
Chapter 1

Introduction

All models are wrong, but some are useful.
Box (1979)

In data analysis, an investigator is presented with a problem and data from
some population. The population might be the collection of all possible out-
comes from an experiment while the problem might be predicting a future
value of the response variable Y or summarizing the relationship between Y
and the p × 1 vector of predictor variables x. A statistical model is used
to provide a useful approximation to some of the important underlying char-
acteristics of the population which generated the data. Models for regression
and multivariate location and dispersion are frequently used.

Model building is an iterative process. Given the problem and data but no
model, the model building process can often be aided by graphs that help
visualize the relationships between the different variables in the data. Then a
statistical model can be proposed. This model can be fit, and diagnostics from
the fit can be used to check the assumptions of the model. If the assumptions
are not met, then an alternative model can be selected. The fit from the new
model is obtained, and the cycle is repeated. After a reasonable model is
found, the model can be used for description or inference.

Response variables are the variables of interest, and are predicted with a
p×1 vector of predictor variables. For regression models, we will often use Y or
Z for the response variable and x = (x1, ..., xp)

T for predictor variables where
xT is the transpose of x. For example, predict Y = systolic blood pressure
using a constant x1, x2 = age, x3 = weight, and x4 = dosage amount of blood
pressure medicine. The multivariate location and dispersion (MLD) model
has no predictor variables, and we will often use x = (x1, ..., xp)

T for the p
response variables. For regression, the ith case is (Yi, xi1, ..., xip)

T = (Yi, x
T
i )T

for i = 1, ..., n where n is the sample size. For MLD, the ith case is xi. To
get outlier resistant methods for regression models and MLD models, we will
often use a robust MLD estimator on the xi. See Chapter 3.
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Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Definition 1.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (1.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = α+βT x where ESP = α̂+β̂
T
x. This class of models includes the gen-

eralized linear model (GLM). Another important special case is a generalized
additive model (GAM), where Y is independent of x = (x1, ..., xp)

T given the
additive predictor AP = α +

∑p
j=1 Sj(xj) for some (usually unknown) func-

tions Sj . The estimated additive predictor EAP = ESP = α̂ +
∑p

j=1 Ŝj(xj).

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis.

Plots are extremely important for regression. When p = 1, x is both a
sufficient predictor and an estimated sufficient predictor. So a plot of x versus
Y is both a sufficient summary plot and a response plot. Usually the SP is
unknown, so only the response plot can be made. The response plot will be
extremely useful for checking the goodness of fit of the 1D regression model.

Definition 1.3. A sufficient summary plot is a plot of the SP versus Y .
An estimated sufficient summary plot (ESSP) or response plot is a plot of
the ESP versus Y .

Notation. Often the index i will be suppressed. If h(x) = α + βT x, we
could redefine x and β (or omit α) so that h(x) = βT x = xT β. For example,
the multiple linear regression model

Yi = βT xi + ei (1.2)

for i = 1, ..., n where β is a p × 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = βT x + e. More accurately,
Y |x = βT x+e, but the conditioning on x will often be suppressed. Often the
errors e1, ..., en are iid (independent and identically distributed) with mean
0 and unknown standard deviation σ. For this model, estimation of β and
σ is important for inference and for predicting a new value of the response
variable Yf given a new vector of predictors xf .
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The class of 1D regression models is very rich, and many of the most
used statistical models, including GLMs and GAMs, are 1D regression mod-
els. Nonlinear regression, nonparametric regression, and linear regression are
special cases of the additive error regression model

Y = h(x) + e = SP + e. (1.3)

The multiple linear regression model and experimental design model or ANOVA
model are special cases of the linear regression model Y = β

T
x + e. Another

important class of parametric or semiparametric 1D regression models has
the form

Y = g(α + xT β, e) or Y = g(xTβ, e). (1.4)

Special cases include GLMs and the response transformation model

Z = t−1(α + β
T
x + e) (1.5)

where t−1 is a one to one (typically monotone) function. Hence

Y = t(Z) = α + βT x + e. (1.6)

In the literature, the response variable is sometimes called the dependent
variable while the predictor variables are sometimes called carriers, covari-
ates, explanatory variables, or independent variables. The ith case (Yi, x

T
i )T

consists of the values of the response variable Yi and the predictor variables
xT

i = (xi,1, ..., xi,p) where p is the number of predictors and i = 1, ..., n. The
sample size n is the number of cases.

