
Chapter 4

WLS and Generalized Least
Squares

4.1 Random Vectors

The concepts of a random vector, the expected value of a random vector and
the covariance of a random vector are needed before covering generalized least
squares. Recall that for random variables Yi and Yj , the covariance of Yi and
Yj is Cov(Yi, Yj) ≡ σi,j = E[(Yi−E(Yi))(Yj −E(Yj)] = E(YiYj)−E(Yi)E(Yj)
provided the second moments of Yi and Yj exist.

Definition 4.1. Y = (Y1, ..., Yn)
T is an n × 1 random vector if Yi is

a random variable for i = 1, ..., n. Y is a discrete random vector if each Yi

is discrete and Y is a continuous random vector if each Yi is continuous. A
random variable Y1 is the special case of a random vector with n = 1.

Definition 4.2. The population mean of a random n × 1 vector Y =
(Y1, ..., Yn)

T is
E(Y ) = (E(Y1), ..., E(Yn))

T

provided that E(Yi) exists for i = 1, ..., n. Otherwise the expected value does
not exist. The n × n population covariance matrix

Cov(Y ) = E[(Y − E(Y ))(Y − E(Y ))T ] = ((σi,j))

where the ij entry of Cov(Y ) is Cov(Yi, Yj) = σi,j provided that each σi,j

exists. Otherwise Cov(Y ) does not exist.
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The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(Y ) is used. Note that Cov(Y )
is a symmetric positive semidefinite matrix. If Z and Y are n × 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + Y ) = a + E(Y ) and E(Y + Z) = E(Y ) + E(Z) (4.1)

and
E(AY ) = AE(Y ) and E(AY B) = AE(Y )B. (4.2)

Also
Cov(a + AY ) = Cov(AY ) = ACov(Y )AT . (4.3)

Example 4.1. Consider the OLS model Y = Xβ + e where the ei are
iid with mean 0 and variance σ2. Then Y and e are random vectors while
a = Xβ is a constant vector. Notice that E(e) = 0. Thus

E(Y ) = Xβ + E(e) = Xβ.

Since the ei are iid,
Cov(Y ) = Cov(e) = σ2In (4.4)

where In is the n × n identity matrix. This result makes sense because the
Yi are independent with Yi = xT

i β + ei. Hence VAR(Yi) = VAR(ei) = σ2.
Recall that β̂OLS = (XT X)−1XTY . Hence

E(β̂OLS) = (XT X)−1XTE(Y ) = (XT X)−1XT Xβ = β.

That is, β̂OLS is an unbiased estimator of β. Using (4.3) and (4.4),

Cov(β̂OLS) = (XT X)−1XT Cov(Y )X(XTX)−1

= σ2(XTX)−1XTX(XT X)−1 = σ2(XTX)−1.

Recall that Ŷ OLS = Xβ̂OLS = X(XT X)−1XT Y = HY . Hence

E(Ŷ OLS) = X(XT X)−1XTE(Y ) = X(XT X)−1XT Xβ = Xβ = E(Y ).

Using (4.3) and (4.4),

Cov(Ŷ OLS) = HCov(Y )HT = σ2H
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since HT = H and HH = H .
Recall that the vector of residuals rOLS = (I−H)Y = Y − Ŷ OLS. Hence

E(rOLS) = E(Y ) − E(Ŷ OLS) = E(Y ) − E(Y ) = 0. Using (4.3) and (4.4),

Cov(r̂OLS) = (I − H)Cov(Y )(I − H)T = σ2(I − H)

since I − H is symmetric and idempotent: (I − H)T = I − H and (I −
H)(I − H) = I − H .

4.2 GLS, WLS and FGLS

Definition 4.3. Suppose that the response variable and at least one of the
predictor variables is quantitative. Then the generalized least squares (GLS)
model is

Y = Xβ + e, (4.5)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = σ2V where V is a
known n × n positive definite matrix.

Definition 4.4. The GLS estimator

β̂GLS = (XTV −1X)−1XT V −1Y . (4.6)

The fitted values are Ŷ GLS = Xβ̂GLS .

Definition 4.5. Suppose that the response variable and at least one
of the predictor variables is quantitative. Then the weighted least squares
(WLS) model with weights w1, ..., wn is the special case of the GLS model
where V is diagonal: V = diag(v1, ..., vn) and wi = 1/vi. Hence

Y = Xβ + e, (4.7)

E(e) = 0 and Cov(e) = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn).

