
Chapter 2

The Location Model

The location model is used when there is one variable Y , such as height, of
interest. The location model is a special case of the multivariate location and
dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. See Chapter 3.

The location model is

Yi = µ+ ei, i = 1, . . . , n (2.1)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. For example, if the Yi are iid from a normal
distribution with mean µ and variance σ2, written Yi ∼ N(µ, σ2), then the
ei are iid with ei ∼ N(0, σ2). The location model is often summarized by
obtaining point estimates and confidence intervals for a location parameter
and a scale parameter. Assume that there is a sample Y1, . . . , Yn of size n
where the Yi are iid from a distribution with cumulative distribution function
(cdf) F , median MED(Y ), mean E(Y ), and variance V (Y ) if they exist. The
location parameter µ is often the population mean or median while the scale
parameter is often the population standard deviation

√

V (Y ). The ith case
is Yi.

An important robust technique for the location model is to make a plot of
the data. Dot plots, histograms, box plots, density estimates, and quantile
plots (also called empirical cdfs) can be used for this purpose and allow the
investigator to see patterns such as shape, spread, skewness, and outliers.

Example 2.1. Buxton (1920) presents various measurements on 88 men
from Cyprus. Case 9 was removed since it had missing values. Figure 2.1
shows the dot plot, histogram, density estimate, and box plot for the heights
of the men. Although measurements such as height are often well approxi-
mated by a normal distribution, cases 62-66 are gross outliers with recorded
heights around 0.75 inches! It appears that their heights were recorded under
the variable “head length,” so these height outliers can be corrected. Note
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Fig. 2.1 Dot plot, histogram, density estimate, and box plot for heights from Buxton
(1920).

that the presence of outliers can be detected in all four plots, but the dot
plot of case index versus Y may be easiest to use. Problem 2.22 shows how
to make a similar figure.

2.1 Four Essential Statistics

Point estimation is one of the oldest problems in statistics and four important
statistics for the location model are the sample mean, median, variance, and
the median absolute deviation (MAD). Let Y1, . . . , Yn be the random sample;
i.e., assume that Y1, ..., Yn are iid.

Definition 2.1. The sample mean

Y =

∑n
i=1 Yi

n
. (2.2)
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The sample mean is a measure of location and estimates the population
mean (expected value) µ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi −m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi −Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m is
equal to the sum of the lengths of the rods corresponding to Yi > m. If the
rods have the same diameter, then the weight of a rod is proportional to its
length, and the weight of the rods corresponding to the Yi ≤ Y is equal to
the weight of the rods corresponding to Yi > Y . The sample mean is drawn
towards an outlier since the absolute residual corresponding to a single outlier
is large.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.

Definition 2.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (2.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 2.3. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (2.4)

and the sample standard deviation Sn =
√

S2
n.

The sample median is a measure of location while the sample standard
deviation is a measure of scale. In terms of the “rod analogy,” the median is
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a value m such that at least half of the rods are to the left of m and at least
half of the rods are to the right ofm. Hence the number of rods to the left and
right of m rather than the lengths of the rods determine the sample median.
The sample standard deviation is vulnerable to outliers and is a measure of
the average value of the rod lengths |ri(Y )|. The sample MAD, defined below,
is a measure of the median value of the rod lengths |ri(MED(n))|.

Definition 2.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (2.5)

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.
Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n). For small data sets,
sort the data. Then the median is the middle observation if n is odd, and the
average of the two middle observations if n is even.

Example 2.2. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

2.2 A Note on Notation

Table 2.1 Some commonly used notation.

population sample

E(Y ), µ, θ Y n, E(n) µ̂, θ̂

MED(Y ), M MED(n), M̂
VAR(Y ), σ2 VAR(n), S2, σ̂2

SD(Y ), σ SD(n), S, σ̂
MAD(Y ) MAD(n)
IQR(Y ) IQR(n)

Notation is needed in order to distinguish between population quanti-
ties, random quantities, and observed quantities. For population quantities,
capital letters like E(Y ) and MAD(Y ) will often be used while the estima-
tors will often be denoted by MED(n),MAD(n), MED(Yi, i = 1, ..., n), or
MED(Y1, . . . , Yn). The random sample will be denoted by Y1, . . . , Yn. Some-
times the observed sample will be fixed and lower case letters will be used.
For example, the observed sample may be denoted by y1, ..., yn while the
estimates may be denoted by med(n),mad(n), or yn. Table 2.1 summarizes
some of this notation.
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2.3 The Population Median and MAD

The population median MED(Y ) and the population median absolute devi-
ation MAD(Y ) are very important quantities of a distribution.

Definition 2.5. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (2.6)

Definition 2.6. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (2.7)

MED(Y ) is a measure of location while MAD(Y ) is a measure of scale.
The median is the middle value of the distribution. Since MAD(Y ) is the me-
dian distance from MED(Y ), at least half of the mass is inside [MED(Y ) −
MAD(Y ),MED(Y )+ MAD(Y )] and at least half of the mass of the distribu-
tion is outside of the interval (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )).
In other words, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )]) ≥ 0.5,

and P (Y ∈ (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )) ) ≤ 0.5.

Warning. There is often no simple formula for MAD(Y ). For example, if
Y ∼ Gamma(ν, λ), then VAR(Y ) = νλ2, but for each value of ν , there is a
different formula for MAD(Y ).

MAD(Y ) and MED(Y ) are often simple to find for location, scale, and
location–scale families. Assume that the cdf F of Y has a probability density
function (pdf) or probability mass function (pmf) f .

Definition 2.7. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − µ) indexed by the location parameter µ, −∞ < µ < ∞, is
the location family for the random variable W = µ + Y with standard pdf
fY (y).

Definition 2.8. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 2.9. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − µ)/σ) indexed by the location and scale parame-
ters µ, −∞ < µ <∞, and σ > 0, is the location–scale family for the random
variable W = µ+ σY with standard pdf fY (y).

Table 2.2 gives the population mad and median for some “brand name”
distributions. The distributions are location–scale families except for the ex-
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Table 2.2 MED(Y ) and MAD(Y ) for some useful random variables.

NAME Section MED(Y ) MAD(Y )
Cauchy C(µ,σ) 11.4.3 µ σ

double exponential DE(θ, λ) 11.4.6 θ 0.6931λ
exponential EXP(λ) 11.4.7 0.6931λ λ/2.0781

two parameter exponential EXP(θ, λ) 11.4.8 θ + 0.6931λ λ/2.0781
half normal HN(µ,σ) 11.4.12 µ + 0.6745σ 0.3991 σ

largest extreme value LEV(θ, σ) 11.4.13 θ + 0.3665σ 0.7670σ
logistic L(µ,σ) 11.4.14 µ 1.0986 σ
normal N(µ,σ2) 11.4.19 µ 0.6745σ
Rayleigh R(µ,σ) 11.4.23 µ + 1.1774σ 0.4485σ

smallest extreme value SEV(θ, σ) 11.4.24 θ − 0.3665σ 0.7670σ
tp 11.4.25 0 tp,3/4

uniform U(θ1, θ2) 11.4.27 (θ1 + θ2)/2 (θ2 − θ1)/4

Table 2.3 Approximations for MED(Y ) and MAD(Y ).

Name Section MED(Y ) MAD(Y )

binomial BIN(k,ρ) 11.4.1 kρ 0.6745
√

kρ(1 − ρ)
chi-square χ2

p 11.4.5 p − 2/3 0.9536
√

p

gamma G(ν, λ) 11.4.9 λ(ν − 1/3) λ
√

ν/1.483

ponential and tp distributions. The notation tp denotes a t distribution with
p degrees of freedom while tp,δ is the δ quantile of the tp distribution, i.e.
P (tp ≤ tp,δ) = δ. Hence tp,0.5 = 0 is the population median. The second
column of Table 2.2 gives the subsection of Chapter 11 where the random
variable is described further. For example, the exponential (λ) random vari-
able is described in Section 11.4.7. Table 2.3 presents approximations for the
binomial, chi-square and gamma distributions.

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following theorem and Table 2.2. Let
F (yδ) = P (Y ≤ yδ) = δ for 0 < δ < 1 where the cdf F (y) = P (Y ≤ y). Let
D = MAD(Y ), M = MED(Y ) = y0.5 and U = y0.75.

Theorem 2.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and sym-
metric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ). Find
M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U by
solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf fY (y)
that is continuous and positive on its support. Then W = µ + σY where
σ > 0. First find M by solving FY (M) = 0.5. After finding M , find D by
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solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM and
MAD(W ) = σD.

Proof sketch. a) Assume the probability density function of Y is contin-
uous and positive on its support. Assume b > 0. Then

1/2 = P [Y ≤ MED(Y )] = P [a+ bY ≤ a+ bMED(Y )] = P [W ≤ MED(W )].

1/2 = P [MED(Y ) − MAD(Y ) ≤ Y ≤ MED(Y ) + MAD(Y )]

= P [a+ bMED(Y ) − bMAD(Y ) ≤ a+ bY ≤ a+ bMED(Y ) + bMAD(Y )]

= P [MED(W ) − bMAD(Y ) ≤W ≤ MED(W ) + bMAD(Y )]

= P [MED(W ) − MAD(W ) ≤W ≤ MED(W ) + MAD(W )].

The proofs of b) and c) are similar. �

Frequently the population median can be found without using a com-
puter, but often the population MAD is found numerically. A good way to
get a starting value for MAD(Y ) is to generate a simulated random sample
Y1, ..., Yn for n ≈ 10000 and then compute MAD(n). The following examples
are illustrative.

Example 2.3. Suppose the W ∼ N(µ, σ2). Then W = µ + σZ where
Z ∼ N(0, 1). The standard normal random variable Z has a pdf that is
symmetric about 0. Hence MED(Z) = 0 and MED(W ) = µ+σMED(Z) = µ.
Let D = MAD(Z) and let P (Z ≤ z) = Φ(z) be the cdf of Z. Now Φ(z) does
not have a closed form but is tabled extensively. Theorem 2.1b) implies that
D = z0.75 − 0 = z0.75 where P (Z ≤ z0.75) = 0.75. From a standard normal
table, 0.67 < D < 0.68 or D ≈ 0.674. A more accurate value can be found
with the following R command.

> qnorm(0.75)

[1] 0.6744898

Hence MAD(W ) ≈ 0.6745σ.

Example 2.4. If W is exponential (λ), then the cdf of W is FW (w) =
1 − exp(−w/λ) for w > 0 and FW (w) = 0 otherwise. Since exp(log(1/2)) =
exp(− log(2)) = 0.5, MED(W ) = log(2)λ. Since the exponential distribution
is a scale family with scale parameter λ, MAD(W ) = Dλ for some D > 0.
Hence

0.5 = FW (log(2)λ+Dλ) − FW (log(2)λ −Dλ),

or 0.5 =

1− exp[−(log(2)+D)]− (1− exp[−(log(2)−D)]) = exp(− log(2))[eD −e−D].

Thus 1 = exp(D) − exp(−D) which may be solved numerically. One way to
solve this equation is to write the following R function.
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tem <- function(D){exp(D) - exp(-D)}

Then plug in values D until tem(D) ≈ 1. Below is some output.

> mad(rexp(10000),constant=1)

#get the sample MAD if n = 10000

[1] 0.4807404

> tem(0.48)

[1] 0.997291

> tem(0.49)

[1] 1.01969

> tem(0.481)

[1] 0.9995264

> tem(0.482)

[1] 1.001763

> tem(0.4812)

[1] 0.9999736

Hence D ≈ 0.4812 and MAD(W ) ≈ 0.4812λ ≈ λ/2.0781. If X is a
two parameter exponential (θ, λ) random variable, then X = θ + W. Hence
MED(X) = θ + log(2)λ and MAD(X) ≈ λ/2.0781. Arnold Willemsen, per-
sonal communication, noted that 1 = eD + e−D . Multiply both sides by
W = eD so W = W 2 − 1 or 0 = W 2 − W − 1 or eD = (1 +

√
5)/2 so

D = log[(1 +
√

5)/2] ≈ 0.4812.

Example 2.5. This example shows how to approximate the population
median and MAD under severe contamination when the “clean” observations
are from a symmetric location–scale family. Let Φ be the cdf of the standard
normal, and let Φ(zδ) = δ. Note that zδ = Φ−1(δ). Suppose Y has a mixture
distribution with cdf FY (y) = (1 − γ)FW (y) + γFC(y) where W ∼ N(µ, σ2)
and C is a random variable far to the right of µ. See Remark 11.1. Show a)

MED(Y ) ≈ µ + σz[ 1
2(1−γ) ]

and b) if 0.4285 < γ < 0.5,

MAD(Y ) ≈ MED(Y ) − µ + σz[ 1
2(1−γ)

] ≈ 2σz[ 1
2(1−γ)

].

Solution. a) Since the pdf of C is far to the right of µ, FC(MED(Y )) ≈ 0
and

(1 − γ)Φ(
MED(Y ) − µ

σ
) ≈ 0.5,

and

Φ(
MED(Y ) − µ

σ
) ≈ 1

2(1 − γ)
.



2.3 The Population Median and MAD 27

b) Since the mass of C is far to the right of µ, FC(MED(Y )+ MAD(Y )) ≈ 0
and

(1 − γ)P [MED(Y ) − MAD(Y ) < W < MED(Y ) + MAD(Y )] ≈ 0.5.

Since the contamination is high, P (W < MED(Y ) + MAD(Y )) ≈ 1, and

0.5 ≈ (1 − γ)P (MED(Y ) − MAD(Y ) < W )

= (1 − γ)[1 − Φ(
MED(Y ) − MAD(Y ) − µ

σ
)].

Writing z[α] for zα gives

MED(Y ) − MAD(Y ) − µ

σ
≈ z

[

1 − 2γ

2(1 − γ)

]

.

Thus

MAD(Y ) ≈ MED(Y ) − µ− σz

[

1 − 2γ

2(1 − γ)

]

.

Since z[α] = −z[1 − α],

−z
[

1 − 2γ

2(1 − γ)

]

= z

[

1

2(1 − γ)

]

and

MAD(Y ) ≈ µ+ σz

[

1

2(1− γ)

]

− µ+ σz

[

1

2(1 − γ)

]

.

Application 2.1. The MAD Method: In analogy with the method of
moments, robust point estimators can be obtained by solving MED(n) =
MED(Y ) and MAD(n) = MAD(Y ). In particular, the location and scale
parameters of a location–scale family can often be estimated robustly using
c1MED(n) and c2MAD(n) where c1 and c2 are appropriate constants. Table
2.4 shows some of the point estimators and Chapter 11 has additional ex-
amples. The following example illustrates the procedure. For a location–scale
family, asymptotically efficient estimators can be obtained using the cross
checking technique. See He and Fung (1999).

Example 2.6. a) For the normal N(µ, σ2) distribution, MED(Y ) = µ
and MAD(Y ) ≈ 0.6745σ. Hence µ̂ = MED(n) and σ̂ ≈ MAD(n)/0.6745 ≈
1.483MAD(n).

b) Assume that Y is gamma(ν, λ). Chen and Rubin (1986) showed that
MED(Y ) ≈ λ(ν − 1/3) for ν > 1.5. By the central limit theorem,

Y ≈ N(νλ, νλ2)



28 2 The Location Model

Table 2.4 Robust point estimators for some useful random variables.

BIN(k,ρ) ρ̂ ≈ MED(n)/k
C(µ,σ) µ̂ = MED(n) σ̂ = MAD(n)

χ2
p p̂ ≈ MED(n) + 2/3, rounded

DE(θ, λ) θ̂ = MED(n) λ̂ = 1.443MAD(n)

EXP(λ) λ̂1 = 1.443MED(n) λ̂2 = 2.0781MAD(n)

EXP(θ, λ) θ̂ = MED(n) − 1.440MAD(n) λ̂ = 2.0781MAD(n)

G(ν, λ) ν̂ ≈ [MED(n)/1.483MAD(n)]2 λ̂ ≈ [1.483MAD(n)]2

MED(n)

HN(µ,σ) µ̂ = MED(n)− 1.6901MAD(n) σ̂ = 2.5057MAD(n)

LEV(θ, σ) θ̂ = MED(n)− 0.4778MAD(n) σ̂ = 1.3037MAD(n)
L(µ,σ) µ̂ = MED(n) σ̂ = 0.9102MAD(n)
N(µ,σ2) µ̂ = MED(n) σ̂ = 1.483MAD(n)
R(µ,σ) µ̂ = MED(n)− 2.6255MAD(n) σ̂ = 2.230MAD(n)

U(θ1, θ2) θ̂1 = MED(n)− 2MAD(n) θ̂2 = MED(n) + 2MAD(n)

for large ν. If X is N(µ, σ2) then MAD(X) ≈ σ/1.483. Hence MAD(Y ) ≈
λ
√
ν/1.483. Assuming that ν is large, solve MED(n) = λν and MAD(n) =

λ
√
ν/1.483 for ν and λ obtaining

ν̂ ≈
(

MED(n)

1.483MAD(n)

)2

and λ̂ ≈ (1.483MAD(n))
2

MED(n)
.

c) Suppose that Y1, ..., Yn are iid from a largest extreme value distribution,
then the cdf of Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location-scale family. Since 0.5 = F (MED(Y )),
MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ. Let D = MAD(Y ) if θ = 0
and σ = 1. Then 0.5 = F [MED(Y ) + MAD(Y )] − F [MED(Y ) − MAD(Y )].
Solving 0.5 = exp[− exp(−(0.36651 +D))] − exp[− exp(−(0.36651−D))] for
D numerically yields D = 0.767049. Hence MAD(Y ) = 0.767049σ.

d) Sometimes MED(n) and MAD(n) can also be used to estimate the pa-
rameters of two parameter families that are not location–scale families. Sup-
pose that Y1, ..., Yn are iid from a Weibull(φ, λ) distribution where λ, y, and
φ are all positive. Then W = log(Y ) has a smallest extreme value SEV(θ =
log(λ1/φ), σ = 1/φ) distribution. Let σ̂ = MAD(W1, ...,Wn)/0.767049 and

let θ̂ = MED(W1, ...,Wn) − log(log(2))σ̂. Then φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂).

