
Chapter 6

Robust and Resistant Regression

The brand name high breakdown regression estimators discussed in the last
chapter take too long to compute, but the LMS, LTA, and LTS criteria are
used in practical regression algorithms to screen attractors. The practical
algorithms in the literature tend to be zero breakdown and inconsistent.
Chapter 5 showed that the response plot is useful for detecting MLR out-
liers, defined MLR breakdown, and the MLR concentration algorithm. This
chapter gives several practical outlier resistant MLR estimators that are

√
n

consistent.

6.1 Resistant Multiple Linear Regression

The first outlier resistant regression method was given by Application 3.3.
Call the estimator the MLD set MLR estimator. Let the ith case wi =
(Yi, x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Now let D be the RMVN set U , the RFCH set V , or the covmb2
set B. Find D by applying the MLD estimator to the ui, and then run the
MLR method on the m cases wi corresponding to the set D indices i1, ..., im,
where m ≥ n/2. The set B can be used even if p > n. The theory of the
MLR method applies to the cleaned data set since Y was not used to pick
the subset of the data. Efficiency can be much lower since m cases are used
where n/2 ≤ m ≤ n, and the trimmed cases tend to be the “farthest” from
the center of u. The rpack function getu gets the RMVN set U . See the
following R code for the Buxton (1920) data where we could use the covmb2
set B instead of the RMVN set U by replacing the command getu(x) by
getB(x).

Y <- buxy

x <- buxx

indx <- getu(x)$indx #u = x for this example
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258 6 Robust and Resistant Regression

Yc <- Y[indx]

Xc <- x[indx,]

length(Y) - length(Yc) #the RMVN set (= cleaned data)

#omitted 4 inliers and 5 outliers

MLRplot(Xc,Yc) #right click Stop two times,

#response plot for cleaned data

out<-lsfit(Xc,Yc)

ESP <- x%*%out$coef[-1] + out$coef[1]

plot(ESP,Y)

abline(0,1) #response plot using the resistant

#MLR estimator and all of the data

A good resistant estimator is the Olive (2005a) median ball algorithm
(MBA or mbareg). The Euclidean distance of the ith vector of predictors xi

from the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p +3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits (attractors)
are generated and the MBA estimator is the fit that minimizes the criterion.
The median squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, the
MBA estimator is a

√
n consistent estimator of the same parameter vector β

estimated by OLS under mild conditions on the zero mean error distribution.
This result occurs since each of the 7K + 1 attractors is

√
n consistent when

there are no outliers. See Remark 6.1 and Theorem 6.1.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T, C)
is computed and used to create the squared Mahalanobis distances D2

i for
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each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (6.1)

The ith case (Yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from the MLD set MLR estimator
that uses the MLD set on the xi, since the MLD set uses a random amount
of trimming. (The ellipsoidal trimming technique can also be used for other
regression models, and the theory of the regression method tends to apply
to the method applied to the cleaned data that was not trimmed since the
response variables were not used to select the cases. See Chapter 9.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The Olive (2005a) resistant trimmed views estimator combines ellipsoidal
trimming and the response plot. First compute (T, C) on the xi, perhaps
using the RMVN estimator. Trim the M% of the cases with the largest Ma-
halanobis distances, and then compute the MLR estimator β̂M from the
remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate

ten response plots of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer

plots are used for small data sets if β̂M can not be computed for large M .)
These plots are called “trimmed views.” The TV estimator will also be called
the tvreg estimator. Since each of the 10 attractors β̂M is

√
n consistent,

so is the TV estimator. See Theorem 6.1.

Definition 6.1. The trimmed views (TV) estimator β̂T,n corresponds to
the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 6.1. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well over
five feet! OLS was used on the cases remaining after trimming, and Figure
6.1 shows four trimmed views corresponding to 90%, 70%, 40%, and 0% trim-
ming. The OLS TV estimator used 70% trimming since this trimmed view
was best. Since the vertical distance from a plotted point to the identity line
is equal to the case’s residual, the outliers had massive residuals for 90%,
70%, and 40% trimming. Notice that the OLS trimmed view with 0% trim-
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ming “passed through the outliers” since the cluster of outliers is scattered
about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n, Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959). See Theorems
6.1 and 11.17.
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Fig. 6.1 4 Trimmed Views for the Buxton Data

Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

X
T
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of
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(

X
T
M,nXM,n

n

)

−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√

n(β̂M,n − β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). Notice that this result

does not imply that the distribution of β̂T,n is normal.

Remark 6.1. When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators
do estimate the same β as OLS asymptotically, but samples may need to
be huge before the MBA and trimmed views estimates of the constant are
close to the OLS estimate of the constant. If the trimmed views estimator
is modified so that the LTS, LTA, or LMS criterion is used to select the
final estimator, then a conjecture is that the limiting distribution is similar

to that of the variable selection estimator:
√

n(β̂MTV − β)
D→ ∑k

i=1 πiwi

where 0 ≤ πi ≤ 1 and
∑k

i=1 πi = 1. The index i corresponds to the fits
considered by the modified trimmed views estimator with k = 10. For the
MBA estimator and the modified trimmed views estimator, the prediction
region method, described in Section 7.5, may be useful for testing hypotheses.
Large sample sizes may be needed if the error distribution is not symmetric
since the constant β̂1 needs large samples. See Olive (2017b, p. 444) for
an explanation for why large sample sizes may be needed to estimate the
constant.

