
Chapter 3

The Multivariate Location and Dispersion

Model

This chapter describes the multivariate location and dispersion (MLD) model,
random vectors, the population mean, the population covariance matrix, and
the classical MLD estimators: the sample mean and the sample covariance
matrix. Some important results on Mahalanobis distances and the volume
of a hyperellipsoid are given. Robust MLD estimators are derived. The DD
plot of classical versus robust Mahalanobis distances is used to detect outliers
and to visualize practical prediction regions for a future test observation xf

that work even if the iid training data x1, ...,xn come from an unknown
distribution.

The multivariate location and dispersion model is in many ways similar
to the multiple linear regression model covered in Chapter 4. The data are
iid vectors from some distribution such as the multivariate normal (MVN)
distribution. The location parameter µ of interest may be the mean or the
center of symmetry of an elliptically contoured distribution. Hyperellipsoids
will be estimated instead of hyperplanes, and Mahalanobis distances will be
used instead of absolute residuals to determine if an observation is a potential
outlier.

Definition 3.1. An important multivariate location and dispersion model
is Y = µ + e where Y and e are p × 1 random vectors, while µ is a p ×
1 population location vector. Often the ei are iid with a p × p symmetric
positive definite population dispersion matrix Σ. An important parametric
multivariate location and dispersion model is a joint distribution with joint
pdf f(z|µ,Σ) for a p×1 random vector x where µ and Σ are as above. Thus
P (x ∈ A) =

∫

A
f(z)dz for suitable sets A.

Notation: Usually a vector x will be column vector, and a row vector xT

will be the transpose of the vector x. However,

∫

A

f(z)dz =

∫

A

f(z1 , ..., zp)dz1 · · ·dzp.
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86 3 The Multivariate Location and Dispersion Model

The notation f(z1 , ..., zp) will be used to write out the components zi of a
joint pdf f(z) although in the formula for the pdf, e.g. f(z) = c exp(zT z), z

is a column vector.

Definition 3.2. A p× 1 random vector x = (x1, ..., xp)
T = (X1, ..., Xp)

T

where X1, ..., Xp are p random variables. A case or observation consists of
the p random variables measured for one person or thing. For multivariate
location and dispersion the ith case is xi = (xi,1, ..., xi,p)

T . There are n cases,
and context will be used to determine whether x is the random vector or the
observed value of the random vector. Outliers are cases that lie far away from
the bulk of the data, and they can ruin a classical analysis.

Assume that x1, ...,xn are n iid p × 1 random vectors and that the joint
pdf of xi is f(z|µ,Σ). Also assume that the data xi has been observed and
stored in an n × p matrix

W =







xT
1
...

xT
n






=











x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p











=
[

v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Notation: In the theoretical sections of this text, xi will sometimes be
a random vector and sometimes the observed data. Some texts, for example
Johnson and Wichern (1988, pp. 7, 53), use X to denote the n×p data matrix
and an n × 1 random vector, relying on the context to indicate whether X

is a random vector or data matrix. Software tends to use different notation.
For example, R will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x, and x[4, ] is the 4th row of x.

The next two sections consider elliptically contoured distributions, includ-
ing the multivariate normal distribution. These distributions are important
models for multivariate data. Although usually random vectors in this text
are denoted by x, y, or z, the next two sections will usually use the notation
X = (X1, ..., Xp)

T and Y for the random vectors, and x = (x1, ..., xp)
T for

the observed value of the random vector. This notation will be useful to avoid
confusion when studying conditional distributions such as Y |X = x.
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3.1 The Multivariate Normal Distribution

Definition 3.3: Rao (1965, p. 437). A p × 1 random vector X has a
p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a uni-
variate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (3.1)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 3.4. If second moments exist, the population mean of a random
p× 1 vector X = (X1, ..., Xp)

T is

E(X) = (E(X1), ..., E(Xp))
T

and the p× p population covariance matrix

Cov(X) = ΣX = E(X − E(X))(X −E(X))T = (σij) = (σi,j).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (3.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (3.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (3.4)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, p. 127-132) or Severini (2005, ch.
8).

Theorem 3.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and
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Cov(X) = ΣX = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp) and

Σ = diag(σ2
1 , ..., σ

2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Theorem 3.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq

)T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki
) and Σ̃ij = Cov(Xki

, Xkj
). In particular,

X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).
b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =

E[(X1 −E(X1))(X2 − E(X2))
T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(

X1

X2

)

∼ Np

((

µ1

µ2

)

,

(

Σ11 0
0 Σ22

))

.

Theorem 3.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 3.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,
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(

Y
X

)

∼ N2

((

µY

µX

)

,

(

σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

))

.

Also the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√

σ2
Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y ) =

σ2
Y −ρ(X, Y )

√

σ2
Y

σ2
X

ρ(X, Y )
√

σ2
X

√

σ2
Y = σ2

Y −ρ2(X, Y )σ2
Y = σ2

Y [1−ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 3.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 3.1b and Theorem 3.2c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. Examine the
following example from Rohatgi (1976, p. 229). Suppose that the joint pdf
of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 3.2 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫

xyfi(x, y)dxdy = ρ for i = 1 and −ρ
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for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 3.2. In Theorem 3.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

3.2 Elliptically Contoured Distributions

Definition 3.5: Johnson (1987, p. 107-108). A p× 1 random vector X

has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (3.5)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (3.6)

for some function ψ. If the second moments exist, then

E(X) = µ (3.7)

and
Cov(X) = cXΣ (3.8)

where cX = −2ψ′(0).

Definition 3.6. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X − µ). (3.9)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.10)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p × p identity matrix. The multivariate normal distribution Np(µ,Σ)
has kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p pdf. The
following theorem is useful for proving properties of EC distributions without
using the characteristic function (3.6). See Eaton (1986) and Cook (1998a,
p. 57, 130).
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Theorem 3.4. Let X be a p × 1 random vector with 1st moments; i.e.,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBT X (3.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = µ− MBBT µ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 3.11. Notice that in the formula for MB , Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has second
moments, Cov(X) can be used instead of Σ.

To use Theorem 3.4 to prove interesting properties, partition X , µ, and
Σ as above Theorem 3.2. Also assume that the (p + 1) × 1 vector (Y,XT )T

is ECp+1(µ,Σ, g) where Y is a random variable, X is a p×1 vector, and use

(

Y
X

)

, µ =

(

µY

µX

)

, and Σ =

(

ΣY Y ΣY X

ΣXY ΣXX

)

.

Theorem 3.5. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998a p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BT X) = dg(B
T X)[Σ − ΣB(BT ΣB)−1BT Σ]

where the real valued function dg(B
T X) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(

A

0

)

.

Then BT X = AT X1, and

E[X|BT X ] = E

[(

X1

X2

)

|AT X1

]

=

(

µ1

µ2

)

+

(

M1B

M2B

)

(

AT 0T
)

(

X1 − µ1

X2 − µ2

)
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by Theorem 3.4. Hence E[X1|AT X1] = µ1+M1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Theorem 3.4. Notice that MB = ΣB(BT ΣB)−1 =

(

Σ11 Σ12

Σ21 Σ22

) (

A

0

) [

(

AT 0T
)

(

Σ11 Σ12

Σ21 Σ22

) (

A

0

)]−1

=

(

M1B

M2B

)

.

Hence
M1B = Σ11A(AT Σ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. �

Theorem 3.6. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βT X where
α = µY − βT µX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α+ βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Theorem 3.4 applies. Let

B =

(

0T

Ip

)

.

Then BT ΣB = ΣXX and

ΣB =

(

ΣY X

ΣXX

)

.

Now E

[(

Y
X

)

| X

]

= E

[(

Y
X

)

| BT

(

Y
X

)]

= µ + ΣB(BT ΣB)−1BT

(

Y − µY

X − µX

)

by Theorem 3.4. The right hand side of the last equation is equal to

µ +

(

ΣY X

ΣXX

)

Σ−1
XX(X − µX) =

(

µY − ΣY XΣ−1
XXµX + ΣY XΣ−1

XXX

X

)

and the result follows since βT = ΣY XΣ−1
XX .

b) See Croux et al. (2001) for references.

Example 3.2. This example illustrates another application of Theorem
3.4. Suppose that X comes from a mixture of two multivariate normals with
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the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Theorem 11.1c),

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M1 = M2 = M =
MB. Hence X has an elliptically contoured distribution by Theorem 3.4. See
Problem 3.4 for a related result.

Let x ∼ Np(µ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)

1/2 for
i = 1, ..., p. Then w has a multivariate t-distribution with parameters µ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) showed that the covariance matrix of w is Cov(w) =
d

d− 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ ((d+ p)/2)) |Σ|−1/2

(πd)p/2Γ (d/2)
[1 + d−1(z − µ)T Σ−1(z − µ)]−(d+p)/2.

See Mardia et al. (1979, pp. 43, 57). See Johnson and Kotz (1972, p. 134) for
the special case where the xi ∼ N(0, 1).

The following EC(µ,Σ, g) distribution for a p × 1 random vector x is
the uniform distribution on a hyperellipsoid where f(z) = c for z in the
hyperellipsoid where c is the reciprocal of the volume of the hyperellipsoid.
The pdf of the distribution is

f(z) =
Γ (p

2
+ 1)

[(p+ 2)π]p/2
|Σ|−1/2I[(z − µ)T Σ−1(z − µ) ≤ p + 2].

See Theorem 3.9 where h2 = p+ 2. Then E(x) = µ by symmetry and is can
be shown that Cov(x) = Σ.

If x ∼ Np(µ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate
lognormal distribution with parameters µ and Σ. This distribution is not an
elliptically contoured distribution. See Problem 3.24.
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3.3 The Sample Mean and Sample Covariance Matrix

The population location vector µ need not be the population mean, but
often the population mean is denoted by µ. For elliptically contoured dis-
tributions, such as the multivariate normal distribution, µ is usually the
point of symmetry for the population distribution. See Section 3.2. We will
now usually use x = (x1, ..., xp)

T as a random vector or the observed ran-
dom vector, depending on the context. Hence E(x) = (E(x1), ..., E(xp))

T

and Cov(x) = (σij) = E[(x − E(x))(x − E(x))T ] = E[(x − E(x))xT ] =
E(xxT ) −E(x)[E(x)]T = Σx.

Definition 3.7. If the second moments exist, the p × p population cor-
relation matrix Cor(x) = ρx = (ρij). That is, the ij entry of Cor(x) is
Cor(Xi, Xj) =

σij

σiσj
=

σij√
σiiσjj

.

Let the p× p population standard deviation matrix

∆ = diag(
√
σ11, ...,

√
σpp).

Then
Σx = ∆ρx∆, (3.12)

and
ρx = ∆−1Σx∆−1. (3.13)

Let the population standardized random variables

Zi =
Xi − E(Xi)√

σii

for i = 1, ..., p. Then Cor(x) = ρx = Cov(z) is the covariance matrix of
z = (Z1, ..., Zp)

T .

Definition 3.8. Let random vectors x be p × 1 and y be q × 1. The
population covariance matrix of x with y is the p× q matrix

Cov(x, y) = E[(x− E(x))(y − E(y))T ] =

E[(x− E(x))yT ] = E(xyT ) −E(x)[E(y)]T = Σx,y

assuming the expected values exist. Note that the q × p matrix Cov(y,x) =
Σy,x = ΣT

x,y , and Cov(x) = Cov(x,x).