Falk (1997) shows that under regularity conditions, the joint distribution
of the sample median and MAD is asymptotically normal. See Section 2.11.
A special case of this result follows. Let ξδ be the δ quantile of Y. Thus
P (Y ≤ ξδ) = δ. If Y is symmetric and has a positive continuous pdf f, then
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MED(n) and MAD(n) are asymptotically independent

√
n

((

MED(n)
MAD(n)

)

−
(

MED(Y )
MAD(Y )

))

D→ N

((

0
0

)

,

(

σ2
M 0
0 σ2

D

))

where

σ2
M =

1

4[f(MED(Y ))]2
,

and

σ2
D =

1

64

[

3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]

=
1

16[f(ξ3/4)]2
.

2.4 Prediction Intervals and the Shorth

Prediction intervals are important. Applying certain prediction intervals or
prediction regions to the bootstrap sample will result in confidence intervals
or confidence regions. The prediction intervals and regions are based on sam-
ples of size n, while the bootstrap sample size is B = Bn. Hence this section
and the following section are important.

Definition 2.10. Consider predicting a future test value Yf given a train-
ing data Y1, ..., Yn. A large sample 100(1 − δ)% prediction interval (PI) for
Yf has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded
below by 1 − δ as the sample size n → ∞. A large sample 100(1 − δ)% PI
is asymptotically optimal if it has the shortest asymptotic length: the length
of [L̂n, Ûn] converges to Us − Ls as n → ∞ where [Ls, Us] is the population
shorth: the shortest interval covering at least 100(1 − δ)% of the mass.

If Yf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n→ ∞. The
interpretation of a 100 (1−δ)% PI for a random variable Yf is similar to that
of a confidence interval (CI). Collect data, then form the PI, and repeat for a
total of k times where the k trials are independent from the same population.
If Yfi is the ith random variable and PIi is the ith PI, then the probability
that Yfi ∈ PIi for j of the PIs approximately follows a binomial(k, ρ= 1−δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated.
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The following two nonparametric PIs often work well if the Yi are iid
and n ≥ 50. Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf

are iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statistics of n iid random
variables Y1, ..., Yn that make up the training data. Let k1 = dnδ/2e and k2 =
dn(1 − δ/2)e where dxe is the smallest integer ≥ x. For example, d7.7e = 8.
See Frey (2013) for references for the following PI.

Definition 2.11. The large sample 100(1− δ)% nonparametric prediction
interval for Yf is

[Y(k1), Y(k2)] (2.8)

where 0 < δ < 1.

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. With the Yi and Y(i) as in the
above paragraph above Definition 2.11, let the shortest closed interval con-
taining at least c of the Yi be

shorth(c) = [Y(s),Y(s+c−1)]. (2.9)

Let
kn = dn(1 − δ)e. (2.10)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√

δ/n. An interesting fact is
that the maximum undercoverage occurs for the family of uniform U(θ1, θ2)
distributions. See Section 11.4.27. Frey (2013) used the following shorth PI.

Definition 2.12. The large sample 100(1− δ)% shorth PI is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√

δ/n ] e). (2.11)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi, such as (2.11), is that they have coverage lower than
the nominal coverage of 1−δ for moderate n. This result is not surprising since
empirically statistical methods perform worse on test data than on training
data. For iid data, Frey (2013) used (2.11) to correct for undercoverage.

Example 2.7. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76
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33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Remark 2.1. The sample shorth converges to the population shorth
rather slowly. Grübel (1988) shows that under regularity conditions for iid
data, the length and center of the shorth(kn = dn(1 − δ)e) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the
population shorth interval.

Remark 2.2. The large sample 100(1 − δ)% shorth PI (2.11) may or
may not be asymptotically optimal if the 100(1 − δ)% population shorth is
[Ls, Us] and F (x) is not strictly increasing in intervals (Ls − δ, Ls + δ) and
(Us − δ, Us + δ) for some δ > 0. To see the issue, suppose Y has probability
mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and
p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1 − δ)%
population shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ x) = 1 if
Yi ≤ x and 0, otherwise. The empirical cdf

F̂n(x) =
1

n

n
∑

i=1

I(Yi ≤ x) =
1

n

n
∑

i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x,
nF̂n(x) ∼ binomial(n, F (x)). Thus F̂n(x) ∼ AN(F (x), F (x)(1 − F (x))/n).

For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) < 0.9) →

0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(2.11) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (2.11) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 2.2 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
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Fig. 2.2 The 36.8% Highest Density Region is [0,1]

density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

Applications 2.2. Variants of the shorth PI have many applications. The
shorth PI tends to be asymptotically optimal for iid data. A shorth PI for
multiple linear regression was given by Olive (2007); for the additive error
regression model, including multiple linear regression, by Olive (2013a) and
Pelawa Watagoda and Olive (2020); for many parametric regression models,
including GLMs, GAMs and some survival regression models, by Olive et al.
(2020); and for some time series models and renewal processes by Haile and
Olive (2021). The following section shows that under regularity conditions,
applying the shorth PI on a bootstrap sample results in a confidence interval.
For Bayesian statistics, generate random variables from the the posterior
distribution and apply the shorth PI to estimate the highest density Bayesian
credible interval. See Olive (2014, p. 364) and Chen and Shao (1999).

Prediction intervals are closely related to percentiles or quantiles. The 95th
percentile is the 0.95 quantile. The 100pth percentile πp satisfies F (πp) =
P (X ≤ πp) = p if X is a continuous RV with increasing F (x). Then to find

πp, let π = πp and solve F (π)
set
= p for π. In the literature, often the terms

“quantiles” and “percentiles” are used interchangeably.
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For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) =
P (X ≤ πp). So F (πp−) ≤ p and F (πp) ≥ p. Then graphing F (x) can be
useful for finding πp. The population median is the 50th percentile and 0.5
quantile. For iid data from a symmetric distribution, MED(n) + MAD(n)
estimates the 75th percentile while MED(n) − MAD(n) estimates the 25th
percentile.

Definition 2.13. The sample ρ quantile ξ̂n,ρ = Y(dnρe). The population
quantile yρ = πρ = ξρ = Q(ρ) = inf{y ∈ R : F (y) ≥ ρ} where Q is the
quantile function and 0 < ρ < 1.

For a random variable Y , we may use Yδ, yδ, πδ, or ξδ to denote the 100δth
percentile with P (Y ≤ yδ) = F (yδ) = δ if Y is from a continuous distribution
with strictly increasing cdf. If the cdf has flat spots, e.g. if Y has a pmf, the
following definition for a population quantile is often used. If F is continuous
and strictly increasing, then Q = F−1. The quantile function satisfies Q(ρ) ≤
y iff F (y) ≤ ρ. For large sample theory and convergence in distribution, see
Chapter 11. For the multivariate normal distribution, see Chapter 3.

Theorem 2.2: Serfling (1980, p. 80). Let 0 < ρ1 < ρ2 < · · · < ρk < 1.
Suppose that F has a pdf f that is positive and continuous in neighborhoods
of ξρ1 , ..., ξρk. Then

√
n[(ξ̂n,ρ1, ..., ξ̂n,ρk)

T − (ξρ1 , ..., ξρk)
T ]

D→ Nk(0,Σ)

where Σ = (σij) and

σij =
ρi(1 − ρj)

f(ξρi )f(ξρj )

for i ≤ j and σij = σji for i > j.

Warning: Software often uses a slightly different definition of the sample
quantile then the one given in Definition 2.13. Next we give an alternative es-
timator. See Klugman et al. (2008, p. 377). Let X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤
X(n) be the order statistics of X1, ..., Xn. Let the greatest integer function
bxc = the greatest integer ≤ x, i.e. b7.7c = 7. The smoothed empirical es-
timator of a percentile πp is π̂p = X(j) if j = (n + 1)p is an integer, and
π̂p = (1−h)X(j) +hX(j+1) if (n+ 1)p is not an integer where j = b(n+1)pc
and h = (n+1)p− j. Here π̂p is undefined if j = 0 or j = n+1, equivalently,
π̂p is undefined if 0 ≤ p < 1/(n+ 1) or if p = 1.

Remark 2.3. If the data z1, ..., zn are not iid, but the sample percentiles
applied to the data give consistent estimators of the population percentiles,
then typically the shorth interval applied to the data estimates the population
shorth. As an example, assume that the sample percentiles of the residuals ri

converge to the population percentiles of the iid unimodal errors ei: ξ̂δ
P→ ξδ .

Also assume that the population shorth [ξδ1 , ξ1−δ2 ] is unique and has length L.
We want to show that the shorth of the residuals converges to the population
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shorth of the ei: [ξ̃δ1 , ξ̃1−δ2]
P→ [ξδ1 , ξ1−δ2]. Let Ln be the length of [ξ̃δ1 , ξ̃1−δ2].

Let 0 < τ < 1 and 0 < ε < L be arbitrary. Assume n is large enough so that
the correction factor is negligible. Then P (Ln > L+ ε) → 0 since [ξ̂δ1 , ξ̂1−δ2 ]

covers 100 (1−δ)% of the data and Ln = ξ̃1−δ2−ξ̃δ1 ≤ ξ̂1−δ2−ξ̂δ1

P→ L as n →
∞ since the sample percentiles are consistent and the shorth is the shortest
interval covering 100 (1 − δ)% of the data. If P (Ln < L− ε) > τ eventually,
then the shorth is an interval covering 100 (1−δ)% of the cases that is shorter
than the population shorth with positive probability τ . Hence at least one of
ξ̂1−δ2 or ξ̂δ1 would not converge, a contradiction. Since ε and τ were arbitrary,

Ln
P→ L. If P (ξ̃δ1 < ξδ1 − ε) > τ eventually, then P (ξ̃1−δ2 < ξ1−δ2 − ε/2) > τ

eventually since Ln = ξ̃1−δ2 − ξ̃δ1

P→ L = ξ1−δ2 − ξδ1 . But such an interval
(of length going to L in probability with left endpoint less than ξδ1 − ε and
right endpoint less than ξ1−δ2 − ε/2) contains more than 100(1 − δ)% of
the cases with probability going to one since the population shorth is the
unique shortest interval covering 100(1− δ)% of the mass. Hence there is an
interval covering 100(1 − δ)% of the cases that is shorter than the shorth,
with probability going to one, a contradiction. The case P (ξ̃δ1 > ξδ1 + ε) > τ

can be handled similarly. Since ε and τ were arbitrary, ξ̃δ1

P→ ξδ1 . The proof

that ξ̃1−δ2

P→ ξ1−δ2 is similar.

2.5 Bootstrap Confidence Intervals and Tests

Bootstrap tests and bootstrap confidence intervals are resampling algorithms
used to provide information about the sampling distribution of a statistic
Tn ≡ Tn(Y n) where Y n = (Y1, ..., Yn)T and the Yi are iid from a distribu-
tion with cdf F (y) = P (Y ≤ y). Then Tn has a cdf Hn(y) = P (Tn ≤ y). If
F (y) is known, then B independent samples Y ∗

j,n = (Y ∗
j,1, ..., Y

∗
j,n)T of size

n could be generated, where the Y ∗
j,k are iid from a distribution with cdf F

and j = 1, ..., B. Then the statistic Tn is computed for each sample, result-
ing in B statistics T ∗

1,n(F ), ..., T ∗
B,n(F ) which are iid from a distribution with

cdf Hn(y). The sample size n is often suppressed. This resampling scheme is
a special case of the parametric bootstrap where the distribution is known.
Usually the parametric bootstrap estimators the parameters of the paramet-
ric distribution that is known up to the unknown parameters. For example,
if the Yi are iid N(µ, σ2), generate n iid Y ∗

i ∼ N(Y , S2
n) to produce Y

∗
j,n

for j = 1, ..., B where S2
n is the sample variance of Y1, ..., Yn. We will discuss

the nonparametric bootstrap below. Chapter 3 will discuss the bootstrap for
statistics that are random vectors. Several bootstrap methods will be used
throughout the text.

Definition 2.14. Suppose that data y1, ..., yn has been collected and ob-
served. Often the data is a random sample (iid) from a distribution with cdf
F . The empirical distribution is a discrete distribution where the yi are the
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possible values, and each value is equally likely. If W is a random variable
having the empirical distribution, then pi = P (W = yi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 2.8. Let W be a random variable having the empirical distri-
bution given by Definition 2.14. Show that E(W ) = y ≡ yn and V (W ) =
n− 1

n
S2

n.

Solution: Recall that for a discrete random vector, the population expected
value E(W ) =

∑

yipi where yi are the values that W takes with positive
probability pi. Similarly, the population variance

V (W ) = E[(W − E(W ))2] =
∑

(yi − E(W ))2pi.

Hence

E(W ) =

n
∑

i=1

yi
1

n
= y,

and

V (W ) =

n
∑

i=1

(yi − y)2
1

n
=
n − 1

n
S2

n. �

Example 2.9. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n
∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

The following notation is useful for the next definition. Suppose there
is data y1, ..., yn collected into an n × 1 vector y. Let the statistic Tn =
t(y) = T (Fn) be computed from the data. Suppose the statistic estimates
θ = T (F ), and let t(y∗) = t(F ∗

n) = T ∗
n indicate that t was computed from an

iid sample from the empirical distribution Fn: a sample y∗1 , ..., y
∗
n of size n was

drawn with replacement from the observed sample y1, ..., yn. Let T ∗
j = t(y∗

j )

where y∗
j = (y∗1j, ..., y

∗
nj)

T corresponds to the jth sample. The B samples are
drawn independently. Hence y∗

1, ..., y
∗
B are iid with respect to the bootstrap

distribution.
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Definition 2.15. The empirical bootstrap or nonparametric bootstrap
or naive bootstrap draws B samples of size n with replacement from the
observed sample y1, ..., yn. Then T ∗

j = T ∗
jn = t(y∗

j ) is computed from the
jth bootstrap sample for j = 1, ..., B. Then T ∗

1 , ..., T
∗
B is the bootstrap sample

produced by the nonparametric bootstrap.

Example 2.10. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and
the sample median Tn is 4. Using R, we drew B = 2 samples (of size n drawn
with replacement from the original data) and computed the sample median
T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

Under regularity conditions, applying three prediction intervals to the
bootstrap sample results in a confidence interval. Theory for bootstrap con-
fidence regions will be given in Section 3.7, and a confidence interval is a
special case of a confidence region. When teaching confidence intervals, it
is often noted that by the central limit theorem, the probability that Y n

is within two standard deviations (2SD(Y n) = 2σ/
√
n) of µ is about 95%.

Hence the probability that µ is within two standard deviations of Y n is about
95%. Thus the interval [µ− 1.96S/

√
n, µ+1.96S/

√
n ] is a large sample 95%

prediction interval for a future value of the sample mean Y n,f if µ is known,
while [Y n − 1.96S/

√
n, Y n + 1.96S/

√
n ] is a large sample 95% confidence

interval for the population mean µ. Note that the lengths of the two intervals
are the same. Where the interval is centered determines whether the interval
is a confidence or a prediction interval.

For a confidence interval, we often want the following probability to con-
verge to 1− δ if the confidence interval is based on a statistic with an asymp-
totic distribution that has a probability density function. For a large sample
level δ test H0 : θ = θ0 versus H1 : θ 6= θ0, reject H0 if θ0 is not in the large
sample 100(1 − δ)% confidence interval (CI) for θ.