6.1.1 The rmreg2 Estimator

The Olive (2017b) robust multiple linear regression estimator rmreg2 is the
classical multiple linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi)

T for i = 1, ..., n.
Hence ui is the ith case with xi1 = 1 deleted. This estimator is one of the most
outlier resistant practical robust MLR estimators. The rmreg2 estimator has
been shown to be consistent if the ui are iid from a large class of elliptically
contoured distributions, which is a much stronger assumption than having
iid errors ei.
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First we will review some results for multiple linear regression. Let x =
(1, wT )T and let

Cov(w) = E[(w − E(w))(w − E(w))T] = Σw

and Cov(w, Y ) = E[(w − E(w))(Y − E(Y ))] = ΣwY . Let β = (α, ηT )T

be the population OLS coefficients from the regression of Y on x (w and a
constant), where α is the constant and η is the vector of slopes. Let the OLS

estimator be β̂ = (α̂, η̂T )T . Then the population coefficients from an OLS
regression of Y on x are

α = E(Y ) − ηT E(w) and η = Σ
−1
w ΣwY. (6.2)

Then the OLS estimator β̂ = (XT X)−1XT Y . The sample covariance
matrix of w is

Σ̂w =
1

n − 1

n
∑

i=1

(wi−w)(wi−w)T where the sample mean w =
1

n

n
∑

i=1

wi.

Similarly, define the sample covariance vector of w and Y to be

Σ̂wY =
1

n − 1

n
∑

i=1

(wi − w)(Yi − Y ).

Suppose that (Yi, w
T
i )T are iid random vectors such that Σ−1

w and ΣwY

exist. Then a second way to compute the OLS estimator is

α̂ = Y − η̂
T
w

P→ α

and
η̂ = Σ̂

−1

w Σ̂wY
P→ η as n → ∞.

A common technique to try to get a robust MLR estimator is to plug
a robust MLD estimator (T, C) for the above quantities. These techniques
were not very good because the robust MLD estimators were poor before the
FCH, RFCH, and RMVN estimators. The rmreg2 estimator is the OLS es-
timator computed from the cases in the RMVN set and the plug in estimator
where (T, C) is the sample mean and sample covariance matrix applied to
the RMVN set when RMVN is applied to vectors ui for i = 1, ..., n (could
use (T, C) = RMVN estimator since the scaling does not matter for this
application). Then (T, C) is a

√
n consistent estimator of (µu, c Σu) if the

ui are iid from a large class of ECp(µu, Σu, g) distributions. Thus rmreg2
estimator is a

√
n consistent estimators of β if the ui are iid from a large

class of elliptically contoured distributions. This assumption is quite strong,
but the robust estimator is useful for detecting outliers. When there are cat-
egorical predictors or the joint distribution of u is not elliptically contoured,
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it is possible that the robust estimator is bad and very different from the
good classical least squares estimator.

The rpack function rmreg2 computes the rmreg2 estimator and produces
the response and residual plots. The function rmreg3 computes the estimator
without the plots. See the following R code.

rmreg2(buxx,buxy) #right click Stop 2 times

rmreg3(buxx,buxy)

The conditions under which the rmreg2 estimator has been shown to
be

√
n consistent are quite strong, but it seems likely that the estimator is

a
√

n consistent estimator of β under mild conditions where the parameter
vector β is not, in general, the parameter vector estimated by OLS. For MLR,
the rpack function rmregboot bootstraps the rmreg2 estimator, and the
function rmregbootsim can be used to simulate rmreg2. Both functions
use the residual bootstrap where the residuals come from OLS. See the R
code below.

out<-rmregboot(belx,bely)

plot(out$betas)

ddplot4(out$betas) #right click Stop

out<-rmregboot(cbrainx,cbrainy)

ddplot4(out$betas) #right click Stop

6.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This section
follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2020. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 5.13.

The following theorem is powerful because it does not depend on the cri-
terion used to choose the attractor, and proves that the mbareg and tvreg

estimators are
√

n consistent. Suppose there are K consistent estimators β̂j

of β, each with the same rate nδ. If β̂A is an estimator obtained by choosing

one of the K estimators, then β̂A is a consistent estimator of β with rate nδ

by Pratt (1959). See Theorem 11.17.
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Theorem 6.1. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n → ∞. �

The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 6.2. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 6.2. Theorem 5.11 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2

(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
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a high breakdown start results in a high breakdown attractor. See Theorem
5.15.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values of
the outliers are large enough, the |ri| values of the outliers will be large, sug-
gesting that the high breakdown estimator is useful for outlier detection. On
the other hand, if the Yi’s are fixed at any values and the x values perturbed,
sufficiently large x-outliers tend to drive the slope estimates to 0, not ∞. For
many estimators, including LTS, LMS, and LTA, a cluster of Y outliers can
be moved arbitrarily far from the bulk of the data but still, by perturbing
their x values, have arbitrarily small residuals. See Example 6.2.

Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 5.42
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 6.2. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√

n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 6.3. Assume the clean data are in general position, and suppose
that both β̂L and β̂C are consistent estimators of β where the regression
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model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗

L = QL/n for LTS and LTA. As n → ∞,

consistent estimators β̂ satisfy Q∗

L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗

L(β̂L), it

follows that Q∗

L(β̂C) − Q∗

L(β̂L) → 0 in probability, while Q∗

L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < a min(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �

Remark 6.3. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiva-
lent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n → ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√

n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√

n consistent estimator of β when β̂C = OLS is
a
√

n consistent estimator of β, but massive sample sizes were still needed to
get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

The situation is worse for multivariate linear regression when hbreg is
used instead of OLS, since there are m constants to be estimated. If the
distribution of the iid error vectors ei is not elliptically contoured, getting
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all m mbareg estimators to estimate all m constants well needs even larger
sample sizes.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS
criteria. We want a near 1 so that hbreg has outlier resistance similar to
β̂A, but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice. The
default hbreg program from rpack uses the

√
n consistent outlier resistant

estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

Next we will show that the hbreg estimator implemented with a = 1.4
using QLTA, β̂C = OLS, and β̂B can greatly improve the estimator β̂A. We

will use β̂A = ltsreg in R and Splus 2000. Depending on the implemen-
tation, the ltsreg estimators use the elemental resampling algorithm, the
elemental concentration algorithm, or a genetic algorithm. Coverage is 50%,
75%, or 90%. The Splus 2000 implementation is an unusually poor genetic
algorithm with 90% coverage. The R implementation appears to be the zero
breakdown inconsistent elemental basic resampling algorithm that uses 50%
coverage. The ltsreg function changes often.

Simulations were run in R with the xij (for j > 1) and ei iid N(0, σ2)

and β = 1, the p × 1 vector of ones. Then β̂ was recorded for 100 runs. The
mean and standard deviation of the β̂j were recorded for j = 1, ..., p. For
n ≥ 10p and OLS, the vector of means should be close to 1 and the vector
of standard deviations should be close to 1/

√
n. The

√
n consistent high

breakdown hbreg estimator performed like OLS if n ≈ 35p and 2 ≤ p ≤ 6,
if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table
7.7 for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg,
and BB denotes β̂B. In the simulations, hbreg estimated the slopes well for
the highly skewed lognormal data, but not the OLS constant. Use the rpack
function hbregsim.
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Table 6.1 MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231
sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019
sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374
sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752
sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214
sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794
sd 0.1273 0.1084 0.1215 0.1206 0.1269

As implemented in rpack, the hbreg estimator is a practical
√

n consistent
high breakdown estimator that appears to perform like OLS for moderate n
if the errors are unimodal and symmetric, and to have outlier resistance
comparable to competing practical “outlier resistant” estimators.

The hbreg, lmsreg, ltsreg, OLS, and β̂B estimators were compared
on the same 25 benchmark data sets. Also see Park et al. (2012). The HB

estimator β̂B was surprisingly good in that the response plots showed that it
was the best estimator for 2 data sets and that it usually tracked the data, but
it performed poorly in 7 of the 25 data sets. The hbreg estimator performed
well, but for a few data sets hbreg did not pick the attractor with the best
response plot, as illustrated in the following example.

Example 6.2. The LMS, LTA, and LTS estimators are determined by a
“narrowest band” covering half of the cases. Hawkins and Olive (2002) sug-
gested that the fit will pass through outliers if the band through the outliers
is narrower than the band through the clean cases. This behavior tends to
occur if the regression relationship is weak, and if there is a tight cluster of
outliers where |Y | is not too large. Also see Wang and Suter (2003). As an
illustration, Buxton (1920, pp. 232-5) gave 20 measurements of 88 men. Con-
sider predicting stature using an intercept, head length, nasal height, bigonal
breadth, and cephalic index. One case was deleted since it had missing values.
Five individuals, numbers 61-65, were reported to be about 0.75 inches tall
with head lengths well over five feet! Figure 6.2 shows the response plots for
hbreg, OLS, ltsreg, and β̂B . Notice that only the fit from β̂B (BBFIT) did
not pass through the outliers, but hbreg selected the OLS attractor. There
are always outlier configurations where an estimator will fail, and hbreg

should fail on configurations where LTA, LTS, and LMS would fail.
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Fig. 6.2 Response Plots Comparing Robust Regression Estimators

The rpack functions ffplot2 and rrplot2 make FF and RR plots using
OLS, ALMS from lmsreg, ALTS from ltsreg, mbareg, an outlier detector
mbalata, BB, and rmreg2. The mbalata estimator is described in Olive
(2017b,

∮

12.6.2). OLS, BB, and mbareg are the three trial fits used by the
default version of the

√
n consistent high breakdown hbreg estimator. The

top row of ffplot2 shows the response plots. The R code below is useful
and shows how to get some of the text’s data sets into R.

library(MASS)

rrplot2(buxx,buxy)

ffplot2(buxx,buxy)

#The following three data sets can be obtained with

#the source("G:/robdata.txt") command

#if the data file is on flash drive G.

