The 4 step ANOVA F test is
i) Ho: β2 = · · · = β4 = 0 Ha: not Ho
ii) Fo = 0.10.
iii) p–value = 0.9585.
iv) The p–value > δ (= 0.05 since δ was not given). So fail to reject Ho.
Hence there is not an MLR relationship between fraction of drug recovered
and the predictors body weight, dose, and liver weight. (More accurately,
there is not enough statistical evidence to conclude that there is an MLR
relationship: failing to reject Ho is not the same as accepting Ho; however,
it may be a good idea to keep the nontechnical conclusions nontechnical.)

Figure 2.2 shows the RR plot where the residuals from the full model
are plotted against Yi − Y , the residuals from the model using no nontrivial
predictors. This plot reinforces the conclusion that the response Y is inde-
pendent of the nontrivial predictors. The identity line and the OLS line from
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Figure 2.2: RR Plot With Outlier Deleted, Submodel Uses No Predictors
with Ŷ = Y

regressing ri on Yi − Y (that is, use Ỹi = ri, a constant and x̃i,2 = Yi − Y ,
find the OLS line and then plot it) are shown as visual aids. If the OLS line
and identity line nearly coincide in that it is difficult to tell that the two lines
intersect at the origin, then the 2 sets of residuals are “close.”

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough. More on the robustness and lack of robustness of the
ANOVA F test can be found in Wilcox (2005).

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that Ho is rejected if the
statistic Fo is large. More precisely, reject Ho if

Fo > Fp−1,n−p,1−δ
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where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n − p)/(p − 1) decreases
to 0 as p increases to n, Theorem 2.7a below implies that if p is large then
the Fo statistic may be small even if some of the predictors are very good.
It is a good idea to use n > 10p or at least n > 5p if possible.

Theorem 2.7. Assume that the MLR model has a constant β1.
a)

Fo =
MSR

MSE
=

R2

1 − R2

n − p

p − 1
.

b) If the errors ei are iid N(0, σ2), and if Ho: β2 = · · · = βp = 0 is true,
then Fo has an F distribution with p − 1 numerator and n − p denominator
degrees of freedom: Fo ∼ Fp−1,n−p.

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal and if n − p is large enough, and if Ho is true, then
Fo ≈ Fp−1,n−p in that the p-value is approximately correct.

Remark 2.7. When a constant is not contained in the model (ie xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now Ho: β1 = · · · = βp = 0
Ha: not Ho, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.” See Section 2.10.

2.5 Prediction

This section gives estimators for predicting a future or new value Yf of
the response variable given the predictors xf , and for estimating the mean
E(Yf ) ≡ E(Yf |xf). This mean is conditional on the values of the predictors
xf , but the conditioning is often suppressed.

Warning: All too often the MLR model seems to fit the data

(Y1, x1), ..., (Yn, xn)

well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data
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(Yi, xi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a

new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data
well. i) The model building process is usually iterative. Data Z, w1, ..., wr

is collected. If the model is not linear, then functions of Z are used as a
potential response and functions of the wi as potential predictors. After trial
and error, the functions are chosen, resulting in a final MLR model using Y
and x1, ..., xp. Since the same data set was used during the model building
process, biases are introduced and the MLR model fits the “training data”
better than it fits new data. Suppose that Y , x1, ..., xp are specified before
collecting data and that the residual and response plots from the resulting
MLR model look good. Then predictions from the prespecified model will
often be better for predicting new data than a model built from an iterative
process.

ii) If (Yf , xf ) come from a different population than the population of
(Y1, x1), ..., (Yn, xn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate. If the data
set is large enough, using a random sample of < n/4 of the cases to build a
model may help reduce biases.

Definition 2.18. Consider the MLR model Y = Xβ + e and the hat
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matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H
for i = 1, ..., n. Then hi is called the ith leverage and hi = xT

i (XTX)−1xi.
Suppose new data is to be collected with predictor vector xf . Then the
leverage of xf is hf = xT

f (XT X)−1xf . Extrapolation occurs if xf is far
from the x1, ..., xn.

Rule of thumb 2.5. Predictions based on extrapolation are not reliable.
A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn). This
rule works best if the predictors are linearly related in that a plot of xi versus
xj should not have any strong nonlinearities. If there are strong nonlinearities
among the predictors, then xf could be far from the xi but still have hf <
max(h1, ..., hn).

Example 2.7. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

Definition 2.19. Consider the iid error MLR model Y = xT β+ e where
E(e) = 0. Then regression function is the hyperplane

E(Y ) ≡ E(Y |x) = x1β1 + x2β2 + · · · + xpβp = xTβ. (2.9)

Assume OLS is used to find β̂. Then the point estimator of Yf given x = xf

is
Ŷf = xf,1β̂1 + · · · + xf,pβ̂p = xT

f β̂. (2.10)

The point estimator of E(Yf ) ≡ E(Yf |xf ) given x = xf is also Ŷf = xT
f β̂.

Assume that the MLR model contains a constant β1 so that x1 ≡ 1. The large
sample 100 (1 − δ)% confidence interval (CI) for E(Yf |xf ) = xT

f β = E(Ŷf )
is

Ŷf ± tn−p,1−δ/2se(Ŷf) (2.11)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees of

freedom. Generally se(Ŷf) will come from output, but

se(Ŷf) =
√

MSE hf =
√

MSE xT
f (XT X)−1xf .
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Recall the interpretation of a 100 (1 − δ)% CI for a parameter µ is that
if you collect data then form the CI, and repeat for a total of k times where
the k trials are independent from the same population, then the probability
that m of the CIs will contain µ follows a binomial(k, ρ = 1−δ) distribution.
Hence if 100 95% CIs are made, ρ = 0.95 and about 95 of the CIs will contain
µ while about 5 will not. Any given CI may (good sample) or may not (bad
sample) contain µ, but the probability of a “bad sample” is δ.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition max hi → 0 in
probability usually holds if the researcher picked the design matrix X or if
the xi are iid random vectors from a well behaved population. Outliers can

cause the condition to fail. Convergence in probability, Yn
P→ c, is similar to

other types of convergence: Yn is likely to be close to c if the sample size n
is large enough.

Theorem 2.8: Huber (1981, p. 157-160). Consider the MLR model
Yi = xT

i β + ei and assume that the errors are independent with zero mean
and the same variance: E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal
where a is any fixed constant p × 1 vector.

Definition 2.20. A large sample 100(1 − δ)% prediction interval (PI)

has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn)
P→ 1 − δ as the sample size

n → ∞. For the Gaussian MLR model, assume that the random variable Yf

is independent of Y1, ..., Yn. Then the 100 (1 − δ)% PI for Yf is

Ŷf ± tn−p,1−δ/2se(pred) (2.12)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees of
freedom. Generally se(pred) will come from output, but

se(pred) =
√

MSE (1 + hf ).
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The interpretation of a 100 (1−δ)% PI for a random variable Yf is similar
to that of a CI. Collect data, then form the PI, and repeat for a total of k
times where k trials are independent from the same population. If Yfi is the
ith random variable and PIi is the ith PI, then the probability that Yfi ∈ PIi

for m of the PIs follows a binomial(k, ρ = 1 − δ) distribution. Hence if 100
95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of
the CI goes to 0 as the sample size n goes to ∞ while the length of the PI
converges to some nonzero number J , say. Secondly, the CI for E(Yf |xf )
given in Definition 2.19 tends to work well for the iid error MLR model if
the sample size is large while the PI in Definition 2.20 is made under the
assumption that the ei are iid N(0, σ2) and may not perform well if the
normality assumption is violated.

To see this, consider xf such that the heights Y of women between 18
and 24 is normal with a mean of 66 inches and an SD of 3 inches. A 95%
CI for E(Y |xf ) should be centered at about 66 and the length should go
to zero as n gets large. But a 95% PI needs to contain about 95% of the
heights so the PI should converge to the interval 66 ± 1.96(3)). This result
follows because if Y ∼ N(66, 9) then P (Y < 66 − 1.96(3)) = P (Y > 66 +
1.96(3)) ≈ 0.025. In other words, the endpoints of the PI estimate the 97.5
and 2.5 percentiles of the normal distribution. However, the percentiles of a
parametric error distribution depend heavily on the parametric distribution
and the parametric formulas are violated if the assumed error distribution is
incorrect.

Assume that the iid error MLR model is valid so that e is from some
distribution with 0 mean and variance σ2. Olive (2007) shows that if 1−γ is
the asymptotic coverage of the classical nominal (1− δ)100% PI (2.12), then

1 − γ = P (−σz1−δ/2 < e < σz1−δ/2) ≥ 1 − 1

z2
1−δ/2

(2.13)

where the inequality follows from Chebyshev’s inequality. Hence the asymp-
totic coverage of the nominal 95% PI is at least 73.9%. The 95% PI (2.12)
was often quite accurate in that the asymptotic coverage was close to 95% for
a wide variety of error distributions. The 99% and 90% PIs did not perform
as well.
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Let ξδ be the δ percentile of the error e, ie, P (e ≤ ξδ) = δ. Let ξ̂δ be
the sample δ percentile of the residuals. Then the results from Theorem
2.8 suggest that the residuals ri estimate the errors ei, and that the sample
percentiles of the residuals ξ̂δ estimate ξδ. For many error distributions,

E(MSE) = E

(
n∑

i=1

r2
i

n − p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)
.

This result suggests that √
n

n − p
ri ≈ ei.

Using

an =

(
1 +

15

n

)√
n

n − p

√
(1 + hf ), (2.14)

a large sample semiparametric 100(1 − δ)% PI for Yf is

(Ŷf + anξ̂δ/2, Ŷf + anξ̂1−δ/2). (2.15)

This PI is very similar to the classical PI except that ξ̂δ is used instead of
σzδ to estimate the error percentiles ξδ . The large sample coverage 1 − γ of
this nominal 100(1 − δ)% PI is asymptotically correct: 1 − γ = 1 − δ.