Definition 2.16. The interval [L̂n, Ûn] is a large sample 100(1 − δ)%
confidence interval for θ if P (L̂n ≤ θ ≤ Ûn) is eventually bounded below by
1− δ as n→ ∞.
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Next we discuss bootstrap confidence intervals (2.12) and (2.13) that are
obtained by applying prediction intervals (2.8) and (2.11) to the bootstrap
sample with B used instead of n. See Efron (1982) and Chen (2016) for
the percentile method CI. Let Tn be an estimator of a parameter θ such as
Tn = Z =

∑n
i=1 Zi/n with θ = E(Z1). Let T ∗

1 , ..., T
∗
B be a bootstrap sample

for Tn. Let T ∗
(1), ..., T

∗
(B) be the order statistics of the the bootstrap sample.

Definition 2.17. The bootstrap large sample 100(1− δ)% percentile con-
fidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1 − δ)e of

the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (2.12)

Definition 2.18. The large sample 100(1− δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] (2.13)

uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length.

Here
c = min(B, dB[1 − δ + 1.12

√

δ/B ] e). (2.14)

The shorth CI can be regarded as the shortest percentile method con-
fidence interval, asymptotically. Hence the shorth confidence interval is a
practical implementation of the Hall (1988) shortest bootstrap interval based
on all possible bootstrap samples. Olive (2014: p. 238, 2017b: p. 168, 2018)
recommended using the shorth CI for the percentile CI.

The following correction factor is useful for the next three bootstrap CIs.
Let qB = min(1 − δ + 0.05, 1− δ + 1/B) for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δ/B), otherwise. (2.15)

If 1−δ < 0.999 and qB < 1−δ+0.001, set qB = 1−δ. Let a(UB) be the 100qBth

sample quantile of the ai = |T ∗
i − T

∗|. Let b(UB,T ) be the 100qBth sample
quantile of the bi = |T ∗

i −Tn|. Equation (2.15) is often useful for getting good
coverage when B ≥ 200. Undercoverage could occur without the correction
factor. This result is useful because the bootstrap confidence intervals can be
slow to simulate. Hence we want to use small values of B ≥ 200.

The percentile method uses an interval that contains UB ≈ kB = dB(1−δ)e
of the T ∗

i . Let ai = |T ∗
i − T

∗|. The following three CIs are the special cases
of the prediction region method confidence region, modified Bickel and Ren
confidence region, and hybrid confidence region for a g × 1 parameter vector
θ when g = 1. See Section 3.4. The sample mean of the bootstrap sample

T
∗

=
1

B

B
∑

i=1

T ∗
i is the bagging estimator.
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Definition 2.19. a) The large sample 100(1−δ)% prediction region method
CI is

[T
∗ − a(UB), T

∗
+ a(UB)], (2.16)

which is a closed interval centered at T
∗

just long enough to cover UB of the
T ∗

i .
b) The large sample 100(1− δ)% modified Bickel and Ren CI is

[Tn − b(UB,T ), Tn + b(UB,T )], (2.17)

which is a closed interval centered at Tn just long enough to cover “UB, T”
of the T ∗

i .
c) The large sample 100(1 − δ)% hybrid CI is

[Tn − a(UB), Tn + a(UB)]. (2.18)

This CI is the prediction region method CI shifted to have center Tn instead
of T

∗
.

Both CIs (2.16) and (2.17) are special cases of the percentile method of
Definition 2.17. Efron (2014) used a similar large sample 100(1− δ)% confi-

dence interval assuming that T
∗

is asymptotically normal.

Remark 2.4. The shorth(c) CI (2.13) is often very short, but sometimes
needs larger sample sizes for good coverage than the percentile CI (2.12), the
prediction region method CI (2.16) or the modified Bickel and Ren CI (2.17).
The hybrid CI has the same length as the prediction region method CI and
is usually shorter than the modified Bickel and Ren CI since the T ∗

i tend to

be closer, on average, to T
∗

than to Tn. The hybrid CI was more prone to
undercoverage than CIs (2.16) and (2.17).

Application 2.3. We recommend using using the percentile CI (2.12), the
prediction region method CI (2.16), the modified Bickel and Ren CI (2.17),
and possibly the shorth CI (2.13) for robust statistics with good large sample
theory and good bootstrap theory, but with a standard error that is difficult
to estimate. The sample median is such a statistic. In the next section, CI
(2.19) for the population median is useful for hand calculations, but likely
needs a larger sample size n than CIs (2.12), (2.16), and (2.17) for good
coverage.

Remark 2.5, Pelawa Watagoda and Olive (2019). If
√
n(Tn − θ)

D→
U , and if

√
n(T ∗

i − Tn)
D→ U where U has a unimodal probability density

function symmetric about zero with E(U) = 0, then the confidence inter-
vals from the (2.16), (2.17), (2.18), the shorth confidence interval (2.13), and
the “usual” percentile method confidence interval (2.12) are asymptotically
equivalent (use the central proportion of the bootstrap sample, asymptoti-
cally). See Section 3.5.
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2.6 Robust Confidence Intervals

In this section, large sample confidence intervals (CIs) for the sample me-
dian and 25% trimmed mean are given. The following confidence interval
provides considerable resistance to gross outliers while being very simple to
compute. The standard error SE(MED(n)) is due to Bloch and Gastwirth
(1968), but the degrees of freedom p is motivated by the confidence interval
for the trimmed mean. Let bxc denote the “greatest integer function” (e.g.,
b7.7c = 7). Let dxe denote the smallest integer greater than or equal to x
(e.g., d7.7e = 8).

Application 2.4: inference with the sample median. Let Un = n−Ln

where Ln = bn/2c − d
√

n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1 (so p ≈ d √n e). Then a 100(1−α)% confidence interval
for the population median is

MED(n) ± tp,1−α/2SE(MED(n)). (2.19)

Warning. This CI is easy to compute by hand, but tends to be long with
undercoverage if n < 100. See Baszczyńska and Pekasiewicz (2010) for two
competitors that work better. We recommend bootstrap confidence intervals
in Application 2.3 from the last Section for the population median.

Definition 2.20. The symmetrically trimmed mean or the α trimmed
mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un
∑

i=Ln+1

Y(i) (2.20)

where Ln = bnαc and Un = n − Ln. If α = 0.25, say, then the α trimmed
mean is called the 25% trimmed mean.

The (α, 1− γ) trimmed mean uses Ln = bnαc and Un = bnγc.

The trimmed mean is estimating a truncated mean µT . See Section 11.5
for truncated distributions. Assume that Y has a probability density function
fY (y) that is continuous and positive on its support. Let yα be the quantile
satisfying P (Y ≤ yα) = α. Then

µT =
1

1 − 2α

∫ y1−α

yα

yfY (y)dy. (2.21)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.
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To perform inference, find d1, ..., dn where

di =







Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.22)

The standard error (SE) of Tn is SE(Tn) =
√

VSW (Ln, Un)/n.

Application 2.5: inference with the α trimmed mean. A large sam-
ple 100 (1 − δ)% confidence interval (CI) for µT is

Tn ± tp,1−δ
2
SE(Tn) (2.23)

where P (tp ≤ tp,1−δ
2
) = 1 − δ/2 if tp is from a t distribution with p =

Un −Ln − 1 degrees of freedom. This interval is the classical t–interval when
α = 0, but α = 0.25 gives a robust CI.

Example 2.11. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data
came from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. When computing small examples by hand, the steps are to sort
the data from smallest to largest value, find n, Ln, Un, Y(Ln+1), Y(Un), p,
MED(n) and SE(MED(n)). After finding tp,1−δ/2, plug the relevant quan-
tities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9,
9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e =

4 − d1.414e = 4 − 2 = 2 and Un = n − Ln = 8 − 2 = 6. Hence
SE(MED(n)) = 0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 7) = 1. The degrees of free-
dom p = Un − Ln − 1 = 6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the
95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5± 3.182(1) = [5.318, 11.682]. The classical t–interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y
2
i ) − 8(82)] = (1/7)[(522−

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter µ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t–interval is considerably superior to the overly long median interval.
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Example 2.12. In the last example, what happens if the 6 becomes 66
and a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

Example 2.13. The Buxton (1920) data contains 87 heights of men, but
five of the men were recorded to be about 0.75 inches tall! The mean height
is Y = 1598.862 and the classical 95% CI is [1514.206, 1683.518]. MED(n) =
1693.0 and the resistant 95% CI based on the median is [1678.517, 1707.483].
The 25% trimmed mean Tn = 1689.689 with 95% CI [1672.096, 1707.282].
See Problems 2.28, 2.29 and 2.30 for rpack software.

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356 and the classical 95% CI
is [1678.595, 1706.118]. Now MED(n) = 1694.0 and the 95% CI based on the
median is [1678.403, 1709.597]. The 25% trimmed mean Tn = 1693.200 with
95% CI [1676.259, 1710.141]. Notice that when the outliers are corrected, the
three intervals are very similar although the classical interval length is slightly
shorter. Also notice that the outliers roughly shifted the median confidence
interval by about 1 mm while the outliers greatly increased the length of the
classical t–interval.

Sections 2.5, 2.7, 2.8, 2.9, and 2.15 provide additional information on CIs
and tests.

2.7 Large Sample CIs and Tests

Large sample theory can be used to construct confidence intervals (CIs) and
hypothesis tests. Suppose that Y = (Y1, ..., Yn)T and that Wn ≡ Wn(Y ) is
an estimator of some parameter µW such that

√
n(Wn − µW )

D→ N(0, σ2
W )

where σ2
W /n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − µW ≈ N(0, σ2
W/n).
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See Section 11.6 for more information on large sample theory and convergence
in distribution. Suppose that S2

W is a consistent estimator of σ2
W so that the

(asymptotic) standard error of Wn is SE(Wn) = SW /
√
n. Let zδ be the δ

quantile of the N(0,1) distribution. Hence P (Z ≤ zδ) = δ if Z ∼ N(0, 1).
Then

1 − δ ≈ P (−z1−δ/2 ≤ Wn − µW

SE(Wn)
≤ z1−δ/2),

and an approximate or large sample 100(1− δ)% CI for µW is given by

[Wn − z1−δ/2SE(Wn),Wn + z1−δ/2SE(Wn)].

Three common approximate level δ tests of hypotheses all use the null
hypothesis H0 : µW = µ0. A right tailed test uses the alternative hypothesis
HA : µW > µ0, a left tailed test uses HA : µW < µ0, and a two tail test uses
HA : µW 6= µo. The test statistic is

t0 =
Wn − µ0

SE(Wn)
,

and the (approximate) p-values are P (Z > t0) for a right tail test, P (Z < t0)
for a left tail test, and 2P (Z > |t0|) = 2P (Z < −|t0|) for a two tail test. The
null hypothesis H0 is rejected if the p-value < δ.

Remark 2.6. Frequently the large sample CIs and tests can be improved
for smaller samples by substituting a t distribution with p degrees of freedom
for the standard normal distribution Z where p ≡ pn is some increasing
function of the sample size n. Then the 100(1 − δ)% CI for µW is given by

[Wn − tp,1−δ/2SE(Wn),Wn + tp,1−δ/2SE(Wn)].

The test statistic rarely has an exact tp distribution, but the approximation
tends to make the CIs and tests more conservative; i.e., the CIs are longer
and H0 is less likely to be rejected. This book will typically use very simple
rules for p and not investigate the exact distribution of the test statistic.

Paired and two sample procedures can be obtained directly from the one
sample procedures. Suppose there are two samples Y1, ..., Yn and X1, ..., Xm.
If n = m and it is known that (Yi, Xi) match up in correlated pairs, then
paired CIs and tests apply the one sample procedures to the differences Di =
Yi −Xi. Otherwise, assume the two samples are independent, that n and m
are large, and that

( √
n(Wn(Y ) − µW (Y ))√
m(Wm(X) − µW (X))

)

D→ N2

((

0
0

)

,

(

σ2
W (Y ) 0

0 σ2
W (X)

))

.

Then
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(

(Wn(Y ) − µW (Y ))
(Wm(X) − µW (X))

)

≈ N2

((

0
0

)

,

(

σ2
W (Y )/n 0

0 σ2
W (X)/m

))

,

and

Wn(Y ) −Wm(X) − (µW (Y ) − µW (X)) ≈ N(0,
σ2

W (Y )

n
+
σ2

W (X)

m
).

Hence SE(Wn(Y ) −Wm(X)) =

√

S2
W (Y )

n
+
S2

W (X)

m
=

√

[SE(Wn(Y ))]2 + [SE(Wm(X))]2,

and the large sample 100(1− δ)% CI for µW (Y ) − µW (X) is given by

(Wn(Y ) −Wm(X)) ± z1−δ/2SE(Wn(Y ) −Wm(X)).

Often approximate level δ tests of hypotheses use the null hypothesis H0 :
µW (Y ) = µW (X). A right tailed test uses the alternative hypothesis HA :
µW (Y ) > µW (X), a left tailed test uses HA : µW (Y ) < µW (X), and a two
tail test uses HA : µW (Y ) 6= µW (X). The test statistic is

t0 =
Wn(Y ) −Wm(X)

SE(Wn(Y ) −Wm(X))
,

and the (approximate) p-values are P (Z > t0) for a right tail test, P (Z < t0)
for a left tail test, and 2P (Z > |t0|) = 2P (Z < −|t0|) for a two tail test. The
null hypothesis H0 is rejected if the p-value < δ.

Remark 2.7. Again a tp distribution will often be used instead of the
N(0,1) distribution. If pn is the degrees of freedom used for a single sample
procedure when the sample size is n, use p = min(pn, pm) for the two sample
procedure if a better formula is not given. These CIs are known as Welch
intervals. See Welch (1937) and Yuen (1974).

Example 2.14. Consider the single sample procedures where Wn = Y n.
Then µW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n − 1. Let tp denote
a random variable with a t distribution with p degrees of freedom and let
the α percentile tp,δ satisfy P (tp ≤ tp,δ) = δ. Then the classical t-interval for
µ ≡ E(Y ) is

Y n ± tn−1,1−δ/2
Sn√
n

and the t-test statistic is

t0 =
Y − µ0

Sn/
√
n
.

The right tailed p-value is given by P (tn−1 > t0).



44 2 The Location Model

Now suppose that there are two samples where Wn(Y ) = Y n and
Wm(X) = Xm. Then µW (Y ) = E(Y ) ≡ µY , µW (X) = E(X) ≡ µX ,
σ2

W (Y ) = VAR(Y ) ≡ σ2
Y , σ

2
W (X) = VAR(X) ≡ σ2

X , and pn = n − 1. Let
p = min(n− 1, m− 1). Since

SE(Wn(Y ) −Wm(X)) =

√

S2
n(Y )

n
+
S2

m(X)

m
,

the two sample t-interval for µY − µX is

(Y n −Xm) ± tp,1−δ/2

√

S2
n(Y )

n
+
S2

m(X)

m

and two sample t-test statistic is

t0 =
Y n −Xm

√

S2
n(Y )

n
+

S2
m(X)

m

.

The right tailed p-value is given by P (tp > t0). For sample means, values of
the degrees of freedom that are more accurate than p = min(n − 1, m − 1)
can be computed. See Moore (2007, p. 474).

2.8 Some Two Stage Trimmed Means

Robust estimators are often obtained by applying the sample mean to a
sequence of consecutive order statistics. The sample median, trimmed mean,
metrically trimmed mean, and two stage trimmed means are examples. For
the trimmed mean given in Definition 2.20 and for the Winsorized mean,
defined below, the proportion of cases trimmed and the proportion of cases
covered are fixed.

Definition 2.21. Using the same notation as in Definition 2.20, the Win-
sorized mean

Wn = Wn(Ln, Un) =
1

n
[LnY(Ln+1) +

Un
∑

i=Ln+1

Y(i) + (n− Un)Y(Un)]. (2.24)

Definition 2.22. A randomly trimmed mean

Rn = Rn(Ln, Un) =
1

Un − Ln

Un
∑

i=Ln+1

Y(i) (2.25)
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where Ln < Un are integer valued random variables. Un−Ln of the cases are
covered by the randomly trimmed mean while n− Un + Ln of the cases are
trimmed.

Definition 2.23. The metrically trimmed mean (also called the Huber
type skipped mean) Mn is the sample mean of the cases inside the interval

[θ̂n − k1Dn, θ̂n + k2Dn]

where θ̂n is a location estimator, Dn is a scale estimator, k1 ≥ 1, and k2 ≥ 1.

The proportions of cases covered and trimmed by randomly trimmed
means such as the metrically trimmed mean are now random. Typically the
sample median MED(n) and the sample mad MAD(n) are used for θ̂n and
Dn, respectively. The amount of trimming will depend on the distribution
of the data. For example, if Mn uses k1 = k2 = 5.2 and the data is normal
(Gaussian), about 1% of the data will be trimmed while if the data is Cauchy,
about 12% of the data will be trimmed. Hence the upper and lower trimming
points estimate lower and upper population percentiles L(F ) and U(F ) and
change with the distribution F .