rmreg2(buxx,buxy) #right click Stop twice

rmreg2(cbrainx,cbrainy)

rmreg2(gladox,gladoy)

hbk <- matrix(scan(),nrow=75,ncol=5,byrow=T)

hbk <- hbk[,-1]

rmreg2(hbk[,1:3],hbk[,4]) #Outliers are clear

#but fit avoids good leverage points.
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nasty <- matrix(scan(),nrow=32,ncol=6,byrow=T)

nasty <- nasty[,-1]

rmreg2(nasty[,1:4],nasty[,5])

wood <- matrix(scan(),nrow=20,ncol=7,byrow=T)

wood <- wood[,-1]

rmreg2(wood[,1:5],wood[,6]) #failed to find

#the outliers

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

major <- major[,-1]

rmreg2(major[,1:5],major[,6])

Example 6.1, continued. The FF and RR plots for the Buxton (1920)
data are shown in Figures 6.3 and 6.4. Note that only the last four estimators
gives large absolute residuals to the outliers. The top row of Figure 6.3 gives
the response plots for the estimators. If there are two clusters, one in the
upper right and one in the lower left of the response plot, then the identity
line goes through both clusters. Hence the fit passes through the outliers. One
feature of the MBA estimator is that it depends on the sample of 7 centers
drawn and changes each time the function is called. In ten runs, about seven
plots will look like Figures 6.3 and 6.4, but in about three plots the MBA
estimator will also pass through the outliers.

Table 6.2 Summaries for Seven Data Sets, the Correlations of the Residuals from
TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 115 1-10 3,44 2,6,...,30 4,6,8,19
n 87 267 267 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

Table 6.2 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1, and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used
by the TV estimator, the correlation of the residuals from the TV estimator
with the corresponding alternative estimator, and the cases that were out-
liers. If the correlation was greater than 0.9, then the method was effective
in detecting the outliers, and the method failed, otherwise. Sometimes the
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Fig. 6.3 FF Plots for Buxton Data

trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers. Each
model included a constant.

Notice that the TV, MBA, and OLS estimators were the same for the
Gladstone (1905) data and for the Tremearne (1911) major data which had
two small Y –outliers. For the Gladstone data, there is a cluster of infants
that are good leverage points, and we attempt to predict brain weight with
the head measurements height, length, breadth, size, and cephalic index. Orig-
inally, the variable length was incorrectly entered as 109 instead of 199 for
case 115, and the glado data contains this outlier. In 1997, lmsreg was not
able to detect the outlier while ltsreg did. Due to changes in the Splus 2000
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Fig. 6.4 RR Plots for Buxton Data

code, lmsreg detected the outlier but ltsreg did not. These two functions
change often, not always for the better.

6.3 High Breakdown Estimators

Assume that the multiple linear regression model Y = Xβ+e is appropriate
for all or for the bulk of the data and that the clean data are in general posi-
tion. Following Section 5.8, for a high breakdown (HB) regression estimator
b of β, the median absolute residual MED(|r|i) ≡ MED(|r(b)|1, ..., |r(b)|n)
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stays bounded even if close to half of the data set cases are replaced by
arbitrarily bad outlying cases; i.e., the breakdown value of the regression
estimator is close to 0.5.

Perhaps the first HB MLR estimator proposed was the least median of
squares (LMS) estimator. Let |r(b)|(i) denote the ith ordered absolute resid-
ual from the estimate b sorted from smallest to largest, and let r2

(i)(b) denote
the ith ordered squared residual. Next, three of the most important robust
criteria are defined, but the robust estimators take too long to compute. In
the literature, LMS(cn) is used more that LQS(cn), but the term “LMS”
makes the most sense when cn/n → 0.5 as n → ∞.

Definition 6.3. The least quantile of squares (LQS(cn)) estimator mini-
mizes the criterion

QLQS(b) ≡ QLMS(b) = r2
(cn)(b). (6.3)

The LQS(cn) estimator is also known as the least median of squares LMS(cn)
estimator (Hampel 1975, p. 380).

Definition 6.4. The least trimmed sum of squares (LTS(cn)) estimator
(Rousseeuw 1984) minimizes the criterion

QLTS(b) =

cn
∑

i=1

r2
(i)(b). (6.4)

Definition 6.5. The least trimmed sum of absolute deviations (LTA(cn))
estimator (Hössjer 1991) minimizes the criterion

QLTA(b) =

cn
∑

i=1

|r(b)|(i). (6.5)

These three estimators all find a set of fixed size cn = cn(p) ≥ n/2 cases
to cover, and then fit a classical estimator to the covered cases. LQS uses
the Chebyshev fit, LTA uses L1, and LTS uses OLS. Let bxc be the greatest
integer less than or equal to x. For example, b7.7c = 7.

Definition 6.6. The integer valued parameter cn is the coverage of the
estimator. The remaining n−cn cases are given weight zero. In the literature
and software,

cn = bn/2c+ b(p + 1)/2c (6.6)

is often used as the default.

