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Preface

Statistics is, or should be, about scientific investigation and how to do it
better ....

Box (1990)

Statistics is the science of extracting useful information from data, and a
statistical model is used to provide a useful approximation to some of the
important characteristics of the population which generated the data.

A case or observation consists of the random variables measured for one
person or thing. In the location model there is one variable so the ith case
is Yi. For multiple linear regression, the ith case is (Yi,x

T
i )T where Yi is the

variable of interest, while for multivariate location and dispersion the ith case
is xi = (xi,1, ..., xi,p)

T . There are n cases. Outliers are cases that lie far away
from the bulk of the data, and they can ruin a classical analysis.

Robust statistics can be tailored to give useful results even when a cer-
tain specified model assumption is incorrect. In this text, two assumptions
are of great interest: robustness to outliers and robustness to a specified para-
metric distribution. If a method is robust to outliers, then the method gives
useful results even if certain types of outliers are present. If the method is
robust to a specified parametric distribution, such as robustness to nonnor-
mality, then there is large sample theory showing that the method is useful
on a large class of distributions. For example, central limit type theorems for
least squares show that least squares works well for a large class of iid error
distributions.

What is in the Book? This online book, a revision of Olive (2008a),
finds robust methods that give good results for multiple linear regression or
multivariate location and dispersion for a large group of underlying distri-
butions and that are useful for detecting certain types of outliers. Plots for
visualizing models and plots for detecting outliers and high leverage cases,
and prediction intervals and regions that work for large classes of distributions
are also of interest. The emphasis of the text is how to use robust methods
in tandem with classical methods for regression, including the special case of
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the location model. Robust multivariate location and dispersion estimators
are derived, and have many applications. A companion volume, Olive (2017b)
Robust Multivariate Analysis, shows how to use robust methods in tandem
with classical methods of multivariate analysis.

Emphasis is on the four following topics. 1) It is shown how to use the
response plot to visualize several of the most important regression models
including multiple linear regression, binomial regression, Poisson regression,
negative binomial regression and their generalized additive model analogs.
The response plots are also useful for examining goodness and lack of fit,
and for detecting outliers and high leverage groups. 2) The practical robust√
n consistent multivariate location and dispersion FCH estimator is devel-

oped, along with reweighted versions RFCH and RMVN. These estimators
are useful for creating robust multivariate procedures such as robust princi-
pal components, for outlier detection and for determining whether the data is
from a multivariate normal distribution or some other elliptically contoured
distribution. 3) Practical asymptotically optimal prediction intervals and re-
gions are developed. 4) It is shown how to construct the large class of practical√
n consistent high breakdown HBREG multiple linear regression estimators.
Chapter 1 is an introduction and Chapter 2 considers the location model

with emphasis on the median, the median absolute deviation, the trimmed
mean, and the shorth. The dot plot is used to visualize the location model.

Chapter 3 covers the multivariate location and dispersion model, includ-
ing the multivariate normal and other elliptically contoured distributions. It
is also shown that the most used practical “high breakdown” multivariate
location and dispersion estimators, such as FMCD (FAST-MCD) and OGK,
have not been shown to be consistent or high breakdown. The easily com-
puted outlier resistant

√
n consistent FCH, RFCH, and RMVN estimators

are also introduced. These estimators choose between the consistent DGK
estimator and the easily computed high breakdown MB estimator. DD plots
are used to visualize the model and prediction regions are developed.

Chapters 4-8 consider multiple linear regression. The response plot is used
to visualize the model and to detect outliers. The shorth estimator is used to
develop prediction intervals that work well for a large class of error distribu-
tions. Robust and resistant methods are developed. It is shown that the most
used practical “high breakdown” robust regression estimators, such as FLTS
(FAST-LTS), have not been shown to be consistent or high breakdown. It
is easy to fix the estimators that are not backed by theory, resulting in an
easily computed

√
n consistent high breakdown hbreg estimator.

Chapters 9 and 10 show how to visualize many regression models, including
generalized linear and generalized additive models, with response plots. These
plots are also useful for outlier detection. Chapter 11 provides information
on software and suggests some projects for the students.

The text can be used for supplementary reading for courses in regression,
multivariate analysis, categorical data analysis, generalized linear models,
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and exploratory data analysis. The text can also be used to present many
statistical methods to students running a statistical consulting lab.

The website (http://parker.ad.siu.edu/Olive/robbook.html) for this book
provides more than 30 data sets, and over 115 R programs in the file rpack.txt.
Section 11.2 discusses how to get the data sets and programs into the software,
but the following commands will work.

Downloading the book’s R functions rpack.txt and R data sets rob-
data.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/rpack.txt")

source("http://parker.ad.siu.edu/Olive/robdata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 110 R functions from rpack.txt should appear. In R, enter the com-
mand q(). A window asking “Save workspace image?” will appear. Click on
No to remove the functions from the computer (clicking on Yes saves the func-
tions on R, but the functions and data are easily obtained with the source
commands).

Background: This course assumes that the student has had considerable
exposure to Statistics, but is at a much lower level than most texts on robust
statistics. Calculus and a course in linear algebra are essential. Familiarity
with least squares regression is also assumed, and the matrix representation
of the multiple linear regression model should be familiar. See Olive (2010,
2017a) and Weisberg (2005). An advanced course in statistical inference,
especially one that covered convergence in probability and distribution, is
needed for several sections of the text. See Casella and Berger (2002), White
(1984), and Olive (2008b, 2014).

If most of the large sample theory in the text is covered, then the course
should be limited to Ph.D. students who want to do research in high break-
down multivariate robust statistics.

I suggest skipping the theory so that graduate students from many fields
can benefit from the course, and I have taught the course three times to
undergraduates and graduate students where the prerequisite was a calculus
based course in Statistics (e.g. Wackerly, Mendenhall and Scheaffer 2008).
For such a course, cover Ch. 1, 2.1–2.5, 3.1, 3.2, 3.3, 3.6, 3.7, 3.10, 3.12, Ch.
4, Ch. 5, 6.2, 7.6, part of 8.2, Ch. 10 and selected topics from Ch. 9. (This
will cover the most important material in the text. Many of the remaining
sections are for Ph.D. students and experts in robust statistics.) The text
problems can be done by graduate and undergraduate students.

The Rousseeuw and Yohai Paradigm: This book is an alternative
to the Rousseeuw Yohai paradigm for high breakdown multivariate Robust
Statistics which is to approximate an impractical brand name estimator by
computing a fixed number of easily computed trial fits and then use the brand
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name estimator criterion to select the trial fit to be used in the final robust
estimator. The resulting estimator will be called an F-brand name estimator
or F-estimator where the F indicates that a fixed number of trial fits was used.
For example, generate 500 easily computed estimators of multivariate location
and dispersion as trial fits. Then choose the trial fit with the dispersion
estimator that has the smallest determinant. Since the minimum covariance
determinant (MCD) criterion is used, call the resulting estimator the FMCD
estimator. These practical estimators are typically not yet backed by large
sample or breakdown theory. Most of the literature follows the Rousseeuw
Yohai paradigm, using estimators like FMCD, FLTS, FMVE, F-S, FLMS, F-
τ , F-Stahel-Donoho, F-Projection, F-MM, FLTA, F-Constrained M, ltsreg,
lmsreg, cov.mcd, cov.mve or OGK that are not backed by theory. Maronna,
Martin, and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw, and Van Aelst
(2008) provide references for the above estimators.

Problems with these estimators have been pointed out many times. See, for
example, Olive (2017b), Huber and Ronchetti (2009, p. xiii, 8-9, 152-154, 196-
197) and Hawkins and Olive (2002) with discussion by Hubert, Rousseeuw,
and Van Aelst (2002), and Maronna and Yohai (2002). As a rule of thumb,
if p > 2 then the brand name estimators take too long to compute, so re-
searchers who claim to be using a practical brand name estimator are actually
using an F-brand name estimator.

Need for the book: Most of the literature on high breakdown mul-
tivariate robust statistics follows the Rousseeuw and Yohai paradigm. See
Maronna et al. (2019). The Olive and Hawkins paradigm, as illustrated by
this book, is to give theory for the estimator actually used. Practical robust
methods backed by theory are needed since so many data sets contain outliers
that can ruin a classical analysis. Wilcox (2017) covers material from both
paradigms.

This text also simplifies bootstrap theory and theory for variable selection
estimators.
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Chapter 1

Introduction

All models are wrong, but some are useful.
Box (1979)

In data analysis, an investigator is presented with a problem and data from
some population. The population might be the collection of all possible out-
comes from an experiment while the problem might be predicting a future
value of the response variable Y or summarizing the relationship between Y
and the p × 1 vector of predictor variables x. A statistical model is used
to provide a useful approximation to some of the important underlying char-
acteristics of the population which generated the data. Models for regression
and multivariate location and dispersion are frequently used.

Model building is an iterative process. Given the problem and data but no
model, the model building process can often be aided by graphs that help
visualize the relationships between the different variables in the data. Then a
statistical model can be proposed. This model can be fit, and diagnostics from
the fit can be used to check the assumptions of the model. If the assumptions
are not met, then an alternative model can be selected. The fit from the new
model is obtained, and the cycle is repeated. After a reasonable model is
found, the model can be used for description or inference.

Response variables are the variables of interest, and are predicted with a
p×1 vector of predictor variables. For regression models, we will often use Y or
Z for the response variable and x = (x1, ..., xp)

T for predictor variables where
xT is the transpose of x. For example, predict Y = systolic blood pressure
using a constant x1, x2 = age, x3 = weight, and x4 = dosage amount of blood
pressure medicine. The multivariate location and dispersion (MLD) model
has no predictor variables, and we will often use x = (x1, ..., xp)

T for the p
response variables. For regression, the ith case is (Yi, xi1, ..., xip)

T = (Yi,x
T
i )T

for i = 1, ..., n where n is the sample size. For MLD, the ith case is xi. To
get outlier resistant methods for regression models and MLD models, we will
often use a robust MLD estimator on the xi. See Chapter 3.

1



2 1 Introduction

Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Definition 1.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (1.1)

where the real valued function h : Rp → R. The estimated sufficient predictor
ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = α+βT x where ESP = α̂+β̂
T
x. This class of models includes the gen-

eralized linear model (GLM). Another important special case is a generalized
additive model (GAM), where Y is independent of x = (x1, ..., xp)

T given the
additive predictor AP = α+

∑p
j=1 Sj(xj) for some (usually unknown) func-

tions Sj . The estimated additive predictor EAP = ESP = α̂+
∑p

j=1 Ŝj(xj).

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis.

Plots are extremely important for regression. When p = 1, x is both a
sufficient predictor and an estimated sufficient predictor. So a plot of x versus
Y is both a sufficient summary plot and a response plot. Usually the SP is
unknown, so only the response plot can be made. The response plot will be
extremely useful for checking the goodness of fit of the 1D regression model.

Definition 1.3. A sufficient summary plot is a plot of the SP versus Y .
An estimated sufficient summary plot (ESSP) or response plot is a plot of
the ESP versus Y .

Notation. Often the index i will be suppressed. If h(x) = α + βT x, we
could redefine x and β (or omit α) so that h(x) = βT x = xT β. For example,
the multiple linear regression model

Yi = βT xi + ei (1.2)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = βT x + e. More accurately,
Y |x = βT x+e, but the conditioning on x will often be suppressed. Often the
errors e1, ..., en are iid (independent and identically distributed) with mean
0 and unknown standard deviation σ. For this model, estimation of β and
σ is important for inference and for predicting a new value of the response
variable Yf given a new vector of predictors xf .



1 Introduction 3

The class of 1D regression models is very rich, and many of the most
used statistical models, including GLMs and GAMs, are 1D regression mod-
els. Nonlinear regression, nonparametric regression, and linear regression are
special cases of the additive error regression model

Y = h(x) + e = SP + e. (1.3)

The multiple linear regression model and experimental design model or ANOVA
model are special cases of the linear regression model Y = βT x + e. Another
important class of parametric or semiparametric 1D regression models has
the form

Y = g(α+ xT β, e) or Y = g(xTβ, e). (1.4)

Special cases include GLMs and the response transformation model

Z = t−1(α+ βT x + e) (1.5)

where t−1 is a one to one (typically monotone) function. Hence

Y = t(Z) = α+ βT x + e. (1.6)

In the literature, the response variable is sometimes called the dependent
variable while the predictor variables are sometimes called carriers, covari-
ates, explanatory variables, or independent variables. The ith case (Yi,x

T
i )T

consists of the values of the response variable Yi and the predictor variables
xT

i = (xi,1, ..., xi,p) where p is the number of predictors and i = 1, ..., n. The
sample size n is the number of cases.

Box (1979) warns that “All models are wrong, but some are useful.” For
example the function g or the error distribution could be misspecified. Di-
agnostics are used to check whether model assumptions such as the form of
g and the proposed error distribution are reasonable. Often diagnostics use
residuals ri. If m is known, then the additive error regression model uses

ri = Yi − m̂(xi)

where m̂(x) is an estimate of m(x). If the sufficient predictor is xT β, then

several estimators β̂j could be used. Often β̂j is computed from a subset
of the n cases or from different fitting methods. For example, ordinary least
squares (OLS) and least absolute deviations (L1) could be used to compute

β̂OLS and β̂L1
, respectively. Then the corresponding residuals can be plotted.

Exploratory data analysis (EDA) can be used to find useful models when
the form of the regression or multivariate model is unknown. For example,
suppose g is a monotone function t−1 :
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Y = t−1(xT β + e). (1.7)

Then the transformation

Z = t(Y ) = xT β + e (1.8)

follows a multiple linear regression model, and the goal is to find t.

Robust statistics can be tailored to give useful results even when a certain
specified model assumption is incorrect. An important class of robust statis-
tics can give useful results when outliers, observations far from the bulk of
the data, are present.

Another class of robust statistics has good large sample theory for a large
class of distributions: e.g. β̂ is a good estimator of β for a large class of error
distributions. Examples include OLS and L1 for multiple linear regression, the
sample mean and sample covariance matrix for the multivariate location and
dispersion model, least squares and the Yule Walker estimators for AR(p)
time series, and least squares for the multivariate linear regression model
where there are m response variables.

These two classes of robust statistics have amazing applications for regres-
sion, multivariate location and dispersion, diagnostics, and EDA. This book
illustrates some of these applications and investigates the interrelationships
between these two classes of robust statistics.

Acronyms are widely used in robust statistics and multivariate analysis,
and some of the more important acronyms are in Table 1.1. Also see the text’s
index. The letter “R” tends to stand for “robust” (RPCA) or “reweighted”
(RFCH). The letter “F” before a brand name robust estimator (FMCD)
tends to mean a practical estimator that used a fixed number of trial fits,
where the criterion of the brand name estimator was used to select the trial
fit used in the final estimator. The letter “C” before a brand name estimator
(CLTS) tends to mean a concentration algorithm was used for the F–brand
name estimator. The letter “A”, standing for “algorithm”, was also used for
concentration algorithms (ALTS). These acronyms (with A, C, F, or R) are
often omitted from Table 1.1.

1.1 Outlier....s

An outlier is an observation that is far from the bulk of the data. Typing
and recording errors may create outliers, and a data set can have a large
proportion of outliers if there is an omitted categorical variable (e.g. gender,
species, or geographical location) where the data behaves differently for each
category. Outliers should always be examined to see if they follow a pattern,
are recording errors, or if they could be explained adequately by an alternative
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Table 1.1 Acronyms

Acronym Description
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
Det-MCD practical approximate MCD estimator not backed by theory

DGK an MLD estimator (DGK are the initials of the paper’s authors)
EC elliptically contoured
ESP estimated sufficient predictor

Fast-MCD a slow FMCD estimator
FCH name of a fast, consistent, highly outlier resistant MLD estimator
FLTS practical approximate LTS estimator not backed by theory
FMCD practical approximate MCD estimator not backed by theory
GAM generalized additive model
GLM generalized linear model
HB high breakdown

hbreg practical high breakdown regression estimator backed by theory
iid independent and identically distributed

LMS least median of squares (robust regression)
LR logistic regression
LTA least trimmed sum of absolute deviations (robust regression)
LTS least trimmed sum of squares (robust regression)
MAD median absolute deviation

MANOVA multivariate analysis of variance
MB median ball estimator

MBA an MLD estimator made obsolete by FCH
MBA or the median ball algorithm is the mbareg estimator

mbareg a resistant regression estimator backed by theory
MCD the impractical minimum covariance determinant estimator
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression
MVE the impractical minimum volume ellipsoid estimator
MVN multivariate normal
OGK an MLD estimator not backed by theory
OLS ordinary least squares
pdf probability density function
PI prediction interval

pmf probability mass function
RFCH the reweighted FCH estimator
RMVN a reweighted FCH estimator that works well for MVN data

SE standard error
SSP sufficient summary plot

TVREG a resistant “trimmed views” regression estimator
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model. Recording errors can sometimes be corrected and omitted variables
can be included, but often there is no simple explanation for a group of data
which differs from the bulk of the data.

Although outliers are often synonymous with “bad” data, they are fre-
quently the most important part of the data. Consider, for example, finding
the person you want to marry, finding the best investments, finding the lo-
cations of mineral deposits, and finding the best students, teachers, doctors,
scientists, or other outliers in ability. Huber and Ronchetti (2009, p. 4) states
that outlier resistance and distributional robustness are synonymous while
Hampel et al. (1986, p. 36) state that the first and most important step in
robustification is the rejection of distant outliers.

Deciding what to do with outliers can be difficult. Sometimes the outliers
should be discarded or downweighted. Then inflexible estimators such as re-
sistant multiple linear regression estimators are often useful. The estimator
is inflexible since a hyperplane is estimated. Sometimes the oultiers are im-
portant and should be fit will by the model. Then flexible estimators, such
as the generalized additive model to fit the additive error regression model,
are often useful.

Example 1.1. a) The Rousseeuw and Leroy (1987, p. 26) Belgian tele-
phone data has response Y = number of international phone calls (in tens of
millions) made per year in Belgium. The predictor variable x = year (1950-
1973). From 1964 to 1969 total number of minutes of calls was recorded
instead, and years 1963 and 1970 were also partially effected. Hence there
are 6 large outliers and 2 additional cases that have been corrupted. The 8
cases corresponding to these outliers should be deleted.

b) Wood (2017, pp. 346-348) describes an air pollution data set where the
response variable is the daily death rate in Chicago over a number of years.
For this data set, there tend to be outliers that occur a few days after days
that had both high temperature and high ozone levels. For this data set, the
outliers are very important, and should be fit well by the model.

c) While consulting for a chemistry experiment, the data set was fit by a
regression method where the expert said some of the Yi were impossible due
to large ei. The nonparametric bootstrap using all of the data gave results
that the expert considered reasonable for inference.

In the literature there are two important paradigms for robust procedures.
The perfect classification paradigm considers a fixed data set of n cases of
which 0 ≤ d < n/2 are outliers. The key assumption for this paradigm is
that the robust procedure perfectly classifies the cases into outlying and non-
outlying (or “clean”) cases. The outliers should never be blindly discarded.
Often the clean data and the outliers are analyzed separately. The clean cases
are also called inliers.

The asymptotic paradigm uses an asymptotic distribution to approximate
the distribution of the estimator when the sample size n is large. An impor-
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tant example is the central limit theorem (CLT): let Y1, ..., Yn be iid with
mean µ and standard deviation σ; i.e., the Yi’s follow the location model

Y = µ + e.

Then
√
n(

1

n

n∑

i=1

Yi − µ)
D→ N(0, σ2).

Hence the sample mean Y n is asymptotically normal AN(µ, σ2/n).
For this paradigm, one must determine what the estimator is estimating,

the rate of convergence, the asymptotic distribution, and how large nmust be
for the approximation to be useful. Moreover, the (asymptotic) standard error
(SE), an estimator of the asymptotic standard deviation, must be computable
if the estimator is to be useful for inference. Note that the sample mean is
estimating the population mean µ with a

√
n convergence rate, the asymptotic

distribution is normal, and the SE = S/
√
n where S is the sample standard

deviation. For many distributions the central limit theorem provides a good
approximation if the sample size n > 30, but for any n > 0, there are many
distributions where the CLT approximation is poor. Chapter 2 examines the
sample mean, standard deviation and robust alternatives.

1.2 Applications

One of the key ideas of this book is that the data should be examined with
several estimators, and this book provides robust estimators and diagnostics
that can be used in tandem with classical estimators. Often there are many
procedures that will perform well when the model assumptions hold, but
no single method can dominate every other method for every type of model
violation. For example, OLS is best for multiple linear regression when the
iid errors are normal (Gaussian) while L1 is best if the errors are double
exponential. Resistant estimators may outperform classical estimators when
outliers are present but be far worse if no outliers are present.

Different multiple linear regression estimators tend to estimate β in the
iid constant variance symmetric error model, but otherwise each estimator
estimates a different parameter. Hence a plot of the residuals or fits from
different estimators should be useful for detecting departures from this very
important model. The “RR plot” is a scatterplot matrix of the residuals from
several regression fits. Tukey (1991) notes that such a plot will be linear with
slope one if the model assumptions hold. Let the ith residual from the jth
fit β̂j be ri,j = Yi − xT

i β̂j where the superscript T denotes the transpose of

the vector and (Yi,x
T
i ) is the ith observation. Then



8 1 Introduction

‖ri,1 − ri,2‖ = ‖xT
i (β̂1 − β̂2)‖

≤ ‖xi‖ (‖β̂1 − β‖ + ‖β̂2 − β‖).

The RR plot is simple to use since if β̂1 and β̂2 have good convergence
rates and if the predictors xi are bounded, then the residuals will cluster
tightly about the identity line (the unit slope line through the origin) as n
increases to ∞. For example, plot the least squares residuals versus the L1

residuals. Since OLS and L1 are consistent, the plot should be linear with
slope one when the regression assumptions hold, but the plot should not have
slope one if there are Y –outliers since L1 resists these outliers while OLS does
not. Making a scatterplot matrix of the residuals from OLS, L1, and several
other estimators can be very informative.

The FF plot is a scatterplot matrix of fitted values and the response. A
plot of fitted values versus the response is called a response plot. For square
plots, outliers tend to be

√
2 times further away from the bulk of the data in

the OLS response plot than in the OLS residual plot because outliers tend
to stick out for both the fitted values and the response.

Example 1.2. Gladstone (1905) attempts to estimate the weight of the
human brain using predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index (divide the breadth of the head by its length and
multiply by 100). The sex (coded as 0 for females and 1 for males) of each
subject was also included. The variable cause was coded as 1 if the cause
of death was acute, as 3 if the cause of death was chronic, and coded as 2
otherwise. A variable ageclass was coded as 0 if the age was under 20, as 1 if
the age was between 20 and 45, and as 3 if the age was over 45. Head size is
the product of the head length, head breadth, and head height.

The data set contains 276 cases, and we decided to use multiple linear
regression to predict brain weight using the six head measurements height,
length, breadth, size, cephalic index and circumference as predictors. Cases
188 and 239 were deleted because of missing values. There are five infants
(cases 238, 263-266) of age less than 7 months that are x-outliers. Nine tod-
dlers were between 7 months and 3.5 years of age, four of whom appear to
be x-outliers (cases 241, 243, 267, and 269).

Figure 1.1 shows an RR plot comparing the OLS, ALMS, ALTS and MBA
fits. ALMS is the default version of the R function lmsreg while ALTS is the
default version of ltsreg. The three estimators ALMS, ALTS, and MBA
are described further in Chapters 6, 7, and 8. Figure 1.1 was made with a
2007 version of R. ALMS, ALTS and MBA depend on the seed (in R) and
so the estimators change with each call of rrplot2. Also, the ALMS and
ALTS estimators change frequently. Nine cases stick out in Figure 1.1, and
these points correspond to five infants and four toddlers that are x-outliers.
The OLS fit may be the best since the OLS fit to the bulk of the data (with
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Fig. 1.1 RR Plot for Gladstone data

the nine potential outliers given weight 0) passes through the five infants,
suggesting that these cases are “good leverage points.”

Assume the book’s collection of R functions rpack and collection of data
sets robdata are stored on flash drive G. See Section 11.2. RR plots similar
to Figure 1.1 can be made in R using the following commands.

source("G:/rpack.txt")

source("G:/robdata.txt")

library(MASS)

rrplot2(cbrainx,cbrainy)

An obvious application of outlier resistant methods is the detection of
outliers. Generally robust and resistant methods can only detect certain con-
figurations of outliers, and the ability to detect outliers rapidly decreases as
the sample size n and the number of predictors p increase. When the Glad-
stone data was first entered into the computer, the variable head length was
inadvertently entered as 109 instead of 199 for case 119. Residual plots are
shown in Figure 1.2. For the three resistant estimators, case 119 is in the
lower right corner.
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Fig. 1.2 Gladstone data where case 119 is a typo

Example 1.3. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
Height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, numbers 62–66, were reported to be about 0.75 inches tall
with head lengths well over five feet! Figure 7.1, made around 2000, shows
that the outliers were accommodated by OLS, ALMS and ALTS. The outliers
had large absolute residuals for the MBA, BB and MBALATA estimators.
Figure 5.2 shows that the outliers are much easier to detect with the OLS
response and residual plots.

The Buxton data is also used to illustrate robust multivariate location and
dispersion estimators in Example 3.4 and to illustrate a graphical diagnostic
for multivariate normality in Example 3.2.

Example 1.4. Now suppose that the only variable of interest in the Bux-
ton data is Y = height. How should the five adult heights of 0.75 inches be
handled? These observed values are impossible, and could certainly be deleted
if it was felt that the recording errors were made at random; however, the
outliers occurred on consecutive cases: 62–66. If it is reasonable to assume
that the true heights of cases 62–66 are a random sample of five heights from
the same population as the remaining heights, then the outlying cases could
again be deleted. On the other hand, what would happen if cases 62–66 were
the five tallest or five shortest men in the sample? In particular, how are
point estimators and confidence intervals affected by the outliers? Chapter 2
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will show that classical location procedures based on the sample mean and
sample variance are adversely affected by the outliers while procedures based
on the sample median or the 25% trimmed mean can frequently handle a
small percentage of outliers.

For the next application, assume that the population that generates the
data is such that a certain proportion γ of the cases will be easily identified
but randomly occurring unexplained outliers where γ < α < 0.2, and assume
that remaining proportion 1 − γ of the cases will be well approximated by
the statistical model.

A common suggestion for examining a data set that has unexplained out-
liers is to run the analysis on the full data set and to run the analysis on the
“cleaned” data set with the outliers deleted. Then the statistician may con-
sult with subject matter experts in order to decide which analysis is “more
appropriate.” Although the analysis of the cleaned data may be useful for
describing the bulk of the data, the analysis may not very useful if prediction
or description of the entire population is of interest.

Similarly, the analysis of the full data set will likely be unsatisfactory for
prediction since numerical statistical methods tend to be inadequate when
outliers are present. Classical estimators will frequently fit neither the bulk of
the data nor the outliers well, while an analysis from a good practical robust
estimator (if available) should be similar to the analysis of the cleaned data
set.

Hence neither of the two analyses alone is appropriate for prediction or
description of the actual population. Instead, information from both analyses
should be used. The cleaned data will be used to show that the bulk of the
data is well approximated by the statistical model, but the full data set will
be used along with the cleaned data for prediction and for description of the
entire population.

To illustrate the above discussion, consider the multiple linear regression
model

Y = Xβ + e (1.9)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of errors. The ith case (Yi,x

T
i )T corresponds to the ith row xT

i of X

and the ith element Yi of Y . Assume that the errors ei are iid zero mean
normal random variables with variance σ2.

Finding prediction intervals for future observations is a standard problem
in regression. Let β̂ denote the ordinary least squares (OLS) estimator of β

and let

MSE =

∑n
i=1 r

2
i

n− p

where ri = Yi − xT
i β̂ is the ith residual. Following Olive, (2017a, p. 39), a

100(1− δ)% prediction interval (PI) for a new observation Yf corresponding
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to a vector of predictors xf is given by

Ŷf ± tn−p,1−α/2se(pred) (1.10)

where Ŷf = xT
f β̂, P (t ≤ tn−p,1−δ/2) = 1 − δ/2 where t has a t distribution

with n− p degrees of freedom, and

se(pred) =
√
MSE(1 + xT

f (XT X)−1xf).

For discussion, suppose that 1 − γ = 0.92 so that 8% of the cases are
outliers. If interest is in a 95% PI, then using the full data set will fail because
outliers are present, and using the cleaned data set with the outliers deleted
will fail since only 92% of future observations will behave like the “clean”
data.

A simple remedy is to create a nominal 100(1 − δ)% PI for future cases
from this population by making a classical 100(1−δ∗) PI from the clean cases
where

1 − δ∗ = (1 − δ)/(1 − γ). (1.11)

Assume that the data have been perfectly classified into nc clean cases and
no outlying cases where nc +no = n. Also assume that no outlying cases will
fall within the PI. Then the PI is valid if Yf is clean, and

P(Yf is in the PI) = P(Yf is in the PI and clean) =

P(Yf is in the PI | Yf is clean) P(Yf is clean) = (1 − δ∗)(1 − γ) = (1 − δ).

The formula for this PI is then

Ŷf ± tnc−p,1−δ∗/2se(pred) (1.12)

where Ŷf and se(pred) are obtained after performing OLS on the nc clean
cases. For example, if δ = 0.1 and γ = 0.08, then 1 − δ∗ ≈ 0.98. Since γ will
be estimated from the data, the coverage will only be approximately valid.
The following example illustrates the procedure.

Example 1.5. STATLIB provides the Johnson (1996) data set that is
available from the website (http://lib.stat.cmu.edu/datasets/bodyfat) and
from the text website file bodfat.lsp. The data set includes 252 cases, 14
predictor variables, and a response variable Y = bodyfat. The correlation
between Y and the first predictor x1 = density is extremely high, and the plot
of x1 versus Y looks like a straight line except for four points. If simple linear
regression is used, the residual plot of the fitted values versus the residuals is
curved and five outliers are apparent. The curvature suggests that x2

1 should
be added to the model, but the least squares fit does not resist outliers well.
If the five outlying cases are deleted, four more outliers show up in the plot.
The residual plot for the quadratic fit looks reasonable after deleting cases
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Fig. 1.3 Plots for Summarizing the Entire Population

6, 48, 71, 76, 96, 139, 169, 182 and 200. Cases 71 and 139 were much less
discrepant than the other seven outliers.

These nine cases appear to be outlying at random: if the purpose of the
analysis was description, we could say that a quadratic fits 96% of the cases
well, but 4% of the cases are not fit especially well. If the purpose of the
analysis was prediction, deleting the outliers and then using the clean data to
find a 99% prediction interval (PI) would not make sense if 4% of future cases
are outliers. To create a nominal 90% PI for future cases from this population,
make a classical 100(1−δ∗) PI from the clean cases where 1−δ∗ = 0.9/(1−γ).
For the bodyfat data, we can take 1−γ ≈ 1−9/252 ≈ 0.964 and 1−δ∗ ≈ 0.94.
Notice that (0.94)(0.96) ≈ 0.9.

Figure 1.3 is useful for presenting the analysis. The top two plots have the
nine outliers deleted. Figure 1.3a is a response plot of the fitted values Ŷi

versus the response Yi while Figure 1.3b is a residual plot of the fitted values
Ŷi versus the residuals ri. These two plots suggest that the multiple linear
regression model fits the bulk of the data well. Next consider using weighted
least squares where cases 6, 48, 71, 76, 96, 139, 169, 182 and 200 are given
weight zero and the remaining cases weight one. Figure 1.3c and 1.3d give
the response plot and residual plot for the entire data set. Notice that seven
of the nine outlying cases can be seen in these plots.

The classical 90% PI using x = (1, 1, 1)T and all 252 cases was Ŷf ±
t249,0.95se(pred) = 46.3152± 1.651(1.3295) = [44.12, 48.51].When the 9 out-
liers are deleted, nc = 243 cases remain. Hence the 90% PI using Equa-
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tion (1.12) with 9 cases deleted was Ŷh ± t240,0.97se(pred) = 44.961 ±
1.88972(0.0371) = [44.89, 45.03]. The classical PI is about 31 times longer
than the new PI.

For the next application, consider a response transformation model

Y = t−1
λo

(xT β + e)

where λo ∈ Λ = {0,±1/4,±1/3,±1/2,±2/3,±1}. Then

tλo(Y ) = xT β + e

follows a multiple linear regression (MLR) model where the response variable
Yi > 0 and the power transformation family

tλ(Y ) ≡ Y (λ) =
Y λ − 1

λ
(1.13)

for λ 6= 0 and Y (0) = log(Y ).

The following simple graphical method for selecting response transforma-
tions can be used with any good classical, robust or Bayesian MLR estimator.
Let Zi = tλ(Yi) for λ 6= 1, and let Zi = Yi if λ = 1. Next, perform the mul-
tiple linear regression of Zi on xi and make the “response plot” of Ẑi versus
Zi. If the plotted points follow the identity line, then take λo = λ. One plot
is made for each of the eleven values of λ ∈ Λ, and if more than one value of
λ works, take the simpler transformation or the transformation that makes
the most sense to subject matter experts. (Note that this procedure can be

modified to create a graphical diagnostic for a numerical estimator λ̂ of λo

by adding λ̂ to Λ.) The following example illustrates the procedure.

Example 1.6. Box and Cox (1964) present a textile data set where sam-
ples of worsted yarn with different levels of the three factors were given a
cyclic load until the sample failed. The goal was to understand how Y =
the number of cycles to failure was related to the predictor variables. Figure
1.4 shows the response plots for two MLR estimators: OLS and the R func-
tion lmsreg. Figures 1.4a and 1.4b show that a response transformation is
needed while 1.4c and 1.4d both suggest that log(Y ) is the appropriate re-
sponse transformation. Using OLS and a resistant estimator as in Figure 1.4
may be very useful if outliers are present.