Definition 4.6. The WLS estimator

β̂WLS = (XT V −1X)−1XT V −1Y . (4.8)

The fitted values are Ŷ WLS = Xβ̂WLS.
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Definition 4.7. The feasible generalized least squares (FGLS) model is
the same as the GLS estimator except that V = V (θ) is a function of an
unknown q×1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂).
Then the FGLS estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . (4.9)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares
(FWLS) estimator is the special case of the FGLS estimator where V =
V (θ) is diagonal. Hence the estimated weights ŵi = 1/v̂i = 1/vi(θ̂). The
FWLS estimator and fitted values will be denoted by β̂FWLS and Ŷ FWLS ,
respectively.

Notice that the ordinary least squares (OLS) model is a special case of
GLS with V = In, the n× n identity matrix. It can be shown that the GLS
estimator minimizes the GLS criterion

QGLS(η) = (Y − Xη)T V −1(Y − Xη).

Notice that the FGLS and FWLS estimators have p+ q +1 unknown param-
eters. These estimators can perform very poorly if n < 10(p + q + 1).

The GLS and WLS estimators can be found from the OLS regression
(without an intercept) of a transformed model. Typically there will be a
constant in the model: the first column of X is a vector of ones. Following
Seber and Lee (2003, p. 66-68), there is a nonsingular n × n matrix K such
that V = KKT . Let Z = K−1Y , U = K−1X and ε = K−1e. This method
uses the Cholesky decomposition and is numerically unstable.

Proposition 4.1 a)
Z = Uβ + ε (4.10)

follows the OLS model since E(ε) = 0 and Var(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression
(without an intercept) of Z on U .

c) For WLS, Yi = xT
i β + ei. The corresponding OLS model Z = Uβ + ε

is equivalent to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U .
Then Zi =

√
wi Yi and ui =

√
wi xi. Hence β̂WLS can be obtained from the

OLS regression (without an intercept) of Zi =
√

wi Yi on ui =
√

wi xi.

Proof. a) E(ε) = K−1E(e) = 0 and

Cov(ε) = K−1Cov(e)(K−1)T = σ2K−1V (K−1)T
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= σ2K−1KKT (K−1)T = σ2In.

Notice that OLS without an intercept needs to be used since U does not
contain a vector of ones. The first column of U is K−11 �= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U .
Then

β̂ZU = (UT U)−1UT Z = (XT (K−1)TK−1X)−1XT (K−1)TK−1Y

and the result follows since V −1 = (KKT )−1 = (KT )−1K−1 = (K−1)TK−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for
WLS, V = diag(v1, ..., vn) and hence K = KT = diag(

√
v1, ...,

√
vn). Hence

K−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = K−1Y has ith element Zi =
√

wi Yi. Similarly, U = K−1X has
ith row uT

i =
√

wi xT
i . QED

Following Johnson and Wichern (1988, p. 51) and Freedman (2005, p.
54), there is a symmetric, nonsingular n × n matrix R such that V = RR.
Let Z = R−1Y , U = R−1X and ε = R−1e. This method uses the spec-
tral theorem (singular value decomposition) and has better computational
properties than transformation based on the Cholesky decomposition.

Proposition 4.2 a)
Z = Uβ + ε (4.11)

follows the OLS model since E(ε) = 0 and Var(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression
(without an intercept) of Z on U .

c) For WLS, Yi = xT
i β + ei. The corresponding OLS model Z = Uβ + ε

is equivalent to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U .
Then Zi =

√
wi Yi and ui =

√
wi xi. Hence β̂WLS can be obtained from the

OLS regression (without an intercept) of Zi =
√

wi Yi on ui =
√

wi xi.

Proof. a) E(ε) = R−1E(e) = 0 and

Cov(ε) = R−1Cov(e)(R−1)T = σ2R−1V (R−1)T

= σ2R−1RR(R−1) = σ2In.
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Notice that OLS without an intercept needs to be used since U does not
contain a vector of ones. The first column of U is R−11 �= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U .
Then

β̂ZU = (UTU )−1UT Z = (XT (R−1)TR−1X)−1XT (R−1)TR−1Y

and the result follows since V −1 = (RR)−1 = R−1R−1 = (R−1)T R−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for
WLS, V = diag(v1, ..., vn) and hence R = diag(

√
v1, ...,

√
vn). Hence

R−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = R−1Y has ith element Zi =
√

wi Yi. Similarly, U = R−1X has ith
row uT

i =
√

wi xT
i . QED

Remark 4.1. Standard software produces WLS output and the ANOVA
F test and Wald t tests are performed using this output.