Definition 3.9. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The
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jth sample mean is xj =
1

n

n
∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij, and

Sij =
1

n− 1

n
∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij, and

rij =
Sij

SiSj
=

Sij
√

SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)

√
∑n

k=1(xki − xi)2
√

∑n
k=1(xkj − xj)2

.

Definition 3.10. The sample mean or sample mean vector

x =
1

n

n
∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (x,S).

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W T HW .

Definition 3.11. The sample correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zj =
xj − xj
√

Sjj
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for j = 1, ..., p.Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)

T where i = 1, ..., n.
Often it is useful to standardize variables with a robust location estimator

and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj − MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j, ..., xnj) and MAD(xj) =
MAD(x1j, ..., xnj) are the sample median and sample median absolute de-
viation of the data for the jth variable: x1j, ..., xnj. See Definitions 2.2 and
2.4. Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)

len nasal bigonal

len 118299.9257 -191.084603 -104.718925

nasal -191.0846 18.793905 -1.967121

bigonal -104.7189 -1.967121 36.796311

cor(x)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

z <- scale(x)

cov(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)

madd <- apply(x,2,mad)/1.4826

z <- scale(x,center=medd,scale=madd)

ddplot4(z)#scaled data still has 5 outliers

cov(z) #in the length variable

len nasal bigonal

len 4731.997028 -12.738974 -6.981262

nasal -12.738974 2.088212 -0.218569

bigonal -6.981262 -0.218569 4.088479

cor(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324
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bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)

len nasal bigonal

0 0 0

#scaled data has coord. median = (0,0,0)ˆT

apply(z,2,mad)/1.4826

len nasal bigonal

1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 3.1. Multivariate procedures start to give good results
for n ≥ 10p, especially if the distribution is close to multivariate normal.
In particular, we want n ≥ 10p for the sample covariance and correlation
matrices. For procedures with large sample theory on a large class of distri-
butions, for any value of n, there are always distributions where the results
will be poor, but will eventually be good for larger sample sizes. Norman
and Streiner (1986, pp. 122, 130, 157) gave this rule of thumb and note that
some authors recommend n ≥ 30p. This rule of thumb is much like the rule
of thumb that says the central limit theorem normal approximation for Y
starts to be good for many distributions for n ≥ 30. See the paragraph below
Theorem 11.8.

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp).

Then
S = DRD, (3.14)

and
R = D−1SD−1. (3.15)

3.4 Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.

Definition 3.12. Let Σ be a positive definite symmetric dispersion ma-
trix. Then the Mahalanobis distance of x from the vector µ is
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Dx(µ,Σ) =

√

(x − µ)T Σ−1(x − µ).

The population squared Mahalanobis distance

D2
x(µ,Σ) = (x − µ)T Σ−1(x− µ). (3.16)

Estimators of multivariate location and dispersion are of interest. Let the
observed data xi for i = 1, ..., n be collected in an n × p matrix W with n
rows xT

1 , ...,x
T
n . Let the p×1 column vector T (W ) be a multivariate location

estimator, and let the p × p symmetric positive definite matrix C(W ) be a

dispersion estimator. If (T (W ),C(W )) = (µ̂, Σ̂) then the sample squared
Mahalanobis distance is

D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x− µ̂).

The word “sample” is often suppressed.

Definition 3.13. The ith squared sample Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (3.17)

for each case xi.

Notice that D2
i is a random variable (scalar valued). Notice that the term

Σ−1/2(x− µ) is the p−dimensional analog to the z-score used to transform
a univariate N(µ, σ2) random variable into a N(0, 1) random variable. Hence
the sample Mahalanobis distance Di =

√

D2
i is an analog of the absolute

value |Zi| of the sample Z-score Zi = (Xi − X)/σ̂. Also notice that the
Euclidean distance of xi from the estimate of center T (W ) is Di(T (W ), Ip)
where Ip is the p× p identity matrix.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if

Ax = λx. (3.18)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖ =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthogonal: eT

i ej = 0 for i 6= j. The symmetric
matrix A is positive definite iff all of its eigenvalues are positive, and positive
semidefinite iff all of its eigenvalues are nonnegative. If A is positive semidef-
inite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive definite, then λp > 0.
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Theorem 3.7. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p
∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√

λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p
∑

i=1

1

λi
eie

T
i .

Theorem 3.8. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Points x with the same distanceDx(µ,Σ) lie on a hyperellipsoid where the
shape of the hyperellipsoid is determined by the eigenvectors and eigenvalues
of Σ: (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Note Σ−1 has
the same eigenvectors as Σ but eigenvalues equal to 1/λi since Σe = λe iff
Σ−1Σe = e = Σ−1λe. Then divide both sides by λ > 0 since Σ > 0 and is
symmetric. Let w = x− µ. Then points at squared distance wT Σ−1w = h2

from the origin lie on the hyperellipsoid centered at the origin whose axes are
given by the eigenvectors of Σ where the half length in the direction of ei is
h
√
λi.

Theorem 3.9. Let Σ be a positive definite symmetric matrix, e.g. a
dispersion matrix. Let U = D2

x = D2
x(µ,Σ). The hyperellipsoid

{x|D2
x ≤ h2} = {x : (x − µ)T Σ−1(x − µ) ≤ h2},

where h2 = u1−α and P (U ≤ u1−α) = 1 − α, is the highest density region
covering 1 − α of the mass for an elliptically contoured ECp(µ,Σ, g) distri-
bution (see Definitions 3.5 and 3.6) if g is continuous and decreasing. Let
w = x − µ. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given by
the eigenvectors ei where the half length in the direction of ei is h

√
λi. The

volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|Σ|1/2hp.



100 3 The Multivariate Location and Dispersion Model

Theorem 3.10. Let the symmetric sample covariance matrix S be positive
definite with eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p >
0. The hyperellipsoid

{x|D2
x(x,S) ≤ h2} = {x : (x − x)T S−1(x− x) ≤ h2}

is centered at x. The volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|S|1/2hp.

Let w = x − x. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given

by the eigenvectors êi where the half length in the direction of êi is h
√

λ̂i.

From Theorem 3.9, the volume of the hyperellipsoid {x|D2
x ≤ h2} is pro-

portional to |S|1/2 so the squared volume is proportional to |S|. Large |S|
corresponds to large volume while small |S| corresponds to small volume.

Definition 3.14. The generalized sample variance = |S| = det(S).

Following Johnson and Wichern (1988, pp. 103-106), a generalized variance
of zero is indicative of extreme degeneracy, and |S| = 0 implies that at least
one variable Xi is not needed given the other p − 1 variables are in the
multivariate model. Two necessary conditions for |S| 6= 0 are n > p and that
S has full rank p. If 1 is an n× 1 vector of ones, then

(n− 1)S = (W − 1xT )T (W − 1xT ),

and S is of full rank p iff W − 1xT is of full rank p.
If X and Z have dispersion matrices Σ and cΣ where c > 0, then the

dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − µ)T Σ−1(x − µ) ≤ h2}. Figure 3.1
was made with the Arc software of Cook and Weisberg (1999a). The 10%,
30%, 50%, 70%, 90%, and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have µ = 0. In
Figure 3.1a),

Σ =

(

1 0.9
0.9 4

)

.

Note that the ellipsoids are narrow with high positive correlation. In Figure
3.1b),

Σ =

(

1 −0.4
−0.4 1

)

.

Note that the ellipsoids are wide with negative correlation. The highest den-
sity ellipsoids are superimposed on a scatterplot of a sample of size 100 from
each distribution.
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Fig. 3.1 Highest Density Regions for 2 MVN Distributions
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Example 3.3. The contours of constant density for the Np(µ,Σ) dis-
tribution are ellipsoids defined by x such that (x − µ)T Σ−1(x − µ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(µ,Σ) distribution, the regions of highest density are sets of the form

{x : (x − µ)T Σ−1(x − µ) ≤ χ2
p(α)} = {x : D2

x(µ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(µ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k 6= j. Similar statements hold if X is ECp(µ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (3.10).

3.5 Equivariance and Breakdown

Equivariance and breakdown properties are very weak compared to prop-
erties like consistency, but will be useful for the theory of practical robust
MLD estimators. Before defining an important equivariance property, some
notation is needed. Again assume that the data is collected in an n× p data
matrix W . Let B = 1bT where 1 is an n× 1 vector of ones and b is a p× 1
constant vector. Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For
such a matrix B, consider the affine transformation Z = WAT + B where
A is any nonsingular p × p matrix. An affine transformation changes xi to
zi = Axi + b for i = 1, ..., n, and affine equivariant multivariate location and
dispersion estimators change in natural ways.

Definition 3.15. The multivariate location and dispersion estimator
(T,C) is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (3.19)

and C(Z) = C(WAT + B) = AC(W )AT . (3.20)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)(T,C) C) where D2
(j)(T,C) is the jth order statistic of the D2

i .

Theorem 3.11. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) = D2
i (T (Z),C(Z)) ≡ D2

i (Z). (3.21)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]
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= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �

Warning: Estimators that use randomly chosen elemental sets or projec-
tions are not affine equivariant since these estimators often change when they
are computed several times (corresponding to the identity transformation
A = Ip). Such estimators can sometimes be made pseudo-affine equivariant
by using the same fixed random number seed and random number genera-
tor each time the estimator is used. Then the pseudo-affine equivariance of
the estimator depends on the random number seed and the random number
generator, and such estimators are not as attractive as affine equivariant es-
timators that do not depend on a fixed random number seed and random
number generator.

Next, a standard definition of breakdown is given for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let w1, ...wn be the contaminated data after dn of the xi have been re-
placed by arbitrarily bad contaminated cases. Let W n

d denote the n× p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n.
Let (T (W ),C(W )) denote an estimator of multivariate location and dis-
persion where the p × 1 vector T (W ) is an estimator of location and the
p × p symmetric positive semidefinite matrix C(W ) is an estimator of dis-
persion. A theorem from multivariate analysis shows that if C(W n

d) > 0,
then max

‖a‖=1
aT C(W n

d )a = λ1 and min
‖a‖=1

aT C(W n
d)a = λp. See Olive (2017b,

p. 7) and Johnson and Wichern (1988, pp, 64-65, 184). A high breakdown
dispersion estimator C is positive definite if the amount of contamination is
less than the breakdown value. Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj, the largest

eigenvalue λ1 is bounded as W n
d varies iff C(W n

d) is bounded as W n
d varies.