Further illustrations of the graphical method for selecting the response
transformation tλ are in Section 4.2.

Another important application is variable selection: the search for a subset
of predictor variables that can be deleted from the model without important
loss of information. Section 4.3 gives a graphical method for assessing variable
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Fig. 1.4 OLS and LMSREG Suggest Using log(Y) for the Textile Data

selection for multiple linear regression models while Section 9.4 gives a similar
method for a large class of 1D regression models.

The basic idea is to obtain fitted values from the full model and the can-
didate submodel. If the candidate model is good, then the plotted points in
a plot of the submodel fitted values versus the full model fitted values should
follow the identity line. In addition, a similar plot should be made using the
residuals.

If the predicted values from the submodel are highly correlated with the
predicted values from the full model, then the submodel is “good.” This
idea is useful even for extremely complicated models: the estimated sufficient
predictor of a “good submodel” should be highly correlated with the ESP of
the full model. Section 9.4 will show that the all subsets, forward selection
and backward elimination techniques of variable selection for multiple linear
regression will often work for a large class of 1D regression models provided
that the Mallows’ Cp criterion is used.

Example 1.7. The Boston housing data of Harrison and Rubinfeld (1978)
contains 14 variables and 506 cases. Suppose that the interest is in predicting
the per capita crime rate from the other variables. Variable selection for this
data set is discussed in much more detail in Section 9.4.

Another important topic is fitting 1D regression models given by Equation
(1.4) where g and β are both unknown. Many types of plots will be used in
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this text and a plot of x versus y will have x on the horizontal axis and y on
the vertical axis. The R commands

X <- matrix(rnorm(300),nrow=100,ncol=3)

Y <- (X %*% 1:3)ˆ3 + rnorm(100)

were used to generate 100 trivariate Gaussian predictors x and the response
Y = (βT x)3 + e where e ∼ N(0, 1). This is an additive error single index
model Y = m(xT β) + e where m is the cubic function.

X %*% bols

Y

-400 -200 0 200 400

-5
0

0
0

5
0

0

OLS View

Fig. 1.5 Response Plot or OLS View for m(u) = u3

An amazing result is that the unknown function m can often be visualized
by the response plot or “OLS view,” a plot of the OLS fit (possibly ignoring
the constant) versus Y generated by the following commands.

bols <- lsfit(X,Y)$coef[-1]

plot(X %*% bols, Y)

The OLS view, shown in Figure 1.5, can be used to visualize m and for
prediction. Note that Y appears to be a cubic function of the OLS fit and
that if the OLS fit = 0, then the graph suggests using Ŷ = 0 as the predicted
value for Y . This plot and modifications will be discussed in detail in Chapter
9.

This section has given a brief outlook of the book. Also look at the preface
and table of contents, and then thumb through the remaining chapters to
examine the procedures and graphs that will be developed.
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1.3 Complements

An excellent paper on statistical models is Box (1979). Several authors con-
sider the model Y x|xT β or Y x|xT β1, ...,x

T βd where the structural
dimension is d. See Cook and Weisberg (1999a) and Cook (1998a). The 1D
regression model, due to Olive (2004b), uses Y x|h(x). A dD regression
model would use Y x|h1(x), ..., hd(x). Using h(x) is similar to using a
minimal sufficient statistic while using xT β1, ...,x

T βd is similar to using a
sufficient statistic, e.g. a 1D regression model could have structural dimension
d > 1 (this result occurs for the additive error regression model Y = m(x)+e
if m(x) is a function of xT β1, ...,x

T βd). For more on 1D regression, see Olive
(2010, 2017a, 2017b: pp. 427-443, 2020). The graphical method for response
transformations illustrated in Example 1.6 was suggested by Olive (2004b).

The concept of outliers is rather vague. See Barnett and Lewis (1994) and
Beckman and Cook (1983) for history. Outlier rejection is a subjective or
objective method for deleting or changing observations which lie far away
from the bulk of the data. The modified data is often called the “cleaned
data.” Data editing, screening, truncation, censoring, Winsorizing, and trim-
ming are all methods for data cleaning. David (1981, ch. 8) surveys outlier
rules before 1974, and Hampel et al. (1986, Section 1.4) surveys some robust
outlier rejection rules. Outlier rejection rules are also discussed in Hampel
(1985), Simonoff (1987ab), and Stigler (1973b). Aggarwal (2017) covers out-
liers from a Machine Learning perspective. Olive (2017b) gives many outlier
resistant methods.

This text will use the R software R Core Team (2016), available from the
website (www.r-project.org/). Section 11.2 of this text, Becker, Chambers,
and Wilks (1988), Crawley (2013), and Venables and Ripley (2010) are useful
for R users.

The Gladstone, Buxton, bodyfat and Boston housing data sets are avail-
able from the text’s website under the file names gladstone.lsp, buxton.lsp,
bodfat.lsp and boston2.lsp.

1.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

1.1∗. Using the notation in the second paragraph of Section 1.2, let Ŷi,j =

xT
i β̂j and show that ‖ri,1 − ri,2‖ = ‖Ŷi,1 − Ŷi,2‖.

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).
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1.2∗. a) Paste the commands for this problem (from the above link) into
R to reproduce a plot like Figure 1.5.

b) Activate Word (often by double clicking on a Word icon, perhaps after
typing word in the box on the lower left of the computer screen). Click on the
screen and type “Problem 1.2.” To copy and paste a plot from R into Word,
click on the plot and hit Ctrl and c at the same time. Then go to file in the
Word menu and select paste or hit Ctrl and v at the same time.

To save your output on your flash drive G, click on the icon in the upper
left corner of Word. Then drag the pointer to “Save as.” A window will
appear, click on the Word Document icon. A “Save as” screen appears. Click
on the right “check” on the top bar, and then click on “Removable Disk
(G:)”. Change the file name to HW1d2.docx, and then click on “Save.”

To exit from Word, click on the “X” in the upper right corner of the screen.
In Word a screen will appear and ask whether you want to save changes made
in your document. Click on No. To exit from R, type “q()” or click on the
“X” in the upper right corner of the screen and then click on No.

c) To see the plot of 10β̂
T
x versus Y , paste the commands for this problem

into R.
d) Include the plot in Word using commands similar to those given in b).

e) Do the two plots look similar? Can you see the cubic function?

1.3∗. a) Paste the commands for this problem into R to illustrate the
central limit theorem when the data Y1, ..., Yn are iid from an exponential
distribution. The function generates a data set of size n and computes Y 1

from the data set. This step is repeated nruns = 100 times. The output is
a vector (Y 1, Y 2, ..., Y 100). A histogram of these means should resemble a
symmetric normal density once n is large enough.

b) Paste the commands for this problem into R to plot 4 histograms with
n = 1, 5, 25 and 200. Save the plot in Word and then print the plot using the
procedure described in Problem 1.2b.

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a), b) and c), but in part a), change rexp(n) to rnorm(n).
Then Y1, ..., Yn are iid N(0,1) and Y ∼ N(0, 1/n).



Chapter 2

The Location Model

The location model is used when there is one variable Y , such as height, of
interest. The location model is a special case of the multivariate location and
dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. See Chapter 3.

The location model is

Yi = µ+ ei, i = 1, . . . , n (2.1)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. For example, if the Yi are iid from a normal
distribution with mean µ and variance σ2, written Yi ∼ N(µ, σ2), then the
ei are iid with ei ∼ N(0, σ2). The location model is often summarized by
obtaining point estimates and confidence intervals for a location parameter
and a scale parameter. Assume that there is a sample Y1, . . . , Yn of size n
where the Yi are iid from a distribution with cumulative distribution function
(cdf) F , median MED(Y ), mean E(Y ), and variance V (Y ) if they exist. The
location parameter µ is often the population mean or median while the scale
parameter is often the population standard deviation

√
V (Y ). The ith case

is Yi.

An important robust technique for the location model is to make a plot of
the data. Dot plots, histograms, box plots, density estimates, and quantile
plots (also called empirical cdfs) can be used for this purpose and allow the
investigator to see patterns such as shape, spread, skewness, and outliers.

Example 2.1. Buxton (1920) presents various measurements on 88 men
from Cyprus. Case 9 was removed since it had missing values. Figure 2.1
shows the dot plot, histogram, density estimate, and box plot for the heights
of the men. Although measurements such as height are often well approxi-
mated by a normal distribution, cases 62-66 are gross outliers with recorded
heights around 0.75 inches! It appears that their heights were recorded under
the variable “head length,” so these height outliers can be corrected. Note

19
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Fig. 2.1 Dot plot, histogram, density estimate, and box plot for heights from Buxton
(1920).

that the presence of outliers can be detected in all four plots, but the dot
plot of case index versus Y may be easiest to use. Problem 2.22 shows how
to make a similar figure.

2.1 Four Essential Statistics

Point estimation is one of the oldest problems in statistics and four important
statistics for the location model are the sample mean, median, variance, and
the median absolute deviation (MAD). Let Y1, . . . , Yn be the random sample;
i.e., assume that Y1, ..., Yn are iid.

Definition 2.1. The sample mean

Y =

∑n
i=1 Yi

n
. (2.2)
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The sample mean is a measure of location and estimates the population
mean (expected value) µ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi −m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi −Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m is
equal to the sum of the lengths of the rods corresponding to Yi > m. If the
rods have the same diameter, then the weight of a rod is proportional to its
length, and the weight of the rods corresponding to the Yi ≤ Y is equal to
the weight of the rods corresponding to Yi > Y . The sample mean is drawn
towards an outlier since the absolute residual corresponding to a single outlier
is large.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.

Definition 2.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (2.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

Definition 2.3. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (2.4)

and the sample standard deviation Sn =
√
S2

n.

The sample median is a measure of location while the sample standard
deviation is a measure of scale. In terms of the “rod analogy,” the median is
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a value m such that at least half of the rods are to the left of m and at least
half of the rods are to the right ofm. Hence the number of rods to the left and
right of m rather than the lengths of the rods determine the sample median.
The sample standard deviation is vulnerable to outliers and is a measure of
the average value of the rod lengths |ri(Y )|. The sample MAD, defined below,
is a measure of the median value of the rod lengths |ri(MED(n))|.

Definition 2.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (2.5)

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.
Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of
the observations are within a distance MAD(n) of MED(n) and at least half
of the observations are a distance of MAD(n) or more away from MED(n).
For small data sets, sort the data. Then the median is the middle observation
if n is odd, and the average of the two middle observations if n is even.

Example 2.2. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

2.2 A Note on Notation

Table 2.1 Some commonly used notation.

population sample

E(Y ), µ, θ Y n, E(n) µ̂, θ̂

MED(Y ),M MED(n), M̂
VAR(Y ), σ2 VAR(n), S2, σ̂2

SD(Y ), σ SD(n), S, σ̂
MAD(Y ) MAD(n)
IQR(Y ) IQR(n)

Notation is needed in order to distinguish between population quanti-
ties, random quantities, and observed quantities. For population quantities,
capital letters like E(Y ) and MAD(Y ) will often be used while the estima-
tors will often be denoted by MED(n),MAD(n), MED(Yi, i = 1, ..., n), or
MED(Y1, . . . , Yn). The random sample will be denoted by Y1, . . . , Yn. Some-
times the observed sample will be fixed and lower case letters will be used.
For example, the observed sample may be denoted by y1, ..., yn while the
estimates may be denoted by med(n),mad(n), or yn. Table 2.1 summarizes
some of this notation.
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2.3 The Population Median and MAD

The population median MED(Y ) and the population median absolute devi-
ation MAD(Y ) are very important quantities of a distribution.

Definition 2.5. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (2.6)

Definition 2.6. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (2.7)

MED(Y ) is a measure of location while MAD(Y ) is a measure of scale.
The median is the middle value of the distribution. Since MAD(Y ) is the me-
dian distance from MED(Y ), at least half of the mass is inside [MED(Y ) −
MAD(Y ),MED(Y )+ MAD(Y )] and at least half of the mass of the distribu-
tion is outside of the interval (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )).
In other words, MAD(Y ) is any value such that

P (Y ∈ [MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )]) ≥ 0.5,

and P (Y ∈ (MED(Y ) − MAD(Y ),MED(Y ) + MAD(Y )) ) ≤ 0.5.

Warning. There is often no simple formula for MAD(Y ). For example, if
Y ∼ Gamma(ν, λ), then VAR(Y ) = νλ2, but for each value of ν , there is a
different formula for MAD(Y ).

MAD(Y ) and MED(Y ) are often simple to find for location, scale, and
location–scale families. Assume that the cdf F of Y has a probability density
function (pdf) or probability mass function (pmf) f .

Definition 2.7. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − µ) indexed by the location parameter µ, −∞ < µ < ∞, is
the location family for the random variable W = µ + Y with standard pdf
fY (y).

Definition 2.8. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 2.9. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − µ)/σ) indexed by the location and scale parame-
ters µ, −∞ < µ <∞, and σ > 0, is the location–scale family for the random
variable W = µ+ σY with standard pdf fY (y).

Table 2.2 gives the population mad and median for some “brand name”
distributions. The distributions are location–scale families except for the ex-
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Table 2.2 MED(Y ) and MAD(Y ) for some useful random variables.

NAME Section MED(Y ) MAD(Y )
Cauchy C(µ,σ) 11.4.3 µ σ

double exponential DE(θ, λ) 11.4.6 θ 0.6931λ
exponential EXP(λ) 11.4.7 0.6931λ λ/2.0781

two parameter exponential EXP(θ, λ) 11.4.8 θ + 0.6931λ λ/2.0781
half normal HN(µ,σ) 11.4.12 µ+ 0.6745σ 0.3991 σ

largest extreme value LEV(θ, σ) 11.4.13 θ + 0.3665σ 0.7670σ
logistic L(µ,σ) 11.4.14 µ 1.0986 σ
normal N(µ,σ2) 11.4.19 µ 0.6745σ
Rayleigh R(µ,σ) 11.4.23 µ+ 1.1774σ 0.4485σ

smallest extreme value SEV(θ, σ) 11.4.24 θ − 0.3665σ 0.7670σ
tp 11.4.25 0 tp,3/4

uniform U(θ1, θ2) 11.4.27 (θ1 + θ2)/2 (θ2 − θ1)/4

Table 2.3 Approximations for MED(Y ) and MAD(Y ).

Name Section MED(Y ) MAD(Y )

binomial BIN(k,ρ) 11.4.1 kρ 0.6745
√
kρ(1 − ρ)

chi-square χ2
p 11.4.5 p− 2/3 0.9536

√
p

gamma G(ν, λ) 11.4.9 λ(ν − 1/3) λ
√
ν/1.483

ponential and tp distributions. The notation tp denotes a t distribution with
p degrees of freedom while tp,δ is the δ quantile of the tp distribution, i.e.
P (tp ≤ tp,δ) = δ. Hence tp,0.5 = 0 is the population median. The second
column of Table 2.2 gives the subsection of Chapter 11 where the random
variable is described further. For example, the exponential (λ) random vari-
able is described in Section 11.4.7. Table 2.3 presents approximations for the
binomial, chi-square and gamma distributions.

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following theorem and Table 2.2. Let
F (yδ) = P (Y ≤ yδ) = δ for 0 < δ < 1 where the cdf F (y) = P (Y ≤ y). Let
D = MAD(Y ), M = MED(Y ) = y0.5 and U = y0.75.

Theorem 2.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and sym-
metric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ). Find
M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U by
solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf fY (y)
that is continuous and positive on its support. Then W = µ + σY where
σ > 0. First find M by solving FY (M) = 0.5. After finding M , find D by



2.3 The Population Median and MAD 25

solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM and
MAD(W ) = σD.

Proof sketch. a) Assume the probability density function of Y is contin-
uous and positive on its support. Assume b > 0. Then

1/2 = P [Y ≤ MED(Y )] = P [a+ bY ≤ a+ bMED(Y )] = P [W ≤ MED(W )].

1/2 = P [MED(Y ) − MAD(Y ) ≤ Y ≤ MED(Y ) + MAD(Y )]

= P [a+ bMED(Y ) − bMAD(Y ) ≤ a+ bY ≤ a+ bMED(Y ) + bMAD(Y )]

= P [MED(W ) − bMAD(Y ) ≤W ≤ MED(W ) + bMAD(Y )]

= P [MED(W ) − MAD(W ) ≤W ≤ MED(W ) + MAD(W )].

The proofs of b) and c) are similar. �

Frequently the population median can be found without using a com-
puter, but often the population MAD is found numerically. A good way to
get a starting value for MAD(Y ) is to generate a simulated random sample
Y1, ..., Yn for n ≈ 10000 and then compute MAD(n). The following examples
are illustrative.

Example 2.3. Suppose the W ∼ N(µ, σ2). Then W = µ + σZ where
Z ∼ N(0, 1). The standard normal random variable Z has a pdf that is
symmetric about 0. Hence MED(Z) = 0 and MED(W ) = µ+σMED(Z) = µ.
Let D = MAD(Z) and let P (Z ≤ z) = Φ(z) be the cdf of Z. Now Φ(z) does
not have a closed form but is tabled extensively. Theorem 2.1b) implies that
D = z0.75 − 0 = z0.75 where P (Z ≤ z0.75) = 0.75. From a standard normal
table, 0.67 < D < 0.68 or D ≈ 0.674. A more accurate value can be found
with the following R command.

> qnorm(0.75)

[1] 0.6744898

Hence MAD(W ) ≈ 0.6745σ.

Example 2.4. If W is exponential (λ), then the cdf of W is FW (w) =
1 − exp(−w/λ) for w > 0 and FW (w) = 0 otherwise. Since exp(log(1/2)) =
exp(− log(2)) = 0.5, MED(W ) = log(2)λ. Since the exponential distribution
is a scale family with scale parameter λ, MAD(W ) = Dλ for some D > 0.
Hence

0.5 = FW (log(2)λ+Dλ) − FW (log(2)λ −Dλ),

or 0.5 =

1− exp[−(log(2)+D)]− (1− exp[−(log(2)−D)]) = exp(− log(2))[eD −e−D].

Thus 1 = exp(D) − exp(−D) which may be solved numerically. One way to
solve this equation is to write the following R function.
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tem <- function(D){exp(D) - exp(-D)}

Then plug in values D until tem(D) ≈ 1. Below is some output.

> mad(rexp(10000),constant=1)

#get the sample MAD if n = 10000

[1] 0.4807404

> tem(0.48)

[1] 0.997291

> tem(0.49)

[1] 1.01969

> tem(0.481)

[1] 0.9995264

> tem(0.482)

[1] 1.001763

> tem(0.4812)

[1] 0.9999736

Hence D ≈ 0.4812 and MAD(W ) ≈ 0.4812λ ≈ λ/2.0781. If X is a
two parameter exponential (θ, λ) random variable, then X = θ + W. Hence
MED(X) = θ + log(2)λ and MAD(X) ≈ λ/2.0781. Arnold Willemsen, per-
sonal communication, noted that 1 = eD + e−D . Multiply both sides by
W = eD so W = W 2 − 1 or 0 = W 2 − W − 1 or eD = (1 +

√
5)/2 so

D = log[(1 +
√

5)/2] ≈ 0.4812.

Example 2.5. This example shows how to approximate the population
median and MAD under severe contamination when the “clean” observations
are from a symmetric location–scale family. Let Φ be the cdf of the standard
normal, and let Φ(zδ) = δ. Note that zδ = Φ−1(δ). Suppose Y has a mixture
distribution with cdf FY (y) = (1 − γ)FW (y) + γFC(y) where W ∼ N(µ, σ2)
and C is a random variable far to the right of µ. See Remark 11.1. Show a)

MED(Y ) ≈ µ + σz[ 1
2(1−γ) ]

and b) if 0.4285 < γ < 0.5,

MAD(Y ) ≈ MED(Y ) − µ + σz[ 1
2(1−γ)

] ≈ 2σz[ 1
2(1−γ)

].

Solution. a) Since the pdf of C is far to the right of µ, FC(MED(Y )) ≈ 0
and

(1 − γ)Φ(
MED(Y ) − µ

σ
) ≈ 0.5,

and

Φ(
MED(Y ) − µ

σ
) ≈ 1

2(1 − γ)
.
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b) Since the mass of C is far to the right of µ, FC(MED(Y )+ MAD(Y )) ≈ 0
and

(1 − γ)P [MED(Y ) − MAD(Y ) < W < MED(Y ) + MAD(Y )] ≈ 0.5.

Since the contamination is high, P (W < MED(Y ) + MAD(Y )) ≈ 1, and

0.5 ≈ (1 − γ)P (MED(Y ) − MAD(Y ) < W )

= (1 − γ)[1 − Φ(
MED(Y ) − MAD(Y ) − µ

σ
)].

Writing z[α] for zα gives

MED(Y ) − MAD(Y ) − µ

σ
≈ z

[
1 − 2γ

2(1 − γ)

]
.

Thus

MAD(Y ) ≈ MED(Y ) − µ− σz

[
1 − 2γ

2(1 − γ)

]
.

Since z[α] = −z[1 − α],

−z
[

1 − 2γ

2(1 − γ)

]
= z

[
1

2(1 − γ)

]

and

MAD(Y ) ≈ µ+ σz

[
1

2(1− γ)

]
− µ+ σz

[
1

2(1 − γ)

]
.

Application 2.1. The MAD Method: In analogy with the method of
moments, robust point estimators can be obtained by solving MED(n) =
MED(Y ) and MAD(n) = MAD(Y ). In particular, the location and scale
parameters of a location–scale family can often be estimated robustly using
c1MED(n) and c2MAD(n) where c1 and c2 are appropriate constants. Table
2.4 shows some of the point estimators and Chapter 11 has additional ex-
amples. The following example illustrates the procedure. For a location–scale
family, asymptotically efficient estimators can be obtained using the cross
checking technique. See He and Fung (1999).

Example 2.6. a) For the normal N(µ, σ2) distribution, MED(Y ) = µ
and MAD(Y ) ≈ 0.6745σ. Hence µ̂ = MED(n) and σ̂ ≈ MAD(n)/0.6745 ≈
1.483MAD(n).

b) Assume that Y is gamma(ν, λ). Chen and Rubin (1986) showed that
MED(Y ) ≈ λ(ν − 1/3) for ν > 1.5. By the central limit theorem,

Y ≈ N(νλ, νλ2)
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Table 2.4 Robust point estimators for some useful random variables.

BIN(k,ρ) ρ̂ ≈ MED(n)/k
C(µ,σ) µ̂ = MED(n) σ̂ = MAD(n)
χ2

p p̂ ≈ MED(n) + 2/3, rounded

DE(θ, λ) θ̂ = MED(n) λ̂ = 1.443MAD(n)

EXP(λ) λ̂1 = 1.443MED(n) λ̂2 = 2.0781MAD(n)

EXP(θ, λ) θ̂ = MED(n) − 1.440MAD(n) λ̂ = 2.0781MAD(n)

G(ν, λ) ν̂ ≈ [MED(n)/1.483MAD(n)]2 λ̂ ≈ [1.483MAD(n)]2

MED(n)

HN(µ,σ) µ̂ = MED(n)− 1.6901MAD(n) σ̂ = 2.5057MAD(n)

LEV(θ, σ) θ̂ = MED(n)− 0.4778MAD(n) σ̂ = 1.3037MAD(n)
L(µ,σ) µ̂ = MED(n) σ̂ = 0.9102MAD(n)
N(µ,σ2) µ̂ = MED(n) σ̂ = 1.483MAD(n)
R(µ,σ) µ̂ = MED(n)− 2.6255MAD(n) σ̂ = 2.230MAD(n)

U(θ1, θ2) θ̂1 = MED(n)− 2MAD(n) θ̂2 = MED(n) + 2MAD(n)

for large ν. If X is N(µ, σ2) then MAD(X) ≈ σ/1.483. Hence MAD(Y ) ≈
λ
√
ν/1.483. Assuming that ν is large, solve MED(n) = λν and MAD(n) =

λ
√
ν/1.483 for ν and λ obtaining

ν̂ ≈
(

MED(n)

1.483MAD(n)

)2

and λ̂ ≈ (1.483MAD(n))
2

MED(n)
.

c) Suppose that Y1, ..., Yn are iid from a largest extreme value distribution,
then the cdf of Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location-scale family. Since 0.5 = F (MED(Y )),
MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ. Let D = MAD(Y ) if θ = 0
and σ = 1. Then 0.5 = F [MED(Y ) + MAD(Y )] − F [MED(Y ) − MAD(Y )].
Solving 0.5 = exp[− exp(−(0.36651 +D))] − exp[− exp(−(0.36651−D))] for
D numerically yields D = 0.767049. Hence MAD(Y ) = 0.767049σ.

d) Sometimes MED(n) and MAD(n) can also be used to estimate the pa-
rameters of two parameter families that are not location–scale families. Sup-
pose that Y1, ..., Yn are iid from a Weibull(φ, λ) distribution where λ, y, and
φ are all positive. Then W = log(Y ) has a smallest extreme value SEV(θ =
log(λ1/φ), σ = 1/φ) distribution. Let σ̂ = MAD(W1, ...,Wn)/0.767049 and

let θ̂ = MED(W1, ...,Wn) − log(log(2))σ̂. Then φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂).

Falk (1997) shows that under regularity conditions, the joint distribution
of the sample median and MAD is asymptotically normal. See Section 2.11.
A special case of this result follows. Let ξδ be the δ quantile of Y. Thus
P (Y ≤ ξδ) = δ. If Y is symmetric and has a positive continuous pdf f, then
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MED(n) and MAD(n) are asymptotically independent

√
n

((
MED(n)
MAD(n)

)
−
(

MED(Y )
MAD(Y )

))
D→ N

((
0
0

)
,

(
σ2

M 0
0 σ2

D

))

where

σ2
M =

1

4[f(MED(Y ))]2
,

and

σ2
D =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
=

1

16[f(ξ3/4)]2
.

2.4 Prediction Intervals and the Shorth

Prediction intervals are important. Applying certain prediction intervals or
prediction regions to the bootstrap sample will result in confidence intervals
or confidence regions. The prediction intervals and regions are based on sam-
ples of size n, while the bootstrap sample size is B = Bn. Hence this section
and the following section are important.

Definition 2.10. Consider predicting a future test value Yf given a train-
ing data Y1, ..., Yn. A large sample 100(1 − δ)% prediction interval (PI) for
Yf has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded
below by 1 − δ as the sample size n → ∞. A large sample 100(1 − δ)% PI
is asymptotically optimal if it has the shortest asymptotic length: the length
of [L̂n, Ûn] converges to Us − Ls as n → ∞ where [Ls, Us] is the population
shorth: the shortest interval covering at least 100(1 − δ)% of the mass.

If Yf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n→ ∞. The
interpretation of a 100 (1−δ)% PI for a random variable Yf is similar to that
of a confidence interval (CI). Collect data, then form the PI, and repeat for a
total of k times where the k trials are independent from the same population.
If Yfi is the ith random variable and PIi is the ith PI, then the probability
that Yfi ∈ PIi for j of the PIs approximately follows a binomial(k, ρ= 1−δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated.



30 2 The Location Model

The following two nonparametric PIs often work well if the Yi are iid
and n ≥ 50. Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf

are iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statistics of n iid random
variables Y1, ..., Yn that make up the training data. Let k1 = dnδ/2e and k2 =
dn(1 − δ/2)e where dxe is the smallest integer ≥ x. For example, d7.7e = 8.
See Frey (2013) for references for the following PI.

Definition 2.11. The large sample 100(1− δ)% nonparametric prediction
interval for Yf is

[Y(k1), Y(k2)] (2.8)

where 0 < δ < 1.

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. With the Yi and Y(i) as in the
above paragraph above Definition 2.11, let the shortest closed interval con-
taining at least c of the Yi be

shorth(c) = [Y(s),Y(s+c−1)]. (2.9)

Let
kn = dn(1 − δ)e. (2.10)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n. An interesting fact is

that the maximum undercoverage occurs for the family of uniform U(θ1, θ2)
distributions. See Section 11.4.27. Frey (2013) used the following shorth PI.

Definition 2.12. The large sample 100(1− δ)% shorth PI is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (2.11)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi, such as (2.11), is that they have coverage lower than
the nominal coverage of 1−δ for moderate n. This result is not surprising since
empirically statistical methods perform worse on test data than on training
data. For iid data, Frey (2013) used (2.11) to correct for undercoverage.

Example 2.7. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76
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33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Remark 2.1. The sample shorth converges to the population shorth
rather slowly. Grübel (1988) shows that under regularity conditions for iid
data, the length and center of the shorth(kn = dn(1 − δ)e) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the
population shorth interval.

Remark 2.2. The large sample 100(1 − δ)% shorth PI (2.11) may or
may not be asymptotically optimal if the 100(1 − δ)% population shorth is
[Ls, Us] and F (x) is not strictly increasing in intervals (Ls − δ, Ls + δ) and
(Us − δ, Us + δ) for some δ > 0. To see the issue, suppose Y has probability
mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and
p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1 − δ)%
population shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ x) = 1 if
Yi ≤ x and 0, otherwise. The empirical cdf

F̂n(x) =
1

n

n∑

i=1

I(Yi ≤ x) =
1

n

n∑

i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x,
nF̂n(x) ∼ binomial(n, F (x)). Thus F̂n(x) ∼ AN(F (x), F (x)(1 − F (x))/n).

For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) < 0.9) →

0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(2.11) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (2.11) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 2.2 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
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Fig. 2.2 The 36.8% Highest Density Region is [0,1]

density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

Applications 2.2. Variants of the shorth PI have many applications. The
shorth PI tends to be asymptotically optimal for iid data. A shorth PI for
multiple linear regression was given by Olive (2007); for the additive error
regression model, including multiple linear regression, by Olive (2013a) and
Pelawa Watagoda and Olive (2020); for many parametric regression models,
including GLMs, GAMs and some survival regression models, by Olive et al.
(2020); and for some time series models and renewal processes by Haile and
Olive (2021). The following section shows that under regularity conditions,
applying the shorth PI on a bootstrap sample results in a confidence interval.
For Bayesian statistics, generate random variables from the the posterior
distribution and apply the shorth PI to estimate the highest density Bayesian
credible interval. See Olive (2014, p. 364) and Chen and Shao (1999).

Prediction intervals are closely related to percentiles or quantiles. The 95th
percentile is the 0.95 quantile. The 100pth percentile πp satisfies F (πp) =
P (X ≤ πp) = p if X is a continuous RV with increasing F (x). Then to find

πp, let π = πp and solve F (π)
set
= p for π. In the literature, often the terms

“quantiles” and “percentiles” are used interchangeably.
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For a general RV X, πp satisfies F (πp−) = P (X < πp) ≤ p ≤ F (πp) =
P (X ≤ πp). So F (πp−) ≤ p and F (πp) ≥ p. Then graphing F (x) can be
useful for finding πp. The population median is the 50th percentile and 0.5
quantile. For iid data from a symmetric distribution, MED(n) + MAD(n)
estimates the 75th percentile while MED(n) − MAD(n) estimates the 25th
percentile.

Definition 2.13. The sample ρ quantile ξ̂n,ρ = Y(dnρe). The population
quantile yρ = πρ = ξρ = Q(ρ) = inf{y ∈ R : F (y) ≥ ρ} where Q is the
quantile function and 0 < ρ < 1.

For a random variable Y , we may use Yδ, yδ, πδ, or ξδ to denote the 100δth
percentile with P (Y ≤ yδ) = F (yδ) = δ if Y is from a continuous distribution
with strictly increasing cdf. If the cdf has flat spots, e.g. if Y has a pmf, the
following definition for a population quantile is often used. If F is continuous
and strictly increasing, then Q = F−1. The quantile function satisfies Q(ρ) ≤
y iff F (y) ≤ ρ. For large sample theory and convergence in distribution, see
Chapter 11. For the multivariate normal distribution, see Chapter 3.

Theorem 2.2: Serfling (1980, p. 80). Let 0 < ρ1 < ρ2 < · · · < ρk < 1.
Suppose that F has a pdf f that is positive and continuous in neighborhoods
of ξρ1 , ..., ξρk. Then

√
n[(ξ̂n,ρ1, ..., ξ̂n,ρk)

T − (ξρ1 , ..., ξρk)
T ]

D→ Nk(0,Σ)

where Σ = (σij) and

σij =
ρi(1 − ρj)

f(ξρi )f(ξρj )

for i ≤ j and σij = σji for i > j.

Warning: Software often uses a slightly different definition of the sample
quantile then the one given in Definition 2.13. Next we give an alternative es-
timator. See Klugman et al. (2008, p. 377). Let X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤
X(n) be the order statistics of X1, ..., Xn. Let the greatest integer function
bxc = the greatest integer ≤ x, i.e. b7.7c = 7. The smoothed empirical es-
timator of a percentile πp is π̂p = X(j) if j = (n + 1)p is an integer, and
π̂p = (1−h)X(j) +hX(j+1) if (n+ 1)p is not an integer where j = b(n+1)pc
and h = (n+1)p− j. Here π̂p is undefined if j = 0 or j = n+1, equivalently,
π̂p is undefined if 0 ≤ p < 1/(n+ 1) or if p = 1.

Remark 2.3. If the data z1, ..., zn are not iid, but the sample percentiles
applied to the data give consistent estimators of the population percentiles,
then typically the shorth interval applied to the data estimates the population
shorth. As an example, assume that the sample percentiles of the residuals ri

converge to the population percentiles of the iid unimodal errors ei: ξ̂δ
P→ ξδ .