Box (1979) warns that “All models are wrong, but some are useful.” For
example the function g or the error distribution could be misspecified. Di-
agnostics are used to check whether model assumptions such as the form of
g and the proposed error distribution are reasonable. Often diagnostics use
residuals ri. If m is known, then the additive error regression model uses

ri = Yi − m̂(xi)

where m̂(x) is an estimate of m(x). If the sufficient predictor is xT β, then

several estimators β̂j could be used. Often β̂j is computed from a subset
of the n cases or from different fitting methods. For example, ordinary least
squares (OLS) and least absolute deviations (L1) could be used to compute

β̂OLS and β̂L1
, respectively. Then the corresponding residuals can be plotted.

Exploratory data analysis (EDA) can be used to find useful models when
the form of the regression or multivariate model is unknown. For example,
suppose g is a monotone function t−1 :
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Y = t−1(xT β + e). (1.7)

Then the transformation

Z = t(Y ) = xT β + e (1.8)

follows a multiple linear regression model, and the goal is to find t.

Robust statistics can be tailored to give useful results even when a certain
specified model assumption is incorrect. An important class of robust statis-
tics can give useful results when outliers, observations far from the bulk of
the data, are present.

Another class of robust statistics has good large sample theory for a large
class of distributions: e.g. β̂ is a good estimator of β for a large class of error
distributions. Examples include OLS and L1 for multiple linear regression, the
sample mean and sample covariance matrix for the multivariate location and
dispersion model, least squares and the Yule Walker estimators for AR(p)
time series, and least squares for the multivariate linear regression model
where there are m response variables.

These two classes of robust statistics have amazing applications for regres-
sion, multivariate location and dispersion, diagnostics, and EDA. This book
illustrates some of these applications and investigates the interrelationships
between these two classes of robust statistics.

Acronyms are widely used in robust statistics and multivariate analysis,
and some of the more important acronyms are in Table 1.1. Also see the text’s
index. The letter “R” tends to stand for “robust” (RPCA) or “reweighted”
(RFCH). The letter “F” before a brand name robust estimator (FMCD)
tends to mean a practical estimator that used a fixed number of trial fits,
where the criterion of the brand name estimator was used to select the trial
fit used in the final estimator. The letter “C” before a brand name estimator
(CLTS) tends to mean a concentration algorithm was used for the F–brand
name estimator. The letter “A”, standing for “algorithm”, was also used for
concentration algorithms (ALTS). These acronyms (with A, C, F, or R) are
often omitted from Table 1.1.

1.1 Outlier....s

An outlier is an observation that is far from the bulk of the data. Typing
and recording errors may create outliers, and a data set can have a large
proportion of outliers if there is an omitted categorical variable (e.g. gender,
species, or geographical location) where the data behaves differently for each
category. Outliers should always be examined to see if they follow a pattern,
are recording errors, or if they could be explained adequately by an alternative
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Table 1.1 Acronyms

Acronym Description
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
Det-MCD practical approximate MCD estimator not backed by theory

DGK an MLD estimator (DGK are the initials of the paper’s authors)
EC elliptically contoured
ESP estimated sufficient predictor

Fast-MCD a slow FMCD estimator
FCH name of a fast, consistent, highly outlier resistant MLD estimator
FLTS practical approximate LTS estimator not backed by theory
FMCD practical approximate MCD estimator not backed by theory
GAM generalized additive model
GLM generalized linear model
HB high breakdown

hbreg practical high breakdown regression estimator backed by theory
iid independent and identically distributed

LMS least median of squares (robust regression)
LR logistic regression
LTA least trimmed sum of absolute deviations (robust regression)
LTS least trimmed sum of squares (robust regression)
MAD median absolute deviation

MANOVA multivariate analysis of variance
MB median ball estimator

MBA an MLD estimator made obsolete by FCH
MBA or the median ball algorithm is the mbareg estimator

mbareg a resistant regression estimator backed by theory
MCD the impractical minimum covariance determinant estimator
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression
MVE the impractical minimum volume ellipsoid estimator
MVN multivariate normal
OGK an MLD estimator not backed by theory
OLS ordinary least squares
pdf probability density function
PI prediction interval

pmf probability mass function
RFCH the reweighted FCH estimator
RMVN a reweighted FCH estimator that works well for MVN data

SE standard error
SSP sufficient summary plot

TVREG a resistant “trimmed views” regression estimator
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model. Recording errors can sometimes be corrected and omitted variables
can be included, but often there is no simple explanation for a group of data
which differs from the bulk of the data.