Example 2.8. For the Buxton (1920) data suppose that the response Y
= height and the predictors were a constant, head length, nasal height, bigonal
breadth and cephalic index. Five outliers were deleted leaving 82 cases. Figure
2.3 shows a response plot of the fitted values versus the response Y with the
identity line added as a visual aid. The plot suggests that the model is good
since the plotted points scatter about the identity line in an evenly populated
band although the relationship is rather weak since the correlation of the
plotted points is not very high. The triangles represent the upper and lower
limits of the semiparametric 95% PI (2.15). For this example, 79 (or 96%)
of the Yi fell within their corresponding PI while 3 Yi did not. A plot using
the classical PI (2.12) would be very similar for this data.

Given output showing β̂i and given xf , se(pred) and se(Ŷf), Example

2.9 shows how to find Ŷf , a CI for E(Yf |xf ) and a PI for Yf . Below is shown
typical output in symbols. Sometimes “Label” is replaced by “Predictor”
and “Estimate” by “coef” or “Coefficients.”
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Figure 2.3: 95% PI Limits for Buxton Data

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

Example 2.9. The Rouncefield (1995) data are female and male life
expectancies from n = 91 countries. Suppose that it is desired to predict
female life expectancy Y from male life expectancy X. Suppose that if Xf =

60, then se(pred) = 2.1285, and se(Ŷf) = 0.2241. Below is some output.

Label Estimate Std. Error t-value p-value

Constant -2.93739 1.42523 -2.061 0.0422

mlife 1.12359 0.0229362 48.988 0.0000

a) Find Ŷf if Xf = 60.

Solution: In this example, xf = (1, Xf )
T since a constant is in the output

above. Thus Ŷf = β̂1 + β̂2Xf = −2.93739 + 1.12359(60) = 64.478.
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b) If Xf = 60, find a 90% confidence interval for E(Y ) ≡ E(Yf |xf ).

Solution: The CI is Ŷf ± tn−2,1−δ/2se(Ŷf) = 64.478 ± 1.645(0.2241) =
64.478 ± 0.3686 = (64.1094, 64.8466). To use the t–table on the last page of
Chapter 17, use the 2nd to last row marked by Z since d = df = n − 2 =
89 > 30. In the last row find CI = 90% and intersect the 90% column and
the Z row to get the value of t89,0.95 ≈ z.95 = 1.645.

c) If Xf = 60, find a 90% prediction interval for Yf .

Solution: The PI is Ŷf ± tn−2,1−δ/2se(pred) = 64.478 ± 1.645(2.1285)
= 64.478 ± 3.5014 = (60.9766, 67.9794).

2.6 The Partial F or Change in SS TEST

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is some
function of w1, ..., wr. This useful model will be called the full model. It is
important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 2.21. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let
the reduced model use Y , x1, xi2, ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.

The change in SS F test or partial F test is used to test whether the
reduced model is good in that it can be used instead of the full model. It
is crucial that the reduced model be selected before looking at the data.
If the reduced model is selected after looking at output and discarding the
worst variables, then the p–value for the partial F test will be too high. For
(ordinary) least squares, usually a constant is used, and we are assuming
that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis Ho : βiq+1 = · · · = βip = 0, and alternative
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hypothesis HA : at least one of the βij �= 0 for j > q. The null hypothesis is
equivalent to Ho: “the reduced model is good.” Since only the full model and
reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the change in SS or partial F test, fit the full model and the
reduced model and obtain the ANOVA table for each model. The quanti-
ties dfF , SSE(F) and MSE(F) are for the full model and the corresponding
quantities from the reduced model use an R instead of an F . Hence SSE(F)
and SSE(R) are the residual sums of squares for the full and reduced models,
respectively. Shown below is output only using symbols.

Full model

Source df SS MS Fo and p-value
Regression p − 1 SSR MSR Fo=MSR/MSE

Residual dfF = n − p SSE(F) MSE(F) for Ho:β2 = · · · = βp = 0

Reduced model

Source df SS MS Fo and p-value
Regression q − 1 SSR MSR Fo=MSR/MSE

Residual dfR = n − q SSE(R) MSE(R) for Ho: β2 = · · · = βq = 0

Be able to perform the 4 step change in SS F test = partial F
test of hypotheses: i) State the hypotheses. Ho: the reduced model is
good Ha: use the full model
ii) Find the test statistic. FR =[

SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the p–value = P(FdfR−dfF ,dfF
> FR). (On exams typically an F

table is used. Here dfR − dfF = p − q = number of parameters set to 0, and
dfF = n − p).
iv) State whether you reject Ho or fail to reject Ho. Reject Ho if the p–value
< δ and conclude that the full model should be used. Otherwise, fail to reject
Ho and conclude that the reduced model is good.
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Sometime software has a shortcut. For example the R/Splus software uses
the anova command. As an example, assume that the full model uses x2 and
x3 while the reduced models uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the 1st command looks more like red < − lm(y∼x1).)

full <- lm(y~x2+x3)

red <- lm(y~x2)

anova(red,full)

For an n × 1 vector a, let

‖a‖ =
√

a2
1 + · · · + a2

n =
√

aTa

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following proposition suggests that Ho is rejected in the partial F
test if the change in residual sum of squares SSE(R) − SSE(F ) is large
compared to SSE(F ). If the change is small, then FR is small and the test
suggests that the reduced model can be used.

Proposition 2.9. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =

SSE(R) − SSE(F )

SSE(F )

n − p

p − q
=

R2 −R2
R

1 −R2

n − p

p − q
.

Definition 2.22. An FF plot is a plot of fitted values from 2 different
models or fitting methods.
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Six plots are useful diagnostics for the partial F test: the RR plot with
the residuals from the full model on the vertical axis, the FF plots with the
fitted values from the full model on the vertical axis, and always make the
response and residual plots for the full and reduced models. Suppose that
the full model is a useful MLR model. If the reduced model is good, then
the response plots from the full and reduced models should be very similar,
visually. Similarly, the residual plots (of the fitted values versus the residuals)
from the full and reduced models should be very similar, visually. Finally,
the correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and FF
plots as a visual aid. Also add the OLS line from regressing r on rR to the
RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity
line in that it should be difficult to see that the two lines intersect at the
origin, as in Figure 2.2. If the FF plot looks good but the RR plot does not,
the reduced model may be good if the main goal of the analysis is to predict
Y.

In Chapter 3, Example 3.8 describes the Gladstone (1905-1906) data. Let
the reduced model use a constant, (size)1/3, sex and age. Then Figure 3.7
shows the response and residual plots for the full and reduced models, and
Figure 3.9 shows the RR and FF plots.

Summary Analysis of Variance Table for the Full Model

Source df SS MS F p-value

Regression 6 260467. 43411.1 87.41 0.0000

Residual 69 34267.4 496.629

Summary Analysis of Variance Table for the Reduced Model

Source df SS MS F p-value

Regression 2 94110.5 47055.3 17.12 0.0000

Residual 73 200623. 2748.27

Example 2.10. For the Buxton (1920) data, n = 76 after 5 outliers and
6 cases with missing values are removed. Assume that the response variable
Y is height, and the explanatory variables are x2 = bigonal breadth, x3 =
cephalic index, x4 = finger to ground, x5 = head length, x6 = nasal height,
x7 = sternal height. Suppose that the full model uses all 6 predictors plus a
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constant (x1) while the reduced model uses the constant, cephalic index and
finger to ground. Test whether the reduced model can be used instead of the
full model using the above output.

Solution: The 4 step partial F test is shown below.
i) Ho: the reduced model is good Ha: use the full model
ii)

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
200623.0 − 34267.4

73 − 69

]
/496.629

= 41588.9/496.629 = 83.742.
iii) p–value = P (F4,69 > 83.742) = 0.00.
iv) The p–value < δ (= 0.05, since δ was not given), so reject Ho. The full
model should be used instead of the reduced model. (Bigonal breadth, head
length, nasal height, and sternal height are needed in the MLR for height
given that cephalic index and finger to ground are in the model.)

Using a computer to get the p–value makes sense, but for exams you
may need to use a table. In ARC, you can use the Calculate probability
option from the ARC menu, enter 83.742 as the value of the statistic, 4
and 69 as the degrees of freedom, and select the F distribution. To use the
table near the end of Chapter 17, use the bottom row since the denominator
degrees of freedom 69 > 30. Intersect with the column corresponding to k = 4
numerator degrees of freedom. The cutoff value is 2.37. If the FR statistic
was 2.37, then the p–value would be 0.05. Since 83.472 > 2.37, the p–value
< 0.05, and since 83.472 >> 2.37, we can say that the p–value ≈ 0.0.

Example 2.11. Now assume that the reduced model uses the constant,
sternal height, finger to ground and head length. Using the output below, test
whether the reduced model is good.

Summary Analysis of Variance Table for Reduced Model

Source df SS MS F p-value

Regression 3 259704. 86568. 177.93 0.0000

Residual 72 35030.1 486.528

Solution: The 4 step partial F test follows.
i) Ho: the reduced model is good Ha: use the full model
ii)

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
35030.1.0 − 34267.4

72 − 69

]
/496.629
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= 254.2333/496.629 = 0.512.
iii) The p–value = P (F3,69 > 0.512) = 0.675.
iv) The p–value > δ, so reject fail to reject Ho. The reduced model is good.

To use the F table near the end of Chapter 17, use the bottom row
since the denominator degrees of freedom 69 > 30. Intersect with the column
corresponding to k = 3 numerator degrees of freedom. The cutoff value is
2.61. Since 0.512 < 2.61, the p–value > 0.05, and this is enough information
to fail to reject Ho.

2.7 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 = 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length and x7 = length of back, then R2

i may be high
for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 2.23. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p > 30, use the N(0,1) cutoff z1−δ/2.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses Ho: βk = 0 Ha: βk �= 0.
ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find the p–value from output or use the t–table: p–value =

2P (tn−p < −|to,k|).
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Use the normal table or ν = ∞ in the t–table if the degrees of freedom
ν = n − p > 30.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall that Ho is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. If Ho is rejected, then conclude that
xk is needed in the MLR model for Y given that the other predictors are in
the model. If you fail to reject Ho, then conclude that xk is not needed in
the MLR model for Y given that the other predictors are in the model. Note
that xk could be a very useful individual predictor, but may not be needed
if other predictors are added to the model. It is better to use the output to
get the test statistic and p–value than to use formulas and the t–table, but
exams may not give the relevant output.