Remark 4.2. The FGLS estimator can also be found from the OLS re-
gression (without an intercept) of Z on U where V (θ̂) = RR. Similarly the
FWLS estimator can be found from the OLS regression (without an inter-
cept) of Zi =

√
ŵiYi on ui =

√
ŵixi. But now U is a random matrix instead

of a constant matrix. Hence these estimators are highly nonlinear. OLS
output can be used for exploratory purposes, but the p–values are generally
not correct.

Under regularity conditions, the OLS estimator β̂OLS is a consistent es-
timator of β when the GLS model holds, but β̂GLS should be used because
it generally has higher efficiency.

Definition 4.8. Let β̂ZU be the OLS estimator from regressing Z on
U . The vector of fitted values is Ẑ = Uβ̂ZU and the vector of residuals
is rZU = Z − Ẑ. Then β̂ZU = β̂GLS for GLS, β̂ZU = β̂FGLS for FGLS,
β̂ZU = β̂WLS for WLS and β̂ZU = β̂FWLS for FWLS. For GLS, FGLS, WLS
and FWLS, a residual plot is a plot of Ẑi versus rZU,i and a response plot is

a plot of Ẑi versus Zi.

Notice that the residual and response plots are based on the OLS output
from the OLS regression without intercept of Z on U . If the model is good,

186



2 4 6 8
2

6
12

FIT

Y

a) OLS Response Plot

2 4 6 8

−
4

−
1

2

FIT

R
E

S
ID

b) OLS Residual Plot

0 4 8 12

5
15

ZFIT

Z

c) WLS Response Plot

0 4 8 12
−

2
0

ZFIT

Z
R

E
S

ID

d) WLS Residual Plot

Figure 4.1: Plots for Draper and Smith Data

then the plotted points in the response plot should follow the identity line
in an evenly populated band while the plotted points in the residual plot
should follow the line rZU,i = 0 in an evenly populated band (at least if the
distribution of ε is not highly skewed).

Plots based on ŶGLS = Xβ̂ZU and on ri,GLS = Yi − Ŷi,GLS should be

similar to those based on β̂OLS. Although the plot of Ŷi,GLS versus Yi should
be linear, the plotted points will not scatter about the identity line in an
evenly populated band. Hence this plot can not be used to check whether
the GLS model with V is a good approximation to the data. Moreover, the
ri,GLS and Ŷi,GLS may be correlated and usually do not scatter about the
r = 0 line in an evenly populated band. The plots in Definition 4.8 are both
a check on linearity and on whether the model using V (or V̂ ) gives a good
approximation of the data, provided that n > k(p + q + 1) where k ≥ 5 and
preferably k ≥ 10.

For GLS and WLS (and for exploratory purposes for FGLS and FWLS),
plots and model building and variable selection should be based on Z and
U . Form Z and U and then use OLS software for model selection and
variable selection. If the columns of X are x1, ..., xp, then the columns of
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U are U1, ..., Up where Uj = R−1xj corresponds to the jth predictor xj. For
example, the analog of the OLS residual plot of jth predictor versus the
residuals is the plot of the jth predictor Uj versus rZU . The notation is
confusing but the idea is simple: form Z and U , then use OLS software and
the OLS techniques from Chapters 2 and 3 to build the model.

Example 4.2. Draper and Smith (1981, p. 112-114) presents a FWLS
example with n = 35 and p = 2. Hence Y = β1 + β2x + e. Let v̂i = vi(θ̂) =
1.5329 − 0.7334xi + 0.0883x2

i . Thus θ̂ = (1.5329,−0.7334, 0.0883)T . Figure
4.1a and b show the response and residual plots based on the OLS regression
of Y on x. The residual plot has the shape of the right opening megaphone,
suggesting that the variance is not constant. Figure 4.1c and d show the
response and residual plots based on FWLS with weights ŵi = 1/v̂i. See
Problem 4.2 to reproduce these plots. Software meant for WLS needs the
weights. Hence FWLS can be computed using WLS software with the es-
timated weights, but the software may print WLS instead of FWLS, as in
Figure 4.1c and d.

Warning. A problem with the response and residual plots for GLS and
FGLS given in Definition 4.8 is that some of the transformed cases (Zi, u

T
i )T

can be outliers or high leverage points.

Remark 4.3. If the response Yi is the sample mean or sample median of
ni cases where the ni are not all equal, then use WLS with weights wi = ni.
See Sheather (2009, p. 121).

4.3 Inference for GLS

Inference for the GLS model Y = Xβ + e can be performed by using the
partial F test for the equivalent no intercept OLS model Z = Uβ + ε.
Following Section 2.10, create Z and U , fit the full and reduced model using
the “no intercept” or “intercept = F” option.