Definition 3.16. The breakdown value of the multivariate location esti-
mator T at W is

B(T,W ) = min

{

dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min

{

dn

n
: sup
W n

d

max

[

1

λp(C(W n
d ))

, λ1(C(W n
d))

]

= ∞
}

.
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Definition 3.17. Let γn be the breakdown value of (T,C). High break-
down (HB) statistics have γn → 0.5 as n→ ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 3.12. Fix n. If nonequivariant estimators (that may have a
breakdown value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT = dT,n is the smallest
number of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB ,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB,SB)
is a high breakdown estimator.
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Theorem 3.13. If the classical estimator (XB ,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn

. Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn
∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. See Definition 3.14. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)} (3.22)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T,C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp

√

det(C) =
2πp/2

pΓ (p/2)
hpbp/2

√

det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

3.6 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 3.18, take too long
to compute. The concentration algorithm, defined in Definition 3.19, uses K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x,S). Then the attractor could be the classical estima-
tor (T1,C1) applied to the half set of cases with the smallest Mahalanobis



106 3 The Multivariate Location and Dispersion Model

distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk,Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j,Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

This chapter will explain the concentration algorithm, explain why the
MCD criterion is useful but can be improved, provide some theory for practi-
cal robust multivariate location and dispersion estimators, and show how the
set of cases used to compute the recommended RMVN or RFCH estimator
can be used to create robust multivariate analogs of methods such as princi-
pal component analysis and canonical correlation analysis. The RMVN and
RFCH estimators are reweighted versions of the practical FCH estimator,
given in Definition 3.22.

Definition 3.18. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

Here

C(n, i) =

(

n

i

)

=
n!

i! (n− i)!

is the binomial coefficient.

Remark 3.3. Note that for fixed h, the MCD estimator corresponds to the
sample mean and covariance estimator of cn cases such that the hyperellipsoid
of Theorem 3.10 has the smallest volume.

The MCD estimator is a high breakdown (HB) estimator, and the value
cn = b(n + p+ 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Section 2.12 and Chapter 5. The population analog of the MCD
estimator is closely related to the hyperellipsoid of highest concentration that
contains cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent

HB asymptotically normal estimator for (µ, aMCDΣ) where aMCD is some
positive constant when the data xi are iid from a large class of distributions.
See Cator and Lopuhaä (2010, 2012) who extended some results of Butler et
al. (1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
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consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 3.19. Suppose that x1, ...,xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j ,C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iter-
ation, the classical estimator (T0,j ,C0,j) = (x0,j,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). The result of the it-
eration (Tk,j,Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA,CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 or k = 0
so that the attractor is the start: (xk,j,Sk,j) = (x−1,j,S−1,j), or (xk,j,Sk,j)
= (x0,j,S0,j). The elemental basic resampling estimator uses Kn elemental
starts and k = 0.

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
k = 10 concentration steps often works well. The following theorem is useful
and shows that det(S0,j) tends to be greater than the determinant of the
attractor det(Sk,j).

Theorem 3.14: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j,St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j,St,j) are computed. If
(xt+1,j,St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j,St+1,j) = (xt,j,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
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theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n→ ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn = h ≡ p+ 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

Theorem 3.15: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

Theorem 3.15 shows that the elemental basic resampling PROGRESS es-
timators of Rousseeuw (1984), Rousseeuw and Leroy (1987), and Rousseeuw
and van Zomeren (1990) with K = 3000 are zero breakdown and inconsis-
tent. The Maronna et al. (2006, pp. 198-199) estimators that use K = 500
elemental starts and one concentration step (k = 0) are inconsistent and zero
breakdown. Yohai’s two stage estimators need initial consistent high break-
down estimators, such as MCD, but were implemented with the inconsistent
zero breakdown elemental basic resampling estimators such as FMCD. See
Hawkins and Olive (2002, p. 157). Theorem 5.13 and Remark 5.5 give similar
results for multiple linear regression.

The following theorem is useful because it does not depend on the criterion
used to choose the attractor. If the algorithm needs to use many attractors
to achieve outlier resistance, then the individual attractors have little out-
lier resistance. Such estimators include elemental concentration algorithms,
heuristic and genetic algorithms, and projection algorithms that use ran-
domly chosen projections. Algorithms where all K of the attractors are in-
consistent, such as elemental concentration algorithms that use k concentra-
tion steps, are especially untrustworthy. You can get consistent estimators if
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K = Kn → ∞ or h = hn → ∞ as n → ∞. You can get high breakdown
estimators and avoid singular starts if all K = Kn = C(n, h) elemental sets
are used, but such an estimator is impractical.

Remark 3.4. It is unknown whether iterating to convergence, so k is not
fixed, results in a consistent or inconsistent estimator. Iteration to conver-
gence does seem to be fairly fast.

Suppose there are K consistent estimators (Tj ,Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 11.16.

Theorem 3.16. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, aΣ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j,S−1,j)
are identically distributed and inconsistent estimators of (µ,Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δKε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent. Thus the “best attractor” that mini-
mizes ‖xk,j − µ‖ for k = 0 is inconsistent by Lopuhaä (1999). See Theorem
3.20 a).

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n→ 0 as n → ∞. �
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Since the Fast-MCD estimator is a zero breakdown elemental concentra-
tion algorithm, the Hubert et al. (2008, 2012) claim that “MCD can be effi-
ciently computed with the FAST-MCD estimator” is false. The Det-MCD es-
timator is a concentration algorithm using several intelligently selected starts.
Fast-MCD and Det-MCD use iteration until convergence, and neither of these
two estimators have been proven to be consistent or inconsistent. See Remark
3.4. The breakdown value of Det-MCD is also unknown.

Theorem 3.17. Neither Fast-MCD nor Det-MCD is the MCD estimator.
Proof. A necessary condition for an estimator to be the MCD estimator

is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes Fast-MCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

Remark 3.5. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(

n− cn
n

, 1 − [1 − (0.2)1/K]1/h

)

100% (3.23)

if n is large, cn ≥ n/2 and h = p+ 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

Equation (3.23) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 3.7 will provide theory for some useful
practical algorithms.

3.7 Theory for Practical Estimators

This section presents the FCH, RFCH, and RMVN estimators. Recall from
Definition 3.19 that a concentration algorithm uses Kn starts (T−1,j ,C−1,j).
After finding (T0,j ,C0,j), each start is refined with k concentration steps, re-
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sulting inKn attractors (Tk,j,Ck,j), and the concentration attractor (TA,CA)
is the attractor that optimizes the criterion. Using k = 10 concentration steps
works well.

The DGK estimator (Devlin et al. 1975, 1981) defined below is one ex-
ample of a concentration algorithm estimator. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 3.11. This
section will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 3.20. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK)
uses the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 3.21. The median ball (MB) estimator (Tk,M ,Ck,M) =
(TMB,CMB) uses (T−1,M ,C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB ,CMB) is high
breakdown.

Theorem 3.18. Suppose (T,C) is a high breakdown estimator where C

is a symmetric, positive definite p×p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (3.24)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (3.24),

1

λ1
‖x− T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1

λp
‖x − T‖2. (3.25)
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By (3.25), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0,C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
3.13. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0,C0) is a high breakdown estimator.
Now repeat the argument with (T0,C0) in place of (T,C) and (T1,C1) in
place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument
iteratively shows (Tk,Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ ) applied to J is a HB estimator
of MLD. Note that (xJ ,SJ ) = (T0,C0) in the MB concentration algorithm.

Theorem 3.19. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ ,SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 11.14 and 11.15.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 3.20 is crucial for theory and Theorem 3.21 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal”ECp(µ,Σ, g)
distribution with nonsingular covariance matrix Cov(xi) where g is continu-
ously differentiable with finite 4th moment:

∫

(xT x)2g(xT x)dx <∞.

Lopuhaä (1999) showed that if a start (T,C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T,C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
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tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T,C) ≤ h2) is an indicator that is
1 if D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 3.20, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T,C) is inconsistent, then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 3.20c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj ,Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 3.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 3.6. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T,C), note that

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (3.27), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). As noted above

Theorem 3.11, (T, C̃) is affine equivariant if (T,C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T,C) with h2 = D2

(cn)(T,C).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )
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= s−1D2(µ,Σ) +OP (n−δ). (3.26)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ (µ,Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ (µ,Σ) and bΣ = s−1D2

ξ (µ,Σ)sΣ = D2
ξ (µ,Σ)Σ.

Thus
b = D2

ξ (µ,Σ) (3.27)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)(T,C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
3.6, if (T,C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T,C) ≤ D2
(cn)(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj,Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 3.21 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 3.21. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 3.6 the estimator is a consistent affine equivariant esti-
mator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
estimator is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
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is also the attractor by Rousseeuw and Van Driessen (1999) who show that
concentration does not increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√
n consistent FCH estima-

tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK ,CDGK) and the high breakdown MB estimator (TMB ,CMB) as at-
tractors.

Definition 3.22. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (3.28)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 3.7. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (3.28). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 3.9.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 3.22. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
with the smallest determinant, then (TA,CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (µ, cΣ) where c = u0.5/χ

2
p,0.5, and c = 1 for

multivariate normal data.
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Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) <∞ by Theorem 3.18 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 3.14 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But
the DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by The-

orem 3.21 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA,CA) is asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (3.9). Then the scaling in (3.28) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ,Σ) for multivariate normal data,
even when certain types of outliers are present.

Definition 3.23. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH ,CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975, but the two estimators

use nearly 97.5% of the cases if the data is multivariate normal.

Definition 3.24. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.
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Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

The RMVN estimator is a
√
n consistent estimator of (µ, dΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful
estimates of (µ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH ,CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates
q. Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed
when outliers are present.

Remark 3.8. The FCH, RFCH, and RMVN estimators may be the only
practical MLD estimators that have been shown to be

√
n consistent on a

large class of distributions and highly outlier resistant. The MBA and RMBA
estimators have also been shown to be

√
n consistent, but have less outlier

resistance. The main competitors for the Olive and Hawkins (2010) FCH,
RFCH, and RMVN estimators are the Maronna and Zamar (2002) OGK es-
timator, the Hubert et al. (2012) Det-MCD estimator which have not been
proven to be consistent or positive breakdown, and the Sign Covariance Ma-
trix shown to be high breakdown by Croux et al. (2010). Also see Taskinen
et al. (2012). Croux et al. (2010) showed that the practical Sign Covariance
Matrix and k-step Spatial Sign Covariance Matrix are high breakdown. They
claimed that under regularity conditions, these two estimators consistently
estimate the orientation of the dispersion matrix.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators
for p = 100 and n up to 50000, and noted that the OGK complexity is
O[p3+np2 log(n)] while that of MBA is O[p3+np2+np log(n)]. FCH, RMBA,
and RMVN have the same complexity as MBA. Fast-MCD has the same
complexity as FCH, but FCH is roughly 100 to 200 times faster.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the MCD estimator
with O(nv) complexity where v = 1+p(p+3)/2 and possibly an all elemental
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subset estimator of He and Wang (1997). See Bernholt and Fischer (2004).
The minimum volume ellipsoid estimator complexity is far higher, and for
p > 2 there may be no known method for computing S, τ , projection
based, and constrained M estimators. For some depth estimators, like the
Stahel-Donoho estimator, the exact algorithm of Liu and Zuo (2014) appears
to take too long if p ≥ 6 and n ≥ 100, and simulations may need p ≤ 3. �

Remark 3.9. Practical consistent highly outlier resistant estimators are
still affected by certain types of outliers. The median ball and location crite-
rion give FCH, RFCH, and RMVN considerable outlier resistance to outlier
configurations that lie outside the “median ball,” including outlier configura-
tions that can cause problems for the MCD estimator. For p not much larger
than 5, the elemental concentration algorithm with the MCD criterion can
detect some outlier types that are not detected by FCH, RFCH, and RMVN.
These outlier types tend to be within the “median ball.” The point mass
outlier configuration, where all of the outliers are equal to xO, often causes
numerical problems. The OGK and MB estimators have considerable resis-
tance to point mass outliers. The DGK, Fast-MCD, Det-MCD, and MCD
estimators have problems with the point mass. Suppose the bulk of the data
lies in a hyperellipsoid. A 40% point mass can combine with 10% of the clean
data to form a hyperellipsoid covering half of the data with smaller volume
than a hyperellipsoid covering half of the data without any outliers. Then
the MCD criterion tends to select a “half set” that contains the outliers. The
location criterion used by the FCH estimator will often reject the DGK at-
tractor for the point mass. However, the current program for FCH fails if the
DGK estimator can’t be computed, which often happens for the point mass.
For a single data set, just use the scaled MB estimator if the DGK estima-
tor causes the FCH, RFCH, or RMVN program to fail. It would be nice to
have a program that that does not fail when the DGK estimator fails. Since
the point mass causes numerical difficulties for most estimators, simulations
often use a near point mass: the outliers are tightly clustered about a single
point xO, but the outliers have a nonsingular covariance matrix.

