
Chapter 8

AER and Time Series

Additive error regression and some time series models are similar to multiple
linear regression for response plots and prediction intervals.

8.1 Additive Error Regression

Definition 8.1. The additive error regression (AER) model is

Y = m(x) + e (8.1)

where m is a real valued funtion and the errors ei are iid with zero mean and
finite variance σ2. The AER model is a 1D regression model with sufficient
predictor SP = h(x) = m(x) = E(Y |x). The estimated sufficient predictor
ESP = m̂(x) = Ŷ , and the residual r = Y − Ŷ . We will usually assume that
the error distribution is not highly skewed.

Definition 8.1. The response plot for the AER model is a plot of ESP
versus Y . The residual plot is a plot of ESP versus r.

Rule of thumb 8.1. If the error distribution is unimodal and not highly
skewed, the plotted points should follow the identity line in the response
plot and the r = 0 line in the residual plot with a rectangular or ellipsoidal
pattern. Hence the plots look like those for multiple linear regression when
the error distribution is unimodal and not highly skewed. Add the identity
line to the response plot. Pointwise prediction interval bands can also be
added.

Remark 8.1 Prediction intervals for the AER model were given in Section
7.12.

Many regression models are special cases of the AER model. The multiple
linear regression model is a special case with m(x) = xT β. Then AER single
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index model is a special case with m(x) = g(xT β). For this model, m(x)
and xT β are both sufficient predictors. See Chapter 9. Nonlinear regression
and nonparametric regression are also special cases. The nonlinear regression
model has m(x) = gθ(x), a known function except the k unknown parameters
θ = (θ1, ..., θk)

T . The additive error generalized additive model (AE GAM)
has m(x) = SP = AP = α +

∑p
j=1 Sj(xj) for some (usually unknown)

functions Sj . Then ESP = EAP = α̂ +
∑p

j−1 Ŝj(xj). The AER GAM is

useful for checking the multiple linear regression model: check that each Ŝj

linear.
Multiple linear regression uses an inflexible hyperplane m̂(x) = xT β.

Many AER fitting methods use flexible estimators m̂(x). These flexible meth-
ods often fit outliers well so the outliers are masked. Hence, outlier detection
tends to be more difficult for AER than for MLR. In the response and resid-
ual plots, look for gaps in the plot with clusters of outliers far from the bulk
of the data.
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Fig. 8.1 Pointwise Prediction Interval Bands for Ozone Data

Example 8.1. Chambers and Hastie (1993, p. 251, 516) examine an envi-
ronmental study that measured the four variables Y = ozone concentration,
solar radiation, temperature, and wind speed for n = 111 consecutive days.
Figure 8.1 shows the response plot with the pointwise large sample 95%
PI bands for the additive model. Here m̂(x) = estimated additive predic-
tor (EAP). Note that the plotted points scatter about the identity line in a
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roughly evenly populated band, and that 3 of the 111 PIs corresponding to
the observed data do not contain Y .

8.1.1 Response Transformations

This subsection extends the graphical method for response transformations
of Section 5.2 to regression models of the form Yi = m(xi) + ei. Predictor
transformations from Section 5.1 are still useful for such models.

The applicability of the AER model (8.1) can be expanded by allowing re-
sponse transformations. An important class of response transformation mod-
els adds an additional unknown transformation parameter λo, such that

Yi = tλo
(Zi) ≡ Z

(λo)
i = m(xi) + ei. (8.2)

If λo was known, then Yi = tλo
(Zi) would follow model (8.1). The function

m depends on λo, the p predictors xj are assumed to be measured with
negligible error, and the zero mean constant variance errors ei are assumed
to be iid from a unimodal distribution that is not highly skewed. The power
transformation and modified power transformations of Definitions 5.6 and
5.7 are again used.

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the

identity line in a roughly evenly populated band. Then take λ̂o = λ∗, that is,
Y = tλ∗(Z) is the response transformation. Curvature from the identity line
suggests that the candidate response transformation is inappropriate. After
selecting the transformation, the usual checks should be made. In particular,
the transformation plot for the selected transformation is a response plot,
and a residual plot should also be made.

Each transformation plot is a “response plot” for the seven values of W =
tλ(Z), and the method chooses the “best response plot” where the model (8.1)
seems “most reasonable.” If more than one value of λ ∈ ΛL gives a linear plot,
take the simplest or most reasonable transformation or the transformation
that makes the most sense to subject matter experts. Also check that the
corresponding “residual plots” of Ŵ versus W − Ŵ look reasonable. The
values of λ in decreasing order of importance are 1, 0, 1/2,−1 and 1/3. So
the log transformation would be chosen over the cube root transformation if
both transformation plots look equally good. Note that this procedure can
be modified to create a graphical diagnostic for a numerical estimator λ̂ of
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Fig. 8.2 Transformation Plots for Ozone Data

λo by adding λ̂ to ΛL. For linear models, Box and Cox (1964) is widely used.
Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical methods
can also be added.