Remark 6.4. Warning: In the literature, “HB regression” estimators
seem to come in two categories. The first category consists of estimators that
have no rigorous asymptotic theory but can be computed for moderate data
sets. The second category consists of estimators that have rigorous asymp-
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totic theory but are impractical to compute. Due to the high computational
complexity of these estimators, they are rarely used; however, the criterion
are widely used for fast approximate algorithm estimators that can detect
certain configurations of outliers. These approximations are typically zero
breakdown inconsistent estimators. One of the most disappointing aspects of
robust literature is that frequently no distinction is made between the im-
practical HB estimators and the inconsistent algorithm estimators used to
detect outliers. Section 6.2 shows how to fix the practical algorithms so that
the resulting estimator is

√
n consistent and high breakdown.

The LTA and LTS estimators are very similar to trimmed means. If the
coverage cn is a sequence of integers such that cn/n → τ ≥ 0.5, then 1 −
τ is the approximate amount of trimming. There is a tradeoff in that the
Gaussian efficiency of LTA and LTS seems to rapidly increase to that of the
L1 and OLS estimators, respectively, as τ tends to 1, but the breakdown value
1− τ decreases to 0, although asymptotic normality of LTA has not yet been
proven. We will use the unifying notation LTx(τ ) for the LTx(cn) estimator
where x is A, Q, or S for LTA, LQS, and LTS, respectively. Since the exact
algorithms for the LTx criteria have very high computational complexity,
approximations based on iterative algorithms are generally used. We will call
the algorithm estimator β̂A the ALTx(τ ) estimator.

Many algorithms use Kn randomly selected “elemental” subsets of p cases
called a “start,” from which the residuals are computed for all n cases. The
consistency and resistance properties of the ALTx estimator depend strongly
on the number of starts Kn used.

For a fixed choice of Kn, increasing the coverage cn in the LTx criterion
seems to result in a more stable ALTA or ALTS estimator. For this reason,
in 2000 Splus increased the default coverage of the ltsreg function to 0.9n
while Rousseeuw and Hubert (1999) recommend 0.75n. The price paid for
this stability is greatly decreased resistance to outliers. Similar issues occur
in the location model: as the trimming proportion α decreases, the Gaussian
efficiency of the α trimmed mean increases to 1, but the breakdown value
decreases to 0.

6.3.1 Theoretical Properties

Many regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (6.7)

when
XT X

n
→ W−1, and when the errors ei are iid with a cdf F and a

unimodal pdf f that is symmetric with a unique maximum at 0. When the
variance V (ei) exists,
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V (OLS, F ) = V (ei) = σ2 while V(L1, F) =
1

4[f(0)]2
.

See Bassett and Koenker (1978). Broffitt (1974) compares OLS, L1, and L∞

in the location model and shows that the rate of convergence of the Chebyshev
estimator is often very poor.

Remark 6.5. Obtaining asymptotic theory for LTA and LTS is a very
challenging problem. Maš̈ıček (2004), Č́ıžek (2006) and V́ıšek (2006) claim
to have shown asymptotic normality of LTS under general conditions. Č́ıžek
(2008) shows that LTA is

√
n consistent. For the location model, Yohai and

Maronna (1976) and Butler (1982) derived asymptotic theory for LTS while
Tableman (1994ab) derived asymptotic theory for LTA. Shorack (1974) and
Shorack and Wellner (1986, section 19.3) derived the asymptotic theory for
a large class of location estimators that use random coverage (as do many
others). In the regression setting, it is known that LQS(τ ) converges at a
cube root rate to a non-Gaussian limit (Davies 1990, Kim and Pollard 1990,
and Davies 1993, p. 1897), and it is known that scale estimators based on
regression residuals behave well (see Welsh 1986).

Negative results are easily obtained. All of the “brand name” high break-
down regression estimators take far too long to compute, and if the “shortest
half” is not unique, then LQS, LTA, and LTS are inconsistent. For example,
the shortest half is not unique for the uniform distribution.

The breakdown results for the LTx estimators are well known. See Hössjer
(1994, p. 151). See Section 5.8 for the definition of breakdown.

Theorem 6.4: Breakdown of LTx Estimators. Assume the clean data
are in general position. Then LMS(τ ), LTS(τ ), and LTA(τ ) have breakdown
value

min(1 − τ, τ ).

Theorem 6.5. Under regularity conditions similar to those in Conjecture
6.1 below, a) the LMS(τ ) converges at a cubed root rate to a non-Gaussian

limit. b) The estimator β̂LTS satisfies Equation (6.7) and

V (LTS(τ ), F ) =

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)
w2dF (w)

[τ − 2F−1(1/2 + τ/2)f(F−1(1/2 + τ/2))]2
. (6.8)

The proof of Theorem 6.5a is given in Davies (1990) and Kim and Pollard
(1990). Also see Davies (1993, p. 1897). The proof of b) is given in Maš̈ıček
(2004), Č́ıžek (2006), and V́ıšek (2006).
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Conjecture 6.1. Let the iid errors ei have a cdf F that is continuous
and strictly increasing on its interval support with a symmetric, unimodal,
differentiable density f that strictly decreases as |x| increases on the support.

Then the estimator β̂LTA satisfies Equation (6.7) and

V (LTA(τ ), F ) =
τ

4[f(0) − f(F−1(1/2 + τ/2))]2
. (6.9)

See Tableman (1994b, p. 392) and Hössjer (1994).

