
Chapter 7

MLR Variable Selection and Lasso

This chapter considers MLR variable selection and prediction intervals. Pre-
diction regions and prediction intervals applied to a bootstrap sample can
result in confidence regions and confidence intervals. The bootstrap confi-
dence regions will be used for inference after variable selection.

Some shrinkage methods do variable selection: the MLR method, such as
a OLS, uses the predictors that had nonzero shrinkage estimator coefficients.
These methods include least angle regression, lasso, relaxed lasso, and elastic
net. Least angle regression variable selection is the LARS-OLS hybrid esti-
mator of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed
lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator with
φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li (2001), Tibshirani
(1996), and Zou and Hastie (2005). The Meinshausen (2007) relaxed lasso
estimator fits lasso with penalty λn to get a subset of variables with nonzero
coefficients, and then fits lasso with a smaller penalty φn to this subset of
variables where n is the sample size.

7.1 Introduction

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted without important loss of
information if n/p is large (and the search for a useful subset of predictors if
n/p is not large). Consider the 1D regression model where Y x|SP where
SP = xT β. See Chapters 1 and 10. A model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (7.1)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS) × 1 vector. Given that xS is in the model, βE = 0 and
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286 7 MLR Variable Selection and Lasso

E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (7.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is
always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible
subsets of {1, 2, ..., p} that always contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that

S ⊆ Ij. Let β̂I7
= (β̂1 , β̂3, β̂4)

T and xI7
= (x1, x3, x4)

T .
Let Imin correspond to the set of predictors selected by a variable selection

method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As

a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

Definition 7.1. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI .

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selec-
tion. Lasso variable selection or elastic net variable selection fits OLS to the
predictors than had nonzero lasso or elastic net coefficients. .

Underfitting occurs if submodel I does not contain S. Following, for ex-
ample, Pelawa Watagoda (2019), let X = [XI XO] and β = (βT

I ,β
T
O)T .

Then Xβ = XIβI + XOβO, and β̂I = (XIXI)
−1XT

I Y = AY . Assuming

the usual MLR model, Cov(β̂I) = Cov(AY ) = Aσ2IAT = σ2(XT
I XI)

−1.
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Now E(β̂I) = E(AY ) = AXβ = (XIXI)
−1XT

I (XIβI + XOβO) =

βI + (XIXI)
−1XT

I XOβO = βI + AXOβO.

If S ⊆ I, then βO = 0, but if underfitting occurs then the bias vector
AXOβO can be large.

7.2 OLS Variable Selection

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable se-
lection. For example, an OLS MLR model with unnecessary predictors has∑n

i=1 V (Ŷi) that is too large. If (7.1) holds, S ⊆ I, βS is an aS × 1 vector,
and βI is a j × 1 vector with j > aS , then

1

n

n∑

i=1

V (ŶIi) =
σ2j

n
>
σ2aS

n
=

1

n

n∑

i=1

V (ŶSi). (7.2)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ). A model I underfits if it does not include all of the
predictors in S. A model I does not underfit if S ⊆ I.

To see that (7.2) holds, assume that the full model includes all p possible

terms so the full model may overfit but does not underfit. Then Ŷ = HY

and Cov(Ŷ ) = σ2HIHT = σ2H. Thus

1

n

n∑

i=1

V (Ŷi) =
1

n
tr(σ2H) =

σ2

n
tr((XT X)−1XT X) =

σ2p

n

where tr(A) is the trace operation. Replacing p by j and aS and replac-
ing H by HI and HS implies Equation (7.2). Hence if only aS parame-
ters are needed and p >> aS , then serious overfitting occurs and increases

1

n

n∑

i=1

V (Ŷi).

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model,
and MSE(I) = σ̂2

I , the estimated error variance. See Definitions 5.17 and
5.18. Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where
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R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 −MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 7.2.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k− n)MSE = rT (I)r(I) + (2k− n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor βT x = xT β,
such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xT

i β̂ = Yi−Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.

Theorem 7.1. Suppose that a numerical variable selection method sug-
gests several submodels with k predictors, including a constant, where 2 ≤
k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.
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Proof. These results are a corollary of Theorem 7.2 below. �

Remark 7.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi
.

Using Definition 7.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.

More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p− k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 7.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (7.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 7.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
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the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 7.2. Suppose that every submodel contains a constant and that
X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and
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b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].
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Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 7.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
lection. Assuming the the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin

) → 1 as n → ∞ by Theorem 7.2
vi). Referring to Equation (7.1), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞.

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 7.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Theorem 7.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP,ESP (I)) both go to 1.0 as n→ ∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, but overfit is likely. Let d be a lower
bound on corr(r, rI). Theorem 7.2 vi) implies that if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

d ≡ dn =

√
1 − p

n
.
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To avoid excluding too many good submodels, consider models I with
Cp(I) ≤ min(2k, p). Models under both the Cp = k line and the Cp = 2k line
are of interest.

Rule of thumb 7.1. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin)+1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model. Do
not use more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Underfit
is especially likely to occur if a predictor with one degree of freedom is deleted
(if the c − 1 indicator variables corresponding to a factor are deleted, then
the factor has c− 1 degrees of freedom) and the jump in Cp is large, greater
than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses j
predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a
constant but no nontrivial predictors. To form I2, consider all models I with
two predictors including x∗1. Compute SSE(I) = RSS(I) = rT (I)r(I) =∑n

i=1 r
2
i (I) =

∑n
i=1(Yi−Ŷi(I))

2 . Let I2 minimize SSE(I) for the p−1 models
I that contain x∗1 and one other predictor. Denote the predictors in I2 by
x∗1, x

∗

2. In general, to form Ij consider all models I with j predictors including
variables x∗1, ..., x

∗

j−1. Compute SSE(I), and let Ij minimize SSE(I) for the
p−j+1 models I that contain x∗1, ..., x

∗

j−1 and one other predictor not already
selected. Denote the predictors in Ij by x∗1, ..., x

∗

j. Continue in this manner
for j = 2, ...,M = p.

Backward elimination also forms a sequence of submodels I1, ..., Ip where
Ij uses j predictors including the constant. Let Ip be the full model. To
form Ip−1 consider all models I with p− 1 predictors including the constant.
Compute SSE(I) and let Ip−1 minimize SSE(I) for the p − 1 models I
that exclude one of the predictors x2, ..., xp. Denote the predictors in Ip−1

by x∗1, x
∗

2, ..., x
∗

p−1. In general, to form Ij consider all models I with j pre-
dictors including variables x∗1, ..., x

∗

j+1. Compute SSE(I), and let Ij mini-
mize SSE(I) for the p − j + 1 models I that exclude one of the predictors
x∗2, ..., x

∗

j+1. Denote the predictors in Ij by x∗1, ..., x
∗

j. Continue in this manner
for j = p = M, p− 1, ..., 2, 1 where I1 uses x∗1 = x1 ≡ 1.

Several criterion produce the same sequence of models if forward selection
or backward elimination are used, includingMSE(I), Cp(I), R

2
A(I), AIC(I),
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BIC(I), and EBIC(I). This result holds since if the number of predictors
k in the model I is fixed, the criterion is equivalent to minimizing SSE(I)
plus a constant. The constants differ so the model Imin that minimizes the
criterion often differ. Heuristically, backward elimination tries to delete the
variable that will increase Cp the least while forward selection tries to add
the variable that will decrease Cp the most.

When there is a sequence of M submodels, the final submodel Id needs to
be selected with ad terms, including a constant. Let the candidate model I
contain a terms, including a constant, and let xI and β̂I be a × 1 vectors.
Then there are many criteria used to select the final submodel Id. For a given
data set, the quantities p, n, and σ̂2 act as constants, and a criterion below
may add a constant or be divided by a positive constant without changing
the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 7.2.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p
and if the final model has n ≥ 10ad. For p < n < 5p, forward selection with
Cp and AIC tends to pick the full model (which overfits since n < 5p) too
often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989, 1991) AICC

criterion can be useful if n ≥ max(2p, 10ad).
The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.
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This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and relaxed lasso.
The Cp criterion can also be applied to lasso. See Efron and Hastie (2016,
pp. 221, 231).

Now suppose p = 6 and S in Equation (7.1) corresponds to x1 ≡ 1, x2,
and x3. Suppose the data set is such that underfitting (omitting a predic-
tor in S) does not occur. Then there are eight possible submodels that
contain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6;
v) x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full
model viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5,
or 6. Since the variable selection criteria for forward selection described above
minimize the MSE given that x∗1, ..., x

∗

k−1 are in the model, the MSE(Ik) are
too small and underestimate σ2. Also the model Imin fits the data a bit too
well. Suppose Imin = Id. Compared to selecting a model Ik before examining
the data, the residuals ri(Imin) are too small in magnitude, the |ŶImin,i −Yi|
are too small, and MSE(Imin) is too small. Hence using Imin = Id as the full
model for inference does not work. In particular, the partial F test statistic
FR in Theorem 5.7, using Id as the full model, is too large since the MSE is
too small. Thus the partial F test rejects H0 too often. Similarly, the confi-
dence intervals for βi are too short, and hypothesis tests reject H0 : βi = 0
too often when H0 is true. The fact that the selected model Imin from vari-
able selection cannot be used as the full model for classical inference is known
as selection bias. Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of β̂V S =

β̂Imin,0 from Definition 7.3 and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

7.3 Large Sample Theory for Some Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

The large sample theory for OLS variable selection estimators, such as
forward selection and lasso variable selection, in this section is due to Pelawa
Watagoda and Olive (2019, 2020). Rathnayake and Olive (2020) extend this
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theory to many other variable selection estimators such as generalized lin-
ear models. Charkhi and Claeskens (2018) have a related result for forward
selection with AIC when the iid errors are N(0, σ2). Assume p is fixed, and
n→ ∞. Suppose that model (7.1) holds. Assume the maximum leverage

max
i=1,...,n

xT
iIj

(XT
Ij

XIj
)−1xiIj

→ 0

in probability as n → ∞ for each Ij with S ⊆ Ij where the dimension of Ij

is aj. For the OLS model with S ⊆ Ij ,
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) where

V j = σ2W j and (XT
Ij

XIj
)/n

P→ W−1
j by the OLS CLT Theorem 5.9. Then

ujn =
√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0,V j,0) (7.3)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model.