Definition 2.24. Assume that there is a constant x1 ≡ 1 in the model,
and let x(k) = (x1, ..., xk−1, xk+1, ..., xp)

T be the vector of predictors with the
kth predictor xk deleted. Let r(k) be the residuals from regressing Y on x(k),
that is, on all of the predictor variables except xk. Let r(xk|x(k)) denote the
residuals from regressing xk on x(k). Then an added variable plot for xk

is a plot of r(xk|x(k)) versus r(k) for k = 2, ..., p.

The added variable plot (also called a partial regression plot) is used to
give information about the test Ho : βk = 0. The points in the plot cluster
about a line through the origin with slope = β̂k. An interesting fact is that the
residuals from this line, ie the residuals from regressing r(k) on r(xk|x(k)), are
exactly the same as the usual residuals from regressing Y on x. The range
of the horizontal axis gives information about the collinearity of xk with the
other predictors. Small range implies that xk is well explained by the other
predictors. The r(xk|x(k)) represent the part of xk that is not explained by
the remaining variables while the r(k) represent the part of Y that is not
explained by the remaining variables.

An added variable plot with a clearly nonzero slope and tight clustering
about a line implies that xk is needed in the MLR for Y given that the other
predictors x2, ..., xk−1, xk+1, ..., xp are in the model. Slope near zero in the
added variable plot implies that xk may not be needed in the MLR for Y
given that all other predictors x2, ..., xi−1, xk+1, ..., xp are in the model.

If the zero line with 0 slope and 0 intercept and the OLS line are added to
the added variable plot, the variable is probably needed if it is clear that the
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two lines intersect at the origin. Then the point cloud should be tilted away
from the zero line. The variable is probably not needed if the two lines nearly
coincide near the origin in that you can not clearly tell that they intersect at
the origin.

Shown below is output only using symbols and the following example
shows how to use output to perform the Wald t–test.

Response = Y
Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

Label Estimate Std. Error t-value p-value

Constant -7736.26 2660.36 -2.908 0.0079

x2 0.180225 0.00503871 35.768 0.0000

x3 -1.89411 2.65789 -0.713 0.4832

R Squared: 0.987584, Sigma hat: 4756.08, Number of cases: 26

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 41380950140. 20690475070. 914.69 0.0000

Residual 23 520265969. 22620260.

Example 2.12. The output above was collected from 26 districts in
Prussia in 1843. See Hebbler (1847). The goal is to study the relationship
between Y = the number of women married to civilians in the district with
the predictors x2 = the population of the district and x3 = military women
= number of women married to husbands in the military.

a) Find a 95% confidence interval for β2 corresponding to population.

The CI is β̂k ± tn−p,1−δ/2 se(β̂k). Since n = 26, df = n− p = 26 − 3 = 23.
From the t–table at the end of Chapter 17, intersect the df = 23 row with
the column that is labelled by 95% on the bottom. Then tn−p,1−δ/2 = 2.069.
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Using the output shows that the 95% CI is 0.180225 ± 2.069(0.00503871) =
(0.16980, 0.19065).

b) Perform a 4 step test for Ho: β2 = 0 corresponding to population.
i) Ho: β2 = 0 HA : β2 �= 0
ii) to2 = 35.768
iii) p–value = 0.0
iv) Reject Ho, the population is needed in the MLR model for the number

of women married to civilians if number of military women is in the model.

c) Perform a 4 step test for Ho: β3 = 0 corresponding to military women.
i) Ho: β3 = 0 HA : β3 �= 0
ii) to2 = −0.713
iii) p–value = 0.4883
iv) Fail to reject Ho, the number of military women is not needed in the

MLR model for the number of women married to civilians if population is in
the model.

Figure 2.4 shows the added variable plots for x2 and x3. The plot for x2

strongly suggests that x2 is needed in the MLR model while the plot for x3

indicates that x3 does not seem to be very important. The slope of the OLS
line in a) is 0.1802 while the slope of the line in b) is −1.894.

If the predictor xk is categorical, eg gender, the added variable plot may
look like two spheres, but if the OLS line is added to the plot, it will have
slope equal to β̂k.

2.8 The OLS Criterion

The OLS estimator β̂ minimizes the OLS criterion

QOLS(η) =
n∑

i=1

r2
i (η)

where the residual ri(η) = Yi − xT
i η. In other words, let ri = ri(β̂) be the

OLS residuals. Then
∑n

i=1 r2
i ≤ ∑n

i=1 r2
i (η) for any p × 1 vector η, and the

equality holds iff η = β̂ if the n× p design matrix X is of full rank p ≤ n. In
particular, if X has full rank p, then

∑n
i=1 r2

i <
∑n

i=1 r2
i (β) =

∑n
i=1 e2

i even
if the MLR model Y = Xβ + e is a good approximation to the data.
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Figure 2.4: Added Variable Plots for x2 and x3

Example 2.13. When a model depends on the predictors x only through
the linear combination xTβ, then xTβ is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model
is Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS
criterion graphically, consider the Gladstone (1905-6) data where we used
brain weight as the response. A constant, x2 = age, x3 = sex and x4 =
(size)1/3 were used as predictors after deleting five “infants” from the data
set. In Figure 2.5a, the OLS response plot of the OLS ESP = Ŷ ver-
sus Y is shown. The vertical deviations from the identity line are the
residuals, and OLS minimizes the sum of squared residuals. If any other
ESP xTη is plotted versus Y , then the vertical deviations from the iden-
tity line are the residuals ri(η). For this data, the OLS estimator β̂ =
(498.726,−1.597, 30.462, 0.696)T . Figure 2.5b shows the response plot using
the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T . Hence only the
coefficient for x4 was changed; however, the residuals ri(η) in the resulting
plot are much larger on average than the residuals in the OLS response plot.
With slightly larger changes in the OLS ESP, the resulting η will be such
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that the squared residuals are massive.

Proposition 2.10. The OLS estimator β̂ is the unique minimizer of the
OLS criterion if X has full rank p ≤ n.

Proof: Seber and Lee p. 36-37. Recall that the hat matrix H =
X(XTX)−1XT and notice that (I − H)T = I − H , that (I − H)H = 0
and that HX = X. Let η be any p × 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) =

‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ −Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ −Xη).

Hence
‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ −Xη‖2. (2.16)

So
‖Y −Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi − xi,1η1 −
xi,2η2 − · · · − xi,pηp. Recall that xT

i is the ith row of X while xj is the jth
column. Since QOLS(η) =

n∑
i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑
i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(xj)T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives

XTY − XTXβ̂ = 0,
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or
XT Xβ̂ = XT Y . (2.17)

Equation (2.17) is known as the normal equations. If X has full rank then
β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (2.16).

2.9 Two Important Special Cases

When studying a statistical model, it is often useful to try to understand
the model that contains a constant but no nontrivial predictors, then try to
understand the model with a constant and one nontrivial predictor, then the
model with a constant and two nontrivial predictors and then the general
model with many predictors. In this text, most of the models are such that
Y is independent of x given xTβ, written

Y x|xT β.

Then wi = xT
i β̂ is a scalar, and trying to understand the model in terms

of xT
i β̂ is about as easy as trying to understand the model in terms of one

nontrivial predictor. In particular, the plot of xT
i β̂ versus Yi is essential.

For MLR, the two main benefits of studying the MLR model with one
nontrivial predictor X are that the data can be plotted in a scatterplot of Xi

versus Yi and that the OLS estimators can be computed by hand with the
aid of a calculator if n is small.

2.9.1 The Location Model

The location model
Yi = µ + ei, i = 1, . . . , n (2.18)

is a special case of the multiple linear regression model where p = 1, X = 1
and β = β1 = µ. This model contains a constant but no nontrivial predictors.

In the location model, β̂OLS = β̂1 = µ̂ = Y . To see this, notice that

QOLS(η) =

n∑
i=1

(Yi − η)2 and
dQOLS(η)

dη
= −2

n∑
i=1

(Yi − η).
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Setting the derivative equal to 0 and calling the solution µ̂ gives
∑n

i=1 Yi = nµ̂
or µ̂ = Y . The second derivative

d2QOLS(η)

dη2
= 2n > 0,

hence µ̂ is the global minimizer.

2.9.2 Simple Linear Regression

The simple linear regression (SLR) model is

Yi = β1 + β2Xi + ei = α + βXi + ei

where the ei are iid with E(ei) = 0 and VAR(ei) = σ2 for i = 1, ..., n.
The Yi and ei are random variables while the Xi are treated as known
constants. The parameters β1, β2 and σ2 are unknown constants that
need to be estimated. (If the Xi are random variables, then the model is
conditional on the Xi’s provided that the errors ei are independent of the
Xi. Hence the Xi’s are still treated as constants.)

The SLR model is a special case of the MLR model with p = 2, xi,1 ≡ 1
and xi,2 = Xi. The normal SLR model adds the assumption that the ei are
iid N(0, σ2). That is, the error distribution is normal with zero mean and
constant variance σ2. The response variable Y is the variable that you want
to predict while the predictor variable X is the variable used to predict the
response.

For SLR, E(Yi) = β1+β2Xi and the line E(Y ) = β1+β2X is the regression
function. VAR(Yi) = σ2.

For SLR, the least squares estimators β̂1 and β̂2 minimize the least
squares criterion Q(η1, η2) =

∑n
i=1(Yi − η1 − η2Xi)

2. For a fixed η1 and η2, Q
is the sum of the squared vertical deviations from the line Y = η1 + η2X.

The least squares (OLS) line is Ŷ = β̂1 + β̂2X where the slope

β̂2 ≡ β̂ =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi − X)2

and the intercept β̂1 ≡ α̂ = Y − β̂2X.
By the chain rule,

∂Q

∂η1
= −2

n∑
i=1

(Yi − η1 − η2Xi)
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and
∂2Q

∂η2
1

= 2n.