Č́ıžek (2008a) shows that LTA is
√

n consistent, but does not prove that
LTA is asymptotically normal. Assume Conjecture 6.1 is true for the fol-
lowing LTA remarks in this section. Then as τ → 1, the efficiency of LTS
approaches that of OLS and the efficiency of LTA approaches that of L1.
Hence for τ close to 1, LTA will be more efficient than LTS when the er-
rors come from a distribution for which the sample median is more efficient
than the sample mean (Koenker and Bassett, 1978). The results of Ooster-
hoff (1994) suggest that when τ = 0.5, LTA will be more efficient than LTS
only for sharply peaked distributions such as the double exponential. To sim-
plify computations for the asymptotic variance of LTS, we will use truncated
random variables (see Definition 2.27).

Theorem 6.6. Under the symmetry conditions given in Conjecture 6.1,

V (LTS(τ ), F ) =
τσ2

TF (−k, k)

[τ − 2kf(k)]2
(6.10)

and
V (LTA(τ ), F ) =

τ

4[f(0) − f(k)]2
(6.11)

where
k = F−1(0.5 + τ/2). (6.12)

Proof. Let W have cdf F and pdf f . Suppose that W is symmetric about
zero, and by symmetry, k = F−1(0.5 + τ/2) = −F−1(0.5 − τ/2). If W has
been truncated at a = −k and b = k, then the variance of the truncated

random variable WT is V (WT ) = σ2
TF (−k, k) =

∫ k

−k
w2dF (w)

F (k) − F (−k)
by Definition

2.27. Hence
∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)

w2dF (w) = τσ2
TF (−k, k)

and the result follows from the definition of k.
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This result is useful since formulas for the truncated variance have been
given in Chapter 11. The following examples illustrate the result. See Hawkins
and Olive (1999b).

Example 6.3: N(0,1) Errors. If YT is a N(0, σ2) truncated at a = −kσ

and b = kσ, V (YT ) = σ2[1 − 2kφ(k)

2Φ(k) − 1
]. At the standard normal

V (LTS(τ ), Φ) =
1

τ − 2kφ(k)
(6.13)

while V(LTA(τ ), Φ) =
τ

4[φ(0)− φ(k)]2
=

2πτ

4[1 − exp(−k2/2)]2
(6.14)

where φ is the standard normal pdf and k = Φ−1(0.5+τ/2). Thus for τ ≥ 1/2,
LTS(τ ) has breakdown value of 1 − τ and Gaussian efficiency

1

V (LTS(τ ), Φ)
= τ − 2kφ(k). (6.15)

The 50% breakdown estimator LTS(0.5) has a Gaussian efficiency of 7.1%.
If it is appropriate to reduce the amount of trimming, we can use the 25%
breakdown estimator LTS(0.75) which has a much higher Gaussian efficiency
of 27.6% as reported in Ruppert (1992, p. 255). Also see the column labeled
“Normal” in table 1 of Hössjer (1994).

Example 6.4: Double Exponential Errors. The double exponential
(Laplace) distribution is interesting since the L1 estimator corresponds to
maximum likelihood and so L1 beats OLS, reversing the comparison of the
normal case. For a double exponential DE(0, 1) random variable,

V (LTS(τ ), DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[τ − k exp(−k)]2

while V(LTA(τ ), DE(0, 1)) =
τ

4[0.5− 0.5 exp(−k)]2
=

1

τ

where k = − log(1− τ ). Note that LTA(0.5) and OLS have the same asymp-
totic efficiency at the double exponential distribution. Also see Tableman
(1994ab).

Example 6.5: Cauchy Errors. Although the L1 estimator and the
trimmed estimators have finite variance when the errors are Cauchy, the
OLS estimator has infinite variance (because the Cauchy distribution has
infinite variance). If XT is a Cauchy C(0, 1) random variable symmetrically

truncated at −k and k, then V (XT ) =
k − tan−1(k)

tan−1(k)
. Hence
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V (LTS(τ ), C(0, 1)) =
2k − πτ

π[τ − 2k
π(1+k2)

]2

and V (LTA(τ ), C(0, 1)) =
τ

4[ 1
π
− 1

π(1+k2)
]2

where k = tan(πτ/2). The LTA sampling variance converges to a finite value
as τ → 1 while that of LTS increases without bound. LTS(0.5) is slightly
more efficient than LTA(0.5), but LTA pulls ahead of LTS if the amount of
trimming is very small.

6.3.2 Computation and Simulations

Theorem 6.7. a) There is an LTS(c) estimator β̂LTS that is the OLS fit to
the cases corresponding to the c smallest LTS squared residuals.
b) There is an LTA(c) estimator β̂LTA that is the L1 fit to the cases corre-
sponding to the c smallest LTA absolute residuals.
c) There is an LQS(c) estimator β̂LQS that is the Chebyshev fit to the cases
corresponding to the c smallest LQS absolute residuals.