For MLR, V j,0 = σ2W j,0. For example, if p = 3 and model Ij uses a
constant x1 ≡ 1 and x3 with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. Use zero padding
to form the p×1 variable selection estimator β̂V S . For example, if p = 4 and

β̂Imin
= (β̂1, β̂3)

T , then β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)T . In the following
definition, if each subset contains at least one variable, then there are J =
2p − 1 subsets.

Definition 7.4. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 7.5. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

The large sample distribution of β̂MIX is simpler than that of β̂V S , and

is useful for explaining the large sample distribution of β̂V S . For how to

bootstrap β̂MIX , see Rathnayake and Olive (2020). For mixture distributions,
see Section 11.7.

The first assumption in Theorem 7.3 is P (S ⊆ Imin) → 1 as n→ ∞. Then
the variable selection estimator corresponding to Imin underfits with prob-
ability going to zero, and the assumption holds under regularity conditions
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if BIC or AIC is used. See Charkhi and Claeskens (2018) and Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232). For multiple linear regression with
Mallows (1973) Cp or AIC, see Li (1987), Nishii (1984), and Shao (1993).

For a shrinkage estimator that does variable selection, let β̂Imin
be the OLS

estimator applied to a constant and the variables with nonzero shrinkage es-
timator coefficients. If the shrinkage estimator is a consistent estimator of β,
then P (S ⊆ Imin) → 1 as n → ∞. See Zhao and Yu (2006, p. 2554). Hence
Theorem 7.3c) proves that the lasso variable selection and elastic net variable
selection estimators are

√
n consistent estimators of β if lasso and elastic net

are consistent. Also see Theorem 7.4 and Remark 7.5. The assumption on
ujn in Theorem 7.3 is reasonable by (7.3) since S ⊆ Ij for each πj, and since

β̂MIX uses random selection.

Theorem 7.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (7.4)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (7.5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun

(t) =
∑

k πknFukn
(t) → Fu(t) =

∑
j πjFuj

(t) at
continuity points of the Fuj

(t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia
)T . Subscripts after MIX denote
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the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use FULL to denote the full model β̂ = β̂FULL.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL

have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. Then the confi-

dence regions applied to Aβ̂
∗

SEL = Bβ̂
∗

S,SEL should have similar volume and
cutoffs where SEL is MIX, V S, or FULL.

Theorem 7.3 can be used to justify prediction intervals after variable se-
lection. See Pelawa Watagoda and Olive (2020). Theorem 7.3d) is useful for
variable selection consistency and the oracle property where πd = πS = 1 if
P (Imin = S) → 1 as n → ∞. See Claeskens and Hjort (2008, pp. 101-114) and
Fan and Li (2001) for references. A necessary condition for P (Imin = S) → 1
is that S is one of the models considered with probability going to one.
This condition holds under strong regularity conditions for fast methods. See
Wieczorek (2018) for forward selection and Hastie et al. (2015, pp. 295-302)
for lasso, where the predictors need a “near orthogonality” condition.

Remark 7.4. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S −β). Let W = WV S = k if β̂V S =

β̂Ik,0 where P (WV S = k) = πkn for k = 1, ..., J. Then (β̂V S:n,WV S:n) =

(β̂V S ,WV S) has a joint distribution where the sample size n is usually sup-

pressed. Note that β̂V S = β̂IW ,0. Define P (B|Ak)P (Ak) = 0 if P (Ak) = 0.
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Let β̂
C

Ik,0 be a random vector from the conditional distribution β̂Ik,0|(WV S =

k). Let wkn =
√
n(β̂Ik,0 − β)|(WV S = k) ∼ √

n(β̂
C

Ik,0 − β). Denote
Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by P (z ≤ t). Then

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj if

S ⊆ Ij for the MLE with AIC. Here wj is a multivariate truncated normal
distribution (where no truncation is possible) that is symmetric about 0.
Hence E(wj) = 0, and Cov(wj) = Σj exits. Referring to Definitions 7.3

and 7.4, note that both
√
n(β̂MIX −β) and

√
n(β̂V S −β) are selecting from

the ukn =
√
n(β̂Ik,0 − β) and asymptotically from the uj of Equation (7.3).

The random selection for β̂MIX does not change the distribution of ujn, but
selection bias does change the distribution of the selected ujn to that of wjn.
Similarly, selection bias does change the distribution of the selected uj to

that of wj . The reasonable Theorem 7.4 assumption that wjn
D→ wj may

not be mild.

Theorem 7.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj . Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj .

Then
wn =

√
n(β̂V S − β)

D→ w (7.6)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution

of the wj with probabilities πj.

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn

(t) =
∑

k πknFwkn
(t) → Fw(t) =

∑
j πjFwj

(t) at
continuity points of the Fwj

(t) as n → ∞. �

Remark 7.5. If P (S ⊆ Imin) → 1 as n→ ∞, then β̂V S is a
√
n consistent

estimator of β since selecting from a finite number J of
√
n consistent estima-
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tors (even on a set that goes to one in probability) results in a
√
n consistent

estimator by Pratt (1959). By both this result and Theorems 7.3 and 7.4, the
lasso variable selection and elastic net variable selection estimators are

√
n

consistent if lasso and elastic net are consistent.

7.4 Bootstrapping Variable Selection

This section considers bootstrapping the MLR variable selection model. Rath-
nayake and Olive (2020) shows how to bootstrap variable selection for many
other regression models. This section will explain why the bootstrap con-
fidence regions (4.13), (4.14), and (4.15) give useful results. Much of the
theory in Section 4.3 does not apply to the variable selection estimator
Tn = Aβ̂Imin,0 with θ = Aβ, because Tn is not smooth since Tn is equal to
the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known
full rank g × p matrix with 1 ≤ g ≤ p.

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate

Y ∗ and X∗ that would be used to produce β̂
∗

if the full model estimator β̂

was being bootstrapped. Instead of computing β̂
∗

, compute the variable selec-

tion estimator β̂
∗

V S,1 = β̂
∗C

Ik1
,0. Then generate another Y ∗ and X∗ and com-

pute β̂
∗

MIX,1 = β̂
∗

Ik1
,0 (using the same subset Ik1

). This process is repeated
B times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn.

The key idea is to show that the bootstrap data cloud is slightly more
variable than the iid data cloud, so confidence region (4.14) applied to the
bootstrap data cloud has coverage bounded below by (1−δ) for large enough
n and B.

For the bootstrap, suppose that T ∗

i is equal to T ∗

ij with probability ρjn

for j = 1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count
the number of times T ∗

i = T ∗

ij in the bootstrap sample. Then the bootstrap
sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗

1j , ..., T
∗

Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗

j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑

i=1

T ∗

i =
∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗

ij =
∑

j

ρ̂jnT
∗

j .
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Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Let Tn = β̂MIX and Tij = β̂Ij,0. If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)

D→
Naj

(0,V j) and
√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j). Then by Equation (7.3),

√
n(β̂Ij,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗

Ij,0− β̂Ij,0)
D→ Np(0,V j,0). (7.7)

This result means that the component clouds have the same variability
asymptotically. The iid data component clouds are all centered at β. If the
bootstrap data component clouds were all centered at the same value β̃, then
the bootstrap cloud would be like an iid data cloud shifted to be centered at
β̃, and (4.14) would be a confidence region for θ = β. Instead, the bootstrap
data component clouds are shifted slightly from a common center, and are
each centered at a β̂Ij,0. Geometrically, the shifting of the bootstrap compo-
nent data clouds makes the bootstrap data cloud similar but more variable
than the iid data cloud asymptotically (we want n ≥ 20p), and centering
the bootstrap data cloud at Tn results in the confidence region (4.14) hav-
ing slightly higher asymptotic coverage than applying (4.14) to the iid data
cloud. Also, (4.14) tends to have higher coverage than (4.15) since the cutoff
for (4.14) tends to be larger than the cutoff for (4.15). Region (4.13) has
the same volume as region (4.15), but tends to have higher coverage since

empirically, the bagging estimator T
∗

tends to estimate θ at least as well as
Tn for a mixture distribution. A similar argument holds if Tn = Aβ̂MIX ,

Tij = Aβ̂Ij,0, and θ = Aβ.
To see that T ∗ has more variability than Tn, asymptotically, look at Figure

3.1. Imagine that n is huge and the J = 6 ellipsoids are 99.9% covering
regions for the component data clouds corresponding to Tjn for j = 1, ..., J .
Separating the clouds slightly, without rotation, increases the variability of
the overall data cloud. The bootstrap distribution of T ∗ corresponds to the
separated clouds. The shape of the overall data cloud does not change much,
but the volume does increase.

Remark 7.6. Note that there are several important variable selection
models, including the model given by Equation (7.1) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi
× 1. For example,

suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
Theorems 7.3 and 7.4 still hold if “P (S ⊆ Imin) → 1” is replaced by “P (Si ⊆
Imin for some i) → 1,” and the bootstrap sample is still more variable than
the iid sample.
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In the simulations for H0 : Aβ = BβS = θ0 with n ≥ 20p, the coverage
tended to get close to 1− δ for B ≥ max(200, 50p) so that S∗

T is a good esti-
mator of Cov(T ∗). In the simulations where S is not the full model, inference
with backward elimination with Imin using AIC was often more precise than
inference with the full model if n ≥ 20p and B ≥ 50p.