Similarly,
∂Q

∂η2
= −2

n∑
i=1

Xi(Yi − η1 − η2Xi)

and
∂2Q

∂η2
1

= 2

n∑
i=1

X2
i .

Setting the first partial derivatives to zero and calling the solutions β̂1 and
β̂2 shows that the OLS estimators β̂1 and β̂2 satisfy the normal equations:

n∑
i=1

Yi = nβ̂1 + β̂2

n∑
i=1

Xi and

n∑
i=1

XiYi = β̂1

n∑
i=1

Xi + β̂2

n∑
i=1

X2
i .

The first equation gives β̂1 = Y − β̂2X.
There are several equivalent formulas for the slope β̂2.

β̂2 ≡ β̂ =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi − X)2
=

∑n
i=1 XiYi − 1

n
(
∑n

i=1 Xi)(
∑n

i=1 Yi)∑n
i=1 X2

i − 1
n
(
∑n

i=1 Xi)2

=

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2

=

∑n
i=1 XiYi − nX Y∑n

i=1 X2
i − n(X)2

= ρ̂sY /sX .

Here the sample correlation ρ̂ ≡ ρ̂(X, Y ) = corr(X, Y ) =∑n
i=1(Xi − X)(Yi − Y )

(n − 1)sXsY
=

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

where the sample standard deviation

sW =

√√√√ 1

n − 1

n∑
i=1

(Wi − W )2

70



for W = X, Y. Notice that the term n− 1 that occurs in the denominator of
ρ̂, s2

Y and s2
X can be replaced by n as long as n is used in all 3 quantities.

Also notice that the slope β̂2 =
∑n

i=1 kiYi where the constants

ki =
Xi − X∑n

j=1(Xj − X)2
. (2.19)

2.10 The No Intercept MLR Model

The no intercept MLR model, also known as regression through the origin, is
still Y = Xβ + e, but there is no intercept β1 in the model, so X does not
contain a column of ones 1. Software gives output for this model if the “no
intercept” or “intercept = F” option is selected. For the no intercept model,
the assumption E(e) = 0 is important, and this assumption is rather strong.

Many of the usual MLR results still hold: β̂OLS = (XTX)−1XTY , the

vector of predicted fitted values Ŷ = Xβ̂OLS = HY where the hat matrix
H = X(XTX)−1XT provided the inverse exists, and the vector of residuals

is r = Y − Ŷ . The response plot and residual plot are made in the same way
and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F
test in Section 2.4 tests Ho : β2 = · · · = βp = 0. The test in this section tests
Ho : β1 = · · · = βp = 0 ≡ Ho : β = 0. The following definition and test
follows Guttman (1982, p. 147) closely.

Definition 2.25. Assume that Y = Xβ+e where the ei are iid. Assume
that it is desired to test Ho : β = 0 versus HA : β �= 0.

a) The uncorrected total sum of squares

SST =

n∑
i=1

Y 2
i . (2.20)

b) The model sum of squares

SSM =

n∑
i=1

Ŷ 2
i . (2.21)

c) The residual sum of squares or error sum of squares is
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SSE =

n∑
i=1

(Yi − Ŷi)
2 =

n∑
i=1

r2
i . (2.22)

d) The degrees of freedom (df) for SSM is p, the df for SSE is n − p and
the df for SST is n. The mean squares are MSE = SSE/(n− p) and MSM =
SSM/p.

The ANOVA table given for the “no intercept” or “intercept = F” option
is below.

Summary Analysis of Variance Table

Source df SS MS F p-value
Model p SSM MSM Fo=MSM/MSE for Ho:

Residual n-p SSE MSE β = 0

The 4 step no intercept ANOVA F test for β = 0 is below.
i) State the hypotheses Ho: β = 0, Ha: β �= 0.
ii) Find the test statistic Fo = MSM/MSE or obtain it from output.
iii) Find the p–value from output or use the F–table: p–value =

P (Fp,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude
that there is an MLR relationship between Y and the predictors x1, ..., xp. If
you fail to reject Ho, conclude that there is not a MLR relationship between
Y and the predictors x1, ..., xp.

Warning: Several important models can be cast in the no intercept
MLR form, but often a different test than Ho : β = 0 is desired. For
example, when the generalized or weighted least squares models of Chapter
4 are transformed into no intercept MLR form, the test of interest is Ho:
β2 = · · · = βp = 0. The one way ANOVA model of Chapter 5 is equivalent
to the cell means model, which is in no intercept MLR form, but the test of
interest is Ho : β1 = · · · = βp.

Proposition 2.11. Suppose Y = Xβ + e where X may or may not
contain a column of ones. Then the partial F test of Section 2.6 can be used
for inference.
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Example 2.14. Consider the Gladstone (1905-6) data described in Ex-
ample 2.5. If the file of data sets regdata is downloaded into R/Splus, then
the ANOVA F statistic for testing β2 = · · · = β4 = 0 can be found with the
following commands. The command lsfit adds a column of ones to x which
contains the variables size, sex, breadth and circumference. Three of these
predictor variables are head measurements. Then the response Y is brain
weight, and the model contains a constant (intercept).

> y <- cbrainy

> x <- cbrainx[,c(11,10,3,6)]

> ls.print(lsfit(x,y))

F-statistic (df=4, 262)=196.2433

The ANOVA F test can also be found with the no intercept model by
adding a column of ones to R/Splus matrix x and then performing the partial
F test with the full model and the reduced model that only uses the column
of ones. Notice that the “intercept=F” option needs to be used to fit both
models. The residual standard error = RSE =

√
MSE. Thus SSE = (n −

k)(RSE)2 where n − k is the denominator degrees of freedom for the F test
and k is the numerator degrees of freedom = number of variables in the
model. The column of ones xone is counted as a variable. The last line of
output computes the partial F statistic and is again ≈ 196.24.

> xone <- 1 + 0*1:267

> x <- cbind(xone,x)

> ls.print(lsfit(x,y,intercept=F))

Residual Standard Error=82.9175

F-statistic (df=5, 262)=12551.02

Estimate Std.Err t-value Pr(>|t|)

xone 99.8495 171.6189 0.5818 0.5612

size 0.2209 0.0358 6.1733 0.0000

sex 22.5491 11.2372 2.0066 0.0458

breadth -1.2464 1.5139 -0.8233 0.4111

circum 1.0255 0.4719 2.1733 0.0307

> ls.print(lsfit(x[,1],y,intercept=F))

Residual Standard Error=164.5028

73



F-statistic (df=1, 266)=15744.48

Estimate Std.Err t-value Pr(>|t|)

X 1263.228 10.0674 125.477 0

> ((266*(164.5028)^2 - 262*(82.9175)^2)/4)/(82.9175)^2

[1] 196.2435

2.11 Summary

1) The response variable is the variable that you want to predict. The pre-
dictor variables are the variables used to predict the response variable.

2) Regression is the study of the conditional distribution Y |x.

3) The MLR model is

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the ith
error. Assume that the errors are iid with E(ei) = 0 and VAR(ei) = σ2 < ∞.
Assume that the errors are independent of the predictor variables xi.

4) In matrix notation, these n equations become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

5) The OLS estimators are β̂OLS = (XTX)−1XTY and σ̂2 = MSE =∑n
i=1 r2

i /(n − p). Thus σ̂ =
√

MSE. The vector of predicted or fitted values

Ŷ OLS = Xβ̂OLS = HY where the hat matrix H = X(XTX)−1XT . The
ith fitted value Ŷi = xT

i β̂. The ith residual ri = Yi − Ŷi and the vector of
residuals r = Y − Ŷ = (I −H)Y . The least squares regression equation for
a model containing a constant is Ŷ = β̂1 + β̂2x2 + · · · + β̂pxp.

6) Always make the response plot of Ŷ versus Y and residual plot of Ŷ
versus r for any MLR analysis. The response plot is used to visualize the
MLR model, that is, to visualize the conditional distribution of Y |xTβ. If the
iid constant variance MLR model is useful, then i) the plotted points in the
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response plot should scatter about the identity line with no other pattern,
and ii) the plotted points in the residual plot should scatter about the r = 0
line with no other pattern. If either i) or ii) is violated, then the iid constant
variance MLR model is not sustained. In other words, if the plotted points in
the residual plot show some type of dependency, eg increasing variance or a
curved pattern, then the multiple linear regression model may be inadequate.

7) Use xf < max hi for valid predictions.

8) If the MLR model contains a constant, then SSTO = SSE + SSR where
SSTO =

∑n
i=1(Yi−Y )2, SSR =

∑n
i=1(Ŷi−Y )2 and SSE =

∑n
i=1(Yi−Ŷi)

2 =∑n
i=1 r2

i .

9) If the MLR model contains a constant, then R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO
.

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

10) Be able to perform the 4 step ANOVA F test of hypotheses:
i) State the hypotheses Ho: β2 = · · · = βp = 0 Ha: not Ho.
ii) Find the test statistic Fo = MSR/MSE or obtain it from output.
iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject Ho, conclude that there is a not a MLR relationship between
Y and the predictors x2, ..., xp.

11) The large sample 100 (1 − δ)% CI for E(Yf |xf ) = xT
f β = E(Ŷf ) is

Ŷf ± tn−p,1−δ/2se(Ŷf) where P (T ≤ tn−p,δ) = δ if T has a t distribution with
n − p degrees of freedom.