Proof. a) By the definition of the LTS(c) estimator,

c
∑

i=1

r2
(i)(β̂LTS) ≤

c
∑

i=1

r2
(i)(b)

where b is any p×1 vector. Without loss of generality, assume that the cases
have been reordered so that the first c cases correspond to the cases with the
c smallest residuals. Let β̂OLS(c) denote the OLS fit to these c cases. By the
definition of the OLS estimator,

c
∑

i=1

r2
i (β̂OLS(c)) ≤

c
∑

i=1

r2
i (b)

where b is any p× 1 vector. Hence β̂OLS(c) also minimizes the LTS criterion

and thus β̂OLS(c) is an LTS estimator. The proofs of b) and c) are similar.
�

One way to compute these estimators exactly is to generate all C(n, c)
subsets of size c, compute the classical estimator b on each subset, and find
the criterion Q(b). The robust estimator is equal to the bo that minimizes the
criterion. Since c ≈ n/2, this algorithm is impractical for all but the smallest
data sets. Since the L1 fit is an elemental fit, the LTA estimator can be found
by evaluating all C(n, p) elemental sets. See Hawkins and Olive (1999b). Since
any Chebyshev fit is also a Chebyshev fit to a set of p + 1 cases, the LQS



6.3 High Breakdown Estimators 279

Table 6.3 Monte Carlo Efficiencies Relative to OLS.

dist n L1 LTA(0.5) LTS(0.5) LTA(0.75)
N(0,1) 20 .668 .206 .223 .377
N(0,1) 40 .692 .155 .174 .293
N(0,1) 100 .634 .100 .114 .230
N(0,1) 400 .652 .065 .085 .209
N(0,1) 600 .643 .066 .091 .209
N(0,1) ∞ .637 .053 .071 .199

DE(0,1) 20 1.560 .664 .783 1.157
DE(0,1) 40 1.596 .648 .686 1.069
DE(0,1) 100 1.788 .656 .684 1.204
DE(0,1) 400 1.745 .736 .657 1.236
DE(0,1) 600 1.856 .845 .709 1.355
DE(0,1) ∞ 2.000 1.000 .71 1.500

estimator can be found by evaluating all C(n, p + 1) cases. See Stromberg
(1993ab) and Appa and Land (1993). The LMS, LTA, and LTS estimators
can also be evaluated exactly using branch and bound algorithms if the data
set size is small enough. See Agulló (1997, 2001), Bertsimas and Mazumder
(2014), Hofmann et al. (2010), and Klouda (2015).

These three estimators have O(np) complexity or higher, and estimators
with O(n4) or higher complexity take too long to compute and will rarely
be used. The literature on estimators with O(np) complexity typically claims
that the estimator can be computed for up to a few hundred cases if p ≤ 4,
while simulations use p ≤ 2. Since estimators need to be widely used before
they are trustworthy, the brand name HB robust regression estimators are
untrustworthy for p > 2.

We simulated LTA and LTS for the location model using normal, double
exponential, and Cauchy error models. For the location model, these estima-
tors can be computed exactly: find the order statistics

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

of the data. For LTS compute the sample mean and for LTA compute the
sample median (or the low or high median) and evaluate the LTS and LTA
criteria of each of the n−c+1 “c-samples” Y(i), . . . , Y(i+c−1), for i = 1, . . . , n−
c + 1. The minimum across these samples then defines the LTA and LTS
estimates. See Section 2.12.

We computed the sample standard deviations of the resulting location es-
timate from 1000 runs of each sample size studied. The results are shown in
Table 6.1. For Gaussian errors, the observed standard deviations are smaller
than the asymptotic standard deviations but for the double exponential er-
rors, the sample size needs to be quite large before the observed standard
deviations agree with the asymptotic theory.
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6.4 Complements

Olive (2008, ch. 7-9) covers robust and resistant regression. Also see Hawkins
and Olive (1999b), Olive and Hawkins (2003) and Olive (2005a, 2017b). The
outlier resistance of elemental algorithms decreases rapidly as p increases.
However, for p < 10, such elemental algorithms are often useful for outlier
detection. They can perform better than MBA, trimmed views, and rmreg2

if p is small and the outliers are close to the bulk of the data or if p is small
and there is a mixture distribution: the bulk of the data follows one MLR
model, but “outliers” and some of the clean data are fit well by another MLR
model.

A promising resistant regression estimator is given by Park et al. (2012).
Bassett (1991) suggested the LTA estimator for location and Hössjer (1991)

suggested the LTA regression estimator. Oldford (1983) proves that β̂B is
high breakdown.

The LMS, LTA, and LTS estimators are not useful for applications because
they are impractical to compute; however, the criterion are useful for making
resistant or robust algorithm estimators. In particular the robust criteria are
used in the MBA estimator and in the easily computed

√
n consistent high

breakdown hbreg estimator.
In addition to the LMS, LTA, and LTS estimators, there are at least two

other regression estimators, the least quantile of differences (LQD) and the
regression depth estimator, that have rather high breakdown and rigorous
asymptotic theory. The LQD estimator is the LMS estimator computed on the
(n− 1)n/2 pairs of case difference (Croux et al. 1994). The regression depth
estimator (Rousseeuw and Hubert 1999) is interesting because its criterion
does not use residuals. The large sample theory for the depth estimator is
given by Bai and He (1999). The LMS, LTS, LTA, LQD and depth estimators
can be computed exactly only if the data set is tiny.