The matrix S∗

T can be singular due to one or more columns of zeros
in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the

full model estimator β̂
∗

= β̂
∗

FULL to the bootstrap sample. For example,
take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (4.13), (4.14), and (4.15). Using the confidence interval
[max(Ln, T

∗

(1)),min(Un, T
∗

(B))] can give a shorter covering region.
Undercoverage can occur if bootstrap sample data cloud is less variable

than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

The bootstrap component clouds for β̂
∗

V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗

S,V S is roughly similar to β̂
∗

S,MIX . Typically the distributions of β̂
∗

E,V S

and β̂
∗

E,MIX are not similar, but use the same zero padding. In simulations,

confidence regions for β̂V S tended to have less undercoverage than confidence

regions for β̂
∗

MIX .

7.4.1 The Parametric Bootstrap

For the multiple linear regression model, Y = Xβ +e, assume a constant x1

is in the model, and the zero mean ei are iid with variance V (ei) = σ2. Let
H = X(XT X)−1XT . For each I with S ⊆ I, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n → ∞. For OLS with

S ⊆ I,
√
n(β̂I − βI)

D→ NaI
(0,V I) by Equation (7.3).

The parametric bootstrap generates Y ∗

j = (Y ∗

i ) from a parametric dis-

tribution. Then regress Y ∗

j on X to get β̂
∗

j for j = 1, ..., B. Consider

the parametric bootstrap for the MLR model with Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼

Nn(HY , σ̂2
nI) where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i



7.4 Bootstrapping Variable Selection 303

where the residuals are from the full OLS model. Then MSE is a
√
n con-

sistent estimator of σ2 under mild conditions by Su and Cook (2012). Hence

Y ∗ = Xβ̂OLS + e∗

where the e∗i are iid N(0,MSE) and β̂ = β̂OLS .

Thus β̂
∗

I = (XT
I XI)

−1XT
I Y ∗ ∼ NaI

(β̂I , σ̂
2
n(XT

I XI)
−1) since E(β̂

∗

I ) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗

I) = σ̂2
n(XT

I XI)
−1.

Hence √
n(β̂

∗

I − β̂I) ∼ NaI
(0, nσ̂2

n(XT
I XI)

−1)
D→ NaI

(0,V I)

as n, B → ∞ if S ⊆ I.

7.4.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi),
and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗

nj with
replacement from the residuals, then form a vector Y ∗

j where the ith element
Y ∗

ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0, replace ri by εi = ri − r, and r∗ij by ε∗ij.

Example 7.1. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with
ith element Ŷi = m̂(xi) = xT

i β̂. For j = 1, ..., B, regress Y ∗

j on X to form

β̂
∗

1,n, ..., β̂
∗

B,n using the residual bootstrap.

Now examine the OLS model. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the
fitted values from the OLS full model. Let rW denote an n×1 random vector
of elements selected with replacement from the OLS full model residuals.
Following Freedman (1981) and Efron (1982, p. 36),

Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rW
i of rW are iid from

the empirical distribution of the OLS full model residuals ri. Hence
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E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XT X)−1XT Y ∗ with Cov(β̂
∗

) = σ2
n(XT X)−1 =

n− p

n
MSE(XT X)−1, and E(β̂

∗

) = (XT X)−1XTE(Y ∗) =

(XT X)−1XT HY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗

) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗

i ) ≈
√
n− p

n
SE(β̂i) for i = 1, ..., p where

β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The OLS CLT Theorem 5.9 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2W )

where n(XT X)−1 → W . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞

nĈov(β̂
∗

)) ∼ Np(0, σ
2W ).

See Freedman (1981).

For the above residual bootstrap, β̂
∗

Ij
= (XT

Ij
XIj

)−1XT
Ij

Y ∗ = DjY
∗

with Cov(β̂
∗

Ij
) = σ2

n(XT
Ij

XIj
)−1 and E(β̂

∗

Ij
) = (XT

Ij
XIj

)−1XT
Ij
E(Y ∗) =

(XT
Ij

XIj
)−1XT

Ij
HY = β̂Ij

since HXIj
= XIj

. The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗

I ) = β̂I and nCov(β̂
∗

I) = n[(n− p)/n]σ̂2
n(XT

I XI)
−1 P→ V I

as n → ∞ with σ̂2
n = MSE. Hence β̂

∗

I − β̂I
P→ 0 as n → ∞ by Lai et al

(1979). Note that β̂
∗

I = β̂
∗

I,n and β̂I = β̂I,n depend on n.

Remark 7.7. The Cauchy Schwartz inequality says |aT b| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if

√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence
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√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Remark 7.8. Note that both the residual bootstrap and parametric boot-
strap for OLS are robust to the unknown error distribution of the iid ei. For
the residual bootstrap with S ⊆ I where I is not the full model, it may

not be true that
√
n(β̂

∗

I − β̂I)
D→ NaI

(0,V I) as n, B → ∞. For the model
Y = Xβ + e, the ei are iid from a distribution that does not depend on n,
and βE = 0. For Y ∗ = Xβ̂ + rW , the distribution of the rW

i depends on n

and β̂E 6= 0 although
√
nβ̂E = OP (1).

7.4.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, the pairwise bootstrap, and the pairs bootstrap) draws a sam-
ple of n cases (Y ∗

i ,x
∗

i ) with replacement from the n cases (Yi,xi), and re-

gresses the Y ∗

i on the x∗

i to get β̂
∗

V S,1, and then draws another sample to get

β̂
∗

MIX,1. This process is repeated B times to get the two bootstrap samples
for i = 1, ..., B.

Then for the full model,

Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗

I β̂I,OLS + rW
I .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ). Hence if S ⊆ Ij ,

√
n(β̂

∗

I − β̂I)
D→ NaI

(0,V I)

as n, B → ∞. (Treat Ij as if Ij is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uT
i )T , then the wi = (Yi uT

i )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗

1, ...,w
∗

n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 4.3, E(w∗) = w, and
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Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2

Y Σ̃Y u
Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then by Section 6.1.1,

β̂
∗

=

[
β̂∗

1

β̂
∗

u

]
=

[
Y

∗ − β̂
∗T

u u∗

Σ̃
−1∗

u Σ̃
∗

uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

7.4.4 Bootstrapping OLS Variable Selection

Undercoverage can occur if the bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig

)T and O ⊆ E in (7.1) so thatH0 is true. Suppose a nominal
95% confidence region is used and UB = 0.96. Hence the confidence region

(4.13) or (4.14) covers at least 96% of the bootstrap sample. If β̂
∗

O,j = 0 for

more than 4% of the β̂
∗

O,1, ..., β̂
∗

O,B , then 0 is in the confidence region and the
bootstrap test fails to reject H0. If this occurs for each run in the simulation,
then the observed coverage will be 100%.

Now suppose β̂
∗

O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (4.13),
(4.14), or (4.15) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗

O,j in the bootstrap
sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from forward selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, B ≥ 50p, and the error distribution is unimodal and
not highly skewed. (Since the pvalue is one, this technique may be useful
for data snooping: applying OLS theory to submodel I may have negligible
selection bias.)

Remark 7.9. Note that there are several important variable selection
models, including the model given by Equation (7.1) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi
× 1. For example,
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suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
If n and B are large enough, the singleton set {0} could still be the “100%”
confidence region for a vector βO . See Remark 7.7.

Suppose the predictors xi have been standardized. Then another important
regression model has the βi taper off rapidly, but no coefficients are equal to
zero. For example, βi = e−i for i = 1, ..., p.

Example 7.2. Cook and Weisberg (1999a, pp. 351, 433, 447) gives a data
set on 82 mussels sampled off the coast of New Zealand. Let the response
variable be the logarithm log(M) of the muscle mass, and the predictors are
the length L and heightH of the shell in mm, the logarithm log(W ) of the shell
width W, the logarithm log(S) of the shell mass S, and a constant. Inference
for the full model is shown below along with the shorth(c) nominal 95%
confidence intervals for βi computed using the nonparametric and residual
bootstraps. As expected, the residual bootstrap intervals are close to the
classical least squares confidence intervals ≈ β̂i ± 1.96SE(β̂i).

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel FS

Est. SE 95% shorth CI 95% shorth CI

int -0.9573 0.1519 [-3.294, 0.495] [-2.769, 0.460]

L 0 [-0.005, 0.004] [-0.004, 0.004]

logW 0 [ 0.000, 1.024] [-0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016] [ 0.000, 0.016]

logS 0.6530 0.1160 [ 0.322, 0.901] [ 0.324, 0.913]

for forward selection for all subsets

The minimum Cp model from all subsets variable selection and forward
selection both used a constant, H , and log(S). The shorth(c) nominal 95%
confidence intervals for βi using the residual bootstrap are shown. Note that
the intervals for H are right skewed and contain 0 when closed intervals
are used instead of open intervals. Some least squares output is shown, but
should only be used for inference if the model was selected before looking at
the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with



308 7 MLR Variable Selection and Lasso

the Imin model selected by all subsets variable selection. (Of course this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2 , β3, β4)

T = 0. Using the prediction region method with the

full model gave an interval [0,2.930] with D0 = 1.641. Note that
√
χ2

3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0.

