
Chapter 5

Multiple Linear Regression

In the multiple linear regression (MLR) model,

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (5.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (5.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p×1 vector of unknown coefficients, and e is an n×1 vector
of unknown errors. Equivalently,
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. (5.3)

Often the first column of X is 1, the n × 1 vector of ones. The ith case
(xT

i , Yi) corresponds to the ith row xT
i of X and the ith element of Y . If the

ei are iid with zero mean and variance σ2, then regression is used to estimate
the unknown parameters β and σ2.

Definition 5.1. Given an estimate β̂ of β, the corresponding vector of
predicted or fitted values is Ŷ = Xβ̂. The residual vector is r = r(β̂) =

Y − Ŷ .

Most regression methods attempt to find an estimate β̂ for β which min-
imizes some criterion function Q(b) of the residuals where the ith residual
ri(b) = ri = Yi−xT

i b = Yi− Ŷi. The order statistics for the absolute residuals
are denoted by

|r|(1) ≤ |r|(2) ≤ · · · ≤ |r|(n).
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192 5 Multiple Linear Regression

Two of the most used classical regression methods are ordinary least squares
(OLS) and least absolute deviations (L1).

Definition 5.2. The ordinary least squares estimator β̂OLS minimizes

QOLS(b) =

n∑

i=1

r2
i (b), (5.4)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists.

Definition 5.3. The least absolute deviations estimator β̂L1
minimizes

QL1
(b) =

n∑

i=1

|ri(b)|. (5.5)

Definition 5.4. The Chebyshev (L∞) estimator β̂L∞

minimizes the max-
imum absolute residual QL∞

(b) = |r(b)|(n).

The location model is a special case of the multiple linear regression (MLR)
model where p = 1, X = 1 and β = µ. One very important change in the
notation will be used. In the location model, Y1, ..., Yn were assumed to be iid
with cdf F. For regression, the errors e1, ..., en will be assumed to be iid with
cdf F. For now, assume that the xT

i β are constants. Note that Y1, ..., Yn are
independent if the ei are independent, but they are not identically distributed
since if E(ei) = 0, then E(Yi) = xT

i β depends on i.

In the location model, β̂OLS = Y , β̂L1
= MED(n) and the Chebyshev

estimator is the midrange β̂L∞

= (Y(1)+Y(n))/2. These estimators are simple
to compute, but computation in the multiple linear regression case requires a
computer. Most statistical software packages have OLS routines, and the L1

and Chebyshev fits can be efficiently computed using linear programming.
The L1 fit can also be found by examining all

C(n, p) =

(
n

p

)
=

n!

p!(n − p)!

subsets of size p where n! = n(n− 1)(n− 2) · · ·1 and 0! = 1. The Chebyshev
fit to a sample of size n > p is also a Chebyshev fit to some subsample of size
h = p + 1. Thus the Chebyshev fit can be found by examining all C(n, p+ 1)
subsets of size p+1. These two combinatorial facts will be useful for the high
breakdown regression estimators LMS and LTA described in Sections 5.9 and
6.3.
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5.1 Predictor Transformations

As a general rule, inferring about the distribution of Y |X from a lower
dimensional plot should be avoided when there are strong nonlinearities

among the predictors.
Cook and Weisberg (1999b, p. 34)

Predictor transformations are used to remove gross nonlinearities in the
predictors, and this technique is often very useful for regression methods such
as multiple linear regression, generalized linear models, generalized additive
models, 1D regression, nonlinear regression, and nonparametric regression.
Power transformations are particularly effective, and a power transformation
has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for λ = 0.
Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (5.6)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder”, e.g. from λ = 1 to λ = 0, will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added.

Definition 5.5. A scatterplot of x versus Y is used to visualize the
conditional distribution of Y |x. A scatterplot matrix is an array of scat-
terplots. It is used to examine the marginal relationships of the predictors
and the response variable Y .

In this section we will only make a scatterplot matrix of the predictors.
Often nine or ten variables can be placed in a scatterplot matrix. The names
of the variables appear on the diagonal of the scatterplot matrix. The R
software labels the values of each variable in two places, see Example 5.2
below. Let one of the variables be W . All of the marginal plots above and
below W have W on the horizontal axis. All of the marginal plots to the left
and the right of W have W on the vertical axis.

There are several rules of thumb that are useful for visually selecting a
power transformation to remove nonlinearities from the predictors. Several
of these rules need p small, but the log rule can be used when p is large. The
rules are also useful for response transformations covered in Section 5.2. In
this text, log(x) = ln(x) = loge(x).

Rule of thumb 5.1. a) If strong nonlinearities are apparent in the scat-
terplot matrix of the predictors w2, ..., wp, it is often useful to remove the
nonlinearities by transforming the predictors using power transformations.

b) Use theory if available.
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c) Suppose that variable X2 is on the vertical axis and X1 is on the hori-
zontal axis and that the plot of X1 versus X2 is nonlinear. The unit rule says
that if X1 and X2 have the same units, then try the same transformation for
both X1 and X2.

Assume that all values of X1 and X2 are positive. Then the following six
rules are often used.

d) The log rule states that a positive predictor that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So X > 0 and max(X)/ min(X) > 10 suggests using log(X).

e) The range rule states that a positive predictor that has the ratio be-
tween the largest and smallest values less than two should not be transformed.
So X > 0 and max(X)/ min(X) < 2 suggests keeping X.

f) The bulging rule states that changes to the power of X2 and the power
of X1 can be determined by the direction that the bulging side of the curve
points. If the curve is hollow up (the bulge points down), decrease the power
of X2. If the curve is hollow down (the bulge points up), increase the power
of X2. If the curve bulges towards large values of X1 increase the power of
X1. If the curve bulges towards small values of X1 decrease the power of X1.
See Tukey (1977, p. 173–176).

g) The ladder rule appears in Cook and Weisberg (1999a, p. 86).
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

h) If it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are such that

this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. Note

that log(X2) ≈ λ log(X1), so taking logs of both variables will also linearize
the plot. This relationship frequently occurs if there is a volume present. For
example let X2 be the volume of a sphere and let X1 be the circumference
of a sphere.

i) The cube root rule says that if X is a volume measurement, then cube
root transformation X1/3 may be useful.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning
is that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same
as the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]:
there is simply a change of labeling. Certainly if Y |x = 9 ∼ N(0, 1), then
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Y |√x = 3 ∼ N(0, 1). To see that Rule of thumb 5.1a does not always work,
suppose that Y = β1+β2x2+· · ·+βpxp+e where the xi are iid lognormal(0,1)
random variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p and the
scatterplot matrix of the wi will be linear while the scatterplot matrix of the
xi will show strong nonlinearities if the sample size is large. However, there is
an MLR relationship between Y and the xi while the relationship between Y
and the wi is nonlinear: Y = β1 + β2e

w2 + · · ·+ βpe
wp + e 6= βT w + e. Given

Y and the wi with no information of the relationship, it would be difficult to
find the exponential transformation and to estimate the βi. The moral is that
predictor transformations, especially the log transformation, can and often
do greatly simplify the MLR analysis, but predictor transformations can turn
a simple MLR analysis into a very complex nonlinear analysis.

Theory, if available, should be used to select a transformation. Frequently
more than one transformation will work. For example if W = weight and X1 =

volume = (X2)(X3)(X4), then W versus X
1/3
1 and log(W ) versus log(X1) =

log(X2) + log(X3) + log(X4) may both work. Also if W is linearly related
with X2, X3, X4 and these three variables all have length units mm, say, then

the units of X1 are (mm)3 . Hence the units of X
1/3
1 are mm.

Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/ min(wi) > 10. This rule often works
wonders on the data and the log transformation is the most used (modified)
power transformation. If the variable w can take on the value of 0, use log(w+
c) where c is a small constant like 1, 1/2, or 3/8.

To use the ladder rule, suppose you have a scatterplot of two variables
xλ1

1 versus xλ2

2 where both x1 > 0 and x2 > 0. Also assume that the plotted
points follow a nonlinear one to one function. Consider the ladder of powers

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1, }.

To spread small values of the variable, make λi smaller. To spread large values
of the variable, make λi larger.

For example, if both variables are right skewed, then there will be many
more cases in the lower left of the plot than in the upper right. Hence small
values of both variables need spreading.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.

Example 5.1. Examine Figure 5.1. Let X1 = w and X2 = x. Since w is on
the horizontal axis, mentally add a narrow vertical slice to the plot. If a large
amount of data falls in the slice at the left of the plot, then small values need
spreading. Similarly, if a large amount of data falls in the slice at the right of
the plot (compared to the middle and left of the plot), then large values need
spreading. For the variable on the vertical axis, make a narrow horizontal
slice. If the plot looks roughly like the northwest corner of a square then
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Fig. 5.1 Plots to Illustrate the Bulging and Ladder Rules

small values of the horizontal and large values of the vertical variable need
spreading. Hence in Figure 5.1a, small values of w need spreading. Notice that
the plotted points bulge up towards small values of the horizontal variable.
If the plot looks roughly like the northeast corner of a square, then large
values of both variables need spreading. Hence in Figure 5.1b, large values
of x need spreading. Notice that the plotted points bulge up towards large
values of the horizontal variable. If the plot looks roughly like the southwest
corner of a square, as in Figure 5.1c, then small values of both variables
need spreading. Notice that the plotted points bulge down towards small
values of the horizontal variable. If the plot looks roughly like the southeast
corner of a square, then large values of the horizontal and small values of the
vertical variable need spreading. Hence in Figure 5.1d, small values of x need
spreading. Notice that the plotted points bulge down towards large values of
the horizontal variable.