Also assume that the population shorth [ξδ1 , ξ1−δ2 ] is unique and has length L.
We want to show that the shorth of the residuals converges to the population
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shorth of the ei: [ξ̃δ1 , ξ̃1−δ2]
P→ [ξδ1 , ξ1−δ2]. Let Ln be the length of [ξ̃δ1 , ξ̃1−δ2].

Let 0 < τ < 1 and 0 < ε < L be arbitrary. Assume n is large enough so that
the correction factor is negligible. Then P (Ln > L+ ε) → 0 since [ξ̂δ1 , ξ̂1−δ2 ]

covers 100 (1−δ)% of the data and Ln = ξ̃1−δ2−ξ̃δ1 ≤ ξ̂1−δ2−ξ̂δ1

P→ L as n →
∞ since the sample percentiles are consistent and the shorth is the shortest
interval covering 100 (1 − δ)% of the data. If P (Ln < L− ε) > τ eventually,
then the shorth is an interval covering 100 (1−δ)% of the cases that is shorter
than the population shorth with positive probability τ . Hence at least one of
ξ̂1−δ2 or ξ̂δ1 would not converge, a contradiction. Since ε and τ were arbitrary,

Ln
P→ L. If P (ξ̃δ1 < ξδ1 − ε) > τ eventually, then P (ξ̃1−δ2 < ξ1−δ2 − ε/2) > τ

eventually since Ln = ξ̃1−δ2 − ξ̃δ1

P→ L = ξ1−δ2 − ξδ1 . But such an interval
(of length going to L in probability with left endpoint less than ξδ1 − ε and
right endpoint less than ξ1−δ2 − ε/2) contains more than 100(1 − δ)% of
the cases with probability going to one since the population shorth is the
unique shortest interval covering 100(1− δ)% of the mass. Hence there is an
interval covering 100(1 − δ)% of the cases that is shorter than the shorth,
with probability going to one, a contradiction. The case P (ξ̃δ1 > ξδ1 + ε) > τ

can be handled similarly. Since ε and τ were arbitrary, ξ̃δ1

P→ ξδ1 . The proof

that ξ̃1−δ2

P→ ξ1−δ2 is similar.

2.5 Bootstrap Confidence Intervals and Tests

Bootstrap tests and bootstrap confidence intervals are resampling algorithms
used to provide information about the sampling distribution of a statistic
Tn ≡ Tn(Y n) where Y n = (Y1, ..., Yn)T and the Yi are iid from a distribu-
tion with cdf F (y) = P (Y ≤ y). Then Tn has a cdf Hn(y) = P (Tn ≤ y). If
F (y) is known, then B independent samples Y ∗

j,n = (Y ∗
j,1, ..., Y

∗
j,n)T of size

n could be generated, where the Y ∗
j,k are iid from a distribution with cdf F

and j = 1, ..., B. Then the statistic Tn is computed for each sample, result-
ing in B statistics T ∗

1,n(F ), ..., T ∗
B,n(F ) which are iid from a distribution with

cdf Hn(y). The sample size n is often suppressed. This resampling scheme is
a special case of the parametric bootstrap where the distribution is known.
Usually the parametric bootstrap estimators the parameters of the paramet-
ric distribution that is known up to the unknown parameters. For example,
if the Yi are iid N(µ, σ2), generate n iid Y ∗

i ∼ N(Y , S2
n) to produce Y ∗

j,n

for j = 1, ..., B where S2
n is the sample variance of Y1, ..., Yn. We will discuss

the nonparametric bootstrap below. Chapter 3 will discuss the bootstrap for
statistics that are random vectors. Several bootstrap methods will be used
throughout the text.

Definition 2.14. Suppose that data y1, ..., yn has been collected and ob-
served. Often the data is a random sample (iid) from a distribution with cdf
F . The empirical distribution is a discrete distribution where the yi are the
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possible values, and each value is equally likely. If W is a random variable
having the empirical distribution, then pi = P (W = yi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 2.8. Let W be a random variable having the empirical distri-
bution given by Definition 2.14. Show that E(W ) = y ≡ yn and V (W ) =
n− 1

n
S2

n.

Solution: Recall that for a discrete random vector, the population expected
value E(W ) =

∑
yipi where yi are the values that W takes with positive

probability pi. Similarly, the population variance

V (W ) = E[(W − E(W ))2] =
∑

(yi − E(W ))2pi.

Hence

E(W ) =

n∑

i=1

yi
1

n
= y,

and

V (W ) =

n∑

i=1

(yi − y)2
1

n
=
n − 1

n
S2

n. �

Example 2.9. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

The following notation is useful for the next definition. Suppose there
is data y1, ..., yn collected into an n × 1 vector y. Let the statistic Tn =
t(y) = T (Fn) be computed from the data. Suppose the statistic estimates
θ = T (F ), and let t(y∗) = t(F ∗

n) = T ∗
n indicate that t was computed from an

iid sample from the empirical distribution Fn: a sample y∗1 , ..., y
∗
n of size n was

drawn with replacement from the observed sample y1, ..., yn. Let T ∗
j = t(y∗

j )

where y∗
j = (y∗1j, ..., y

∗
nj)

T corresponds to the jth sample. The B samples are
drawn independently. Hence y∗

1, ..., y
∗
B are iid with respect to the bootstrap

distribution.
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Definition 2.15. The empirical bootstrap or nonparametric bootstrap
or naive bootstrap draws B samples of size n with replacement from the
observed sample y1, ..., yn. Then T ∗

j = T ∗
jn = t(y∗

j ) is computed from the
jth bootstrap sample for j = 1, ..., B. Then T ∗

1 , ..., T
∗
B is the bootstrap sample

produced by the nonparametric bootstrap.

Example 2.10. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and
the sample median Tn is 4. Using R, we drew B = 2 samples (of size n drawn
with replacement from the original data) and computed the sample median
T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

Under regularity conditions, applying three prediction intervals to the
bootstrap sample results in a confidence interval. Theory for bootstrap con-
fidence regions will be given in Section 3.7, and a confidence interval is a
special case of a confidence region. When teaching confidence intervals, it
is often noted that by the central limit theorem, the probability that Y n

is within two standard deviations (2SD(Y n) = 2σ/
√
n) of µ is about 95%.

Hence the probability that µ is within two standard deviations of Y n is about
95%. Thus the interval [µ− 1.96S/

√
n, µ+1.96S/

√
n ] is a large sample 95%

prediction interval for a future value of the sample mean Y n,f if µ is known,
while [Y n − 1.96S/

√
n, Y n + 1.96S/

√
n ] is a large sample 95% confidence

interval for the population mean µ. Note that the lengths of the two intervals
are the same. Where the interval is centered determines whether the interval
is a confidence or a prediction interval.

For a confidence interval, we often want the following probability to con-
verge to 1− δ if the confidence interval is based on a statistic with an asymp-
totic distribution that has a probability density function. For a large sample
level δ test H0 : θ = θ0 versus H1 : θ 6= θ0, reject H0 if θ0 is not in the large
sample 100(1 − δ)% confidence interval (CI) for θ.

Definition 2.16. The interval [L̂n, Ûn] is a large sample 100(1 − δ)%
confidence interval for θ if P (L̂n ≤ θ ≤ Ûn) is eventually bounded below by
1− δ as n→ ∞.
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Next we discuss bootstrap confidence intervals (2.12) and (2.13) that are
obtained by applying prediction intervals (2.8) and (2.11) to the bootstrap
sample with B used instead of n. See Efron (1982) and Chen (2016) for
the percentile method CI. Let Tn be an estimator of a parameter θ such as
Tn = Z =

∑n
i=1 Zi/n with θ = E(Z1). Let T ∗

1 , ..., T
∗
B be a bootstrap sample

for Tn. Let T ∗
(1), ..., T

∗
(B) be the order statistics of the the bootstrap sample.

Definition 2.17. The bootstrap large sample 100(1− δ)% percentile con-
fidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1 − δ)e of

the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (2.12)

Definition 2.18. The large sample 100(1− δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] (2.13)

uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length.

Here
c = min(B, dB[1 − δ + 1.12

√
δ/B ] e). (2.14)

The shorth CI can be regarded as the shortest percentile method con-
fidence interval, asymptotically. Hence the shorth confidence interval is a
practical implementation of the Hall (1988) shortest bootstrap interval based
on all possible bootstrap samples. Olive (2014: p. 238, 2017b: p. 168, 2018)
recommended using the shorth CI for the percentile CI.

The following correction factor is useful for the next three bootstrap CIs.
Let qB = min(1 − δ + 0.05, 1− δ + 1/B) for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δ/B), otherwise. (2.15)

If 1−δ < 0.999 and qB < 1−δ+0.001, set qB = 1−δ. Let a(UB) be the 100qBth

sample quantile of the ai = |T ∗
i − T

∗|. Let b(UB,T ) be the 100qBth sample
quantile of the bi = |T ∗

i −Tn|. Equation (2.15) is often useful for getting good
coverage when B ≥ 200. Undercoverage could occur without the correction
factor. This result is useful because the bootstrap confidence intervals can be
slow to simulate. Hence we want to use small values of B ≥ 200.

The percentile method uses an interval that contains UB ≈ kB = dB(1−δ)e
of the T ∗

i . Let ai = |T ∗
i − T

∗|. The following three CIs are the special cases
of the prediction region method confidence region, modified Bickel and Ren
confidence region, and hybrid confidence region for a g × 1 parameter vector
θ when g = 1. See Section 3.4. The sample mean of the bootstrap sample

T
∗

=
1

B

B∑

i=1

T ∗
i is the bagging estimator.
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Definition 2.19. a) The large sample 100(1−δ)% prediction region method
CI is

[T
∗ − a(UB), T

∗
+ a(UB)], (2.16)

which is a closed interval centered at T
∗

just long enough to cover UB of the
T ∗

i .
b) The large sample 100(1− δ)% modified Bickel and Ren CI is

[Tn − b(UB,T ), Tn + b(UB,T )], (2.17)

which is a closed interval centered at Tn just long enough to cover “UB, T”
of the T ∗

i .
c) The large sample 100(1 − δ)% hybrid CI is

[Tn − a(UB), Tn + a(UB)]. (2.18)

This CI is the prediction region method CI shifted to have center Tn instead
of T

∗
.

Both CIs (2.16) and (2.17) are special cases of the percentile method of
Definition 2.17. Efron (2014) used a similar large sample 100(1− δ)% confi-

dence interval assuming that T
∗

is asymptotically normal.

Remark 2.4. The shorth(c) CI (2.13) is often very short, but sometimes
needs larger sample sizes for good coverage than the percentile CI (2.12), the
prediction region method CI (2.16) or the modified Bickel and Ren CI (2.17).
The hybrid CI has the same length as the prediction region method CI and
is usually shorter than the modified Bickel and Ren CI since the T ∗

i tend to

be closer, on average, to T
∗

than to Tn. The hybrid CI was more prone to
undercoverage than CIs (2.16) and (2.17).

Application 2.3. We recommend using using the percentile CI (2.12), the
prediction region method CI (2.16), the modified Bickel and Ren CI (2.17),
and possibly the shorth CI (2.13) for robust statistics with good large sample
theory and good bootstrap theory, but with a standard error that is difficult
to estimate. The sample median is such a statistic. In the next section, CI
(2.19) for the population median is useful for hand calculations, but likely
needs a larger sample size n than CIs (2.12), (2.16), and (2.17) for good
coverage.

Remark 2.5, Pelawa Watagoda and Olive (2019). If
√
n(Tn − θ)

D→
U , and if

√
n(T ∗

i − Tn)
D→ U where U has a unimodal probability density

function symmetric about zero with E(U) = 0, then the confidence inter-
vals from the (2.16), (2.17), (2.18), the shorth confidence interval (2.13), and
the “usual” percentile method confidence interval (2.12) are asymptotically
equivalent (use the central proportion of the bootstrap sample, asymptoti-
cally). See Section 3.5.
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2.6 Robust Confidence Intervals

In this section, large sample confidence intervals (CIs) for the sample me-
dian and 25% trimmed mean are given. The following confidence interval
provides considerable resistance to gross outliers while being very simple to
compute. The standard error SE(MED(n)) is due to Bloch and Gastwirth
(1968), but the degrees of freedom p is motivated by the confidence interval
for the trimmed mean. Let bxc denote the “greatest integer function” (e.g.,
b7.7c = 7). Let dxe denote the smallest integer greater than or equal to x
(e.g., d7.7e = 8).

Application 2.4: inference with the sample median. Let Un = n−Ln

where Ln = bn/2c − d
√
n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1 (so p ≈ d √n e). Then a 100(1−α)% confidence interval
for the population median is

MED(n) ± tp,1−α/2SE(MED(n)). (2.19)

Warning. This CI is easy to compute by hand, but tends to be long with
undercoverage if n < 100. See Baszczyńska and Pekasiewicz (2010) for two
competitors that work better. We recommend bootstrap confidence intervals
in Application 2.3 from the last Section for the population median.

Definition 2.20. The symmetrically trimmed mean or the α trimmed
mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (2.20)

where Ln = bnαc and Un = n − Ln. If α = 0.25, say, then the α trimmed
mean is called the 25% trimmed mean.

The (α, 1− γ) trimmed mean uses Ln = bnαc and Un = bnγc.

The trimmed mean is estimating a truncated mean µT . See Section 11.5
for truncated distributions. Assume that Y has a probability density function
fY (y) that is continuous and positive on its support. Let yα be the quantile
satisfying P (Y ≤ yα) = α. Then

µT =
1

1 − 2α

∫ y1−α

yα

yfY (y)dy. (2.21)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.
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To perform inference, find d1, ..., dn where

di =




Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.22)

The standard error (SE) of Tn is SE(Tn) =
√
VSW (Ln, Un)/n.

Application 2.5: inference with the α trimmed mean. A large sam-
ple 100 (1 − δ)% confidence interval (CI) for µT is

Tn ± tp,1−δ
2
SE(Tn) (2.23)

where P (tp ≤ tp,1−δ
2
) = 1 − δ/2 if tp is from a t distribution with p =

Un −Ln − 1 degrees of freedom. This interval is the classical t–interval when
α = 0, but α = 0.25 gives a robust CI.

Example 2.11. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data
came from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. When computing small examples by hand, the steps are to sort
the data from smallest to largest value, find n, Ln, Un, Y(Ln+1), Y(Un), p,
MED(n) and SE(MED(n)). After finding tp,1−δ/2, plug the relevant quan-
tities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9,
9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e =

4 − d1.414e = 4 − 2 = 2 and Un = n − Ln = 8 − 2 = 6. Hence
SE(MED(n)) = 0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 7) = 1. The degrees of free-
dom p = Un − Ln − 1 = 6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the
95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5± 3.182(1) = [5.318, 11.682]. The classical t–interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y
2
i ) − 8(82)] = (1/7)[(522−

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter µ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t–interval is considerably superior to the overly long median interval.
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Example 2.12. In the last example, what happens if the 6 becomes 66
and a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

Example 2.13. The Buxton (1920) data contains 87 heights of men, but
five of the men were recorded to be about 0.75 inches tall! The mean height
is Y = 1598.862 and the classical 95% CI is [1514.206, 1683.518]. MED(n) =
1693.0 and the resistant 95% CI based on the median is [1678.517, 1707.483].
The 25% trimmed mean Tn = 1689.689 with 95% CI [1672.096, 1707.282].
See Problems 2.28, 2.29 and 2.30 for rpack software.

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356 and the classical 95% CI
is [1678.595, 1706.118]. Now MED(n) = 1694.0 and the 95% CI based on the
median is [1678.403, 1709.597]. The 25% trimmed mean Tn = 1693.200 with
95% CI [1676.259, 1710.141]. Notice that when the outliers are corrected, the
three intervals are very similar although the classical interval length is slightly
shorter. Also notice that the outliers roughly shifted the median confidence
interval by about 1 mm while the outliers greatly increased the length of the
classical t–interval.

Sections 2.5, 2.7, 2.8, 2.9, and 2.15 provide additional information on CIs
and tests.

2.7 Large Sample CIs and Tests

Large sample theory can be used to construct confidence intervals (CIs) and
hypothesis tests. Suppose that Y = (Y1, ..., Yn)T and that Wn ≡ Wn(Y ) is
an estimator of some parameter µW such that

√
n(Wn − µW )

D→ N(0, σ2
W )

where σ2
W /n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − µW ≈ N(0, σ2
W/n).
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See Section 11.6 for more information on large sample theory and convergence
in distribution. Suppose that S2

W is a consistent estimator of σ2
W so that the

(asymptotic) standard error of Wn is SE(Wn) = SW /
√
n. Let zδ be the δ

quantile of the N(0,1) distribution. Hence P (Z ≤ zδ) = δ if Z ∼ N(0, 1).
Then

1 − δ ≈ P (−z1−δ/2 ≤ Wn − µW

SE(Wn)
≤ z1−δ/2),

and an approximate or large sample 100(1− δ)% CI for µW is given by

[Wn − z1−δ/2SE(Wn),Wn + z1−δ/2SE(Wn)].

Three common approximate level δ tests of hypotheses all use the null
hypothesis H0 : µW = µ0. A right tailed test uses the alternative hypothesis
HA : µW > µ0, a left tailed test uses HA : µW < µ0, and a two tail test uses
HA : µW 6= µo. The test statistic is

t0 =
Wn − µ0

SE(Wn)
,

and the (approximate) p-values are P (Z > t0) for a right tail test, P (Z < t0)
for a left tail test, and 2P (Z > |t0|) = 2P (Z < −|t0|) for a two tail test. The
null hypothesis H0 is rejected if the p-value < δ.

Remark 2.6. Frequently the large sample CIs and tests can be improved
for smaller samples by substituting a t distribution with p degrees of freedom
for the standard normal distribution Z where p ≡ pn is some increasing
function of the sample size n. Then the 100(1 − δ)% CI for µW is given by

[Wn − tp,1−δ/2SE(Wn),Wn + tp,1−δ/2SE(Wn)].

The test statistic rarely has an exact tp distribution, but the approximation
tends to make the CIs and tests more conservative; i.e., the CIs are longer
and H0 is less likely to be rejected. This book will typically use very simple
rules for p and not investigate the exact distribution of the test statistic.

Paired and two sample procedures can be obtained directly from the one
sample procedures. Suppose there are two samples Y1, ..., Yn and X1, ..., Xm.
If n = m and it is known that (Yi, Xi) match up in correlated pairs, then
paired CIs and tests apply the one sample procedures to the differences Di =
Yi −Xi. Otherwise, assume the two samples are independent, that n and m
are large, and that

( √
n(Wn(Y ) − µW (Y ))√
m(Wm(X) − µW (X))

)
D→ N2

((
0
0

)
,

(
σ2

W (Y ) 0
0 σ2

W (X)

))
.

Then
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(
(Wn(Y ) − µW (Y ))
(Wm(X) − µW (X))

)
≈ N2

((
0
0

)
,

(
σ2

W (Y )/n 0
0 σ2

W (X)/m

))
,

and

Wn(Y ) −Wm(X) − (µW (Y ) − µW (X)) ≈ N(0,
σ2

W (Y )

n
+
σ2

W (X)

m
).

Hence SE(Wn(Y ) −Wm(X)) =

√
S2

W (Y )

n
+
S2

W (X)

m
=
√

[SE(Wn(Y ))]2 + [SE(Wm(X))]2,

and the large sample 100(1− δ)% CI for µW (Y ) − µW (X) is given by

(Wn(Y ) −Wm(X)) ± z1−δ/2SE(Wn(Y ) −Wm(X)).

Often approximate level δ tests of hypotheses use the null hypothesis H0 :
µW (Y ) = µW (X). A right tailed test uses the alternative hypothesis HA :
µW (Y ) > µW (X), a left tailed test uses HA : µW (Y ) < µW (X), and a two
tail test uses HA : µW (Y ) 6= µW (X). The test statistic is

t0 =
Wn(Y ) −Wm(X)

SE(Wn(Y ) −Wm(X))
,

and the (approximate) p-values are P (Z > t0) for a right tail test, P (Z < t0)
for a left tail test, and 2P (Z > |t0|) = 2P (Z < −|t0|) for a two tail test. The
null hypothesis H0 is rejected if the p-value < δ.

Remark 2.7. Again a tp distribution will often be used instead of the
N(0,1) distribution. If pn is the degrees of freedom used for a single sample
procedure when the sample size is n, use p = min(pn, pm) for the two sample
procedure if a better formula is not given. These CIs are known as Welch
intervals. See Welch (1937) and Yuen (1974).

Example 2.14. Consider the single sample procedures where Wn = Y n.
Then µW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n − 1. Let tp denote
a random variable with a t distribution with p degrees of freedom and let
the α percentile tp,δ satisfy P (tp ≤ tp,δ) = δ. Then the classical t-interval for
µ ≡ E(Y ) is

Y n ± tn−1,1−δ/2
Sn√
n

and the t-test statistic is

t0 =
Y − µ0

Sn/
√
n
.

The right tailed p-value is given by P (tn−1 > t0).
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Now suppose that there are two samples where Wn(Y ) = Y n and
Wm(X) = Xm. Then µW (Y ) = E(Y ) ≡ µY , µW (X) = E(X) ≡ µX ,
σ2

W (Y ) = VAR(Y ) ≡ σ2
Y , σ

2
W (X) = VAR(X) ≡ σ2

X , and pn = n − 1. Let
p = min(n− 1, m− 1). Since

SE(Wn(Y ) −Wm(X)) =

√
S2

n(Y )

n
+
S2

m(X)

m
,

the two sample t-interval for µY − µX is

(Y n −Xm) ± tp,1−δ/2

√
S2

n(Y )

n
+
S2

m(X)

m

and two sample t-test statistic is

t0 =
Y n −Xm√

S2
n(Y )

n
+

S2
m(X)

m

.

The right tailed p-value is given by P (tp > t0). For sample means, values of
the degrees of freedom that are more accurate than p = min(n − 1, m − 1)
can be computed. See Moore (2007, p. 474).

2.8 Some Two Stage Trimmed Means

Robust estimators are often obtained by applying the sample mean to a
sequence of consecutive order statistics. The sample median, trimmed mean,
metrically trimmed mean, and two stage trimmed means are examples. For
the trimmed mean given in Definition 2.20 and for the Winsorized mean,
defined below, the proportion of cases trimmed and the proportion of cases
covered are fixed.

Definition 2.21. Using the same notation as in Definition 2.20, the Win-
sorized mean

Wn = Wn(Ln, Un) =
1

n
[LnY(Ln+1) +

Un∑

i=Ln+1

Y(i) + (n− Un)Y(Un)]. (2.24)

Definition 2.22. A randomly trimmed mean

Rn = Rn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (2.25)
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where Ln < Un are integer valued random variables. Un−Ln of the cases are
covered by the randomly trimmed mean while n− Un + Ln of the cases are
trimmed.

Definition 2.23. The metrically trimmed mean (also called the Huber
type skipped mean) Mn is the sample mean of the cases inside the interval

[θ̂n − k1Dn, θ̂n + k2Dn]

where θ̂n is a location estimator, Dn is a scale estimator, k1 ≥ 1, and k2 ≥ 1.

The proportions of cases covered and trimmed by randomly trimmed
means such as the metrically trimmed mean are now random. Typically the
sample median MED(n) and the sample mad MAD(n) are used for θ̂n and
Dn, respectively. The amount of trimming will depend on the distribution
of the data. For example, if Mn uses k1 = k2 = 5.2 and the data is normal
(Gaussian), about 1% of the data will be trimmed while if the data is Cauchy,
about 12% of the data will be trimmed. Hence the upper and lower trimming
points estimate lower and upper population percentiles L(F ) and U(F ) and
change with the distribution F .

Two stage estimators are frequently used in robust statistics. Often the
initial estimator used in the first stage has good resistance properties but
has a low asymptotic relative efficiency or no convenient formula for the SE.
Ideally, the estimator in the second stage will have resistance similar to the
initial estimator but will be efficient and easy to use. The metrically trimmed
mean Mn with tuning parameter k1 = k2 ≡ k = 6 will often be the initial
estimator for the two stage trimmed means. That is, retain the cases that fall
in the interval

[MED(n) − 6MAD(n),MED(n) + 6MAD(n)].

Let L(Mn) be the number of observations that fall to the left of MED(n) −
k1 MAD(n) and let n−U(Mn) be the number of observations that fall to the
right of MED(n) + k2 MAD(n). When k1 = k2 ≡ k ≥ 1, at least half of the
cases will be covered. Consider the set of 51 trimming proportions in the set
C = {0, 0.01, 0.02, ..., 0.49, 0.50}. Alternatively, the coarser set of 6 trimming
proportionsC = {0, 0.01, 0.1, 0.25, 0.40, 0.49}may be of interest. The greatest
integer function (e.g. b7.7c = 7) is used in the following definitions.

Definition 2.24. Consider the smallest proportion αo,n ∈ C such that
αo,n ≥ L(Mn)/n and the smallest proportion 1 − βo,n ∈ C such that 1 −
βo,n ≥ 1 − (U(Mn)/n). Let αM,n = max(αo,n, 1 − βo,n). Then the two stage
symmetrically trimmed mean TS,n is the αM,n trimmed mean. Hence TS,n

is a randomly trimmed mean with Ln = bn αM,nc and Un = n − Ln. If
αM,n = 0.50, then use TS,n = MED(n).
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Definition 2.25. As in the previous definition, consider the smallest pro-
portion αo,n ∈ C such that αo,n ≥ L(Mn)/n and the smallest proportion
1− βo,n ∈ C such that 1− βo,n ≥ 1− (U(Mn)/n). Then the two stage asym-
metrically trimmed mean TA,n is the (αo,n, 1 − βo,n) trimmed mean. Hence
TA,n is a randomly trimmed mean with Ln = bn αo,nc and Un = bn βo,nc.
If αo,n = 1 − βo,n = 0.5, then use TA,n = MED(n).

Example 2.15. These two stage trimmed means are almost as easy to
compute as the classical trimmed mean, and no knowledge of the unknown
parameters is needed to do inference. First, order the data and find the
number of cases L(Mn) less than MED(n) − k1MAD(n) and the number
of cases n−U(Mn) greater than MED(n)+ k2MAD(n). (These are the cases
trimmed by the metrically trimmed mean Mn, but Mn need not be com-
puted.) Next, convert these two numbers into percentages and round both
percentages up to the nearest integer. For TS,n find the maximum of the two
percentages. For example, suppose that there are n = 205 cases andMn trims
the smallest 15 cases and the largest 20 cases. Then L(Mn)/n = 0.073 and
1 − (U(Mn)/n) = 0.0976. Hence Mn trimmed the 7.3% smallest cases and
the 9.76% largest cases, and TS,n is the 10% trimmed mean while TA,n is the
(0.08, 0.10) trimmed mean.

Definition 2.26. The standard error SERM for the two stage trimmed
means given in Definitions 2.20, 2.24 and 2.25 is

SERM (Ln, Un) =
√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
. (2.26)

Remark 2.8. A simple method for computing VSW (Ln, Un) has the fol-
lowing steps. First, find d1, ..., dn where

di =




Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (2.27)

Notice that the SE given in Definition 2.26 is the SE for the δ trimmed mean
where Ln and Un are fixed constants rather than random.
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Application 2.6. Let Tn be the two stage (symmetrically or) asymmetri-
cally trimmed mean that trims the Ln smallest cases and the n− Un largest
cases. Then for the one and two sample procedures described in Section 2.7,
use the one sample standard error SERM (Ln, Un) given in Definition 2.26
and the tp distribution where the degrees of freedom p = Un − Ln − 1.

The CIs and tests for the δ trimmed mean and two stage trimmed means
given by Applications 2.5 and 2.6 are very similar once Ln has been computed.
For example, a large sample 100 (1 − α)% confidence interval (CI) for µT is

(Tn − tUn−Ln−1,1−α
2
SERM (Ln, Un), Tn + tUn−Ln−1,1−α

2
SERM (Ln, Un))

(2.28)
where P (tp ≤ tp,1−α

2
) = 1−α/2 if tp is from a t distribution with p degrees of

freedom. Section 2.9 provides the asymptotic theory for the δ and two stage
trimmed means and shows that µT is the mean of a truncated distribution.
Section 11.4 gives suggestions for k1 and k2 while Section 2.15 provides a
simulation study comparing the robust and classical point estimators and
intervals. Next Examples 2.11, 2.12, and 2.13 are repeated using the intervals
based on the two stage trimmed means instead of the median.

Example 2.16. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data
came from a symmetric distribution with mean µ, and find a 95% CI for µ.

Solution. If TA,n or TS,n is used with the metrically trimmed mean that
uses k = k1 = k2, e.g. k = 6, then µT (a, b) = µ. When computing small
examples by hand, it is convenient to sort the data:
6, 7, 7, 8, 9, 9, 9, 9.
Thus MED(n) = (8 + 9)/2 = 8.5. The ordered residuals Y(i) − MED(n) are
-2.5, -1.5, -1.5, 0.5, 0.5, 0.5, 0.5, 0.5.
Find the absolute values and sort them to get
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 2.5.
Then MAD(n) = 0.5, MED(n)−6MAD(n) = 5.5, and MED(n)+6MAD(n)
= 11.5. Hence no cases are trimmed by the metrically trimmed mean, i.e.
L(Mn) = 0 and U(Mn) = n = 8. Thus Ln = b8(0)c = 0, and Un = n −
Ln = 8. Since no cases are trimmed by the two stage trimmed means, the
robust interval will have the same endpoints as the classical t–interval. To
see this, note that Mn = TS,n = TA,n = Y = (6 + 7 + 7 + 8 + 9 + 9 + 9 +
9)/8 = 8 = Wn(Ln, Un). Now VSW (Ln, Un) = (1/7)[

∑n
i=1 Y

2
(i) −8(82)]/[8/8]2

= (1/7)[(522− 8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95%

CI for µ is 8 ± 2.365(
√

1.4286/8) = [7.001, 8.999].

Example 2.17. In the last example, what happens if a 6 becomes 66 and
a 9 becomes 99? Use k = 6 and TA,n. Then the ordered data are
7, 7, 8, 9, 9, 9, 66, 99.
Thus MED(n) = 9 and MAD(n) = 1.5. With k = 6, the metrically trimmed
mean Mn trims the two values 66 and 99. Hence the left and right trimming
proportions of the metrically trimmed mean are 0.0 and 0.25 = 2/8, respec-
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tively. These numbers are also the left and right trimming proportions of TA,n

since after converting these proportions into percentages, both percentages
are integers. Thus Ln = b0c = 0, Un = b0.75(8)c = 6 and the two stage
asymmetrically trimmed mean trims 66 and 99. So TA,n = 49/6 ≈ 8.1667.
To compute the scaled Winsorized variance, use Remark 2.8 to find that the
di’s are
7, 7, 8, 9, 9, 9, 9, 9
and

VSW =
S2

n(d1, ..., d8)

[(6 − 0)/8]2
≈ 0.8393

.5625
≈ 1.4921.

Hence the robust confidence interval is 8.1667±t5,0.975

√
1.4921/8 ≈ 8.1667±

1.1102 ≈ [7.057, 9.277]. The classical confidence interval Y ± tn−1,0.975S/
√
n

blows up and is equal to [−2.955, 56.455].

Example 2.18. Use k = 6 and TA,n to compute a robust CI using
the 87 heights from the Buxton (1920) data that includes 5 outliers. The
mean height is Y = 1598.862 while TA,n = 1695.22. The classical 95% CI is
[1514.206,1683.518] and is more than five times as long as the robust 95%
CI which is [1679.907,1710.532]. In this example the five outliers can be cor-
rected. For the corrected data, no cases are trimmed and the robust and clas-
sical estimators have the same values. The results are Y = 1692.356 = TA,n

and the robust and classical 95% CIs are both [1678.595,1706.118]. Note that
the outliers did not have much affect on the robust confidence interval.

2.9 Asymptotics for Two Stage Trimmed Means

Large sample or asymptotic theory is very important for understanding ro-
bust statistics. Convergence in distribution, convergence in probability, al-
most everywhere (sure) convergence, and tightness (bounded in probability)
are covered in Section 11.6.

Truncated and Winsorized random variables are important because they
simplify the asymptotic theory of robust estimators. See Section 11.5. Let Y
be a random variable with continuous cdf F and let α = F (a) < F (b) =
β. Thus α is the left trimming proportion and 1 − β is the right trimming
proportion. Let F (a−) = P (Y < a). (Refer to Theorem 11.1 for the notation
used below.)

Definition 2.27. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT (y|a, b) = G(y) =
F (y) − F (a−)

F (b)− F (a−)
(2.29)
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for a ≤ y ≤ b. Also G is 0 for y < a and G is 1 for y > b. The mean and
variance of YT are

µT = µT (a, b) =

∫ ∞

−∞
ydG(y) =

∫ b

a
ydF (y)

β − α
(2.30)

and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞
(y − µT )2dG(y) =

∫ b

a
y2dF (y)

β − α
− µ2

T .

See Cramér (1946, p. 247).

Definition 2.28. The Winsorized random variable

YW = YW (a, b) =




a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =





0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

µW = µW (a, b) = αa+ (1 − β)b+

∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

y2dF (y) − µ2
W .

Regularity Conditions. (R1) Let Y1, . . . , Yn be iid with cdf F .
(R2) Let F be continuous and strictly increasing at a = Q(α) and b = Q(β).
(See Definition 2.13 for the quantile function Q.)

The following theorem is proved in Bickel (1965), Stigler (1973a), and
Shorack and Wellner (1986, p. 678-679). The α trimmed mean is asymptot-
ically equivalent to the (α, 1 − α) trimmed mean. Let Tn be the (α, 1 − β)
trimmed mean. Theorem 2.4 shows that the standard error SERM given in the
previous section is estimating the appropriate asymptotic standard deviation
of Tn.