Then we redid the bootstrap with the full model and forward selection. The
full model had [0, D(UB)] = [0, 2.908] with D0 = 1.577. So fail to reject H0.
Using the prediction region method with the Imin forward selection model
had [0, D(UB)] = [0, 3.258] whileD0 = 1.245. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.392. (Use
(4.16) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test. Some R code used
to produce the above output is shown below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)

tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs

outfs <- fselboot(x,y,B=1000) #get bootstrap CIs

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3) #for all subsets

apply(outfs$betas,2,shorth3) #for forward selection

ls.print(outvs$full)

ls.print(outvs$sub)

ls.print(outfs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #full model

#prediction region method with residual bootstrap

out<-predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin all subsets

outvs <- predreg(Abeta)

Abeta <- outfs$betas[,2:4]

#prediction region method with Imin forward sel.

outfs<-predreg(Abeta)

#ratio of volumes for forward selection and full model

(sqrt(det(outfs$cov))*outfs$D0ˆ3)/(sqrt(det(out$cov))*out$D0ˆ3)

Example 7.3. Consider the Gladstone (1905) data set that has 12 vari-
ables on 267 persons after death. The response variable was brain weight.
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Head measurements were breadth, circumference, head height, length, and
size as well as cephalic index and brain weight. Age, height, and two categor-
ical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also
given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II ) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 7.3

Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]

age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]

breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]

cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]

circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]

headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]

height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]

len 13.475 9.422 1.43 0.154 [ -5.519,32.605]

sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]

output and shorth intervals for the min Cp submodel

Estimate SE t Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]

age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]

breadth 0 [-32.992, 8.148]

cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]

headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]

height 0 [ -2.859, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,30.508]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]

output and shorth for I_I model

Estimate Std.Err t-val Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]

age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]

breadth 0 [-31.012, 6.567]

cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]

headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]

height 0 [ -2.173, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,28.819]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]
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The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]

y<-cbrainy

library(leaps)

out <- regboot(x,y,B=1000)

outvs <- fselboot(x,cbrainy) #get bootstrap CIs,

apply(out$betas,2,shorth3)

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

outvs <- modIboot(x,cbrainy) #get bootstrap CIs,

apply(outvs$betas,2,shorth3)

ls.print(outvs$sub)

tem<-regsubsets(x,y,method="forward")

tem2<-summary(tem)

tem2$which

tem2$cp

7.4.5 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗

i = Aβ̂
∗

Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗

i1, ..., β̂
∗

iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal

and not highly skewed. Then the plotted points in the response and residual
plots should scatter in roughly even bands about the identity line (with unit
slope and zero intercept) and the r = 0 line, respectively. See Figure 5.8. If
the error distribution is skewed or multimodal, then much larger sample sizes
may be needed.

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
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entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are Cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p − k − 1 zeros. The zero mean errors ei were iid from
five distributions: i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v)
0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal
value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 7.1 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 7.1 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (4.13),
hybrid region (4.15), and Bickel and Ren region (4.14). The 0 indicates the
test was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1.
The length and coverage = P(fail to reject H0) for the interval [0, D(UB)] or
[0, D(UB,T )] where D(UB) or D(UB,T ) is the cutoff for the confidence region.

The cutoff will often be near
√
χ2

g,0.95 if the statistic T is asymptotically nor-

mal. Note that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression

bootstrap tests.
Volume ratios of the three confidence regions can be compared using (4.16),

but there is not enough information in Table 7.1 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.
The inference for forward selection was often as precise or more precise

than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then from Section 7.2, β̂S may have the same limiting distribution for Imin

and the full model. Note that the average lengths and coverages were similar
for the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
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Table 7.1 Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

and Ren (4.14) cutoffs and coverages were at least as high as those of the
hybrid region (4.15).

For ψ > 0 and Imin, the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often

occurred for β̂∗

j for j = 3, 4. The average CI lengths were shorter for Imin

than for the OLS full model for β3 and β4. Note that for Imin, the coverage
for testing H0 : βS = 1 was higher than that for the OLS full model.

Table 7.2 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317
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Results for other values of n, p, k, and distributions of ei were similar. For
forward selection with ψ = 0.9 and Cp, the hybrid region (4.15) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S∗

T was singular.
For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(4.13) and (4.14) worked for much smaller n, but tended to be longer than
the shorth CIs.

See Table 7.2 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (4.13), and
(4.14), respectively. In Table 4.3, k = 8 and the two nonzero πj correspond

to the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0.
Hence confidence intervals for β10 had the highest coverage and usually the
shortest average length (for i 6= 1) due to zero padding. Theory in Section
7.2 showed that the CI lengths are proportional to 1/

√
n. When n = 25000,

the shorth CI uses the 95.16th percentile while CI (4.13) uses the 95.00th
percentile, allowing the average CI length of (4.13) to be shorter than that of

the shorth CI, but the distribution for β̂∗

i is likely approximately symmetric
for i 6= 10 since the average lengths of the three confidence intervals were
about the same for each i 6= 10.

When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (4.13) and (4.14). BIC
also occasionally had 100% coverage since BIC produces more zeroes than
Cp.

Some R code for the simulation is shown below.

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1

regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410

0.9368 0.9362 0.9370

$avelen

[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521

[8] 2.4496 2.4496 2.4508

$beta

[1] 1 1 0 0

$k

[1] 1

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914
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0.9384 0.9394 0.9402

$avelen

[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020

[8] 2.4497 2.4497 2.4570

$beta

[1] 1 1 0 0

$k

[1] 1

7.5 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. Forward selection with the Chen and Chen (2008)
EBIC criterion and lasso are useful for finding a reasonable fitted model.
BIC and the Hurvich and Tsai (1989) AICC criterion can be useful if n ≥
max(2p, 10ad). For example, if n = 500000 and p = 90, using n1 = 900 would
result in a much smaller loss of efficiency than n1 = 250000.

7.6 Some Alternative MLR Estimators

From Definition 5.11, the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (7.8)

for i = 1, ..., n.This model is also called the full model. Here n is the sample
size and the random variable ei is the ith error. Assume that the ei are iid
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with variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an
n× p matrix of predictors, β is a p× 1 vector of unknown coefficients, and e

is an n× 1 vector of unknown errors.
There are many methods for estimating β, including (ordinary) least

squares (OLS) for the full model, forward selection with OLS, elastic net,
principal components regression (PCR), partial least squares (PLS), lasso,
lasso variable selection, and ridge regression (RR). For the last six methods,
it is convenient to use centered or scaled data. Suppose U has observed val-
ues U1, ..., Un. For example, if Ui = Yi then U corresponds to the response
variable Y . The observed values of a random variable V are centered if their
sample mean is 0. The centered values of U are Vi = Ui − U for i = 1, ..., n.
Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (7.9)

Remark 7.10. Let the nontrivial predictors uT
i = (xi,2, ..., xi,p) =

(ui,1, ..., ui,p−1). Then xi = (1,uT
i )T . Let the n× (p− 1) matrix of standard-

ized nontrivial predictors W g = (Wij) when the predictors are standardized
using σ̂g. Thus,

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n − g for j = 1, ..., p− 1.

Hence

Wij =
xi,j+1 − xj+1

σ̂j+1
where σ̂2

j+1 =
1

n − g

n∑

i=1

(xi,j+1 − xj+1)
2

is σ̂g for the (j + 1)th variable xj+1. Let wT
i = (wi,1, ..., wi,p−1) be the

standardized vector of nontrivial predictors for the ith case. Since the stan-
dardized data are also centered, w = 0. Then the sample covariance matrix
of the wi is the sample correlation matrix of the ui:

ρ̂u = Ru = (rij) =
W T

g W g

n − g
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where rij is the sample correlation of ui = xi+1 and uj = xj+1. Thus the
sample correlation matrix Ru does not depend on g. Let Z = Y −Y where
Y = Y 1. Since the R software tends to use g = 0, let W = W 0. Note that
n × (p − 1) matrix W does not include a vector 1 of ones. Then regression
through the origin is used for the model

Z = Wη + e (7.10)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp−1)
T . The vector of fitted values

Ŷ = Y + Ẑ.

Remark 7.11. i) Interest is in model (7.8): estimate Ŷf and β̂. For many
regression estimators, a method is needed so that everyone who uses the same
units of measurements for the predictors and Y gets the same (Ŷ , β̂). Also,
see Remark 5.3. Equation (7.10) Z = Wη + e is a commonly used method
for achieving this goal. Suppose g = 0. The method of moments estimator of
the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (7.10)
are used. Linear combinations of the wi are linear combinations of the ui,
which are linear combinations of the xi. (Note that γT u = (0 γT ) x.) Thus

the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear trans-
formation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units of
measurements for the xi and Y . Hence everyone using the same units of mea-
surements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Remark 7.12. Let σ̂j be the sample standard deviation of variable xj

(often with g = 0) for j = 2, ...., p. Let Ŷi = β̂1 +xi,2β̂2 + · · ·+xi,pβ̂p = xT
i β̂.

If standardized nontrivial predictors are used, then

Ŷi = γ̂ + wi,1η̂1 + · · ·+wi,p−1η̂p−1 = γ̂ +
xi,2 − x2

σ̂2
η̂1 + · · ·+ xi,p − xp

σ̂p
η̂p−1

= γ̂ + wT
i η̂ = γ̂ + Ẑi (7.11)

where
η̂j = σ̂j+1β̂j+1 (7.12)

for j = 1, ..., p− 1. Often γ̂ = Y so that Ŷi = Y if xi,j = xj for j = 2, ..., p.

Then Ŷ = Y + Ẑ where Y = Y 1. Note that
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γ̂ = β̂1 +
x2

σ̂2
η̂1 + · · ·+ xp

σ̂p
η̂p−1.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Most regression methods attempt to find an estimate β̂ of β which
minimizes some criterion function Q(b) of the residuals. As in Definition
5.1, given an estimate b of β, the corresponding vector of fitted values is
Ŷ ≡ Ŷ (b) = Xb, and the vector of residuals is r ≡ r(b) = Y − Ŷ (b). See
Definition 5.2 for the OLS model for Y = Xβ + e. The following model is
useful for the centered response and standardized nontrivial predictors, or if
Z = Y , W = XI , and η = βI corresponds to a submodel I.

Definition 7.6. If Z = Wη +e, where the n× q matrix W has full rank
q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
R

p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (7.13)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Then by Theorem 5.9 (the OLS CLT), the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (7.14)

Remark 7.13: Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p is
large (and the search for a useful subset of predictors if n/p is not large). Refer
to Equation (7.1) where xT β = xT

SβS +xT
EβE = xT

S βS . Let p be the number
of predictors in the full model, including a constant. Let q = p − 1 be the
number of nontrivial predictors in the full model. Let a = aI be the number
of predictors in the submodel I, including a constant. Let k = kI = aI −1 be
the number of nontrivial predictors in the submodel. For submodel I, think
of I as indexing the predictors in the model, including the constant. Let
A index the nontrivial predictors in the model. Hence I adds the constant
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(trivial predictor) to the collection of nontrivial predictors in A. In Equation
(7.1), there is a “true submodel” Y = XSβS +e where all of the elements of
βS are nonzero but all of the elements of β that are not elements of βS are
zero. Then a = aS is the number of predictors in that submodel, including a
constant, and k = kS is the number of active predictors = number of nonnoise
variables = number of nontrivial predictors in the true model S = IS . Then
there are p − a noise variables (xi that have coefficient βi = 0) in the full
model. The true model is generally only known in simulations. For Equation
(7.1), we also assume that if xT β = xT

I βI , then S ⊆ I. Hence S is the unique
smallest subset of predictors such that xT β = xT

SβS . An alternative variable
selection model was given by Remark 7.6.