Example 5.2: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand. The
response is muscle mass M in grams, and the predictors are a constant, the
length L and height H of the shell in mm, the shell width W and the shell mass
S. Figure 5.2 shows the scatterplot matrix of the predictors L, H , W and S.
Examine the variable length. Length is on the vertical axis on the three top
plots and the right of the scatterplot matrix labels this axis from 150 to 300.
Length is on the horizontal axis on the three leftmost marginal plots, and this
axis is labelled from 150 to 300 on the bottom of the scatterplot matrix. The
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Fig. 5.2 Scatterplot Matrix for Original Mussel Data Predictors
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marginal plot in the bottom left corner has length on the horizontal and shell
on the vertical axis. The marginal plot that is second from the top and second
from the right has height on the horizontal and width on the vertical axis. If
the data is stored in x, the plot can be made with the following command in
R.

pairs(x,labels=c("length",‘"width","height","shell"))

Nonlinearity is present in several of the plots. For example, width and
length seem to be linearly related while length and shell have a nonlinear
relationship. The minimum value of shell is 10 while the max is 350. Since
350/10 = 35 > 10, the log rule suggests that logS may be useful. If log S
replaces S in the scatterplot matrix, then there may be some nonlinearity
present in the plot of log S versus W with small values of W needing spread-
ing. Hence the ladder rule suggests reducing λ from 1 and we tried log(W ).
Figure 5.3 shows that taking the log transformations of W and S results in
a scatterplot matrix that is much more linear than the scatterplot matrix of
Figure 5.2. Notice that the plot of W versus L and the plot of log(W ) versus
L both appear linear. This plot can be made with the following commands.

z <- x; z[,2] <- log(z[,2]); z[,4] <- log(z[,4])

pairs(z,labels=c("length","Log W","height","Log S"))

The plot of shell versus height in Figure 5.2 is nonlinear, and small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

5.2 A Graphical Method for Response Transformations

If the ratio of largest to smallest value of y is substantial, we usually begin
by looking at log y.

Mosteller and Tukey (1977, p. 91)

The applicability of the multiple linear regression model can be expanded
by allowing response transformations. An important class of response trans-
formation models adds an additional unknown transformation parameter λo,
such that

Yi = tλo
(Zi) ≡ Z

(λo)
i = E(Yi|xi) + ei = xT

i β + ei. (5.7)

If λo was known, then Yi = tλo
(Zi) would follow a multiple linear regression

model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
that are assumed to be measured with negligible error, and the errors ei are
assumed to be iid with zero mean.



5.2 A Graphical Method for Response Transformations 199

Definition 5.6. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 5.7. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(5.8)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1. Generally

λ ∈ Λ where Λ is some interval such as [−1, 1] or a coarse subset such as ΛL.

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values
of λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations
from the identity line are the “residuals” ri = Wi − Ŵi. Then a candidate
response transformation Y = tλ∗(Z) is reasonable if the plotted points fol-
low the identity line in a roughly evenly populated band if the unimodal
MLR model is reasonable for Y = W and x. See Definition 5.13. Curvature
from the identity line suggests that the candidate response transformation is
inappropriate.

By adding the “response” Z to the scatterplot matrix, the methods of
the previous section can also be used to suggest good values of λ, and it is
usually a good idea to use predictor transformations to remove nonlinearities
from the predictors before selecting a response transformation. Check that
the scatterplot matrix with the transformed variables is better than the scat-
terplot matrix of the original variables. Notice that the graphical method is
equivalent to making “response plots” for the seven values of W = tλ(Z),
and choosing the “best response plot” where the MLR model seems “most
reasonable.” The seven “response plots” are called transformation plots be-
low. Our convention is that a plot of X versus Y means that X is on the
horizontal axis and Y is on the vertical axis.

Warning: The Rule of thumb 5.1 does not always work. For example, the
log rule may fail. If the relationships in the scatterplot matrix are already lin-
ear or if taking the transformation does not increase the linearity (especially
in the row containing the response), then no transformation may be better
than taking a transformation. For the Cook and Weisberg (1999a) Arc data
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set evaporat.lsp, the log rule suggests transforming the response variable
Evap, but no transformation works better.

Definition 5.8. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several of
the powers correspond to simple transformations such as the log, square root,
and cube root. These powers are easier to interpret than λ = .28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
power transformations are the λ = 0 (log), λ = 1/2, λ = −1 and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n

can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 5.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform OLS on (Wi, xi) and make the transformation plot of
Ŵi versus Wi. If the plotted points follow the identity line for λ∗, then take
λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation. (Note that this
procedure can be modified to create a graphical diagnostic for a numerical
estimator λ̂ of λo by adding λ̂ to ΛL. OLS can be replaced by other methods
such as lasso.)

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W − Ŵ look reasonable. The values of λ in decreasing
order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation would
be chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show tλ(Z) on the vertical axis. The
label “TZHAT” of the horizontal axis are the “fitted values” that result from
using tλ(Z) as the “response” in the OLS software.

Example 5.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response” Z
is the number of cycles to failure and a constant is used along with the three
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Fig. 5.4 Four Transformation Plots for the Textile Data

predictors length, amplitude and load. Using the normal profile log likelihood
for λo, Box and Cox determine λ̂o = −0.06 with approximate 95 percent
confidence interval −0.18 to 0.06. These results give a strong indication that
the log transformation may result in a relatively simple model, as argued by
Box and Cox. Nevertheless, the numerical Box–Cox transformation method
provides no direct way of judging the transformation against the data.

Shown in Figure 5.4 are transformation plots of Ẑ versus Zλ for four values
of λ except log(Z) is used if λ = 0. The plots show how the transformations
bend the data to achieve a homoscedastic linear trend. Perhaps more impor-
tantly, they indicate that the information on the transformation is spread
throughout the data in the plot since changing λ causes all points along the
curvilinear scatter in Figure 5.4a to form along a linear scatter in Figure
5.4c. Dynamic plotting using λ as a control seems quite effective for judging
transformations against the data and the log response transformation does
indeed seem reasonable.

Note the simplicity of the method: Figure 5.4a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
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Fig. 5.5 Transformation Plots for the Mussel Data

Figure 5.4c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
5.4a suggests that the log rule is reasonable since max(Z)/ min(Z) > 10.

The essential point of the next example is that observations that influence
the choice of the usual Box–Cox numerical power transformation are often
easily identified in the transformation plots. The transformation plots are
especially useful if the bivariate relationships of the predictors, as seen in the
scatterplot matrix of the predictors, are linear.

Example 5.4: Mussel Data. Consider the mussel data of Example 5.2
where the response is muscle mass M in grams, and the predictors are the
length L and height H of the shell in mm, the logarithm logW of the shell
width W, the logarithm log S of the shell mass S and a constant. With this
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starting point, we might expect a log transformation of M to be needed
because M and S are both mass measurements and log S is being used as
a predictor. Using logM would essentially reduce all measurements to the
scale of length. The Box–Cox likelihood method gave λ̂0 = 0.28 with ap-
proximate 95 percent confidence interval 0.15 to 0.4. The log transformation
is excluded under this inference leading to the possibility of using different
transformations of the two mass measurements.

Shown in Figure 5.5 are transformation plots for four values of λ. A striking
feature of these plots is the two points that stand out in three of the four
plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evidently influenced
by the two outlying points and, judging deviations from the identity line in
Figure 5.5c, the mean function for the remaining points is curved. In other
words, the Box–Cox estimate is allowing some visually evident curvature
in the bulk of the data so it can accommodate the two outlying points.
Recomputing the estimate of λo without the highlighted points gives λ̂o =
−0.02, which is in good agreement with the log transformation anticipated
at the outset. Reconstruction of the transformation plots indicated that now
the information for the transformation is consistent throughout the data on
the horizontal axis of the plot.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ ΛL. Example 5.4 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

Example 5.5: Mussel Data Again. Return to the mussel data, this time
considering the regression of M on a constant and the four untransformed
predictors L, H , W and S. Figure 5.2 shows the scatterplot matrix of the
predictors L, H , W and S. Again nonlinearity is present. Figure 5.3 shows
that taking the log transformations of W and S results in a linear scatterplot
matrix for the new set of predictors L, H , log W , and logS. Then the search
for the response transformation can be done as in Example 5.4.

5.3 A Review of Multiple Linear Regression

Good online references for multiple linear regression are Olive (2008, 2010).
Good texts are Cook and Weisberg (1999a), Olive (2017a), Ryan (2009), and
Weisberg (2005). The following review follows Olive (2017a: ch. 2) closely.

Definition 5.9. Regression is the study of the conditional distribution
Y |x of the response variable Y given the vector of predictors x = (x1, ..., xp)

T .
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Definition 5.10. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.

Definition 5.11. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (5.9)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

See the beginning of this chapter for the model Y = Xβ + e in matrix
form. In the MLR model Y = xT β+e, the Y and e are random variables, but
we only have observed values Yi and xi. If the ei are iid (independent and
identically distributed) with zero mean E(ei) = 0 and variance VAR(ei) =
V (ei) = σ2, then regression is used to estimate the unknown parameters β

and σ2.

Definition 5.12. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 < ∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 5.13. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 < ∞.

Definition 5.14. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iid N(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

See Definitions 5.1 and 5.2 for fitted values, residuals, and the OLS esti-
mator. Given an estimate b of β, the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp,
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and the ith residual ri ≡ ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. For

the ordinary least squares (OLS) estimator, Ŷ OLS = Xβ̂OLS = HY where
the hat matrix H = X(XT X)−1XT provided the inverse exists. Typically
the subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 5.15. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response variables Yi, while the residual plot is a plot
of the ESP = Ŷi versus the residuals ri.

Theorem 5.1. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Parts f) and g) make residual plots useful.
If the plotted points are linear with roughly constant variance and the cor-
relation is zero, then the plotted points scatter about the r = 0 line with no
other pattern. If the plotted points in a residual plot of w versus r do show a
pattern such as a curve or a right opening megaphone, zero correlation will
usually force symmetry about either the r = 0 line or the w = median(w)
line. Hence departures from the ideal plot of random scatter about the r = 0
line are often easy to detect.

Let the n × p design matrix of predictor variables be

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p



 =
[
v1 v2 . . . vp

]
=




xT

1
...

xT
n





where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 5.2. Suppose that X is an n × p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.
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e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p × p identity matrix.

c) XT r = XT (Ip − H)Y = [XT − XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.

f) The sample correlation between W and Z is corr(W, Z) =

∑n
i=1(wi − w)(zi − z)

(n − 1)swsz
=

∑n
i=1(wi − w)(zi − z)√∑n

i=1(wi − w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =

n∑

i=1

Ŷiri − Ŷ

n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �
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5.3.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean Y is given by Definition 2.2.
In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 5.16. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =

n∑

i=1

(Yi − Y )2. (5.10)

b) The regression sum of squares

SSR =

n∑

i=1

(Ŷi − Y )2. (5.11)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2
i . (5.12)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 5.3. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =

n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2

n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But
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A =

n∑

i=1

riŶi − Y

n∑

i=1

ri = 0

by Theorem 5.2 d) and e). �

Definition 5.17. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
v) R2 tends to be too high if there are two or more separated clusters of

data in the response plot.
vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 5.5 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 5.5, E(R2) ≤ 0.1.