Theorem 2.3. If conditions (R1) and (R2) hold and if 0 < α < β < 1,
then
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√
n(Tn − µT (a, b))

D→ N [0,
σ2

W (a, b)

(β − α)2
]. (2.31)

Theorem 2.4: Shorack and Wellner (1986, p. 680). Assume that
regularity conditions (R1) and (R2) hold and that

Ln

n

P→ α and
Un

n

P→ β. (2.32)

Then

VSW (Ln, Un)
P→ σ2

W (a, b)

(β − α)2
.

Since Ln = bnαc and Un = n−Ln (or Ln = bnαc and Un = bnβc) satisfy
the above lemma, the standard error SERM can be used for both trimmed
means and two stage trimmed means: SERM (Ln, Un) =

√
VSW (Ln, Un)/n

where the scaled Winsorized variance VSW (Ln, Un) =

[LnY
2
(Ln+1) +

∑Un

i=Ln+1 Y
2
(i) + (n − Un)Y 2

(Un)] − n [Wn(Ln, Un)]2

(n − 1)[(Un − Ln)/n]2
.

Again Ln is the number of cases trimmed to the left and n−Un is the number
of cases trimmed to the right by the trimmed mean.

The following notation will be useful for finding the asymptotic distribu-
tion of the two stage trimmed means. Let a = MED(Y ) − kMAD(Y ) and
b = MED(Y ) + kMAD(Y ) where MED(Y ) and MAD(Y ) are the population
median and median absolute deviation respectively. Let α = F (a−) = P (Y <
a) and let αo ∈ C = {0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value in C
such that αo ≥ α. Similarly, let β = F (b) and let 1− βo ∈ C be the smallest
value in the index set C such that 1 − βo ≥ 1 − β. Let αo = F (ao−), and
let βo = F (bo). Recall that L(Mn) is the number of cases trimmed to the
left and that n− U(Mn) is the number of cases trimmed to the right by the
metrically trimmed mean Mn. Let αo,n ≡ α̂o be the smallest value in C such

that αo,n ≥ L(Mn)/n, and let 1 − βo,n ≡ 1 − β̂o be the smallest value in
C such that 1 − βo,n ≥ 1 − (U(Mn)/n). Then the robust estimator TA,n is
the (αo,n, 1− βo,n) trimmed mean while TS,n is the max(αo,n, 1− βo,n)100%
trimmed mean. The following lemma is useful for showing that TA,n is asymp-
totically equivalent to the (αo, 1−βo) trimmed mean and that TS,n is asymp-
totically equivalent to the max(αo, 1− βo) trimmed mean.

Theorem 2.5: Shorack and Wellner (1986, p. 682-683). Let F
have a strictly positive and continuous derivative in some neighborhood of
MED(Y ) ± kMAD(Y ). Assume that

√
n(MED(n) −MED(Y )) = OP (1) (2.33)
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and √
n(MAD(n) −MAD(X)) = OP (1). (2.34)

Then √
n(
L(Mn)

n
− α) = OP (1) (2.35)

and
√
n(
U(Mn)

n
− β) = OP (1). (2.36)

Theorem 2.6. Let Y1, ..., Yn be iid from a distribution with cdf F that has
a strictly positive and continuous pdf f on its support. Let αM = max(αo, 1−
βo) ≤ 0.49, βM = 1 − αM , aM = F−1(αM), and bM = F−1(βM ). Assume
that α and 1 − β are not elements of C = {0, 0.01, 0.02, ..., 0.50}. Then

√
n[TA,n − µT (ao, bo)]

D→ N(0,
σ2

W (ao, bo)

(βo − αo)2
),

and
√
n[TS,n − µT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM)2
).

Proof. The first result follows from Theorem 2.3 if the probability that
TA,n is the (αo, 1−βo) trimmed mean goes to one as n tends to infinity. This

condition holds if L(Mn)/n
D→ α and U(Mn)/n

D→ β. But these conditions
follow from Theorem 2.5. The proof for TS,n is similar. �

2.10 L, R, and M Estimators

Definition 2.29. An L-estimator is a linear combination of order statistics.

TL,n =

n∑

i=1

cn,iY(i)

for some choice of constants cn,i.

The sample mean, median and trimmed mean are L-estimators. Other
examples include the max = Y(n), the min = Y(1), the range = Y(n) − Y(1),
and the midrange = (Y(n) + Y(1))/2. Definition 2.13 and Theorem 2.2 are
useful for L-estimators such as the interquartile range and median that use
a fixed linear combination of sample quantiles.

R-estimators are derived from rank tests and include the sample mean and
median. See Hettmansperger and McKean (2010).
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Definition 2.30. An M-estimator of location T with preliminary estima-
tor of scale MAD(n) is computed with at least one Newton step

T (m+1) = T (m) + MAD(n)

∑n
i=1 ψ( Yi−T (m)

MAD(n)
)

∑n
i=1 ψ

′( Yi−T (m)

MAD(n)
)

where T (0) = MED(n). In particular, the one step M-estimator

T (1) = MED(n) + MAD(n)

∑n
i=1 ψ(Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′(Yi−MED(n)

MAD(n)
)
.

The key to M-estimation is finding a good ψ. The sample mean and sam-
ple median are M-estimators. Newton’s method is an iterative procedure for
finding the solution T to the equation h(T ) = 0 where M-estimators use

h(T ) =

n∑

i=1

ψ(
Yi − T

S
).

Thus

h′(T ) =
d

dT
h(T ) =

n∑

i=1

ψ′(
Yi − T

S
)(
−1

S
)

where S = MAD(n) and

ψ′(
Yi − T

S
) =

d

dy
ψ(y)

evaluated at y = (Yi − T )/S. Beginning with an initial guess T (0), successive
terms are generated from the formula T (m+1) = T (m) − h(T (m))/h′(T (m)).
Often the iteration is stopped if |T (m+1) − T (m)| < ε where ε is a small
constant. However, one step M-estimators often have the same asymptotic
properties as the fully iterated versions. The following example may help
clarify notation.

Example 2.19. Huber’s M-estimator uses

ψk(y) =





−k, y < −k
y, −k ≤ y ≤ k
k, y > k.

Now

ψ′
k(
Y − T

S
) = 1



2.11 Asymptotic Theory for the MAD 53

if T − kS ≤ Y ≤ T + kS and is zero otherwise (technically the derivative is
undefined at y = ± k, but assume that Y is a continuous random variable so
that the probability of a value occurring on a “corner” of the ψ function is
zero). Let Ln count the number of observations Yi < MED(n) − kMAD(n),
and let n−Un count the number of observations Yi > MED(n) + kMAD(n).
Set T (0) = MED(n) and S = MAD(n). Then

n∑

i=1

ψ′
k(
Yi − T (0)

S
) = Un − Ln.

Since

ψk(
Yi − MED(n)

MAD(n)
) =





−k, Yi < MED(n) − kMAD(n)

Ỹi, MED(n) − kMAD(n) ≤ Yi ≤ MED(n) + kMAD(n)
k, Yi > MED(n) + kMAD(n),

where Ỹi = (Yi − MED(n))/MAD(n),

n∑

i=1

ψk(
Y(i) − T (0)

S
) = −kLn + k(n− Un) +

Un∑

i=Ln+1

Y(i) − T (0)

S
.

Hence

MED(n) + S

∑n
i=1 ψk(Yi−MED(n)

MAD(n)
)

∑n
i=1 ψ

′
k(Yi−MED(n)

MAD(n)
)

= MED(n) +
kMAD(n)(n− Un − Ln) +

∑Un

i=Ln+1[Y(i) − MED(n)]

Un − Ln
,

and Huber’s one step M-estimator

H1,n =
kMAD(n)(n − Un − Ln) +

∑Un

i=Ln+1 Y(i)

Un − Ln
.

2.11 Asymptotic Theory for the MAD

Let MD(n) = MED(|Yi − MED(Y )|, i = 1, . . . , n). Since MD(n) is a median
and convergence results for the median are well known, see for example Ser-
fling (1980, p. 74-77) or Theorem 2.2 from Section 2.4, it is simple to prove
convergence results for MAD(n). Typically MED(n) = MED(Y )+OP (n−1/2)
and MAD(n) = MAD(Y ) + OP (n−1/2). Equation (2.27) in the proof of the
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following lemma implies that if MED(n) converges to MED(Y ) ae and MD(n)
converges to MAD(Y ) ae, then MAD(n) converges to MAD(Y ) ae.

Theorem 2.7. If MED(n) = MED(Y ) + OP (n−δ) and
MD(n) = MAD(Y ) +OP (n−δ), then MAD(n) = MAD(Y ) +OP (n−δ).

Proof. Let Wi = |Yi − MED(n)| and let Vi = |Yi − MED(Y )|. Then

Wi = |Yi − MED(Y ) + MED(Y ) − MED(n)| ≤ Vi + |MED(Y ) − MED(n)|,

and

MAD(n) = MED(W1, . . . ,Wn) ≤ MED(V1, . . . , Vn) + |MED(Y ) − MED(n)|.

Similarly

Vi = |Yi − MED(n) + MED(n) − MED(Y )| ≤Wi + |MED(n) − MED(Y )|

and thus

MD(n) = MED(V1, . . . , Vn) ≤ MED(W1, . . . ,Wn) + |MED(Y ) − MED(n)|.

Combining the two inequalities shows that

MD(n)−|MED(Y )−MED(n)| ≤ MAD(n) ≤ MD(n)+ |MED(Y )−MED(n)|,

or
|MAD(n) − MD(n)| ≤ |MED(n) − MED(Y )|. (2.37)

Adding and subtracting MAD(Y ) to the left hand side shows that

|MAD(n) − MAD(Y ) −OP (n−δ)| = OP (n−δ) (2.38)

and the result follows. �

The main point of the following theorem is that the joint distribution of
MED(n) and MAD(n) is asymptotically normal. Hence the limiting distribu-
tion of MED(n) + kMAD(n) is also asymptotically normal for any constant
k. The parameters of the covariance matrix are quite complex and hard to
estimate. The assumptions of f used in Theorem 2.8 guarantee that MED(Y )
and MAD(Y ) are unique.

Theorem 2.8: Falk (1997). Let the cdf F of Y be continuous near and
differentiable at MED(Y ) = F−1(1/2) and MED(Y )±MAD(Y ). Assume that
f = F ′, f(F−1(1/2)) > 0, and A ≡ f(F−1(1/2)−MAD(Y ))+ f(F−1(1/2)+
MAD(Y )) > 0. Let C ≡ f(F−1(1/2)−MAD(Y ))− f(F−1(1/2)+MAD(Y )),
and let B ≡ C2+4Cf(F−1(1/2))[1−F (F−1(1/2)−MAD(Y ))−F (F−1(1/2)+
MAD(Y ))]. Then
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√
n

((
MED(n)
MAD(n)

)
−
(

MED(Y )
MAD(Y )

))
D→

N

((
0
0

)
,

(
σ2

M σM,D

σM,D σ2
D

))
(2.39)

where

σ2
M =

1

4f2(F−1(1
2 ))

, σ2
D =

1

4A2
(1 +

B

f2(F−1(1
2 ))

),

and

σM,D =
1

4Af(F−1(1
2
))

(1 − 4F (F−1(
1

2
) + MAD(Y )) +

C

f(F−1(1
2
))

).

Determining whether the population median and MAD are unique can be
useful. Recall that F (y) = P (Y ≤ y) and F (y−) = P (Y < y). The median
is unique unless there is a flat spot at F−1(0.5), that is, unless there exist a
and b with a < b such that F (a) = F (b) = 0.5. MAD(Y ) may be unique even
if MED(Y ) is not, see Problem 2.7. If MED(Y ) is unique, then MAD(Y )
is unique unless F has flat spots at both F−1(MED(Y ) − MAD(Y )) and
F−1(MED(Y ) + MAD(Y )). Moreover, MAD(Y ) is unique unless there exist
a1 < a2 and b1 < b2 such that F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ Y ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (Y ≤ ai) + P (Y ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5

for i = 1, 2. The following theorem gives some simple bounds for MAD(Y ).

Theorem 2.9. Assume MED(Y ) and MAD(Y ) are unique. a) Then

min{MED(Y ) − F−1(0.25), F−1(0.75) − MED(Y )} ≤ MAD(Y ) ≤

max{MED(Y ) − F−1(0.25), F−1(0.75)− MED(Y )}. (2.40)

b) If Y is symmetric about µ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(Y ) = F−1(0.75).
d) If Y is symmetric and continuous with a finite second moment, then

MAD(Y ) ≤
√

2VAR(Y ).

e) Suppose Y ∈ [a, b]. Then

0 ≤ MAD(Y ) ≤ m = min{MED(Y ) − a, b− MED(Y )} ≤ (b− a)/2,

and the inequalities are sharp.
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Proof. a) This result follows since half the mass is between the upper and
lower quartiles and the median is between the two quartiles.

b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |Y −E(Y )| ≥ MAD(Y ) ) = 0.5 ≥ P ( |Y − E(Y )| ≥
√

2VAR(Y ) ),

and E(Y ) = MED(Y ) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(Y ) > m, then either MED(Y ) − MAD(Y ) < a
or MED(Y ) + MAD(Y ) > b. Since at least half of the mass is between a
and MED(Y ) and between MED(Y ) and b, this contradicts the definition of
MAD(Y ). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(Y ) = c and MAD(Y ) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(Y ) = c and MAD(Y ) = m. �

Many other results for MAD(Y ) and MAD(n) are possible. For example,
note that Theorem 2.9 b) implies that when Y is symmetric, MAD(Y ) =
F−1(3/4)− µ and F (µ+ MAD(Y )) = 3/4. Also note that MAD(Y ) and the
interquartile range IQR(Y ) are related by

2MAD(Y ) = IQR(Y ) ≡ F−1(0.75)− F−1(0.25)

when Y is symmetric. Moreover, results similar to those in Theorem 2.9 hold
for MAD(n) with quantiles replaced by order statistics. One way to see this
is to note that the distribution with a point mass of 1/n at each observation
Y1, . . . , Yn will have a population median equal to MED(n). To illustrate the
outlier resistance of MAD(n) and MED(n), consider the following lemma.

Theorem 2.10. If Y1, . . . , Yn are n fixed points, and ifm ≤ n−1 arbitrary
points W1, . . . ,Wm are added to form a sample of size n +m, then

MED(n+m) ∈ [Y(1), Y(n)] and 0 ≤ MAD(n+m) ≤ Y(n) − Y(1). (2.41)

Proof. Let the order statistics of Y1, . . . , Yn be Y(1) ≤ · · · ≤ Y(n). By
adding a single point W , we can cause the median to shift by half an order
statistic, but since at least half of the observations are to each side of the
sample median, we need to add at leastm = n−1 points to move MED(n+m)
to Y(1) or to Y(n). Hence if m ≤ n−1 points are added, [MED(n+m)−(Y(n)−
Y(1)),MED(n+m) + (Y(n) − Y(1))] contains at least half of the observations
and MAD(n+m) ≤ Y(n) − Y(1). �

Hence if Y1, . . . , Yn are a random sample with cdf F and if W1, . . . ,Wn−1

are arbitrary, then the sample median and mad of the combined sample,
MED(n+ n − 1) and MAD(n + n − 1), are bounded by quantities from the
random sample from F .
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2.12 Some Other Estimators

2.12.1 The Median of Estimators Estimator

The machine learning literature has estimators like the following. Let n =
Km+J with 0 ≤ J < K. Let X1, ..., Xn be iid data and let statistic T , such as
the sample mean, be a function of the data that is a consistent estimator of θ.
Randomly divide the data into K blocks of equal size n (omit the remaining
J cases if J 6= 0. Let Ti be the statistic computed from the m cases in block
i. Then T1, ..., TK are iid. The median of estimators MED(K) is the sample
median of the Ti.

The above procedure gives a point estimator of θ with some outlier
resistance, but is is hard to get confidence intervals for general T since
the population median θK,n of the Ti depends on K and n. Typically√
n(θK,n − θ) = OP (1) but not op(1). Hence we can not use the confidence

interval (2.19) for θ. There is a clever way to get a confidence interval for the
median of means where T is the sample mean. See Laforgue et al. (2019) for
references. Roughly half of the K/2 blocks need bad contamination for the
median of estimators estimator to be arbitrarily bad.

2.12.2 LMS, LTA, LTS

The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model where p = 1. Truncated
distributions are useful for explaining what is being estimated in the location
model. See Section 11.5. The LMS, LTS, and LTA regression estimators can
be computed for the location model.

Definition 2.31. Consider intervals that contain cn cases: [Y(1), Y(cn)],
[Y(2), Y(cn+1)], ..., [Y(n−cn+1), Y(n)]. Denote the set of cn cases in the ith inter-
val by Ji, for i = 1, 2, ..., n− cn + 1. Often cn = bn/2c + 1.

i) Let the shorth(cn) estimator = [Y(s), Y(s+cn−1)] be the shortest such
interval. Then the least median of squares estimator LMS(cn) is (Y(s) +
Y(s+cn−1))/2, the midpoint of the shorth(cn) interval. The LMS estimator
is also called the least quantile of squares estimator LQS(cn).

ii) Compute the sample mean and sample variance (Y Ji , S
2
Ji

) of the cn
cases in the ith interval. The minimum covariance determinant estimator
MCD(cn) estimator (Y MCD, S

2
MCD) is equal to the (Y Jj , S

2
Jj

) with the small-

est S2
Ji

. The least trimmed sum of squares estimator is LTS(cn) = YMCD.
iii) Compute the sample medianMJi of the cn cases in the ith interval. Let

QLTA(MJi ) =
∑

j∈Ji
|yj−MJi |. The least trimmed sum of absolute deviations

estimator LTA(cn) is equal to the MJj with the smallest QLTA(MJi ).
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Definition 2.32. In a location model concentration algorithm, let the jth
start be (T−1,j, C−1,j), an estimator of location and dispersion. Then the
classical estimator (T0,j , C0,j) = (Y 0,j, S

2
0,j) is computed from the cn cases

closest to T−1,j. This iteration can be continued for k steps resulting in the
sequence of estimators (T−1,j, C−1,j), (Y 0,j, S

2
0,j), ..., (Y k,j, S

2
k,j). The result

of the iteration (Y k,j, S
2
k,j) is called the jth attractor. If Kn starts are used,

then j = 1, ..., Kn. The concentration attractor, (Y A, S
2
A), is the attractor

chosen by the algorithm. The attractor is used to obtain the final estimator.
The FLTS and FMCD algorithms choose the attractor with the smallest S2

k,j.

In a location concentration algorithm that uses k steps for each start, the
dispersion estimators do not need to be computed since the cn cases closest
to the location estimator T−1,j or Y i,j are used in the concentration step for
i = 0, 1, ..., k−1.Attractors in a concentration algorithm can also be obtained
by iterating to convergence. In this case the number of concentration steps
k is not fixed and is unknown, but convergence is typically very fast for the
location model. As notation, (Y∞,j , S

2
∞,j) is the jth attractor that results

when the algorithm is iterated to convergence.

Theorem 2.11 Rousseeuw and van Driessen (1999): S2
i+1,j ≤ S2

i,j ,
and the attractor converges when equality is obtained.

Definition 2.33. i) For the elemental FLTS concentration algorithm,
C−1,j = 1 while T−1,j = Y ∗

j where Y ∗
j is a randomly selected case. Kn = 500

starts are used.
ii) For the elemental FMCD concentration algorithm, randomly select two

cases. Then (T−1,j, C−1,j) is the sample mean and variance of these two cases.
Kn = 500 starts are used.

iii) The MB estimator uses (T−1,1, C−1,1) = (MED(n), 1) as the only start.
Hence the start uses the sample median as the location estimator.

iv) The DGK estimator uses the sample mean and variance of all n cases,
(T−1,1, C−1,1) = (Y , S2), as the only start.

Concentration algorithm estimators can have problems if the distribution
is not unimodal. For example, the population shorth is not unique for the
uniform distribution. Outliers can easily make the distribution multimodal.

Remark 2.9. Let [Y(d), Y(d+cn−1)] be the LTS interval and [Y(a), Y(a+cn−1)]
be the LTA interval. The population quantities are [aLTS, bLTS ] and [aLTA, bLTA].
Take c = cn given by Equation (2.12). Then the two above intervals should
be useful large sample 100(1 − δ)% PIs, and the population quantities will
equal the population shorth for many distributions. Among intervals that
contain cn observations, the coverage should be the worst for the shortest
and longest intervals for clean data (with no outliers). The shortest interval
behaves well by Frey (2013). The longest interval is not outlier resistant. It is
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possible that the LTS and LTA PIs converge at
√
n rate instead of the slower

rate for the shorth interval given by Remark 2.1.

Definition 2.34. Let W = (Y1, ..., Yn)T be the clean data, and W n
d =

(W1, ...,Wn)T be the contaminated data after dn of the Yi have been replaced
by arbitrarily bad cases.. The breakdown value of a location estimator Tn is

B(T,W ) = min{dn

n
: sup
W n

d

|T (W n
d )| = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤ dn ≤

n. The breakdown value of a dispersion estimator Cn is

B(Cn,W ) = min{dn

n
: sup
W n

d

max(|Cn(W n
d )|, |1/Cn(W n

d )|) = ∞}.

Since the sup is used, there exists a real numbers M1 and 0 < m < M2 that
depend on the estimator and the clean data Y1, ..., Yn but not on the outliers
such that 0 ≤ |Tn| < M1 and 0 < m < |Cn| < M2 if the number of outliers
dn is less than the breakdown value. For MED(n), M1 = max(|Y(1)|, |Y(n)|).

Suppose cn ≈ n/2. For the MCD(cn) and MB estimators, the breakdown
value dn/n → 0.5 for both the location and dispersion estimators if the Yi are
distinct. Such estimators are called high breakdown estimators. See Chapter
3. LTS(cn) is also a high breakdown estimator. The sample mean and vari-
ance both have breakdown value 1/n. The sample mean and variance applied
to a randomly selected elemental set of two randomly selected cases also has
breakdown value 1/n. A concentration algorithm that has Kn randomly se-
lected elemental sets can be made to breakdown by changing 1 case in each
elemental set. Hence the elemental concentration algorithm has breakdown
value ≤ Kn/n → 0 as n → ∞. Hence the FLTS and FMCD estimators can
not produce the high breakdown LTS and MCD estimators.

Consider the attractor of a concentration algorithm. If 26% of the cases are
large positive outliers, and the start T−1,j is closer in distance to the outliers
than to the bulk of the data, then the sample mean of the cn ≈ n/2 cases
closest to T−1,j is closer to the outliers than to the bulk of the data. Hence the
location estimator of the attractor, Tk,j or T∞,j , is the sample mean of the cn
largest order statistics. Hence the attractor is not the MCD(cn) estimator.

Next we give a theorem for the metrically trimmed mean Mn. Lopuhaä
(1999) shows the following result. Suppose (µ̂n,Cn) is an estimator of mul-
tivariate location and dispersion. Suppose that the iid data follow an el-
liptically contoured ECp(µ,Σ, g) distribution. Let (xJ ,SJ) be the classical
estimator applied to the set J of cases with squared Mahalanobis distances

D2
i (µ̂n,Cn) ≤ k2. Under regularity conditions, if (µ̂n,Cn)

P→ (µ, sΣ) with

rate nδ where 0 < δ ≤ 0.5, then (xJ ,SJ)
P→ (µ, dΣ) with the same rate nδ
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where s > 0 and d > 0 are some constants. See Chapter 3 for discussion of
the above quantities.

In the univariate setting with p = 1, let θ̂n = µ̂n and let D2
n = Cn

where Dn is an estimator of scale. Suppose the classical estimator (Y J , S
2
J) ≡

(xJ ,SJ) is applied to the set J of cases with θ̂n−kDn ≤ Yi ≤ θ̂n+kDn . Hence
Y J is the metrically trimmed meanMn with k1 = k2 ≡ k. See Definition 2.23.

The population quantity estimated by (Y J , S
2
J) is the truncated mean

and variance (µT (a, b), σ2
T (a, b)) of Definition 2.27 where θ̂n − kDn

P→ a and

θ̂n + kDn
P→ b. In the theorem below, the pdf corresponds to an elliptically

contoured distribution with p = 1 and Σ = τ2. Each pdf corresponds to a
location scale family with location parameter µ and scale parameter τ. Note
that (θ̂n, Dn) = (MED(n),MAD(n)) results in a

√
n consistent estimator

(Mn, S
2
J).

Assumption E1: Suppose Y1, ..., Yn are iid from an EC1(µ, τ
2, g) distri-

bution with pdf

f(y) =
c

τ
g

[(
y − µ

τ

)2
]

where g is continuously differentiable with finite 4th moment
∫
y4g(y2)dy <

∞, c > 0 is some constant, τ > 0 where y and µ are real.

Theorem 2.12. Let Mn be the metrically trimmed mean with k1 = k2 ≡
k. Assume (E1) holds. If (θ̂n , D

2
n)

P→ (µ, sτ2) with rate nδ for some constant

s > 0 where 0 < δ ≤ 0.5, then (Mn, S
2
J)

P→ (µ, σ2
T (a, b)) with the same rate

nδ.

Proof. The result is a special case of Lopuhaä (1999) which shows that

(Mn, S
2
J)

P→ (µ, dτ2) with rate nδ. Since k1 = k2 = k, dτ2 = σ2
T (a, b). �

Note that the classical estimator applied to the set J̃ of cases Yi between a
and b is a

√
n consistent estimator of (µT (a, b), σ2

T (a, b)). Consider the set J
of cases with MED(n)−kMAD(n) ≤ Yi ≤ MED(N)+kMAD(n). By Lemma
2.4 sets J̃ and J differ primarily in neighborhoods of a and b. This result
leads to the following conjecture.

Conjecture 2.1. If Y1, ..., Yn are iid from a distribution with a pdf that is

positive in neighborhoods of a and b, and if θ̂n−k1Dn
P→ a and θ̂n+k2Dn

P→ b

at rate n0.5, then (Mn, S
2
J)

P→ (µT (a, b), σ2
T(a, b)) with rate n0.5.

The following result follows from Theorem 3.14b applied to the location
model.

Theorem 2.13. Let (Y A, S
2
A) be the DGK or MB estimator that uses

k concentration steps with cn ≈ n/2. Assume (E1) holds and let [a, b] be
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the highest density region containing half of the mass. Then (Y A, S
2
A)

P→
(µ, σ2

T (a, b)) with rate nδ .

2.13 Asymptotic Variances for Trimmed Means

The truncated distributions will be useful for finding the asymptotic vari-
ances of trimmed and two stage trimmed means. Assume that Y is from a
symmetric location–scale family with parameters µ and σ and that the trun-
cation points are a = µ − zσ and b = µ + zσ. Recall that for the trimmed
mean Tn,

√
n(Tn − µT (a, b))

D→ N

(
0,
σ2

W (a, b)

(β − α)2

)
.

Since the family is symmetric and the truncation is symmetric, α = F (a) =
1− β and µT (a, b) = µ.

Definition 2.35. Let Y1, ..., Yn be iid random variables and let Dn ≡
Dn(Y1, ..., Yn) be an estimator of a parameter µD such that

√
n(Dn − µD)

D→ N(0, σ2
D).

Then the asymptotic variance of
√
n(Dn − µD) is σ2

D and the asymptotic
variance (AV) of Dn is σ2

D/n. If S
2
D is a consistent estimator of σ2

D, then the
(asymptotic) standard error (SE) of Dn is SD/

√
n.

Remark 2.10. In the literature, usually either σ2
D or σ2

D/n is called the
asymptotic variance of Dn. The parameter σ2

D is a function of both the
estimatorDn and the underlying distribution F of Y1. Frequently nVAR(Dn)
converges in distribution to σ2

D, but not always. See Staudte and Sheather
(1990, p. 51) and Lehmann (1999, p. 232).

Example 2.20. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error
SE(Y n) = Sn/

√
n where S2

n is the sample variance.

Remark 2.11. Returning to the trimmed mean Tn where Y is from a
symmetric location–scale family, take µ = 0 since the asymptotic variance
does not depend on µ. Then

n AV (Tn) =
σ2

W (a, b)

(β − α)2
=
σ2

T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.
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See, for example, Bickel (1965). This formula is useful since the variance of the
truncated distribution σ2

T (a, b) has been computed for several distributions
in Section 11.5.

Definition 2.36. An estimator Dn is a location and scale equivariant
estimator if Dn(α+ βY1, ..., α+ βYn) = α+ βDn(Y1, ..., Yn) where α and β
are arbitrary real constants.

Remark 2.12. Many location estimators such as the sample mean,
sample median, trimmed mean, metrically trimmed mean, and two stage
trimmed means are equivariant. Let Y1, ..., Yn be iid from a distribution
with cdf FY (y) and suppose that Dn is an equivariant estimator of µD ≡
µD(FY ) ≡ µD(FY (y)). If Xi = α + βYi where β 6= 0, then the cdf of X is
FX(y) = FY ((y − α)/β). Suppose that

µD(FX) ≡ µD[FY (
y − α

β
)] = α+ βµD [FY (y)]. (2.42)

Let Dn(Y ) ≡ Dn(Y1, ..., Yn). If
√
n[Dn(Y ) − µD(FY (y))]

D→ N(0, σ2
D), then

√
n[Dn(X)− µD(FX)] =

√
n[α+ βDn(Y )− (α+ βµD(FY ))]

D→ N(0, β2σ2
D).

This result is especially useful when F is a cdf from a location–scale family
with parameters µ and σ. In this case, Equation (2.42) holds when µD is the
population mean, population median, and the population truncated mean
with truncation points a = µ−z1σ and b = µ+z2σ (the parameter estimated
by trimmed and two stage trimmed means).

Refer to the notation for two stage trimmed means below Theorem 2.4.
Then from Theorem 2.6,

√
n[TA,n − µT (ao, bo)]

D→ N(0,
σ2

W (ao, bo)

(βo − αo)2
),

and
√
n[TS,n − µT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM)2
).

If the distribution of Y is symmetric then TA,n and TS,n are asymptotically
equivalent. It is important to note that no knowledge of the unknown distri-
bution and parameters is needed to compute the two stage trimmed means
and their standard errors.

The next three lemmas find the asymptotic variance for trimmed and two
stage trimmed means when the underlying distribution is normal, double
exponential and Cauchy, respectively. Assume a = MED(Y ) − kMAD(Y )
and b = MED(Y ) + kMAD(Y ).
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Theorem 2.14. Suppose that Y comes from a normal N(µ, σ2) distribu-
tion. Let Φ(x) be the cdf and let φ(x) be the density of the standard normal.
Then for the α trimmed mean,

n AV =


1 − 2zφ(z)

2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2


σ2 (2.43)

where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimators, round
100α up to the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ)
in Equation (2.43).

Proof. If Y follows the normal N(µ, σ2) distribution, then a = µ −
kMAD(Y ) and b = µ+kMAD(Y ) where MAD(Y ) = Φ−1(0.75)σ. It is enough
to consider the standard N(0,1) distribution since n AV (Tn, N(µ, σ2)) =
σ2 n AV (Tn, N(0, 1)). If a = −z and b = z, then by Theorem 11.6,

σ2
T (a, b) = 1 − 2zφ(z)

2Φ(z) − 1
.

Use Remark 2.11 with z = kΦ−1(0.75), and α = Φ(−z) to get Equation
(2.43). �

Theorem 2.15. Suppose that Y comes from a double exponential DE(0,1)
distribution. Then for the α trimmed mean,

n AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(2.44)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimators,
round 100α up to the nearest integer J. Then use αJ = J/100 and let
zJ = − log(2αJ).

Proof Sketch. For the DE(0, 1) distribution, MAD(Y ) = log(2). If the
DE(0,1) distribution is truncated at −z and z, then use Remark 2.11 with

σ2
T (−z, z) =

2 − (z2 + 2z + 2)e−z

1 − e−z
.

Theorem 2.16. Suppose that Y comes from a Cauchy (0,1) distribution.
Then for the α trimmed mean,

n AV =
z − tan−1(z)

(1 − 2α) tan−1(z)
+

2α(tan[π(α− 1
2)])2

(1 − 2α)2
(2.45)

where z = k and

α =
1

2
+

1

π
tan−1(z).
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For the two stage estimators, round 100α up to the nearest integer J. Then
use αJ = J/100 and let zJ = tan[π(αJ − 0.5)].

Proof Sketch. For the C(0, 1) distribution, MAD(Y ) = 1. If the C(0,1)
distribution is truncated at −z and z, then use Remark 2.11 with

σ2
T (−z, z) =

z − tan−1(z)

tan−1(z)
.

2.14 Simulation

In statistics, simulation uses computer generated pseudo-random variables
in place of real data. This artificial data can be used just like real data to
produce histograms and confidence intervals and to compare estimators. Since
the artificial data is under the investigator’s control, often the theoretical
behavior of the statistic is known. This knowledge can be used to estimate
population quantities (such as MAD(Y )) that are otherwise hard to compute
and to check whether software is running correctly.

Example 2.21. The R software is especially useful for generating random
variables. The command

Y <- rnorm(100)

creates a vector Y that contains 100 pseudo iid N(0,1) variables. More gen-
erally, the command

Y <- rnorm(100,10,sd=4)

creates a vector Y that contains 100 pseudo iid N(10, 16) variables since
42 = 16. To study the sampling distribution of Y n, we could generate K
N(0, 1) samples of size n, and compute Y n,1, ..., Y n,K where the notation
Y n,j denotes the sample mean of the n pseudo-variates from the jth sample.
The command

M <- matrix(rnorm(1000),nrow=100,ncol=10)

creates a 100×10 matrix containing 100 samples of size 10. (Note that 100(10)
= 1000.) The command

M10 <- apply(M,1,mean)

creates the vector M10 of length 100 which contains Y n,1, ..., Y n,K where
K = 100 and n = 10. A histogram from this vector should resemble the pdf
of a N(0, 0.1) random variable. The sample mean and variance of the 100
vector entries should be close to 0 and 0.1, respectively.