12) The 100 (1 − δ)% PI for Yf is Ŷf ± tn−p,1−δ/2se(pred).
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Full model

Source df SS MS Fo and p-value
Regression p − 1 SSR MSR Fo=MSR/MSE

Residual dfF = n − p SSE(F) MSE(F) for Ho:β2 = · · · = βp = 0

Reduced model

Source df SS MS Fo and p-value
Regression q − 1 SSR MSR Fo=MSR/MSE

Residual dfR = n − q SSE(R) MSE(R) for Ho: β2 = · · · = βq = 0

13) Be able to perform the 4 step partial F test = change in SS F
test of hypotheses: i) State the hypotheses Ho: the reduced model is good
Ha: use the full model.
ii) Find the test statistic FR =[

SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the p–value = P(FdfR−dfF ,dfF
> FR). (On exams typically an F

table is used. Here dfR − dfF = p − q = number of parameters set to 0, and
dfF = n − p).
iv) State whether you reject Ho or fail to reject Ho. Reject Ho if the p–value
< δ and conclude that the full model should be used. Otherwise, fail to reject
Ho and conclude that the reduced model is good.

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

14) The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k). If the degrees
of freedom d = n − p > 30, use the N(0,1) cutoff z1−δ/2.

15) The corresponding 4 step t–test of hypotheses has the following steps:
i) State the hypotheses Ho: βk = 0 Ha: βk �= 0.
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ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find the p–value from output or use the t–table: p–value =

2P (tn−p < −|to,k|).
Use the normal table or ν = ∞ in the t–table if the degrees of freedom
ν = n − p > 30.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem. If Ho is
rejected, then conclude that xk is needed in the MLR model for Y given that
the other predictors are in the model. If you fail to reject Ho, then conclude
that xk is not needed in the MLR model for Y given that the other predictors
are in the model.

16) Given
∑n

i=1(Xi − X)(Yi − Y ),
∑n

i=1(Xi − X)2, X, and Y , find the

least squares line Ŷ = β̂1 + β̂2X where

β̂2 =

∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi −X)2

and β̂1 = Y − β̂2X.

17) Given ρ̂, sX , sY , X , and Y , find the least squares line Ŷ = β̂1 + β̂2X
where β̂2 = ρ̂sY /sX and β̂1 = Y − β̂2X.

2.12 Complements

Under regularity conditions, the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ) (2.23)

when
XT X

n
→ W −1.

This large sample result is analogous to the central limit theorem and is often
a good approximation if n > 5p and the error distribution has “light tails,”
ie, the probability of an outlier is nearly 0 and the tails go to zero at an
exponential rate or faster. For error distributions with heavier tails, much
larger samples are needed, and the assumption that the variance σ2 exists is
crucial, eg, Cauchy errors are not allowed.
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Under the regularity conditions, much of the inference that is valid for
the normal MLR model is approximately valid for the iid error MLR model
when the sample size is large. For example, confidence intervals for βi are
asymptotically correct, as are t tests for βi = 0 (see Li and Duan 1989, p.
1035), the MSE is an estimator of σ2 by Theorem 2.6 and variable selection
procedures perform well (see Chapter 3 and Olive and Hawkins 2005).

Algorithms for OLS are described in Datta (1995), Dongarra, Moler,
Bunch and Stewart (1979), and Golub and Van Loan (1989). See Harter
(1974a,b, 1975a,b,c, 1976) for a historical account of multiple linear regres-
sion. Draper (2000) provides a bibliography of more recent references.

Cook and Weisberg (1997, 1999 ch. 17) call a plot that emphasizes model
agreement a model checking plot.

Anscombe (1961) and Anscombe and Tukey (1963) suggested graphi-
cal methods for checking multiple linear regression and experimental design
methods that were the “state of the art” at the time.

The rules of thumb given in this chapter for residual plots are not perfect.
Cook (1998, p. 4–6) gives an example of a residual plot that looks like a
right opening megaphone, but the MLR assumption that was violated was
linearity, not constant variance. Ghosh (1987) gives an example where the
residual plot shows no pattern even though the constant variance assumption
is violated. Searle (1988) shows that residual plots will have parallel lines if
several cases take on each of the possible values of the response variable, eg
if the response is a count.

Several authors have suggested using the response plot to visualize the
coefficient of determination R2 in multiple linear regression. See for example
Chambers, Cleveland, Kleiner, and Tukey (1983, p. 280). Anderson-Sprecher
(1994) provides an excellent discussion about R2. Kachigan (1982, p. 174
– 177) also gives a good explanation of R2. Also see Kv̊alseth (1985) and
Freedman (1983).

Hoaglin and Welsh (1978) discuss the hat matrix H , and Brooks, Carroll
and Verdini (1988) recommend using xf < max hi for valid predictions. Si-
multaneous prediction intervals are given by Sadooghi-Alvandi (1990). Olive
(2007) suggests three large sample prediction intervals for MLR that are valid
under the iid error MLR model. Also see Schoemoyer (1992).

Sall (1990) discusses the history of added variable plots while Darlington
(1969) provides an interesting proof that β̂ minimizes the OLS criterion.

78



2.12.1 Lack of Fit Tests

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

R Squared: R2

Sigma hat:
√

MSE
Number of cases: n
Degrees of Freedom : n − p

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

The typical “relevant OLS output” has the form given above, but occa-
sionally software also includes output for a lack of fit test as shown below.

Source df SS MS Fo
Regression p − 1 SSR MSR Fo=MSR/MSE
Residual n − p SSE MSE
lack of fit c − p SSLF MSLF FLF = MSLF/MSPE
pure error n − c SSPE MSPE

The lack of fit test assumes that

Yi = m(xi) + ei (2.24)

where E(Yi|xi) = m(xi), m is some possibly nonlinear function, and that
the ei are iid N(0, σ2). Notice that the MLR model is the special case with
m(xi) = xT

i β. The lack of fit test needs at least one replicate: 2 or more Ys
with the same value of predictors x. Then there a c “replicate groups” with
nj observations in the jth group. Each group has the vector of predictors
xj, say, and at least one nj > 1. Also,

∑c
j=1 nj = n. Denote the Ys in the

jth group by Yij , and let the sample mean of the Ys in the jth group be Y j.
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Then
1

nj − 1

nj∑
i=1

(Yij − Y j)
2

is an estimator of σ2 for each group with nj > 1. Let

SSPE =
c∑

j=1

nj∑
i=1

(Yij − Y j)
2.

Then MSPE = SSPE/(n − c) is an unbiased estimator of σ2 when model
(2.24) holds, regardless of the form of m. The PE in SSPE stands for “pure
error.”

Now SSLF = SSE − SSPE =
∑c

j=1 nj(Y j − Ŷj)
2. Notice that Y j is an

unbiased estimator of m(xj) while Ŷj is an estimator of m if the MLR model
is appropriate: m(xj) = xT

j β. Hence SSLF and MSLF can be very large if
the MLR model is not appropriate.

The 4 step lack of fit test is i) Ho: no evidence of MLR lack of fit, HA:
there is lack of fit for the MLR model.
ii) FLF = MSLF/MSPE .
iii) The p–value = P (Fc−p,n−c > FLF).
iv) Reject Ho if p–value < δ and state the HA claim that there is lack of fit.
Otherwise, fail to reject Ho and state that there is not enough evidence to
conclude that there is MLR lack of fit.

Although the lack of fit test seems clever, examining the response plot and
residual plot is a much more effective method for examining whether or not
the MLR model fits the data well provided that n > 10p. A graphical version
of the lack of fit test would compute the Y j and see whether they scatter
about the identity line in the response plot. When there are no replicates,
the range of Ŷ could be divided into several narrow nonoverlapping intervals
called slices. Then the mean Y j of each slice could be computed and a step
function with step height Y j at the jth slice could be plotted. If the step
function follows the identity line, then there is no evidence of lack of fit.
However, it is easier to check whether the Yi are scattered about the identity
line. Examining the residual plot is useful because it magnifies deviations
from the identity line that may be difficult to see until the linear trend is
removed. The lack of fit test may be sensitive to the assumption that the
errors are iid N(0, σ2).
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When Y x|xTβ, then the response plot of the estimated sufficient
predictor (ESP) xT β̂ versus Y is used to visualize the conditional distribution
of Y |xTβ, and will often greatly outperform the corresponding lack of fit test.
When the response plot can be combined with a good lack of fit plot such as
a residual plot, using a one number summary of lack of fit such as the test
statistic FLF makes little sense.

Nevertheless, the literature for lack of fit tests for various statistical meth-
ods is enormous. See Joglekar, Schuenemeyer and LaRiccia (1989), Cheng
and Wu (1994), Kauermann and Tutz (2001), Peña and Slate (2006) and Su
and Yang (2006) for references.

For the following homework problems, Cody and Smith (2006) is useful
for SAS, Cook and Weisberg (1999) for Arc. Becker, Chambers and Wilks
(1988) and Crawley (2007) are useful for R and Splus.

2.13 Problems

Problems with an asterisk * are especially important.

Output for Problem 2.1

Full Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 6 265784. 44297.4 172.14 0.0000

Residual 67 17240.9 257.327

Reduced Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 1 264621. 264621. 1035.26 0.0000

Residual 72 18403.8 255.608

2.1. Assume that the response variable Y is height, and the explanatory
variables are X2 = sternal height, X3 = cephalic index, X4 = finger to ground,
X5 = head length, X6 = nasal height, X7 = bigonal breadth. Suppose that
the full model uses all 6 predictors plus a constant (= X1) while the reduced
model uses the constant and sternal height. Test whether the reduced model
can be used instead of the full model using the output above. The data set
had 74 cases.
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Output for Problem 2.2

Full Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 9 16771.7 1863.52 1479148.9 0.0000

Residual 235 0.29607 0.0012599

Reduced Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 16771.7 8385.85 6734072.0 0.0000

Residual 242 0.301359 0.0012453

Coefficient Estimates, Response = y, Terms = (x2 x2^2)

Label Estimate Std. Error t-value p-value

Constant 958.470 5.88584 162.843 0.0000

x2 -1335.39 11.1656 -119.599 0.0000

x2^2 421.881 5.29434 79.685 0.0000

2.2. The above output comes from the Johnson (1996) STATLIB data
set bodyfat after several outliers are deleted. It is believed that Y = β1 +
β2X2 + β3X

2
2 + e where Y is the person’s bodyfat and X2 is the person’s

density. Measurements on 245 people were taken. In addition to X2 and X2
2 ,

7 additional measurements X4, ..., X10 were taken. Both the full and reduced
models contain a constant X1 ≡ 1.

a) Predict Y if X2 = 1.04. (Use the reduced model Y = β1 + β2X2 +
β3X

2
2 + e.)

b) Test whether the reduced model can be used instead of the full model.