Theorem 5.4. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 5.5. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2

, n−p
2

).

b)
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E(R2) =
p − 1

n − 1
.

c)

VAR(R2) =
2(p − 1)(n − p)

(n − 1)2(n + 1)
.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 5.18. Assume that a constant is in the MLR model. Associated
with each SS in Definition 5.16 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p − 1 SSR MSR F0=MSR/MSE for H0:
Residual n − p SSE MSE β2 = · · · = βp = 0

Remark 5.1. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0
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(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n → ∞. Then the computer output pval is a good estimator
of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and Ha ≡ HA ≡ H1.

The 4 step ANOVA F test of hypotheses is below.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n − p)/(p − 1) decreases
to 0 as p increases to n, Theorem 5.6a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 5.6. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1 − R2

n − p

p − 1
.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p − 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.



5.3 A Review of Multiple Linear Regression 211

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 5.2. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.”

5.3.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 5.19. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq

where {i2, ..., iq} ⊂ {2, ..., p}.

The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1

= · · · = βip
= 0, and alternative

hypothesis HA : at least one of the βij
6= 0 for j > q. The null hypothesis is

equivalent to H0: “the reduced model is good.” Since only the full model and
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reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.
Full model

Source df SS MS F0 and p-value

Regression p − 1 SSR MSR F0=MSR/MSE
Residual dfF = n − p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n − q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0

The 4 step partial F test of hypotheses is below. i) State the hy-
potheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF
> FR). ( Here dfR−dfF = p−q = number

of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let
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‖a‖ =
√

a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 5.7. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =

SSE(R) − SSE(F )

SSE(F )

n − p

p − q
=

R2 − R2
R

1 − R2

n − p

p − q
.

Definition 5.20. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
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be good if the main goal of the analysis is to predict Y. These plots are also
useful for other methods such as lasso.

5.3.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 5.21. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).

Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall that H0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
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not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.

5.3.4 The OLS Criterion
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Fig. 5.6 The OLS Fit Minimizes the Sum of Squared Residuals

The OLS estimator β̂ minimizes the OLS criterion
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QOLS(η) =

n∑

i=1

r2
i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r2
i ≤

∑n
i=1 r2

i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
In particular, if X has full rank p, then

∑n
i=1 r2

i <
∑n

i=1 r2
i (β) =

∑n
i=1 e2

i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r2

i (β). This no-
tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 5.6. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 5.6a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of
squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 5.6b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 5.8. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
and that HX = X . Let η be any p × 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) = ‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ − Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ − Xη).

Hence
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‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2. (5.13)

So
‖Y − Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives

XT Y − XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (5.14)

Equation (5.14) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (5.13).

5.4 Asymptotically Optimal Prediction Intervals

This section gives estimators for predicting a future or new value Yf of
the response variable given the predictors xf , and for estimating the mean
E(Yf) ≡ E(Yf |xf). This mean is conditional on the values of the predictors
xf , but the conditioning is often suppressed. See

Warning: All too often the MLR model seems to fit the data

(Y1, x1), ..., (Yn, xn)

well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data



218 5 Multiple Linear Regression

(Yi, xi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a

new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data well. i)
The model building process is usually iterative. Data Z, w1, ..., wk is collected.
If the model is not linear, then functions of Z are used as a potential response
and functions of the wi as potential predictors. After trial and error, the
functions are chosen, resulting in a final MLR model using Y and x1, ..., xp.
Since the same data set was used during the model building process, biases
are introduced and the MLR model fits the “training data” better than it
fits new data. Suppose that Y , x1, ..., xp are specified before collecting data
and that the residual and response plots from the resulting MLR model look
good. Then predictions from the prespecified model will often be better for
predicting new data than a model built from an iterative process.

ii) If (Yf , xf) come from a different population than the population of
(Y1, x1), ..., (Yn, xn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also, often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate.

Definition 5.22. Consider the MLR model Y = Xβ + e and the hat
matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H

for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XT X)−1xi.

Suppose new data is to be collected with predictor vector xf . Then the

leverage of xf is hf = xT
f (XT X)−1xf . Extrapolation occurs if xf is far

from the x1, ..., xn.

Rule of thumb 5.3. Predictions based on extrapolation are not reliable.
A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn). This
rule works best if the predictors are linearly related in that a plot of xi versus
xj should not have any strong nonlinearities. If there are strong nonlinearities
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among the predictors, then xf could be far from the xi but still have hf <
max(h1, ..., hn).

Example 5.7. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

Definition 5.23. Consider the iid error MLR model Y = xT β + e where
E(e) = 0. Then regression function is the hyperplane

E(Y ) ≡ E(Y |x) = x1β1 + x2β2 + · · ·+ xpβp = xT β. (5.15)

Assume OLS is used to find β̂. Then the point estimator of Yf given x = xf

is
Ŷf = xf,1β̂1 + · · ·+ xf,pβ̂p = xT

f β̂. (5.16)

The point estimator of E(Yf ) ≡ E(Yf |xf) given x = xf is also Ŷf = xT
f β̂.

Assume that the MLR model contains a constant β1 so that x1 ≡ 1. The large
sample 100 (1 − δ)% confidence interval (CI) for E(Yf |xf ) = xT

f β = E(Ŷf )
is

Ŷf ± tn−p,1−δ/2se(Ŷf ) (5.17)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees of

freedom. Generally se(Ŷf ) will come from output, but

se(Ŷf ) =
√

MSE hf =
√

MSE xT
f (XT X)−1xf .

Recall the interpretation of a 100 (1 − δ)% CI for a parameter µ is that
if you collect data then form the CI, and repeat for a total of k times where
the k trials are independent from the same population, then the probability
that m of the CIs will contain µ follows a binomial(k, ρ = 1− δ) distribution.
Hence if 100 95% CIs are made, ρ = 0.95 and about 95 of the CIs will contain
µ while about 5 will not. Any given CI may (good sample) or may not (bad
sample) contain µ, but the probability of a “bad sample” is δ.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition maxhi → 0 in
probability usually holds if the researcher picked the design matrix X or if
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the xi are iid random vectors from a well behaved population. Outliers can

cause the condition to fail. Convergence in probability, Yn
P→ c, is similar to

other types of convergence: Yn is likely to be close to c if the sample size n is
large enough. Parts a) and b) of Theorem 5.2 are due to Huber and Ronchetti
(2009, pp. 156-158). For c), see Sen and Singer (1993, p. 280). Part c) implies

that β̂ ≈ Np(β, σ2(XT X)−1)).

Theorem 5.9: Consider the MLR model Yi = xT
i β+ei and assume that

the errors are independent with zero mean and the same variance: E(ei) = 0
and VAR(ei) = σ2. Also assume that maxi(h1, ..., hn) → 0 in probability as
n → ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal where
a is any fixed constant p × 1 vector.

c) OLS CLT: Suppose that the ei are iid and

XT X

n
→ W−1.

Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ). (5.18)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ2 Ip). (5.19)

Definition 5.24. A large sample 100(1− δ)% prediction interval (PI) has
the form (L̂n, Ûn) where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by
1− δ as the sample size n → ∞. For the Gaussian MLR model, assume that
the random variable Yf is independent of Y1, ..., Yn. Then the 100(1− δ)% PI
for Yf is

Ŷf ± tn−p,1−δ/2se(pred) (5.20)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees
of freedom. Generally se(pred) will come from output, but se(pred) =√

MSE (1 + hf ).

Often we want the coverage P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞. The
interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar to
that of a CI. Collect data, then form the PI, and repeat for a total of k times
where k trials are independent from the same population. If Yfi is the ith
random variable and PIi is the ith PI, then the probability that Yfi ∈ PIi

for m of the PIs follows a binomial(k, ρ = 1 − δ) distribution. Hence if 100
95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens about 95 times.
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There are two big differences between CIs and PIs. First, the length of
the CI goes to 0 as the sample size n goes to ∞ while the length of the PI
converges to some nonzero number L, say. Secondly, the CI for E(Yf |xf)
given in Definition 5.23 tends to work well for the iid error MLR model if
the sample size is large while the PI in Definition 5.24 is made under the
assumption that the ei are iid N(0, σ2) and may not perform well if the
normality assumption is violated.

To see this, consider xf such that the heights Y of women between 18
and 24 is normal with a mean of 66 inches and an SD of 3 inches. A 95%
CI for E(Y |xf) should be centered at about 66 and the length should go
to zero as n gets large. But a 95% PI needs to contain about 95% of the
heights so the PI should converge to the interval 66 ± 1.96(3). This result
follows because if Y ∼ N(66, 9) then P (Y < 66 − 1.96(3)) = P (Y > 66 +
1.96(3)) = 0.025. In other words, the endpoints of the PI estimate the 97.5
and 2.5 percentiles of the normal distribution. However, the percentiles of a
parametric error distribution depend heavily on the parametric distribution
and the parametric formulas are violated if the assumed error distribution is
incorrect.

Assume that the iid error MLR model is valid so that e is from some
distribution with 0 mean and variance σ2. Olive (2007) shows that if 1− γ is
the asymptotic coverage of the classical nominal 100(1− δ)% PI (5.20), then

1 − γ = P (−σz1−δ/2 ≤ e ≤ σz1−δ/2) ≥ 1 − 1

z2
1−δ/2

(5.21)

where the inequality follows from Chebyshev’s inequality. Hence the asymp-
totic coverage of the nominal 95% PI is at least 73.9%. The 95% PI (5.20)
was often quite accurate in that the asymptotic coverage was close to 95% for
a wide variety of error distributions. The 99% and 90% PIs did not perform
as well.

Let ξδ be the δ percentile of the error e, i.e., P (e ≤ ξδ) = δ. Let ξ̂δ be
the sample δ percentile of the residuals. Then the results from Theorem 5.9
suggest that the residuals ri estimate the errors ei, and that the sample
percentiles of the residuals ξ̂δ estimate ξδ. For many error distributions,

E(MSE) = E

(
n∑

i=1

r2
i

n − p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)
.