Two stage estimators are frequently used in robust statistics. Often the
initial estimator used in the first stage has good resistance properties but
has a low asymptotic relative efficiency or no convenient formula for the SE.
Ideally, the estimator in the second stage will have resistance similar to the
initial estimator but will be efficient and easy to use. The metrically trimmed
mean Mn with tuning parameter k1 = k2 ≡ k = 6 will often be the initial
estimator for the two stage trimmed means. That is, retain the cases that fall
in the interval

[MED(n) − 6MAD(n),MED(n) + 6MAD(n)].

Let L(Mn) be the number of observations that fall to the left of MED(n) −
k1 MAD(n) and let n−U(Mn) be the number of observations that fall to the
right of MED(n) + k2 MAD(n). When k1 = k2 ≡ k ≥ 1, at least half of the
cases will be covered. Consider the set of 51 trimming proportions in the set
C = {0, 0.01, 0.02, ..., 0.49, 0.50}. Alternatively, the coarser set of 6 trimming
proportionsC = {0, 0.01, 0.1, 0.25, 0.40, 0.49}may be of interest. The greatest
integer function (e.g. b7.7c = 7) is used in the following definitions.

Definition 2.24. Consider the smallest proportion αo,n ∈ C such that
αo,n ≥ L(Mn)/n and the smallest proportion 1 − βo,n ∈ C such that 1 −
βo,n ≥ 1 − (U(Mn)/n). Let αM,n = max(αo,n, 1 − βo,n). Then the two stage
symmetrically trimmed mean TS,n is the αM,n trimmed mean. Hence TS,n

is a randomly trimmed mean with Ln = bn αM,nc and Un = n − Ln. If
αM,n = 0.50, then use TS,n = MED(n).
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Definition 2.25. As in the previous definition, consider the smallest pro-
portion αo,n ∈ C such that αo,n ≥ L(Mn)/n and the smallest proportion
1− βo,n ∈ C such that 1− βo,n ≥ 1− (U(Mn)/n). Then the two stage asym-
metrically trimmed mean TA,n is the (αo,n, 1 − βo,n) trimmed mean. Hence
TA,n is a randomly trimmed mean with Ln = bn αo,nc and Un = bn βo,nc.
If αo,n = 1 − βo,n = 0.5, then use TA,n = MED(n).

Example 2.15. These two stage trimmed means are almost as easy to
compute as the classical trimmed mean, and no knowledge of the unknown
parameters is needed to do inference. First, order the data and find the
number of cases L(Mn) less than MED(n) − k1MAD(n) and the number
of cases n−U(Mn) greater than MED(n)+ k2MAD(n). (These are the cases
trimmed by the metrically trimmed mean Mn, but Mn need not be com-
puted.) Next, convert these two numbers into percentages and round both
percentages up to the nearest integer. For TS,n find the maximum of the two
percentages. For example, suppose that there are n = 205 cases andMn trims
the smallest 15 cases and the largest 20 cases. Then L(Mn)/n = 0.073 and
1 − (U(Mn)/n) = 0.0976. Hence Mn trimmed the 7.3% smallest cases and
the 9.76% largest cases, and TS,n is the 10% trimmed mean while TA,n is the
(0.08, 0.10) trimmed mean.

Definition 2.26. The standard error SERM for the two stage trimmed
means given in Definitions 2.20, 2.24 and 2.25 is

SERM (Ln, Un) =
√

VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
. (2.26)

Remark 2.8. A simple method for computing VSW (Ln, Un) has the fol-
lowing steps. First, find d1, ..., dn where

di =







Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.27)

Notice that the SE given in Definition 2.26 is the SE for the δ trimmed mean
where Ln and Un are fixed constants rather than random.
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Application 2.6. Let Tn be the two stage (symmetrically or) asymmetri-
cally trimmed mean that trims the Ln smallest cases and the n− Un largest
cases. Then for the one and two sample procedures described in Section 2.7,
use the one sample standard error SERM (Ln, Un) given in Definition 2.26
and the tp distribution where the degrees of freedom p = Un − Ln − 1.

The CIs and tests for the δ trimmed mean and two stage trimmed means
given by Applications 2.5 and 2.6 are very similar once Ln has been computed.
For example, a large sample 100 (1 − α)% confidence interval (CI) for µT is

(Tn − tUn−Ln−1,1−α
2
SERM (Ln, Un), Tn + tUn−Ln−1,1−α

2
SERM (Ln, Un))

(2.28)
where P (tp ≤ tp,1−α

2
) = 1−α/2 if tp is from a t distribution with p degrees of

freedom. Section 2.9 provides the asymptotic theory for the δ and two stage
trimmed means and shows that µT is the mean of a truncated distribution.
Section 11.4 gives suggestions for k1 and k2 while Section 2.15 provides a
simulation study comparing the robust and classical point estimators and
intervals. Next Examples 2.11, 2.12, and 2.13 are repeated using the intervals
based on the two stage trimmed means instead of the median.

Example 2.16. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data
came from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. If TA,n or TS,n is used with the metrically trimmed mean that
uses k = k1 = k2, e.g. k = 6, then µT (a, b) = µ. When computing small
examples by hand, it is convenient to sort the data:
6, 7, 7, 8, 9, 9, 9, 9.
Thus MED(n) = (8 + 9)/2 = 8.5. The ordered residuals Y(i) − MED(n) are
-2.5, -1.5, -1.5, 0.5, 0.5, 0.5, 0.5, 0.5.
Find the absolute values and sort them to get
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 2.5.
Then MAD(n) = 0.5, MED(n)−6MAD(n) = 5.5, and MED(n)+6MAD(n)
= 11.5. Hence no cases are trimmed by the metrically trimmed mean, i.e.
L(Mn) = 0 and U(Mn) = n = 8. Thus Ln = b8(0)c = 0, and Un = n −
Ln = 8. Since no cases are trimmed by the two stage trimmed means, the
robust interval will have the same endpoints as the classical t–interval. To
see this, note that Mn = TS,n = TA,n = Y = (6 + 7 + 7 + 8 + 9 + 9 + 9 +
9)/8 = 8 = Wn(Ln, Un). Now VSW (Ln, Un) = (1/7)[

∑n
i=1 Y

2
(i) −8(82)]/[8/8]2

= (1/7)[(522− 8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95%

CI for µ is 8 ± 2.365(
√

1.4286/8) = [7.001, 8.999].

Example 2.17. In the last example, what happens if a 6 becomes 66 and
a 9 becomes 99? Use k = 6 and TA,n. Then the ordered data are
7, 7, 8, 9, 9, 9, 66, 99.
Thus MED(n) = 9 and MAD(n) = 1.5. With k = 6, the metrically trimmed
mean Mn trims the two values 66 and 99. Hence the left and right trimming
proportions of the metrically trimmed mean are 0.0 and 0.25 = 2/8, respec-
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tively. These numbers are also the left and right trimming proportions of TA,n

since after converting these proportions into percentages, both percentages
are integers. Thus Ln = b0c = 0, Un = b0.75(8)c = 6 and the two stage
asymmetrically trimmed mean trims 66 and 99. So TA,n = 49/6 ≈ 8.1667.
To compute the scaled Winsorized variance, use Remark 2.8 to find that the
di’s are
7, 7, 8, 9, 9, 9, 9, 9
and

VSW =
S2

n(d1, ..., d8)

[(6 − 0)/8]2
≈ 0.8393

.5625
≈ 1.4921.

Hence the robust confidence interval is 8.1667±t5,0.975

√

1.4921/8 ≈ 8.1667±
1.1102 ≈ [7.057, 9.277]. The classical confidence interval Y ± tn−1,0.975S/

√
n

blows up and is equal to [−2.955, 56.455].

Example 2.18. Use k = 6 and TA,n to compute a robust CI using
the 87 heights from the Buxton (1920) data that includes 5 outliers. The
mean height is Y = 1598.862 while TA,n = 1695.22. The classical 95% CI is
[1514.206,1683.518] and is more than five times as long as the robust 95%
CI which is [1679.907,1710.532]. In this example the five outliers can be cor-
rected. For the corrected data, no cases are trimmed and the robust and clas-
sical estimators have the same values. The results are Y = 1692.356 = TA,n

and the robust and classical 95% CIs are both [1678.595,1706.118]. Note that
the outliers did not have much affect on the robust confidence interval.

2.9 Asymptotics for Two Stage Trimmed Means

Large sample or asymptotic theory is very important for understanding ro-
bust statistics. Convergence in distribution, convergence in probability, al-
most everywhere (sure) convergence, and tightness (bounded in probability)
are covered in Section 11.6.

Truncated and Winsorized random variables are important because they
simplify the asymptotic theory of robust estimators. See Section 11.5. Let Y
be a random variable with continuous cdf F and let α = F (a) < F (b) =
β. Thus α is the left trimming proportion and 1 − β is the right trimming
proportion. Let F (a−) = P (Y < a). (Refer to Theorem 11.1 for the notation
used below.)

Definition 2.27. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT (y|a, b) = G(y) =
F (y) − F (a−)

F (b)− F (a−)
(2.29)
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for a ≤ y ≤ b. Also G is 0 for y < a and G is 1 for y > b. The mean and
variance of YT are

µT = µT (a, b) =

∫ ∞

−∞

ydG(y) =

∫ b

a
ydF (y)

β − α
(2.30)

and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞

(y − µT )2dG(y) =

∫ b

a
y2dF (y)

β − α
− µ2

T .

See Cramér (1946, p. 247).

Definition 2.28. The Winsorized random variable

YW = YW (a, b) =







a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =















0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

µW = µW (a, b) = αa+ (1 − β)b+

∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

y2dF (y) − µ2
W .

Regularity Conditions. (R1) Let Y1, . . . , Yn be iid with cdf F .
(R2) Let F be continuous and strictly increasing at a = Q(α) and b = Q(β).
(See Definition 2.13 for the quantile function Q.)

The following theorem is proved in Bickel (1965), Stigler (1973a), and
Shorack and Wellner (1986, p. 678-679). The α trimmed mean is asymptot-
ically equivalent to the (α, 1 − α) trimmed mean. Let Tn be the (α, 1 − β)
trimmed mean. Theorem 2.4 shows that the standard error SERM given in the
previous section is estimating the appropriate asymptotic standard deviation
of Tn.

Theorem 2.3. If conditions (R1) and (R2) hold and if 0 < α < β < 1,
then
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√
n(Tn − µT (a, b))

D→ N [0,
σ2

W (a, b)

(β − α)2
]. (2.31)

Theorem 2.4: Shorack and Wellner (1986, p. 680). Assume that
regularity conditions (R1) and (R2) hold and that

Ln

n

P→ α and
Un

n

P→ β. (2.32)

Then

VSW (Ln, Un)
P→ σ2

W (a, b)

(β − α)2
.

Since Ln = bnαc and Un = n−Ln (or Ln = bnαc and Un = bnβc) satisfy
the above lemma, the standard error SERM can be used for both trimmed
means and two stage trimmed means: SERM (Ln, Un) =

√

VSW (Ln, Un)/n
where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
.

Again Ln is the number of cases trimmed to the left and n−Un is the number
of cases trimmed to the right by the trimmed mean.

The following notation will be useful for finding the asymptotic distribu-
tion of the two stage trimmed means. Let a = MED(Y ) − kMAD(Y ) and
b = MED(Y ) + kMAD(Y ) where MED(Y ) and MAD(Y ) are the population
median and median absolute deviation respectively. Let α = F (a−) = P (Y <
a) and let αo ∈ C = {0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value in C
such that αo ≥ α. Similarly, let β = F (b) and let 1− βo ∈ C be the smallest
value in the index set C such that 1 − βo ≥ 1 − β. Let αo = F (ao−), and
let βo = F (bo). Recall that L(Mn) is the number of cases trimmed to the
left and that n− U(Mn) is the number of cases trimmed to the right by the
metrically trimmed mean Mn. Let αo,n ≡ α̂o be the smallest value in C such

that αo,n ≥ L(Mn)/n, and let 1 − βo,n ≡ 1 − β̂o be the smallest value in
C such that 1 − βo,n ≥ 1 − (U(Mn)/n). Then the robust estimator TA,n is
the (αo,n, 1− βo,n) trimmed mean while TS,n is the max(αo,n, 1− βo,n)100%
trimmed mean. The following lemma is useful for showing that TA,n is asymp-
totically equivalent to the (αo, 1−βo) trimmed mean and that TS,n is asymp-
totically equivalent to the max(αo, 1− βo) trimmed mean.

Theorem 2.5: Shorack and Wellner (1986, p. 682-683). Let F
have a strictly positive and continuous derivative in some neighborhood of
MED(Y ) ± kMAD(Y ). Assume that

√
n(MED(n) −MED(Y )) = OP (1) (2.33)
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and √
n(MAD(n) −MAD(X)) = OP (1). (2.34)

Then √
n(
L(Mn)

n
− α) = OP (1) (2.35)

and
√
n(
U(Mn)

n
− β) = OP (1). (2.36)

Theorem 2.6. Let Y1, ..., Yn be iid from a distribution with cdf F that has
a strictly positive and continuous pdf f on its support. Let αM = max(αo, 1−
βo) ≤ 0.49, βM = 1 − αM , aM = F−1(αM), and bM = F−1(βM ). Assume
that α and 1 − β are not elements of C = {0, 0.01, 0.02, ..., 0.50}. Then

√
n[TA,n − µT (ao, bo)]

D→ N(0,
σ2

W (ao, bo)

(βo − αo)2
),

and
√
n[TS,n − µT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM)2
).

Proof. The first result follows from Theorem 2.3 if the probability that
TA,n is the (αo, 1−βo) trimmed mean goes to one as n tends to infinity. This

condition holds if L(Mn)/n
D→ α and U(Mn)/n

D→ β. But these conditions
follow from Theorem 2.5. The proof for TS,n is similar. �

2.10 L, R, and M Estimators

Definition 2.29. An L-estimator is a linear combination of order statistics.

TL,n =

n
∑

i=1

cn,iY(i)

for some choice of constants cn,i.

The sample mean, median and trimmed mean are L-estimators. Other
examples include the max = Y(n), the min = Y(1), the range = Y(n) − Y(1),
and the midrange = (Y(n) + Y(1))/2. Definition 2.13 and Theorem 2.2 are
useful for L-estimators such as the interquartile range and median that use
a fixed linear combination of sample quantiles.

R-estimators are derived from rank tests and include the sample mean and
median. See Hettmansperger and McKean (2010).
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Definition 2.30. An M-estimator of location T with preliminary estima-
tor of scale MAD(n) is computed with at least one Newton step

T (m+1) = T (m) + MAD(n)

∑n
i=1 ψ( Yi−T (m)

MAD(n)
)

∑n
i=1 ψ

′( Yi−T (m)

MAD(n)
)

where T (0) = MED(n). In particular, the one step M-estimator

T (1) = MED(n) + MAD(n)

∑n
i=1 ψ(Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′(Yi−MED(n)

MAD(n)
)
.

The key to M-estimation is finding a good ψ. The sample mean and sam-
ple median are M-estimators. Newton’s method is an iterative procedure for
finding the solution T to the equation h(T ) = 0 where M-estimators use

h(T ) =

n
∑

i=1

ψ(
Yi − T

S
).

Thus

h′(T ) =
d

dT
h(T ) =

n
∑

i=1

ψ′(
Yi − T

S
)(
−1

S
)

where S = MAD(n) and

ψ′(
Yi − T

S
) =

d

dy
ψ(y)

evaluated at y = (Yi − T )/S. Beginning with an initial guess T (0), successive
terms are generated from the formula T (m+1) = T (m) − h(T (m))/h′(T (m)).
Often the iteration is stopped if |T (m+1) − T (m)| < ε where ε is a small
constant. However, one step M-estimators often have the same asymptotic
properties as the fully iterated versions. The following example may help
clarify notation.

Example 2.19. Huber’s M-estimator uses

ψk(y) =







−k, y < −k
y, −k ≤ y ≤ k
k, y > k.

Now

ψ′
k(
Y − T

S
) = 1
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if T − kS ≤ Y ≤ T + kS and is zero otherwise (technically the derivative is
undefined at y = ± k, but assume that Y is a continuous random variable so
that the probability of a value occurring on a “corner” of the ψ function is
zero). Let Ln count the number of observations Yi < MED(n) − kMAD(n),
and let n−Un count the number of observations Yi > MED(n) + kMAD(n).
Set T (0) = MED(n) and S = MAD(n). Then

n
∑

i=1

ψ′
k(
Yi − T (0)

S
) = Un − Ln.