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) relaxed lasso which is OLS applied to
the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 7.7–7.11, Olive (2020: ch. 3, 2021a: ch. 4), and James
et al. (2013, ch. 6). For this chapter, PLS and PCR are MLR alternative
MLR methods, but will not be discussed in detail.

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). The number of models
M depends on the method. Often one of the models is the full model (7.8)
that uses all p−1 nontrivial predictors. The full model is (approximately) fit
with (ordinary) least squares. For one of the M models, some of the methods
use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y that uses none of the
nontrivial predictors. Forward selection, PCR, and PLS use variables v1 = 1
(the constant or trivial predictor) and vj = γT

j x that are linear combinations
of the predictors for j = 2, ..., p. Model Ii uses variables v1, v2, ..., vi for i =
1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then M models Ii are
used. (For forward selection and PCR, OLS is used to regress Y (or Z) on
v1, ..., vi.) Then a criterion chooses the final submodel Id from candidates
I1, ..., IM.

Remark 7.14. Prediction interval (7.34) used a number d that was often
the number of predictors in the selected model. For forward selection, PCR,
PLS, lasso, and lasso variable selection, let d be the number of predictors
vj = γT

j x in the final model (with nonzero coefficients), including a constant
v1. For forward selection, lasso, and lasso variable selection, vj corresponds
to a single nontrivial predictor, say vj = x∗j = xkj

. Another method for
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obtaining d is to let d = j if j is the degrees of freedom of the selected model
if that model was chosen in advance without model or variable selection.
Hence d = j is not the model degrees of freedom if model selection was used.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n > p, X is not invertible,
but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y regardless of

how bad the predictors are. If n < p, then the OLS program fails or Ŷ = Y :
the fitted regression plane interpolates the training data response variables
Y1, ..., Yn. The following rule of thumb is useful for many regression methods.
Note that d = p for the full OLS model.

Rule of thumb 7.2. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 7.15. Use Zn ∼ ANr (µn,Σn) to indicate that a normal ap-
proximation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k× r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 5.9 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.

Definition 7.7. Let Q(η) be a real valued function of the k× 1 vector η.
The gradient of Q(η) is the k × 1 vector
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5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : R
k → R

k. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.

As a mnemonic (memory aid) for the following theorem, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 7.5. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 7.4. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z − Wη‖2

2 = (Z − Wη)T (Z − Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 7.5 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 7.5. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

ls.print(out)

Residual Standard Error=392.8709
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R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

7.7 Forward Selection

Variable selection methods such as forward selection were covered in Sections
7.2–7.4 where model Ij uses j predictors x∗1, ..., x

∗

j including the constant
x∗1 ≡ 1. If n/p is not large, forward selection can be done as in Section 7.2
except instead of forming p submodels I1, ..., Ip, form the sequence of M
submodels I1, ..., IM where M = min(dn/Je, p) for some positive integer J
such as J = 5, 10, or 20. Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8.
Then for each submodel Ij , OLS is used to regress Y on 1, x∗2, ..., x

∗

j. Then a
criterion chooses which model Id from candidates I1, ..., IM is to be used as
the final submodel.

Remark 7.16. Suppose n/J is an integer. If p ≤ n/J , then forward
selection fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where
p − i models are fit at step i for i = 1, ..., (p− 1). If n/J < p, then forward
selection uses (n/J)−1 steps and fits ≈ (p−1)+(p−2)+· · ·+(p−(n/J)+1) =
p((n/J) − 1) − (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1) −

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2

models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.
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#regsubsets works if p < n, e.g. p = n-1, and works

#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (4.14)

vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595

tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,
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228.3175, 224.4362, 221.5456, 218.7368, 212.8099,

210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 7.5, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175

X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
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of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem. Let Yi = xT

I,iβI + eI,i. Then V (eI,i) may not be a constant

σ2: V (eI,i) could depend on case i, and the model may no longer be linear.
Check model I with response and residual plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 7.8, 7.9, and 7.11.

Definition 7.8. Suppose the population MLR model has βS an aS × 1
vector. The population MLR model is sparse if aS is small. The population
MLR model is dense or abundant if n/aS < J where J = 5 or J = 10, say.

The fitted model β̂ = β̂Imin,0 is sparse if d = number of nonzero coefficients
is small. The fitted model is dense if n/d < J where J = 5 or J = 10.

7.8 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression uses the centered
response Zi = Yi − Y and standardized nontrivial predictors in the model
Z = Wη+e. Then Ŷi = Ẑi +Y . Note that in Definition 7.10, λ1,n is a tuning

parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ . Refer to
Definition 7.6 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 7.9. Consider the MLR model Z = Wη + e. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 7.10. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. Let λ ≥ 0 be a constant. The ridge regression estimator η̂R

minimizes the ridge regression criterion

QR(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

η2
i (7.15)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (7.16)



7.8 Ridge Regression 325

The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QR is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 7.7. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b

where the minimization is over all vectors b ∈ R
p−1. Note that

∑p−1
i=1 η

2
i =

ηT η = ‖η‖2
2. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 7.17. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)(
W√

λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 7.17 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry
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is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 7.17 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.

The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− g
W T

g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.

Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(7.17)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
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Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and
df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1

u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119

svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (7.18)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(7.15).
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The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is
usually used, for example, after 10-fold cross validation. The fact that η̂R =
An,λη̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 7.6 for the ridge regression central limit theorem.

Remark 7.18. Ridge regression has a simple relationship with OLS if
n > p and (W T W )−1 exists. Then η̂R = (W T W + λ1,nIp−1)

−1W T Z =

(W T W+λ1,nIp−1)
−1(W T W )(W T W )−1W T Z = An,λη̂OLS where An,λ ≡

An = (W T W +λ1,nIp−1)
−1W T W . By the OLS CLT Equation (7.14) with

V̂ /n = (W T W )−1, a normal approximation for OLS is

η̂OLS ∼ ANn−p(η,MSE (W T W )−1).

Hence a normal approximation for ridge regression is

η̂R ∼ ANp−1(Anη,MSE An(W T W )−1AT
n ) ∼

ANp−1[Anη,MSE (W T W + λ1,nIp−1)
−1(W T W )(W T W + λ1,nIp−1)

−1].

If Equation (7.14) holds and λ1,n/n→ 0 as n→ ∞, then An
P→ Ip−1.

Remark 7.19. The ridge regression criterion from Definition 7.10 can also
be defined by

QR(η) = ‖Z − Wη‖2
2 + λ1,nηT η. (7.19)

Then by Theorem 7.5, the gradient 5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z − Wη̂R) + λ1,nη̂R = 0. (7.20)

Following Hastie and Efron (2016, pp. 381-382, 392), this means η̂R = W T a

for some n× 1 vector a. Hence −W T (Z − WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(W T W + λ1,nIp−1)

−1W T Z

= (W T W + λ1,nIp−1)
−1W T W (W T W )−1W T Z
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= (W T W + λ1,nIp−1)
−1W T Wη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]η̂OLS = Bnη̂OLS =

η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS

since An − Bn = 0. See Problem 7.7. Assume Equation (7.13) holds. If
λ1,n/n→ 0 then

W T W + λ1,nIp−1

n

P→ V −1, and n(W TW + λ1,nIp−1)
−1 P→ V .

Note that

An = An,λ =

(
W T W + λ1,nIp−1

n

)
−1

W T W

n

P→ V V −1 = Ip−1

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 7.6, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂R − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

η̂R = [Ip−1 − λ̂1,n(W T W + λ̂1,nIp−1)
−1]η̂OLS .

Hence √
n(η̂R − η) =

√
n(η̂R − η̂OLS + η̂OLS − η) =

√
n(η̂OLS − η) −

√
n
λ̂1,n

n
n(W T W + λ̂1,nIp−1)

−1η̂OLS
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D→ Np−1(0, σ
2V ) − τV η ∼ Np−1(−τV η, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that η̂R is a consistent estimator
of η if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of η if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (7.1) and Remark
7.13 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Section 7.12.

Warning. Although the R functions glmnet and cv.glmnet appear to
do ridge regression, getting the fitted values, λ̂1,n, and degrees of freedom to
match up with the formulas of this section can be difficult.

Example 7.5, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]
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out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x

diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)

M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

7.9 Lasso

Consider the MLR model Y = Xβ + e. Lasso uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+e

as described in Remark 7.9. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.

Definition 7.11. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. The lasso estimator η̂L minimizes the lasso criterion
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QL(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (7.21)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.

The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 7.7. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (7.22)

where the minimization is over all vectors b ∈ R
p−1. The literature often uses

λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,

then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.

The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
W T (Z − Wη̂L) +

λ1,n

2n
sn = 0 or − W T(Z − Wη̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0. Here sign(ηi) = 1 if ηi > 1
and sign(ηi) = −1 if ηi < 1. Note that sn = sn,η̂

L
depends on η̂L. Thus η̂L

= (W T W )−1W T Z− λ1,n

2n
n(W T W )−1 sn = η̂OLS − λ1,n

2n
n(W T W )−1 sn.



7.9 Lasso 333

If none of the elements of η are zero, and if η̂L is a consistent estimator of η,

then sn
P→ s = sη. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that η̂λM
= 0. Hence η̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(η̂L − η̂OLS) = op(1).