This result suggests that

√
n

n − p
ri ≈ ei. Using

an =

(
1 +

15

n

)√
n

n − p

√
(1 + hf), (5.22)
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a large sample semiparametric 100(1 − δ)% PI for Yf is

[Ŷf + anξ̂δ/2, Ŷf + anξ̂1−δ/2]. (5.23)

This PI is very similar to the classical PI except that ξ̂δ is used instead of
σzδ to estimate the error percentiles ξδ.
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Fig. 5.7 95% PI Limits for Buxton Data

Example 5.8. For the Buxton (1920) data suppose that the response Y =
height and the predictors were a constant, head length, nasal height, bigonal
breadth and cephalic index. Five outliers were deleted leaving 82 cases. Figure
5.7 shows a response plot of the fitted values versus the response Y with the
identity line added as a visual aid. The plot suggests that the model is good
since the plotted points scatter about the identity line in an evenly populated
band although the relationship is rather weak since the correlation of the
plotted points is not very high. The triangles represent the upper and lower
limits of the semiparametric 95% PI (5.23). Notice that 79 (or 96%) of the
Yi fell within their corresponding PI while 3 Yi did not. A plot using the
classical PI (5.20) would be very similar for this data. The plot was made
with the following R commands, using the rpack function piplot.

x <- buxx[-c(61,62,63,64,65),]

Y <- buxy[-c(61,62,63,64,65)]

piplot(x,Y)
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Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

Given output showing β̂i and given xf , se(pred) and se(Ŷf ), Example 5.9

shows how to find Ŷf , a CI for E(Yf |xf) and a PI for Yf . Shown above is
typical output in symbols.

Example 5.9. The Rouncefield (1995) data are female and male life ex-
pectancies from n = 91 countries. Suppose that it is desired to predict female
life expectancy Y from male life expectancy X. Suppose that if Xf = 60,

then se(pred) = 2.1285, and se(Ŷf ) = 0.2241. Below is some output.

Label Estimate Std. Error t-value p-value

Constant -2.93739 1.42523 -2.061 0.0422

mlife 1.12359 0.0229362 48.988 0.0000

a) Find Ŷf if Xf = 60.

Solution: In this example, xf = (1, Xf )T since a constant is in the output

above. Thus Ŷf = β̂1 + β̂2Xf = −2.93739 + 1.12359(60) = 64.478.

b) If Xf = 60, find a 90% confidence interval for E(Y ) ≡ E(Yf |xf ).

Solution: The CI is Ŷf ± t1−α/2,n−2se(Ŷf ) = 64.478 ± 1.645(0.2241) =
64.478± 0.3686 = (64.1094, 64.8466). To use the t–table on the last page of
Chapter 14, use the 2nd to last row marked by Z since d = df = n − 2 =
90 > 30. In the 3rd to last row find CI = 90% and intersect the 90% column
and the Z row to get the value of t0.95,90 ≈ z.95 = 1.645.

c) If Xf = 60, find a 90% prediction interval for Yf .

Solution: The CI is Ŷf ± t1−α/2,n−2se(pred) = 64.478 ± 1.645(2.1285) =
64.478± 3.5014 = (60.9766, 67.9794).

An asymptotically conservative (ac) 100(1 − δ)% PI has asymptotic cov-
erage 1 − γ ≥ 1 − δ. We used the (ac) 100(1 − δ)% PI

Ŷf ±
√

n

n − p
max(|ξ̂δ/2|, |ξ̂1−δ/2|)

√
(1 + hf ) (5.24)

which has asymptotic coverage

1− γ = P [−max(|ξδ/2|, |ξ1−δ/2|) < e < max(|ξδ/2|, |ξ1−δ/2|)]. (5.25)
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Notice that 1− δ ≤ 1−γ ≤ 1− δ/2 and 1−γ = 1− δ if the error distribution
is symmetric with a pdf.

In the simulations described below, ξ̂δ will be the sample percentile for the
PIs (5.23) and (5.24). A PI is asymptotically optimal if it has the shortest
asymptotic length that gives the desired asymptotic coverage. If the error
distribution is unimodal, an asymptotically optimal PI can be created by
applying the shorth(c) estimator to the residuals where c = dn(1−δ)e and dxe
is the smallest integer ≥ x, e.g., d7.7e = 8. That is, let r(1), ..., r(n) be the order
statistics of the residuals. Compute r(c)−r(1), r(c+1)−r(2), ..., r(n)−r(n−c+1).

Let [r(d), r(d+c−1)] = [ξ̃δ1
, ξ̃1−δ2

] correspond to the interval with the smallest
distance. Then the large sample 100 (1 − δ)% PI for Yf is

[Ŷf + anξ̃δ1
, Ŷf + anξ̃1−δ2

] (5.26)

where an is given by (5.22).
A small simulation study compares the PI lengths and coverages for sample

sizes n = 50, 100 and 1000 for several error distributions. The value n = ∞
gives the asymptotic coverages and lengths. The MLR model with E(Yi) =
1 + xi2 + · · · + xi8 was used. The vectors (x2, ..., x8)

T were iid N7(0, I7).
The error distributions were N(0,1), t3, and exponential(1) −1. Also, a small
sensitivity study to examine the effects of changing (1 + 15/n) to (1 + k/n)
on the 99% PIs (5.23) and (5.26) was performed. For n = 50 and k between
10 and 20, the coverage increased by roughly 0.001 as k increased by 1.

Table 5.1 N(0,1) Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 5.860 6.172 5.191 6.448 .989 .988 .972 .990
0.01 100 5.470 5.625 5.257 5.412 .990 .988 .985 .985
0.01 1000 5.182 5.181 5.263 5.097 .992 .993 .994 .992
0.01 ∞ 5.152 5.152 5.152 5.152 .990 .990 .990 .990
0.05 50 4.379 5.167 4.290 5.111 .948 .974 .940 .968
0.05 100 4.136 4.531 4.172 4.359 .956 .970 .956 .958
0.05 1000 3.938 3.977 4.001 3.927 .952 .952 .954 .948
0.05 ∞ 3.920 3.920 3.920 3.920 .950 .950 .950 .950
0.1 50 3.642 4.445 3.658 4.193 .894 .945 .895 .929
0.1 100 3.455 3.841 3.519 3.690 .900 .930 .905 .913
0.1 1000 3.304 3.343 3.352 3.304 .901 .903 .907 .901
0.1 ∞ 3.290 3.290 3.290 3.290 .900 .900 .900 .900

The simulation compared coverages and lengths of the classical (5.20),
semiparametric (5.23), asymptotically conservative (5.24) and asymptotically
optimal (5.26) PIs. The latter 3 intervals are asymptotically optimal for sym-
metric unimodal error distributions in that they have the shortest asymptotic
length that gives the desired asymptotic coverage. The semiparametric PI
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Table 5.2 t3 Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 9.539 12.164 11.398 13.297 .972 .978 .975 .981
0.01 100 9.114 12.202 12.747 10.621 .978 .983 .985 .978
0.01 1000 8.840 11.614 12.411 11.142 .975 .990 .992 .988
0.01 ∞ 8.924 11.681 11.681 11.681 .979 .990 .990 .990
0.05 50 7.160 8.313 7.210 8.139 .945 .956 .943 .956
0.05 100 6.874 7.326 7.030 6.834 .950 .955 .951 .945
0.05 1000 6.732 6.452 6.599 6.317 .951 .947 .950 .945
0.05 ∞ 6.790 6.365 6.365 6.365 .957 .950 .950 .950
0.1 50 5.978 6.591 5.532 6.098 .915 .935 .900 .917
0.1 100 5.696 5.756 5.223 5.274 .916 .913 .901 .900
0.1 1000 5.648 4.784 4.842 4.706 .929 .901 .904 .898
0.1 ∞ 5.698 4.707 4.707 4.707 .935 .900 .900 .900

Table 5.3 Exponential(1) −1 Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 5.795 6.432 6.821 6.817 .971 .987 .976 .988
0.01 100 5.427 5.907 7.525 5.377 .974 .987 .986 .985
0.01 1000 5.182 5.387 8.432 4.807 .972 .987 .992 .987
0.01 ∞ 5.152 5.293 8.597 4.605 .972 .990 .995 .990
0.05 50 4.310 5.047 5.036 4.746 .946 .971 .955 .964
0.05 100 4.100 4.381 5.189 3.840 .947 .971 .966 .955
0.05 1000 3.932 3.745 5.354 3.175 .945 .954 .972 .947
0.05 ∞ 3.920 3.664 5.378 2.996 .948 .950 .975 .950
0.1 50 3.601 4.183 3.960 3.629 .920 .945 .925 .916
0.1 100 3.429 3.557 3.959 3.047 .930 .943 .945 .913
0.1 1000 3.303 3.005 3.989 2.460 .931 .906 .951 .901
0.1 ∞ 3.290 2.944 3.991 2.303 .929 .900 .950 .900

gives the correct asymptotic coverage if the unimodal errors are not symmet-
ric while the PI (5.24) gives higher coverage (is conservative). The simulation
used 5000 runs and gave the proportion p̂ of runs where Yf fell within the
nominal 100(1−δ)% PI. The count mp̂ has a binomial(m = 5000, p = 1−γn)
distribution where 1− γn converges to the asymptotic coverage (1− γ). The
standard error for the proportion is

√
p̂(1 − p̂)/5000 = 0.0014, 0.0031 and

0.0042 for p = 0.01, 0.05 and 0.1, respectively. Hence an observed coverage
p̂ ∈ [0.986, 0.994] for 99%, p̂ ∈ [0.941, 0.959] for 95% and p̂ ∈ [0.887, 0.913]
for 90% PIs suggests that there is no reason to doubt that the PI has the
nominal coverage.

Tables 5.1–5.3 show the results of the simulations for the 3 error distri-
butions. The letters c, s, a and o refer to intervals (5.20), (5.23), (5.24) and
(5.26) respectively. For the normal errors, the coverages were about right and
the semiparametric interval tended to be rather long for n = 50 and 100. The
classical PI asymptotic coverage 1−γ tended to be fairly close to the nominal
coverage 1 − δ for all 3 distributions and δ = 0.01, 0.05, and 0.1.
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5.5 Numerical Diagnostics

Using one or a few numerical summaries to characterize the relationship
between x and y runs the risk of missing important features, or worse, of

being misled.
Chambers, Cleveland, Kleiner, and Tukey (1983, p. 76)

Diagnostics are used to check whether model assumptions are reason-
able. Section 5.6 provides graphical diagnostics for assessing the unimodal
MLR model adequacy while this section focuses on diagnostics for the uni-
modal MLR model Yi = xT

i β + ei for i = 1, ..., n where the errors are iid
from a unimodal distribution that is not highly skewed with E(ei) = 0 and
VAR(ei) = σ2. See Definition 5.13.