The 4 step partial F test of hypotheses: i) State the hypotheses Ho:
the reduced model is good Ha: use the full model
ii) Find the test statistic FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )
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iii) Find the p–value = P(FdfR−dfF ,dfF
> FR). (On exams often an F table

is used. Here dfR − dfF = p − q = number of parameters set to 0, and
dfF = n − p.)
iv) State whether you reject Ho or fail to reject Ho. Reject Ho if the p–value
< δ and conclude that the full model should be used. Otherwise, fail to reject
Ho and conclude that the reduced model is good.

Assume that the GLS model contains a constant β1. The GLS ANOVA
F test of Ho : β2 = · · · = βp versus Ha: not Ho uses the reduced model that
contains the first column of U . The GLS ANOVA F test of Ho : βi = 0
versus Ho : βi �= 0 uses the reduced model with the ith column of U deleted.
For the special case of WLS, the software will often have a weights option
that will also give correct output for inference.

Example 4.3. Suppose that the data from Example 4.2 has valid weights,
so that WLS can be used instead of FWLS. The R/Splus commands below
perform WLS.

> ls.print(lsfit(dsx,dsy,wt=dsw))

Residual Standard Error=1.137

R-Square=0.9209

F-statistic (df=1, 33)=384.4139

p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept -0.8891 0.3004 -2.9602 0.0057

X 1.1648 0.0594 19.6065 0.0000

Alternative R/Splus commands given below produce similar output.

zout<-lm(dsy~dsx,weights=dsw)

summary(zout)

anova(zout)

zoutr<-lm(dsy~1,weights=dsw)

anova(zoutr,zout)

The F statistic 384.4139 tests Ho : β2 = 0 since weights were used. The
WLS ANOVA F test for Ho : β2 = 0 can also be found with the no intercept
model by adding a column of ones to x, form U and Z and compute the
partial F test where the reduced model uses the first column of U . Notice
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that the “intercept=F” option needs to be used to fit both models. The
residual standard error = RSE =

√
MSE. Thus SSE = (n − k)(RSE)2

where n − k is the denominator degrees of freedom for the F test and k
is the numerator degrees of freedom = number of variables in the model.
The column of ones xone is counted as a variable. The last line of output
computes the partial F statistic and is again ≈ 384.4.

> xone <- 1 + 0*1:35

> x <- cbind(xone,dsx)

> z <- as.vector(diag(sqrt(dsw))%*%dsy)

> u <- diag(sqrt(dsw))%*%x

> ls.print(lsfit(u,z,intercept=F))

Residual Standard Error=1.137

R-Square=0.9817

F-statistic (df=2, 33)=886.4982

p-value=0

Estimate Std.Err t-value Pr(>|t|)

xone -0.8891 0.3004 -2.9602 0.0057

dsx 1.1648 0.0594 19.6065 0.0000

> ls.print(lsfit(u[,1],z,intercept=F))

Residual Standard Error=3.9838

R-Square=0.7689

F-statistic (df=1, 34)=113.1055

p-value=0

Estimate Std.Err t-value Pr(>|t|)

X 4.5024 0.4234 10.6351 0

> ((34*(3.9838)^2-33*(1.137)^2)/1)/(1.137)^2

[1] 384.4006

The WLS t-test for this data has t = 19.6065 which corresponds to F =
t2 = 384.4 since this test is equivalent to the WLS ANOVA F test when there
is only one predictor. The WLS t-test for the intercept has F = t2 = 8.76.
This test statistic can be found from the no intercept OLS model by leaving
the first column of Uout of the model, then perform the partial F test as
shown below.
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> ls.print(lsfit(u[,2],z,intercept=F))

Residual Standard Error=1.2601

F-statistic (df=1, 34)=1436.300

Estimate Std.Err t-value Pr(>|t|)

X 1.0038 0.0265 37.8985 0

> ((34*(1.2601)^2-33*(1.137)^2)/1)/(1.137)^2

[1] 8.760723

4.4 Complements

The theory for GLS and WLS is similar to the theory for the OLS MLR
model, but the theory for FGLS and FWLS is often lacking or huge sample
sizes are needed. However, FGLS and FWLS are often used in practice
because usually V is not known and V̂ must be used instead. Kariya and
Kurata (2004) is a PhD level text covering FGLS.

Shi and Chen (2009) describe numerical diagnostics for GLS. Long and
Ervin (2000) discuss methods for obtaining standard errors when the constant
variance assumption is violated.