Theorem 7.7, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂L − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η) =

√
n(η̂L − η̂OLS + η̂OLS − η) =

√
n(η̂OLS − η) −

√
n
λ1,n

2n
n(W T W )−1sn

D→ Np−1(0, σ
2V ) − τ

2
V s

∼ Np−1

(−τ
2

V s, σ2V

)

since under the LS CLT, n(W T W )−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that η̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of η if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 7.7 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:

QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.
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The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (7.23)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (7.21).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 7.7, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 7.12. The active set A is the index set of the nontrivial pre-
dictors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
values

ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (7.23), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (7.24)

See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.



7.10 Lasso Variable Selection 335

Example 7.5, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.

7.10 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the active predictors
that have nonzero lasso η̂i. The method is called relaxed lasso by Hastie et al.
(2015, p. 12), and the relaxed lasso (φ = 0) estimator by Meinshausen (2007).
The method is also called OLS-post lasso and post model selection OLS.
Let XA denote the matrix with a column of ones and the unstandardized
active nontrivial predictors. Hence the lasso variable selection estimator is
β̂LV S = (XT

AXA)−1XT
AY , and lasso variable selection is an alternative to

forward selection. Let k be the number of active (nontrivial) predictors so

β̂LV S is (k + 1) × 1.

Let Imin correspond to the lasso variable selection estimator and β̂V S =

β̂LV S,0 = β̂Imin,0 to the zero padded lasso variable selection estimator. Then

by Remark 7.5 where p is fixed, β̂LV S,0 is
√
n consistent when lasso is consis-
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tent, with the limiting distribution for β̂V S = β̂LV S,0 given by Theorem 7.4.
Hence lasso variable selection can be bootstrapped as in Section 7.4. Lasso
vaiable selection will often be better than lasso when the model is sparse or
if n ≥ 10(k+1). Lasso can be better than lasso variable selection if (XT

AXA)
is ill conditioned or if n/(k + 1) < 10. Also see Pelawa Watagoda and Olive
(2020) and Rathnayake and Olive (2020).

Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The
following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##relaxed lasso =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin

#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) # lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 7.5, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ0 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Theorem 7.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]
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out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 7.5, forward selection selected the model with the
minimum Cp while the other methods used 10-fold CV. PLS and PCR used
the OLS full model with PI length 2395.74, forward selection used a constant
and mmen with PI length 2114.72, ridge regression had PI length 20336.58,
lasso and lasso variable selection used a constant, mmen, and pop with lasso
PI length 8482.62 and relaxed lasso PI length 2226.53. PI (4.14) was used.
Figure 7.1 shows the response plots for forward selection, ridge regression,
lasso, and lasso variable selection. The plots for PLS=PCR=OLS full model
were similar to those of forward selection and lasso variable selection. The
plots suggest that the MLR model is appropriate since the plotted points
scatter about the identity line. The 90% pointwise prediction bands are also
shown, and consist of two lines parallel to the identity line. These bands are
very narrow in Figure 7.1 a) and d).

7.11 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.
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d) Lasso Variable Selection

Fig. 7.1 Marry Data Response Plots

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 7.13. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (7.25)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (7.26)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.
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Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (7.27)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖2
2 + λ2‖η‖1 (7.28)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA −W Aη‖2
2. Then

η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes

QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (7.29)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA − W Aη‖2
2 = (ZA − W Aη)T (ZA − W Aη) =

ZT
AZA − ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =

ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)(
Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z − ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =
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RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 = QEN(η). �

Remark 7.20. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (7.29) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 7.8. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (7.29). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (7.29) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker (KKT)
conditions for convex optimality for Equation (7.28), η̂EN is optimal if

2W T Wη̂EN − 2W T Z + 2λ1η̂EN + λ2sn = 0, or

(W T W + λ1Ip−1)η̂EN = W T Z − λ2

2
sn, or

η̂EN = η̂R − n(W T W + λ1Ip−1)
−1 λ2

2n
sn. (7.30)

Hence

η̂EN = η̂OLS−
λ1

n
n(W T W +λ1Ip−1)

−1 η̂OLS−
λ2

2n
n(W T W+λ1Ip−1)

−1 sn

= η̂OLS − n(W T W + λ1Ip−1)
−1 [

λ1

n
η̂OLS +

λ2

2n
sn].
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Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(η̂EN −η) =

√
n(η̂OLS−η)−n(W T W + λ̂1Ip−1)

−1 [
λ̂1√
n

η̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2020).

Theorem 7.8, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂EN − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 7.6,

√
n(η̂EN − η) =

√
n(η̂EN − η̂R + η̂R − η) =

√
n(η̂R − η) +

√
n(η̂EN − η̂R)

D→ Np−1

(
−(1 − ψ)τV η, σ2V

)
− 2ψτ

2
V s

∼ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 7.5, continued. The rpack function enet does elastic net using
10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am = 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph

[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid
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The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net η̂i. Hence elastic net is used
as a variable selection method. Let XA denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is β̂ENV S = (XT

AXA)−1XT
AY , and relaxed

elastic net is an alternative to forward selection. Let k be the number of
active (nontrivial) predictors so β̂ENV S is (k+1)×1. Let Imin correspond to

the elastic net variable selection estimator and β̂V S = β̂ENV S,0 = β̂Imin,0 to
the zero padded elastic net variable selection estimator. Then by Remark 7.5
where p is fixed, β̂ENV S,0 is

√
n consistent when elastic net is consistent, with

the limiting distribution for β̂ENV S,0 given by Theorem 7.4. Hence elastic
net variable selection can be bootstrapped with the same methods used for
forward selection in Section 7.4. Elastic net variable selection will often be
better than elastic net when the model is sparse or if n ≥ 10(k + 1). The
elastic net can be better than elastic net variable selection if (XT

AXA) is ill
conditioned or if n/(k + 1) < 10. Also see Olive (2019) and Rathnayake and
Olive (2020).

7.12 Prediction Intervals

This section will develop prediction intervals after variable selection. Predic-
tion intervals were considered in Sections 2.4 and 5.4.

The additive error regression model is Y = m(x) + e where m(x) is a real
valued function and the ei are iid, often with zero mean and constant variance
V (e) = σ2. The large sample theory for prediction intervals is simple for this
model, and variable selection models for the multiple linear regression model
have this form withm(x) = xT β = xT

I βI if S ⊆ I. Let the residuals ri = Yi−
m̂(xi) = Yi−Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator ofm(x)
such that the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent
estimators of the population percentiles [L, U ] of the error distribution where
P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then P (Yf ∈ [Ŷf + L̂n(r), Ŷf +

Ûn(r)] → P (Yf ∈ [m(xf )+L,m(xf )+U ]) = P (e ∈ [L, U ]) = 1−δ as n→ ∞.
Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)
P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ with L = −U , and c)
the population shorth is the shortest interval (with length U − L) such that
P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically optimal while a) and b)
are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions. The split conformal PI (7.36), described below, estimates
[−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number
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of “variables” used by the method. For MLR, forward selection, lasso, and
relaxed lasso use variables x∗1, ..., x

∗

d while PCR and PLS use variables that
are linear combinations of the predictors Vj = γT

j x for j = 1, ..., d. (We could
let d = j if j is the degrees of freedom of the selected model if that model
was chosen in advance without model or variable selection. Hence d = j is
not the model degrees of freedom if model selection was used.) See Hong et
al. (2018) for why classical prediction intervals after variable selection fail to
work.

For n/p large and d = p, Olive (2013a) developed prediction intervals for
models of the form Yi = m(xi) + ei, and variable selection models for MLR
have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2020)
gave two prediction intervals that can be useful even if n/p is not large. These
PIs will be defined below. The first PI modifies the Olive (2013a) PI that can
only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d

√
(1 + hf) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (7.31) is changed
to qn = 1 − δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (7.31)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (7.32)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(7.33)
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if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will
be less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1

, ξ̃1−δ2
]. Then the first 100 (1 − δ)% large sample PI

for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

]. (7.34)

The second PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n−nH

cases i1, ..., inV
. The estimator m̂H(x) is computed using the training data

set H . Then the validation residuals vj = Yij
−m̂H(xij

) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
of the validation residuals (replacing n in (2.11) by nV = n− nH). Then the
second new 100(1− δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf) + v(s+c−1)]. (7.35)

Remark 7.21. Note that correction factors bn → 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p,
but a tdn

or pFp,dn
cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ →

1 if dn → ∞ as n → 1. Using correction factors for large sample confidence
intervals, tests, prediction intervals, prediction regions, and bootstrap confi-
dence regions improves the performance for moderate sample size n.

Remark 7.22. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(7.35) while PI (7.34) needs a stronger correction factor.

We can also motivate PI (7.35) by modifying the justification for the Lei
et al. (2018) split conformal prediction interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (7.36)

where aq is the 100(1 − α)th quantile of the absolute validation residuals.
PI (7.35) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H

from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
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order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (7.34) to (7.36) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the PIs (7.34) and (7.35) are
asymptotically optimal for a large class of error distributions while the split
conformal PI (7.36) needs the error distribution to be unimodal and symmet-
ric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half
the efficiency of m̂. When p ≥ n, the regularity conditions for consistent esti-
mators are strong. For example, EBIC and lasso can have P (S ⊆ Imin) → 1
as n → ∞. Then forward selection with EBIC and lasso variable selection
can produce consistent estimators. PLS can be

√
n consistent.

None of the three prediction intervals (7.34), (7.35), and (7.36) dominates
the other two. Recall that βS is an aS × 1 vector in (7.1). If a good fit-
ting method, such as lasso or forward selection with EBIC, is used, and
1.5aS ≤ n ≤ 5aS , then PI (7.34) can be much shorter than PIs (7.35) and
(7.36). For n/d large, PIs (7.34) and (7.35) can be shorter than PI (7.36) if
the error distribution is not unimodal and symmetric; however, PI (7.36) is
often shorter if n/d is not large since the sample shorth converges to the pop-
ulation shorth rather slowly. Grübel (1982) shows that for iid data, the length
and center the shorth(kn) interval are

√
n consistent and n1/3 consistent es-

timators of the length and center of the population shorth interval. For a
unimodal and symmetric error distribution, the three PIs are asymptotically
equivalent, but PI (4.16) can be the shortest PI due to different correction
factors.