Although outliers are often synonymous with “bad” data, they are fre-
quently the most important part of the data. Consider, for example, finding
the person you want to marry, finding the best investments, finding the lo-
cations of mineral deposits, and finding the best students, teachers, doctors,
scientists, or other outliers in ability. Huber and Ronchetti (2009, p. 4) states
that outlier resistance and distributional robustness are synonymous while
Hampel et al. (1986, p. 36) state that the first and most important step in
robustification is the rejection of distant outliers.

Deciding what to do with outliers can be difficult. Sometimes the outliers
should be discarded or downweighted. Then inflexible estimators such as re-
sistant multiple linear regression estimators are often useful. The estimator
is inflexible since a hyperplane is estimated. Sometimes the oultiers are im-
portant and should be fit will by the model. Then flexible estimators, such
as the generalized additive model to fit the additive error regression model,
are often useful.

Example 1.1. a) The Rousseeuw and Leroy (1987, p. 26) Belgian tele-
phone data has response Y = number of international phone calls (in tens of
millions) made per year in Belgium. The predictor variable x = year (1950-
1973). From 1964 to 1969 total number of minutes of calls was recorded
instead, and years 1963 and 1970 were also partially effected. Hence there
are 6 large outliers and 2 additional cases that have been corrupted. The 8
cases corresponding to these outliers should be deleted.

b) Wood (2017, pp. 346-348) describes an air pollution data set where the
response variable is the daily death rate in Chicago over a number of years.
For this data set, there tend to be outliers that occur a few days after days
that had both high temperature and high ozone levels. For this data set, the
outliers are very important, and should be fit well by the model.

c) While consulting for a chemistry experiment, the data set was fit by a
regression method where the expert said some of the Yi were impossible due
to large ei. The nonparametric bootstrap using all of the data gave results
that the expert considered reasonable for inference.

In the literature there are two important paradigms for robust procedures.
The perfect classification paradigm considers a fixed data set of n cases of
which 0 ≤ d < n/2 are outliers. The key assumption for this paradigm is
that the robust procedure perfectly classifies the cases into outlying and non-
outlying (or “clean”) cases. The outliers should never be blindly discarded.
Often the clean data and the outliers are analyzed separately. The clean cases
are also called inliers.

The asymptotic paradigm uses an asymptotic distribution to approximate
the distribution of the estimator when the sample size n is large. An impor-
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tant example is the central limit theorem (CLT): let Y1, ..., Yn be iid with
mean µ and standard deviation σ; i.e., the Yi’s follow the location model

Y = µ + e.

Then
√

n(
1

n

n
∑

i=1

Yi − µ)
D→ N(0, σ2).

Hence the sample mean Y n is asymptotically normal AN(µ, σ2/n).
For this paradigm, one must determine what the estimator is estimating,

the rate of convergence, the asymptotic distribution, and how large n must be
for the approximation to be useful. Moreover, the (asymptotic) standard error
(SE), an estimator of the asymptotic standard deviation, must be computable
if the estimator is to be useful for inference. Note that the sample mean is
estimating the population mean µ with a

√
n convergence rate, the asymptotic

distribution is normal, and the SE = S/
√

n where S is the sample standard
deviation. For many distributions the central limit theorem provides a good
approximation if the sample size n > 30, but for any n > 0, there are many
distributions where the CLT approximation is poor. Chapter 2 examines the
sample mean, standard deviation and robust alternatives.

1.2 Applications

One of the key ideas of this book is that the data should be examined with
several estimators, and this book provides robust estimators and diagnostics
that can be used in tandem with classical estimators. Often there are many
procedures that will perform well when the model assumptions hold, but
no single method can dominate every other method for every type of model
violation. For example, OLS is best for multiple linear regression when the
iid errors are normal (Gaussian) while L1 is best if the errors are double
exponential. Resistant estimators may outperform classical estimators when
outliers are present but be far worse if no outliers are present.