It is often useful to use notation to separate the constant from the non-
trivial predictors. Assume that xi = (1, xi,2, ..., xi,p)

T ≡ (1, uT
i )T where the

(p−1)×1 vector of nontrivial predictors ui = (xi,2, ..., xi,p)
T . In matrix form,

Y = Xβ +e, X = [X1, X2, ..., Xp] = [1, U ], 1 is an n×1 vector of ones, and
U = [X2, ..., Xp] is the n × (p − 1) matrix of nontrivial predictors. The kth
column of U is the n × 1 vector of the jth predictor Xj = (x1,j, ..., xn,j)

T

where j = k + 1. The sample mean and covariance matrix of the nontrivial
predictors are

u =
1

n

n∑

i=1

ui (5.27)

and

C = Cov(U) =
1

n − 1

n∑

i=1

(ui − u)(ui − u)T , (5.28)

respectively.

Some important numerical quantities that are used as diagnostics measure
the distance of ui from u and the influence of case i on the OLS fit β̂ ≡ β̂OLS .

The ith residual ri = Yi − Ŷi, and the vector of fitted values is Ŷ = Xβ̂ =
X(XT X)−1XT Y = HY where H is the hat matrix. Case (or leave one out
or deletion) diagnostics are computed by omitting the ith case from the OLS
regression. Let

Ŷ (i) = Xβ̂(i) (5.29)

denote the n× 1 vector of fitted values from estimating β with OLS without
the ith case. Denote the jth element of Ŷ (i) by Ŷ(i),j. It can be shown that
the variance of the ith residual VAR(ri) = σ2(1 − hi). The usual estimator

of the error variance is σ̂2 =

∑n
i=1 r2

i

n − p
. The (internally) studentized residual

êi =
ri

σ̂
√

1 − hi

has zero mean and approximately unit variance.
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Definition 5.25. The ith leverage hi = Hii is the ith diagonal element of
the hat matrix H. The ith squared (classical) Mahalanobis distance MD2

i =
(ui − u)T C−1(ui − u). The ith Cook’s distance

CDi =
(β̂(i) − β̂)T XT X(β̂(i) − β̂)

pσ̂2
=

(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
(5.30)

=
1

pσ̂2

n∑

j=1

(Ŷ(i),j − Ŷj)
2.

Theorem 5.10. a) (Rousseeuw and Leroy 1987, p. 225)

hi =
1

n − 1
MD2

i +
1

n
.

b) (Cook and Weisberg 1999a, p. 184)

hi = xT
i (XT X)−1xi = (xi − x)T (UT U)−1(xi − x) +

1

n
.

c) (Cook and Weisberg 1999a, p. 360)

CDi =
r2
i

pσ̂2(1 − hi)

hi

1 − hi
=

ê2
i

p

hi

1 − hi
.

When the statistics CDi, hi and MDi are large, case i may be an outlier or
influential case. Examining a dot plot of these three statistics for unusually
large values can be useful for flagging influential cases. Cook and Weisberg
(1999a, p. 358) suggest examining cases with CDi > 0.5 and that cases with
CDi > 1 should always be studied. Since H = HT and H = HH , the hat
matrix is symmetric and idempotent. Hence the eigenvalues of H are zero or
one and trace(H) =

∑n
i=1 hi = p. Rousseeuw and Leroy (1987, p. 220 and

p. 224) suggest using hi > 2p/n and MD2
i > χ2

p−1,0.95 as benchmarks for
leverages and Mahalanobis distances where χ2

p−1,0.95 is the 95th percentile of
a chi–square distribution with p − 1 degrees of freedom.

Note that Theorem 5.10c) implies that Cook’s distance is the product of
the squared residual and a quantity that becomes larger the farther ui is
from u. Hence influence is roughly the product of leverage and distance of
Yi from Ŷi (see Fox 1991, p. 21). Mahalanobis distances and leverages both
define ellipsoids based on a metric closely related to the sample covariance
matrix of the nontrivial predictors. All points ui on the same ellipsoidal
contour are the same distance from u and have the same leverage (or the
same Mahalanobis distance).

Cook’s distances, leverages, and Mahalanobis distances can be effective for
finding influential cases when there is a single outlier, but can fail if there
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are two or more outliers. Nevertheless, these numerical diagnostics combined
with response and residual plots of the next section are probably the most
effective techniques for detecting cases that effect the fitted values when the
unimodal MLR model is a good approximation for the bulk of the data.

5.6 Graphical Diagnostics

Automatic or blind use of regression models, especially in exploratory work,
all too often leads to incorrect or meaningless results and to confusion

rather than insight. At the very least, a user should be prepared to make and
study a number of plots before, during, and after fitting the model.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 306)

A scatterplot of x versus y (recall the convention that a plot of x versus
y means that x is on the horizontal axis and y is on the vertical axis) is
used to visualize the conditional distribution y|x of y given x (see Cook and
Weisberg 1999a, p. 31). For the simple linear regression model (with one
nontrivial predictor x2), an effective technique for checking the assumptions
of the model is to make a scatterplot of x2 versus Y and a residual plot
of x2 versus ri. Departures from linearity in the scatterplot suggest that the
simple linear regression model is not adequate. The points in the residual plot
should scatter about the line r = 0 with no pattern. If curvature is present
or if the distribution of the residuals depends on the value of x2, then the
simple linear regression model is not adequate. The following two plots are
crucial for any multiple linear regression analysis, regardless of the
regression estimator (e.g. OLS, L1, lasso, etc.).

Definition 5.26. A residual plot is a plot of a variable wi versus the
residuals ri. Typically wi is a linear combination of the predictors: wi = aT xi

where a is a known p× 1 vector. A response plot is a plot of the fitted values
Ŷi versus the response Yi.

The most used residual plot takes a = β̂ with wi = Ŷi. Plots against
the individual predictors xj and potential predictors are also used. If the
residual plot is not ellipsoidal with zero slope, then the unimodal MLR model
(where the iid constant variance errors are from a unimodal distribution that
is not highly skewed) is not sustained. In other words, if the variables in the
residual plot show some type of dependency, e.g. increasing variance or a
curved pattern, then the unimodal MLR model may be inadequate. Theorem
5.1 showed that the response plot simultaneously displays the fitted values,
response, and residuals. The plotted points in the response plot should scatter
about the identity line if the unimodal MLR model holds. Note that residual
plots magnify departures from the model while the response plot emphasizes
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how well the model fits the data. Cook and Weisberg (1997, 1999a ch. 17) call
a plot that emphasizes model agreement a model checking plot.

One of the themes of this text is to use a several estimators to create plots
and estimators. Many estimators bj are consistent estimators of β when the
multiple linear regression model holds.

Definition 5.27. Let b1, ..., bJ be J estimators of β. Assume that J ≥ 2
and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix of the

fitted values Ŷ (b1), ..., Ŷ (bJ). Often Y is also included in the top or bottom
row of the FF plot to see the response plots. A residual-residual (RR) plot is
a scatterplot matrix of the residuals r(b1), ..., r(bJ). Often Ŷ is also included
in the top or bottom row of the RR plot to see the residual plots.

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the
subplots in the FF and RR plots should be linear with a correlation tending
to one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi−xT

i bj where (Yi, x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj . Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (5.31)

The FF plot is a powerful way for comparing fits. The commonly suggested
alternative is to look at a table of the estimated coefficients, but coefficients
can differ greatly while yielding similar fits if some of the predictors are highly
correlated or if several of the predictors are independent of the response.

To illustrate the RR plot, consider the four R estimators: OLS, ALMS =
the default version of lmsreg, ALTS = the default version of ltsreg and
the MBA estimator described in Chapter 6. In the 2007 version of R, the last
three estimators change with each call.

Example 5.10. Gladstone (1905) records the brain weight and various
head measurements for 276 individuals. This data set, along with the Buxton
data set in the following example, can be downloaded from the text’s website.
We’ll predict brain weight using six head measurements (head height, length,
breadth, size, cephalic index and circumference) as predictors, deleting cases
188 and 239 because of missing values. There are five infants (cases 238, and
263-266) of age less than 7 months that are x-outliers. Nine toddlers were
between 7 months and 3.5 years of age, four of whom appear to be x-outliers
(cases 241, 243, 267, and 269). (The points are not labeled on the plot, but
the five infants are easy to recognize.)

Figure 1.1 shows the RR plot. The five infants seem to be “good leverage
points” in that the fit to the bulk of the data passes through the infants. Hence
the OLS fit may be best, followed by ALMS. Note that ALTS and MBA make
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the absolute residuals for the infants large. The ALTS and MBA fits are not
highly correlated for the remaining 265 points, but the remaining correlations
are high. Thus the fits agree on these cases, focusing attention on the infants.
The ALTS and ALMS estimators change frequently, and are implemented
differently in R and Splus. Often the “new and improved” implementation is
much worse than older implementations.

Figure 1.2 shows the residual plots for the Gladstone data when one ob-
servation, 119, had head length entered incorrectly as 109 instead of 199. This
outlier is easier to detect with MBA and ALTS than with ALMS.

Example 5.11. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
Consider predicting stature using an intercept, head length, nasal height, big-
onal breadth, and cephalic index. One case was deleted since it had missing
values. Five individuals, numbers 61-65, were reported to be about 0.75 inches
tall with head lengths well over five feet! This appears to be a clerical error;
these individuals’ stature was recorded as head length and the integer 18 or
19 given for stature, making the cases massive outliers with enormous lever-
age. These absurdly bad observations turned out to confound the standard
high breakdown (HB) estimators. Figure 6.4 shows the RR plot for several
estimators. The BB, MBA and MBALATA estimators, described in Chapter
6, give large absolute residuals for the outliers. Problem 5.9 shows how to
create RR and FF plots.

5.7 MLR Outlier Detection

Do not attempt to build a model on a set of poor data! In human surveys,
one often finds 14–inch men, 1000–pound women, students with “no” lungs,
and so on. In manufacturing data, one can find 10,000 pounds of material

in a 100 pound capacity barrel, and similar obvious errors. All the planning,
and training in the world will not eliminate these sorts of problems. ... In
our decades of experience with “messy data,” we have yet to find a large

data set completely free of such quality problems.
Draper and Smith (1981, p. 418)

There is an enormous literature on outlier detection in multiple linear
regression. Typically a numerical measure such as Cook’s distance or a resid-
ual plot based on resistant fits is used. The following terms are frequently
encountered.