In the following example, the plots show tλ(Z) on the vertical axis. The
label “EAP” of the horizontal axis is for the fitted values that result from
using tλ(Z) as the “response” in the software.
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Fig. 8.3 Residual Plots for Ozone Data
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Response transformations for the AE GAM Y = AP + e are among the
most difficult for regression models with additive errors since AE GAMs are
very flexible and tend to fit more than one candidate response transformation
well. Rule out poor models with transformation and residual plots. For each
remaining competing model, check the Ŝj and whether any of the predictors
can be deleted.

Example 8.2. Chambers and Hastie (1993, p. 251, 516) examine an envi-
ronmental study that measured the four variables Z = ozone concentration,
solar radiation, temperature and wind speed for 111 consecutive days. Ad-
ditive models were fit using Z and Z1/3 as the response. Figure 8.2 shows
the four best transformation plots, and Figure 8.3 shows the corresponding
residual plots. The plotted points scatter about the identity line and r = 0
line in roughly evenly populated bands except possibly the case that appears
in the lower left corner. No transformation Y = Z may be best since the
predictor solar radiation does not seem to be needed for this model, and the
other transformations fit the case in the lower left corner poorly.

Similar graphical methods for response transformations can be used for
time series, which are covered briefly in the next section.

8.2 Time Series

8.3 Summary

8.4 Complements

See Olive (2007, 2013a) and Pelawa Watagoda and Olive (2020) for prediction
intervals for AER. The graphical response transformation method is due to
Olive (2013b).

Experimental design models are often AER models. Response transforma-
tions for such models are given in Olive (2017a,

∮

5.4).

8.5 Problems

8.1. When doing a PI or CI simulation for a nominal 100(1 − δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑

i Yi/m. The
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variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈

√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?
8.2. The smoothing spline simulation compares the PI lengths and cover-

ages of 3 large sample 95% PIs for Y = m(x) + e and a single measurement
x. Values for the first PI were denoted by scov and slen, values for 2nd PI
were denoted by ocov and olen, and values for third PI by dcov and dlen. The
average degrees of freedom of the smoothing spline was recorded as adf. The
number of runs was 5000. The len was the average length of the PI and the
cov was the observed coverage. One student got the following results shown
in Table 4.2.

Table 8.1 Results for 3 PIs

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

5 100 18.028 17.300 18.741 0.9438 0.9382 0.9508 9.017

For the PIs with coverage ≥ 0.94, which PI was the most precise (best)?

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download

the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. regbootsim3, will display the code for the function. Use
the args command, e.g. args(regbootsim3), to display the needed arguments
for the function.

8.6. A problem with response and residual plots is that there can be a
lot of black in the plot if the sample size n is large (more than a few thou-
sand). A variant of the response plot for the additive error regression model
Y = m(x) + e would plot the identity line, the two lines parallel to the
identity line corresponding to the Section 7.12 large sample 100(1− δ)% pre-
diction intervals for Yf that depends on Ŷf . Then plot points corresponding
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to training data cases that do not lie in their 100(1 − δ)% PI. We will use
δ = 0.01, n = 100000, and p = 8.

a) Copy and paste the commands for this part into R. They make the
usual response plot with a lot of black. Do not include the plot in Word.

b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.

c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

8.7. The Rousseeuw and Leroy (1987, p. 26) Belgian telephone data has
response Y = number of international phone calls (in tens of millions) made
per year in Belgium. The predictor variable x = year (1950-1973). From 1964
to 1969 total number of minutes of calls was recorded instead, and years 1963
and 1970 were also partially effected. Hence there are 6 large outliers and 2
additional cases that have been corrupted.

a) The simple linear regression model is Y = α + βx + e = SP + e.
Copy and paste the R commands for this part to make a response plot of
ESP = Ŷ = α̂ + β̂x versus Y for this model. Include the plot in Word.

b) The additive error GAM is Y = α + S(x) + e = AP + e where S
is some unknown function of x. The R commands make a response plot of
EAP = α̂ + Ŝ(x) versus Y for this model. Include the plot in Word.

c) The simple linear regression model is a special case of the additive
error GAM with S(x) = βx. The additive error GAM is a special case of
the additive error regression model Y = m(x) + e where m(x) = α + S(x).
The response plots for these three models are used in the same way as the
response plot for the multiple linear regression model: if the model is good,
then the plotted points should cluster about the identity line with no other
pattern. Which response plot is better for showing that something is wrong
with the model? Explain briefly.