Example 2.22. Similarly the command

M <- matrix(rexp(1000),nrow=100,ncol=10)
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creates a 100 × 10 matrix containing 100 samples of size 10 exponential(1)
(pseudo) variates. (Note that 100(10) = 1000.) The command

M10 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 10 observations. The command

M <- matrix(rexp(10000),nrow=100,ncol=100)

creates a 100× 100 matrix containing 100 samples of size 100 exponential(1)
(pseudo) variates. (Note that 100(100) = 10000.) The command

M100 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 100 observations. The com-
mands

hist(M10) and hist(M100)

will make histograms of the 100 sample means. The first histogram should
be more skewed than the second, illustrating the central limit theorem.

Example 2.23. As a slightly more complicated example, suppose that it
is desired to approximate the value of MAD(Y ) when Y is the mixture dis-
tribution with cdf F (y) = 0.95Φ(y)+0.05Φ(y/3). That is, roughly 95% of the
variates come from a N(0, 1) distribution and 5% from a N(0, 9) distribution.
Since MAD(n) is a good estimator of MAD(Y ), the following R commands
can be used to approximate MAD(Y ).

contam <- rnorm(10000,0,(1+2*rbinom(10000,1,0.05)))

mad(contam,constant=1)

Running these commands suggests that MAD(Y ) ≈ 0.70.Now F (MAD(Y )) =
0.75. To find F (0.7), use the command

0.95*pnorm(.7) + 0.05*pnorm(.7/3)

which gives the value 0.749747. Hence the approximation was quite good.

Definition 2.37. Let T1,n and T2,n be two estimators of a parameter τ
such that

nδ(T1,n − τ )
D→ N(0, σ2

1(F ))

and
nδ(T2,n − τ )

D→ N(0, σ2
2(F )),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

=
AV (T2,n)

AV (T1,n)
.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
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nδi , then estimator T1,n is judged to be better than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter τ. This condition will
often not hold unless the distribution is symmetric about µ. Then τ = µ is a
natural choice. Thirdly, robust estimators are often judged by their Gaussian
efficiency with respect to the sample mean (thus F is the normal distribution).
Since the normal distribution is a location–scale family, it is often enough to
compute the ARE for the standard normal distribution. If the data come
from a distribution F and the ARE can be computed, then T1,n is judged to
be a better estimator at the data than T2,n if the ARE > 1.

In simulation studies, typically the underlying distribution F belongs to
a symmetric location–scale family. There are at least two reasons for using
such distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or maximum likelihood estimator (MLE). Secondly, once the ARE is
obtained for one member of the family, it is typically obtained for all members
of the location–scale family. That is, suppose that Y1, ..., Yn are iid from a
location–scale family with parameters µ and σ. Then Yi = µ+σZi where the
Zi are iid from the same family with µ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)], so

ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].

Example 2.24. If T2,n = Y , then by the central limit theorem σ2
2(F ) = σ2

when F is the N(µ, σ2) distribution. Then ARE(TA,n, Y n) = σ2/(nAV )
where nAV is given by Equation (2.43). Note that the ARE does not depend
on σ2. If k ∈ [5, 6], then J = 1, and ARE(TA,n, Y n) ≈ 0.996. Hence TS,n and
TA,n are asymptotically equivalent to the 1% trimmed mean and are almost
as good as the optimal sample mean at Gaussian data.

Warning: Claiming superefficiency of robust estimators at the normal
distribution due to simulation and without any theory, as done by Zuo (2010),
is unwise. The 1% trimmed mean, TS,n and TA,n (both with k1 = k2 = 6)
often had simulated variances that beat Y for “normal” data. This simulation
result happens since these three robust estimators are nearly as efficient as Y
(though certainly not superefficient) at normal data, and pseudo–normal data
is used instead of genuine normal data. The following R output illustrates
the phenomenon. For n = 500 and 100 runs, only the sample median had
a smaller simulated variance than Y at N(0,1) data. Here trmn is the 1%
trimmed mean, rstmn = TS,n and ratmn = TA,n. Let T i be the value of the
robust point estimator for the ith sample for i = 1, ..., 100. Let S2(T ) be the
sample variance of T1, ..., T100. Then nS2(T ) is shown by the “vars” line. For
Y the value 1.1359 estimates nσ2/n = 1.0.
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locsim(n=500) #from rpack

[1] "mean,median,trmn,rstmn,ratmn"

$vars:

[1] 1.135908 1.616481 1.125468 1.135834 1.125910

Example 2.25. If F is the DE(0, 1) cdf, then the asymptotic efficiency
of TA,n with respect to the mean is ARE = 2/(nAV ) where nAV is given
by Equation (2.44). If k = 5, then J = 2, and ARE(TA,n, Y n) ≈ 1.108.
Hence TS,n and TA,n are asymptotically equivalent to the 2% trimmed mean
and perform better than the sample mean. If k = 6, then J = 1, and
ARE(TA,n, Y n) ≈ 1.065.

The results from a small simulation are presented in Table 2.5. For each
sample size n, 500 samples were generated. The sample mean Y , sample
median, 1% trimmed mean, and TS,n were computed. The latter estimator
was computed using the trimming parameter k = 5. Next the sample variance
S2(T ) of the 500 values T1, ..., T500 was computed where T is one of the four
estimators. The value in the table is nS2(T ). These numbers estimate n
times the actual variance of the estimators. Suppose that for n ≥ N, the
tabled numbers divided by n are close to the asymptotic variance. Then
the asymptotic theory may be useful if the sample size n ≥ N and if the
distribution corresponding to F is a reasonable approximation to the data
(but see Lehmann 1999, p. 74). The scaled asymptotic variance σ2

D is reported
in the rows n = ∞. The simulations were performed for normal and double
exponential data, and the simulated values are close to the theoretical values.

Table 2.5 Simulated Scaled Variance, 500 Runs, k = 5

F n Y MED(n) 1% TM TS,n

N(0,1) 10 1.116 1.454 1.116 1.166
N(0,1) 50 0.973 1.556 0.973 0.974
N(0,1) 100 1.040 1.625 1.048 1.044
N(0,1) 1000 1.006 1.558 1.008 1.010
N(0,1) ∞ 1.000 1.571 1.004 1.004

DE(0,1) 10 1.919 1.403 1.919 1.646
DE(0,1) 50 2.003 1.400 2.003 1.777
DE(0,1) 100 1.894 0.979 1.766 1.595
DE(0,1) 1000 2.080 1.056 1.977 1.886
DE(0,1) ∞ 2.000 1.000 1.878 1.804

A small simulation study was used to compare some simple randomly
trimmed means. The N(0, 1), 0.75N(0, 1) + 0.25N(100, 1) (shift), C(0,1),
DE(0,1) and exponential(1) distributions were considered. For each distri-
bution K = 500 samples of size n = 10, 50, 100, and 1000 were generated.
See Problem 2.37.
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Six different CIs
Dn ± td,0.975SE(Dn)

were used. The degrees of freedom d = Un − Ln − 1, and usually SE(Dn) =
SERM (Ln, Un). See Definition 2.26.
(i) The classical interval usedDn = Y , d = n−1 and SE = S/

√
n. Note that Y

is a 0% trimmed mean that uses Ln = 0, Un = n and SERM (0, n) = S/
√
n.

(ii) This robust interval used Dn = TA,n with k1 = k2 = 6 and SE =
SERM (Ln, Un) where Un and Ln are given by Definition 2.25.
(iii) This resistant interval used Dn = TS,n with k1 = k2 = 3.5, and SE =
SERM (Ln, Un) where Un and Ln are given by Definition 2.24.
(iv) This resistant interval used Dn = MED(n) with Un = n−Ln where Ln =
bn/2c − d

√
n/4 e. Note that d = Un − Ln − 1 ≈ √

n. Following Application
2.4, SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).
(v) This resistant interval again used Dn = MED(n) with Un = n−Ln where
Ln = bn/2c − d

√
n/4 e, but SE(MED(n)) = SERM (Ln, Un) was used. Note

that MED(n) is the 50% trimmed mean and that the percentage of cases
used to compute the SE goes to 0 as n→ ∞.
(vi) This resistant interval used the 25% trimmed mean for Dn and SE =
SERM (Ln, Un) where Un and Ln are given by Ln = b0.25nc and Un = n−Ln.

Table 2.6 Simulated 95% CI Coverages, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 0.960 0.942 0.926 0.948 0.900 0.938
N(0,1) 50 0.948 0.946 0.930 0.936 0.890 0.926
N(0,1) 100 0.932 0.932 0.932 0.900 0.898 0.938
N(0,1) 1000 0.942 0.934 0.936 0.940 0.940 0.936
DE(0,1) 10 0.966 0.954 0.950 0.970 0.944 0.968
DE(0,1) 50 0.948 0.956 0.958 0.958 0.932 0.954
DE(0,1) 100 0.956 0.940 0.948 0.940 0.938 0.938
DE(0,1) 1000 0.948 0.940 0.942 0.936 0.930 0.944

C(0,1) 10 0.974 0.968 0.964 0.980 0.946 0.962
C(0,1) 50 0.984 0.982 0.960 0.960 0.932 0.966
C(0,1) 100 0.970 0.996 0.974 0.940 0.938 0.968
C(0,1) 1000 0.978 0.992 0.962 0.952 0.942 0.950
EXP(1) 10 0.892 0.816 0.838 0.948 0.912 0.916
EXP(1) 50 0.938 0.886 0.892 0.940 0.922 0.950
EXP(1) 100 0.938 0.878 0.924 0.930 0.920 0.954
EXP(1) 1000 0.952 0.848 0.896 0.926 0.922 0.936

SHIFT 10 0.796 0.904 0.850 0.940 0.910 0.948
SHIFT 50 0.000 0.986 0.620 0.740 0.646 0.820
SHIFT 100 0.000 0.988 0.240 0.376 0.354 0.610
SHIFT 1000 0.000 0.992 0.000 0.000 0.000 0.442

In order for a location estimator to be used for inference, there must exist
a useful SE and a useful cutoff value td where the degrees of freedom d is
a function of n. Two criteria will be used to evaluate the CIs. First, the
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observed coverage is the proportion of the K = 500 runs for which the CI
contained the parameter estimated by Dn. This proportion should be near
the nominal coverage 0.95. Notice that if W is the proportion of runs where
the CI contains the parameter, then KW is a binomial random variable.
Hence the SE of W is

√
p̂(1 − p̂)/K ≈ 0.013 for the observed proportion

p̂ ∈ [0.9, 0.95], and an observed coverage between 0.92 and 0.98 suggests that
the observed coverage is close to the nominal coverage of 0.95.

The second criterion is the scaled length of the CI =
√
n CI length =

√
n(2)(td,0.975)(SE(Dn)) ≈ 2(1.96)(σD)

where the approximation holds if d > 30, if
√
n(Dn − µD)

D→ N(0, σ2
D), and

if SE(Dn) is a good estimator of σD/
√
n for the given value of n.

Table 2.7 Simulated Scaled CI Lengths, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 4.467 4.393 4.294 7.803 6.030 5.156
N(0,1) 50 4.0135 4.009 3.981 5.891 5.047 4.419
N(0,1) 100 3.957 3.954 3.944 5.075 4.961 4.351
N(0,1) 1000 3.930 3.930 3.940 5.035 4.928 4.290
N(0,1) ∞ 3.920 3.928 3.928 4.913 4.913 4.285

DE(0,1) 10 6.064 5.534 5.078 7.942 6.120 5.742
DE(0,1) 50 5.591 5.294 4.971 5.360 4.586 4.594
DE(0,1) 100 5.587 5.324 4.978 4.336 4.240 4.404
DE(0,1) 1000 5.536 5.330 5.006 4.109 4.021 4.348
DE(0,1) ∞ 5.544 5.372 5.041 3.920 3.920 4.343
C(0,1) 10 54.590 10.482 9.211 12.682 9.794 9.858
C(0,1) 50 94.926 10.511 8.393 7.734 6.618 6.794
C(0,1) 100 243.4 10.782 8.474 6.542 6.395 6.486
C(0,1) 1000 515.9 10.873 8.640 6.243 6.111 6.276
C(0,1) ∞ ∞ 10.686 8.948 6.157 6.157 6.255
EXP(1) 10 4.084 3.359 3.336 6.012 4.648 3.949
EXP(1) 50 3.984 3.524 3.498 4.790 4.105 3.622
EXP(1) 100 3.924 3.527 3.503 4.168 4.075 3.571
EXP(1) 1000 3.914 3.554 3.524 3.989 3.904 3.517

SHIFT 10 184.3 18.529 24.203 203.5 166.2 189.4
SHIFT 50 174.1 7.285 9.245 18.686 16.311 180.1
SHIFT 100 171.9 7.191 29.221 7.651 7.481 177.5
SHIFT 1000 169.7 7.388 9.453 7.278 7.123 160.6

Tables 2.6 and 2.7 can be used to examine the six different interval es-
timators. A good estimator should have an observed coverage p̂ ∈ [.92, .98],
and a small scaled length. In Table 2.6, coverages were good for N(0, 1) data,
except the interval (v) where SERM (Ln, Un) is slightly too small for n ≤ 100.
The coverages for the C(0,1) and DE(0,1) data were all good even for n = 10.

For the mixture 0.75N(0, 1) + 0.25N(100, 1), the “coverage” counted the
number of times 0 was contained in the interval and divided the result by 500.
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These rows do not give a genuine coverage since the parameter µD estimated
by Dn is not 0 for any of these estimators. For example Y estimates µ = 25.
Since the median, 25% trimmed mean, and TS,n trim the same proportion of
cases to the left as to the right, MED(n) is estimating MED(Y ) ≈ Φ−1(2/3) ≈
0.43 while the parameter estimated by TS,n is approximately the mean of a
truncated standard normal random variable where the truncation points are
Φ−1(.25) and ∞. The 25% trimmed mean also has trouble since the number
of outliers is a binomial(n, 0.25) random variable. Hence approximately half
of the samples have more than 25% outliers and approximately half of the
samples have less than 25% outliers. This fact causes the 25% trimmed mean
to have great variability. The parameter estimated by TA,n is zero to several
decimal places. Hence the coverage of the TA,n interval is quite high.

The exponential(1) distribution is skewed, so the central limit theorem is
not a good approximation for n = 10. The estimators Y , TA,n, TS,n,MED(n)
and the 25% trimmed mean are estimating the parameters 1, 0.89155,
0.83071, log(2) and 0.73838 respectively. Now the coverages of TA,n and TS,n

are slightly too small. For example, TS,n is asymptotically equivalent to the
10% trimmed mean since the metrically trimmed mean truncates the largest
9.3% of the cases, asymptotically. For small n, the trimming proportion will
be quite variable and the mean of a truncated exponential distribution with
the largest γ percent of cases trimmed varies with γ. This variability of the
truncated mean does not occur for symmetric distributions if the trimming
is symmetric since then the truncated mean µT is the point of symmetry
regardless of the amount of truncation.

Examining Table 2.7 for N(0,1) data shows that the scaled lengths of the
first 3 intervals are about the same. The rows labeled ∞ give the scaled
length 2(1.96)(σD) expected if

√
nSE is a good estimator of σD. The median

interval and 25% trimmed mean interval are noticeably larger than the clas-
sical interval. Since the degrees of freedom d ≈ √

n for the median intervals,
td,0.975 is considerably larger than 1.96 = z0.975 for n ≤ 100.

The intervals for the C(0,1) and DE(0,1) data behave about as expected.
The classical interval is very long at C(0,1) data since the first moment of
C(0,1) data does not exist. Notice that for n ≥ 50, all of the resistant intervals
are shorter on average than the classical intervals for DE(0,1) data.

For the mixture distribution, examining the length of the interval should
be fairer than examining the “coverage.” The length of the 25% trimmed
mean is long since about half of the time the trimmed data contains no
outliers while half of the time the trimmed data does contain outliers. When
n = 100, the length of the TS,n interval is quite long. This occurs because
the TS,n will usually trim all outliers, but the actual proportion of outliers
is binomial(100, 0.25). Hence TS,n is sometimes the 20% trimmed mean and
sometimes the 30% trimmed mean. But the parameter µT estimated by the
γ % trimmed mean varies quite a bit with γ. When n = 1000, the trimming
proportion is much less variable, and the CI length is shorter.
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For exponential(1) data, 2(1.96)(σD) = 3.9199 for Y and MED(n). The
25% trimmed mean appears to be the best of the six intervals since the scaled
length is the smallest while the coverage is good.

2.15 Sequential Analysis

This section is not yet written. See Huber and Ronchetti (2009, pp. 267-268),
Olive (1998), and Quang (1985).

2.16 Summary

1) Given a small data set, Y =

∑n
i=1 Yi

n
and the sample variance S2 =

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, and the sample standard devia-

tion (SD) S = Sn =
√
S2

n.
If the data Y1, ..., Yn is arranged in ascending order from smallest to largest

and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statis-
tics. The sample median MED(n) = Y((n+1)/2) if n is odd, MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even. The notation MED(n) = MED(Y1, ..., Yn)

will also be used. To find the sample median, sort the data from smallest to
largest and find the middle value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.

2) Find the population median M = MED(Y ) by solving the equation
F (M) = 0.5 for M where the cdf F (y) = P (Y ≤ y). If Y has a pdf f(y)
that is symmetric about µ, then M = µ. If W = a + bY, then MED(W ) =
a+ bMED(Y ). Often a = µ and b = σ.

3) To find the population median absolute deviation D = MAD(Y ), first
find M = MED(Y ) as in 2) above.
a) Then solve F (M +D) − F (M −D) = 0.5 for D.
b) If Y has a pdf that is symmetric about µ, then let U = y0.75 where P (Y ≤
yδ) = δ, and yδ is the 100δth percentile of Y for 0 < α < 1. Hence M = y0.5

is the 50th percentile and U is the 75th percentile. Solve F (U) = 0.75 for U .
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Then D = U −M.
c) If W = a+ bY, then MAD(W ) = |b|MAD(Y ).

MED(Y ) and MAD(Y ) need not be unique, but for “brand name” contin-
uous random variables, they are unique.

4) A large sample 100 (1 − δ)% confidence interval (CI) for θ is

θ̂± tp,1−δ
2
SE(θ̂)

where P (tp ≤ tp,1− δ
2
) = 1 − α/2 if tp is from a t distribution with p degrees

of freedom. We will use 95% CIs so δ = 0.05 and tp,1−δ
2

= tp,0.975 ≈ 1.96 for

p > 20. Be able to find θ̂, p and SE(θ̂) for the following three estimators.

a) The classical CI for the population mean θ = µ uses θ̂ = Y ,
p = n− 1 and SE(Y ) = S/

√
n.

Let bxc denote the “greatest integer function”. Then bxc is the largest
integer less than or equal to x (e.g., b7.7c = 7). Let dxe denote the smallest
integer greater than or equal to x (e.g., d7.7e = 8).

b) Let Un = n − Ln where Ln = bn/2c − d
√
n/4 e. Then the CI for the

population median θ = MED(Y ) uses θ̂ = MED(n), p = Un − Ln − 1 and
SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

c) The 25% trimmed mean Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) where

Ln = bn/4c and Un = n−Ln. That is, order the data, delete the Ln smallest
cases and the Ln largest cases and take the sample mean of the remaining
Un−Ln cases. The 25% trimmed mean is estimating the population truncated
mean

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =




Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

(The “half set” of retained cases is not changed, but replace the Ln small-
est deleted cases by the smallest retained case Y(Ln+1) and replace the Ln

largest deleted cases by the largest retained case Y(Un).) Then the Winsorized
variance is the sample variance S2

n(d1, ..., dn) of d1, ..., dn, and the scaled Win-

sorized variance VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
.

Then the CI for the population truncated mean θ = µT uses θ̂ = Tn,
p = Un − Ln − 1 and SE(Tn) =

√
VSW (Ln, Un)/n.
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5) The δ quantile or 100δth percentile yδ = πδ = ξδ satisfies P (Y ≤ yδ) =

δ. The sample δ quantile or sample 100δth percentile ξ̂n,ρ = Y(dnδe). Software

often uses ξ̃n,ρ = γnY(dnδe) + (1 − γn)Y(bnδc) for some 0 ≤ γn ≤ 1.
6) Consider intervals that contain c cases [Y(1), Y(c)], [Y(2), Y(c+1)], ..., [Y(n−c+1), Y(n)].

Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator
shorth(c) = [Y(s), Y(s+c−1)] is the interval with the shortest length. The
shorth(c) interval is a large sample 100(1− δ)% PI if c/n→ 1− δ as n → ∞
that estimates the population shorth. Hence the shorth PI is often asymp-
totically optimal.

7) A large sample 100(1 − δ)% prediction interval (PI) [L̂n, Ûn] is such
that P (Yf ∈ [L̂n, Ûn]) is eventually bounded below by 1 − δ as n → ∞. A
large sample 100(1 − δ)% PI is asymptotically optimal if it has the shortest
asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as n → ∞
where [Ls, Us] is the population shorth: the shortest interval covering at least
100(1− δ)% of the mass. So F (Us)−F (Ls−) ≥ 1− δ, and if F (b)−F (a−) ≥
1− δ, then b− a ≥ Us − Ls. The population shorth need not be unique, but
the length of the population shorth is unique.

8) The interval [L̂n, Ûn] is a large sample 100(1− δ)% confidence interval
for θ if P (L̂n ≤ θ ≤ Ûn) is eventually bounded below by 1 − δ as n → ∞.

9) Given B samples drawn with replacement from the cases (nonparamet-
ric bootstrap), be able to compute simple statistics T ∗

j from the jth sample
such as the sample mean, the sample median, the max, the min, the range =

max − min. See Example 2.10. The bagging estimator is T
∗

=
1

B

B∑

j=1

T ∗
j .

10) The bootstrap sample is T ∗
1 , ..., T

∗
B. Often B is a fixed number such as

B = 1000, but using B = max(1000, dn log(n)e) works better if you want the
coverage of the bootstrap CI to converge to 1 − δ as n → ∞.

11) Given a bootstrap sample T ∗
1 , ..., T

∗
B, let the order statistics be T ∗

(1), ..., T
∗
(B).

Applying certain PIs to the bootstrap sample results in CIs. The shorth(c) CI

is found as in 6). The prediction region method CI is [T
∗ − a, T

∗
+ a], which

is the interval centered at T
∗

just long enough to contain UB ≈ dB(1− δ)e of
the T ∗

j . The modified Bickel and Ren CI is [Tn−b, Tn+b], which is the interval
centered at Tn just long enough to contain UB of the T ∗

j . Let k1 = dBδ/2e
and k2 = dB(1 − δ/2)e. The percentile CI is [T ∗

(k1)
, T ∗

(k2)
], which deletes the

k1 − 1 smallest and B − k2 largest T ∗
j .

12) For a large sample level δ test H0 : θ = θ0 versus H1 : θ 6= θ0, reject
H0 if θ0 is not in the large sample 100(1 − δ)% confidence interval (CI) for
θ. A bootstrap test corresponds to a bootstrap CI.
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2.17 Complements

Chambers et al. (1983) is an excellent source for graphical procedures such
as quantile plots, QQ-plots, and box plots.

Huber and Roncheti (2009, p. 72-73) shows that the sample median min-
imizes the asymptotic bias for estimating MED(Y ) for the family of sym-
metric contaminated distributions, and concludes that since the asymptotic
variance is going to zero for reasonable estimators, MED(n) is the estimator
of choice for large n. Also see Chen (1998). Hampel et al. (1986, p. 133-134,
142-143) contains some other optimality properties of MED(n) and MAD(n).
See Olive (1998) and Serfling and Mazumder (2009) for large sample theory
for MAD(n).

The prediction region method CI (2.16) is due to Olive (2017b: pp. 168-
169). CIs (2.17) and (2.18) are due to Pelawa Watagoda and Olive (2019).

CI (2.19) from Application 2.4 is due to Olive (2005b, 2017b: p. 11).
Several other approximations for the standard error of the sample median
SE(MED(n)) could be used. Also see Baszczyńska and Pekasiewicz (2010),
Larocque and Randles (2008), and Woodruff (1952).

a) McKean and Schrader (1984) proposed

SE(MED(n)) =
Y(n−c+1) − Y(c)

2z1−δ
2

where c = (n+1)/2 − z1−δ/2

√
n/4 is rounded up to the nearest integer. This

estimator was based on the half length of a distribution free 100 (1− δ)% CI
[Y(c), Y(n−c+1)] for MED(Y ). Use the tp approximation with p = b2√nc− 1.

b) This proposal is also due to Bloch and Gastwirth (1968). Let Un =
n− Ln where Ln = bn/2c − d0.5n0.8 e and use

SE(MED(n)) =
Y(Un) − Y(Ln+1)

2n0.3
.

Use the tp approximation with p = Un − Ln − 1.

c) MED(n) is the 50% trimmed mean, so trimmed means with trim-
ming proportions close to 50% should have an asymptotic variance close to
that of the sample median. Hence an ad hoc estimator is SE(MED(n)) =
SERM (Ln, Un) where Un = n − Ln where Ln = bn/2c − d

√
n/4 e and

SERM (Ln, Un) is given by Definition 2.26. Use the tp approximation with
p = Un − Ln − 1.

In a small simulation study (see Section 2.14), the proposal in Application
2.4 using Ln = bn/2c − d

√
n/4 e seemed to work best. Using Ln = bn/2c −

d0.5n0.8 e gave better coverages for symmetric data but is vulnerable to a
single cluster of shift outliers if n ≤ 100.
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An enormous number of procedures have been proposed that have bet-
ter robustness or asymptotic properties than the classical procedures when
outliers are present. Huber and Ronchetti (2009), Hampel et al. (1986) and
Staudte and Sheather (1990) are standard references. For location–scale
families, we recommend using the robust estimators from Appli-
cation 2.1 to create a highly robust asymptotically efficient cross
checking estimator. See Olive (2006) and He and Fung (1999). Joiner and
Hall (1983) compare and contrast L, R, and M-estimators while Jureckova
and Sen (1996) derive the corresponding asymptotic theory. Bickel (1965),
Dixon and Tukey (1968), Stigler (1973a), Tukey and McLaughlin (1963) and
Yuen (1974) discuss trimmed and Winsorized means while Prescott (1978)
examines adaptive methods of trimming. Bickel (1975) examines one-step
M-estimators, and Andrews et al. (1972) present a simulation study com-
paring trimmed means and M-estimators. A robust method for massive data
sets is given in Rousseeuw and Bassett (1990). For variance estimation of
L-estimators, see Wang et al. (2012).

Hampel (1985) considers metrically trimmed means. Shorack (1974) and
Shorack and Wellner (1986, section 19.3) derive the asymptotic theory for
a large class of robust procedures for the iid location model. Special cases
include trimmed, Winsorized, metrically trimmed, and Huber type skipped
means. Also see Kim (1992) and papers in Hahn et al. (1991). Olive (2001)
considers two stage trimmed means.

Shorack and Wellner (1986, p. 3) and Parzen (1979) discuss the quan-
tile function while Stigler (1973b) gives historic references to trimming tech-
niques, M-estimators, and to the asymptotic theory of the median. David
(1995, 1998), Field (1985), and Sheynin (1997) also contain references.

Scale estimators are essential for testing and are discussed in Falk (1997),
Hall and Welsh (1985), Lax (1985), Rousseeuw and Croux (1993), and Si-
monoff (1987b). There are many alternative approaches for testing and confi-
dence intervals. Guenther (1969) discusses classical confidence intervals while
Gross (1976) considers robust confidence intervals for symmetric distribu-
tions. Basically all of the methods which truncate or Winsorize the tails
worked. Hettmansperger and McKean (2010) consider rank procedures.

Wilcox (2012) gives an excellent discussion of the problems that outliers
and skewness can cause for the one and two sample t–intervals, the t–test,
tests for comparing 2 groups and the ANOVA F test. Wilcox (2012) replaces
ordinary population means by truncated population means and uses trimmed
means to create analogs of one, two, and three way anova, multiple compar-
isons, and split plot designs.

Often a large class of estimators is defined and picking out good members
from the class can be difficult. Freedman and Diaconis (1982) and Clarke
(1986) illustrate some potential problems for M-estimators. Ullah et al. (2006)
list some of the better M-estimators. Jureckova and Sen (1996, p. 208) show
that under symmetry a large class of M-estimators is asymptotically nor-
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mal, but the asymptotic theory is greatly complicated when symmetry is not
present. Stigler (1977) is a very interesting paper and suggests that Win-
sorized means (which are often called “trimmed means” when the trimmed
means from Definition 2.20 do not appear in the paper) are adequate for
finding outliers.

The median can be computed with O(n log(n)) complexity by sorting the
data, but faster O(n) complexity algorithms exist. Google quickselect or see
Blum et al. (1973) for references.

Several points about resistant location estimators need to be made. First,
by far the most important step in analyzing location data is to
check whether outliers are present with a plot of the data. Sec-
ondly, no single procedure will dominate all other procedures. In particular,
it is unlikely that the sample mean will be replaced by a robust estimator.
The sample mean often works well for distributions with second moments. In
particular, the sample mean works well for many skewed and discrete distri-
butions. Thirdly, the mean and the median should usually both be computed.
If a CI is needed and the data is thought to be symmetric, several resistant
CIs should be computed and compared with the classical interval. Fourthly,
in order to perform hypothesis testing, reasonable values for the unknown
parameter must be given. The mean and median of the population are fairly
simple parameters even if the population is skewed while the truncated pop-
ulation mean is considerably more complex.

With some robust estimators, it very difficult to determine what the es-
timator is estimating if the population is not symmetric. In particular, the
difficulty in finding reasonable values of the population quantities estimated
by M, L, and R estimators may be one reason why these estimators are not
widely used. For testing hypotheses, the following population quantities are
listed in order of increasing complexity.
1) The population median MED(Y ).
2) The population mean E(Y ).
3) The truncated mean µT as estimated by the α trimmed mean.
4) The truncated mean µT as estimated by the (α, β) trimmed mean.
5) The truncated mean µT as estimated by the TS,n.
6) The truncated mean µT as estimated by the TA,n.

Bickel (1965), Prescott (1978), and Olive (2001) give formulas similar to
Equations (2.43) and (2.4). Gross (1976), Guenther (1969) and Lax (1985)
are useful references for confidence intervals. Andrews et al. (1972) is a well
known simulation study for robust location estimators.

In Section 2.14, only intervals that are simple to compute by hand for
sample sizes of ten or so were considered. The interval based on MED(n) (see
Application 2.4 and the column “MED” in Tables 2.6 and 2.7) is even easier
to compute than the classical interval, kept its coverage pretty well, and was
frequently shorter than the classical interval.

Stigler (1973a) showed that the trimmed mean has a limiting normal dis-
tribution even if the population is discrete provided that the asymptotic
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truncation points a and b have zero probability; however, in finite samples
the trimmed mean can perform poorly if there are gaps in the distribution
near the trimming proportions. Stigler (1977) argues that complicated robust
estimators are not needed.

Warning: Simulations for confidence intervals and prediction intervals
should include both length and coverage while simulations for tests of hy-
pothesis should include both coverage and power.

The Shorth: Useful papers for the shorth include Chen and Shao (1999),
Einmahl and Mason (1992), Frey (2013), Grübel (1988) and Pelawa Watagoda
and Olive (2019).

The Bootstrap:
Buckland (1984) shows that the expected coverage of the nominal 100(1−

δ)% percentile confidence interval is approximately correct, but the standard
deviation of the coverage is proportional to 1/

√
B. Hence the percentile CI

is a large sample confidence interval, in that the true coverage converges in
probability to the nominal coverage, only if B → ∞ as n → ∞. These results
are good reasons for using B = max(1000, bn log(n)c) samples for the location
model. Also see Olive (2014, pp. 279-283) and Robinson (1988). Efron (1982)
and Efron and Tibshirani (1993) are good books for the bootstrap.

2.18 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

2.1. Write the location model in matrix form.

2.2. Let fY (y) be the pdf of Y. If W = µ+ Y where −∞ < µ <∞, show
that the pdf of W is fW (w) = fY (w − µ).

2.3. Let fY (y) be the pdf of Y. If W = σY where σ > 0, show that the
pdf of W is fW (w) = (1/σ)fY (w/σ).

2.4. Let fY (y) be the pdf of Y. If W = µ+ σY where −∞ < µ <∞ and
σ > 0, show that the pdf of W is fW (w) = (1/σ)fY ((w − µ)/σ).

2.5. Use Theorem 2.8 to find the limiting distribution of
√
n(MED(n) −

MED(Y )).

2.6. The interquartile range IQR(n) = ξ̂n,0.75 − ξ̂n,0.25 and is a popular
estimator of scale. Use Theorem 2.2 to show that

√
n

1

2
(IQR(n) − IQR(Y ))

D→ N(0, σ2
A)
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where

σ2
A =

1

64

[
3

[f(ξ3/4)]2
− 2

f(ξ3/4)f(ξ1/4)
+

3

[f(ξ1/4)]2

]
.

2.7. Let the pdf of Y be f(y) = 1 if 0 < y < 0.5 or if 1 < y < 1.5. Assume
that f(y) = 0, otherwise. Then Y is a mixture of two uniforms, one U(0, 0.5)
and the other U(1, 1.5). Show that the population median MED(Y ) is not
unique but the population mad MAD(Y ) is unique.