If the estimator is poor, the split conformal PI (7.36) and PI (7.35) can
have coverage closer to the nominal coverage than PI (7.34). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (7.35) will be long compared
to PI (7.36).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
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as PIs (7.34) and (7.35), are the only easily computed asymptotically optimal

PIs for a wide range of consistent estimators β̂ of β for the multiple linear
regression model. If the error distribution is e ∼ EXP (1) − 1, then the
asymptotic length of the 95% PI (7.34) or (7.35) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, see Section 5.4 and Pelawa Watagoda and Olive (2020).

7.13 Outlier Resistant MLR Methods

Several methods from Section 6.1 can be modified to give outlier resistant
MLR methods. Replace OLS by the MLR method such as lasso, elastic net,
ridge regression, or forward selection.

The first outlier resistant regression method was given by Application
3.3. Call the estimator the MLD set MLR estimator. Let the ith case wi =
(Yi,x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Now let D be the RMVN set U , the RFCH set V , or the covmb2
set B. Find D by applying the MLD estimator to the ui, and then run the
MLR method on the m cases wi corresponding to the set D indices i1, ..., im,
where m ≥ n/2. The set B can be used even if p > n. The theory of the
MLR method applies to the cleaned data set since Y was not used to pick
the subset of the data. Efficiency can be much lower since m cases are used
where n/2 ≤ m ≤ n, and the trimmed cases tend to be the “farthest” from
the center of u. The rpack function getu gets the RMVN set U . See the
following R code for the Buxton (1920) data where we could use the covmb2
set B instead of the RMVN set U by replacing the command getu(x) by
getB(x). See Example 3.9.

Second, replace OLS by the MLR method for the trimmed views or tvreg
estimator. For p > n or n/p not large, trimming could be use the Euclidean
distance from the coordinatewise median with C−1 = I or use a regularized
version of Ccovmb2 from Definition 3.26.

Third, the MLR estimator can be applied to the RMVN set when RMVN
is computed from the vectors ui = (xi2, ..., xip, Yi)

T for i = 1, ..., n. Hence ui

is the ith case with xi1 = 1 deleted. This estimator is similar to the rmreg2
estimator that used OLS.

7.14 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1

vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→ ∞.
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2) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI
(0,V I) where (XT

I XI)/(nσ
2)

P→ V −1
I .

3) Theorem 7.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (7.37)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (7.38)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

4) Theorem 7.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj . Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj .

Then
wn =

√
n(β̂V S − β)

D→ w (7.39)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution

of the wj with probabilities πj.

5)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i ±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.
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6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7)

Ij model x2 x3 x4 x5 β̂Ij,0 if β̂ = β̂Ij

I2 1 * (β̂1 , 0, β̂3, 0, 0)T

I3 2 * * (β̂1, 0, β̂3, β̂4, 0)T

I4 3 * * * (β̂1, β̂2, β̂3, β̂4, 0)T

I5 4 * * * * (β̂1, β̂2, β̂3, β̂4, β̂4)
T = β̂OLS

Model Imin is the model, among p candidates, that minimizesCp if n ≥ 10,
or EBIC if n < 10p. Model Ij contains j predictors, x∗1, x

∗

2, ..., x
∗

j where
x∗1 = x1 ≡ 1, the constant.

8) Variable selection is a search for a subset of predictors that can be
deleted without important loss of information if n ≥ 10p and such that
model I (containing the remaining predictors that were not deleted) is good
for prediction if n < 10p. Note that the “100%” shorth CI for a βi that is a
component of βO is [0,0].

9) Underfitting occurs if S 6⊆ I so that xI is missing important predictors.
Underfitting will occur if xI is k × 1 with d = k < aS . Overfitting occurs if
S ⊂ I with S 6= I or if n < 5k.

10) In 7) sometimes TRUE = * and FALSE = blank. The xi may be
replaced by the variable name or letters like a b c d.

Ij model x2 x3 x4 x5

I2 1 FALSE TRUE FALSE FALSE
I3 2 FALSE TRUE TRUE FALSE
I4 3 TRUE TRUE TRUE FALSE
I5 4 TRUE TRUE TRUE TRUE

11) The out$cp line gives Cp(I2), Cp(I3), ..., Cp(Ip) = p and Imin is the Ij
with the smallest Cp.

12) Typical bootstrap output for forward selection, lasso, and elastic net is
shown below. The SE column is usually omitted except possibly for forward
selection. The term “coef” might be replaced by “Estimate.” This column
gives β̂I,0 where I = Imin for forward selection, I = L for lasso, and I = EN

for elastic net. Note that the SE entry is omitted if β̂i = 0 so variable xi was
omitted by the variable selection method. In the output below, β̂2 = β̂3 = 0.
The SE column corresponds to the OLS SE obtained by acting as if the OLS
full model contains a constant and the variables not omitted by the variable



7.14 Summary 349

selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]

x3 0 [L̂3, Û3]

x4 0 [L̂4, Û4]
...

...
...

...

xp β̂p SE(β̂p) [L̂p, Ûp]

13) The OLS SE is also accurate for forward selection withCp if XT X/n→
V −1 = diag(d1, ..., dp) where all di > 0. The diagonal limit matrix will occur
if the predictors are orthogonal or if the nontrivial predictors are independent
with 0 mean and finite variance.

regbootsim3(nruns=500)

$cicov

0.942 0.954 0.950 0.948 0.944 0.946 0.946 0.940 0.938 0.940

$avelen

0.398 0.399 0.397 0.399 2.448 2.448 2.448 2.448 2.448 2.450

$beta

[1] 1 1 0 0

$k

[1] 1

14) Simulation output for regression is similar to that shown above. Usu-
ally want coverage near 0.95 since nominal 95% CIs are used and tests with
nominal δ = 0.05 are used. To suggest that the actual coverage is near the
nominal coverage of 0.95, want cov in [0.94,0.96] with 5000 runs, want cov in
[0.93,0.97], with 1000 runs, want cov in [0.92,0.98] with 500 runs, and want
cov in [0.91,0.99] with 100 runs. Let SP = xT β = β1 + 1xi,2 + · · ·+ 1xi,k+1

for i = 1, ..., n. Hence β = (β1, 1, ..., 1, 0, ..., 0)T with β1, k ones, and p−k−1
zeros. Then S = {1, ..., k+1} and E = {k+2, ..., p}. Note that S corresponds
to the first k + 1 βi while E corresponds to the last p− k + 1 βi.

The first 4 numbers are the bootstrap shorth confidence intervals for
β1, β2, βp−1, and βp. The average lengths of the CIs along with the proportion
of times (coverage) the CI for βi contained βi are given. The next three num-
bers test H0 : βE = 0. The prediction region method, hybrid method, and
Bickel and Ren methods are used. Hence the fifth interval gives the length of
the interval [0, D(c)] whereH0 is rejected ifD0 > D(c) and the fifth “coverage”
is the proportion of times the prediction region method test fails to reject H0.
The last three numbers are similar but test H0 : βS = (β1 , 1, ..., 1)T. Hence
the last length 2.450 corresponds to the Bickel and Ren method with cover-
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age 0.940. For the output shown, lengths near 2.45 correspond to
√
χ2

2(0.95)
where P (X ≤ χ2

2(0.95)) = 0.95 if X ∼ χ2
2.

15) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e

where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

16) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (7.40)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

17) The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (7.41)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
18) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,
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θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

19) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .

ii) η̂L = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

20) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) OLS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

7.15 Complements

This chapter followed Pelawa Watagoda and Olive (2019, 2020) closely. Also
see Olive (2013a, 2018), and Rathnayake and Olive (2020). For MLR, Olive

(2017a: p. 123, 2017b: p. 176) showed that β̂V S = β̂Imin,0 is a consistent es-
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timator. Olive (2014: p. 283, 2017ab, 2018) recommended using the shorth(c)
estimator as a confidence interval. Olive (2017a: p. 128, 2017b: p. 181, 2018)
showed that the prediction region method can simulate well for the p × 1
vector β̂V S = β̂Imin,0. Hastie et al. (2009, p. 57) noted that variable selec-
tion is a shrinkage estimator: the coefficients are shrunk to 0 for the omitted
variables.

There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2006, 2008), and Tibshirani et al. (2018). Knight and Fu (2000) have some
results on the residual bootstrap that uses residuals from one estimator, such
as full model OLS, but fit another estimator, such as lasso.

Inference techniques for the variable selection model, other than data split-
ting, have not had much success. For multiple linear regression, the methods
are often inferior to data splitting, often assume normality, or are asymptot-
ically equivalent to using the full model, or find a quantity to test that is not
Aβ. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality,
needs p no more than about 30, assumes σ2 can be estimated independently
of the data, and Leeb et al. (2015) say the method does not work. The

bootstrap confidence region (4.32) is centered at T
∗ ≈ ∑

j ρjnTjn, which is
closely related to a model averaging estimator. Wang and Zhou (2013) show
that the Hjort and Claeskens (2003) confidence intervals based on frequentist
model averaging are asymptotically equivalent to those obtained from the
full model. See Buckland et al. (1997) and Schomaker and Heumann (2014)
for standard errors when using the bootstrap or model averaging for linear
model confidence intervals.

Efron (2014) used the confidence interval T
∗ ± z1−δSE(T

∗

) assuming T
∗

is asymptotically normal and using delta method techniques, which require
nonsingular covariance matrices. There is not yet rigorous theory for this
method. Section 7.2 proved that T

∗

is asymptotically normal: under regular-

ity conditions: if
√
n(Tn − θ)

D→ Ng(0,ΣA) and
√
n(T ∗

i − Tn)
D→ Ng(0,ΣA),

then under regularity conditions
√
n(T

∗ − θ)
D→ Ng(0,ΣA). If g = 1,

then the prediction region method large sample 100(1 − δ)% CI for θ has

P (θ ∈ [T
∗ − a(UB), T

∗

+ a(UB)]) → 1 − δ as n → ∞. If the Frey CI also has
coverage converging to 1−δ, than the two methods have the same asymptotic
length (scaled by multiplying by

√
n), since otherwise the shorter interval will

have lower asymptotic coverage.
We can get a prediction region by randomly dividing the data into two

half sets H and V where H has nH = dn/2e of the cases and V has the
remaining m = nV = n− nH cases. See Section 4.4.