Different multiple linear regression estimators tend to estimate β in the
iid constant variance symmetric error model, but otherwise each estimator
estimates a different parameter. Hence a plot of the residuals or fits from
different estimators should be useful for detecting departures from this very
important model. The “RR plot” is a scatterplot matrix of the residuals from
several regression fits. Tukey (1991) notes that such a plot will be linear with
slope one if the model assumptions hold. Let the ith residual from the jth
fit β̂j be ri,j = Yi − xT

i β̂j where the superscript T denotes the transpose of

the vector and (Yi, x
T
i ) is the ith observation. Then
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‖ri,1 − ri,2‖ = ‖xT
i (β̂1 − β̂2)‖

≤ ‖xi‖ (‖β̂1 − β‖ + ‖β̂2 − β‖).

The RR plot is simple to use since if β̂1 and β̂2 have good convergence
rates and if the predictors xi are bounded, then the residuals will cluster
tightly about the identity line (the unit slope line through the origin) as n
increases to ∞. For example, plot the least squares residuals versus the L1

residuals. Since OLS and L1 are consistent, the plot should be linear with
slope one when the regression assumptions hold, but the plot should not have
slope one if there are Y –outliers since L1 resists these outliers while OLS does
not. Making a scatterplot matrix of the residuals from OLS, L1, and several
other estimators can be very informative.

The FF plot is a scatterplot matrix of fitted values and the response. A
plot of fitted values versus the response is called a response plot. For square
plots, outliers tend to be

√
2 times further away from the bulk of the data in

the OLS response plot than in the OLS residual plot because outliers tend
to stick out for both the fitted values and the response.

Example 1.2. Gladstone (1905) attempts to estimate the weight of the
human brain using predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index (divide the breadth of the head by its length and
multiply by 100). The sex (coded as 0 for females and 1 for males) of each
subject was also included. The variable cause was coded as 1 if the cause
of death was acute, as 3 if the cause of death was chronic, and coded as 2
otherwise. A variable ageclass was coded as 0 if the age was under 20, as 1 if
the age was between 20 and 45, and as 3 if the age was over 45. Head size is
the product of the head length, head breadth, and head height.

The data set contains 276 cases, and we decided to use multiple linear
regression to predict brain weight using the six head measurements height,
length, breadth, size, cephalic index and circumference as predictors. Cases
188 and 239 were deleted because of missing values. There are five infants
(cases 238, 263-266) of age less than 7 months that are x-outliers. Nine tod-
dlers were between 7 months and 3.5 years of age, four of whom appear to
be x-outliers (cases 241, 243, 267, and 269).

Figure 1.1 shows an RR plot comparing the OLS, ALMS, ALTS and MBA
fits. ALMS is the default version of the R function lmsreg while ALTS is the
default version of ltsreg. The three estimators ALMS, ALTS, and MBA
are described further in Chapters 6, 7, and 8. Figure 1.1 was made with a
2007 version of R. ALMS, ALTS and MBA depend on the seed (in R) and
so the estimators change with each call of rrplot2. Also, the ALMS and
ALTS estimators change frequently. Nine cases stick out in Figure 1.1, and
these points correspond to five infants and four toddlers that are x-outliers.
The OLS fit may be the best since the OLS fit to the bulk of the data (with
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Fig. 1.1 RR Plot for Gladstone data

the nine potential outliers given weight 0) passes through the five infants,
suggesting that these cases are “good leverage points.”