The complexity of the estimator depends on how many fits are computed
and on the complexity of the criterion evaluation. For example the LMS and
LTA criteria have O(n) complexity while the depth criterion complexity is
O(np−1 log n). The LTA and depth estimators evaluates O(np) elemental sets
while LMS evaluates the O(np+1) subsets of size p + 1. The LQD criterion
complexity is O(n2) and evaluates O(n2(p+1)) subsets of case distances. See
Bernholt (2005, 2006).

A large number of impractical “brand name” high breakdown regression
estimators have been proposed, including LTS, LMS, LTA, S, LQD, τ , con-
strained M, repeated median, cross checking, one step GM, one step GR,
t-type, and regression depth estimators. See Rousseeuw and Leroy (1987)
and Maronna et al. (2019). The practical algorithms used in the software use
a brand name criterion to evaluate a fixed number of trial fits and should be
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denoted as an F-brand name estimator such as FLTS. Two stage estimators,
such as the MM estimator, that need an initial consistent high breakdown
estimator often have the same breakdown value and consistency rate as the
initial estimator.

These impractical “brand name” estimators have at least O(np) complex-
ity, while the practical estimators used in the software have not been shown
to be both high breakdown and consistent. See Hawkins and Olive (2002),
Hubert et al. (2002), and Maronna and Yohai (2002). Huber and Ronchetti
(2009, pp. xiii, 8-9, 152-154, 196-197) suggested that high breakdown regres-
sion estimators do not provide an adequate remedy for the ill effects of out-
liers, that their statistical and computational properties are not adequately
understood, that high breakdown estimators “break down for all except the
smallest regression problems by failing to provide a timely answer!” and that
“there are no known high breakdown point estimators of regression that are
demonstrably stable.”

A massive problem with “robust high breakdown regression” research is
the claim that a brand name impractical estimator is being used since the
software nearly always actually replaces the brand name estimator by a prac-
tical F-brand name estimator that is not backed by theory, such as FLTS. In
particular, the claim that “LTS can be computed with Fast-LTS” is false. See
Theorem 5.13. An estimator implemented with a zero breakdown inconsistent
initial estimator tends to be zero breakdown and is often inconsistent. Hence√

n consistent resistant estimators such as the MBA estimator often have
higher outlier resistance than zero breakdown implementations of HB esti-
mators such as ltsreg. Recent examples are Bondell and Stefanski (2013)
and Jiang et al. (2019).

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
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fit is selected is close to one for a skewed error distribution as n → ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

6.5 Problems

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, e.g. mbamv, will display the code for the function. Use the
args command, e.g. args(mbamv), to display the needed arguments for the
function.

The “asymptotic variance” for LTA in Problems 8.1, 8.2 and 8.3 is actually
the conjectured asymptotic variance for LTA if the multiple linear regression
model is used instead of the location model.

6.1. a) Download the R function nltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are N(0,1).
b) Enter the commands nltv(0.5), nltv(0.75), nltv(0.9) and nltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.2. a) Download the R function deltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are double exponential
DE(0,1).
b) Enter the commands deltv(0.5), deltv(0.75), deltv(0.9) and deltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.3. a) Download the R function cltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are Cauchy C(0,1).

b) Enter the commands cltv(0.5), cltv(0.75), cltv(0.9) and cltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.4∗. a) If necessary, use the commands source(“G:/rpack.txt”) and
source(“G:/robdata.txt”).



6.5 Problems 283

b) Enter the command mbamv(belx,bely) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 7 times be-
fore the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) Enter the command mbamv2(buxx,buxy) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 14 times before
the program ends. There are four predictors x1, ..., x4 and one response Y .
The function makes the response and residual plots based on the OLS fit to
the highlighted cases. Each MBA sphere covers half of the data. When you
find a good fit to the bulk of the data, hold down the Ctrl and c keys to make
a copy of the two plots. Then paste the plots in Word.

6.5∗. This problem compares the MBA estimator that uses the median
squared residual MED(r2

i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√

n consistent OLS estimators. The MED(r2
i ) criterion has trouble

with data sets where the multiple linear regression relationship is weak and
there is a cluster of outliers. The LATA criterion tries to give all x–outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“G:/rpack.txt”) and
source(“G:/robdata.txt”). The mlrplot2 function is used to compute both
MBA estimators. Use the rightmost mouse button to advance the plot (and
in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same?

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include the
resulting plot in Word. For this data set, most of the cases are based on
humans but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2

i ).
e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered

about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the pre-
vious command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estimator
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can be used to find the outliers. In Splus, use the command ffplot(hx,hy) and in
R use the commands library(MASS) and ffplot2(hx,hy). Include the resulting
plot in Word.

6.6. a) In addition to the source(“G:/rpack.txt”) command, also use the
source(“G:/robdata.txt”) command (and in R, type the library(MASS) com-
mand).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button (and in R, highlight Stop). The response plot should appear. Repeat
10 times and remember which plot percentage M (say M = 0) had the best
response plot. Then type the command tvreg2(buxx,buxy, M = 0) (except use
your value of M, not 0). Again, click the rightmost mouse button (and in R,
highlight Stop). The response plot should appear. Hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.