Table 3.1 Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB
[

1.002 −0.014
−0.014 2.024

] [

0.055 0.685
0.685 122.5

] [

0.185 0.089
0.089 36.24

] [

2.570 −0.082
−0.082 5.241

]

Table 3.2 Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB
[

0.990 0.004
0.004 2.014

] [

2.530 0.003
0.003 5.146

] [

19.67 12.88
12.88 39.72

] [

2.552 0.003
0.003 5.118

]
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Simulations suggested (TRMV N ,CRMV N) gives useful estimates of (µ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the
averages of the dispersion matrices were computed when the bulk of the data
are iid N2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH, and
RMVN give

√
n consistent estimators of Σ, while Fast-MCD (FMCD) and

the OGK estimator seem to be approximately unbiased for Σ. The median
ball estimator was scaled using (3.28) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),
a near point mass at the major axis. FCH, MB, and RFCH estimated 2.6Σ

while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
that χ2

2,5/6/χ
2
2,0.5 = 2.585. See Table 3.1. The following R commands were

used where mldsim is from rpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T ,Σ), a
mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB, and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 3.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Remark 3.10. The RFCH and RMVN estimators are recommended. If
these estimators are too slow and outlier detection is of interest, try the RMB
estimator, the reweighted MB estimator. If RMB is too slow or if n < 2(p+1),
the Euclidean distances Di(MED(W ), I) of xi from the coordinatewise me-
dian MED(W ) may be useful. A DD plot of Di(x, I) versus Di(MED(W ), I)
is also useful for outlier detection and for whether x and MED(W ) are giving
similar estimates of multivariate location. See Section 3.10. For DD plots, see
Section 3.8.

Example 3.4. Tremearne (1911) recorded height = x[,1] and height while
kneeling = x[,2] of 112 people. Figure 3.2a shows a scatterplot of the data.
Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T, but if the distances correspond to the contours of a cover-
ing ellipsoid, then case 44 has the largest distance. For k = 0, (T0,M ,C0,M)
is the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 3.2b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.
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As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 3.4) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat or stick with one end
at the SW corner of the bottom of the box (corresponding to the coordinate
axes) and one end at the NE corner of the top of the box. If the outliers are
a ball, there is much more room to hide them in the box than in a covering
rectangle when p = 2.

Example 3.5. The estimators can be useful when the data is not ellipti-
cally contoured. The Gladstone (1905) data has 11 variables on 267 persons
after death. Head measurements were breadth, circumference, head height,
length, and size as well as cephalic index and brain weight. Age, height, and
two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 3.3 shows the DD plots for the FCH, RMVN,
cov.mcd, and MB estimators. The DD plots from the DGK, MBA, and
RFCH estimators were similar, and the six outliers in Figure 3.3 correspond
to the six infants in the data set.

3.8 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

The classical Mahalanobis distance will be denoted by MDi, and corre-
sponds to the sample mean and sample covariance matrix (T (W ),C(W ) =
(x,S) of Definition 3.10. When T (W ) and C(W ) are estimators other than
the sample mean and covariance, Di =

√

D2
i will sometimes be denoted by

RDi.

Definition 3.25: Rousseeuw and Van Driessen (1999). The DD plot
is a plot of the classical Mahalanobis distances MDi versus robust Maha-
lanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. Then the classi-
cal sample mean and covariance matrix (TM ,CM ) = (x,S) is a consistent
estimator for (µ, cxΣ) = (E(x),Cov(x)). Assume that an alternative algo-
rithm estimator (TA,CA) is a consistent estimator for (µ, aAΣ) for some
constant aA > 0. By scaling the algorithm estimator, the DD plot can be
constructed to follow the identity line with unit slope and zero intercept. Let
(TR,CR) = (TA,CA/τ

2) denote the scaled algorithm estimator where τ > 0
is a constant to be determined. Notice that (TR,CR) is a valid estimator of
location and dispersion. Hence the robust distances used in the DD plot are
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given by

RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA,CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 3.23. Assume that x1, ...,xn are iid observations from a dis-
tribution with parameters (µ,Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n→ ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(

Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)

(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)

(x − µ̂j) + (x − µ̂j)
T

(

Σ−1

aj

)

(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(

Σ−1

aj

)

(x − µ + µ − µ̂j)
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=
1

aj
(x − µ)T Σ−1(x − µ)

+
2

aj
(x− µ)T Σ−1(µ − µ̂j) +

1

aj
(µ− µ̂j)

T Σ−1(µ− µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x− µ̂j) (3.29)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 3.23, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (µ, cxΣ)
and if (TA,CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 3.23, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA,CA) from Theorem 3.22 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li et al. (1997), and
Liu et al. (1999) for references.

Example 3.6. Rousseeuw and Van Driessen (1999) chose the multivari-
ate normal Np(µ,Σ) distribution as the target. If the data are indeed iid
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MVN vectors, then the (MDi)
2 are asymptotically χ2

p random variables, and

MED =
√

χ2
p,0.5 where χ2

p,0.5 is the median of the χ2
p distribution. Since the

target distribution is Gaussian, let

RDi =

√

χ2
p,0.5

med(Di(A))
Di(A) so that τ =

√

χ2
p,0.5

med(Di(A))
. (3.30)

Note that the DD plot can be tailored to follow the identity line if the
data are iid observations from any target elliptically contoured distribution
that has nonsingular covariance matrix. If it is known that med(MDi) ≈
MED where MED is the target population analog (obtained, for example,
via simulation, or from the actual target distribution as in Equation (3.10)),
then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (3.31)

We recommend using RFCH or RMVN as the robust estimators in DD
plots. The cov.mcd estimator should be modified by adding the FCH starts
to the 500 elemental starts. There exist data sets with outliers or two groups
such that both the classical and robust estimators produce hyperellipsoids
that are nearly concentric. We suspect that the situation worsens as p in-
creases. The cov.mcd estimator is basically an implementation of the ele-
mental FMCD concentration algorithm described in Section 3.6. The number
of starts used wasK = max(500, n/10) (the default is K = 500, so the default
can be used if n ≤ 5000).

Conjecture 3.2. If x1, ...,xn are iid ECp(µ,Σ, g) and an elemental
FMCD concentration algorithm is used to produce the estimator (TA,n,CA,n),
then under mild regularity conditions this algorithm estimator is consistent
for (µ, aΣ) for some constant a > 0 (that depends on g) if the number of
starts K = K(n) → ∞ as the sample size n→ ∞.

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then

[

med(Di(A))

med(MDi)

]2

CA (3.32)

estimates Cov(x). For the DD plot, consistency is desirable but not necessary.
It is necessary that the correlation of the smallest 99% of the MDi and RDi be
very high. This correlation goes to 1 by Theorem 3.23 if consistent estimators
are used.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (3.30).
The results are shown in Table 3.3. Each choice of n and p used 100 runs, and
the 100 correlations between the RDi and the MDi were computed. The mean
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Table 3.3 Corr(RDi, MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8
3 44 0.866 0.541 81 20
3 100 0.967 0.908 24 0
7 76 0.843 0.622 97 26
10 100 0.866 0.481 98 12
15 140 0.874 0.675 100 6
15 200 0.945 0.870 41 0
20 180 0.889 0.777 100 2
20 1000 0.998 0.996 0 0
50 420 0.894 0.846 100 0

and minimum of these correlations are reported along with the percentage
of correlations that were less than 0.95 and 0.80. The simulation shows that
small data sets (of roughly size n < 8p + 20) yield plotted points that may
not cluster tightly about the identity line even if the data distribution is
Gaussian.

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x− TR) ≤ RD2

(h)} (3.33)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x− x) ≤MD2
(h)}. (3.34)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (3.33) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (3.34). Hence the DD plot can
be used to visualize the prediction regions of Section 5.1.

The DD plot will follow a line through the origin closely if the two hy-
perellipsoids are nearly concentric, e.g. if the data is EC. The DD plot will
follow the identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi−TA)T

[

(

MED

med(Di(A))

)2

C−1
A

]

(xi−TA) ≈ (xi−x)T S−1(xi−x) = MD2
i

for i = 1, ..., n. When the distribution is not EC, the RMVN (or RFCH or
FMCD) estimator and (x,S) will often produce hyperellipsoids that are far
from concentric.
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Application 3.1. The DD plot can be used simultaneously as a diagnostic
for whether the data arise from a multivariate normal (MVN or Gaussian)
distribution or from another EC distribution with nonsingular covariance
matrix. EC data will cluster about a straight line through the origin; MVN
data in particular will cluster about the identity line. Thus the DD plot can
be used to assess the success of numerical transformations towards ellipti-
cal symmetry. This application is important since many statistical methods
assume that the underlying data distribution is MVN or EC.
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For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 3.4 shows the DD plots for 3 artificial data sets using cov.mcd. The
DD plot for 200 N3(0, I3) points shown in Figure 3.4a resembles the identity
line. The DD plot for 200 points from the elliptically contoured distribution
0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 3.4b clusters about a line through
the origin with a slope close to 2.0.
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A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√

χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 3.23 implies that the correlation of the points
in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 3.4b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 3.4c and 3.4d illustrate how to use the weighted DD plot. The
ith case in Figure 3.4c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 3.4a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 3.4d is the weighted DD plot where cases with

RDi ≥
√

χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 3.4d
may not pass through the origin. These results suggest that the distribution
of x is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data towards a target EC distribu-
tion have been developed. Generalizations of the Box–Cox transformation
towards a multivariate normal distribution are described in Velilla (1993).
Alternatively, Cook and Nachtsheim (1994) gave a two-step numerical proce-
dure for transforming data towards a target EC distribution. The first step
simply gives zero weight to a fixed percentage of cases that have the largest
robust Mahalanobis distances, and the second step uses Monte Carlo case
reweighting with Voronoi weights.

Example 3.7. Buxton (1920, pp. 232-5) gave 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a reasonable
model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
3.5a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 3.5b is the DD plot computed after
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Fig. 3.5 DD Plots for the Buxton Data

deleting these points and suggests that the multivariate normal distribution
is reasonable. (The recomputation of the DD plot means that the plot is not
a weighted DD plot which would simply omit the outliers and then rescale
the vertical axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 3.4a, then perhaps no transformation is needed. For the data
in Figure 3.4c, a good numerical procedure should suggest coordinatewise log
transforms. Following this transformation, the resulting plot shown in Figure
3.4a indicates that the transformation to normality was successful.