Assume the book’s collection of R functions rpack and collection of data
sets robdata are stored on flash drive G. See Section 11.2. RR plots similar
to Figure 1.1 can be made in R using the following commands.

source("G:/rpack.txt")

source("G:/robdata.txt")

library(MASS)

rrplot2(cbrainx,cbrainy)

An obvious application of outlier resistant methods is the detection of
outliers. Generally robust and resistant methods can only detect certain con-
figurations of outliers, and the ability to detect outliers rapidly decreases as
the sample size n and the number of predictors p increase. When the Glad-
stone data was first entered into the computer, the variable head length was
inadvertently entered as 109 instead of 199 for case 119. Residual plots are
shown in Figure 1.2. For the three resistant estimators, case 119 is in the
lower right corner.
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Fig. 1.2 Gladstone data where case 119 is a typo

Example 1.3. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
Height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, numbers 62–66, were reported to be about 0.75 inches tall
with head lengths well over five feet! Figure 7.1, made around 2000, shows
that the outliers were accommodated by OLS, ALMS and ALTS. The outliers
had large absolute residuals for the MBA, BB and MBALATA estimators.
Figure 5.2 shows that the outliers are much easier to detect with the OLS
response and residual plots.

The Buxton data is also used to illustrate robust multivariate location and
dispersion estimators in Example 3.4 and to illustrate a graphical diagnostic
for multivariate normality in Example 3.2.

Example 1.4. Now suppose that the only variable of interest in the Bux-
ton data is Y = height. How should the five adult heights of 0.75 inches be
handled? These observed values are impossible, and could certainly be deleted
if it was felt that the recording errors were made at random; however, the
outliers occurred on consecutive cases: 62–66. If it is reasonable to assume
that the true heights of cases 62–66 are a random sample of five heights from
the same population as the remaining heights, then the outlying cases could
again be deleted. On the other hand, what would happen if cases 62–66 were
the five tallest or five shortest men in the sample? In particular, how are
point estimators and confidence intervals affected by the outliers? Chapter 2
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will show that classical location procedures based on the sample mean and
sample variance are adversely affected by the outliers while procedures based
on the sample median or the 25% trimmed mean can frequently handle a
small percentage of outliers.

For the next application, assume that the population that generates the
data is such that a certain proportion γ of the cases will be easily identified
but randomly occurring unexplained outliers where γ < α < 0.2, and assume
that remaining proportion 1 − γ of the cases will be well approximated by
the statistical model.

A common suggestion for examining a data set that has unexplained out-
liers is to run the analysis on the full data set and to run the analysis on the
“cleaned” data set with the outliers deleted. Then the statistician may con-
sult with subject matter experts in order to decide which analysis is “more
appropriate.” Although the analysis of the cleaned data may be useful for
describing the bulk of the data, the analysis may not very useful if prediction
or description of the entire population is of interest.

Similarly, the analysis of the full data set will likely be unsatisfactory for
prediction since numerical statistical methods tend to be inadequate when
outliers are present. Classical estimators will frequently fit neither the bulk of
the data nor the outliers well, while an analysis from a good practical robust
estimator (if available) should be similar to the analysis of the cleaned data
set.

Hence neither of the two analyses alone is appropriate for prediction or
description of the actual population. Instead, information from both analyses
should be used. The cleaned data will be used to show that the bulk of the
data is well approximated by the statistical model, but the full data set will
be used along with the cleaned data for prediction and for description of the
entire population.

To illustrate the above discussion, consider the multiple linear regression
model

Y = Xβ + e (1.9)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of errors. The ith case (Yi, x

T
i )T corresponds to the ith row xT

i of X

and the ith element Yi of Y . Assume that the errors ei are iid zero mean
normal random variables with variance σ2.

Finding prediction intervals for future observations is a standard problem
in regression. Let β̂ denote the ordinary least squares (OLS) estimator of β

and let

MSE =

∑n
i=1 r2

i

n − p

where ri = Yi − xT
i β̂ is the ith residual. Following Olive, (2017a, p. 39), a

100(1− δ)% prediction interval (PI) for a new observation Yf corresponding
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to a vector of predictors xf is given by

Ŷf ± tn−p,1−α/2se(pred) (1.10)

where Ŷf = xT
f β̂, P (t ≤ tn−p,1−δ/2) = 1 − δ/2 where t has a t distribution

with n − p degrees of freedom, and

se(pred) =
√

MSE(1 + xT
f (XT

X)−1xf).

For discussion, suppose that 1 − γ = 0.92 so that 8% of the cases are
outliers. If interest is in a 95% PI, then using the full data set will fail because
outliers are present, and using the cleaned data set with the outliers deleted
will fail since only 92% of future observations will behave like the “clean”
data.