Since

ψk(
Yi − MED(n)

MAD(n)
) =







−k, Yi < MED(n) − kMAD(n)

Ỹi, MED(n) − kMAD(n) ≤ Yi ≤ MED(n) + kMAD(n)
k, Yi > MED(n) + kMAD(n),

where Ỹi = (Yi − MED(n))/MAD(n),

n
∑

i=1

ψk(
Y(i) − T (0)

S
) = −kLn + k(n− Un) +

Un
∑

i=Ln+1

Y(i) − T (0)

S
.

Hence

MED(n) + S

∑n
i=1 ψk(Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′
k(Yi−MED(n)

MAD(n)
)

= MED(n) +
kMAD(n)(n− Un − Ln) +

∑Un

i=Ln+1[Y(i) − MED(n)]

Un − Ln
,

and Huber’s one step M-estimator

H1,n =
kMAD(n)(n − Un − Ln) +

∑Un

i=Ln+1 Y(i)

Un − Ln
.

2.11 Asymptotic Theory for the MAD

Let MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n). Since MD(n) is a median
and convergence results for the median are well known, see for example Ser-
fling (1980, p. 74-77) or Theorem 2.2 from Section 2.4, it is simple to prove
convergence results for MAD(n). Typically MED(n) = MED(Y )+OP (n−1/2)
and MAD(n) = MAD(Y ) + OP (n−1/2). Equation (2.27) in the proof of the
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following lemma implies that if MED(n) converges to MED(Y ) ae and MD(n)
converges to MAD(Y ) ae, then MAD(n) converges to MAD(Y ) ae.

Theorem 2.7. If MED(n) = MED(Y ) + OP (n−δ) and
MD(n) = MAD(Y ) +OP (n−δ), then MAD(n) = MAD(Y ) +OP (n−δ).

Proof. Let Wi = |Yi − MED(n)| and let Vi = |Yi − MED(Y )|. Then

Wi = |Yi − MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,

and

MAD(n) = MED(W1, . . . ,Wn) ≤ MED(V1, . . . , Vn) + |MED(Y ) − MED(n)|.

Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤Wi + |MED(n) − MED(Y )|

and thus

MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . ,Wn) + |MED(Y ) − MED(n)|.

Combining the two inequalities shows that

MD(n)−|MED(Y )−MED(n)| ≤ MAD(n) ≤ MD(n)+ |MED(Y )−MED(n)|,

or
|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (2.37)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) − MAD(Y ) −OP (n−δ)| = OP (n−δ) (2.38)

and the result follows. �

The main point of the following theorem is that the joint distribution of
MED(n) and MAD(n) is asymptotically normal. Hence the limiting distribu-
tion of MED(n) + kMAD(n) is also asymptotically normal for any constant
k. The parameters of the covariance matrix are quite complex and hard to
estimate. The assumptions of f used in Theorem 2.8 guarantee that MED(Y )
and MAD(Y ) are unique.

Theorem 2.8: Falk (1997). Let the cdf F of Y be continuous near and
differentiable at MED(Y ) = F−1(1/2) and MED(Y )±MAD(Y ). Assume that
f = F ′, f(F−1(1/2)) > 0, and A ≡ f(F−1(1/2)−MAD(Y ))+ f(F−1(1/2)+
MAD(Y )) > 0. Let C ≡ f(F−1(1/2)−MAD(Y ))− f(F−1(1/2)+MAD(Y )),
and let B ≡ C2+4Cf(F−1(1/2))[1−F (F−1(1/2)−MAD(Y ))−F (F−1(1/2)+
MAD(Y ))]. Then
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√
n

((

MED(n)
MAD(n)

)

−
(

MED(Y )
MAD(Y )

))

D→

N

((

0
0

)

,

(

σ2
M σM,D

σM,D σ2
D

))

(2.39)

where

σ2
M =

1

4f2(F−1(1
2 ))

, σ2
D =

1

4A2
(1 +

B

f2(F−1(1
2 ))

),

and

σM,D =
1

4Af(F−1(1
2
))

(1 − 4F (F−1(
1

2
) + MAD(Y )) +

C

f(F−1(1
2
))

).

Determining whether the population median and MAD are unique can be
useful. Recall that F (y) = P (Y ≤ y) and F (y−) = P (Y < y). The median
is unique unless there is a flat spot at F−1(0.5), that is, unless there exist a
and b with a < b such that F (a) = F (b) = 0.5. MAD(Y ) may be unique even
if MED(Y ) is not, see Problem 2.7. If MED(Y ) is unique, then MAD(Y )
is unique unless F has flat spots at both F−1(MED(Y ) − MAD(Y )) and
F−1(MED(Y ) + MAD(Y )). Moreover, MAD(Y ) is unique unless there exist
a1 < a2 and b1 < b2 such that F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ Y ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (Y ≤ ai) + P (Y ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5

for i = 1, 2. The following theorem gives some simple bounds for MAD(Y ).

Theorem 2.9. Assume MED(Y ) and MAD(Y ) are unique. a) Then

min{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )} ≤ MAD(Y ) ≤

max{MED(Y ) − F−1(0.25), F−1(0.75)− MED(Y )}. (2.40)

b) If Y is symmetric about µ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(Y ) = F−1(0.75).
d) If Y is symmetric and continuous with a finite second moment, then

MAD(Y ) ≤
√

2VAR(Y ).

e) Suppose Y ∈ [a, b]. Then

0 ≤ MAD(Y ) ≤ m = min{MED(Y ) − a, b− MED(Y )} ≤ (b− a)/2,

and the inequalities are sharp.
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Proof. a) This result follows since half the mass is between the upper and
lower quartiles and the median is between the two quartiles.

b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |Y −E(Y )| ≥ MAD(Y ) ) = 0.5 ≥ P ( |Y − E(Y )| ≥
√

2VAR(Y ) ),

and E(Y ) = MED(Y ) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(Y ) > m, then either MED(Y ) − MAD(Y ) < a
or MED(Y ) + MAD(Y ) > b. Since at least half of the mass is between a
and MED(Y ) and between MED(Y ) and b, this contradicts the definition of
MAD(Y ). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(Y ) = c and MAD(Y ) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(Y ) = c and MAD(Y ) = m. �

Many other results for MAD(Y ) and MAD(n) are possible. For example,
note that Theorem 2.9 b) implies that when Y is symmetric, MAD(Y ) =
F−1(3/4)− µ and F (µ+ MAD(Y )) = 3/4. Also note that MAD(Y ) and the
interquartile range IQR(Y ) are related by

2MAD(Y ) = IQR(Y ) ≡ F−1(0.75)− F−1(0.25)

when Y is symmetric. Moreover, results similar to those in Theorem 2.9 hold
for MAD(n) with quantiles replaced by order statistics. One way to see this
is to note that the distribution with a point mass of 1/n at each observation
Y1, . . . , Yn will have a population median equal to MED(n). To illustrate the
outlier resistance of MAD(n) and MED(n), consider the following lemma.

Theorem 2.10. If Y1, . . . , Yn are n fixed points, and ifm ≤ n−1 arbitrary
points W1, . . . ,Wm are added to form a sample of size n +m, then

MED(n+m) ∈ [Y(1), Y(n)] and 0 ≤ MAD(n+m) ≤ Y(n) − Y(1). (2.41)

Proof. Let the order statistics of Y1, . . . , Yn be Y(1) ≤ · · · ≤ Y(n). By
adding a single point W , we can cause the median to shift by half an order
statistic, but since at least half of the observations are to each side of the
sample median, we need to add at leastm = n−1 points to move MED(n+m)
to Y(1) or to Y(n). Hence if m ≤ n−1 points are added, [MED(n+m)−(Y(n)−
Y(1)),MED(n+m) + (Y(n) − Y(1))] contains at least half of the observations
and MAD(n+m) ≤ Y(n) − Y(1). �

Hence if Y1, . . . , Yn are a random sample with cdf F and if W1, . . . ,Wn−1

are arbitrary, then the sample median and mad of the combined sample,
MED(n+ n − 1) and MAD(n + n − 1), are bounded by quantities from the
random sample from F .
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2.12 Some Other Estimators

2.12.1 The Median of Estimators Estimator

The machine learning literature has estimators like the following. Let n =
Km+J with 0 ≤ J < K. Let X1, ..., Xn be iid data and let statistic T , such as
the sample mean, be a function of the data that is a consistent estimator of θ.
Randomly divide the data into K blocks of equal size n (omit the remaining
J cases if J 6= 0. Let Ti be the statistic computed from the m cases in block
i. Then T1, ..., TK are iid. The median of estimators MED(K) is the sample
median of the Ti.

The above procedure gives a point estimator of θ with some outlier
resistance, but is is hard to get confidence intervals for general T since
the population median θK,n of the Ti depends on K and n. Typically√
n(θK,n − θ) = OP (1) but not op(1). Hence we can not use the confidence

interval (2.19) for θ. There is a clever way to get a confidence interval for the
median of means where T is the sample mean. See Laforgue et al. (2019) for
references. Roughly half of the K/2 blocks need bad contamination for the
median of estimators estimator to be arbitrarily bad.

2.12.2 LMS, LTA, LTS

The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model where p = 1. Truncated
distributions are useful for explaining what is being estimated in the location
model. See Section 11.5. The LMS, LTS, and LTA regression estimators can
be computed for the location model.

Definition 2.31. Consider intervals that contain cn cases: [Y(1), Y(cn)],
[Y(2), Y(cn+1)], ..., [Y(n−cn+1), Y(n)]. Denote the set of cn cases in the ith inter-
val by Ji, for i = 1, 2, ..., n− cn + 1. Often cn = bn/2c + 1.

i) Let the shorth(cn) estimator = [Y(s), Y(s+cn−1)] be the shortest such
interval. Then the least median of squares estimator LMS(cn) is (Y(s) +
Y(s+cn−1))/2, the midpoint of the shorth(cn) interval. The LMS estimator
is also called the least quantile of squares estimator LQS(cn).

ii) Compute the sample mean and sample variance (Y Ji , S
2
Ji

) of the cn
cases in the ith interval. The minimum covariance determinant estimator
MCD(cn) estimator (Y MCD, S

2
MCD) is equal to the (Y Jj , S

2
Jj

) with the small-

est S2
Ji

. The least trimmed sum of squares estimator is LTS(cn) = YMCD.
iii) Compute the sample medianMJi of the cn cases in the ith interval. Let

QLTA(MJi ) =
∑

j∈Ji
|yj−MJi |. The least trimmed sum of absolute deviations

estimator LTA(cn) is equal to the MJj with the smallest QLTA(MJi ).
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Definition 2.32. In a location model concentration algorithm, let the jth
start be (T−1,j, C−1,j), an estimator of location and dispersion. Then the
classical estimator (T0,j , C0,j) = (Y 0,j, S

2
0,j) is computed from the cn cases

closest to T−1,j. This iteration can be continued for k steps resulting in the
sequence of estimators (T−1,j, C−1,j), (Y 0,j, S

2
0,j), ..., (Y k,j, S

2
k,j). The result

of the iteration (Y k,j, S
2
k,j) is called the jth attractor. If Kn starts are used,

then j = 1, ..., Kn. The concentration attractor, (Y A, S
2
A), is the attractor

chosen by the algorithm. The attractor is used to obtain the final estimator.
The FLTS and FMCD algorithms choose the attractor with the smallest S2

k,j.

In a location concentration algorithm that uses k steps for each start, the
dispersion estimators do not need to be computed since the cn cases closest
to the location estimator T−1,j or Y i,j are used in the concentration step for
i = 0, 1, ..., k−1.Attractors in a concentration algorithm can also be obtained
by iterating to convergence. In this case the number of concentration steps
k is not fixed and is unknown, but convergence is typically very fast for the
location model. As notation, (Y∞,j , S

2
∞,j) is the jth attractor that results

when the algorithm is iterated to convergence.

Theorem 2.11 Rousseeuw and van Driessen (1999): S2
i+1,j ≤ S2

i,j ,
and the attractor converges when equality is obtained.

Definition 2.33. i) For the elemental FLTS concentration algorithm,
C−1,j = 1 while T−1,j = Y ∗

j where Y ∗
j is a randomly selected case. Kn = 500

starts are used.
ii) For the elemental FMCD concentration algorithm, randomly select two

cases. Then (T−1,j, C−1,j) is the sample mean and variance of these two cases.
Kn = 500 starts are used.

iii) The MB estimator uses (T−1,1, C−1,1) = (MED(n), 1) as the only start.
Hence the start uses the sample median as the location estimator.

iv) The DGK estimator uses the sample mean and variance of all n cases,
(T−1,1, C−1,1) = (Y , S2), as the only start.

Concentration algorithm estimators can have problems if the distribution
is not unimodal. For example, the population shorth is not unique for the
uniform distribution. Outliers can easily make the distribution multimodal.

Remark 2.9. Let [Y(d), Y(d+cn−1)] be the LTS interval and [Y(a), Y(a+cn−1)]
be the LTA interval. The population quantities are [aLTS, bLTS ] and [aLTA, bLTA].
Take c = cn given by Equation (2.12). Then the two above intervals should
be useful large sample 100(1 − δ)% PIs, and the population quantities will
equal the population shorth for many distributions. Among intervals that
contain cn observations, the coverage should be the worst for the shortest
and longest intervals for clean data (with no outliers). The shortest interval
behaves well by Frey (2013). The longest interval is not outlier resistant. It is
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possible that the LTS and LTA PIs converge at
√
n rate instead of the slower

rate for the shorth interval given by Remark 2.1.

Definition 2.34. Let W = (Y1, ..., Yn)T be the clean data, and W
n
d =

(W1, ...,Wn)T be the contaminated data after dn of the Yi have been replaced
by arbitrarily bad cases.. The breakdown value of a location estimator Tn is

B(T,W ) = min{dn

n
: sup
W n

d

|T (W n
d )| = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤ dn ≤

n. The breakdown value of a dispersion estimator Cn is

B(Cn,W ) = min{dn

n
: sup
W n

d

max(|Cn(W n
d )|, |1/Cn(W n

d )|) = ∞}.

Since the sup is used, there exists a real numbers M1 and 0 < m < M2 that
depend on the estimator and the clean data Y1, ..., Yn but not on the outliers
such that 0 ≤ |Tn| < M1 and 0 < m < |Cn| < M2 if the number of outliers
dn is less than the breakdown value. For MED(n), M1 = max(|Y(1)|, |Y(n)|).

Suppose cn ≈ n/2. For the MCD(cn) and MB estimators, the breakdown
value dn/n → 0.5 for both the location and dispersion estimators if the Yi are
distinct. Such estimators are called high breakdown estimators. See Chapter
3. LTS(cn) is also a high breakdown estimator. The sample mean and vari-
ance both have breakdown value 1/n. The sample mean and variance applied
to a randomly selected elemental set of two randomly selected cases also has
breakdown value 1/n. A concentration algorithm that has Kn randomly se-
lected elemental sets can be made to breakdown by changing 1 case in each
elemental set. Hence the elemental concentration algorithm has breakdown
value ≤ Kn/n → 0 as n → ∞. Hence the FLTS and FMCD estimators can
not produce the high breakdown LTS and MCD estimators.

Consider the attractor of a concentration algorithm. If 26% of the cases are
large positive outliers, and the start T−1,j is closer in distance to the outliers
than to the bulk of the data, then the sample mean of the cn ≈ n/2 cases
closest to T−1,j is closer to the outliers than to the bulk of the data. Hence the
location estimator of the attractor, Tk,j or T∞,j , is the sample mean of the cn
largest order statistics. Hence the attractor is not the MCD(cn) estimator.

Next we give a theorem for the metrically trimmed mean Mn. Lopuhaä
(1999) shows the following result. Suppose (µ̂n,Cn) is an estimator of mul-
tivariate location and dispersion. Suppose that the iid data follow an el-
liptically contoured ECp(µ,Σ, g) distribution. Let (xJ ,SJ) be the classical
estimator applied to the set J of cases with squared Mahalanobis distances

D2
i (µ̂n,Cn) ≤ k2. Under regularity conditions, if (µ̂n,Cn)

P→ (µ, sΣ) with

rate nδ where 0 < δ ≤ 0.5, then (xJ ,SJ)
P→ (µ, dΣ) with the same rate nδ
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where s > 0 and d > 0 are some constants. See Chapter 3 for discussion of
the above quantities.

In the univariate setting with p = 1, let θ̂n = µ̂n and let D2
n = Cn

where Dn is an estimator of scale. Suppose the classical estimator (Y J , S
2
J) ≡

(xJ ,SJ) is applied to the set J of cases with θ̂n−kDn ≤ Yi ≤ θ̂n+kDn . Hence
Y J is the metrically trimmed meanMn with k1 = k2 ≡ k. See Definition 2.23.

The population quantity estimated by (Y J , S
2
J) is the truncated mean

and variance (µT (a, b), σ2
T (a, b)) of Definition 2.27 where θ̂n − kDn

P→ a and

θ̂n + kDn
P→ b. In the theorem below, the pdf corresponds to an elliptically

contoured distribution with p = 1 and Σ = τ2. Each pdf corresponds to a
location scale family with location parameter µ and scale parameter τ. Note
that (θ̂n, Dn) = (MED(n),MAD(n)) results in a

√
n consistent estimator

(Mn, S
2
J).