2.3. The output on the next page was produced from the file mussels.lsp
in Arc. See Cook and Weisberg (1999a). Let Y = log(M) where M is the
muscle mass of a mussel. Let X1 ≡ 1, X2 = log(H) where H is the height
of the shell, and let X3 = log(S) where S is the shell mass. Suppose that it
is desired to predict Yf if log(H) = 4 and log(S) = 5, so that xT

f = (1, 4, 5).

Assume that se(Ŷf ) = 0.410715 and that se(pred) = 0.467664.

a) If xT
f = (1, 4, 5) find a 99% confidence interval for E(Yf ).

b) If xT
f = (1, 4, 5) find a 99% prediction interval for Yf .
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Output for Problem 2.3

Label Estimate Std. Error t-value p-value

Constant -5.07459 1.85124 -2.741 0.0076

log[H] 1.12399 0.498937 2.253 0.0270

log[S] 0.573167 0.116455 4.922 0.0000

R Squared: 0.895655 Sigma hat: 0.223658 Number of cases: 82

(log[H] log[S]) (4 5)

Prediction = 2.2872, s(pred) = 0.467664,

Estimated population mean value = 2.2872, s = 0.410715

Output for Problem 2.4 Coefficient Estimates Response = height

Label Estimate Std. Error t-value p-value

Constant 227.351 65.1732 3.488 0.0008

sternal height 0.955973 0.0515390 18.549 0.0000

finger to ground 0.197429 0.0889004 2.221 0.0295

R Squared: 0.879324 Sigma hat: 22.0731

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 259167. 129583. 265.96 0.0000

Residual 73 35567.2 487.222

2.4. The output above is from the multiple linear regression of the re-
sponse Y = height on the two nontrivial predictors sternal height = height at
shoulder and finger to ground = distance from the tip of a person’s middle
finger to the ground.

a) Consider the plot with Yi on the vertical axis and the least squares
fitted values Ŷi on the horizontal axis. Sketch how this plot should look if
the multiple linear regression model is appropriate.

b) Sketch how the residual plot should look if the residuals ri are on the
vertical axis and the fitted values Ŷi are on the horizontal axis.

c) From the output, are sternal height and finger to ground useful for
predicting height? (Perform the ANOVA F test.)

2.5. Suppose that it is desired to predict the weight of the brain (in
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grams) from the cephalic index measurement. The output below uses data
from 267 people.

predictor coef Std. Error t-value p-value

Constant 865.001 274.252 3.154 0.0018

cephalic 5.05961 3.48212 1.453 0.1474

Do a 4 step test for β2 �= 0.

2.6. Suppose that the scatterplot of X versus Y is strongly curved rather
than ellipsoidal. Should you use simple linear regression to predict Y from
X? Explain.

2.7. Suppose that the 95% confidence interval for β2 is (−17.457, 15.832).
In the simple linear regression model, is X a useful linear predictor for Y ?
If your answer is no, could X be a useful predictor for Y ? Explain.

2.8. Suppose it is desired to predict the yearly return from the stock
market from the return in January. Assume that the correlation ρ̂ = 0.496.
Using the table below, find the least squares line Ŷ = β̂1 + β̂2X.

variable mean X or Y standard deviation s
January return 1.75 5.36
yearly return 9.07 15.35

2.9. Suppose that
∑

(Xi − X)(Yi − Y ) = 70690.0,∑
(Xi − X)2 = 19800.0, X = 70.0 and Y = 312.28.

a) Find the least squares slope β̂2.

b) Find the least squares intercept β̂1.

c) Predict Y if X = 80.
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xi yi xi − x yi − y (xi − x)(yi − y) (xi − x)2

38 41

56 63

59 70

64 72

74 84

2.10. In the above table, xi is the length of the femur and yi is the
length of the humerus taken from five dinosaur fossils (Archaeopteryx) that
preserved both bones. See Moore (2000, p. 99).

a) Complete the table and find the least squares estimators β̂1 and β̂2.

b) Predict the humerus length if the femur length is 60.

2.11. Suppose that the regression model is Yi = 7+βXi+ei for i = 1, ..., n
where the ei are iid N(0, σ2) random variables. The least squares criterion

is Q(η) =
n∑

i=1

(Yi − 7 − ηXi)
2.

a) What is E(Yi)?

b) Find the least squares estimator β̂ of β by setting the first derivative
d

dη
Q(η) equal to zero.

c) Show that your β̂ is the global minimizer of the least squares criterion

Q by showing that the second derivative
d2

dη2
Q(η) > 0 for all values of η.

2.12. The location model is Yi = µ+ei for i = 1, ..., n where the ei are iid
with mean E(ei) = 0 and constant variance VAR(ei) = σ2. The least squares

estimator µ̂ of µ minimizes the least squares criterion Q(η) =
n∑

i=1

(Yi − η)2.

To find the least squares estimator, perform the following steps.
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a) Find the derivative
d

dη
Q, set the derivative equal to zero and solve for

η. Call the solution µ̂.

b) To show that the solution was indeed the global minimizer of Q, show

that
d2

dη2
Q > 0 for all real η. (Then the solution µ̂ is a local min and Q is

convex, so µ̂ is the global min.)

2.13. The normal error model for simple linear regression through the
origin is

Yi = βXi + ei

for i = 1, ..., n where e1, ..., en are iid N(0, σ2) random variables.

a) Show that the least squares estimator for β is

β̂ =

∑n
i=1 XiYi∑n
i=1 X2

i

.

b) Find E(β̂).

c) Find VAR(β̂).

(Hint: Note that β̂ =
∑n

i=1 kiYi where the ki depend on the Xi which are
treated as constants.)

2.14. Suppose that the regression model is Yi = 10+2Xi2 +β3Xi3 +ei for
i = 1, ..., n where the ei are iid N(0, σ2) random variables. The least squares

criterion is Q(η3) =
n∑

i=1

(Yi − 10 − 2Xi2 − η3Xi3)
2. Find the least squares es-

timator β̂3 of β3 by setting the first derivative
d

dη3

Q(η3) equal to zero. Show

that your β̂3 is the global minimizer of the least squares criterion Q by show-

ing that the second derivative
d2

dη2
3

Q(η3) > 0 for all values of η3.

Minitab Problems
“Double click” means press the rightmost “mouse” button twice in rapid

succession. “Drag” means hold the mouse button down. This technique is
used to select “menu” options.
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After your computer is on get into Minitab, often by double clicking an
icon marked “shortcut to math programs” or “math progs” and then double
clicking on the icon marked “Student Minitab.”
i) In a few seconds, the Minitab session and worksheet windows fill the screen.
At the top of the screen there is a menu. The upper left corner has the menu
option “File.” Move your cursor to “File” and drag down the option “Open
Worksheet.” A window will appear. Double click on the icon “Student.” This
will display a large number of data sets.
ii) In the middle of the screen there is a “scroll bar,” a gray line with left and
right arrow keys. Use the right arrow key to make the data file “ Prof.mtw”
appear. Double click on “Prof.mtw.” A window will appear. Click on “OK.”
iii) The worksheet window will now be filled with data. The top of the screen
has a menu. Go to “Stat” and drag down “Regression.” Another window will
appear: drag down Regression (write this as Stat>Regression>Regression).
iv) A window will appear with variables to the left and the response vari-
able and predictors (explanatory variables) to the right. Double click on
“instrucrs” to make it the response. Double click on “manner” to make it
the (predictor) explanatory variable. Then click on “OK.”
v) The required output will appear in the session window. You can view the
output by using the vertical scroll bar on the right of the screen.
vi) Copy and paste the output into Word, or to print your single page of
output, go to “File,” and drag down the option “Print Session Window.” A
window will appear. Click on “ok.” Then get your output from the printer.

Use the F3 key to clear entries from a dialog window if you make a
mistake or want a new plot.

To get out of Minitab, move your cursor to the “x” in the upper right
corner of the screen. When asked whether to save changes, click on “no.”

2.15 (Minitab problem.) See the instructions above for using Minitab.
Get the data set prof.mtw. Assign the response variable to be instrucr (the
instructor rating from course evaluations) and the explanatory variable (pre-
dictor) to be manner (the manner of the instructor). Run a regression on
these variables.

a) Place the computer output into Word.

b) Write the regression equation.
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c) Predict instrucr if manner = 2.47.

d) To get residual and response plots you need to store the residuals and
fitted values. Use the menu commands “Stat>Regression>Regression” to
get the regression window. Put instrucr in the Response and manner in
the Predictors boxes. The click on Storage. From the resulting window
click on Fits and Residuals. Then click on OK twice.

To get a response plot, use the commands “Graph>Plot,” (double click)
place instrucr in the Y box, and Fits1 in the X box. Then click on OK.
Print the plot by clicking on the graph and then clicking on the printer icon.

e) To make a residual plot, use the menu commands “Graph>Plot” to
get a window. Place “Resi1” in the Y box and “Fits1” in the X box. Then
click on OK. Print the plot by clicking on the graph and then clicking on
the printer icon.

2.16. a) Enter the following data on the Minitab worksheet:

x y

30 73

20 50

60 128

80 170

40 87

50 108

60 135

30 60

70 148

60 132

To enter the data click on the C1 column header and enter x. Then click
on the C2 header and enter y. Then enter the data. Alternatively, copy the
data from Problem 2.17 obtained from (www.math.siu.edu/olive/regsas.txt).
Then in Minitab, use the menu commands “Edit>Paste Cells” and click on
“OK.” Obtain the regression output from Minitab with the menu commands
“Stat>Regression>Regression”.

b) Place the output into Word.

c) Write down the least squares equation.
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To save your output on your diskette, use the Word menu commands
“File > Save as.” In the Save in box select “3 1/2 Floppy a:” and in the
“File name box” enter HW2d16.doc. To get a Word printout, click on the
printer icon or use the menu commands “File>Print.”

d) To get residual and response plots you need to store the residuals and
fitted values. Use the menu commands “Stat>Regression>Regression” to get
the regression window. Put Y in the Response and X in the Predictors
boxes. The click on Storage. From the resulting window click on Fits and
Residuals. Then click on OK twice.