Following Sheather (2009, ch. 9, ch. 10) many linear models with serially
correlated errors (eg AR(1) errors) and many linear mixed models can be fit
with FGLS. Both Sheather (2009) and Houseman, Ryan and Coull (2004)
use the Cholesky decomposition and make the residual plots based on the
Cholesky residuals Z − Ẑ where V (θ̂) = KKT . Plots should be based on
Z−Ẑ where V (θ̂) = RR. In other words, use transformation corresponding
to Proposition 4.2 instead of the transformation corresponding to Proposition
4.1.

4.5 Problems

Problems with an asterisk * are especially important.

R/Splus Problems

Use the command source(“A:/regpack.txt”) to download the func-
tions and the command source(“A:/regdata.txt”) to download the data.
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See Preface or Section 17.1. Typing the name of the regpack function,
eg wlsplot, will display the code for the function. Use the args command, eg
args(wlsplot), to display the needed arguments for the function.

4.1. Generalized and weighted least squares are each equivalent to a least
squares regression without intercept. Let V = diag(1, 1/2, 1/3, ..., 1/9) =
diag(1/wi) where n = 9 and the weights wi = i for i = 1, ..., 9. Let xT =
(1, x1, x2, x3). Then the weighted least squares with weight vector wT =
(1, 2, ..., 9) should be equivalent to the OLS regression of

√
wi Yi = Zi on

u where uT =
√

wix = (
√

wi,
√

wix1,
√

wix2,
√

wix3). There is no intercept
because the vector of ones has been replaced by a vector of the

√
wi’s. Type

the following commands in R/Splus and include the output from both lsfit
commands. The coefficients from both lsfit commands should be the same.
The commands can also be copied and pasted from
(www.math.siu.edu/olive/reghw.txt).

e <- rnorm(9)

x <- matrix(rnorm(27),nrow=9,ncol=3)

sqrtv <- sqrt(diag(1/1:9))

Y <- 4 + x%*%c(1,2,3) + sqrtv%*%e

wtt <- 1:9

lsfit(x,Y,wtt)$coef

kinv <- sqrt(diag(1:9))

Z <- kinv%*%Y

X <- 1 + 0*1:9

X <- cbind(X,x)

U <- kinv%*%X

lsfit(U,Z,int=F)$coef

4.2. Download the wlsplot function and the Draper and Smith (1981)
data dsx, dsy, dsw.

a) Enter the R/Splus command wlsplot(x=dsx, y = dsy, w = dsw)
to reproduce Figure 4.1. Once you have the plot you can print it out directly,
but it will generally save paper by placing the plots in the Word editor.

b) Activate Word (often by double clicking on a Word icon). Click on the
screen and type “Problem 4.2.” In R/Splus, click on the plot and then press
the keys Ctrl and c simultaneously. This procedure makes a temporary copy
of the plot. In Word, move the pointer to Edit and hold down the leftmost
mouse button. This will cause a menu to appear. Drag the pointer down to
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Paste. In the future, these menu commands will be denoted by “Edit>Paste.”
The plot should appear on the screen. To save your output on your diskette,
use the Word menu commands “File > Save as.” In the Save in box select
“3 1/2 Floppy(A:)” and in the File name box enter HW4d2.doc. To exit
from Word, click on the “X” in the upper right corner of the screen. In Word
a screen will appear and ask whether you want to save changes made in your
document. Click on No. To exit from R/Splus, type “q()” or click on the
“X” in the upper right corner of the screen and then click on No.

4.3. Download the fwlssim function. This creates WLS data if “type”
is 1 or 3 and FWLS data if “type” is 2 or 4. Let the sufficient predictor
SP = 25 + 2x2 + · · ·+ 2xp. Then Y = SP + |SP − 25k|σe where the xij and
ei are iid N(0, 1). Thus Y |SP ∼ N(SP, (SP − 25k)2σ2). If “type” is 1 or 2
then k = 1/5, but k = 1 if “type” is 3 or 4. The default has σ2 = 1.

The function creates the OLS response and residual plots and the FWLS
(or WLS) response and residual plots.

a) Type the following command several times. The OLS and WLS plots
tend to look the same.

fwlssim(type=1)

b) Type the following command several times. Now the FWLS plots often
have outliers.

fwlssim(type=2)

c) Type the following command several times. The OLS residual plots
have a saddle shape, but the WLS plots tend to have highly skewed fitted
values.

fwlssim(type=3)

d) Type the following command several times. The OLS residual plots
have a saddle shape, but the FWLS plots tend to have outliers and highly
skewed fitted values.

fwlssim(type=4)

193