Assumption E1: Suppose Y1, ..., Yn are iid from an EC1(µ, τ
2, g) distri-

bution with pdf

f(y) =
c

τ
g

[

(

y − µ

τ

)2
]

where g is continuously differentiable with finite 4th moment
∫

y4g(y2)dy <
∞, c > 0 is some constant, τ > 0 where y and µ are real.

Theorem 2.12. Let Mn be the metrically trimmed mean with k1 = k2 ≡
k. Assume (E1) holds. If (θ̂n , D

2
n)

P→ (µ, sτ2) with rate nδ for some constant

s > 0 where 0 < δ ≤ 0.5, then (Mn, S
2
J)

P→ (µ, σ2
T (a, b)) with the same rate

nδ.

Proof. The result is a special case of Lopuhaä (1999) which shows that

(Mn, S
2
J)

P→ (µ, dτ2) with rate nδ. Since k1 = k2 = k, dτ2 = σ2
T (a, b). �

Note that the classical estimator applied to the set J̃ of cases Yi between a
and b is a

√
n consistent estimator of (µT (a, b), σ2

T (a, b)). Consider the set J
of cases with MED(n)−kMAD(n) ≤ Yi ≤ MED(N)+kMAD(n). By Lemma
2.4 sets J̃ and J differ primarily in neighborhoods of a and b. This result
leads to the following conjecture.

Conjecture 2.1. If Y1, ..., Yn are iid from a distribution with a pdf that is

positive in neighborhoods of a and b, and if θ̂n−k1Dn
P→ a and θ̂n+k2Dn

P→ b

at rate n0.5, then (Mn, S
2
J)

P→ (µT (a, b), σ2
T(a, b)) with rate n0.5.

The following result follows from Theorem 3.14b applied to the location
model.

Theorem 2.13. Let (Y A, S
2
A) be the DGK or MB estimator that uses

k concentration steps with cn ≈ n/2. Assume (E1) holds and let [a, b] be
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the highest density region containing half of the mass. Then (Y A, S
2
A)

P→
(µ, σ2

T (a, b)) with rate nδ .

2.13 Asymptotic Variances for Trimmed Means

The truncated distributions will be useful for finding the asymptotic vari-
ances of trimmed and two stage trimmed means. Assume that Y is from a
symmetric location–scale family with parameters µ and σ and that the trun-
cation points are a = µ − zσ and b = µ + zσ. Recall that for the trimmed
mean Tn,

√
n(Tn − µT (a, b))

D→ N

(

0,
σ2

W (a, b)

(β − α)2

)

.

Since the family is symmetric and the truncation is symmetric, α = F (a) =
1− β and µT (a, b) = µ.

Definition 2.35. Let Y1, ..., Yn be iid random variables and let Dn ≡
Dn(Y1, ..., Yn) be an estimator of a parameter µD such that

√
n(Dn − µD)

D→ N(0, σ2
D).

Then the asymptotic variance of
√
n(Dn − µD) is σ2

D and the asymptotic
variance (AV) of Dn is σ2

D/n. If S
2
D is a consistent estimator of σ2

D, then the
(asymptotic) standard error (SE) of Dn is SD/

√
n.

Remark 2.10. In the literature, usually either σ2
D or σ2

D/n is called the
asymptotic variance of Dn. The parameter σ2

D is a function of both the
estimatorDn and the underlying distribution F of Y1. Frequently nVAR(Dn)
converges in distribution to σ2

D, but not always. See Staudte and Sheather
(1990, p. 51) and Lehmann (1999, p. 232).

Example 2.20. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error
SE(Y n) = Sn/

√
n where S2

n is the sample variance.

Remark 2.11. Returning to the trimmed mean Tn where Y is from a
symmetric location–scale family, take µ = 0 since the asymptotic variance
does not depend on µ. Then

n AV (Tn) =
σ2

W (a, b)

(β − α)2
=
σ2

T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.
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See, for example, Bickel (1965). This formula is useful since the variance of the
truncated distribution σ2

T (a, b) has been computed for several distributions
in Section 11.5.

Definition 2.36. An estimator Dn is a location and scale equivariant
estimator if Dn(α+ βY1, ..., α+ βYn) = α+ βDn(Y1, ..., Yn) where α and β
are arbitrary real constants.

Remark 2.12. Many location estimators such as the sample mean,
sample median, trimmed mean, metrically trimmed mean, and two stage
trimmed means are equivariant. Let Y1, ..., Yn be iid from a distribution
with cdf FY (y) and suppose that Dn is an equivariant estimator of µD ≡
µD(FY ) ≡ µD(FY (y)). If Xi = α + βYi where β 6= 0, then the cdf of X is
FX(y) = FY ((y − α)/β). Suppose that

µD(FX) ≡ µD[FY (
y − α

β
)] = α+ βµD [FY (y)]. (2.42)

Let Dn(Y ) ≡ Dn(Y1, ..., Yn). If
√
n[Dn(Y ) − µD(FY (y))]

D→ N(0, σ2
D), then

√
n[Dn(X)− µD(FX)] =

√
n[α+ βDn(Y )− (α+ βµD(FY ))]

D→ N(0, β2σ2
D).

This result is especially useful when F is a cdf from a location–scale family
with parameters µ and σ. In this case, Equation (2.42) holds when µD is the
population mean, population median, and the population truncated mean
with truncation points a = µ−z1σ and b = µ+z2σ (the parameter estimated
by trimmed and two stage trimmed means).

Refer to the notation for two stage trimmed means below Theorem 2.4.
Then from Theorem 2.6,

√
n[TA,n − µT (ao, bo)]

D→ N(0,
σ2

W (ao, bo)

(βo − αo)2
),

and
√
n[TS,n − µT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM)2
).

If the distribution of Y is symmetric then TA,n and TS,n are asymptotically
equivalent. It is important to note that no knowledge of the unknown distri-
bution and parameters is needed to compute the two stage trimmed means
and their standard errors.

The next three lemmas find the asymptotic variance for trimmed and two
stage trimmed means when the underlying distribution is normal, double
exponential and Cauchy, respectively. Assume a = MED(Y ) − kMAD(Y )
and b = MED(Y ) + kMAD(Y ).
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Theorem 2.14. Suppose that Y comes from a normal N(µ, σ2) distribu-
tion. Let Φ(x) be the cdf and let φ(x) be the density of the standard normal.
Then for the α trimmed mean,

n AV =





1 − 2zφ(z)
2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2



σ2 (2.43)

where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimators, round
100α up to the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ)
in Equation (2.43).

Proof. If Y follows the normal N(µ, σ2) distribution, then a = µ −
kMAD(Y ) and b = µ+kMAD(Y ) where MAD(Y ) = Φ−1(0.75)σ. It is enough
to consider the standard N(0,1) distribution since n AV (Tn, N(µ, σ2)) =
σ2 n AV (Tn, N(0, 1)). If a = −z and b = z, then by Theorem 11.6,

σ2
T (a, b) = 1 − 2zφ(z)

2Φ(z) − 1
.

Use Remark 2.11 with z = kΦ−1(0.75), and α = Φ(−z) to get Equation
(2.43). �

Theorem 2.15. Suppose that Y comes from a double exponential DE(0,1)
distribution. Then for the α trimmed mean,

n AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(2.44)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimators,
round 100α up to the nearest integer J. Then use αJ = J/100 and let
zJ = − log(2αJ).

Proof Sketch. For the DE(0, 1) distribution, MAD(Y ) = log(2). If the
DE(0,1) distribution is truncated at −z and z, then use Remark 2.11 with

σ2
T (−z, z) =

2 − (z2 + 2z + 2)e−z

1 − e−z
.

Theorem 2.16. Suppose that Y comes from a Cauchy (0,1) distribution.
Then for the α trimmed mean,

n AV =
z − tan−1(z)

(1 − 2α) tan−1(z)
+

2α(tan[π(α− 1
2)])2

(1 − 2α)2
(2.45)

where z = k and

α =
1

2
+

1

π
tan−1(z).
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For the two stage estimators, round 100α up to the nearest integer J. Then
use αJ = J/100 and let zJ = tan[π(αJ − 0.5)].

Proof Sketch. For the C(0, 1) distribution, MAD(Y ) = 1. If the C(0,1)
distribution is truncated at −z and z, then use Remark 2.11 with

σ2
T (−z, z) =

z − tan−1(z)

tan−1(z)
.

2.14 Simulation

In statistics, simulation uses computer generated pseudo-random variables
in place of real data. This artificial data can be used just like real data to
produce histograms and confidence intervals and to compare estimators. Since
the artificial data is under the investigator’s control, often the theoretical
behavior of the statistic is known. This knowledge can be used to estimate
population quantities (such as MAD(Y )) that are otherwise hard to compute
and to check whether software is running correctly.

Example 2.21. The R software is especially useful for generating random
variables. The command

Y <- rnorm(100)

creates a vector Y that contains 100 pseudo iid N(0,1) variables. More gen-
erally, the command

Y <- rnorm(100,10,sd=4)

creates a vector Y that contains 100 pseudo iid N(10, 16) variables since
42 = 16. To study the sampling distribution of Y n, we could generate K
N(0, 1) samples of size n, and compute Y n,1, ..., Y n,K where the notation
Y n,j denotes the sample mean of the n pseudo-variates from the jth sample.
The command

M <- matrix(rnorm(1000),nrow=100,ncol=10)

creates a 100×10 matrix containing 100 samples of size 10. (Note that 100(10)
= 1000.) The command

M10 <- apply(M,1,mean)

creates the vector M10 of length 100 which contains Y n,1, ..., Y n,K where
K = 100 and n = 10. A histogram from this vector should resemble the pdf
of a N(0, 0.1) random variable. The sample mean and variance of the 100
vector entries should be close to 0 and 0.1, respectively.

Example 2.22. Similarly the command

M <- matrix(rexp(1000),nrow=100,ncol=10)
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creates a 100 × 10 matrix containing 100 samples of size 10 exponential(1)
(pseudo) variates. (Note that 100(10) = 1000.) The command

M10 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 10 observations. The command

M <- matrix(rexp(10000),nrow=100,ncol=100)

creates a 100× 100 matrix containing 100 samples of size 100 exponential(1)
(pseudo) variates. (Note that 100(100) = 10000.) The command

M100 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 100 observations. The com-
mands

hist(M10) and hist(M100)

will make histograms of the 100 sample means. The first histogram should
be more skewed than the second, illustrating the central limit theorem.

Example 2.23. As a slightly more complicated example, suppose that it
is desired to approximate the value of MAD(Y ) when Y is the mixture dis-
tribution with cdf F (y) = 0.95Φ(y)+0.05Φ(y/3). That is, roughly 95% of the
variates come from a N(0, 1) distribution and 5% from a N(0, 9) distribution.
Since MAD(n) is a good estimator of MAD(Y ), the following R commands
can be used to approximate MAD(Y ).

contam <- rnorm(10000,0,(1+2*rbinom(10000,1,0.05)))

mad(contam,constant=1)

Running these commands suggests that MAD(Y ) ≈ 0.70.Now F (MAD(Y )) =
0.75. To find F (0.7), use the command

0.95*pnorm(.7) + 0.05*pnorm(.7/3)

which gives the value 0.749747. Hence the approximation was quite good.

Definition 2.37. Let T1,n and T2,n be two estimators of a parameter τ
such that

nδ(T1,n − τ )
D→ N(0, σ2

1(F ))

and
nδ(T2,n − τ )

D→ N(0, σ2
2(F )),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

=
AV (T2,n)

AV (T1,n)
.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
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nδi , then estimator T1,n is judged to be better than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter τ. This condition will
often not hold unless the distribution is symmetric about µ. Then τ = µ is a
natural choice. Thirdly, robust estimators are often judged by their Gaussian
efficiency with respect to the sample mean (thus F is the normal distribution).
Since the normal distribution is a location–scale family, it is often enough to
compute the ARE for the standard normal distribution. If the data come
from a distribution F and the ARE can be computed, then T1,n is judged to
be a better estimator at the data than T2,n if the ARE > 1.

In simulation studies, typically the underlying distribution F belongs to
a symmetric location–scale family. There are at least two reasons for using
such distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or maximum likelihood estimator (MLE). Secondly, once the ARE is
obtained for one member of the family, it is typically obtained for all members
of the location–scale family. That is, suppose that Y1, ..., Yn are iid from a
location–scale family with parameters µ and σ. Then Yi = µ+σZi where the
Zi are iid from the same family with µ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)], so

ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].

Example 2.24. If T2,n = Y , then by the central limit theorem σ2
2(F ) = σ2

when F is the N(µ, σ2) distribution. Then ARE(TA,n, Y n) = σ2/(nAV )
where nAV is given by Equation (2.43). Note that the ARE does not depend
on σ2. If k ∈ [5, 6], then J = 1, and ARE(TA,n, Y n) ≈ 0.996. Hence TS,n and
TA,n are asymptotically equivalent to the 1% trimmed mean and are almost
as good as the optimal sample mean at Gaussian data.

Warning: Claiming superefficiency of robust estimators at the normal
distribution due to simulation and without any theory, as done by Zuo (2010),
is unwise. The 1% trimmed mean, TS,n and TA,n (both with k1 = k2 = 6)
often had simulated variances that beat Y for “normal” data. This simulation
result happens since these three robust estimators are nearly as efficient as Y
(though certainly not superefficient) at normal data, and pseudo–normal data
is used instead of genuine normal data. The following R output illustrates
the phenomenon. For n = 500 and 100 runs, only the sample median had
a smaller simulated variance than Y at N(0,1) data. Here trmn is the 1%
trimmed mean, rstmn = TS,n and ratmn = TA,n. Let T i be the value of the
robust point estimator for the ith sample for i = 1, ..., 100. Let S2(T ) be the
sample variance of T1, ..., T100. Then nS2(T ) is shown by the “vars” line. For
Y the value 1.1359 estimates nσ2/n = 1.0.
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locsim(n=500) #from rpack

[1] "mean,median,trmn,rstmn,ratmn"

$vars:

[1] 1.135908 1.616481 1.125468 1.135834 1.125910

Example 2.25. If F is the DE(0, 1) cdf, then the asymptotic efficiency
of TA,n with respect to the mean is ARE = 2/(nAV ) where nAV is given
by Equation (2.44). If k = 5, then J = 2, and ARE(TA,n, Y n) ≈ 1.108.
Hence TS,n and TA,n are asymptotically equivalent to the 2% trimmed mean
and perform better than the sample mean. If k = 6, then J = 1, and
ARE(TA,n, Y n) ≈ 1.065.

The results from a small simulation are presented in Table 2.5. For each
sample size n, 500 samples were generated. The sample mean Y , sample
median, 1% trimmed mean, and TS,n were computed. The latter estimator
was computed using the trimming parameter k = 5. Next the sample variance
S2(T ) of the 500 values T1, ..., T500 was computed where T is one of the four
estimators. The value in the table is nS2(T ). These numbers estimate n
times the actual variance of the estimators. Suppose that for n ≥ N, the
tabled numbers divided by n are close to the asymptotic variance. Then
the asymptotic theory may be useful if the sample size n ≥ N and if the
distribution corresponding to F is a reasonable approximation to the data
(but see Lehmann 1999, p. 74). The scaled asymptotic variance σ2

D is reported
in the rows n = ∞. The simulations were performed for normal and double
exponential data, and the simulated values are close to the theoretical values.

Table 2.5 Simulated Scaled Variance, 500 Runs, k = 5

F n Y MED(n) 1% TM TS,n

N(0,1) 10 1.116 1.454 1.116 1.166
N(0,1) 50 0.973 1.556 0.973 0.974
N(0,1) 100 1.040 1.625 1.048 1.044
N(0,1) 1000 1.006 1.558 1.008 1.010
N(0,1) ∞ 1.000 1.571 1.004 1.004

DE(0,1) 10 1.919 1.403 1.919 1.646
DE(0,1) 50 2.003 1.400 2.003 1.777
DE(0,1) 100 1.894 0.979 1.766 1.595
DE(0,1) 1000 2.080 1.056 1.977 1.886
DE(0,1) ∞ 2.000 1.000 1.878 1.804

A small simulation study was used to compare some simple randomly
trimmed means. The N(0, 1), 0.75N(0, 1) + 0.25N(100, 1) (shift), C(0,1),
DE(0,1) and exponential(1) distributions were considered. For each distri-
bution K = 500 samples of size n = 10, 50, 100, and 1000 were generated.
See Problem 2.37.
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Six different CIs
Dn ± td,0.975SE(Dn)

were used. The degrees of freedom d = Un − Ln − 1, and usually SE(Dn) =
SERM (Ln, Un). See Definition 2.26.
(i) The classical interval usedDn = Y , d = n−1 and SE = S/

√
n. Note that Y

is a 0% trimmed mean that uses Ln = 0, Un = n and SERM (0, n) = S/
√
n.