Application 3.2. The DD plot can be used to detect multivariate outliers.
See Figures 3.2, 3.3, 3.5a, and 3.6.

Warning: It is important to know that plots fill space. If there is a single
outlier, then often it will appear in the upper left or upper right corner of
the DD plot, where RD is large, since the plot has to cover the outlier. The
rest of the data will often appear to be tightly clustered about the identity
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Fig. 3.6 DD Plot With One Outlier in the Upper Right Corner

line. Beginners sometimes fail to spot the single outlier because they do not
know that the plot will fill space. There is a lot of blank space because of the
outlier. If the outlier was not present, then the box would not extend much
above the identity line in the upper right corner of the plot. For example,
suppose all of the outliers except point 63 were deleted from the Buxton data.
Then compare the DD plot in Figure 3.5 b) where all of the outliers have
been deleted, with the DD plot in Figure 3.6 where the single outlier is in the
upper right corner. R commands to produce Figures 3.5 and 3.6 are shown
below.

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 3.5a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 3.5b), right click Stop

zz <- x[-c(61,62,64,65),]

ddplot(zz,type=3) #Figure 3.6, right click Stop
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3.9 Outlier Resistance and Simulations

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Simulations were used to compare (TFCH ,CFCH), (TRFCH ,CRFCH),
(TRMV N ,CRMV N ), and (TFMCD ,CFMCD). Shown above are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH, and RMVN estimators are

√
n consis-

tent estimators of Σ, while CFMCD seems to be approximately unbiased for
0.94Σ.

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T ,
0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ
2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.013

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.65

Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

If Win ∼ N(0, τ2/n) for i = 1, ..., r and if S2
W is the sample variance

of the Win, then E(nS2
W ) = τ2 and V (nS2

W ) = 2τ4/(r − 1). So nS2
W ±√

5SE(nS2
W ) ≈ τ2 ±

√
10τ2/

√
r − 1. So for r = 1000 runs, we expect nS2

W

to be between τ2 −0.1τ2 and τ2 +0.1τ2 with high confidence. Similar results
hold for many estimators if Win is

√
n consistent and asymptotically normal

and if n is large enough. If Win has less than
√
n rate, e.g. n1/3 rate, then

the scaled sample variance nS2
W → ∞ as n→ ∞.

Table 3.4 considers W = Tp and W = Cp,p for eight estimators, p = 5
and 10, and n = 10p and 5000, when x ∼ Np(0, diag(1, ..., p)). For the clas-
sical estimator, denoted by CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p
while Cp,p is the sample variance of n iid N(0, p) random variables. Hence
nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD, and OGK use a “reweight for
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Table 3.4 Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB
5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8
5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23
5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5
5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20
10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4
10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13
10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0
10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

efficiency” concentration step that uses a random number of cases with per-
centage close to 97.5%. These four estimators had similar behavior. DGK,
FCH, and MB used about 50% of the cases and had similar behavior. By
Lopuhaä (1999), estimators with less than

√
n rate still have zero efficiency

after the reweighting. Although FMCD, MB, and OGK have not been proven
to be

√
n consistent, their values did not blow up even for n = 5000.

Geometrical arguments suggest that the MB estimator has considerable
outlier resistance. Suppose the outliers are far from the bulk of the data. Let
the “median ball” correspond to the half set of data closest to MED(W ) in
Euclidean distance. If the outliers are outside of the median ball, then the
initial half set in the iteration leading to the MB estimator will be clean. Thus
the MB estimator will tend to give the outliers the largest MB distances unless
the initial clean half set has very high correlation in a direction about which
the outliers lie. This property holds for very general outlier configurations.
The FCH estimator tries to use the DGK attractor if the det(CDGK) is small
and the DGK location estimator TDGK is in the median ball. Distant outliers
that make det(CDGK) small also drag TDGK outside of the median ball. Then
FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of a hyperellipsoidal region, then the distances based on
the clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance of
the clean cases. The simulation used 100 runs. If the count was 97, then in 97
data sets the outliers can be separated from the clean cases with a horizontal
line in the DD plot, but in 3 data sets the robust distances did not achieve
complete separation. In Spring 2015, Det-MCD simulated much like FMCD,
but was more likely to cause an error in R.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T and x ∼
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Np((0, ..., 0, pm)T, 0.0001Ip), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√
p)T .

Table 3.5 Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

For near point mass outliers, a hyperellipsoid with very small volume can
cover half of the data if the outliers are at one end of the hyperellipsoid
and some of the clean data are at the other end. This half set will produce
a classical estimator with very small determinant by Theorem 3.10. In the
simulations for large γ, as the near point mass is moved very far away from
the bulk of the data, only the classical, MB, and OGK estimators did not have
numerical difficulties. Since the MCD estimator has smaller determinant than
DGK while MVE has smaller volume than DGK, estimators like FMCD and
MBA that use the MVE or MCD criterion without using location information
will be vulnerable to these outliers. FMCD is also vulnerable to outliers if γ
is slightly larger than γo given by (3.23).

Table 3.6 Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100
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Tables 3.5 and 3.6 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers and
Table 3.5. For γ = 0.25 and 0.4, MB usually had the highest counts. For
5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the smallest
counts, and FMCD could not handle 40% outliers for p = 20. For 25 ≤ p ≤ 60,
OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30, FMCD
could not handle 25% outliers even for enormous values of pm.

In Table 3.6, FCH greatly outperformed MBA although the only difference
between the two estimators is that FCH uses a location criterion as well as
the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not
tabled). For large γ, OGK often has large bias for cΣ. Then the outliers may
need to be enormous before OGK can detect them. Also see Table 3.2, where
OGK gave the outliers the largest distances for all runs, but COGK does not
give a good estimate of cΣ = c diag(1, 2).
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Fig. 3.7 The FMCD Estimator Failed

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T,C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.
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Fig. 3.8 The Outliers are Large in the MBA DD Plot

In an older mean shift simulation, when p was 8 or larger, the cov.mcd
estimator was usually not useful for detecting the mean shift outliers. Figure
3.7 shows that now the FMCD RDi are highly correlated with the MDi. The
DD plot based on the MBA estimator detects the outliers. See Figure 3.8.

For many data sets, Equation (3.23) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact hyperellipsoid while the outliers
fall in another hugely distant compact hyperellipsoid, then a concentration
algorithm using a single start can sometimes tolerate nearly 25% outliers.
For example, suppose that all p+ 1 cases in the elemental start are outliers
but the covariance matrix is nonsingular so that the Mahalanobis distances
can be computed. Then the classical estimator is applied to the cn ≈ n/2
cases with the smallest distances. Suppose the percentage of outliers is less
than 25% and that all of the outliers are in this “half set.” Then the sample
mean applied to the cn cases should be closer to the bulk of the data than
to the cluster of outliers. Hence after a concentration step, the percentage
of outliers will be reduced if the outliers are very far away. After the next
concentration step the percentage of outliers will be further reduced and after
several iterations, all cn cases will be clean.
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In a small simulation study, 20% outliers were planted for various values of
p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from theNp(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600, and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Theorem 3.24. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).
∮

11.2 explains how to use the source command to get the mpack func-
tions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),

but in Spring 2015 this change was more likely to cause errors.
The rpack function

mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 3.1, 3.2, 3.4–3.6. Change outliers to 0 to
examine the average of µ̂ and Σ̂. The function mldsim6 is similar but does
not need the library command since it compares the FCH, RFCH, CMVE,
RCMVE, MB estimators, and the covmb2 estimator of Section 3.10. See
Olive (2017b) for CMVE and RCMVE. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make an outlier data set. Then the FCH and MB DD plots are made
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(click on the right mouse button and highlight stop to go to the next plot) and
then the scatterplot matrix. The scatterplot matrix can be used to determine
whether the outliers are hard to detect with bivariate or univariate methods.
If p > 10 the bivariate plots may be too small.

The function covsim2 can be modified to show that the R implementation
of FCH is usually much faster than OGK which is much faster than FMCD.
The function corrsim can be used to simulate the correlations of robust dis-
tances with classical distances. For MVN data, the command
corrsim(n=200,p=20,nruns=100,type=5)
suggests that the correlation of the RFCH distances with the classical dis-
tances is about 0.97. Changing type to 4 suggests that FCH needs n = 800
before the correlation is about 0.97. The function corrsim2 uses a wider
variety of EC distributions.
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Fig. 3.9 highlighted cases = half set with smallest RD = (T0,C0)

The function cmve computes CMVE and RCMVE, function covfch com-
putes FCH and RFCH, while covrmvn computes the RMVN and MB esti-
mators. The function covrmb computes MB and RMB where RMB is like
RMVN except the MB estimator is reweighted instead of FCH. Functions
covdgk, covmba, and rmba compute the scaled DGK, MBA, and RMBA esti-
mators. Better programs would use MB if DGK causes an error.

The concmv function described in Problem 3.30 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 3.9, 3.10, and
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Fig. 3.10 highlighted cases = half set with smallest RD = (T1, C1)
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Fig. 3.11 highlighted cases = half set with smallest RD = (T2, C2)
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Fig. 3.12 highlighted cases = outliers, RD = (T0,D, C0,D)
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Fig. 3.13 highlighted cases = outliers, RD = (T1,D, C1,D)
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Fig. 3.14 highlighted cases = outliers, RD = (T2,D, C2,D)
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Fig. 3.15 highlighted cases = outliers, RD = (T3,D, C3,D)
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3.11, the highlighted cases are the half set with the smallest distances, and
the initial half set shown in Figure 3.9 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 3.11 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 3.31 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4,
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 3.12, 3.13, 3.14, and 3.15. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
3.12 is not clean. The attractor in Figure 3.15 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

3.10 Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Definition 3.26. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. Then the covmb2 estimator (T,C) is the
sample mean and sample covariance matrix applied to the cases in set B.
Hence

T =

∑n
i=1Wixi

∑n
i=1Wi

and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

Example 3.8. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
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(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
rpack function getB gives the set B of cases that got weight 1 along with the
index indx of the case numbers that got weight 1. The function ddplot5

plots the Euclidean distances from the coordinatewise median versus the Eu-
clidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear
in the upper right corner of the plot with a gap between the bulk of the
data and the outliers. An alternative for outlier detection is to replace C by
Cd = diag(σ̂11, ..., σ̂pp). For example, use σ̂ii = Cii. See Ro et al. (2015) and
Tarr et al. (2016) for references.

The next section gives applications of the sets used to compute the RMVN,
RFCH, and covmb2 estimators.

3.11 The RMVN Set, RFCH Set, and covmb2 Set

The RMVN, RFCH, and covmb2 estimators are each computed from a set
of at least n/2 cases. We will call these sets the RMVN set U , the RFCH set
V and the covmb2 set B, which was was given in Definition 3.26.