Definition 5.28. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers are
in fact good cases. Swamping occurs if the analysis suggests that one or more
good cases are outliers.
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The following techniques are useful for detecting outliers when the multiple
linear regression model is appropriate.
1) Find the OLS residuals and fitted values and make a response plot and
a residual plot. Look for clusters of points that are separated from the bulk
of the data and look for residuals that have large absolute values. Beginners
frequently label too many points as outliers. Try to estimate the standard
deviation of the residuals in both plots. In the residual plot, look for residuals
that are more than 5 standard deviations away from the r = 0 line.
2) Make an RR plot. See Figures 1.1 and 6.4.
3) Make an FF plot. See Figure 6.3 and Problem 5.9.
4) Display the residual plots from several different estimators. See Figure 1.2.
5) Display the response plots from several different estimators. This can be
done by adding Y to the FF plot.
6) Make a DD plot of the continuous predictors.
7) Make a scatterplot matrix of several diagnostics such as leverages, Cook’s
distances and studentized residuals.
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Fig. 5.8 Residual and Response Plots for the Tremearne Data



232 5 Multiple Linear Regression

Example 5.12. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable Y .
The five predictor variables used were height when sitting, height when kneel-
ing, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 5.8 presents the OLS residual and response plots for this data
set. Points corresponding to cases with Cook’s distance > min(0.5, 2p/n) are
shown as highlighted squares (cases 3, 44 and 63). The 3rd person was very
tall while the 44th person was rather short. From the plots, the standard
deviation of the residuals appears to be around 10. Hence cases 3 and 44 are
certainly worth examining, but are not necessarily outliers. Two other cases
have residuals near fifty. The plots can be made with the following commands.

source("G:/rpack.txt")

#assume the data is stored in R matrix major

X<-major[,-6]; Y <- major[,6]; MLRplot(X,Y)

Data sets like this one are very common. The majority of the cases seem to
follow a multiple linear regression model with iid Gaussian errors, but a small
percentage of cases seem to come from an error distribution with heavier tails
than a Gaussian distribution.

Detecting outliers is much easier than deciding what to do with them.
After detection, the investigator should see whether the outliers are recording
errors. The outliers may become good cases after they are corrected. But
frequently there is no simple explanation for why the cases are outlying.
Typical advice is that outlying cases should never be blindly deleted and that
the investigator should analyze the full data set including the outliers as well
as the data set after the outliers have been removed (either by deleting the
cases or the variables that contain the outliers).

Typically two methods are used to find the cases (or variables) to delete.
The investigator computes OLS diagnostics and subjectively deletes cases,
or a resistant multiple linear regression estimator is used that automatically
gives certain cases zero weight.

Suppose that the data has been examined, recording errors corrected, and
impossible cases deleted. For example, in the Buxton (1920) data, 5 people
with heights of 0.75 inches were recorded. For this data set, these heights
could be corrected. If they could not be corrected, then these cases should be
discarded since they are impossible. If outliers are present even after correct-
ing recording errors and discarding impossible cases, then we can add two
additional rough guidelines.

First, if the purpose is to display the relationship between the predictors
and the response, make a response plot using the full data set (computing the
fitted values by giving the outliers weight zero) and using the data set with
the outliers removed. Both plots are needed if the relationship that holds for
the bulk of the data is obscured by outliers. The outliers are removed from
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the data set in order to get reliable estimates for the bulk of the data. The
identity line should be added as a visual aid and the proportion of outliers
should be given. Secondly, if the purpose is to predict a future value of the
response variable, then a procedure such as that described in Example 1.5
may be useful. The prediction interval based on the shorth given by Equation
(5.26) may also be useful.

For multiple linear regression, the OLS response and residual plots are
very useful for detecting outliers. The DD plot of the continuous predictors is
also useful. Use the rpack functions MLRplot and ddplot4. Response and
residual plots from outlier resistant methods are also useful. See Chapter 6.

Huber and Ronchetti (2009, p. 154) noted that efficient methods for iden-
tifying leverage groups are needed. Such groups are often difficult to detect
with regression diagnostics and residuals, but often have outlying fitted val-
ues and responses that can be detected with response and residual plots. The
following rules of thumb are useful for finding influential cases and outliers.
The trimmed views estimator of Section 6.1 is also useful. Dragging the plots,
so that they are roughly square, can be useful.

When the bulk of the data follows the unimodal MLR model of Definition
5.13, the following rules of thumb are useful for finding influential cases and
outliers. Look for points with large absolute residuals and for points far away
from Y . Also look for gaps separating the data into clusters. The OLS fit often
passes through a cluster of outliers, causing a large gap between a cluster
corresponding to the bulk of the data and the cluster of outliers. When such
a gap appears, it is possible that the smaller cluster corresponds to good
leverage points: the cases follow the same model as the bulk of the data. To
determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit an MLR estimator such as OLS to the
bulk of the data. Denote the weighted estimator by β̂w. Then plot Ŷw versus
Y using the entire data set. If the identity line passes through the cluster,
then the cases in the cluster may be good leverage points, otherwise they
may be outliers.

To see why gaps are important, suppose that OLS was used to obtain
Ŷ = m̂. If the model contains a constant, then the squared correlation
(corr(Y, Ŷ ))2 is equal to the coefficient of determination R2. Even if an alter-
native MLR estimator is used, R2 over emphasizes the strength of the MLR
relationship when there are two clusters of data since much of the variability
of Y is due to the smaller cluster.

Assume that OLS is used to fit the model and to make the response plot
Ŷ versus Y . Then the ith Cook’s distance CDi tends to be large if Ŷ is far
from the sample mean Y and if the corresponding absolute residual |ri| is not
small. If Ŷ is close to Y then CDi tends to be small unless |ri| is large. An
exception to these rules of thumb occurs if a group of cases form a cluster
and the OLS fit passes through the cluster. Then the CDi’s corresponding
to these cases tend to be small even if the cluster is far from Y .
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Influence diagnostics such as Cook’s distances CDi from Cook (1977)
and the weighted Cook’s distances WCDi from Peña (2005) are some-
times useful. Although an index plot of Cook’s distance CDi may be use-
ful for flagging influential cases, the index plot provides no direct way of
judging the model against the data. As a remedy, cases in the plots with
CDi > min(0.5, 2p/n) are highlighted with open squares, and cases with
|WCDi − median(WCDi)| > 4.5MAD(WCDi) are highlighted with crosses,
where the median absolute deviation MAD(wi) = median(|wi−median(wi)|).

Example 5.11 (continued): Figure 5.9 shows the response plot and
residual plot for the Buxton data. Notice that the OLS fit passes through
the outliers, but the response plot is resistant to Y –outliers since Y is on the
vertical axis. Also notice that although the outlying cluster is far from Y ,
only two of the outliers had large Cook’s distance and only one case had a
large WCDi. Hence masking occurred for the Cook’s distances, the WCDi

and for the OLS residuals, but not for the OLS fitted values. Figure 6.1 shows
that plots using lmsreg and ltsreg were similar, but MBA was effective.
Figure 5.9 was made with the following R commands.

source("G:/rpack.txt"); source("G:/robdata.txt")

mlrplot4(buxx,buxy) #right click Stop twice

High leverage outliers are a particular challenge to conventional numerical
MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 6.1
is also effective for detecting outliers and other departures from the MLR
model.)

Example 5.13. Hawkins et al. (1984) present a well known artificial data
set where the first 10 cases are outliers while cases 11-14 are good leverage
points. Figure 5.10 shows the residual and response plots based on the OLS
estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n), and
the identity line is shown in the response plot. Since the good cases 11-14
have the largest Cook’s distances and absolute OLS residuals, swamping has
occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 6.1 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity line
often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
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response plot and residual plot is usually able to detect the outliers. The
CDi and WCDi are the most effective when there is a single cluster about
the identity line as in Example 5.12. If there is a second cluster of outliers or
good leverage points or if there is nonconstant variance, then these numerical
diagnostics tend to fail.

Example 5.14. Wood (1973) provides data where the octane number is
predicted from 3 feed compositions and the log of a combination of process
conditions. The OLS response and residual plots in Figure 5.11 suggest that
the model is linear but the constant variance assumption may not be rea-
sonable. There appear to be three groups of data. For this data, none of the
cases had large CDi or WCDi. Tremendous profit can be gained by raising
the octane number by one point, and the two cases with the largest fitted
values Ŷ ≈ 97 were of the greatest interest.
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5.8 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X, Y ) = T (X , Y ), (5.32)

the vector of predicted values is
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Ŷ = Ŷ (X, Y ) = Xβ̂(X , Y ), (5.33)

and the vector of residuals is

r = r(X , Y ) = Y − Ŷ . (5.34)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W , Z) is the new data set.

Definition 5.29. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X , Y + Xu) = T (X , Y + Xu) = T (X , Y ) + u = β̂(X , Y ) + u. (5.35)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W , Z) =

Z − Ẑ = r(X , Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .
Also see Problem 5.6.

Definition 5.30. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X , Y ) = cβ̂(X , Y ). (5.36)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X , Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 5.31. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA, Y ) = T (XA, Y ) = A−1T (X , Y ) = A−1β̂(X , Y ). (5.37)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA, Y ) =

XAA−1β̂(X, Y ) = Ŷ , and r(XA, Y ) = Z − Ẑ = Y − Ŷ = r(X, Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 5.32. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P T P = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX , PY ) = T (P X, P Y ) = T (X, Y ) = β̂(X, Y ). (5.38)
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Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X , PY ) =
P r(X , Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p + 1) augmented matrix (X , Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 5.3. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 7.11 is used to fit the data with Z = Wη +e.
Then obtain β̂ from η̂.

The remainder of this section gives a standard definition of breakdown and
then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated
cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 5.33. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T, W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 5.34. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2

(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤ M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.
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Theorem 5.11. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 5.33.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤ M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
In the literature it is usually assumed that the original data are in general
position: q = p − 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)
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If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 5.35. Let y be an n × 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ Rn with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ Rn and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in Rn.