2.8. a) Let Ln = 0 and Un = n. Prove that SERM (0, n) = S/
√
n. In other

words, the SE given by Definition 2.26 reduces to the SE for the sample mean
if there is no trimming.

b) Prove Remark 2.8:

VSW (Ln, Un) =
S2

n(d1, ..., dn)

[(Un − Ln)/n]2
.

2.9. Find a 95% CI for µT based on the 25% trimmed mean for the fol-
lowing data sets. Follow Examples 2.16 and 2.17 closely with Ln = b0.25nc
and Un = n− Ln.

a) 6, 9, 9, 7, 8, 9, 9, 7

b) 66, 99, 9, 7, 8, 9, 9, 7

2.10. Consider the data set 6, 3, 8, 5, and 2. Show work.

a) Find the sample mean Y .

b) Find the standard deviation S

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

2.11∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,
p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

e) Plot the data. Are any observations unusually large or unusually small?

2.12∗. Consider the following data set on Spring 2004 Math 580 homework
scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7
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Then Y = 89.54 and S2 = 103.3604.

a) Find SE(Y ).

b) Find the degrees of freedom p for the classical CI based on Y .

Parts c)-g) refer to the CI based on MED(n).

c) Find the sample median MED(n).

d) Find Ln.

e) Find Un.

f) Find the degrees of freedom p.

g) Find SE(MED(n)).

2.13∗. Consider the following data set on Spring 2004 Math 580 homework
scores.

66.7 76.0 89.7 90.0 94.0 94.0 95.0 95.3 97.0 97.7

Consider the CI based on the 25% trimmed mean.

a) Find Ln.

b) Find Un.

c) Find the degrees of freedom p.

d) Find the 25% trimmed mean Tn.

e) Find d1, ..., d10.

f) Find d.

g) Find S2(d1, ..., d10).

h) Find SE(Tn).

2.14. Consider the data set 6, 3, 8, 5, and 2.

a) Referring to Application 2.4, find Ln, Un, p and SE(MED(n)).

b) Referring to Application 2.5, let Tn be the 25% trimmed mean. Find
Ln, Un, p, Tn and SE(Tn).

2.15. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

2.16. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

2.17. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

2.18. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.
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actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

2.19. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

2.20. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5

2.21. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith sample.
samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:

b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B∑

i=1

T ∗
i where B = 4 is the number of

samples.

R problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

2.22∗. Use the commands

height <- rnorm(87, mean=1692, sd = 65)

height[61:65] <- 19.0

to simulate data similar to the Buxton heights. Paste the commands for this
problem into R to make a plot similar to Figure 2.1.

2.23∗. The following command computes MAD(n).
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mad(y, constant=1)

a) Let Y ∼ N(0, 1). Estimate MAD(Y ) with the following commands.

y <- rnorm(10000)

mad(y, constant=1)

b) Let Y ∼ EXP(1). Estimate MAD(Y ) with the following commands.

y <- rexp(10000)

mad(y, constant=1)

2.24∗. The following commands computes the α trimmed mean. The de-
fault uses tp = 0.25 and gives the 25% trimmed mean.

tmn <-function(x, tp = 0.25){

mean(x, trim = tp)}

a) Compute the 25% trimmed mean of 10000 simulated N(0, 1) random
variables by pasting the commands for this problem into R.

b) Compute the mean and 25% trimmed mean of 10000 simulated EXP(1)
random variables by pasting the commands for this problem into R.

2.25. The following R function computes the metrically trimmed mean.

metmn <-function(x, k = 6){

madd <- mad(x, constant = 1)

med <- median(x)

mean(x[(x >= med - k * madd) & (x <= med + k * madd)])}

Compute the metrically trimmed mean of 10000 simulatedN(0, 1) random
variables by pasting the commands for this problem into R.

Warning: For the following problems, use a command like
source(“G:/rpack.txt”) to download the programs. See Preface or Sec-
tion 11.2. Typing the name of the rpack function, e.g. ratmn, will display
the code for the function. Use the args command, e.g. args(ratmn), to dis-
play the needed arguments for the function.

2.26. Download the R function ratmn that computes the two stage asym-
metrically trimmed mean TA,n. Compute the TA,n for 10000 simulatedN(0, 1)
random variables by pasting the commands for this problem into R.

2.27. Download the R function rstmn that computes the two stage sym-
metrically trimmed mean TS,n. Compute the TS,n for 10000 simulatedN(0, 1)
random variables by pasting the commands for this problem into R.

2.28∗. a) Download the cci function which produces a classical CI. The
default is a 95% CI.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command cci(height).

2.29∗. a) Download the R function medci that produces a CI using the
median and the Bloch and Gastwirth SE.



82 2 The Location Model

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command medci(height).

2.30∗. a) Download the R function tmci that produces a CI using the
25% trimmed mean as a default.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command tmci(height).

2.31. a) Download the R function atmci that produces a CI using TA,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command atmci(height).

2.32. a) Download the R function stmci that produces a CI using TS,n.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command stmci(height).

2.33. a) Download the R function med2ci that produces a CI using the
median and SERM (Ln, Un).

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command med2ci(height).

2.34. a) Download the R function cgci that produces a CI using TS,n

and the coarse grid C = {0, 0.01, 0.1, 0.25, 0.40, 0.49}.
b) Compute a 95% CI for the artificial height data set created in Problem

2.22. Use the command cgci(height).

2.35. a) Bloch and Gastwirth (1968) suggest using

SE(MED(n)) =

√
n

4m
[Y(bn/2c+m) − Y(bn/2c−m)]

where m → ∞ but n/m → 0 as n → ∞. Taking m = 0.5n0.8 is optimal in
some sense, but not as resistant as the choice m =

√
n/4. Download the R

function bg2ci that is used to simulate the CI that uses MED(n) and the
“optimal” BG SE.

b) Compute a 95% CI for the artificial height data set created in Problem
2.22. Use the command bg2ci(height).

2.36. a) Enter the following commands to create a function that produces
a Q plot.

qplot<-function(y){

plot(sort(y), ppoints(y))

title("QPLOT")}

b) Make a Q plot of the height data from Problem 2.22 with the command
qplot(height).

c) Make a Q plot for N(0, 1) data by pasting the commands for this prob-
lem into R.



2.18 Problems 83

2.37. a) Download the R function rcisim to reproduce Tables 2.6 and
2.7. Two lines need to be changed with each CI. One line is the output line
that calls the CI and the other line is the parameter estimated for exponen-
tial(1) data. The default is for the classical interval. Thus the program calls
the function cci used in Problem 2.28. The functions medci, tmci, atmci,
stmci, med2ci, cgci and bg2ci given in Problems 2.29 – 2.35 are also
interesting. The program gives the proportion of times 0 is in the classical
CI. For type ii) data which has 25% outliers, this proportion will be low.

b) Enter the following commands, obtain the output and explain what the
output shows.
i) rcisim(n,type=1) for n = 10, 50, 100
ii) rcisim(n,type=2) for n = 10, 50, 100
iii) rcisim(n,type=3) for n = 10, 50, 100
iv) rcisim(n,type=4) for n = 10, 50, 100
v) rcisim(n,type=5) for n = 10, 50, 100

2.38. a) Download the R functions cisim and robci. Download the data
set cushny. That is, use the source command twice to download rpack.txt
and robdata.txt.

b) An easier way to reproduce Tables 2.6 and 2.7 is to evaluate the six CIs
on the same data. Type the command cisim(100) and interpret the results.

c) To compare the six CIs on the Cushny Peebles data described in Prob-
lem 2.11, type the command robci(cushny).





Chapter 3

The Multivariate Location and Dispersion

Model

This chapter describes the multivariate location and dispersion (MLD) model,
random vectors, the population mean, the population covariance matrix, and
the classical MLD estimators: the sample mean and the sample covariance
matrix. Some important results on Mahalanobis distances and the volume
of a hyperellipsoid are given. Robust MLD estimators are derived. The DD
plot of classical versus robust Mahalanobis distances is used to detect outliers
and to visualize practical prediction regions for a future test observation xf

that work even if the iid training data x1, ...,xn come from an unknown
distribution.

The multivariate location and dispersion model is in many ways similar
to the multiple linear regression model covered in Chapter 4. The data are
iid vectors from some distribution such as the multivariate normal (MVN)
distribution. The location parameter µ of interest may be the mean or the
center of symmetry of an elliptically contoured distribution. Hyperellipsoids
will be estimated instead of hyperplanes, and Mahalanobis distances will be
used instead of absolute residuals to determine if an observation is a potential
outlier.

Definition 3.1. An important multivariate location and dispersion model
is Y = µ + e where Y and e are p × 1 random vectors, while µ is a p ×
1 population location vector. Often the ei are iid with a p × p symmetric
positive definite population dispersion matrix Σ. An important parametric
multivariate location and dispersion model is a joint distribution with joint
pdf f(z|µ,Σ) for a p×1 random vector x where µ and Σ are as above. Thus
P (x ∈ A) =

∫
A
f(z)dz for suitable sets A.

Notation: Usually a vector x will be column vector, and a row vector xT

will be the transpose of the vector x. However,

∫

A

f(z)dz =

∫

A

f(z1 , ..., zp)dz1 · · ·dzp.
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The notation f(z1 , ..., zp) will be used to write out the components zi of a
joint pdf f(z) although in the formula for the pdf, e.g. f(z) = c exp(zT z), z

is a column vector.

Definition 3.2. A p× 1 random vector x = (x1, ..., xp)
T = (X1, ..., Xp)

T

where X1, ..., Xp are p random variables. A case or observation consists of
the p random variables measured for one person or thing. For multivariate
location and dispersion the ith case is xi = (xi,1, ..., xi,p)

T . There are n cases,
and context will be used to determine whether x is the random vector or the
observed value of the random vector. Outliers are cases that lie far away from
the bulk of the data, and they can ruin a classical analysis.

Assume that x1, ...,xn are n iid p × 1 random vectors and that the joint
pdf of xi is f(z|µ,Σ). Also assume that the data xi has been observed and
stored in an n × p matrix

W =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Notation: In the theoretical sections of this text, xi will sometimes be
a random vector and sometimes the observed data. Some texts, for example
Johnson and Wichern (1988, pp. 7, 53), use X to denote the n×p data matrix
and an n × 1 random vector, relying on the context to indicate whether X

is a random vector or data matrix. Software tends to use different notation.
For example, R will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x, and x[4, ] is the 4th row of x.

The next two sections consider elliptically contoured distributions, includ-
ing the multivariate normal distribution. These distributions are important
models for multivariate data. Although usually random vectors in this text
are denoted by x, y, or z, the next two sections will usually use the notation
X = (X1, ..., Xp)

T and Y for the random vectors, and x = (x1, ..., xp)
T for

the observed value of the random vector. This notation will be useful to avoid
confusion when studying conditional distributions such as Y |X = x.
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3.1 The Multivariate Normal Distribution

Definition 3.3: Rao (1965, p. 437). A p × 1 random vector X has a
p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a uni-
variate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (3.1)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 3.4. If second moments exist, the population mean of a random
p× 1 vector X = (X1, ..., Xp)

T is

E(X) = (E(X1), ..., E(Xp))
T

and the p× p population covariance matrix

Cov(X) = ΣX = E(X − E(X))(X −E(X))T = (σij) = (σi,j).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (3.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (3.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (3.4)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, p. 127-132) or Severini (2005, ch.
8).

Theorem 3.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and
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Cov(X) = ΣX = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp) and

Σ = diag(σ2
1 , ..., σ

2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 3.2. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 3.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 3.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,
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(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y ) =

σ2
Y −ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y = σ2
Y −ρ2(X, Y )σ2

Y = σ2
Y [1−ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 3.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 3.1b and Theorem 3.2c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. Examine the
following example from Rohatgi (1976, p. 229). Suppose that the joint pdf
of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 3.2 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ
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for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 3.2. In Theorem 3.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

3.2 Elliptically Contoured Distributions

Definition 3.5: Johnson (1987, p. 107-108). A p× 1 random vector X

has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (3.5)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (3.6)

for some function ψ. If the second moments exist, then

E(X) = µ (3.7)

and
Cov(X) = cXΣ (3.8)

where cX = −2ψ′(0).

Definition 3.6. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X − µ). (3.9)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.10)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p × p identity matrix. The multivariate normal distribution Np(µ,Σ)
has kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p pdf. The
following theorem is useful for proving properties of EC distributions without
using the characteristic function (3.6). See Eaton (1986) and Cook (1998a,
p. 57, 130).
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Theorem 3.4. Let X be a p × 1 random vector with 1st moments; i.e.,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBT X (3.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = µ− MBBT µ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 3.11. Notice that in the formula for MB , Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has second
moments, Cov(X) can be used instead of Σ.

To use Theorem 3.4 to prove interesting properties, partition X , µ, and
Σ as above Theorem 3.2. Also assume that the (p + 1) × 1 vector (Y,XT )T

is ECp+1(µ,Σ, g) where Y is a random variable, X is a p×1 vector, and use

(
Y
X

)
, µ =

(
µY

µX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Theorem 3.5. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998a p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BT X) = dg(B
T X)[Σ − ΣB(BT ΣB)−1BT Σ]

where the real valued function dg(B
T X) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A

0

)
.

Then BT X = AT X1, and

E[X|BT X ] = E

[(
X1

X2

)
|AT X1

]
=

(
µ1

µ2

)
+

(
M1B

M2B

) (
AT 0T

) (X1 − µ1

X2 − µ2

)
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by Theorem 3.4. Hence E[X1|AT X1] = µ1+M1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Theorem 3.4. Notice that MB = ΣB(BT ΣB)−1 =

(
Σ11 Σ12

Σ21 Σ22

) (
A

0

) [(
AT 0T

)(Σ11 Σ12

Σ21 Σ22

)(
A

0

)]−1

=

(
M1B

M2B

)
.

Hence
M1B = Σ11A(AT Σ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. �

Theorem 3.6. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βT X where
α = µY − βT µX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α+ βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Theorem 3.4 applies. Let

B =

(
0T

Ip

)
.

Then BT ΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)
.

Now E

[(
Y
X

)
| X

]
= E

[(
Y
X

)
| BT

(
Y
X

)]

= µ + ΣB(BT ΣB)−1BT

(
Y − µY

X − µX

)

by Theorem 3.4. The right hand side of the last equation is equal to

µ +

(
ΣY X

ΣXX

)
Σ−1

XX(X − µX) =

(
µY − ΣY XΣ−1

XXµX + ΣY XΣ−1
XXX

X

)

and the result follows since βT = ΣY XΣ−1
XX .

b) See Croux et al. (2001) for references.

Example 3.2. This example illustrates another application of Theorem
3.4. Suppose that X comes from a mixture of two multivariate normals with
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the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Theorem 11.1c),

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M1 = M2 = M =
MB. Hence X has an elliptically contoured distribution by Theorem 3.4. See
Problem 3.4 for a related result.

Let x ∼ Np(µ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)

1/2 for
i = 1, ..., p. Then w has a multivariate t-distribution with parameters µ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) showed that the covariance matrix of w is Cov(w) =
d

d− 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ ((d+ p)/2)) |Σ|−1/2

(πd)p/2Γ (d/2)
[1 + d−1(z − µ)T Σ−1(z − µ)]−(d+p)/2.

See Mardia et al. (1979, pp. 43, 57). See Johnson and Kotz (1972, p. 134) for
the special case where the xi ∼ N(0, 1).

The following EC(µ,Σ, g) distribution for a p × 1 random vector x is
the uniform distribution on a hyperellipsoid where f(z) = c for z in the
hyperellipsoid where c is the reciprocal of the volume of the hyperellipsoid.
The pdf of the distribution is

f(z) =
Γ (p

2
+ 1)

[(p+ 2)π]p/2
|Σ|−1/2I[(z − µ)T Σ−1(z − µ) ≤ p + 2].

See Theorem 3.9 where h2 = p+ 2. Then E(x) = µ by symmetry and is can
be shown that Cov(x) = Σ.

If x ∼ Np(µ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate
lognormal distribution with parameters µ and Σ. This distribution is not an
elliptically contoured distribution. See Problem 3.24.
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3.3 The Sample Mean and Sample Covariance Matrix

The population location vector µ need not be the population mean, but
often the population mean is denoted by µ. For elliptically contoured dis-
tributions, such as the multivariate normal distribution, µ is usually the
point of symmetry for the population distribution. See Section 3.2. We will
now usually use x = (x1, ..., xp)

T as a random vector or the observed ran-
dom vector, depending on the context. Hence E(x) = (E(x1), ..., E(xp))

T

and Cov(x) = (σij) = E[(x − E(x))(x − E(x))T ] = E[(x − E(x))xT ] =
E(xxT ) −E(x)[E(x)]T = Σx.

Definition 3.7. If the second moments exist, the p × p population cor-
relation matrix Cor(x) = ρx = (ρij). That is, the ij entry of Cor(x) is
Cor(Xi, Xj) =

σij

σiσj
=

σij√
σiiσjj

.

Let the p× p population standard deviation matrix

∆ = diag(
√
σ11, ...,

√
σpp).

Then
Σx = ∆ρx∆, (3.12)

and
ρx = ∆−1Σx∆−1. (3.13)

Let the population standardized random variables

Zi =
Xi − E(Xi)√

σii

for i = 1, ..., p. Then Cor(x) = ρx = Cov(z) is the covariance matrix of
z = (Z1, ..., Zp)

T .

Definition 3.8. Let random vectors x be p × 1 and y be q × 1. The
population covariance matrix of x with y is the p× q matrix

Cov(x, y) = E[(x− E(x))(y − E(y))T ] =

E[(x− E(x))yT ] = E(xyT ) −E(x)[E(y)]T = Σx,y

assuming the expected values exist. Note that the q × p matrix Cov(y,x) =
Σy,x = ΣT

x,y , and Cov(x) = Cov(x,x).

Definition 3.9. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The
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jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij, and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 3.10. The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (x,S).

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W T HW .

Definition 3.11. The sample correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zj =
xj − xj√

Sjj
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for j = 1, ..., p.Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)

T where i = 1, ..., n.
Often it is useful to standardize variables with a robust location estimator

and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj − MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j, ..., xnj) and MAD(xj) =
MAD(x1j, ..., xnj) are the sample median and sample median absolute de-
viation of the data for the jth variable: x1j, ..., xnj. See Definitions 2.2 and
2.4. Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)

len nasal bigonal

len 118299.9257 -191.084603 -104.718925

nasal -191.0846 18.793905 -1.967121

bigonal -104.7189 -1.967121 36.796311

cor(x)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

z <- scale(x)

cov(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)

madd <- apply(x,2,mad)/1.4826

z <- scale(x,center=medd,scale=madd)

ddplot4(z)#scaled data still has 5 outliers

cov(z) #in the length variable

len nasal bigonal

len 4731.997028 -12.738974 -6.981262

nasal -12.738974 2.088212 -0.218569

bigonal -6.981262 -0.218569 4.088479

cor(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324



3.4 Mahalanobis Distances 97

bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)

len nasal bigonal

0 0 0

#scaled data has coord. median = (0,0,0)ˆT

apply(z,2,mad)/1.4826

len nasal bigonal

1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 3.1. Multivariate procedures start to give good results
for n ≥ 10p, especially if the distribution is close to multivariate normal.
In particular, we want n ≥ 10p for the sample covariance and correlation
matrices. For procedures with large sample theory on a large class of distri-
butions, for any value of n, there are always distributions where the results
will be poor, but will eventually be good for larger sample sizes. Norman
and Streiner (1986, pp. 122, 130, 157) gave this rule of thumb and note that
some authors recommend n ≥ 30p. This rule of thumb is much like the rule
of thumb that says the central limit theorem normal approximation for Y
starts to be good for many distributions for n ≥ 30. See the paragraph below
Theorem 11.8.

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp).

Then
S = DRD, (3.14)

and
R = D−1SD−1. (3.15)

3.4 Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.

Definition 3.12. Let Σ be a positive definite symmetric dispersion ma-
trix. Then the Mahalanobis distance of x from the vector µ is
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Dx(µ,Σ) =

√
(x − µ)T Σ−1(x − µ).

The population squared Mahalanobis distance

D2
x(µ,Σ) = (x − µ)T Σ−1(x− µ). (3.16)

Estimators of multivariate location and dispersion are of interest. Let the
observed data xi for i = 1, ..., n be collected in an n × p matrix W with n
rows xT

1 , ...,x
T
n . Let the p×1 column vector T (W ) be a multivariate location

estimator, and let the p × p symmetric positive definite matrix C(W ) be a

dispersion estimator. If (T (W ),C(W )) = (µ̂, Σ̂) then the sample squared
Mahalanobis distance is

D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x− µ̂).

The word “sample” is often suppressed.

Definition 3.13. The ith squared sample Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (3.17)

for each case xi.

Notice that D2
i is a random variable (scalar valued). Notice that the term

Σ−1/2(x− µ) is the p−dimensional analog to the z-score used to transform
a univariate N(µ, σ2) random variable into a N(0, 1) random variable. Hence
the sample Mahalanobis distance Di =

√
D2

i is an analog of the absolute
value |Zi| of the sample Z-score Zi = (Xi − X)/σ̂. Also notice that the
Euclidean distance of xi from the estimate of center T (W ) is Di(T (W ), Ip)
where Ip is the p× p identity matrix.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if

Ax = λx. (3.18)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖ =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthogonal: eT

i ej = 0 for i 6= j. The symmetric
matrix A is positive definite iff all of its eigenvalues are positive, and positive
semidefinite iff all of its eigenvalues are nonnegative. If A is positive semidef-
inite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive definite, then λp > 0.
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Theorem 3.7. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p∑

i=1

1

λi
eie

T
i .

Theorem 3.8. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Points x with the same distanceDx(µ,Σ) lie on a hyperellipsoid where the
shape of the hyperellipsoid is determined by the eigenvectors and eigenvalues
of Σ: (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Note Σ−1 has
the same eigenvectors as Σ but eigenvalues equal to 1/λi since Σe = λe iff
Σ−1Σe = e = Σ−1λe. Then divide both sides by λ > 0 since Σ > 0 and is
symmetric. Let w = x− µ. Then points at squared distance wT Σ−1w = h2

from the origin lie on the hyperellipsoid centered at the origin whose axes are
given by the eigenvectors of Σ where the half length in the direction of ei is
h
√
λi.

Theorem 3.9. Let Σ be a positive definite symmetric matrix, e.g. a
dispersion matrix. Let U = D2

x = D2
x(µ,Σ). The hyperellipsoid

{x|D2
x ≤ h2} = {x : (x − µ)T Σ−1(x − µ) ≤ h2},

where h2 = u1−α and P (U ≤ u1−α) = 1 − α, is the highest density region
covering 1 − α of the mass for an elliptically contoured ECp(µ,Σ, g) distri-
bution (see Definitions 3.5 and 3.6) if g is continuous and decreasing. Let
w = x − µ. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given by
the eigenvectors ei where the half length in the direction of ei is h

√
λi. The

volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|Σ|1/2hp.
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Theorem 3.10. Let the symmetric sample covariance matrix S be positive
definite with eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p >
0. The hyperellipsoid

{x|D2
x(x,S) ≤ h2} = {x : (x − x)T S−1(x− x) ≤ h2}

is centered at x. The volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|S|1/2hp.

Let w = x − x. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given

by the eigenvectors êi where the half length in the direction of êi is h
√
λ̂i.

From Theorem 3.9, the volume of the hyperellipsoid {x|D2
x ≤ h2} is pro-

portional to |S|1/2 so the squared volume is proportional to |S|. Large |S|
corresponds to large volume while small |S| corresponds to small volume.

Definition 3.14. The generalized sample variance = |S| = det(S).

Following Johnson and Wichern (1988, pp. 103-106), a generalized variance
of zero is indicative of extreme degeneracy, and |S| = 0 implies that at least
one variable Xi is not needed given the other p − 1 variables are in the
multivariate model. Two necessary conditions for |S| 6= 0 are n > p and that
S has full rank p. If 1 is an n× 1 vector of ones, then

(n− 1)S = (W − 1xT )T (W − 1xT ),

and S is of full rank p iff W − 1xT is of full rank p.
If X and Z have dispersion matrices Σ and cΣ where c > 0, then the

dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − µ)T Σ−1(x − µ) ≤ h2}. Figure 3.1
was made with the Arc software of Cook and Weisberg (1999a). The 10%,
30%, 50%, 70%, 90%, and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have µ = 0. In
Figure 3.1a),

Σ =

(
1 0.9

0.9 4

)
.

Note that the ellipsoids are narrow with high positive correlation. In Figure
3.1b),

Σ =

(
1 −0.4

−0.4 1

)
.

Note that the ellipsoids are wide with negative correlation. The highest den-
sity ellipsoids are superimposed on a scatterplot of a sample of size 100 from
each distribution.
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Fig. 3.1 Highest Density Regions for 2 MVN Distributions
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Example 3.3. The contours of constant density for the Np(µ,Σ) dis-
tribution are ellipsoids defined by x such that (x − µ)T Σ−1(x − µ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(µ,Σ) distribution, the regions of highest density are sets of the form

{x : (x − µ)T Σ−1(x − µ) ≤ χ2
p(α)} = {x : D2

x(µ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(µ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k 6= j. Similar statements hold if X is ECp(µ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (3.10).

3.5 Equivariance and Breakdown

Equivariance and breakdown properties are very weak compared to prop-
erties like consistency, but will be useful for the theory of practical robust
MLD estimators. Before defining an important equivariance property, some
notation is needed. Again assume that the data is collected in an n× p data
matrix W . Let B = 1bT where 1 is an n× 1 vector of ones and b is a p× 1
constant vector. Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For
such a matrix B, consider the affine transformation Z = WAT + B where
A is any nonsingular p × p matrix. An affine transformation changes xi to
zi = Axi + b for i = 1, ..., n, and affine equivariant multivariate location and
dispersion estimators change in natural ways.

Definition 3.15. The multivariate location and dispersion estimator
(T,C) is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (3.19)

and C(Z) = C(WAT + B) = AC(W )AT . (3.20)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)(T,C) C) where D2
(j)(T,C) is the jth order statistic of the D2

i .

Theorem 3.11. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) = D2
i (T (Z),C(Z)) ≡ D2

i (Z). (3.21)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]
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= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �

Warning: Estimators that use randomly chosen elemental sets or projec-
tions are not affine equivariant since these estimators often change when they
are computed several times (corresponding to the identity transformation
A = Ip). Such estimators can sometimes be made pseudo-affine equivariant
by using the same fixed random number seed and random number genera-
tor each time the estimator is used. Then the pseudo-affine equivariance of
the estimator depends on the random number seed and the random number
generator, and such estimators are not as attractive as affine equivariant es-
timators that do not depend on a fixed random number seed and random
number generator.

Next, a standard definition of breakdown is given for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let w1, ...wn be the contaminated data after dn of the xi have been re-
placed by arbitrarily bad contaminated cases. Let W n

d denote the n× p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n.
Let (T (W ),C(W )) denote an estimator of multivariate location and dis-
persion where the p × 1 vector T (W ) is an estimator of location and the
p × p symmetric positive semidefinite matrix C(W ) is an estimator of dis-
persion. A theorem from multivariate analysis shows that if C(W n

d) > 0,
then max

‖a‖=1
aT C(W n

d )a = λ1 and min
‖a‖=1

aT C(W n
d)a = λp. See Olive (2017b,

p. 7) and Johnson and Wichern (1988, pp, 64-65, 184). A high breakdown
dispersion estimator C is positive definite if the amount of contamination is
less than the breakdown value. Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj, the largest

eigenvalue λ1 is bounded as W n
d varies iff C(W n

d) is bounded as W n
d varies.

Definition 3.16. The breakdown value of the multivariate location esti-
mator T at W is

B(T,W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min

{
dn

n
: sup
W n

d

max

[
1

λp(C(W n
d ))

, λ1(C(W n
d))

]
= ∞

}
.
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Definition 3.17. Let γn be the breakdown value of (T,C). High break-
down (HB) statistics have γn → 0.5 as n→ ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 3.12. Fix n. If nonequivariant estimators (that may have a
breakdown value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT = dT,n is the smallest
number of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB ,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB,SB)
is a high breakdown estimator.
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Theorem 3.13. If the classical estimator (XB ,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn . Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. See Definition 3.14. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)} (3.22)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T,C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

3.6 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 3.18, take too long
to compute. The concentration algorithm, defined in Definition 3.19, uses K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x,S). Then the attractor could be the classical estima-
tor (T1,C1) applied to the half set of cases with the smallest Mahalanobis
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distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk,Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j,Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

This chapter will explain the concentration algorithm, explain why the
MCD criterion is useful but can be improved, provide some theory for practi-
cal robust multivariate location and dispersion estimators, and show how the
set of cases used to compute the recommended RMVN or RFCH estimator
can be used to create robust multivariate analogs of methods such as princi-
pal component analysis and canonical correlation analysis. The RMVN and
RFCH estimators are reweighted versions of the practical FCH estimator,
given in Definition 3.22.

Definition 3.18. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

Here

C(n, i) =

(
n

i

)
=

n!

i! (n− i)!

is the binomial coefficient.

Remark 3.3. Note that for fixed h, the MCD estimator corresponds to the
sample mean and covariance estimator of cn cases such that the hyperellipsoid
of Theorem 3.10 has the smallest volume.

The MCD estimator is a high breakdown (HB) estimator, and the value
cn = b(n + p+ 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Section 2.12 and Chapter 5. The population analog of the MCD
estimator is closely related to the hyperellipsoid of highest concentration that
contains cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent

HB asymptotically normal estimator for (µ, aMCDΣ) where aMCD is some
positive constant when the data xi are iid from a large class of distributions.
See Cator and Lopuhaä (2010, 2012) who extended some results of Butler et
al. (1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
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consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 3.19. Suppose that x1, ...,xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j ,C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iter-
ation, the classical estimator (T0,j ,C0,j) = (x0,j,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). The result of the it-
eration (Tk,j,Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA,CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 or k = 0
so that the attractor is the start: (xk,j,Sk,j) = (x−1,j,S−1,j), or (xk,j,Sk,j)
= (x0,j,S0,j). The elemental basic resampling estimator uses Kn elemental
starts and k = 0.

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
k = 10 concentration steps often works well. The following theorem is useful
and shows that det(S0,j) tends to be greater than the determinant of the
attractor det(Sk,j).

Theorem 3.14: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j,St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j,St,j) are computed. If
(xt+1,j,St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j,St+1,j) = (xt,j,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
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theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n→ ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn = h ≡ p+ 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

Theorem 3.15: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

Theorem 3.15 shows that the elemental basic resampling PROGRESS es-
timators of Rousseeuw (1984), Rousseeuw and Leroy (1987), and Rousseeuw
and van Zomeren (1990) with K = 3000 are zero breakdown and inconsis-
tent. The Maronna et al. (2006, pp. 198-199) estimators that use K = 500
elemental starts and one concentration step (k = 0) are inconsistent and zero
breakdown. Yohai’s two stage estimators need initial consistent high break-
down estimators, such as MCD, but were implemented with the inconsistent
zero breakdown elemental basic resampling estimators such as FMCD. See
Hawkins and Olive (2002, p. 157). Theorem 5.13 and Remark 5.5 give similar
results for multiple linear regression.

The following theorem is useful because it does not depend on the criterion
used to choose the attractor. If the algorithm needs to use many attractors
to achieve outlier resistance, then the individual attractors have little out-
lier resistance. Such estimators include elemental concentration algorithms,
heuristic and genetic algorithms, and projection algorithms that use ran-
domly chosen projections. Algorithms where all K of the attractors are in-
consistent, such as elemental concentration algorithms that use k concentra-
tion steps, are especially untrustworthy. You can get consistent estimators if
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K = Kn → ∞ or h = hn → ∞ as n → ∞. You can get high breakdown
estimators and avoid singular starts if all K = Kn = C(n, h) elemental sets
are used, but such an estimator is impractical.

Remark 3.4. It is unknown whether iterating to convergence, so k is not
fixed, results in a consistent or inconsistent estimator. Iteration to conver-
gence does seem to be fairly fast.

Suppose there are K consistent estimators (Tj ,Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 11.16.

Theorem 3.16. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, aΣ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j,S−1,j)
are identically distributed and inconsistent estimators of (µ,Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δKε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent. Thus the “best attractor” that mini-
mizes ‖xk,j − µ‖ for k = 0 is inconsistent by Lopuhaä (1999). See Theorem
3.20 a).

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n→ 0 as n → ∞. �
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Since the Fast-MCD estimator is a zero breakdown elemental concentra-
tion algorithm, the Hubert et al. (2008, 2012) claim that “MCD can be effi-
ciently computed with the FAST-MCD estimator” is false. The Det-MCD es-
timator is a concentration algorithm using several intelligently selected starts.
Fast-MCD and Det-MCD use iteration until convergence, and neither of these
two estimators have been proven to be consistent or inconsistent. See Remark
3.4. The breakdown value of Det-MCD is also unknown.

Theorem 3.17. Neither Fast-MCD nor Det-MCD is the MCD estimator.
Proof. A necessary condition for an estimator to be the MCD estimator

is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes Fast-MCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

Remark 3.5. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(
n− cn
n

, 1 − [1 − (0.2)1/K]1/h

)
100% (3.23)

if n is large, cn ≥ n/2 and h = p+ 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

Equation (3.23) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 3.7 will provide theory for some useful
practical algorithms.

3.7 Theory for Practical Estimators

This section presents the FCH, RFCH, and RMVN estimators. Recall from
Definition 3.19 that a concentration algorithm uses Kn starts (T−1,j ,C−1,j).
After finding (T0,j ,C0,j), each start is refined with k concentration steps, re-
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sulting inKn attractors (Tk,j,Ck,j), and the concentration attractor (TA,CA)
is the attractor that optimizes the criterion. Using k = 10 concentration steps
works well.