Definition 3.27. Let the n2 cases in Definition 3.24 be known as the
RMVN set U . Let the RFCH set V be the set of m ≥ n/2 cases from which
the RFCH estimator is computed.
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Referring to Definition 3.24, (TRMV N , Σ̃2) = (xU ,SU ) is the classi-
cal estimator applied to the RMVN set U , which can be regarded as the
untrimmed data (the data not trimmed by ellipsoidal trimming) or the
cleaned data. Also SU is the unscaled estimated dispersion matrix while
CRMV N is the scaled estimated dispersion matrix. For the RFCH estimator,
(xV ,SV ) = (TRFCH , Σ̃2), and then SV is scaled to form CRFCH .

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Subjectively cleaned data may work well for a single data set, but we can’t
get large sample theory since sometimes too many cases are deleted (delete
outliers and some nonoutliers) and sometimes too few (do not get all of the
outliers). Practical plug in robust estimators have rarely been shown to be√
n consistent and highly outlier resistant.
Using the RMVN set U or RFCH set V is simultaneously a plug in method

and an objective way to clean the data such that the resulting robust method
is often backed by theory. Let D be either the set U or V . This result is
extremely useful computationally: apply the classical method to the cases in
the set D. This procedure is often equivalent to using (xD,SD) as plug in
estimators. The method can be applied if n > 2(p + 1) but may not work
well unless n > 20p. The rpack function getu gets the RMVN set U as well
as the case numbers corresponding to the cases in U . The covmb2 set B can
also be used for several applications, even if p > n.

The set D corresponds to a small volume hyperellipsoid containing at
least half of the cases since concentration is used. The set D can also be
regarded as the “untrimmed data”: the data that was not trimmed by el-
lipsoidal trimming. Theory has been proved for a large class of elliptically
contoured distributions, but it is conjectured that theory holds for a much
wider class of distributions. See Conjectures 3.3 and 3.4 in Section 3.12. In
simulations RFCH and RMVN seem to estimate cΣx if x = Az + µ where
z = (z1, ..., zp)

T and the zi are iid from a continuous distribution with vari-

ance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator
seemed to be small. It is known that affine equivariant estimators give unbi-
ased estimators of cΣx if the distribution of zi is also symmetric. DGK is
affine equivariant and RFCH and RMVN are asymptotically equivalent to a
scaled DGK estimator. But in the simulations the results also held for skewed
distributions.

Several illustrative applications are given next, where the theory usually
assumes that the cases are iid from a large class of elliptically contoured
distributions. There are many other “robust methods” in the literature that
use plug in estimators like FMCD. Replacing the plug in estimator by RMVN
or RFCH will often greatly improve the robust method.

i) The classical estimator of multivariate location and dispersion applied
to the cases in D gives (xD,SD), a

√
n consistent estimator of (µ, cΣ) for

some constant c > 0.
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ii) The classical estimator of the correlation matrix applied to the cases in
U gives RU , a consistent estimator of the population correlation matrix ρx.

iii) For principal component analysis (PCA), RPCA is the classical PCA
method applied to the set U . See Olive (2017b, ch. 6).

iv) For canonical correlation analysis (CCA), RCCA is the classical CCA
method applied to the set U . See Olive (2017b, ch. 7).

v) Let Di be the RMVN or RFCH subset applied to the ni cases from
group i for i = 1, ..., G. Let (xDi

,SDi
) be the sample mean and covariance

applied to the cases in Di. Let Y = i for cases in Di which are from group
i. Let Dbig = D1 ∪ D2 ∪ · · · ∪DG be the combined sample. Then apply the
discriminant analysis method to Dbig with the corresponding labels Y . For
example, RFDA consists of applying classical FDA on Ubig. See Olive (2017b,
∮

8.9).
vi) For factor analysis, apply the factor analysis method to the set D.

This method can be used as a diagnostic for methods such as the maximum
likelihood method of factor analysis, but is backed by theory for principal
component factor analysis. See Olive (2017b,

∮

11.2).
vii) For multiple linear regression, let Y be the response variable, x1 = 1

and x2, ..., xp be the predictor variables. Let zi = (Yi, xi2, ..., xip)
T . Let D

be the RMVN or RFCH set formed using the zi. Then a classical regression
estimator applied to the set D results in a robust regression estimator. For
least squares, this is implemented with the rpack function rmreg3 using the
RMVN set U .

viii) For multivariate linear regression, let Y1, ..., Ym be the response vari-
ables, x1 = 1 and x2, ..., xp be the predictor variables. Let

zi = (Yi1, ...Yim, xi2, ..., xip)
T .

Let D be the RMVN or RFCH set formed using the zi. Then a classical least
squares multivariate linear regression estimator applied to the set D results
in a robust multivariate linear regression estimator. For least squares, this
is implemented with the mpack function rmreg3 using U . The method for
multiple linear regression in vii) corresponds to m = 1. See Olive (2017b,

∮

12.6.2).
There are also several variants on the method. Suppose there are tentative

predictors Z1, ..., ZJ. After transformations assume that predictors X1, ..., Xk

are linearly related. Assume the set U used cases i1, i2, ..., inU
. To add vari-

ables like Xk+1 = X2
1 , Xk+2 = X3X4 , Xk+3 = gender, ..., Xp, augment

U with the variables Xk+1, ..., Xp corresponding to cases i1, ..., inU
. Adding

variables results in cleaned data that is more likely to contain outliers.
If there are g groups (g = G for discriminant analysis, g = 2 for binary

regression, and g = p for one way MANOVA), the function getubig gets
the RMVN set Ui for each group and combines the g RMVN sets into one
large set Ubig = U1 ∪ U2 ∪ · · · ∪ Ug .
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Application 3.3. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Now let D be the
RMVN set U , the RFCH set V or the covmb2 set B. Find D by applying
the estimator to the ui, and then run the regression method on the m cases
wi corresponding to the set D indices i1, ..., im, where m ≥ n/2. The set B
can be used even if p > n. A similar technique can be used for multivariate
regression where the ith case wi = (yT

i ,x
T
i )T where the response vector

yi = (Yi1, ..., Yim)T has m ≥ 1 response variables.

Example 3.9. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 3.42 to reproduce the following
plots.
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b) lasso using covmb set B

Fig. 3.16 Response plot for lasso and lasso applied to the covmb2 set B.
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Fig. 3.17 DD plot.

Figure 3.16a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
3.16b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 3.16b) is better for data analysis: impossible outliers should be deleted
or given 0 weight, we do not want to predict that some people are about 0.75
inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 3.17 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

The rpack function mldsim6 suggests that for 40% outliers, the outliers
need to be further away from the bulk of the data for covmb2 (covmb2(k=5)
needs a larger value of pm) than for the other six estimators if n ≥ 20p. With
some outlier types, covmb2(k=5) was often near best. Try the following
commands. The other estimators need n > 2p, and as n gets close to 2p,
covmb2 may outperform the other estimators.

#near point mass on major axis

mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)

mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad

mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)
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mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)

#mean shift outliers

mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)

mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)

mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)

#concentration steps can help

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

3.12 Summary

The following three quantities are important.
1) E(x) = µ = (E(x1), ..., E(xp))

T .
2) The p × p population covariance matrix

Cov(x) = E(x −E(x))(x −E(x))T = (σij) = Σx.
3) The p × p population correlation matrix Cor(x) = ρx = (ρij).
4) The population covariance matrix of x with y is Cov(x, y) = Σx,y =

E[(x−E(x))(y −E(y))T ].
5) Let the p × p matrix ∆ = diag(

√
σ11, ...,

√
σpp). Then Σx = ∆ρx∆,

and ρx = ∆−1Σx∆−1.
6) The n × p data matrix

W =







xT
1
...

xT
n






=











x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p











=
[

v1 v2 . . . vp

]

.

7) The sample mean or sample mean vector

x =
1

n

n
∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the p × 1 vector of ones.
8) The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

9) The classical estimator of multivariate location and dispersion is (x,S).
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10) (n− 1)S =

n
∑

i=1

xix
T
i − x xT = (W − 1xT )T (W − 1xT ) =

W T W − 1

n
W T11T W . Hence if the centering matrix H = I − 1

n
11T , then

(n− 1)S = W T HW .
11) The sample correlation matrix R = (rij).
12) Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp). Then S = DRD, and R = D−1SD−1.
13) The spectral decomposition of the symmetric matrix A =

∑p
i=1 λieie

T
i

= λ1e1e
T
1 + · · ·+ λpepe

T
p .

14) Let A =
∑p

i=1 λieie
T
i be a positive definite p × p symmetric matrix.

Let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column ei.

Let Λ1/2 = diag(
√
λ1, ...,

√

λp). The square root matrix A1/2 = P Λ1/2P T is

a positive definite symmetric matrix such that A1/2A1/2 = A.
15) The generalized sample variance = |S| = det(S).
16) The hyperellipsoid {x|D2

x ≤ h2} = {x : (x−x)T S−1(x−x) ≤ h2} is
centered at x and has volume equal to

2πp/2

pΓ (p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If
x = 0, the axes are given by the eigenvectors êi where the half length in the

direction of êi is h
√

λ̂i. Here êT
i êj = 0 for i 6= j while êT

i êi = 1.
17) Given a table of data W for variables X1, ..., Xp, be able to find

the coordinatewise median MED(W ) and the sample mean x. If
x = (X1, X2, ..., Xp)

T where Xj corresponds to the jth column of W , then
MED(W ) = (MEDX1

(n), ...,MEDXp
(n))T where MEDXj

(n) = MED(Xj,1, ...,
Xj,n) is the sample median of the data in the jth column. Similarly, x =
(X1, ..., Xp)

T where Xj is the sample mean of the data in the jth column.
18) If X and Y are p×1 random vectors, a a conformable constant vector,

and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
19) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.

20) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

Let X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.
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21) All subsets of a MVN are MVN: (Xk1
, ..., Xkq

)T ∼ Nq(µ̃, Σ̃)

where µ̃i = E(Xki
) and Σ̃ij = Cov(Xki

, Xkj
). In particular, X1 ∼

Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22). If X ∼ Np(µ,Σ), then X1 and
X2 are independent iff Σ12 = 0.

22)

Let

(

Y
X

)

∼ N2

((

µY

µX

)

,

(

σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

))

.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
23) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean µ1+Σ12Σ

−1
22 (x2−µ2) and covariance matrix Σ11−Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

24) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

25) Be able to compute the above quantities if X1 and X2 are scalars.
26) A p× 1 random vector X has an elliptically contoured distribution, if

X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (3.35)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution. If the
second moments exist, then

E(X) = µ (3.36)

and
Cov(X) = cXΣ (3.37)

for some constant cX > 0.
27) The population squared Mahalanobis distance

U ≡ D2 = D2
x(µ,Σ) = (x − µ)T Σ−1(x− µ). (3.38)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.39)
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U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

29) Let the p×1 column vector T (W ) be a multivariate location estimator,
and let the p × p symmetric positive definite matrix C(W ) be a dispersion
estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (3.40)

for each observation xi. Notice that the Euclidean distance of xi from the es-
timate of center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance

uses (T,C) = (x,S). Note that D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x− µ̂).

30) A DD plot is a plot of classical vs. robust Mahalanobis distances.
The DD plot is used to check i) if the data is MVN (plotted points follow
the identity line), ii) if the data is EC but not MVN (plotted points follow
a line through the origin with slope > 1), iii) if the data is not EC (plotted
points do not follow a line through the origin), iv) if multivariate outliers are
present (e.g. some plotted points are far from the bulk of the data or the
plotted points follow two lines). v) The DD plot can be used to display the
prediction regions of Chapter 4.