To make a response plot, use the menu commands “Graph>Plot” to get
a window. Place “Y” in the Y box and “Fits1” in the X box. Then click on
OK. Print the plot by clicking on the graph and then clicking on the printer
icon.

e) To make a residual plot of the fitted values versus the residuals, use the
menu commands “Graph>Plot” to get a window. Place “Resi1” in the Y
box and “Fits1” in the X box. Then click on OK. Print the plot by clicking
on the graph and then clicking on the printer icon.

f) To save your Minitab data on your diskette, use the menu commands
“File>Save Current Worksheet as.” In the resulting dialog window, the top
box says Save in and there is an arrow icon to the right of the top box. Click
several times on the arrow icon until the Save in box reads “My computer”,
then click on 3 1/2 Floppy(A:). In the File name box, enter H2d16.mtw.
Then click on OK.

SAS Problems

SAS is a statistical software package widely used in industry. You will
need a disk. Referring to the program in Problem 2.17, the semicolon “;”
is used to end SAS commands and the “options ls = 70;” command makes
the output readable. (An “*” can be used to insert comments into the SAS
program. Try putting an * before the options command and see what it does
to the output.) The next step is to get the data into SAS. The command
“data wcdata;” gives the name “wcdata” to the data set. The command
“input x y;” says the first entry is variable x and the 2nd variable y. The
command “cards;” means that the data is entered below. Then the data
in entered and the isolated semicolon indicates that the last case has been
entered. The command “proc print;” prints out the data. The command
“proc corr;” will give the correlation between x and y. The commands “proc
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plot; plot y*x;” makes a scatterplot of x and y. The commands “proc reg;
model y=x; output out = a p =pred r =resid;” tells SAS to perform a simple
linear regression with y as the response variable. The output data set is
called “a” and contains the fitted values and residuals. The command “proc
plot data = a;” tells SAS to make plots from data set “a” rather than data
set “wcdata.” The command “plot resid*(pred x);” will make a residual plot
of the fitted values versus the residuals and a residual plot of x versus the
residuals. The following plot command makes a response plot.

To use SAS on windows (PC), use the following steps.

i) Get into SAS, often by double clicking on an icon for programs such
as a “Math Progs” icon and then double clicking on a SAS icon. If your
computer does not have SAS, go to another computer.

ii) A window should appear with 3 icons. Double click on The SAS System
for ....

iii) Like Minitab, a window with a split screen will open. The top screen
says Log-(Untitled) while the bottom screen says Editor-Untitled1. Press the
spacebar and an asterisk appears: Editor-Untitled1*.
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2.17. a) Copy and paste the program for this problem from
(www.math.siu.edu/olive/reghw.txt), or enter the SAS program given below
in Notepad or Word. The ls stands for linesize so l is a lowercase L, not the
number one.

When you are done entering the program, save your file as h2d17.sas on
your diskette (A: drive). (On the top menu of the editor, use the commands
“File > Save as”. A window will appear. Use the upper right arrow to locate
“31/2 Floppy A” and then type the file name in the bottom box. Click on
OK.)

options ls = 70;

data wcdata;

input x y;

cards;

30 73

20 50

60 128

80 170

40 87

50 108

60 135

30 60

70 148

60 132

;

proc print;

proc corr;

proc plot; plot y*x;

proc reg;

model y=x;

output out =a p = pred r = resid;

proc plot data = a;

plot resid*(pred x);

plot y*pred;

run;

b) Get back into SAS, and from the top menu, use the “File> Open”
command. A window will open. Use the arrow in the upper right cor-
ner of the window to navigate to “31/2 Floppy(A:)”. (As you click on the
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arrow, you should see My Documents, C: etc, then 31/2 Floppy(A:).) Dou-
ble click on h2d17.sas. (Alternatively cut and paste the program into the
SAS editor window.) To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful.

If you were not successful, look at the log window for hints on errors.
A single typo can cause failure. Reopen your file in Word or Notepad and
make corrections. Occasionally you can not find your error. Then find your
instructor or wait a few hours and reenter the program.

c) To copy and paste relevant output into Word or Notepad, click on the
output window and use the top menu commands “Edit>Select All” and then
the menu commands “Edit>Copy”.

In Notepad use the commands “Edit>Paste”. Then use the mouse to
highlight the relevant output. Then use the commands “Edit>Copy”.

Finally, in Word, use the commands “Edit>Paste”. You can also cut
output from Word and paste it into Notepad.

You may want to save your SAS output as the file HW2d17.doc on your
disk.

d) To save your output on your disk, use the Word menu commands “File
> Save as.” In the Save in box select “3 1/2 Floppy a:” and in the “File
name box” enter HW2d17.doc. To get a Word printout, click on the printer
icon or use the menu commands “File>Print.”

Save the output giving the least squares coefficients in Word.

e) Predict Y if X = 40.

f) What is the residual when X = 40?

92



2.18. This problem shows how to use SAS for MLR. The data are from
Kutner, Nachtsheim, Neter and Li (2005, problem 6.5). The response is
“brand liking,” a measurement for whether the consumer liked the brand.
The variable X1 is “moisture content” and the variable X2 is “sweetness.”
Enter the program below as file h2d18.sas, or copy and paste the program
for this problem from (www.math.siu.edu/olive/reghw.txt).

options ls = 70;

data brand;

input y x1 x2;

cards;

64.0 4.0 2.0

73.0 4.0 4.0

61.0 4.0 2.0

76.0 4.0 4.0

72.0 6.0 2.0

80.0 6.0 4.0

71.0 6.0 2.0

83.0 6.0 4.0

83.0 8.0 2.0

89.0 8.0 4.0

86.0 8.0 2.0

93.0 8.0 4.0

88.0 10.0 2.0

95.0 10.0 4.0

94.0 10.0 2.0

100.0 10.0 4.0

;

proc print;

proc corr;

proc plot; plot y*(x1 x2);

proc reg;

model y=x1 x2;

output out =a p = pred r = resid;

proc plot data = a;

plot resid*(pred x1 x2);

plot y*pred;

run;
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a) Execute the SAS program and copy the output file into Notepad. Scroll
down the output that is now in Notepad until you find the regression coeffi-
cients and ANOVA table. Then cut and paste this output into Word.

b) Do the 4 step ANOVA F test.

You should scroll through your SAS output to see how it made the re-
sponse plot and various residual plots, but cutting and pasting these plots
is tedious. So we will use Minitab to get these plots. Find the program
for this problem from (www.math.siu.edu/olive/regsas.txt). Then copy and
paste the numbers (between “cards;” and the semicolon “;”) into Minitab.
Use the mouse commands “Edit>Paste Cells”. This should enter the data
in the Worksheet (bottom part of Minitab). Under C1 enter Y and under
C2 enter X1 under C3 enter X2. Use the menu commands
“Stat>Regression>Regression” to get a dialog window. Enter Y as the re-
sponse variable and X1 and X2 as the predictor variable. Click on Storage
then on Fits, Residuals and OK OK.

c) To make a response plot, enter the menu commands “Graph>Plot”
and place “Y” in the Y–box and “FITS1” in the X–box. Click on OK. Then
use the commands “Edit>Copy Graph” to copy the plot. Include the plot
in Word with the commands “Edit> Paste.” If these commands fail, click on
the graph and then click on the printer icon.

d) Based on the response plot, does a linear model seem reasonable?

e) To make a residual plot, enter the menu commands “Graph>Plot” and
place “RESI 1” in the Y–box and “FITS1” in the X–box. Click on OK. Then
use the commands “Edit>Copy Graph” to copy the plot. Include the plot
in Word with the commands “Edit> Paste.” If these commands fail, click on
the graph and then click on the printer icon.

f) Based on the residual plot does a linear model seem reasonable?

Problems using ARC

To quit Arc, move the cursor to the x in the upper right corner and click.

2.19∗. (Scatterplot in Arc.) Get cbrain.lsp from
(www.math.siu.edu/olive/regbk.htm), and save the file on a disk. Activate
the cbrain.lsp dataset with the menu commands “File > Load > 3 1/2
Floppy(A:) > cbrain.lsp.” Scroll up the screen to read the data description.

a) Make a plot of age versus brain weight brnweight. The commands
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“Graph&Fit > Plot of” will bring down a menu. Put age in the H box and
brnweight in the V box. Put sex in the Mark by box. Click OK. Make the
lowess bar on the plot read .1. Open Word.

In Arc, use the menu commands “Edit > Copy.” In Word, use the menu
commands “Edit > Paste.” This should copy the graph into the Word doc-
ument.

b) For a given age, which gender tends to have larger brains?

c) At what age does the brain weight appear to be decreasing?

2.20. (SLR in Arc.) Activate cbrain.lsp as in Problem 2.19. Brain weight
and the cube root of size should be linearly related. To add the cube root of
size to the data set, use the menu commands “cbrain > Transform.” From
the window, select size and enter 1/3 in the p: box. Then click OK. Get
some output with commands “Graph&Fit > Fit linear LS.” In the dialog
window, put brnweight in Response, and (size)1/3 in terms.

a) Cut and paste the output (from Coefficient Estimates to Sigma hat)
into Word. Write down the least squares equation Ŷ = b1 + b2x.

b) If (size)1/3 = 15, what is the estimated brnweight?

c) Make a residual plot of the fitted values versus the residuals. Use
the commands “Graph&Fit > Plot of” and put “L1:Fit-values” in H and
“L1:Residuals” in V. Put sex in the Mark by box. Move the OLS bar to 1.
Put the plot into Word. Does the plot look ellipsoidal with zero mean?

d) Make a response plot of the fitted values versus y = brnweight. Use
the commands “Graph&Fit > Plot of” and put “L1:Fit-values in H and
brnweight in V. Put sex in Mark by. Move the OLS bar to 1. Put the plot
into Word. Does the plot look linear?