The DGK estimator (Devlin et al. 1975, 1981) defined below is one ex-
ample of a concentration algorithm estimator. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 3.11. This
section will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 3.20. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK)
uses the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 3.21. The median ball (MB) estimator (Tk,M ,Ck,M) =
(TMB,CMB) uses (T−1,M ,C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB ,CMB) is high
breakdown.

Theorem 3.18. Suppose (T,C) is a high breakdown estimator where C

is a symmetric, positive definite p×p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (3.24)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (3.24),

1

λ1
‖x− T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1

λp
‖x − T‖2. (3.25)
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By (3.25), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0,C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
3.13. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0,C0) is a high breakdown estimator.
Now repeat the argument with (T0,C0) in place of (T,C) and (T1,C1) in
place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument
iteratively shows (Tk,Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ ) applied to J is a HB estimator
of MLD. Note that (xJ ,SJ ) = (T0,C0) in the MB concentration algorithm.

Theorem 3.19. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ ,SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 11.14 and 11.15.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 3.20 is crucial for theory and Theorem 3.21 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal”ECp(µ,Σ, g)
distribution with nonsingular covariance matrix Cov(xi) where g is continu-
ously differentiable with finite 4th moment:

∫
(xT x)2g(xT x)dx <∞.

Lopuhaä (1999) showed that if a start (T,C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T,C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
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tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T,C) ≤ h2) is an indicator that is
1 if D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 3.20, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T,C) is inconsistent, then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 3.20c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj ,Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 3.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 3.6. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T,C), note that

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (3.27), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). As noted above

Theorem 3.11, (T, C̃) is affine equivariant if (T,C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T,C) with h2 = D2

(cn)(T,C).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )
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= s−1D2(µ,Σ) +OP (n−δ). (3.26)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ (µ,Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ (µ,Σ) and bΣ = s−1D2

ξ (µ,Σ)sΣ = D2
ξ (µ,Σ)Σ.

Thus
b = D2

ξ (µ,Σ) (3.27)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)(T,C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
3.6, if (T,C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T,C) ≤ D2
(cn)(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj,Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 3.21 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 3.21. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 3.6 the estimator is a consistent affine equivariant esti-
mator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
estimator is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
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is also the attractor by Rousseeuw and Van Driessen (1999) who show that
concentration does not increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√
n consistent FCH estima-

tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK ,CDGK) and the high breakdown MB estimator (TMB ,CMB) as at-
tractors.

Definition 3.22. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (3.28)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 3.7. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (3.28). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 3.9.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 3.22. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
with the smallest determinant, then (TA,CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (µ, cΣ) where c = u0.5/χ

2
p,0.5, and c = 1 for

multivariate normal data.
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Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) <∞ by Theorem 3.18 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 3.14 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But
the DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by The-

orem 3.21 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA,CA) is asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (3.9). Then the scaling in (3.28) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ,Σ) for multivariate normal data,
even when certain types of outliers are present.

Definition 3.23. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH ,CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975, but the two estimators

use nearly 97.5% of the cases if the data is multivariate normal.

Definition 3.24. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.
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Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

The RMVN estimator is a
√
n consistent estimator of (µ, dΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful
estimates of (µ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH ,CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates
q. Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed
when outliers are present.

Remark 3.8. The FCH, RFCH, and RMVN estimators may be the only
practical MLD estimators that have been shown to be

√
n consistent on a

large class of distributions and highly outlier resistant. The MBA and RMBA
estimators have also been shown to be

√
n consistent, but have less outlier

resistance. The main competitors for the Olive and Hawkins (2010) FCH,
RFCH, and RMVN estimators are the Maronna and Zamar (2002) OGK es-
timator, the Hubert et al. (2012) Det-MCD estimator which have not been
proven to be consistent or positive breakdown, and the Sign Covariance Ma-
trix shown to be high breakdown by Croux et al. (2010). Also see Taskinen
et al. (2012). Croux et al. (2010) showed that the practical Sign Covariance
Matrix and k-step Spatial Sign Covariance Matrix are high breakdown. They
claimed that under regularity conditions, these two estimators consistently
estimate the orientation of the dispersion matrix.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators
for p = 100 and n up to 50000, and noted that the OGK complexity is
O[p3+np2 log(n)] while that of MBA is O[p3+np2+np log(n)]. FCH, RMBA,
and RMVN have the same complexity as MBA. Fast-MCD has the same
complexity as FCH, but FCH is roughly 100 to 200 times faster.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the MCD estimator
with O(nv) complexity where v = 1+p(p+3)/2 and possibly an all elemental
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subset estimator of He and Wang (1997). See Bernholt and Fischer (2004).
The minimum volume ellipsoid estimator complexity is far higher, and for
p > 2 there may be no known method for computing S, τ , projection
based, and constrained M estimators. For some depth estimators, like the
Stahel-Donoho estimator, the exact algorithm of Liu and Zuo (2014) appears
to take too long if p ≥ 6 and n ≥ 100, and simulations may need p ≤ 3. �

Remark 3.9. Practical consistent highly outlier resistant estimators are
still affected by certain types of outliers. The median ball and location crite-
rion give FCH, RFCH, and RMVN considerable outlier resistance to outlier
configurations that lie outside the “median ball,” including outlier configura-
tions that can cause problems for the MCD estimator. For p not much larger
than 5, the elemental concentration algorithm with the MCD criterion can
detect some outlier types that are not detected by FCH, RFCH, and RMVN.
These outlier types tend to be within the “median ball.” The point mass
outlier configuration, where all of the outliers are equal to xO, often causes
numerical problems. The OGK and MB estimators have considerable resis-
tance to point mass outliers. The DGK, Fast-MCD, Det-MCD, and MCD
estimators have problems with the point mass. Suppose the bulk of the data
lies in a hyperellipsoid. A 40% point mass can combine with 10% of the clean
data to form a hyperellipsoid covering half of the data with smaller volume
than a hyperellipsoid covering half of the data without any outliers. Then
the MCD criterion tends to select a “half set” that contains the outliers. The
location criterion used by the FCH estimator will often reject the DGK at-
tractor for the point mass. However, the current program for FCH fails if the
DGK estimator can’t be computed, which often happens for the point mass.
For a single data set, just use the scaled MB estimator if the DGK estima-
tor causes the FCH, RFCH, or RMVN program to fail. It would be nice to
have a program that that does not fail when the DGK estimator fails. Since
the point mass causes numerical difficulties for most estimators, simulations
often use a near point mass: the outliers are tightly clustered about a single
point xO, but the outliers have a nonsingular covariance matrix.

Table 3.1 Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB[
1.002 −0.014
−0.014 2.024

] [
0.055 0.685
0.685 122.5

] [
0.185 0.089
0.089 36.24

] [
2.570 −0.082
−0.082 5.241

]

Table 3.2 Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB[
0.990 0.004
0.004 2.014

] [
2.530 0.003
0.003 5.146

] [
19.67 12.88
12.88 39.72

] [
2.552 0.003
0.003 5.118

]
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Simulations suggested (TRMV N ,CRMV N) gives useful estimates of (µ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the
averages of the dispersion matrices were computed when the bulk of the data
are iid N2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH, and
RMVN give

√
n consistent estimators of Σ, while Fast-MCD (FMCD) and

the OGK estimator seem to be approximately unbiased for Σ. The median
ball estimator was scaled using (3.28) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),
a near point mass at the major axis. FCH, MB, and RFCH estimated 2.6Σ

while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
that χ2

2,5/6/χ
2
2,0.5 = 2.585. See Table 3.1. The following R commands were

used where mldsim is from rpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T ,Σ), a
mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB, and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 3.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Remark 3.10. The RFCH and RMVN estimators are recommended. If
these estimators are too slow and outlier detection is of interest, try the RMB
estimator, the reweighted MB estimator. If RMB is too slow or if n < 2(p+1),
the Euclidean distances Di(MED(W ), I) of xi from the coordinatewise me-
dian MED(W ) may be useful. A DD plot of Di(x, I) versus Di(MED(W ), I)
is also useful for outlier detection and for whether x and MED(W ) are giving
similar estimates of multivariate location. See Section 3.10. For DD plots, see
Section 3.8.

Example 3.4. Tremearne (1911) recorded height = x[,1] and height while
kneeling = x[,2] of 112 people. Figure 3.2a shows a scatterplot of the data.
Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T, but if the distances correspond to the contours of a cover-
ing ellipsoid, then case 44 has the largest distance. For k = 0, (T0,M ,C0,M)
is the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 3.2b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.
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As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 3.4) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat or stick with one end
at the SW corner of the bottom of the box (corresponding to the coordinate
axes) and one end at the NE corner of the top of the box. If the outliers are
a ball, there is much more room to hide them in the box than in a covering
rectangle when p = 2.

Example 3.5. The estimators can be useful when the data is not ellipti-
cally contoured. The Gladstone (1905) data has 11 variables on 267 persons
after death. Head measurements were breadth, circumference, head height,
length, and size as well as cephalic index and brain weight. Age, height, and
two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 3.3 shows the DD plots for the FCH, RMVN,
cov.mcd, and MB estimators. The DD plots from the DGK, MBA, and
RFCH estimators were similar, and the six outliers in Figure 3.3 correspond
to the six infants in the data set.

3.8 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

The classical Mahalanobis distance will be denoted by MDi, and corre-
sponds to the sample mean and sample covariance matrix (T (W ),C(W ) =
(x,S) of Definition 3.10. When T (W ) and C(W ) are estimators other than
the sample mean and covariance, Di =

√
D2

i will sometimes be denoted by
RDi.

Definition 3.25: Rousseeuw and Van Driessen (1999). The DD plot
is a plot of the classical Mahalanobis distances MDi versus robust Maha-
lanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. Then the classi-
cal sample mean and covariance matrix (TM ,CM ) = (x,S) is a consistent
estimator for (µ, cxΣ) = (E(x),Cov(x)). Assume that an alternative algo-
rithm estimator (TA,CA) is a consistent estimator for (µ, aAΣ) for some
constant aA > 0. By scaling the algorithm estimator, the DD plot can be
constructed to follow the identity line with unit slope and zero intercept. Let
(TR,CR) = (TA,CA/τ

2) denote the scaled algorithm estimator where τ > 0
is a constant to be determined. Notice that (TR,CR) is a valid estimator of
location and dispersion. Hence the robust distances used in the DD plot are
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given by

RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA,CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 3.23. Assume that x1, ...,xn are iid observations from a dis-
tribution with parameters (µ,Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n→ ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j) + (x − µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)
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=
1

aj
(x − µ)T Σ−1(x − µ)

+
2

aj
(x− µ)T Σ−1(µ − µ̂j) +

1

aj
(µ− µ̂j)

T Σ−1(µ− µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x− µ̂j) (3.29)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 3.23, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (µ, cxΣ)
and if (TA,CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 3.23, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA,CA) from Theorem 3.22 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li et al. (1997), and
Liu et al. (1999) for references.

Example 3.6. Rousseeuw and Van Driessen (1999) chose the multivari-
ate normal Np(µ,Σ) distribution as the target. If the data are indeed iid
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MVN vectors, then the (MDi)
2 are asymptotically χ2

p random variables, and

MED =
√
χ2

p,0.5 where χ2
p,0.5 is the median of the χ2

p distribution. Since the

target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (3.30)

Note that the DD plot can be tailored to follow the identity line if the
data are iid observations from any target elliptically contoured distribution
that has nonsingular covariance matrix. If it is known that med(MDi) ≈
MED where MED is the target population analog (obtained, for example,
via simulation, or from the actual target distribution as in Equation (3.10)),
then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (3.31)

We recommend using RFCH or RMVN as the robust estimators in DD
plots. The cov.mcd estimator should be modified by adding the FCH starts
to the 500 elemental starts. There exist data sets with outliers or two groups
such that both the classical and robust estimators produce hyperellipsoids
that are nearly concentric. We suspect that the situation worsens as p in-
creases. The cov.mcd estimator is basically an implementation of the ele-
mental FMCD concentration algorithm described in Section 3.6. The number
of starts used wasK = max(500, n/10) (the default is K = 500, so the default
can be used if n ≤ 5000).

Conjecture 3.2. If x1, ...,xn are iid ECp(µ,Σ, g) and an elemental
FMCD concentration algorithm is used to produce the estimator (TA,n,CA,n),
then under mild regularity conditions this algorithm estimator is consistent
for (µ, aΣ) for some constant a > 0 (that depends on g) if the number of
starts K = K(n) → ∞ as the sample size n→ ∞.

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then [

med(Di(A))

med(MDi)

]2
CA (3.32)

estimates Cov(x). For the DD plot, consistency is desirable but not necessary.
It is necessary that the correlation of the smallest 99% of the MDi and RDi be
very high. This correlation goes to 1 by Theorem 3.23 if consistent estimators
are used.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (3.30).
The results are shown in Table 3.3. Each choice of n and p used 100 runs, and
the 100 correlations between the RDi and the MDi were computed. The mean
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Table 3.3 Corr(RDi,MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8
3 44 0.866 0.541 81 20
3 100 0.967 0.908 24 0
7 76 0.843 0.622 97 26
10 100 0.866 0.481 98 12
15 140 0.874 0.675 100 6
15 200 0.945 0.870 41 0
20 180 0.889 0.777 100 2
20 1000 0.998 0.996 0 0
50 420 0.894 0.846 100 0

and minimum of these correlations are reported along with the percentage
of correlations that were less than 0.95 and 0.80. The simulation shows that
small data sets (of roughly size n < 8p + 20) yield plotted points that may
not cluster tightly about the identity line even if the data distribution is
Gaussian.

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x− TR) ≤ RD2

(h)} (3.33)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x− x) ≤MD2
(h)}. (3.34)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (3.33) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (3.34). Hence the DD plot can
be used to visualize the prediction regions of Section 5.1.

The DD plot will follow a line through the origin closely if the two hy-
perellipsoids are nearly concentric, e.g. if the data is EC. The DD plot will
follow the identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi−TA)T

[(
MED

med(Di(A))

)2

C−1
A

]
(xi−TA) ≈ (xi−x)T S−1(xi−x) = MD2

i

for i = 1, ..., n. When the distribution is not EC, the RMVN (or RFCH or
FMCD) estimator and (x,S) will often produce hyperellipsoids that are far
from concentric.
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Application 3.1. The DD plot can be used simultaneously as a diagnostic
for whether the data arise from a multivariate normal (MVN or Gaussian)
distribution or from another EC distribution with nonsingular covariance
matrix. EC data will cluster about a straight line through the origin; MVN
data in particular will cluster about the identity line. Thus the DD plot can
be used to assess the success of numerical transformations towards ellipti-
cal symmetry. This application is important since many statistical methods
assume that the underlying data distribution is MVN or EC.
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Fig. 3.4 4 DD Plots

For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 3.4 shows the DD plots for 3 artificial data sets using cov.mcd. The
DD plot for 200 N3(0, I3) points shown in Figure 3.4a resembles the identity
line. The DD plot for 200 points from the elliptically contoured distribution
0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 3.4b clusters about a line through
the origin with a slope close to 2.0.
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A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√
χ2

p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 3.23 implies that the correlation of the points
in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 3.4b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 3.4c and 3.4d illustrate how to use the weighted DD plot. The
ith case in Figure 3.4c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 3.4a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 3.4d is the weighted DD plot where cases with

RDi ≥
√
χ2

3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 3.4d
may not pass through the origin. These results suggest that the distribution
of x is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data towards a target EC distribu-
tion have been developed. Generalizations of the Box–Cox transformation
towards a multivariate normal distribution are described in Velilla (1993).
Alternatively, Cook and Nachtsheim (1994) gave a two-step numerical proce-
dure for transforming data towards a target EC distribution. The first step
simply gives zero weight to a fixed percentage of cases that have the largest
robust Mahalanobis distances, and the second step uses Monte Carlo case
reweighting with Voronoi weights.

Example 3.7. Buxton (1920, pp. 232-5) gave 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a reasonable
model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
3.5a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 3.5b is the DD plot computed after
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Fig. 3.5 DD Plots for the Buxton Data

deleting these points and suggests that the multivariate normal distribution
is reasonable. (The recomputation of the DD plot means that the plot is not
a weighted DD plot which would simply omit the outliers and then rescale
the vertical axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 3.4a, then perhaps no transformation is needed. For the data
in Figure 3.4c, a good numerical procedure should suggest coordinatewise log
transforms. Following this transformation, the resulting plot shown in Figure
3.4a indicates that the transformation to normality was successful.

Application 3.2. The DD plot can be used to detect multivariate outliers.
See Figures 3.2, 3.3, 3.5a, and 3.6.

Warning: It is important to know that plots fill space. If there is a single
outlier, then often it will appear in the upper left or upper right corner of
the DD plot, where RD is large, since the plot has to cover the outlier. The
rest of the data will often appear to be tightly clustered about the identity
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line. Beginners sometimes fail to spot the single outlier because they do not
know that the plot will fill space. There is a lot of blank space because of the
outlier. If the outlier was not present, then the box would not extend much
above the identity line in the upper right corner of the plot. For example,
suppose all of the outliers except point 63 were deleted from the Buxton data.
Then compare the DD plot in Figure 3.5 b) where all of the outliers have
been deleted, with the DD plot in Figure 3.6 where the single outlier is in the
upper right corner. R commands to produce Figures 3.5 and 3.6 are shown
below.

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 3.5a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 3.5b), right click Stop

zz <- x[-c(61,62,64,65),]

ddplot(zz,type=3) #Figure 3.6, right click Stop
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3.9 Outlier Resistance and Simulations

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Simulations were used to compare (TFCH ,CFCH), (TRFCH ,CRFCH),
(TRMV N ,CRMV N ), and (TFMCD ,CFMCD). Shown above are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH, and RMVN estimators are

√
n consis-

tent estimators of Σ, while CFMCD seems to be approximately unbiased for
0.94Σ.

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T ,
0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ
2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.013

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.65

Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

If Win ∼ N(0, τ2/n) for i = 1, ..., r and if S2
W is the sample variance

of the Win, then E(nS2
W ) = τ2 and V (nS2

W ) = 2τ4/(r − 1). So nS2
W ±√

5SE(nS2
W ) ≈ τ2 ±

√
10τ2/

√
r − 1. So for r = 1000 runs, we expect nS2

W

to be between τ2 −0.1τ2 and τ2 +0.1τ2 with high confidence. Similar results
hold for many estimators if Win is

√
n consistent and asymptotically normal

and if n is large enough. If Win has less than
√
n rate, e.g. n1/3 rate, then

the scaled sample variance nS2
W → ∞ as n→ ∞.

Table 3.4 considers W = Tp and W = Cp,p for eight estimators, p = 5
and 10, and n = 10p and 5000, when x ∼ Np(0, diag(1, ..., p)). For the clas-
sical estimator, denoted by CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p
while Cp,p is the sample variance of n iid N(0, p) random variables. Hence
nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD, and OGK use a “reweight for
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Table 3.4 Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB
5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8
5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23
5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5
5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20
10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4
10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13
10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0
10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

efficiency” concentration step that uses a random number of cases with per-
centage close to 97.5%. These four estimators had similar behavior. DGK,
FCH, and MB used about 50% of the cases and had similar behavior. By
Lopuhaä (1999), estimators with less than

√
n rate still have zero efficiency

after the reweighting. Although FMCD, MB, and OGK have not been proven
to be

√
n consistent, their values did not blow up even for n = 5000.

Geometrical arguments suggest that the MB estimator has considerable
outlier resistance. Suppose the outliers are far from the bulk of the data. Let
the “median ball” correspond to the half set of data closest to MED(W ) in
Euclidean distance. If the outliers are outside of the median ball, then the
initial half set in the iteration leading to the MB estimator will be clean. Thus
the MB estimator will tend to give the outliers the largest MB distances unless
the initial clean half set has very high correlation in a direction about which
the outliers lie. This property holds for very general outlier configurations.
The FCH estimator tries to use the DGK attractor if the det(CDGK) is small
and the DGK location estimator TDGK is in the median ball. Distant outliers
that make det(CDGK) small also drag TDGK outside of the median ball. Then
FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of a hyperellipsoidal region, then the distances based on
the clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance of
the clean cases. The simulation used 100 runs. If the count was 97, then in 97
data sets the outliers can be separated from the clean cases with a horizontal
line in the DD plot, but in 3 data sets the robust distances did not achieve
complete separation. In Spring 2015, Det-MCD simulated much like FMCD,
but was more likely to cause an error in R.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T and x ∼
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Np((0, ..., 0, pm)T, 0.0001Ip), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√
p)T .

Table 3.5 Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

For near point mass outliers, a hyperellipsoid with very small volume can
cover half of the data if the outliers are at one end of the hyperellipsoid
and some of the clean data are at the other end. This half set will produce
a classical estimator with very small determinant by Theorem 3.10. In the
simulations for large γ, as the near point mass is moved very far away from
the bulk of the data, only the classical, MB, and OGK estimators did not have
numerical difficulties. Since the MCD estimator has smaller determinant than
DGK while MVE has smaller volume than DGK, estimators like FMCD and
MBA that use the MVE or MCD criterion without using location information
will be vulnerable to these outliers. FMCD is also vulnerable to outliers if γ
is slightly larger than γo given by (3.23).

Table 3.6 Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100
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Tables 3.5 and 3.6 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers and
Table 3.5. For γ = 0.25 and 0.4, MB usually had the highest counts. For
5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the smallest
counts, and FMCD could not handle 40% outliers for p = 20. For 25 ≤ p ≤ 60,
OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30, FMCD
could not handle 25% outliers even for enormous values of pm.

In Table 3.6, FCH greatly outperformed MBA although the only difference
between the two estimators is that FCH uses a location criterion as well as
the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not
tabled). For large γ, OGK often has large bias for cΣ. Then the outliers may
need to be enormous before OGK can detect them. Also see Table 3.2, where
OGK gave the outliers the largest distances for all runs, but COGK does not
give a good estimate of cΣ = c diag(1, 2).
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Fig. 3.7 The FMCD Estimator Failed

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T,C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.
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Fig. 3.8 The Outliers are Large in the MBA DD Plot

In an older mean shift simulation, when p was 8 or larger, the cov.mcd
estimator was usually not useful for detecting the mean shift outliers. Figure
3.7 shows that now the FMCD RDi are highly correlated with the MDi. The
DD plot based on the MBA estimator detects the outliers. See Figure 3.8.

For many data sets, Equation (3.23) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact hyperellipsoid while the outliers
fall in another hugely distant compact hyperellipsoid, then a concentration
algorithm using a single start can sometimes tolerate nearly 25% outliers.
For example, suppose that all p+ 1 cases in the elemental start are outliers
but the covariance matrix is nonsingular so that the Mahalanobis distances
can be computed. Then the classical estimator is applied to the cn ≈ n/2
cases with the smallest distances. Suppose the percentage of outliers is less
than 25% and that all of the outliers are in this “half set.” Then the sample
mean applied to the cn cases should be closer to the bulk of the data than
to the cluster of outliers. Hence after a concentration step, the percentage
of outliers will be reduced if the outliers are very far away. After the next
concentration step the percentage of outliers will be further reduced and after
several iterations, all cn cases will be clean.
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In a small simulation study, 20% outliers were planted for various values of
p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from theNp(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600, and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Theorem 3.24. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).∮
11.2 explains how to use the source command to get the mpack func-

tions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),

but in Spring 2015 this change was more likely to cause errors.
The rpack function

mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 3.1, 3.2, 3.4–3.6. Change outliers to 0 to
examine the average of µ̂ and Σ̂. The function mldsim6 is similar but does
not need the library command since it compares the FCH, RFCH, CMVE,
RCMVE, MB estimators, and the covmb2 estimator of Section 3.10. See
Olive (2017b) for CMVE and RCMVE. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make an outlier data set. Then the FCH and MB DD plots are made
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(click on the right mouse button and highlight stop to go to the next plot) and
then the scatterplot matrix. The scatterplot matrix can be used to determine
whether the outliers are hard to detect with bivariate or univariate methods.
If p > 10 the bivariate plots may be too small.

The function covsim2 can be modified to show that the R implementation
of FCH is usually much faster than OGK which is much faster than FMCD.
The function corrsim can be used to simulate the correlations of robust dis-
tances with classical distances. For MVN data, the command
corrsim(n=200,p=20,nruns=100,type=5)
suggests that the correlation of the RFCH distances with the classical dis-
tances is about 0.97. Changing type to 4 suggests that FCH needs n = 800
before the correlation is about 0.97. The function corrsim2 uses a wider
variety of EC distributions.
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Fig. 3.9 highlighted cases = half set with smallest RD = (T0,C0)

The function cmve computes CMVE and RCMVE, function covfch com-
putes FCH and RFCH, while covrmvn computes the RMVN and MB esti-
mators. The function covrmb computes MB and RMB where RMB is like
RMVN except the MB estimator is reweighted instead of FCH. Functions
covdgk, covmba, and rmba compute the scaled DGK, MBA, and RMBA esti-
mators. Better programs would use MB if DGK causes an error.

The concmv function described in Problem 3.30 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 3.9, 3.10, and
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Fig. 3.10 highlighted cases = half set with smallest RD = (T1,C1)
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Fig. 3.11 highlighted cases = half set with smallest RD = (T2,C2)
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Fig. 3.12 highlighted cases = outliers, RD = (T0,D,C0,D)
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Fig. 3.13 highlighted cases = outliers, RD = (T1,D,C1,D)
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Fig. 3.14 highlighted cases = outliers, RD = (T2,D,C2,D)
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Fig. 3.15 highlighted cases = outliers, RD = (T3,D,C3,D)
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3.11, the highlighted cases are the half set with the smallest distances, and
the initial half set shown in Figure 3.9 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 3.11 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 3.31 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4,
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 3.12, 3.13, 3.14, and 3.15. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
3.12 is not clean. The attractor in Figure 3.15 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

3.10 Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Definition 3.26. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. Then the covmb2 estimator (T,C) is the
sample mean and sample covariance matrix applied to the cases in set B.
Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

Example 3.8. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain



3.11 The RMVN Set, RFCH Set, and covmb2 Set 141

(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
rpack function getB gives the set B of cases that got weight 1 along with the
index indx of the case numbers that got weight 1. The function ddplot5

plots the Euclidean distances from the coordinatewise median versus the Eu-
clidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear
in the upper right corner of the plot with a gap between the bulk of the
data and the outliers. An alternative for outlier detection is to replace C by
Cd = diag(σ̂11, ..., σ̂pp). For example, use σ̂ii = Cii. See Ro et al. (2015) and
Tarr et al. (2016) for references.

The next section gives applications of the sets used to compute the RMVN,
RFCH, and covmb2 estimators.

3.11 The RMVN Set, RFCH Set, and covmb2 Set

The RMVN, RFCH, and covmb2 estimators are each computed from a set
of at least n/2 cases. We will call these sets the RMVN set U , the RFCH set
V and the covmb2 set B, which was was given in Definition 3.26.

Definition 3.27. Let the n2 cases in Definition 3.24 be known as the
RMVN set U . Let the RFCH set V be the set of m ≥ n/2 cases from which
the RFCH estimator is computed.
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Referring to Definition 3.24, (TRMV N , Σ̃2) = (xU ,SU ) is the classi-
cal estimator applied to the RMVN set U , which can be regarded as the
untrimmed data (the data not trimmed by ellipsoidal trimming) or the
cleaned data. Also SU is the unscaled estimated dispersion matrix while
CRMV N is the scaled estimated dispersion matrix. For the RFCH estimator,
(xV ,SV ) = (TRFCH , Σ̃2), and then SV is scaled to form CRFCH .

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Subjectively cleaned data may work well for a single data set, but we can’t
get large sample theory since sometimes too many cases are deleted (delete
outliers and some nonoutliers) and sometimes too few (do not get all of the
outliers). Practical plug in robust estimators have rarely been shown to be√
n consistent and highly outlier resistant.
Using the RMVN set U or RFCH set V is simultaneously a plug in method

and an objective way to clean the data such that the resulting robust method
is often backed by theory. Let D be either the set U or V . This result is
extremely useful computationally: apply the classical method to the cases in
the set D. This procedure is often equivalent to using (xD,SD) as plug in
estimators. The method can be applied if n > 2(p + 1) but may not work
well unless n > 20p. The rpack function getu gets the RMVN set U as well
as the case numbers corresponding to the cases in U . The covmb2 set B can
also be used for several applications, even if p > n.

The set D corresponds to a small volume hyperellipsoid containing at
least half of the cases since concentration is used. The set D can also be
regarded as the “untrimmed data”: the data that was not trimmed by el-
lipsoidal trimming. Theory has been proved for a large class of elliptically
contoured distributions, but it is conjectured that theory holds for a much
wider class of distributions. See Conjectures 3.3 and 3.4 in Section 3.12. In
simulations RFCH and RMVN seem to estimate cΣx if x = Az + µ where
z = (z1, ..., zp)

T and the zi are iid from a continuous distribution with vari-

ance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator
seemed to be small. It is known that affine equivariant estimators give unbi-
ased estimators of cΣx if the distribution of zi is also symmetric. DGK is
affine equivariant and RFCH and RMVN are asymptotically equivalent to a
scaled DGK estimator. But in the simulations the results also held for skewed
distributions.

Several illustrative applications are given next, where the theory usually
assumes that the cases are iid from a large class of elliptically contoured
distributions. There are many other “robust methods” in the literature that
use plug in estimators like FMCD. Replacing the plug in estimator by RMVN
or RFCH will often greatly improve the robust method.

i) The classical estimator of multivariate location and dispersion applied
to the cases in D gives (xD,SD), a

√
n consistent estimator of (µ, cΣ) for

some constant c > 0.
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ii) The classical estimator of the correlation matrix applied to the cases in
U gives RU , a consistent estimator of the population correlation matrix ρx.

iii) For principal component analysis (PCA), RPCA is the classical PCA
method applied to the set U . See Olive (2017b, ch. 6).

iv) For canonical correlation analysis (CCA), RCCA is the classical CCA
method applied to the set U . See Olive (2017b, ch. 7).

v) Let Di be the RMVN or RFCH subset applied to the ni cases from
group i for i = 1, ..., G. Let (xDi ,SDi ) be the sample mean and covariance
applied to the cases in Di. Let Y = i for cases in Di which are from group
i. Let Dbig = D1 ∪ D2 ∪ · · · ∪DG be the combined sample. Then apply the
discriminant analysis method to Dbig with the corresponding labels Y . For
example, RFDA consists of applying classical FDA on Ubig. See Olive (2017b,∮

8.9).
vi) For factor analysis, apply the factor analysis method to the set D.

This method can be used as a diagnostic for methods such as the maximum
likelihood method of factor analysis, but is backed by theory for principal
component factor analysis. See Olive (2017b,

∮
11.2).

vii) For multiple linear regression, let Y be the response variable, x1 = 1
and x2, ..., xp be the predictor variables. Let zi = (Yi, xi2, ..., xip)

T . Let D
be the RMVN or RFCH set formed using the zi. Then a classical regression
estimator applied to the set D results in a robust regression estimator. For
least squares, this is implemented with the rpack function rmreg3 using the
RMVN set U .

viii) For multivariate linear regression, let Y1, ..., Ym be the response vari-
ables, x1 = 1 and x2, ..., xp be the predictor variables. Let

zi = (Yi1, ...Yim, xi2, ..., xip)
T .

Let D be the RMVN or RFCH set formed using the zi. Then a classical least
squares multivariate linear regression estimator applied to the set D results
in a robust multivariate linear regression estimator. For least squares, this
is implemented with the mpack function rmreg3 using U . The method for
multiple linear regression in vii) corresponds to m = 1. See Olive (2017b,

∮

12.6.2).
There are also several variants on the method. Suppose there are tentative

predictors Z1, ..., ZJ. After transformations assume that predictors X1, ..., Xk

are linearly related. Assume the set U used cases i1, i2, ..., inU. To add vari-
ables like Xk+1 = X2

1 , Xk+2 = X3X4 , Xk+3 = gender, ..., Xp, augment
U with the variables Xk+1, ..., Xp corresponding to cases i1, ..., inU . Adding
variables results in cleaned data that is more likely to contain outliers.

If there are g groups (g = G for discriminant analysis, g = 2 for binary
regression, and g = p for one way MANOVA), the function getubig gets
the RMVN set Ui for each group and combines the g RMVN sets into one
large set Ubig = U1 ∪ U2 ∪ · · · ∪ Ug .
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Application 3.3. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Now let D be the
RMVN set U , the RFCH set V or the covmb2 set B. Find D by applying
the estimator to the ui, and then run the regression method on the m cases
wi corresponding to the set D indices i1, ..., im, where m ≥ n/2. The set B
can be used even if p > n. A similar technique can be used for multivariate
regression where the ith case wi = (yT

i ,x
T
i )T where the response vector

yi = (Yi1, ..., Yim)T has m ≥ 1 response variables.

Example 3.9. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 3.42 to reproduce the following
plots.

0 500 1000 1500

0
5
0
0

1
5
0
0

yhat

y

a) lasso
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b) lasso using covmb set B

Fig. 3.16 Response plot for lasso and lasso applied to the covmb2 set B.



3.11 The RMVN Set, RFCH Set, and covmb2 Set 145

0 500 1000 1500

0
5

0
0

1
0

0
0

1
5

0
0

RDMED

R
D

C
O

V
M

B
2

Fig. 3.17 DD plot.