31) Many practical “robust estimators” generate a sequence of K trial fits
called attractors: (T1,C1), ..., (TK,CK). Then the attractor (TA,CA) that
minimizes some criterion is used to obtain the final estimator. One way to
obtain attractors is to generate trial fits called starts, and then use the con-
centration technique. Let (T−1,j,C−1,j) be the jth start and compute all n
Mahalanobis distances Di(T−1,j,C−1,j). At the next iteration, the classical
estimator (T0,j,C0,j) is computed from the cn ≈ n/2 cases corresponding to
the smallest distances. This iteration can be continued for k steps resulting
in the sequence of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). Then
(Tk,j,Ck,j) is the jth attractor for j = 1, ..., K. Using k = 10 often works
well, and the basic resampling algorithm is a special case k = −1 where the
attractors are the starts.

32) The DGK estimator (TDGK ,CDGK) uses the classical estimator
(T−1,D,C−1,D) = (x,S) as the only start.

33) The median ball (MB) estimator (TMB ,CMB) uses (T−1,M ,C−1,M) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance.

34) Elemental concentration algorithms use elemental starts: (T−1,j,C−1,j)
= (xj,Sj) is the classical estimator applied to a randomly selected “ele-
mental set” of p + 1 cases. If the xi are iid with covariance matrix Σx,
then the starts (xj,Sj) are identically distributed with E(xj) = E(xi),
Cov(xj) = Σx/(p+ 1), and E(Sj) = Σx.

35) Let the “median ball” be the hypersphere containing the half set of
data closest to MED(W ) in Euclidean distance. The FCH estimator uses the
MB attractor if the DGK location estimator TDGK = Tk,D is outside of the
median ball, and the attractor with the smallest determinant, otherwise. Let
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(TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH) takes
TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (3.41)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom. The RFCH estimator uses two standard “reweight for efficiency
steps” while the RMVN estimator uses a modified method for reweighting.

36) For a large class of elliptically contoured distributions, FCH, RFCH,
and RMVN are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where

ci = 1 for Np(µ,Σ) data.
37) An estimator (T,C) of multivariate location and dispersion (MLD),

needs to estimate p(p+ 3)/2 unknown parameters when there are p random
variables. For (x,S) or (z,R), we want n ≥ 10p. We want n ≥ 20p for FCH,
RFCH, or RMVN.

38) Brand name robust MLD estimators take too long to compute: F-
brand name estimators that are not backed by breakdown or large sample
theory are actually used. FMCD, F-MVE, F-S, F-MM, F-τ , F-constrained-M
and F-Stahel-Donoho are especially common. F-brand name estimators use
a fixed number of starts.

39) The squared Euclidean distances of the xi from the coordinatewise
median is D2

i = D2
i (MED(W ), Ip). Concentration type steps compute the

weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

40) Let the covmb2 set B of at least n/2 cases correspond to the cases
with weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean
and sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi

∑n
i=1Wi

and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

3.13 Complements

For concentration algorithms, note that (Tt,j ,Ct,j) = (xt,j,St,j) is the classi-
cal estimator applied to the “half set” of cases satisfying {xi : D2

i (xt−1,j,St−1,j)



3.13 Complements 151

≤ D2
(cn)(xt−1,j,St−1,j)} for t ≥ 0. Hence (Tt,j,Ct,j) is estimating (µt,Σt),

the population mean and covariance matrix of the truncated distribution cov-
ering half of the mass corresponding to {x : (x − µt−1)

T Σ−1
t−1(x − µt−1) ≤

D2
0.5(µt−1,Σt−1)} where D2

0.5(µt−1,Σt−1) is the population median of the
population squared distances D2(µt−1,Σt−1). Here (µ−1,Σ−1) is the pop-
ulation analog of (T−1,j,C−1,j).

The DGK estimator (Tk,D,Ck,D) uses the classical estimator (T−1,D,C−1,D)
= (x,S) as the only start. Thus (µ−1,D,Σ−1,D) is the population mean and
covariance matrix. For a large class of elliptically contoured distributions with
a nonsingular covariance matrix and for t ≥ 0, (µt,D,Σt,D) is the popula-
tion mean and covariance matrix of the truncated distribution corresponding
to the highest density region covering half the mass. Hence µt,D = µ and
Σt,D = cΣ for some c > 0. Riani, Atkinson and Cerioli (2009) find the popu-
lation mean and covariance matrices for such truncated multivariate normal
distributions, using results from Tallis (1963).

Conjecture 3.3. The DGK estimator is a
√
n consistent estimator of

(µk,D,Σk,D) under mild conditions.
The median ball (MB) estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M) =

(MED(W ), Ip) as the only start where MED(X) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance while (µ0,M ,Σ0,M) is
the population mean and covariance matrix of the truncated distribution
corresponding to the hypersphere centered at the population median that
contains half the mass. For a distribution that is spherical about µ and for
t ≥ 0, (µt,M ,Σt,M) = (µ, cIp) for some c > 0. For nonspherical elliptically
contoured distributions, Σt,M 6= cΣ. However, the bias seems to be small
even for t = 0, and to get smaller as k increases. If the median ball estimator
is iterated to convergence, we do not know whether Σ∞,M = cΣ.

Conjecture 3.4. The MB estimator is a high breakdown
√
n consistent

estimator of (µk,M ,Σk,M) under mild conditions. For elliptically contoured
distributions, µk,M = µ.

Arcones (1995) and Kim (2000) showed that x0,M is a HB
√
n consistent

estimator of µ. Olive (2004a) showed that (x0,M ,S0,M) = (T0,m,C0,m) is a
high breakdown estimator. If the data distribution is EC but not spherical
about µ, then for k ≥ 0, Sk,M = CMB under estimates the major axis and
over estimates the minor axis of the highest density region. Concentration
reduces but fails to eliminate this bias. Hence the estimated highest density
region based on the attractor is “shorter” in the direction of the major axis
and “fatter” in the direction of the minor axis than estimated regions based
on consistent estimators.

This chapter followed Olive (2017b,
∮

s 2.1,2.2, 2.3, 3.1, 3.2, 5.1, ch. 4)
closely. The theory for concentration algorithms is due to Hawkins and Olive
(2002) and Olive and Hawkins (2010). The MBA estimator is due to Olive
(2004a). The computational and theoretical simplicity of the FCH estimator
makes it one of the most useful robust estimators ever proposed. The RFCH
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and RMVN estimators takes slightly longer to compute than the FCH estima-
tor, and may have slightly less resistance to outliers. These three estimators
appear in Zhang, Olive, and Ye (2012). A good paper for the DD plot is Olive
(2002). Olive (2017b) showed that the DD plot of the residuals is useful for
MANOVA models and for multivariate linear regression models where the
response vector y = (Y1, ..., Ym)T .

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of the
minimum volume ellipsoid covering cn of the observations and C(W ) is de-
termined from the same ellipsoid. TMV E has a cube root rate and the limiting
distribution is not Gaussian. See Davies (1992).

Estimators with complexity higher than O[(n3 + n2p + np2 + p3) log(n)]
take too long to compute and will rarely be used. No practical useful “high
breakdown” estimator (with complexity less than O(n4) for general p) of
multivariate location and dispersion has been shown to be both consistent
and high breakdown. The FCH, RFCH, and RMVN estimators have the most
theory. The OGK, Det-MCD, sign covariance matrix and k-step spatial sign
covariance matrix are the leading competitors. See Olive (2017b, pp. 124-125)
for more on the sign covariance matrix.

It is possible to compute the MCD and MVE estimators for p = 4 and
n = 100 in a few hours using branch and bound algorithms (like estimators
with O(1004) complexity). See Agulló (1996, 1998) and Pesch (1999). These
algorithms take too long if both p ≥ 5 and n ≥ 100. Simulations may need
p ≤ 2. Two stage estimators such as the MM estimator, that need an initial
high breakdown consistent estimator, take longer to compute than the initial
estimator. See Maronna et al. (2006, ch. 6) for descriptions and references.

Several outlier detection methods for p > n have been proposed. It
would be interesting to see if any of these methods are competitive with the
covmb2 estimator and Euclidean distances from the coordinatewise median.
See Boudt et al. (2020), Ro et al. (2015), Tarr et al. (2016) for references.
Filsomer et al. (2008) note that RDi can be computed without matrix inver-
sion, and that in high dimensions, outliers with different shape than inliers
tend to lie in different hyperspheres.

3.14 Problems

3.1∗. Suppose that









X1

X2

X3

X4









∼ N4

















49
100
17
7









,









3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2

















.
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a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

3.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(

Y
X

)

∼ N2

((

49
100

)

,

(

16 σ12

σ12 25

))

.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

3.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(

Y
X

)

∼ N2

((

15
20

)

,

(

64 σ12

σ12 81

))

.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

3.4. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 3.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

3.5. In Theorem 3.5b, show that if the second moments exist, then Σ can
be replaced by Cov(X).
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crancap hdlen hdht Data for 3.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

3.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

3.7. Using the notation in Theorem 3.6, show that if the second moments
exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X , Y ).

3.8. Using the notation under Theorem 3.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

3.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XT X)−1XT Y if X is an n× p full rank constant matrix.

3.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using the
notation of Theorem 3.6, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a ran-

dom variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(

ΣY Y ΣY X

ΣXY ΣXX

)

=

(

VAR(Y ) Cov(Y,X)
Cov(X , Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α+ βT X where

α = µY − βT µX and

β = [Cov(X)]−1Cov(X , Y ).

3.11. (Due to R.D. Cook.) Let X be a p×1 random vector with E(X) = 0
and Cov(X) = Σ. Let B be any constant full rank p × r matrix where
1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X |BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
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Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =
E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BT ΣB)−1.
Hint: what acts as a constant in the inner expectation?

3.12. Let x be a p× 1 random vector with covariance matrix Cov(x). Let
A be an r × p constant matrix and let B be a q × p constant matrix. Find
Cov(Ax,Bx) in terms of A,B, and Cov(x).

3.13. The table W shown below represents 4 measurements on 5 people.

age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

3.14. Suppose x1, ...,xn are iid p× 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

3.15. Suppose that









X1

X2

X3

X4









∼ N4

















9
16
4
1









,









1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1

















.

a) Find the distribution of X3.

b) Find the distribution of (X2, X4)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

3.16. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

3.17. Let X be an n × p constant matrix and let β be a p × 1 constant
vector. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT =
H = H2 is an n× n matrix and if HX = X . Simplify.



156 3 The Multivariate Location and Dispersion Model

3.18. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(

Y
X

)

∼ N2

((

134
96

)

,

(

24.5 1.1
1.1 23.0

))

.

a) Find E(Y |X).

b) Find Var(Y |X).
3.19. Suppose that









X1

X2

X3

X4









∼ N4

















1
7
3
0









,









4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5

















.

a) Find the distribution of (X1, X4)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X4).

3.20. Suppose that









X1

X2

X3

X4









∼ N4

















3
4
2
3









,









3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3

















.

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.21. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

3.22. Suppose that









X1

X2

X3

X4









∼ N4

















49
25
9
4









,









2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4

















.
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a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.23. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(

Y
X

)

∼ N2

((

49
17

)

,

(

3 −1
−1 4

))

.

a) Find E(Y |X).

b) Find Var(Y |X).