A simple remedy is to create a nominal 100(1 − δ)% PI for future cases
from this population by making a classical 100(1−δ∗) PI from the clean cases
where

1 − δ∗ = (1 − δ)/(1 − γ). (1.11)

Assume that the data have been perfectly classified into nc clean cases and
no outlying cases where nc +no = n. Also assume that no outlying cases will
fall within the PI. Then the PI is valid if Yf is clean, and

P(Yf is in the PI) = P(Yf is in the PI and clean) =

P(Yf is in the PI | Yf is clean) P(Yf is clean) = (1 − δ∗)(1 − γ) = (1 − δ).

The formula for this PI is then

Ŷf ± tnc−p,1−δ∗/2se(pred) (1.12)

where Ŷf and se(pred) are obtained after performing OLS on the nc clean
cases. For example, if δ = 0.1 and γ = 0.08, then 1 − δ∗ ≈ 0.98. Since γ will
be estimated from the data, the coverage will only be approximately valid.
The following example illustrates the procedure.

Example 1.5. STATLIB provides the Johnson (1996) data set that is
available from the website (http://lib.stat.cmu.edu/datasets/bodyfat) and
from the text website file bodfat.lsp. The data set includes 252 cases, 14
predictor variables, and a response variable Y = bodyfat. The correlation
between Y and the first predictor x1 = density is extremely high, and the plot
of x1 versus Y looks like a straight line except for four points. If simple linear
regression is used, the residual plot of the fitted values versus the residuals is
curved and five outliers are apparent. The curvature suggests that x2

1 should
be added to the model, but the least squares fit does not resist outliers well.
If the five outlying cases are deleted, four more outliers show up in the plot.
The residual plot for the quadratic fit looks reasonable after deleting cases
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Fig. 1.3 Plots for Summarizing the Entire Population

6, 48, 71, 76, 96, 139, 169, 182 and 200. Cases 71 and 139 were much less
discrepant than the other seven outliers.

These nine cases appear to be outlying at random: if the purpose of the
analysis was description, we could say that a quadratic fits 96% of the cases
well, but 4% of the cases are not fit especially well. If the purpose of the
analysis was prediction, deleting the outliers and then using the clean data to
find a 99% prediction interval (PI) would not make sense if 4% of future cases
are outliers. To create a nominal 90% PI for future cases from this population,
make a classical 100(1−δ∗) PI from the clean cases where 1−δ∗ = 0.9/(1−γ).
For the bodyfat data, we can take 1−γ ≈ 1−9/252 ≈ 0.964 and 1−δ∗ ≈ 0.94.
Notice that (0.94)(0.96) ≈ 0.9.

Figure 1.3 is useful for presenting the analysis. The top two plots have the
nine outliers deleted. Figure 1.3a is a response plot of the fitted values Ŷi

versus the response Yi while Figure 1.3b is a residual plot of the fitted values
Ŷi versus the residuals ri. These two plots suggest that the multiple linear
regression model fits the bulk of the data well. Next consider using weighted
least squares where cases 6, 48, 71, 76, 96, 139, 169, 182 and 200 are given
weight zero and the remaining cases weight one. Figure 1.3c and 1.3d give
the response plot and residual plot for the entire data set. Notice that seven
of the nine outlying cases can be seen in these plots.

The classical 90% PI using x = (1, 1, 1)T and all 252 cases was Ŷf ±
t249,0.95se(pred) = 46.3152± 1.651(1.3295) = [44.12, 48.51]. When the 9 out-
liers are deleted, nc = 243 cases remain. Hence the 90% PI using Equa-
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tion (1.12) with 9 cases deleted was Ŷh ± t240,0.97se(pred) = 44.961 ±
1.88972(0.0371) = [44.89, 45.03]. The classical PI is about 31 times longer
than the new PI.

For the next application, consider a response transformation model

Y = t−1
λo

(xT β + e)

where λo ∈ Λ = {0,±1/4,±1/3,±1/2,±2/3,±1}. Then

tλo
(Y ) = xT β + e

follows a multiple linear regression (MLR) model where the response variable
Yi > 0 and the power transformation family

tλ(Y ) ≡ Y (λ) =
Y λ − 1

λ
(1.13)

for λ 6= 0 and Y (0) = log(Y ).