Definition 5.36. Let G be an n × p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n × p matrices G and H .

Example 5.15. The q-norm of a vector y is ‖y‖q = (|y1|q + · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q

‖y‖q
. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GT G. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (5.39)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (5.40)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (5.41)
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1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (5.42)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 5.16. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (5.40), (5.41),
and (5.42). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 5.17. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression

model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 5.12. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]
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where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2
i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2
i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) < ∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of
cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

5.9 MLR Concentration Algorithms

Resistant estimators are often created by computing several trial fits bi that
are estimators of β. Then a criterion is used to select the trial fit to be used
in the resistant estimator.

Definition 5.37. Suppose c = cn ≈ n/2. The LMS(c) criterion is

QLMS(b) = r2
(c)(b) (5.43)

where r2
(1) ≤ · · · ≤ r2

(n) are the ordered squared residuals, and the LTS(c)
criterion is

QLTS(b) =

c∑

i=1

r2
(i)(b). (5.44)

The LTA(c) criterion is

QLTA(b) =

c∑

i=1

|r(b)|(i) (5.45)

where |r(b)|(i) is the ith ordered absolute residual.
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Three impractical high breakdown robust estimators are the Hampel
(1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ Rp that minimizes
the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
too long to compute. LTS and LTA are

√
n consistent while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.

Concentration algorithms are widely used since impractical brand name
estimators, such as LMS, LTA, and LTS, take too long to compute. The
FLTS concentration algorithm, defined in Definition 5.40, use K starts and
attractors. The letter “F” is used since a fixed number of K starts, such as
K = 500, is used. A start is an initial estimator of β, and an attractor is an
estimator of β obtained by refining the start. For example, let the start be
an estimator b of β. Find the half set of cn cases with the smallest squared
residuals r2

i where ri(b) = Yi −xT
i b. Compute OLS on this set. This process

could be iterated for k concentration steps, producing an attractor.

Definition 5.38. For multiple linear regression, an elemental set is a set
of p cases.

Some notation is needed for algorithms that use many elemental sets. Let

J ≡ Jm = {m1, ..., mp}

denote the set of indices for the mth elemental set. Since there are n cases,
m1, ..., mp are p distinct integers between 1 and n. For example, if n = 7 and
p = 3, the first elemental set may use cases J1 = {1, 7, 4}, and the second
elemental set may use cases J2 = {5, 3, 6}. The data for the mth elemental
set is (Y Jm

, XJm
) where Y Jm

= (Ym1, ..., Ymp)
T is a p × 1 vector, and the

p × p matrix

XJm
=





xT
m1

xT
m2
...

xT
mp




=





xm1,1 xm1,2 . . . xm1,p

xm2,1 xm2,2 . . . xm2,p

...
...

. . .
...

xmp,1 xmp,2 . . . xmp,p




.

Then the elemental fit is a hyperplane that passes through the p cases of the
elemental set. For p = 2, the hyperplane is a line.

Definition 5.39. The elemental fit from the ith elemental set Ji is the
OLS estimator β̂Ji

= (XT
Ji

XJi
)−1XT

Ji
Y Ji

= X−1
Ji

Y Ji
applied to the cases

corresponding to the elemental set provided that the inverse of XJi
exists.
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Definition 5.40. A start is an initial trial fit and an attractor is the final
fit generated by the algorithm from the start. Let b0,j be the jth start and
compute all n residuals ri(b0,j) = Yi − xT

i b0,j. Let bn/2c ≤ cn ≤ bn/2c +
b(p + 1)/2c. i) For an FLTS concentration algorithm, at the next iteration,
the OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding
to the smallest squared residuals r2

i (b0,j). This iteration can be continued for
k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. The result
of the iteration bk,j is called the jth attractor where j = 1, ..., K. The final
FLTS concentration algorithm estimator uses the attractor that minimizes
the LTS criterion.

ii) For an FLTA concentration algorithm, at the next iteration, the L1

estimator b1,j is computed from the cn ≈ n/2 cases corresponding to the
smallest absolute residuals |ri(b0,j)|. This iteration can be continued for k
steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j where bk,j is
the jth attractor and j = 1, ..., K. The final FLTA concentration algorithm
estimator uses the attractor that minimizes the LTA criterion.

iii) The FLMS concentration algorithm uses the L∞ estimator and the
LMS criterion.

Using k = 10 concentration steps often works well, and the basic resam-
pling algorithm is a special case with k = 0 concentration steps, i.e., the
attractors are the starts.

Definition 5.41. The elemental basic resampling algorithm uses K ele-
mental starts that are equal to the attractors (hence k = 0). Compute the
attractors b0,1, ..., b0,K, and the elemental basic resampling estimator uses
the attractor that minimizes the (e.g. LMS, LTA, or LTS) criterion.

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g. K = 500. Note that an estimator can not be consistent for θ unless
the number of randomly selected cases goes to ∞, except in degenerate situa-
tions. The following theorem shows the widely used elemental estimators are
zero breakdown estimators. (If K = Kn → ∞, then the elemental estimator
is zero breakdown if Kn = o(n). A necessary condition for the elemental basic
resampling estimator to be consistent is Kn → ∞.)

Theorem 5.13: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

Remark 5.4. The number of randomly selected elemental sets needs to
go to ∞ as n → ∞ to get a consistent estimator. The L1 estimator and



5.9 MLR Concentration Algorithms 245

X

Y

0 5 10

0
2

4
6

8

a) A Start for the Animal Data

X
Y

0 5 10

0
2

4
6

8

b) The Attractor for the Start

Fig. 5.12 The Highlighted Points are More Concentrated about the Attractor

the sample median (when n is odd) are consistent and both estimators are
determined by an elemental set, but all n cases are used to choose those
elemental sets.

Remark 5.5. Theorem 5.13 shows that shows that the elemental basic
resampling PROGRESS estimators of Rousseeuw (1984) and Rousseeuw and
Leroy (1987) are zero breakdown and inconsistent. Yohai’s two stage estima-
tors, such as MM, need initial consistent high breakdown estimators such as
LMS, but were implemented with the inconsistent zero breakdown elemental
estimators such as lmsreg. See Hawkins and Olive (2002, p. 157). You can
get consistent estimators if K = Kn → ∞. If the concentration algorithm is
iterated to convergence, it is not known whether the resulting estimator is
consistent or not. The Hubert et al. (2008) claim that LTS can be computed
efficiently by FLTS = Fast-LTS is false. See similar results below Theorem
3.15 for multivariate location and dispersion.

Example 5.18. As an illustration of the FLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The re-
sponse Y is the log brain weight and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of

the c = 14 smallest absolute residuals

14∑

i=1

|r|(i)(b0,1) = 12.101. Figure 5.12a
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Fig. 5.13 Starts and Attractors for the Animal Data

shows the scatterplot of x and y. The start is also shown and the 14 cases
corresponding to the smallest absolute residuals are highlighted. The L1 fit to

these c highlighted cases is b1,1 = (2.076, 0.979)T and

14∑

i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
absolute residuals, obtaining the corresponding L1 fit and repeating. The
attractor ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated

at the attractor is

14∑

i=1

|r|(i)(ba,1) = 2.172. Figure 5.12b shows the attractor

and that the c highlighted cases corresponding to the smallest absolute resid-
uals are much more concentrated than those in Figure 5.12a. Figure 5.13a
shows 5 randomly selected starts while Figure 5.13b shows the corresponding
attractors. Notice that the elemental starts have more variability than the
attractors, but if the start passes through an outlier, so does the attractor.

Remark 5.6. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms that use K elemental sets decreases rapidly
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as p increases. All practical estimators have outlier configurations where they
perform poorly. If p is small, elemental algorithms tend to have trouble when
there is a weak regression relationship for the bulk of the data and a cluster
of outliers that are not good leverage points (do not fall near the hyperplane
followed by the bulk of the data). The Buxton (1920) data set is an example.

Suppose the MLR data set has n cases where d are outliers and n− d are
“clean” (not outliers). The the outlier proportion γ = d/n. Suppose that K
elemental sets are chosen with replacement and that it is desired to find K
such that the probability P(that at least one of the elemental sets is clean)
≡ P1 ≈ 1 − α where α = 0.05 is a common choice. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1− [1− (1− γ)p]K by independence. Hence
α ≈ [1− (1 − γ)p]K or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(5.46)

using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Figures 3.9–
3.15.

Table 5.4 Largest p for a 95% Chance of a Clean Subsample.

K

γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952
0.05 99 134 158 203 247 292 337 382
0.10 48 65 76 98 120 142 164 186
0.15 31 42 49 64 78 92 106 120
0.20 22 30 36 46 56 67 77 87
0.25 17 24 28 36 44 52 60 68
0.30 14 19 22 29 35 42 48 55
0.35 11 16 18 24 29 34 40 45
0.40 10 13 15 20 24 29 33 38
0.45 8 11 13 17 21 25 28 32
0.50 7 9 11 15 18 21 24 28

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
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p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 5.13.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(5.47)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Table 5.4 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given by
Equation (5.47). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contami-
nation proportion γ = 0.5. Since clean elemental fits have great variability,
an algorithm needs to produce many clean fits in order for the best fit to
be good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

Theorem 5.14. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (5.48)

Proof. As in Remark 3.5, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �

The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
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every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

Theorem 5.15. If the clean data are in general position and if a high
breakdown start is added to an FLTA, FLTS, or FLMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2

(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn
. Then QLTS(b1m) =

cn∑

i=1

r2
(i)(b1m) ≤

cn∑

j=1

r2
ij

(b1m) ≤
cn∑

j=1

r2
ij

(b0m) =

cn∑

j=1

r2
(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 5.15 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 6.15.

Definition 5.42. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 5.16. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.

Proof. The start can be taken to be β̂w with w = 1 from Theorem 5.12.

Since the start is high breakdown, so is the attractor β̂B by Theorem 5.15.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
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estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2

i (β̂))/MED(r2
i (β)) → 1 as

n → ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 5.17. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2
i (β̂C)) ≤ MED(r2

i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2
i (β̂C)) → MED(e2) in probability where MED(e2) is the population

median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

5.10 Complements

Following Cook and Weisberg (1999a, p. 396), a residual plot is a plot of a
function of the predictors versus the residuals r, while a model checking plot
is a plot of a function of the predictors versus the response. Researchers need
to know what are the most important residual and model checking plots. For
the 1D regression model of Definition 1.1, the most important model checking
plot is the response plot of ĥ(x) versus Y , and the most important residual

plot is the plot of ĥ(x) versus r. If p = 1 so there is a single predictor x, then

h(x) = ĥ(x) = x and the response plot is widely used. For p > 2 the response
plot is more important than any residual plot, but is not yet widely used.