(ii) This robust interval used Dn = TA,n with k1 = k2 = 6 and SE =
SERM (Ln, Un) where Un and Ln are given by Definition 2.25.
(iii) This resistant interval used Dn = TS,n with k1 = k2 = 3.5, and SE =
SERM (Ln, Un) where Un and Ln are given by Definition 2.24.
(iv) This resistant interval used Dn = MED(n) with Un = n−Ln where Ln =
bn/2c − d

√

n/4 e. Note that d = Un − Ln − 1 ≈ √
n. Following Application

2.4, SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).
(v) This resistant interval again used Dn = MED(n) with Un = n−Ln where
Ln = bn/2c − d

√

n/4 e, but SE(MED(n)) = SERM (Ln, Un) was used. Note
that MED(n) is the 50% trimmed mean and that the percentage of cases
used to compute the SE goes to 0 as n→ ∞.
(vi) This resistant interval used the 25% trimmed mean for Dn and SE =
SERM (Ln, Un) where Un and Ln are given by Ln = b0.25nc and Un = n−Ln.

Table 2.6 Simulated 95% CI Coverages, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 0.960 0.942 0.926 0.948 0.900 0.938
N(0,1) 50 0.948 0.946 0.930 0.936 0.890 0.926
N(0,1) 100 0.932 0.932 0.932 0.900 0.898 0.938
N(0,1) 1000 0.942 0.934 0.936 0.940 0.940 0.936
DE(0,1) 10 0.966 0.954 0.950 0.970 0.944 0.968
DE(0,1) 50 0.948 0.956 0.958 0.958 0.932 0.954
DE(0,1) 100 0.956 0.940 0.948 0.940 0.938 0.938
DE(0,1) 1000 0.948 0.940 0.942 0.936 0.930 0.944

C(0,1) 10 0.974 0.968 0.964 0.980 0.946 0.962
C(0,1) 50 0.984 0.982 0.960 0.960 0.932 0.966
C(0,1) 100 0.970 0.996 0.974 0.940 0.938 0.968
C(0,1) 1000 0.978 0.992 0.962 0.952 0.942 0.950
EXP(1) 10 0.892 0.816 0.838 0.948 0.912 0.916
EXP(1) 50 0.938 0.886 0.892 0.940 0.922 0.950
EXP(1) 100 0.938 0.878 0.924 0.930 0.920 0.954
EXP(1) 1000 0.952 0.848 0.896 0.926 0.922 0.936

SHIFT 10 0.796 0.904 0.850 0.940 0.910 0.948
SHIFT 50 0.000 0.986 0.620 0.740 0.646 0.820
SHIFT 100 0.000 0.988 0.240 0.376 0.354 0.610
SHIFT 1000 0.000 0.992 0.000 0.000 0.000 0.442

In order for a location estimator to be used for inference, there must exist
a useful SE and a useful cutoff value td where the degrees of freedom d is
a function of n. Two criteria will be used to evaluate the CIs. First, the
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observed coverage is the proportion of the K = 500 runs for which the CI
contained the parameter estimated by Dn. This proportion should be near
the nominal coverage 0.95. Notice that if W is the proportion of runs where
the CI contains the parameter, then KW is a binomial random variable.
Hence the SE of W is

√

p̂(1 − p̂)/K ≈ 0.013 for the observed proportion
p̂ ∈ [0.9, 0.95], and an observed coverage between 0.92 and 0.98 suggests that
the observed coverage is close to the nominal coverage of 0.95.

The second criterion is the scaled length of the CI =
√
n CI length =

√
n(2)(td,0.975)(SE(Dn)) ≈ 2(1.96)(σD)

where the approximation holds if d > 30, if
√
n(Dn − µD)

D→ N(0, σ2
D), and

if SE(Dn) is a good estimator of σD/
√
n for the given value of n.

Table 2.7 Simulated Scaled CI Lengths, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 4.467 4.393 4.294 7.803 6.030 5.156
N(0,1) 50 4.0135 4.009 3.981 5.891 5.047 4.419
N(0,1) 100 3.957 3.954 3.944 5.075 4.961 4.351
N(0,1) 1000 3.930 3.930 3.940 5.035 4.928 4.290
N(0,1) ∞ 3.920 3.928 3.928 4.913 4.913 4.285

DE(0,1) 10 6.064 5.534 5.078 7.942 6.120 5.742
DE(0,1) 50 5.591 5.294 4.971 5.360 4.586 4.594
DE(0,1) 100 5.587 5.324 4.978 4.336 4.240 4.404
DE(0,1) 1000 5.536 5.330 5.006 4.109 4.021 4.348
DE(0,1) ∞ 5.544 5.372 5.041 3.920 3.920 4.343
C(0,1) 10 54.590 10.482 9.211 12.682 9.794 9.858
C(0,1) 50 94.926 10.511 8.393 7.734 6.618 6.794
C(0,1) 100 243.4 10.782 8.474 6.542 6.395 6.486
C(0,1) 1000 515.9 10.873 8.640 6.243 6.111 6.276
C(0,1) ∞ ∞ 10.686 8.948 6.157 6.157 6.255
EXP(1) 10 4.084 3.359 3.336 6.012 4.648 3.949
EXP(1) 50 3.984 3.524 3.498 4.790 4.105 3.622
EXP(1) 100 3.924 3.527 3.503 4.168 4.075 3.571
EXP(1) 1000 3.914 3.554 3.524 3.989 3.904 3.517

SHIFT 10 184.3 18.529 24.203 203.5 166.2 189.4
SHIFT 50 174.1 7.285 9.245 18.686 16.311 180.1
SHIFT 100 171.9 7.191 29.221 7.651 7.481 177.5
SHIFT 1000 169.7 7.388 9.453 7.278 7.123 160.6

Tables 2.6 and 2.7 can be used to examine the six different interval es-
timators. A good estimator should have an observed coverage p̂ ∈ [.92, .98],
and a small scaled length. In Table 2.6, coverages were good for N(0, 1) data,
except the interval (v) where SERM (Ln, Un) is slightly too small for n ≤ 100.
The coverages for the C(0,1) and DE(0,1) data were all good even for n = 10.

For the mixture 0.75N(0, 1) + 0.25N(100, 1), the “coverage” counted the
number of times 0 was contained in the interval and divided the result by 500.
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These rows do not give a genuine coverage since the parameter µD estimated
by Dn is not 0 for any of these estimators. For example Y estimates µ = 25.
Since the median, 25% trimmed mean, and TS,n trim the same proportion of
cases to the left as to the right, MED(n) is estimating MED(Y ) ≈ Φ−1(2/3) ≈
0.43 while the parameter estimated by TS,n is approximately the mean of a
truncated standard normal random variable where the truncation points are
Φ−1(.25) and ∞. The 25% trimmed mean also has trouble since the number
of outliers is a binomial(n, 0.25) random variable. Hence approximately half
of the samples have more than 25% outliers and approximately half of the
samples have less than 25% outliers. This fact causes the 25% trimmed mean
to have great variability. The parameter estimated by TA,n is zero to several
decimal places. Hence the coverage of the TA,n interval is quite high.

The exponential(1) distribution is skewed, so the central limit theorem is
not a good approximation for n = 10. The estimators Y , TA,n, TS,n,MED(n)
and the 25% trimmed mean are estimating the parameters 1, 0.89155,
0.83071, log(2) and 0.73838 respectively. Now the coverages of TA,n and TS,n

are slightly too small. For example, TS,n is asymptotically equivalent to the
10% trimmed mean since the metrically trimmed mean truncates the largest
9.3% of the cases, asymptotically. For small n, the trimming proportion will
be quite variable and the mean of a truncated exponential distribution with
the largest γ percent of cases trimmed varies with γ. This variability of the
truncated mean does not occur for symmetric distributions if the trimming
is symmetric since then the truncated mean µT is the point of symmetry
regardless of the amount of truncation.

Examining Table 2.7 for N(0,1) data shows that the scaled lengths of the
first 3 intervals are about the same. The rows labeled ∞ give the scaled
length 2(1.96)(σD) expected if

√
nSE is a good estimator of σD. The median

interval and 25% trimmed mean interval are noticeably larger than the clas-
sical interval. Since the degrees of freedom d ≈ √

n for the median intervals,
td,0.975 is considerably larger than 1.96 = z0.975 for n ≤ 100.

The intervals for the C(0,1) and DE(0,1) data behave about as expected.
The classical interval is very long at C(0,1) data since the first moment of
C(0,1) data does not exist. Notice that for n ≥ 50, all of the resistant intervals
are shorter on average than the classical intervals for DE(0,1) data.

For the mixture distribution, examining the length of the interval should
be fairer than examining the “coverage.” The length of the 25% trimmed
mean is long since about half of the time the trimmed data contains no
outliers while half of the time the trimmed data does contain outliers. When
n = 100, the length of the TS,n interval is quite long. This occurs because
the TS,n will usually trim all outliers, but the actual proportion of outliers
is binomial(100, 0.25). Hence TS,n is sometimes the 20% trimmed mean and
sometimes the 30% trimmed mean. But the parameter µT estimated by the
γ % trimmed mean varies quite a bit with γ. When n = 1000, the trimming
proportion is much less variable, and the CI length is shorter.
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For exponential(1) data, 2(1.96)(σD) = 3.9199 for Y and MED(n). The
25% trimmed mean appears to be the best of the six intervals since the scaled
length is the smallest while the coverage is good.

2.15 Sequential Analysis

This section is not yet written. See Huber and Ronchetti (2009, pp. 267-268),
Olive (1998), and Quang (1985).

2.16 Summary

1) Given a small data set, Y =

∑n
i=1 Yi

n
and the sample variance S2 =

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, and the sample standard devia-

tion (SD) S = Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statis-
tics. The sample median MED(n) = Y((n+1)/2) if n is odd, MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even. The notation MED(n) = MED(Y1, ..., Yn)

will also be used. To find the sample median, sort the data from smallest to
largest and find the middle value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.

2) Find the population median M = MED(Y ) by solving the equation
F (M) = 0.5 for M where the cdf F (y) = P (Y ≤ y). If Y has a pdf f(y)
that is symmetric about µ, then M = µ. If W = a + bY, then MED(W ) =
a+ bMED(Y ). Often a = µ and b = σ.

3) To find the population median absolute deviation D = MAD(Y ), first
find M = MED(Y ) as in 2) above.
a) Then solve F (M +D) − F (M −D) = 0.5 for D.
b) If Y has a pdf that is symmetric about µ, then let U = y0.75 where P (Y ≤
yδ) = δ, and yδ is the 100δth percentile of Y for 0 < α < 1. Hence M = y0.5

is the 50th percentile and U is the 75th percentile. Solve F (U) = 0.75 for U .
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Then D = U −M.
c) If W = a+ bY, then MAD(W ) = |b|MAD(Y ).

MED(Y ) and MAD(Y ) need not be unique, but for “brand name” contin-
uous random variables, they are unique.

4) A large sample 100 (1 − δ)% confidence interval (CI) for θ is

θ̂± tp,1−δ
2
SE(θ̂)

where P (tp ≤ tp,1− δ
2
) = 1 − α/2 if tp is from a t distribution with p degrees

of freedom. We will use 95% CIs so δ = 0.05 and tp,1−δ
2

= tp,0.975 ≈ 1.96 for

p > 20. Be able to find θ̂, p and SE(θ̂) for the following three estimators.

a) The classical CI for the population mean θ = µ uses θ̂ = Y ,
p = n− 1 and SE(Y ) = S/

√
n.

Let bxc denote the “greatest integer function”. Then bxc is the largest
integer less than or equal to x (e.g., b7.7c = 7). Let dxe denote the smallest
integer greater than or equal to x (e.g., d7.7e = 8).

b) Let Un = n − Ln where Ln = bn/2c − d
√

n/4 e. Then the CI for the

population median θ = MED(Y ) uses θ̂ = MED(n), p = Un − Ln − 1 and
SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

c) The 25% trimmed mean Tn = Tn(Ln, Un) =
1

Un − Ln

Un
∑

i=Ln+1

Y(i) where

Ln = bn/4c and Un = n−Ln. That is, order the data, delete the Ln smallest
cases and the Ln largest cases and take the sample mean of the remaining
Un−Ln cases. The 25% trimmed mean is estimating the population truncated
mean

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =







Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

(The “half set” of retained cases is not changed, but replace the Ln small-
est deleted cases by the smallest retained case Y(Ln+1) and replace the Ln

largest deleted cases by the largest retained case Y(Un).) Then the Winsorized
variance is the sample variance S2

n(d1, ..., dn) of d1, ..., dn, and the scaled Win-

sorized variance VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
.

Then the CI for the population truncated mean θ = µT uses θ̂ = Tn,
p = Un − Ln − 1 and SE(Tn) =

√

VSW (Ln, Un)/n.
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5) The δ quantile or 100δth percentile yδ = πδ = ξδ satisfies P (Y ≤ yδ) =

δ. The sample δ quantile or sample 100δth percentile ξ̂n,ρ = Y(dnδe). Software

often uses ξ̃n,ρ = γnY(dnδe) + (1 − γn)Y(bnδc) for some 0 ≤ γn ≤ 1.
6) Consider intervals that contain c cases [Y(1), Y(c)], [Y(2), Y(c+1)], ..., [Y(n−c+1), Y(n)].

Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator
shorth(c) = [Y(s), Y(s+c−1)] is the interval with the shortest length. The
shorth(c) interval is a large sample 100(1− δ)% PI if c/n→ 1− δ as n → ∞
that estimates the population shorth. Hence the shorth PI is often asymp-
totically optimal.

7) A large sample 100(1 − δ)% prediction interval (PI) [L̂n, Ûn] is such
that P (Yf ∈ [L̂n, Ûn]) is eventually bounded below by 1 − δ as n → ∞. A
large sample 100(1 − δ)% PI is asymptotically optimal if it has the shortest
asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as n → ∞
where [Ls, Us] is the population shorth: the shortest interval covering at least
100(1− δ)% of the mass. So F (Us)−F (Ls−) ≥ 1− δ, and if F (b)−F (a−) ≥
1− δ, then b− a ≥ Us − Ls. The population shorth need not be unique, but
the length of the population shorth is unique.

8) The interval [L̂n, Ûn] is a large sample 100(1− δ)% confidence interval
for θ if P (L̂n ≤ θ ≤ Ûn) is eventually bounded below by 1 − δ as n → ∞.

9) Given B samples drawn with replacement from the cases (nonparamet-
ric bootstrap), be able to compute simple statistics T ∗

j from the jth sample
such as the sample mean, the sample median, the max, the min, the range =

max − min. See Example 2.10. The bagging estimator is T
∗

=
1

B

B
∑

j=1

T ∗
j .

10) The bootstrap sample is T ∗
1 , ..., T

∗
B. Often B is a fixed number such as

B = 1000, but using B = max(1000, dn log(n)e) works better if you want the
coverage of the bootstrap CI to converge to 1 − δ as n → ∞.

11) Given a bootstrap sample T ∗
1 , ..., T

∗
B, let the order statistics be T ∗

(1), ..., T
∗
(B).

Applying certain PIs to the bootstrap sample results in CIs. The shorth(c) CI

is found as in 6). The prediction region method CI is [T
∗ − a, T

∗
+ a], which

is the interval centered at T
∗

just long enough to contain UB ≈ dB(1− δ)e of
the T ∗

j . The modified Bickel and Ren CI is [Tn−b, Tn+b], which is the interval
centered at Tn just long enough to contain UB of the T ∗

j . Let k1 = dBδ/2e
and k2 = dB(1 − δ/2)e. The percentile CI is [T ∗

(k1)
, T ∗

(k2)
], which deletes the

k1 − 1 smallest and B − k2 largest T ∗
j .

12) For a large sample level δ test H0 : θ = θ0 versus H1 : θ 6= θ0, reject
H0 if θ0 is not in the large sample 100(1 − δ)% confidence interval (CI) for
θ. A bootstrap test corresponds to a bootstrap CI.
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2.17 Complements

Chambers et al. (1983) is an excellent source for graphical procedures such
as quantile plots, QQ-plots, and box plots.

Huber and Roncheti (2009, p. 72-73) shows that the sample median min-
imizes the asymptotic bias for estimating MED(Y ) for the family of sym-
metric contaminated distributions, and concludes that since the asymptotic
variance is going to zero for reasonable estimators, MED(n) is the estimator
of choice for large n. Also see Chen (1998). Hampel et al. (1986, p. 133-134,
142-143) contains some other optimality properties of MED(n) and MAD(n).
See Olive (1998) and Serfling and Mazumder (2009) for large sample theory
for MAD(n).