The following simple graphical method for selecting response transforma-
tions can be used with any good classical, robust or Bayesian MLR estimator.
Let Zi = tλ(Yi) for λ 6= 1, and let Zi = Yi if λ = 1. Next, perform the mul-
tiple linear regression of Zi on xi and make the “response plot” of Ẑi versus
Zi. If the plotted points follow the identity line, then take λo = λ. One plot
is made for each of the eleven values of λ ∈ Λ, and if more than one value of
λ works, take the simpler transformation or the transformation that makes
the most sense to subject matter experts. (Note that this procedure can be

modified to create a graphical diagnostic for a numerical estimator λ̂ of λo

by adding λ̂ to Λ.) The following example illustrates the procedure.

Example 1.6. Box and Cox (1964) present a textile data set where sam-
ples of worsted yarn with different levels of the three factors were given a
cyclic load until the sample failed. The goal was to understand how Y =
the number of cycles to failure was related to the predictor variables. Figure
1.4 shows the response plots for two MLR estimators: OLS and the R func-
tion lmsreg. Figures 1.4a and 1.4b show that a response transformation is
needed while 1.4c and 1.4d both suggest that log(Y ) is the appropriate re-
sponse transformation. Using OLS and a resistant estimator as in Figure 1.4
may be very useful if outliers are present.

Further illustrations of the graphical method for selecting the response
transformation tλ are in Section 4.2.

Another important application is variable selection: the search for a subset
of predictor variables that can be deleted from the model without important
loss of information. Section 4.3 gives a graphical method for assessing variable
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Fig. 1.4 OLS and LMSREG Suggest Using log(Y) for the Textile Data

selection for multiple linear regression models while Section 9.4 gives a similar
method for a large class of 1D regression models.

The basic idea is to obtain fitted values from the full model and the can-
didate submodel. If the candidate model is good, then the plotted points in
a plot of the submodel fitted values versus the full model fitted values should
follow the identity line. In addition, a similar plot should be made using the
residuals.

If the predicted values from the submodel are highly correlated with the
predicted values from the full model, then the submodel is “good.” This
idea is useful even for extremely complicated models: the estimated sufficient
predictor of a “good submodel” should be highly correlated with the ESP of
the full model. Section 9.4 will show that the all subsets, forward selection
and backward elimination techniques of variable selection for multiple linear
regression will often work for a large class of 1D regression models provided
that the Mallows’ Cp criterion is used.

Example 1.7. The Boston housing data of Harrison and Rubinfeld (1978)
contains 14 variables and 506 cases. Suppose that the interest is in predicting
the per capita crime rate from the other variables. Variable selection for this
data set is discussed in much more detail in Section 9.4.

Another important topic is fitting 1D regression models given by Equation
(1.4) where g and β are both unknown. Many types of plots will be used in
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this text and a plot of x versus y will have x on the horizontal axis and y on
the vertical axis. The R commands

X <- matrix(rnorm(300),nrow=100,ncol=3)

Y <- (X %*% 1:3)ˆ3 + rnorm(100)

were used to generate 100 trivariate Gaussian predictors x and the response
Y = (βT

x)3 + e where e ∼ N(0, 1). This is an additive error single index
model Y = m(xT β) + e where m is the cubic function.

X %*% bols

Y

-400 -200 0 200 400

-5
0

0
0

5
0

0

OLS View

Fig. 1.5 Response Plot or OLS View for m(u) = u
3

An amazing result is that the unknown function m can often be visualized
by the response plot or “OLS view,” a plot of the OLS fit (possibly ignoring
the constant) versus Y generated by the following commands.

bols <- lsfit(X,Y)$coef[-1]

plot(X %*% bols, Y)

The OLS view, shown in Figure 1.5, can be used to visualize m and for
prediction. Note that Y appears to be a cubic function of the OLS fit and
that if the OLS fit = 0, then the graph suggests using Ŷ = 0 as the predicted
value for Y . This plot and modifications will be discussed in detail in Chapter
9.