2.21. In Arc enter the menu commands “File>Load>Data>ARCG” and
open the file mussels.lsp. This data set is from Cook and Weisberg (1999a).

The response variable Y is the mussel muscle mass M, and the explanatory
variables are X2 = S = shell mass, X3 = H = shell height, X4 = L = shell
length and X5 = W = shell width.

Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:
enter S, H, L, W in the “Terms/Predictors” box, M in the “Response” box
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and click on OK.

a) To get a response plot, enter the menu commands
“Graph&Fit>Plot of” and place L1:Fit-Values in the H–box and M in the
V–box. Copy the plot into Word.

b) Based on the response plot, does a linear model seem reasonable?

c) To get a residual plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and L1:Residuals in the V–box.
Copy the plot into Word.

d) Based on the residual plot, what MLR assumption seems to be vio-
lated?

e) Include the regression output in Word.

f) Ignoring the fact that an important MLR assumption seems to have
been violated, do any of predictors seem to be needed given that the other
predictors are in the model?

g) Ignoring the fact that an important MLR assumption seems to have
been violated, perform the ANOVA F test.

2.22. Get cyp.lsp from (www.math.siu.edu/olive/regbk.htm), and save
the file on a disk: you can open the file in Notepad and then save it on a
disk using the Notepad menu commands “File>Save As” and clicking the top
checklist then click “Floppy 3 1/2 A:”. You could also save the file on the
desktop, load it in Arc from the desktop, and then delete the file (sending it
to the Recycle Bin).

a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)” and
open the file cyp.lsp. This data set consists of various measurements taken
on men from Cyprus around 1920. Let the response Y = height and X =
cephalic index = 100(head breadth)/(head length). Use Arc to get the least
squares output and include the relevant output in Word.

b) Intuitively, the cephalic index should not be a good predictor for a
person’s height. Perform a 4 step test of hypotheses with Ho: β2 = 0.

2.23. a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp (obtained as in Problem 2.22).

96



The response variable Y is height, and the explanatory variables are a
constant, X2 = sternal height (probably height at shoulder) and X3 = finger
to ground.

Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:
enter sternal height and finger to ground in the “Terms/Predictors” box,
height in the “Response” box and click on OK.

Include the output in Word. Your output should certainly include the
lines from “Response = height” to the ANOVA table.

b) Predict Y if X2 = 1400 and X3 = 650.

c) Perform a 4 step ANOVA F test of the hypotheses with
Ho: β2 = β3 = 0.

d) Find a 99% CI for β2.

e) Find a 99% CI for β3.

f) Perform a 4 step test for β2 = 0.

g) Perform a 4 step test for β3 = 0.

h) What happens to the conclusion in g) if δ = 0.01?

i) The Arc menu “L1” should have been created for the regression. Use
the menu commands “L1>Prediction” to open a dialog window. Enter 1400
650 in the box and click on OK. Include the resulting output in Word.

j) Let Xf,2 = 1400 and Xf,3 = 650 and use the output from i) to find a

95% CI for E(Yf ). Use the last line of the output, that is, se = S(Ŷf ).

k) Use the output from i) to find a 95% PI for Yf . Now se(pred) = s(pred).

l) Make a residual plot of the fitted values versus the residuals and make
the response plot of the fitted values versus Y . Include both plots in Word.
(See Problem 2.24.)

m) Do the plots suggest that the MLR model is appropriate? Explain.

2.24. In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp (obtained as in Problem 2.22).
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The response variable Y is height, and the explanatory variables are
X2 = sternal height (probably height at shoulder) and X3 = finger to ground.

Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:
enter sternal height and finger to ground in the “Terms/Predictors” box,
height in the “Response” box and click on OK.

a) To get a response plot, enter the menu commands
“Graph&Fit>Plot of” and place L1:Fit-Values in the H–box and height in
the V–box. Copy the plot into Word.

b) Based on the response plot, does a linear model seem reasonable?

c) To get a residual plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and L1:Residuals in the V–box.
Copy the plot into Word.

d) Based on the residual plot, does a linear model seem reasonable?

2.25. In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp (obtained as in Problem 2.22).

The response variable Y is height, and the explanatory variables are X2

= sternal height, X3 = finger to ground, X4 = bigonal breadth X5 = cephalic
index X6 = head length and X7 = nasal height. Enter the menu commands
“Graph&Fit>Fit linear LS” and fit the model: enter the 6 predictors (in
order: X2 1st and X7 last) in the “Terms/Predictors” box, height in the
“Response” box and click on OK. This gives the full model. For the reduced
model, only use predictors 2 and 3.

a) Include the ANOVA tables for the full and reduced models in Word.

b) Use the menu commands “Graph&Fit>Plot of...” to get a dialog win-
dow. Place L2:Fit-Values in the H–box and L1:Fit-Values in the V–box.
Place the resulting plot in Word.

c) Use the menu commands “Graph&Fit>Plot of...” to get a dialog win-
dow. Place L2:Residuals in the H–box and L1:Residuals in the V–box. Place
the resulting plot in Word.

d) Both plots should cluster tightly about the identity line if the reduced
model is about as good as the full model. Is the reduced model good?
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e) Perform the 4 step partial F test (of Ho: the reduced model is good)
using the 2 ANOVA tables from part a).

2.26. a) Activate the cbrain.lsp data set in ARC. Fit least squares with
age, sex, size1/3, and headht as terms and brnweight as the response. As-
sume that the multiple linear regression model is appropriate (this may be
a reasonable assumption, 5 infants appear as outliers but the data set has
hardly any cases that are babies. If age was uniformly represented, the babies
might not be outliers anymore). Assuming that ARC makes the menu “L1”
for this regression, select “AVP-All 2D.” A window will appear. Move the
OLS slider bar to 1 and click on the ”zero line box”. The window will show
the added variable plots for age, sex, size1/3, and headht as you move along
the slider bar that is below “case deletions”. Include all 4 added variable
plots in Word.

b) What information do the 4 plots give? For example, which variables
do not seem to be needed?

(If it is clear that the zero and OLS lines intersect at the origin, then the
variable is probably needed, and the point cloud should be tilted away from
the zero line. If it is difficult to see where the two lines intersect since they
nearly coincide near the origin, then the variable may not be needed, and
the point cloud may not tilt away from the zero line.)

R/Splus Problem

2.27. a) Use the command source(“A:/regdata.txt”) to download the
data. See Preface or Section 17.1. You may also copy and paste
regdata.txt from (www.math.siu.edu/olive/regdata.txt) into R. You can
copy and paste the R following commands for this problem from
(www.math.siu.edu/olive/reghw.txt).

For the Buxton (1920) data suppose that the response Y = height and
the predictors were a constant, head length, nasal height, bigonal breadth and
cephalic index. There are 87 cases.

Type the following commands

zbux <- cbind(buxx,buxy)

zbux <- as.data.frame(zbux)

zfull <- lm(buxy~len+nasal+bigonal+cephalic,data=zbux)

zred <- lm(buxy~len+nasal,data=zbux)

anova(zred,zfull)
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b) Include the output in Word: press the Ctrl and c keys as the same
time. Then use the menu commands “Edit>Paste” in Word (or copy and
paste the output).

c) Use the output to perform the partial F test where the full model is
described in a) and the reduced model uses a constant, head length and nasal
height. The output from the anova(zred,zfull) command produces the
correct partial F statistic.

d) Use the following commands to make the response plot for the reduced
model. Include the plot in Word

plot(zred$fit,buxy)

abline(0,1)

e) Use the following command to make the residual plot for the reduced
model. Include the plot in Word.

plot(zred$fit,zred$resid)

f) The plots look bad because of 5 massive outiers. The following com-
mands remove the outliers. Include the output in Word.

zbux <- zbux[-c(60,61,62,63,64,65),]

zfull <- lm(buxy~len+nasal+bigonal+cephalic,data=zbux)

zred <- lm(buxy~len+nasal,data=zbux)

anova(zred,zfull)

g) Redo the partial F test.
h) Use the following commands to make the response plot for the reduced

model without the outliers. Include the plot in Word.

plot(zred$fit,zbux[,5])

abline(0,1)

i) Use the following command to make the residual plot for the reduced
model without the outliers. Include the plot in Word.

plot(zred$fit,zred$resid)
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j) Do the plots look ok?

2.28. Get the R commands for this problem from
(www.math.siu.edu/olive/reghw.txt). The data is such that Y = 2 + x2 +
x3 + x4 + e where the zero mean errors are iid [exponential(2) - 2]. Hence
the residual and response plots should show high skew. Note that β =
(2, 1, 1, 1)T . The R code uses 3 nontrivial predictors and a constant, and the
sample size n = 1000.

a) Copy and paste the commands for part a) of this problem into R.
Include the response plot im Word. Is the lowess curve fairly close to the
identity line?

b) Copy and paste the commands for part b) of this problem into R.
Include the residual plot im Word: press the Ctrl and c keys as the same
time. Then use the menu commands “Edit>Paste” in Word. Is the lowess
curve fairly close to the r = 0 line?

c) The output out$coef gives β̂. Write down β̂. Is β̂ close to β?

2.29. a) Download the R/Splus functions piplot and pisim from reg-
pack.txt.

b) The command pisim(n=100, type = 1)will produce the mean length
of the classical, semiparametric, conservative and asymptotically optimal PIs
when the errors are normal, as well as the coverage proportions. Give the
simulated lengths and coverages.

c) Repeat b) using the command pisim(n=100, type = 3). Now the
errors are EXP(1) - 1.

d) Download regdata.txt and type the command
piplot(cbrainx,cbrainy). This command gives the semiparametric PI
limits for the Gladstone data. Include the plot in Word.

e) The infants are in the lower left corner of the plot. Do the PIs seem
to be better for the infants or the bulk of the data. Explain briefly.
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