Robust Versions of OLS Alternatives: Hastie et al. (2015, pp. 26-27)
discuss some modifications of lasso that are robust to certain types of outliers.
Robust methods for forward selection and LARS are given by Uraibi et al.
(2017, 2019) that need n >> p. If n is not much larger than p, then Hoffman
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et al. (2015) have a robust Partial Least Squares–Lasso type estimator that
uses a clever weighting scheme.

7.16 Problems

7.1. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂V S = β̂Imin,0?

Selection Algorithm: forward #output for Problem 7.1

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

7.2 Consider the above output for the OLS full model. The column resboot
gives the large sample 95% CI for βi using the shorth applied to the β̂∗

ij for j =
1, ..., B using the residual bootstrap. The standard large sample 95% CI for βi

is β̂i±1.96SE(β̂i). Hence for β2 corresponding to L, the standard large sample
95% CI is −0.001 ± 1.96(0.002) = −0.001 ± 0.00392 = [−0.00492, 0.00292]
while the shorth 95% CI is [−0.005, 0.004].

a) Compute the standard 95% CIs for βi corresponding to W, H, and S.
Also write down the shorth 95% CI. Are the standard and shorth 95% CIs
fairly close?

b) Consider testing H0 : βi = 0 versus HA : βi 6= 0. If the corresponding
95% CI for βi does not contain 0, then reject H0 and conclude that the
predictor variable Xi is needed in the MLR model. If 0 is in the CI then fail
to reject H0 and conclude that the predictor variable Xi is not needed in the
MLR model given that the other predictors are in the MLR model.
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Which variables, if any, are needed in the MLR model? Use the standard
CI if the shorth CI gives a different result. The nontrivial predictor variables
are L, W, H, and S.

7.3. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.

Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
e) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

7.4. Suppose the full model has p predictors including a constant. Let
submodel I have k predictors. Then
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is for the full model. Since FI ≥ 0, Cp(Imin) ≥ −p and Cp(I) ≥
−p. Assume the full model is one of the submodels considered. Then −p ≤
Cp(Imin) ≤ p. Let r be the residual vector for the full model and rI that for
the submodel. Then the correlation

corr(r, rI) =

√
n− p

Cp(I) + n− 2k
.

a) Show corr(r, rImin
) → 1 as n→ ∞.

b) Suppose S is not a subset of I. Under the model xT β = xT
SβS ,

corr(r, rI) will not converge to 1 as n → ∞. Suppose that for large enough
n, [corr(r, rI)]

2 ≤ γ < 1. Show that Cp(I) → ∞ as n → ∞.
7.5. The table below shows simulation results for bootstrapping OLS (reg)

and forward selection (vs) withCp when β = (1, 1, 0, 0)T . The βi columns give
coverage = the proportion of CIs that contained βi and the average length of
the CI. The test is for H0 : (β3, β4)

T = 0 and H0 is true. The “coverage” is
the proportion of times the prediction region method bootstrap test failed to
reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is reasonable for a
nominal value of 0.95. Output is given for three different error distributions.
If the coverage for both methods ≥ 0.93, the method with the shorter average
CI length was more precise. (If one method had coverage ≥ 0.93 and the other
had coverage < 0.93, we will say the method with coverage ≥ 0.93 was more
precise.)

a) For β2 , β3 , and β4, which method, forward selection or the OLS full
model, was more precise?

Table 7.3 Bootstrapping Forward Selection, n = 100, p = 4, ψ = 0.9, B = 1000

β1 β2 β3 β4 test
reg cov 0.93 0.95 0.95 0.94 0.95

len 1.266 10.703 10.666 10.650 2.547
vs cov 0.95 0.93 0.997 0.995 0.989

len 1.260 8.901 8.986 8.977 2.759
reg cov 0.94 0.93 0.95 0.94 0.95

len 0.393 3.285 3.266 3.279 2.475
vs cov 0.94 0.97 0.998 0.997 0.995

len 0.394 2.773 2.721 2.733 2.703
reg cov 0.95 0.94 0.95 0.95 0.95

len 0.656 5.493 5.465 5.427 2.493
vs cov 0.93 0.95 0.998 0.998 0.977

len 0.657 4.599 4.655 4.642 2.783

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
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asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

2,0.95 = 2.477.

Were the three values in the test column for reg within 0.11 of 2.477?
7.6. The table below shows simulation results for bootstrapping OLS (reg),

lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T . The
βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise. (If
one method had coverage ≥ 0.89 and the other had coverage < 0.89, we will
say the method with coverage ≥ 0.89 was more precise.) (Lengths for the test
column are not comparable unless the statistics have the same asymptotic
distribution.)

Table 7.4 Bootstrapping lasso and RR, n = 100, ψ = 0, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.945 0.947 0.941 0.941 0.937

len 0.397 0.399 0.400 0.398 2.451
RR cov 0.95 0.89 0.95 0.95 0.94

len 0.401 0.366 0.377 0.382 2.451
reg cov 0.928 0.948 0.953 0.952 0.943

len 0.661 0.673 0.675 0.676 2.490
lasso cov 0.97 0.90 0.99 0.98 0.97

len 0.684 0.741 0.612 0.610 2.650

a) For β3 and β4 which method, ridge regression or the OLS full model,
was more precise?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

7.7. For ridge regression, let An = (W T W + λ1,nIp−1)
−1W T W and

Bn = [Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

7.8. Table 7.5 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
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with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)

a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 7.5 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.

Were the three values in the test column for reg within 0.1 of 2.795?

7.9. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

7.10. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large

sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

7.11. For ridge regression, let An = (W T W + λ1,nIp−1)
−1W T W and

Bn = [Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

7.12. Consider choosing η̂ to minimize the elastic net criterion

Q(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression? (For example,

both are zero, λ1 is zero, or λ2 is zero.)
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b) Which values of λ1 and λ2 correspond to the OLS full model?

7.13. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, ridge regression, and lasso variable
selection.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

7.14.
R Problems Some R code for homework problems is at

(http://parker.ad.siu.edu/Olive/robRhw.txt).
Warning: Use a command like source(“G:/rpack.txt”) to download

the programs. See Preface or Section 14.2. Typing the name of the
rpack function, e.g. regbootsim3, will display the code for the function. Use
the args command, e.g. args(regbootsim3), to display the needed arguments
for the function.

regbootsim3(nruns=500)

#output similar to that for Problem 7.15

$cicov

0.942 0.954 0.950 0.948 0.944 0.946 0.946 0.940 0.938 0.940

$avelen

0.398 0.399 0.397 0.399 2.448 2.448 2.448 2.448 2.448 2.450

$beta

[1] 1 1 0 0

$k

[1] 1

7.15. Use the R command for this problem, and put the output in Word.
The output should be similar to that shown above. Consider the multiple
linear regression model Yi = β1 + β2xi,2 + β3xi,3 + β4xi,4 + ei where β =
(1, 1, 0, 0)T. The function regbootsim3 bootstraps the regression model
with the residual bootstrap. Note that S = {1, 2} and E = {3, 4}. The first 4
numbers are the bootstrap shorth confidence intervals for βi. The lengths of
the CIs along with the proportion of times (coverage) the CI for βi contained
βi are given. The CI lengths for the first 4 intervals should be near 0.392.
With 500 runs, coverage in [0.92,0.98] suggests that the actual coverage is
near the nominal coverage of 0.95. The next three numbers test H0 : βE = 0
where E corresponds to the last p− k+ 1 βi. The prediction region method,
hybrid method, and Bickel and Ren methods are used. Hence the fifth interval
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gives the length of the interval [0, D(c)] where H0 is rejected if D0 > D(c) and
the fifth “coverage” is the proportion of times the prediction region method
test fails to reject H0. The last three numbers are similar but test H0 :
βS = 1 where S corresponds to the first k+1 βi. Hence the last length 2.450
corresponds to the Bickel and Ren method with coverage 0.940. Want lengths
near 2.45 which correspond to

√
χ2

2(0.95) where P (X ≤ χ2
2(0.95)) = 0.95 if

X ∼ χ2
2.

7.16. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗

j = β̂
∗

j for j = 1, ..., 5.
c) B = 1000 T ∗

j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗

j . Copy and paste the output into Word. Is T
∗

close

to β̂OLS found in a)?
d) The commands for this part bootstrap the forward selection using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗

j = β̂V S,j = β̂
∗

Imin,0,j for j = 1, ..., 5. The last two variables may have a
few 0s.

e) B = 1000 T ∗

j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗

j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

7.17.
7.18.
7.19. For the Buxton (1920) data with multiple linear regression, height

was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.
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c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

7.20. This problem is like Problem 7.19, except elastic net is used instead
of lasso.

a) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. The identity line passes right through the
outliers which are obvious because of the large gap. Prediction interval (PI)
bands are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. This did elastic net for the cases in the
covmb2 set B applied to the predictors which included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. (Problem 7.19 c) shows the DD plot for the data.)

7.21. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

7.22. This simulation is similar to that used to form Table 7.5. Since 1000
runs are used, coverage in [0.93,0.97] suggests that the actual coverage is close
to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 7.5 with 4 lines.
Two lines are for reg (the OLS full model) and two lines are for vs (forward
selection with Imin). The βi columns give the coverage and lengths of the
95% CIs for βi. If the coverage ≥ 0.93, then the shorter CI length is more
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precise. Were the CIs for forward selection more precise than the CIs for the
OLS full model for β3 and β4?