This section has given a brief outlook of the book. Also look at the preface
and table of contents, and then thumb through the remaining chapters to
examine the procedures and graphs that will be developed.
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1.3 Complements

An excellent paper on statistical models is Box (1979). Several authors con-
sider the model Y x|xT β or Y x|xT β1, ..., x

T βd where the structural
dimension is d. See Cook and Weisberg (1999a) and Cook (1998a). The 1D
regression model, due to Olive (2004b), uses Y x|h(x). A dD regression
model would use Y x|h1(x), ..., hd(x). Using h(x) is similar to using a
minimal sufficient statistic while using xT β1, ..., x

T βd is similar to using a
sufficient statistic, e.g. a 1D regression model could have structural dimension
d > 1 (this result occurs for the additive error regression model Y = m(x)+e
if m(x) is a function of xT β1, ..., x

T βd). For more on 1D regression, see Olive
(2010, 2017a, 2017b: pp. 427-443, 2020). The graphical method for response
transformations illustrated in Example 1.6 was suggested by Olive (2004b).

The concept of outliers is rather vague. See Barnett and Lewis (1994) and
Beckman and Cook (1983) for history. Outlier rejection is a subjective or
objective method for deleting or changing observations which lie far away
from the bulk of the data. The modified data is often called the “cleaned
data.” Data editing, screening, truncation, censoring, Winsorizing, and trim-
ming are all methods for data cleaning. David (1981, ch. 8) surveys outlier
rules before 1974, and Hampel et al. (1986, Section 1.4) surveys some robust
outlier rejection rules. Outlier rejection rules are also discussed in Hampel
(1985), Simonoff (1987ab), and Stigler (1973b). Aggarwal (2017) covers out-
liers from a Machine Learning perspective. Olive (2017b) gives many outlier
resistant methods.

This text will use the R software R Core Team (2016), available from the
website (www.r-project.org/). Section 11.2 of this text, Becker, Chambers,
and Wilks (1988), Crawley (2013), and Venables and Ripley (2010) are useful
for R users.

The Gladstone, Buxton, bodyfat and Boston housing data sets are avail-
able from the text’s website under the file names gladstone.lsp, buxton.lsp,
bodfat.lsp and boston2.lsp.

1.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

1.1∗. Using the notation in the second paragraph of Section 1.2, let Ŷi,j =

xT
i β̂j and show that ‖ri,1 − ri,2‖ = ‖Ŷi,1 − Ŷi,2‖.

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).
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1.2∗. a) Paste the commands for this problem (from the above link) into
R to reproduce a plot like Figure 1.5.

b) Activate Word (often by double clicking on a Word icon, perhaps after
typing word in the box on the lower left of the computer screen). Click on the
screen and type “Problem 1.2.” To copy and paste a plot from R into Word,
click on the plot and hit Ctrl and c at the same time. Then go to file in the
Word menu and select paste or hit Ctrl and v at the same time.

To save your output on your flash drive G, click on the icon in the upper
left corner of Word. Then drag the pointer to “Save as.” A window will
appear, click on the Word Document icon. A “Save as” screen appears. Click
on the right “check” on the top bar, and then click on “Removable Disk
(G:)”. Change the file name to HW1d2.docx, and then click on “Save.”

To exit from Word, click on the “X” in the upper right corner of the screen.
In Word a screen will appear and ask whether you want to save changes made
in your document. Click on No. To exit from R, type “q()” or click on the
“X” in the upper right corner of the screen and then click on No.

c) To see the plot of 10β̂
T
x versus Y , paste the commands for this problem

into R.
d) Include the plot in Word using commands similar to those given in b).

e) Do the two plots look similar? Can you see the cubic function?

1.3∗. a) Paste the commands for this problem into R to illustrate the
central limit theorem when the data Y1, ..., Yn are iid from an exponential
distribution. The function generates a data set of size n and computes Y 1

from the data set. This step is repeated nruns = 100 times. The output is
a vector (Y 1, Y 2, ..., Y 100). A histogram of these means should resemble a
symmetric normal density once n is large enough.

b) Paste the commands for this problem into R to plot 4 histograms with
n = 1, 5, 25 and 200. Save the plot in Word and then print the plot using the
procedure described in Problem 1.2b.

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a), b) and c), but in part a), change rexp(n) to rnorm(n).
Then Y1, ..., Yn are iid N(0,1) and Y ∼ N(0, 1/n).