Application 5.1 was suggested by Olive (2004b). An advantage of this
graphical method is that it works for linear models: that is, for multiple lin-
ear regression and for many experimental design models. Notice that if the
plotted points in the transformation plot follow the identity line, then the plot
is also a response plot. The method is also easily performed for MLR meth-
ods other than least squares. Plotting the residual plots can also be useful,
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but they do not distinguish between nonlinear monotone relationships and
nonmonotone relationships. See Fox (1991, p. 55). Response, residual, and
transformation plots also very useful for outlier detection for linear models.

Cook and Olive (2001) also suggest a graphical method for selecting and
assessing response transformations for linear models where the “transforma-
tion plot” of Ẑi versus Wi is made for each of the seven values of λ ∈ ΛL.

In a classic paper, Box and Cox (1964) developed numerical methods for
estimating λo in the family of power transformations. This method also works
for many experimental design models. It is well known that the Box–Cox
normal likelihood method for estimating λo can be sensitive to remote or
outlying observations. Also see Tukey (1957). Yeo and Johnson (2000) provide
a family of transformations that does not require the variables to be positive.

Section 5.4 followed Olive (2007) closely. See Di Bucchianico, Einmahl, and
Mushkudiani (2001) for related intervals for the location model and Preston
(2000) for related intervals for MLR. For a review of prediction intervals, see
Patel (1989). Cai, Tian, Solomon, and Wei (2008) show that the Olive (2007)
intervals are not optimal for symmetric bimodal distributions. Some refer-
ences for PIs based on robust regression estimators are given by Giummolè
and Ventura (2006). Chapter 7 gives PIs for after variable selection.

Excellent introductions to OLS diagnostics include Fox (1991) and Cook
and Weisberg (1999a, p. 161-163, 183-184, section 10.5, section 10.6, ch. 14,
ch. 15, ch. 17, ch. 18, and section 19.3). Hoaglin and Welsh (1978) examines
the hat matrix while Cook (1977) introduces Cook’s distance. Some other pa-
pers of interest include Hettmansperger and Sheather (1992), Velilla (1998),
and Velleman and Welsch (1981).

Olive (2005) suggests using residual, response, RR, and FF plots to detect
outliers while Hawkins and Olive (2002, p. 141, 158) suggest using the RR
and FF plots. The four plots are best for n > 5p. Typically RR and FF
plots are used if there are several estimators for one fixed model, e.g. OLS
versus L1 or frequentist versus Bayesian for multiple linear regression, or if
there are several competing models. An advantage of the FF plot is that the
response Y can be added to the plot. FF and RR plots are useful for variable
selection. Park, Kim, and Kim (2012) show response plots are competitive
with the best robust regression methods for outlier detection on some outlier
data sets that have appeared in the literature.

Rousseeuw and van Zomeren (1990) suggest that Mahalanobis distances
based on “robust estimators” of location and dispersion can be more useful
than the distances based on the sample mean and covariance matrix. They
show that a plot of robust Mahalanobis distances RDi versus residuals from
“robust regression” can be useful.

Several authors have suggested using the response plot to visualize the
coefficient of determination R2 in multiple linear regression. See for example
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Chambers, Cleveland, Kleiner, and Tukey (1983, p. 280). Anderson-Sprecher
(1994) provides an excellent discussion about R2.

The fact that response plots are extremely useful for model assessment
and for detecting influential cases and outliers for an enormous variety of
statistical models does not seem to be well known. Certainly in any multiple
linear regression analysis, the response plot and the residual plot of Ŷ versus
r should always be made. Section 5.4 and Olive (2007) use the response plot
to explain prediction intervals.

For more on the behavior of fits from randomly selected elemental sets,
see Hawkins and Olive (2002), Olive (2008), and Olive and Hawkins (2007a).

5.11 Problems

Problems with an asterisk * are especially important.

5.1. Show that the hat matrix H = X(XT X)−1XT is idempotent, that
is, show that HH = H2 = H .

5.2. Show that I −H = I −X(XT X)−1XT is idempotent, that is, show
that (I − H)(I − H) = (I − H)2 = I − H.

Output for Problem 5.3 Coefficient Estimates Response = height

Label Estimate Std. Error t-value p-value

Constant 227.351 65.1732 3.488 0.0008

sternal height 0.955973 0.0515390 18.549 0.0000

finger to ground 0.197429 0.0889004 2.221 0.0295

R Squared: 0.879324 Sigma hat: 22.0731

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 259167. 129583. 265.96 0.0000

Residual 73 35567.2 487.222

5.3. The output above is from the multiple linear regression of the response
Y = height on the two nontrivial predictors sternal height = height at shoulder
and finger to ground = distance from the tip of a person’s middle finger to
the ground.

a) Consider the plot with Yi on the vertical axis and the least squares
fitted values Ŷi on the horizontal axis. Sketch how this plot should look if the
multiple linear regression model is appropriate.

b) Sketch how the residual plot should look if the residuals ri are on the
vertical axis and the fitted values Ŷi are on the horizontal axis.
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c) From the output, are sternal height and finger to ground useful for
predicting height? (Perform the ANOVA F test.)

5.4. Suppose that the scatterplot of X versus Y is strongly curved rather
than ellipsoidal. Should you use simple linear regression to predict Y from
X? Explain.

5.5. Suppose that the 95% confidence interval for β2 is [−17.457, 15.832].
Suppose only a constant and X2 are in the MLR model. Is X2 a useful linear
predictor for Y ? If your answer is no, could X2 be a useful predictor for Y ?
Explain.

5.6. Assume that the model has a constant β1 so that the first column of
X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.

5.7. By the OLS CLT, under mild regularity conditions,
√

n(β̂ − β)
D→

Np(0, V ). If A is a constant k × p matrix with rank k, what is the limiting

distribution of A
√

n(β̂ − β) =
√

n(Aβ̂ − Aβ)?

Problems using R. Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. tplot, will display the code for the function. Use the
args command, e.g. args(tplot), to display the needed arguments for the
function.

5.8∗. a) Download the R function tplot that makes the transformation
plots for λ ∈ ΛL.

b) Use the following R command to make a 100 × 3 matrix. The columns
of this matrix are the three nontrivial predictor variables.

nx <- matrix(rnorm(300),nrow=100,ncol=3)

Use the following command to make the response variable Y.

y <- exp( 4 + nx%*%c(1,1,1) + 0.5*rnorm(100) )

This command means the MLR model log(Y ) = 4+X2 +X3 +X4 +e will
hold where e ∼ N(0, 0.25).

To find the response transformation, you need the program tplot given
in a). Type ls() to see if the programs were downloaded correctly.

c) To make the transformation plots type the following command.

tplot(nx,y)
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The first plot will be for λ = −1. Move the cursor to the plot and hold the
rightmost mouse key down (and in R, highlight stop) to go to the next
plot. Repeat these mouse operations to look at all of the plots. The identity
line is included in each plot. When you get a plot where the plotted points
cluster about the identity line with no other pattern, include this transfor-
mation plot in Word by pressing the Ctrl and c keys simultaneously. This
will copy the graph. Then in Word use the menu commands “File>Paste”.
You should get the log transformation.

d) Type the following commands.

out <- lsfit(nx,log(y))

ls.print(out)

Use the mouse to highlight the created output and include the output in
Word.

e) Write down the least squares equation for ̂log(Y ) using the output in
d).

5.9. a) Download the R functions piplot and pisim.

b) The command pisim(n=100, type = 1) will produce the mean
length of the classical, semiparametric, conservative and asymptotically op-
timal PIs when the errors are normal, as well as the coverage proportions.
Give the simulated lengths and coverages.

c) Repeat b) using the command pisim(n=100, type = 3). Now the
errors are EXP(1) - 1.

d) Download robdata.txt and type the command
piplot(cbrainx,cbrainy). This command gives the semiparametric PI
limits for the Gladstone data. Include the plot in Word.

e) The infants are in the lower left corner of the plot. Do the PIs seem to
be better for the infants or the bulk of the data? Explain briefly.

5.10∗. a) After entering the two source commands above, enter the fol-
lowing command.

> MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys to
make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping or masking?



5.11 Problems 255

c) RR plots: One feature of the MBA estimator (see Chapter 6) is that it
depends on the sample of 7 centers drawn and changes each time the function
is called. In ten runs, about seven plots will look like Figure 6.1, but in about
three plots the MBA estimator will also pass through the outliers. Make the
RR plot by pasting the commands for this problem into R, and include the
plot in Word.

d) FF plots: the plots in the top row will cluster about the identity line if
the MLR model is good or if the fit passes through the outliers. Make the FF
plot by pasting the commands for this problem into R, and include the plot
in Word.

5.11. a) If necessary, enter the two source commands above Problem 5.7.
The diagplot function makes a scatterplot matrix of various OLS diagnos-
tics.

b) Enter the following command and include the resulting plot in Word.

> diagplot(buxx,buxy)

5.12. This problem fits OLS to n inliers and k outliers. The inliers follow
the model Y = x+e (the mean function is the identity line) while the outliers
are a near point mass with (x, y) ≈ (20,−20). Copy and paste the commands
for this problem into R. Then copy and paste the four plots into Word.

The first three plots a), b), and c) use 1 outlier and n = 10, 100, and 1000.

The OLS line Ŷ = β̂1 + β̂2x is added to each plot. When n = 10, the OLS
line is tilted away from the identity line. There is still some tilt for n = 100
but little tilt for n = 1000. Plot d) uses 40 outliers but 10000 inliers, and the
OLS line is close to the identity line. (The outlier resistance occurs since OLS
minimizes

∑
r2
i . If the OLS line goes through the outliers, then the inliers

are fit badly. If there are enough inliers, then fitting the inliers well and the
outliers poorly leads to a lower OLS criterion than fitting the outliers well.
One outlier can tilt OLS arbitrarily badly, but the one outlier needs to be
very far from the bulk of the data if the number of inliers is large. A small
percentage of outliers, e.g. 1%, can tilt OLS even if the outliers are not very
fall from the bulk of the data.)