The prediction region method CI (2.16) is due to Olive (2017b: pp. 168-
169). CIs (2.17) and (2.18) are due to Pelawa Watagoda and Olive (2019).

CI (2.19) from Application 2.4 is due to Olive (2005b, 2017b: p. 11).
Several other approximations for the standard error of the sample median
SE(MED(n)) could be used. Also see Baszczyńska and Pekasiewicz (2010),
Larocque and Randles (2008), and Woodruff (1952).

a) McKean and Schrader (1984) proposed

SE(MED(n)) =
Y(n−c+1) − Y(c)

2z1−δ
2

where c = (n+1)/2 − z1−δ/2

√

n/4 is rounded up to the nearest integer. This
estimator was based on the half length of a distribution free 100 (1− δ)% CI
[Y(c), Y(n−c+1)] for MED(Y ). Use the tp approximation with p = b2√nc− 1.

b) This proposal is also due to Bloch and Gastwirth (1968). Let Un =
n− Ln where Ln = bn/2c − d0.5n0.8 e and use

SE(MED(n)) =
Y(Un) − Y(Ln+1)

2n0.3
.

Use the tp approximation with p = Un − Ln − 1.

c) MED(n) is the 50% trimmed mean, so trimmed means with trim-
ming proportions close to 50% should have an asymptotic variance close to
that of the sample median. Hence an ad hoc estimator is SE(MED(n)) =
SERM (Ln, Un) where Un = n − Ln where Ln = bn/2c − d

√

n/4 e and
SERM (Ln, Un) is given by Definition 2.26. Use the tp approximation with
p = Un − Ln − 1.

In a small simulation study (see Section 2.14), the proposal in Application
2.4 using Ln = bn/2c − d

√

n/4 e seemed to work best. Using Ln = bn/2c −
d0.5n0.8 e gave better coverages for symmetric data but is vulnerable to a
single cluster of shift outliers if n ≤ 100.
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An enormous number of procedures have been proposed that have bet-
ter robustness or asymptotic properties than the classical procedures when
outliers are present. Huber and Ronchetti (2009), Hampel et al. (1986) and
Staudte and Sheather (1990) are standard references. For location–scale
families, we recommend using the robust estimators from Appli-
cation 2.1 to create a highly robust asymptotically efficient cross
checking estimator. See Olive (2006) and He and Fung (1999). Joiner and
Hall (1983) compare and contrast L, R, and M-estimators while Jureckova
and Sen (1996) derive the corresponding asymptotic theory. Bickel (1965),
Dixon and Tukey (1968), Stigler (1973a), Tukey and McLaughlin (1963) and
Yuen (1974) discuss trimmed and Winsorized means while Prescott (1978)
examines adaptive methods of trimming. Bickel (1975) examines one-step
M-estimators, and Andrews et al. (1972) present a simulation study com-
paring trimmed means and M-estimators. A robust method for massive data
sets is given in Rousseeuw and Bassett (1990). For variance estimation of
L-estimators, see Wang et al. (2012).

Hampel (1985) considers metrically trimmed means. Shorack (1974) and
Shorack and Wellner (1986, section 19.3) derive the asymptotic theory for
a large class of robust procedures for the iid location model. Special cases
include trimmed, Winsorized, metrically trimmed, and Huber type skipped
means. Also see Kim (1992) and papers in Hahn et al. (1991). Olive (2001)
considers two stage trimmed means.

Shorack and Wellner (1986, p. 3) and Parzen (1979) discuss the quan-
tile function while Stigler (1973b) gives historic references to trimming tech-
niques, M-estimators, and to the asymptotic theory of the median. David
(1995, 1998), Field (1985), and Sheynin (1997) also contain references.

Scale estimators are essential for testing and are discussed in Falk (1997),
Hall and Welsh (1985), Lax (1985), Rousseeuw and Croux (1993), and Si-
monoff (1987b). There are many alternative approaches for testing and confi-
dence intervals. Guenther (1969) discusses classical confidence intervals while
Gross (1976) considers robust confidence intervals for symmetric distribu-
tions. Basically all of the methods which truncate or Winsorize the tails
worked. Hettmansperger and McKean (2010) consider rank procedures.

Wilcox (2012) gives an excellent discussion of the problems that outliers
and skewness can cause for the one and two sample t–intervals, the t–test,
tests for comparing 2 groups and the ANOVA F test. Wilcox (2012) replaces
ordinary population means by truncated population means and uses trimmed
means to create analogs of one, two, and three way anova, multiple compar-
isons, and split plot designs.

Often a large class of estimators is defined and picking out good members
from the class can be difficult. Freedman and Diaconis (1982) and Clarke
(1986) illustrate some potential problems for M-estimators. Ullah et al. (2006)
list some of the better M-estimators. Jureckova and Sen (1996, p. 208) show
that under symmetry a large class of M-estimators is asymptotically nor-
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mal, but the asymptotic theory is greatly complicated when symmetry is not
present. Stigler (1977) is a very interesting paper and suggests that Win-
sorized means (which are often called “trimmed means” when the trimmed
means from Definition 2.20 do not appear in the paper) are adequate for
finding outliers.

The median can be computed with O(n log(n)) complexity by sorting the
data, but faster O(n) complexity algorithms exist. Google quickselect or see
Blum et al. (1973) for references.

Several points about resistant location estimators need to be made. First,
by far the most important step in analyzing location data is to
check whether outliers are present with a plot of the data. Sec-
ondly, no single procedure will dominate all other procedures. In particular,
it is unlikely that the sample mean will be replaced by a robust estimator.
The sample mean often works well for distributions with second moments. In
particular, the sample mean works well for many skewed and discrete distri-
butions. Thirdly, the mean and the median should usually both be computed.
If a CI is needed and the data is thought to be symmetric, several resistant
CIs should be computed and compared with the classical interval. Fourthly,
in order to perform hypothesis testing, reasonable values for the unknown
parameter must be given. The mean and median of the population are fairly
simple parameters even if the population is skewed while the truncated pop-
ulation mean is considerably more complex.

With some robust estimators, it very difficult to determine what the es-
timator is estimating if the population is not symmetric. In particular, the
difficulty in finding reasonable values of the population quantities estimated
by M, L, and R estimators may be one reason why these estimators are not
widely used. For testing hypotheses, the following population quantities are
listed in order of increasing complexity.
1) The population median MED(Y ).
2) The population mean E(Y ).
3) The truncated mean µT as estimated by the α trimmed mean.
4) The truncated mean µT as estimated by the (α, β) trimmed mean.
5) The truncated mean µT as estimated by the TS,n.
6) The truncated mean µT as estimated by the TA,n.

Bickel (1965), Prescott (1978), and Olive (2001) give formulas similar to
Equations (2.43) and (2.4). Gross (1976), Guenther (1969) and Lax (1985)
are useful references for confidence intervals. Andrews et al. (1972) is a well
known simulation study for robust location estimators.

In Section 2.14, only intervals that are simple to compute by hand for
sample sizes of ten or so were considered. The interval based on MED(n) (see
Application 2.4 and the column “MED” in Tables 2.6 and 2.7) is even easier
to compute than the classical interval, kept its coverage pretty well, and was
frequently shorter than the classical interval.

Stigler (1973a) showed that the trimmed mean has a limiting normal dis-
tribution even if the population is discrete provided that the asymptotic
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truncation points a and b have zero probability; however, in finite samples
the trimmed mean can perform poorly if there are gaps in the distribution
near the trimming proportions. Stigler (1977) argues that complicated robust
estimators are not needed.

Warning: Simulations for confidence intervals and prediction intervals
should include both length and coverage while simulations for tests of hy-
pothesis should include both coverage and power.

The Shorth: Useful papers for the shorth include Chen and Shao (1999),
Einmahl and Mason (1992), Frey (2013), Grübel (1988) and Pelawa Watagoda
and Olive (2019).

The Bootstrap:
Buckland (1984) shows that the expected coverage of the nominal 100(1−

δ)% percentile confidence interval is approximately correct, but the standard
deviation of the coverage is proportional to 1/

√
B. Hence the percentile CI

is a large sample confidence interval, in that the true coverage converges in
probability to the nominal coverage, only if B → ∞ as n → ∞. These results
are good reasons for using B = max(1000, bn log(n)c) samples for the location
model. Also see Olive (2014, pp. 279-283) and Robinson (1988). Efron (1982)
and Efron and Tibshirani (1993) are good books for the bootstrap.

2.18 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

2.1. Write the location model in matrix form.

2.2. Let fY (y) be the pdf of Y. If W = µ+ Y where −∞ < µ <∞, show
that the pdf of W is fW (w) = fY (w − µ).

2.3. Let fY (y) be the pdf of Y. If W = σY where σ > 0, show that the
pdf of W is fW (w) = (1/σ)fY (w/σ).

2.4. Let fY (y) be the pdf of Y. If W = µ+ σY where −∞ < µ <∞ and
σ > 0, show that the pdf of W is fW (w) = (1/σ)fY ((w − µ)/σ).

2.5. Use Theorem 2.8 to find the limiting distribution of
√
n(MED(n) −

MED(Y )).

2.6. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular
estimator of scale. Use Theorem 2.2 to show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)
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where

σ2
A =

1

64

[

3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]

.

2.7. Let the pdf of Y be f(y) = 1 if 0 < y < 0.5 or if 1 < y < 1.5. Assume
that f(y) = 0, otherwise. Then Y is a mixture of two uniforms, one U(0, 0.5)
and the other U(1, 1.5). Show that the population median MED(Y ) is not
unique but the population mad MAD(Y ) is unique.

2.8. a) Let Ln = 0 and Un = n. Prove that SERM (0, n) = S/
√
n. In other

words, the SE given by Definition 2.26 reduces to the SE for the sample mean
if there is no trimming.

b) Prove Remark 2.8:

VSW (Ln, Un) =
S2

n(d1, ..., dn)

[(Un − Ln)/n]2
.

2.9. Find a 95% CI for µT based on the 25% trimmed mean for the fol-
lowing data sets. Follow Examples 2.16 and 2.17 closely with Ln = b0.25nc
and Un = n− Ln.

a) 6, 9, 9, 7, 8, 9, 9, 7

b) 66, 99, 9, 7, 8, 9, 9, 7

2.10. Consider the data set 6, 3, 8, 5, and 2. Show work.

a) Find the sample mean Y .

b) Find the standard deviation S

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

2.11∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,
p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

e) Plot the data. Are any observations unusually large or unusually small?

2.12∗. Consider the following data set on Spring 2004 Math 580 homework
scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7
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Then Y = 89.54 and S2 = 103.3604.

a) Find SE(Y ).

b) Find the degrees of freedom p for the classical CI based on Y .

Parts c)-g) refer to the CI based on MED(n).

c) Find the sample median MED(n).

d) Find Ln.

e) Find Un.

f) Find the degrees of freedom p.

g) Find SE(MED(n)).

2.13∗. Consider the following data set on Spring 2004 Math 580 homework
scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7

Consider the CI based on the 25% trimmed mean.

a) Find Ln.

b) Find Un.

c) Find the degrees of freedom p.

d) Find the 25% trimmed mean Tn.

e) Find d1, ..., d10.

f) Find d.

g) Find S2(d1, ..., d10).

h) Find SE(Tn).

2.14. Consider the data set 6, 3, 8, 5, and 2.

a) Referring to Application 2.4, find Ln, Un, p and SE(MED(n)).

b) Referring to Application 2.5, let Tn be the 25% trimmed mean. Find
Ln, Un, p, Tn and SE(Tn).

2.15. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

2.16. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

2.17. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

2.18. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.
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actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

2.19. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

2.20. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5

2.21. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith sample.
samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:

b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B
∑

i=1

T ∗
i where B = 4 is the number of

samples.

R problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

2.22∗. Use the commands

height <- rnorm(87, mean=1692, sd = 65)

height[61:65] <- 19.0

to simulate data similar to the Buxton heights. Paste the commands for this
problem into R to make a plot similar to Figure 2.1.

2.23∗. The following command computes MAD(n).
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mad(y, constant=1)

a) Let Y ∼ N(0, 1). Estimate MAD(Y ) with the following commands.

y <- rnorm(10000)

mad(y, constant=1)

b) Let Y ∼ EXP(1). Estimate MAD(Y ) with the following commands.

y <- rexp(10000)

mad(y, constant=1)

2.24∗. The following commands computes the α trimmed mean. The de-
fault uses tp = 0.25 and gives the 25% trimmed mean.

tmn <-function(x, tp = 0.25){

mean(x, trim = tp)}

a) Compute the 25% trimmed mean of 10000 simulated N(0, 1) random
variables by pasting the commands for this problem into R.

b) Compute the mean and 25% trimmed mean of 10000 simulated EXP(1)
random variables by pasting the commands for this problem into R.

2.25. The following R function computes the metrically trimmed mean.

metmn <-function(x, k = 6){

madd <- mad(x, constant = 1)

med <- median(x)

mean(x[(x >= med - k * madd) & (x <= med + k * madd)])}

Compute the metrically trimmed mean of 10000 simulatedN(0, 1) random
variables by pasting the commands for this problem into R.

Warning: For the following problems, use a command like
source(“G:/rpack.txt”) to download the programs. See Preface or Sec-
tion 11.2. Typing the name of the rpack function, e.g. ratmn, will display
the code for the function. Use the args command, e.g. args(ratmn), to dis-
play the needed arguments for the function.

2.26. Download the R function ratmn that computes the two stage asym-
metrically trimmed mean TA,n. Compute the TA,n for 10000 simulatedN(0, 1)
random variables by pasting the commands for this problem into R.

2.27. Download the R function rstmn that computes the two stage sym-
metrically trimmed mean TS,n. Compute the TS,n for 10000 simulatedN(0, 1)
random variables by pasting the commands for this problem into R.

2.28∗. a) Download the cci function which produces a classical CI. The
default is a 95% CI.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command cci(height).

2.29∗. a) Download the R function medci that produces a CI using the
median and the Bloch and Gastwirth SE.
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b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command medci(height).

2.30∗. a) Download the R function tmci that produces a CI using the
25% trimmed mean as a default.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command tmci(height).

2.31. a) Download the R function atmci that produces a CI using TA,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command atmci(height).

2.32. a) Download the R function stmci that produces a CI using TS,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command stmci(height).

2.33. a) Download the R function med2ci that produces a CI using the
median and SERM (Ln, Un).

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command med2ci(height).

2.34. a) Download the R function cgci that produces a CI using TS,n

and the coarse grid C = {0, 0.01, 0.1, 0.25, 0.40, 0.49}.
b) Compute a 95% CI for the artificial height data set created in Problem

2.22. Use the command cgci(height).

2.35. a) Bloch and Gastwirth (1968) suggest using

SE(MED(n)) =

√
n

4m
[Y(bn/2c+m) − Y(bn/2c−m)]

where m → ∞ but n/m → 0 as n → ∞. Taking m = 0.5n0.8 is optimal in
some sense, but not as resistant as the choice m =

√

n/4. Download the R
function bg2ci that is used to simulate the CI that uses MED(n) and the
“optimal” BG SE.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command bg2ci(height).

2.36. a) Enter the following commands to create a function that produces
a Q plot.

qplot<-function(y){

plot(sort(y), ppoints(y))

title("QPLOT")}

b) Make a Q plot of the height data from Problem 2.22 with the command
qplot(height).

c) Make a Q plot for N(0, 1) data by pasting the commands for this prob-
lem into R.
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2.37. a) Download the R function rcisim to reproduce Tables 2.6 and
2.7. Two lines need to be changed with each CI. One line is the output line
that calls the CI and the other line is the parameter estimated for exponen-
tial(1) data. The default is for the classical interval. Thus the program calls
the function cci used in Problem 2.28. The functions medci, tmci, atmci,
stmci, med2ci, cgci and bg2ci given in Problems 2.29 – 2.35 are also
interesting. The program gives the proportion of times 0 is in the classical
CI. For type ii) data which has 25% outliers, this proportion will be low.

b) Enter the following commands, obtain the output and explain what the
output shows.
i) rcisim(n,type=1) for n = 10, 50, 100
ii) rcisim(n,type=2) for n = 10, 50, 100
iii) rcisim(n,type=3) for n = 10, 50, 100
iv) rcisim(n,type=4) for n = 10, 50, 100
v) rcisim(n,type=5) for n = 10, 50, 100

2.38. a) Download the R functions cisim and robci. Download the data
set cushny. That is, use the source command twice to download rpack.txt
and robdata.txt.

b) An easier way to reproduce Tables 2.6 and 2.7 is to evaluate the six CIs
on the same data. Type the command cisim(100) and interpret the results.

c) To compare the six CIs on the Cushny Peebles data described in Prob-
lem 2.11, type the command robci(cushny).