3.24. Suppose x1, ...,xn are iid 2× 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

3.25. Following Srivastava and Khatri (1979, p. 47), let

X =

(

X1

X2

)

∼ Np

[(

µ1

µ2

)

,

(

Σ11 Σ12

Σ21 Σ22

)]

.

a) Show that the nonsingular linear transformation

(

I −Σ12Σ
−1
22

0 I

) (

X1

X2

)

=

(

X1 − Σ12Σ
−1
22 X2

X2

)

∼

Np

[(

µ1 − Σ12Σ
−1
22 µ2

µ2

)

,

(

Σ11 − Σ12Σ
−1
22 Σ21 0

0 Σ22

)]

.

b) Then X1 − Σ12Σ
−1
22 X2 X2, and

X1 − Σ12Σ
−1
22 X2 ∼ Nq(µ1 − Σ12Σ

−1
22 µ2,Σ11 − Σ12Σ

−1
22 Σ21).

By independence, X1 − Σ12Σ
−1
22 X2 has the same distribution as

(X1−Σ12Σ
−1
22 X2)|X2, and the term −Σ12Σ

−1
22 X2 is a constant, given X2.

Use this result to show that

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).
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R Problems Use the command source(“G:/rpack.txt”) to download
the functions and the command source(“G:/robdata.txt”) to download
the data. See Preface or Section 11.2. Typing the name of the rpack
function, e.g. covmba, will display the code for the function. Use the args

command, e.g. args(covmba), to display the needed arguments for the func-
tion. For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/robRhw.txt) into R.

3.26. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Copy and paste the commands for this problem and check whether
observations 1–40 look like outliers.

3.27. Download the rmaha function that creates the robust Mahalanobis
distances using cov.mcd (FMCD). Obtain outx2 as in Problem 3.26 b).
Enter the R command library(MASS). Enter the command rmaha(outx2)
and check whether observations 1–40 look like outliers.

3.28. a) Download the covmba function.

b) Download the program rcovsim.

c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.

3.29∗. a) Assuming that you have done the two source commands above
Problem 3.26 (and the R command library(MASS)), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD,
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the
Schaaffhausen (1878) skull measurements and cases 48–60 were apes while
the first 47 cases were humans.

3.30∗. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) The concmv function illustrates concentration with p = 2 and
a scatterplot of X1 versus X2. The outliers are such that the MBA and FCH
estimators can not always detect them. Type the command concmv(). Hold
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the rightmost mouse button down (and in R click on Stop) to see the DD plot
after one concentration step. The start uses the coordinatewise median and
diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on the
attractor. The outliers have large values of X2 and the highlighted cases have
the smallest distances. Repeat the command concmv() several times. Some-
times the start will contain outliers but the attractor will be clean (none of
the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

3.31∗. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can de-
tect for p = 2, 4, 10 and 20. Make a table of p and gam. For example the
command ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate
nearly 40% outliers with p = 2, but the command ddmv(p=4,gam=.4) sug-
gest that gam needs to be lowered (perhaps by 0.1 or 0.05). Try to make
0 < gam < 0.5 as large as possible.

3.32. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from rpack.txt and try the MBA estimator on the data sets in Problem
3.29.

3.33. The rpack function covesim compares various ways to robustly
estimate the covariance matrix. The estimators used are ccov: the classical
estimator applied to the clean cases, RFCH, and RMVN. The average dis-
persion matrix is reported over nruns = 20. Let diag(A) be the diagonal of
the average dispersion matrix. Then diagdiff = diag(ccov) - diag(rmvne) and
abssumd = sum(abs(diagdiff)). The clean data ∼ Np(0, diag(1, ..., p)).

a) The R command covesim(n=100,p=4) gives output when there are no
outliers. Copy and paste the output into Word.

b) The command covesim(n=100,p=4,outliers=1,pm=15) uses 40% out-
liers that are a tight cluster at major axis with mean (0, ..., 0, pm)T . Hence
pm determines how far the outliers are from the bulk of the data. Copy and
paste the output into Word. The average dispersion matrices should be ≈ c
diag(1, 2, 3, 4) for this type of outlier configuration. What is c for RFCH and
RMVN?
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3.34. The R function cov.mcd is an FMCD estimator. If cov.mcd com-
puted the minimum covariance determinant estimator, then the log determi-
nant of the dispersion matrix would be a minimum and would not change
when the rows of the data matrix are permuted. The R commands for this
problem permute the rows of the Gladstone (1905) data matrix seven times.
The log determinant is given for each of the resulting cov.mcd estimators.

a) Paste the output into Word.
b) How many distinct values of the log determinant were produced? (Only

one if the MCD estimator is being computed.)

3.35. a) Download the program ddsim. (In R, type the command li-
brary(MASS).)

b) Using the function ddsim for p = 2, 3, 4, determine how large the sample
size n should be in order for the RFCH DD plot of n Np(0, Ip) cases to cluster
tightly about the identity line with high probability. Table your results. (Hint:
type the command ddsim(n=20,p=2) and increase n by 10 until most of the
10 plots look linear. Then repeat for p = 3 with the n that worked for p = 2.
Then repeat for p = 4 with the n that worked for p = 3.)

3.36. a) Download the program corrsim. (In R, type the command li-
brary(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a RFCH DD plot that uses n Np(0, Ip) cases. Using the function
corrsim for p = 2, 3, 4, determine how large the sample size n should be in
order for 9 out of 10 correlations to be greater than 0.9. (Try to make n small.)
Table your results. (Hint: type the command corrsim(n=20,p=2,nruns=10)
and increase n by 10 until 9 or 10 of the correlations are greater than 0.9.
Then repeat for p = 3 with the n that worked for p = 2. Then repeat for
p = 4 with the n that worked for p = 3.)

3.37∗. a) Download the ddplot function. (In R, type the command li-
brary(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400

p <- 3

eps <- 0.4

x <- matrix(rnorm(n * p), ncol = p, nrow = n)

zu <- runif(n)

x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points?

3.38. a) Download the ellipse function.
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b) Use the following commands to create a bivariate data set with outliers
and to obtain a classical and robust RMVN covering ellipsoid. Include the
two plots in Word.

simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

outx2 <- rbind(outx2,simx2)

ellipse(outx2)

zout <- covrmvn(outx2)

ellipse(outx2,center=zout$center,cov=zout$cov)

3.39. a) Download the function mplot.

b) Enter the commands in Problem 3.37b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.

c) Use the command mplot(x) and place the resulting plot in Word.

d) Do you prefer the DD plot or the mplot? Explain.

3.40 a) Download the function wddplot.

b) Enter the commands in Problem 3.37b to obtain a data set x.

c) Use the command wddplot(x) and place the resulting plot in Word.
3.41. Use the R command source(“G:/mrobdata.txt”) then ddplot4(buxx,

alpha=0.2) and put the plot in Word. The Buxton data has 5 outliers, p = 4,
and n = 87, so the 80% prediction region uses the 100(1− δ+ p/n) = 84.6th
percentile. The output shows that the cutoffs are 2.527, 2.734, and 2.583
for the nonparametric, semiparametric, and robust parametric prediction re-
gions. The two horizontal lines that correspond to the robust distances are
obscured by the identity line. (Right click Stop once on the plot.)

3.42. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
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the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

3.43. The rpack function mldsim6 compares 7 estimators: FCH, RFCH,
CMVE, RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch.
4). Most of these estimators need n > 2p, need a nonsingular dispersion
matrix, and work best with n > 10p. The function generates data sets and
counts how many times the minimum Mahalanobis distance Di(T,C) of the
outliers is larger than the maximum distance of the clean data. The value
pm controls how far the outliers need to be from the bulk of the data, and
pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 3.7 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 3.7 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 3.7, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

b) Copy and paste the commands for this part into R and make a table
similar to Table 3.8, but type 2 outliers are used.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations suggest that “covmb2”
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Table 3.8 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

using Di(T, Ip) outperforms “diag” using Di(T,Cd) for many outlier config-
urations, but there are some exceptions. Copy and paste the commands for
this part into R and make a table similar to Table 3.8, but type 3 outliers
are used.

3.44. Tests for covariance matrices tend to be very nonrobust to non-
normality. Let a plot of x versus y have x on the horizontal axis and y on
the vertical axis. A good diagnostic is to use the DD plot. So a diagnostic
for H0 : Σx = Σ0 for known Σ0 is to plot Di(x,S) versus Di(x,Σ0) for
i = 1, ..., n. If n ≥ 10p and H0 is true, then the plotted points in the DD plot
should start to cluster tightly about the identity line.

a) A test for sphericity is a test of H0 : Σx = σ2Ip for some unknown
constant σ2 > 0. Make a “D2 plot” of D2

i (x,S) versus D2
i (x, Ip). If n ≥ 10p

and H0 is true, then the plotted points in the D2 plot should cluster tightly
about the line through the origin with slope σ2. Use the R commands for
this part and paste the plot into Word. The simulated data set has xi ∼
N10(0, 100I10) where n = 100 and p = 10. Do the plotted points follow a line
through the origin with slope 100?

b) Now suppose there are k samples, and we want to test H0 : Σx1
=

· · · = Σxk
, that is, all k populations have the same covariance matrix. As

a diagnostic, consider a DD plot of Di(xj ,Sj) versus Di(xj ,Spool) for j =
1, ..., k and i = 1, ..., ni. If each ni ≥ 10p and H0 is true, what line will the
plotted points cluster about in each of the k DD plots? (See Equation (8.2)
for Spool .)

Remark 3.11. Lots of other diagnostic DD plots can be made. Suppose
known parts of Σx are hypothesized to be 0. Let SZ be the sample covariance
matrix with the known parts set to 0. Then plot Di(x,S) versus Di(x,SZ).
For example, a diagnostic for H0 : Σx = diag(Σ11, ...,Σkk) where the Σii

are unknown block matrices is the above plot with SZ = diag(S11, ...,Skk).
A diagnostic for H0 : Σx = diag(σ11, ..., σpp) where the σii are unknown
would use SZ = diag(s11, ..., spp) if S = (sij). Another diagnostic would
check whether the population correlation matrix ρx = Ip. See the following
paragraph.

Similar diagnostic DD plots can be made for the population correlation
matrix ρx where scaled data zi is used in the Di such that the sample mean
of the scaled data is z = 0 and the sample covariance matrix of the scaled
data is Sz = R = (rij). If the data matrix is x with rows xT

i , then the R
command
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z <- scale(x)

will make a data matrix z with rows zT
i . For example, consider H0 : ρx =

ρ0 = (ρij) where ρij = ρ for i 6= j where −1 < ρ < 1 is unknown, and
ρii = 1 for i = 1, ..., p. Let ρ̂ be the average of the rij where i < j. Let
Rr = (pij) where pij = ρ̂ for i 6= j and pii = 1 for i = 1, ..., p. Then make a
DD plot of Di(0,R) versus Di(0,Rr).

The RMVN matrix CRMV N could be used in place of S in some of the

plots if CRMV N
P→ cΣx for some constant c > 0. Then for some of the plots

the plotted points might scatter about some line through the origin instead
of the identity line.