Figure 3.16a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
3.16b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 3.16b) is better for data analysis: impossible outliers should be deleted
or given 0 weight, we do not want to predict that some people are about 0.75
inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 3.17 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

The rpack function mldsim6 suggests that for 40% outliers, the outliers
need to be further away from the bulk of the data for covmb2 (covmb2(k=5)
needs a larger value of pm) than for the other six estimators if n ≥ 20p. With
some outlier types, covmb2(k=5) was often near best. Try the following
commands. The other estimators need n > 2p, and as n gets close to 2p,
covmb2 may outperform the other estimators.

#near point mass on major axis

mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)

mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad

mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)
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mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)

#mean shift outliers

mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)

mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)

mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)

#concentration steps can help

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

3.12 Summary

The following three quantities are important.
1) E(x) = µ = (E(x1), ..., E(xp))

T .
2) The p × p population covariance matrix

Cov(x) = E(x −E(x))(x −E(x))T = (σij) = Σx.
3) The p × p population correlation matrix Cor(x) = ρx = (ρij).
4) The population covariance matrix of x with y is Cov(x, y) = Σx,y =

E[(x−E(x))(y −E(y))T ].
5) Let the p × p matrix ∆ = diag(

√
σ11, ...,

√
σpp). Then Σx = ∆ρx∆,

and ρx = ∆−1Σx∆−1.
6) The n × p data matrix

W =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
.

7) The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the p × 1 vector of ones.
8) The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

9) The classical estimator of multivariate location and dispersion is (x,S).
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10) (n− 1)S =

n∑

i=1

xix
T
i − x xT = (W − 1xT )T (W − 1xT ) =

W T W − 1

n
W T11T W . Hence if the centering matrix H = I − 1

n
11T , then

(n− 1)S = W T HW .
11) The sample correlation matrix R = (rij).
12) Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp). Then S = DRD, and R = D−1SD−1.
13) The spectral decomposition of the symmetric matrix A =

∑p
i=1 λieie

T
i

= λ1e1e
T
1 + · · ·+ λpepe

T
p .

14) Let A =
∑p

i=1 λieie
T
i be a positive definite p × p symmetric matrix.

Let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column ei.

Let Λ1/2 = diag(
√
λ1, ...,

√
λp). The square root matrix A1/2 = P Λ1/2P T is

a positive definite symmetric matrix such that A1/2A1/2 = A.
15) The generalized sample variance = |S| = det(S).
16) The hyperellipsoid {x|D2

x ≤ h2} = {x : (x−x)T S−1(x−x) ≤ h2} is
centered at x and has volume equal to

2πp/2

pΓ (p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If
x = 0, the axes are given by the eigenvectors êi where the half length in the

direction of êi is h
√
λ̂i. Here êT

i êj = 0 for i 6= j while êT
i êi = 1.

17) Given a table of data W for variables X1, ..., Xp, be able to find
the coordinatewise median MED(W ) and the sample mean x. If
x = (X1, X2, ..., Xp)

T where Xj corresponds to the jth column of W , then
MED(W ) = (MEDX1 (n), ...,MEDXp(n))T where MEDXj (n) = MED(Xj,1, ...,
Xj,n) is the sample median of the data in the jth column. Similarly, x =
(X1, ..., Xp)

T where Xj is the sample mean of the data in the jth column.
18) If X and Y are p×1 random vectors, a a conformable constant vector,

and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
19) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.

20) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

Let X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.



148 3 The Multivariate Location and Dispersion Model

21) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T ∼ Nq(µ̃, Σ̃)

where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular, X1 ∼
Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22). If X ∼ Np(µ,Σ), then X1 and
X2 are independent iff Σ12 = 0.

22)

Let

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
23) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean µ1+Σ12Σ

−1
22 (x2−µ2) and covariance matrix Σ11−Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

24) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

25) Be able to compute the above quantities if X1 and X2 are scalars.
26) A p× 1 random vector X has an elliptically contoured distribution, if

X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (3.35)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution. If the
second moments exist, then

E(X) = µ (3.36)

and
Cov(X) = cXΣ (3.37)

for some constant cX > 0.
27) The population squared Mahalanobis distance

U ≡ D2 = D2
x(µ,Σ) = (x − µ)T Σ−1(x− µ). (3.38)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.39)
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U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

29) Let the p×1 column vector T (W ) be a multivariate location estimator,
and let the p × p symmetric positive definite matrix C(W ) be a dispersion
estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (3.40)

for each observation xi. Notice that the Euclidean distance of xi from the es-
timate of center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance

uses (T,C) = (x,S). Note that D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x− µ̂).

30) A DD plot is a plot of classical vs. robust Mahalanobis distances.
The DD plot is used to check i) if the data is MVN (plotted points follow
the identity line), ii) if the data is EC but not MVN (plotted points follow
a line through the origin with slope > 1), iii) if the data is not EC (plotted
points do not follow a line through the origin), iv) if multivariate outliers are
present (e.g. some plotted points are far from the bulk of the data or the
plotted points follow two lines). v) The DD plot can be used to display the
prediction regions of Chapter 4.

31) Many practical “robust estimators” generate a sequence of K trial fits
called attractors: (T1,C1), ..., (TK,CK). Then the attractor (TA,CA) that
minimizes some criterion is used to obtain the final estimator. One way to
obtain attractors is to generate trial fits called starts, and then use the con-
centration technique. Let (T−1,j,C−1,j) be the jth start and compute all n
Mahalanobis distances Di(T−1,j,C−1,j). At the next iteration, the classical
estimator (T0,j,C0,j) is computed from the cn ≈ n/2 cases corresponding to
the smallest distances. This iteration can be continued for k steps resulting
in the sequence of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). Then
(Tk,j,Ck,j) is the jth attractor for j = 1, ..., K. Using k = 10 often works
well, and the basic resampling algorithm is a special case k = −1 where the
attractors are the starts.

32) The DGK estimator (TDGK ,CDGK) uses the classical estimator
(T−1,D,C−1,D) = (x,S) as the only start.

33) The median ball (MB) estimator (TMB ,CMB) uses (T−1,M ,C−1,M) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance.

34) Elemental concentration algorithms use elemental starts: (T−1,j,C−1,j)
= (xj,Sj) is the classical estimator applied to a randomly selected “ele-
mental set” of p + 1 cases. If the xi are iid with covariance matrix Σx,
then the starts (xj,Sj) are identically distributed with E(xj) = E(xi),
Cov(xj) = Σx/(p+ 1), and E(Sj) = Σx.

35) Let the “median ball” be the hypersphere containing the half set of
data closest to MED(W ) in Euclidean distance. The FCH estimator uses the
MB attractor if the DGK location estimator TDGK = Tk,D is outside of the
median ball, and the attractor with the smallest determinant, otherwise. Let
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(TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH) takes
TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (3.41)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom. The RFCH estimator uses two standard “reweight for efficiency
steps” while the RMVN estimator uses a modified method for reweighting.

36) For a large class of elliptically contoured distributions, FCH, RFCH,
and RMVN are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where

ci = 1 for Np(µ,Σ) data.
37) An estimator (T,C) of multivariate location and dispersion (MLD),

needs to estimate p(p+ 3)/2 unknown parameters when there are p random
variables. For (x,S) or (z,R), we want n ≥ 10p. We want n ≥ 20p for FCH,
RFCH, or RMVN.

38) Brand name robust MLD estimators take too long to compute: F-
brand name estimators that are not backed by breakdown or large sample
theory are actually used. FMCD, F-MVE, F-S, F-MM, F-τ , F-constrained-M
and F-Stahel-Donoho are especially common. F-brand name estimators use
a fixed number of starts.

39) The squared Euclidean distances of the xi from the coordinatewise
median is D2

i = D2
i (MED(W ), Ip). Concentration type steps compute the

weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

40) Let the covmb2 set B of at least n/2 cases correspond to the cases
with weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean
and sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

3.13 Complements

For concentration algorithms, note that (Tt,j ,Ct,j) = (xt,j,St,j) is the classi-
cal estimator applied to the “half set” of cases satisfying {xi : D2

i (xt−1,j,St−1,j)
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≤ D2
(cn)(xt−1,j,St−1,j)} for t ≥ 0. Hence (Tt,j,Ct,j) is estimating (µt,Σt),

the population mean and covariance matrix of the truncated distribution cov-
ering half of the mass corresponding to {x : (x − µt−1)

T Σ−1
t−1(x − µt−1) ≤

D2
0.5(µt−1,Σt−1)} where D2

0.5(µt−1,Σt−1) is the population median of the
population squared distances D2(µt−1,Σt−1). Here (µ−1,Σ−1) is the pop-
ulation analog of (T−1,j,C−1,j).

The DGK estimator (Tk,D,Ck,D) uses the classical estimator (T−1,D,C−1,D)
= (x,S) as the only start. Thus (µ−1,D,Σ−1,D) is the population mean and
covariance matrix. For a large class of elliptically contoured distributions with
a nonsingular covariance matrix and for t ≥ 0, (µt,D,Σt,D) is the popula-
tion mean and covariance matrix of the truncated distribution corresponding
to the highest density region covering half the mass. Hence µt,D = µ and
Σt,D = cΣ for some c > 0. Riani, Atkinson and Cerioli (2009) find the popu-
lation mean and covariance matrices for such truncated multivariate normal
distributions, using results from Tallis (1963).

Conjecture 3.3. The DGK estimator is a
√
n consistent estimator of

(µk,D,Σk,D) under mild conditions.
The median ball (MB) estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M) =

(MED(W ), Ip) as the only start where MED(X) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance while (µ0,M ,Σ0,M) is
the population mean and covariance matrix of the truncated distribution
corresponding to the hypersphere centered at the population median that
contains half the mass. For a distribution that is spherical about µ and for
t ≥ 0, (µt,M ,Σt,M) = (µ, cIp) for some c > 0. For nonspherical elliptically
contoured distributions, Σt,M 6= cΣ. However, the bias seems to be small
even for t = 0, and to get smaller as k increases. If the median ball estimator
is iterated to convergence, we do not know whether Σ∞,M = cΣ.

Conjecture 3.4. The MB estimator is a high breakdown
√
n consistent

estimator of (µk,M ,Σk,M) under mild conditions. For elliptically contoured
distributions, µk,M = µ.

Arcones (1995) and Kim (2000) showed that x0,M is a HB
√
n consistent

estimator of µ. Olive (2004a) showed that (x0,M ,S0,M) = (T0,m,C0,m) is a
high breakdown estimator. If the data distribution is EC but not spherical
about µ, then for k ≥ 0, Sk,M = CMB under estimates the major axis and
over estimates the minor axis of the highest density region. Concentration
reduces but fails to eliminate this bias. Hence the estimated highest density
region based on the attractor is “shorter” in the direction of the major axis
and “fatter” in the direction of the minor axis than estimated regions based
on consistent estimators.

This chapter followed Olive (2017b,
∮

s 2.1,2.2, 2.3, 3.1, 3.2, 5.1, ch. 4)
closely. The theory for concentration algorithms is due to Hawkins and Olive
(2002) and Olive and Hawkins (2010). The MBA estimator is due to Olive
(2004a). The computational and theoretical simplicity of the FCH estimator
makes it one of the most useful robust estimators ever proposed. The RFCH
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and RMVN estimators takes slightly longer to compute than the FCH estima-
tor, and may have slightly less resistance to outliers. These three estimators
appear in Zhang, Olive, and Ye (2012). A good paper for the DD plot is Olive
(2002). Olive (2017b) showed that the DD plot of the residuals is useful for
MANOVA models and for multivariate linear regression models where the
response vector y = (Y1, ..., Ym)T .

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of the
minimum volume ellipsoid covering cn of the observations and C(W ) is de-
termined from the same ellipsoid. TMV E has a cube root rate and the limiting
distribution is not Gaussian. See Davies (1992).

Estimators with complexity higher than O[(n3 + n2p + np2 + p3) log(n)]
take too long to compute and will rarely be used. No practical useful “high
breakdown” estimator (with complexity less than O(n4) for general p) of
multivariate location and dispersion has been shown to be both consistent
and high breakdown. The FCH, RFCH, and RMVN estimators have the most
theory. The OGK, Det-MCD, sign covariance matrix and k-step spatial sign
covariance matrix are the leading competitors. See Olive (2017b, pp. 124-125)
for more on the sign covariance matrix.

It is possible to compute the MCD and MVE estimators for p = 4 and
n = 100 in a few hours using branch and bound algorithms (like estimators
with O(1004) complexity). See Agulló (1996, 1998) and Pesch (1999). These
algorithms take too long if both p ≥ 5 and n ≥ 100. Simulations may need
p ≤ 2. Two stage estimators such as the MM estimator, that need an initial
high breakdown consistent estimator, take longer to compute than the initial
estimator. See Maronna et al. (2006, ch. 6) for descriptions and references.

Garciga and Verbrugge (2021) compare several methods where n > p.
Several outlier detection methods for p > n have been proposed. It would be
interesting to see if any of these methods are competitive with the covmb2 es-
timator and Euclidean distances from the coordinatewise median. See Boudt
et al. (2020), Ro et al. (2015), Tarr et al. (2016) for references. Filsomer et al.
(2008) note that RDi can be computed without matrix inversion, and that
in high dimensions, outliers with different shape than inliers tend to lie in
different hyperspheres.

3.14 Problems

3.1∗. Suppose that




X1

X2

X3

X4


 ∼ N4







49
100
17
7


 ,




3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2





 .
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a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

3.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
49
100

)
,

(
16 σ12

σ12 25

))
.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

3.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
15
20

)
,

(
64 σ12

σ12 81

))
.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

3.4. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 3.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

3.5. In Theorem 3.5b, show that if the second moments exist, then Σ can
be replaced by Cov(X).
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crancap hdlen hdht Data for 3.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

3.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

3.7. Using the notation in Theorem 3.6, show that if the second moments
exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X , Y ).

3.8. Using the notation under Theorem 3.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

3.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XT X)−1XT Y if X is an n× p full rank constant matrix.

3.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using the
notation of Theorem 3.6, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a ran-

dom variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=

(
VAR(Y ) Cov(Y,X)

Cov(X , Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α+ βT X where

α = µY − βT µX and

β = [Cov(X)]−1Cov(X , Y ).

3.11. (Due to R.D. Cook.) Let X be a p×1 random vector with E(X) = 0
and Cov(X) = Σ. Let B be any constant full rank p × r matrix where
1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X |BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
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Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =
E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BT ΣB)−1.
Hint: what acts as a constant in the inner expectation?

3.12. Let x be a p× 1 random vector with covariance matrix Cov(x). Let
A be an r × p constant matrix and let B be a q × p constant matrix. Find
Cov(Ax,Bx) in terms of A,B, and Cov(x).

3.13. The table W shown below represents 4 measurements on 5 people.

age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

3.14. Suppose x1, ...,xn are iid p× 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

3.15. Suppose that




X1

X2

X3

X4


 ∼ N4







9
16
4
1


 ,




1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1





 .

a) Find the distribution of X3.

b) Find the distribution of (X2, X4)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

3.16. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

3.17. Let X be an n × p constant matrix and let β be a p × 1 constant
vector. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT =
H = H2 is an n× n matrix and if HX = X . Simplify.



156 3 The Multivariate Location and Dispersion Model

3.18. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(
Y
X

)
∼ N2

((
134
96

)
,

(
24.5 1.1
1.1 23.0

))
.

a) Find E(Y |X).

b) Find Var(Y |X).
3.19. Suppose that




X1

X2

X3

X4


 ∼ N4







1
7
3
0


 ,




4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5





 .

a) Find the distribution of (X1, X4)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X4).

3.20. Suppose that




X1

X2

X3

X4


 ∼ N4







3
4
2
3


 ,




3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3





 .

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.21. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

3.22. Suppose that




X1

X2

X3

X4


 ∼ N4







49
25
9
4


 ,




2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4





 .
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a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.23. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(
Y
X

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

a) Find E(Y |X).

b) Find Var(Y |X).

3.24. Suppose x1, ...,xn are iid 2× 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

3.25. Following Srivastava and Khatri (1979, p. 47), let

X =

(
X1

X2

)
∼ Np

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
.

a) Show that the nonsingular linear transformation

(
I −Σ12Σ

−1
22

0 I

)(
X1

X2

)
=

(
X1 − Σ12Σ

−1
22 X2

X2

)
∼

Np

[(
µ1 − Σ12Σ

−1
22 µ2

µ2

)
,

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)]
.

b) Then X1 − Σ12Σ
−1
22 X2 X2, and

X1 − Σ12Σ
−1
22 X2 ∼ Nq(µ1 − Σ12Σ

−1
22 µ2,Σ11 − Σ12Σ

−1
22 Σ21).

By independence, X1 − Σ12Σ
−1
22 X2 has the same distribution as

(X1−Σ12Σ
−1
22 X2)|X2, and the term −Σ12Σ

−1
22 X2 is a constant, given X2.

Use this result to show that

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).
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R Problems Use the command source(“G:/rpack.txt”) to download
the functions and the command source(“G:/robdata.txt”) to download
the data. See Preface or Section 11.2. Typing the name of the rpack
function, e.g. covmba, will display the code for the function. Use the args

command, e.g. args(covmba), to display the needed arguments for the func-
tion. For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/robRhw.txt) into R.

3.26. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Copy and paste the commands for this problem and check whether
observations 1–40 look like outliers.

3.27. Download the rmaha function that creates the robust Mahalanobis
distances using cov.mcd (FMCD). Obtain outx2 as in Problem 3.26 b).
Enter the R command library(MASS). Enter the command rmaha(outx2)
and check whether observations 1–40 look like outliers.

3.28. a) Download the covmba function.

b) Download the program rcovsim.

c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.

3.29∗. a) Assuming that you have done the two source commands above
Problem 3.26 (and the R command library(MASS)), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD,
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the
Schaaffhausen (1878) skull measurements and cases 48–60 were apes while
the first 47 cases were humans.

3.30∗. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) The concmv function illustrates concentration with p = 2 and
a scatterplot of X1 versus X2. The outliers are such that the MBA and FCH
estimators can not always detect them. Type the command concmv(). Hold
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the rightmost mouse button down (and in R click on Stop) to see the DD plot
after one concentration step. The start uses the coordinatewise median and
diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on the
attractor. The outliers have large values of X2 and the highlighted cases have
the smallest distances. Repeat the command concmv() several times. Some-
times the start will contain outliers but the attractor will be clean (none of
the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

3.31∗. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can de-
tect for p = 2, 4, 10 and 20. Make a table of p and gam. For example the
command ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate
nearly 40% outliers with p = 2, but the command ddmv(p=4,gam=.4) sug-
gest that gam needs to be lowered (perhaps by 0.1 or 0.05). Try to make
0 < gam < 0.5 as large as possible.

3.32. (Perform the source(“G:/rpack.txt”) command if you have not al-
ready done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from rpack.txt and try the MBA estimator on the data sets in Problem
3.29.

3.33. The rpack function covesim compares various ways to robustly
estimate the covariance matrix. The estimators used are ccov: the classical
estimator applied to the clean cases, RFCH, and RMVN. The average dis-
persion matrix is reported over nruns = 20. Let diag(A) be the diagonal of
the average dispersion matrix. Then diagdiff = diag(ccov) - diag(rmvne) and
abssumd = sum(abs(diagdiff)). The clean data ∼ Np(0, diag(1, ..., p)).

a) The R command covesim(n=100,p=4) gives output when there are no
outliers. Copy and paste the output into Word.

b) The command covesim(n=100,p=4,outliers=1,pm=15) uses 40% out-
liers that are a tight cluster at major axis with mean (0, ..., 0, pm)T . Hence
pm determines how far the outliers are from the bulk of the data. Copy and
paste the output into Word. The average dispersion matrices should be ≈ c
diag(1, 2, 3, 4) for this type of outlier configuration. What is c for RFCH and
RMVN?
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3.34. The R function cov.mcd is an FMCD estimator. If cov.mcd com-
puted the minimum covariance determinant estimator, then the log determi-
nant of the dispersion matrix would be a minimum and would not change
when the rows of the data matrix are permuted. The R commands for this
problem permute the rows of the Gladstone (1905) data matrix seven times.
The log determinant is given for each of the resulting cov.mcd estimators.

a) Paste the output into Word.
b) How many distinct values of the log determinant were produced? (Only

one if the MCD estimator is being computed.)

3.35. a) Download the program ddsim. (In R, type the command li-
brary(MASS).)

b) Using the function ddsim for p = 2, 3, 4, determine how large the sample
size n should be in order for the RFCH DD plot of n Np(0, Ip) cases to cluster
tightly about the identity line with high probability. Table your results. (Hint:
type the command ddsim(n=20,p=2) and increase n by 10 until most of the
10 plots look linear. Then repeat for p = 3 with the n that worked for p = 2.
Then repeat for p = 4 with the n that worked for p = 3.)

3.36. a) Download the program corrsim. (In R, type the command li-
brary(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a RFCH DD plot that uses n Np(0, Ip) cases. Using the function
corrsim for p = 2, 3, 4, determine how large the sample size n should be in
order for 9 out of 10 correlations to be greater than 0.9. (Try to make n small.)
Table your results. (Hint: type the command corrsim(n=20,p=2,nruns=10)
and increase n by 10 until 9 or 10 of the correlations are greater than 0.9.
Then repeat for p = 3 with the n that worked for p = 2. Then repeat for
p = 4 with the n that worked for p = 3.)

3.37∗. a) Download the ddplot function. (In R, type the command li-
brary(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400

p <- 3

eps <- 0.4

x <- matrix(rnorm(n * p), ncol = p, nrow = n)

zu <- runif(n)

x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points?

3.38. a) Download the ellipse function.
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b) Use the following commands to create a bivariate data set with outliers
and to obtain a classical and robust RMVN covering ellipsoid. Include the
two plots in Word.

simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

outx2 <- rbind(outx2,simx2)

ellipse(outx2)

zout <- covrmvn(outx2)

ellipse(outx2,center=zout$center,cov=zout$cov)

3.39. a) Download the function mplot.

b) Enter the commands in Problem 3.37b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.

c) Use the command mplot(x) and place the resulting plot in Word.

d) Do you prefer the DD plot or the mplot? Explain.

3.40 a) Download the function wddplot.

b) Enter the commands in Problem 3.37b to obtain a data set x.

c) Use the command wddplot(x) and place the resulting plot in Word.
3.41. Use the R command source(“G:/mrobdata.txt”) then ddplot4(buxx,

alpha=0.2) and put the plot in Word. The Buxton data has 5 outliers, p = 4,
and n = 87, so the 80% prediction region uses the 100(1− δ+ p/n) = 84.6th
percentile. The output shows that the cutoffs are 2.527, 2.734, and 2.583
for the nonparametric, semiparametric, and robust parametric prediction re-
gions. The two horizontal lines that correspond to the robust distances are
obscured by the identity line. (Right click Stop once on the plot.)

3.42. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
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the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

3.43. The rpack function mldsim6 compares 7 estimators: FCH, RFCH,
CMVE, RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch.
4). Most of these estimators need n > 2p, need a nonsingular dispersion
matrix, and work best with n > 10p. The function generates data sets and
counts how many times the minimum Mahalanobis distance Di(T,C) of the
outliers is larger than the maximum distance of the clean data. The value
pm controls how far the outliers need to be from the bulk of the data, and
pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 3.7 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 3.7 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 3.7, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

b) Copy and paste the commands for this part into R and make a table
similar to Table 3.8, but type 2 outliers are used.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations suggest that “covmb2”
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Table 3.8 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

using Di(T, Ip) outperforms “diag” using Di(T,Cd) for many outlier config-
urations, but there are some exceptions. Copy and paste the commands for
this part into R and make a table similar to Table 3.8, but type 3 outliers
are used.

3.44. Tests for covariance matrices tend to be very nonrobust to non-
normality. Let a plot of x versus y have x on the horizontal axis and y on
the vertical axis. A good diagnostic is to use the DD plot. So a diagnostic
for H0 : Σx = Σ0 for known Σ0 is to plot Di(x,S) versus Di(x,Σ0) for
i = 1, ..., n. If n ≥ 10p and H0 is true, then the plotted points in the DD plot
should start to cluster tightly about the identity line.

a) A test for sphericity is a test of H0 : Σx = σ2Ip for some unknown
constant σ2 > 0. Make a “D2 plot” of D2

i (x,S) versus D2
i (x, Ip). If n ≥ 10p

and H0 is true, then the plotted points in the D2 plot should cluster tightly
about the line through the origin with slope σ2. Use the R commands for
this part and paste the plot into Word. The simulated data set has xi ∼
N10(0, 100I10) where n = 100 and p = 10. Do the plotted points follow a line
through the origin with slope 100?

b) Now suppose there are k samples, and we want to test H0 : Σx1
=

· · · = Σxk
, that is, all k populations have the same covariance matrix. As

a diagnostic, consider a DD plot of Di(xj ,Sj) versus Di(xj ,Spool) for j =
1, ..., k and i = 1, ..., ni. If each ni ≥ 10p and H0 is true, what line will the
plotted points cluster about in each of the k DD plots? (See Equation (8.2)
for Spool .)

Remark 3.11. Lots of other diagnostic DD plots can be made. Suppose
known parts of Σx are hypothesized to be 0. Let SZ be the sample covariance
matrix with the known parts set to 0. Then plot Di(x,S) versus Di(x,SZ).
For example, a diagnostic for H0 : Σx = diag(Σ11, ...,Σkk) where the Σii

are unknown block matrices is the above plot with SZ = diag(S11, ...,Skk).
A diagnostic for H0 : Σx = diag(σ11, ..., σpp) where the σii are unknown
would use SZ = diag(s11, ..., spp) if S = (sij). Another diagnostic would
check whether the population correlation matrix ρx = Ip. See the following
paragraph.

Similar diagnostic DD plots can be made for the population correlation
matrix ρx where scaled data zi is used in the Di such that the sample mean
of the scaled data is z = 0 and the sample covariance matrix of the scaled
data is Sz = R = (rij). If the data matrix is x with rows xT

i , then the R
command
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z <- scale(x)

will make a data matrix z with rows zT
i . For example, consider H0 : ρx =

ρ0 = (ρij) where ρij = ρ for i 6= j where −1 < ρ < 1 is unknown, and
ρii = 1 for i = 1, ..., p. Let ρ̂ be the average of the rij where i < j. Let
Rr = (pij) where pij = ρ̂ for i 6= j and pii = 1 for i = 1, ..., p. Then make a
DD plot of Di(0,R) versus Di(0,Rr).

The RMVN matrix CRMV N could be used in place of S in some of the

plots if CRMV N
P→ cΣx for some constant c > 0. Then for some of the plots

the plotted points might scatter about some line through the origin instead
of the identity line.



Chapter 4

Prediction Regions and Bootstrap

Confidence Regions

In chapter two, it was shown that applying certain prediction intervals to the
bootstrap sample results in confidence intervals. In this chapter, it will be
shown that applying the nonparametric prediction region to the bootstrap
sample results in a confidence region. Prediction intervals are a special case
of prediction regions when p = 1 so the p × 1 random vector is a random
variable.

4.1 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 4.1. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf is from a distribution with a pdf, we often want P (xf ∈ An) → 1−δ
as n → ∞. The following definition makes sense when the highest density
region is unique. Section 2.4 discussed the highest density region for a random
variable where p = 1. Then nonzero flat spots in the pdf can cause the region
to have higher than nominal coverage. For example, the highest density region
of a uniform(θ1, θ2) random variable is not unique. See Figure 2.1 where the
area under the pdf from 0 to 1 gives the 36.8% highest density region. Figure
3.1 shows the highest density regions for two bivariate normal distributions.
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Definition 4.2. When unique, the 100(1 − δ)% highest density region
R(f1−δ) = {z : f(z) ≥ fδ} where fδ is the largest constant such that P [x ∈
R(f1−δ)] ≥ 1 − δ and f(z) is the probability density function (pdf) of x.

Highest density regions are usually hard to estimate for p not much larger
than four, but for elliptically contoured distributions with continuous de-
creasing g, the highest density region is the hyperellipsoid

{z : (z − µ)T Σ−1(z − µ) ≤ u1−δ} = {z : D2
z (µ,Σ) ≤ u1−δ} (4.1)

where P (U ≤ u1−δ) = 1 − δ, and U is given by (3.9). If HDRY (1 − δ) is
the 100(1 − δ)% highest density region for a random variable Y , and X ∼
U(0, θ) Y (meaning X is independent of Y ), then the 100(1 − δ)% highest
density region for (Xf , Yf) is

{(x, y) : x ∈ (0, θ), y ∈ HDRY (1 − δ)}.

There is a moderate amount of literature for prediction regions that
may perform well for small p. Let f̂(1), ..., f̂(n) be the order statistics of

f̂(x1), ..., f̂(xn). Hyndman (1996) used the estimated highest density region

R̂(f1−δ) = {z : df̂(z) ≥ df̂(h)} (4.2)

where d > 0 can be any constant, h = max(1, bnδc), and bxc is the integer

part of x. Here f̂ is a kernel density estimator. See Remark 4.3, and see Lei
et al. (2013) for references.

Let D2
(c) be the cth order statistic of D2

1 , ..., D
2
n, and consider the hyper-

ellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (4.3)

If n is large, we can use c = kn = dn(1−δ)e. Olive (2013a) showed that (4.3) is
a large sample 100(1−δ)% prediction region under mild conditions, although
regions with smaller volumes may exist. Note that the result follows since if
Σx and S are nonsingular, then the Mahalanobis distance is a continuous
function of (x,S). See Theorem 11.29. Let µ = E(x) and D = D(µ,Σx).

Then Di
D→ D and D2

i
D→ D2. Hence the sample percentiles of the Di are

consistent estimators of the population percentiles of D at continuity points
of the cumulative distribution function (cdf) of D.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (4.3) for c = kn), is that they have cover-
age lower than the nominal coverage of 1 − δ for moderate n. This result
is not surprising since empirically statistical methods perform worse on test
data than on training data. Increasing c will improve the coverage for moder-
ate samples. Empirically for many distributions, for n ≈ 20p, the prediction
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region (4.3) applied to iid data using kn = dn(1 − δ)e tended to have under-
coverage as high as 5%. The undercoverage decreases rapidly as n increases.
Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (4.4)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let D(Un) be the
100qnth sample quantile of the Di where

D2
i = D2

xi
= (xi − x)T S−1(xi − x).

Definition 4.3. The large sample 100(1 − δ)% nonparametric prediction
region for a future value xf given iid data x1, ..., ,xn is

{z : D2
z(x,S) ≤ D2

(Un)}, (4.5)

while the large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (4.6)

Remark 4.1. The nonparametric prediction region (4.5) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The nonparametric prediction region is asymptotically
optimal on a large class of elliptically contoured distributions in that the pre-
diction region’s volume converges in probability to the volume of the highest
density region (4.1). The asymptotic coverage is 1 − δ if the 100(1 − δ)th
percentile D1−δ of D is a continuity point of the distribution of D, although
prediction regions with smaller volume may exist. If D1−δ is not a continu-
ity point of the distribution of D, then the asymptotic coverage tends to be
≥ 1−δ since a sample percentile with cutoff qn that decreases to 1−δ is used
and a closed region is used. Often D has a continuous distribution and hence
has no discontinuity points for 0 < δ < 1. (If there is a jump in the distri-
bution from 0.9 to 0.96 at discontinuity point a, and the nominal coverage is
0.95, we want 0.96 coverage instead of 0.9. So we want the sample percentile
to decrease to a.) The nonparametric prediction region (4.5) contains Un of
the training data cases xi provided that S is nonsingular, even if the model
is wrong. For many distributions, the coverage started to be close to 1 − δ
for n ≥ 10p where the coverage is the simulated percentage of times that the
prediction region contained xf .

Remark 4.2. The most used prediction regions assume that the error vec-
tors are iid from a multivariate normal distribution. The ratio of the volumes
of regions (4.5) and (4.6) is
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(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1 − p/γ > 0
for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in (4.7)
usually results in prediction regions with volume and coverage that is too
large.

If (T,C) is a
√
n consistent estimator of (µ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x− µ + µ− T )

= d−1D2(µ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(µ,Σ) (at continuity points D1−δ of the cdf of D2(µ,Σ)).
If x ∼ Nm(µ,Σ), then D2

x(µ,Σ) = D2(µ,Σ) ∼ χ2
m. The Olive (2013a)

nonparametric prediction region uses (T,C) = (x,S). For the classical pre-
diction region, see Chew (1966) and Johnson and Wichern (1988, pp. 134,
151).

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (4.7)

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM). (4.8)

A future observation (random vector) xf is in the region (4.7) if Dxf ≤ h.
If (T,C) is a consistent estimator of (µ, dΣ) for some constant d > 0

where Σ is nonsingular, then (4.7) is a large sample 100(1− δ)% prediction
region if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di

where qn is defined near (4.4). For example, use Un = c = dnqne.
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Remark 4.3. There may not yet be any practical competing prediction
regions that do not have the form of (4.7) if p is much larger than two and
the distribution of the xi is unknown. The prediction region of Section 4.3
also has this form. Remark 4.1 suggests that the nonparametric prediction
region (4.5) starts to have good coverage for n ≥ 10p for a large class of
distributions. Of course for any n there are error distributions that will have
severe undercoverage. Prediction regions that estimate the pdf f(z) with a
kernel density estimator quickly become impractical as p increases since large
sample sizes are needed for good estimates. See Silverman (1986, p. 129).

For example, the Hyndman nominal 95% prediction region (4.2) was com-
puted for iid Np(0, I) data with 1000 runs. Let the coverage be the observed
proportion of prediction regions that contained the future value xf . For p = 1,
the coverage was 0.933 for n = 40. For p = 2, the coverage was 0.911 for
n = 50, and 0.930 for n = 150. For p = 4, the coverage was 0.920 for n = 250.
For p = 5 the coverage was 0.866 for n = 200 and 0.934 for n = 2000. For
p = 8, the coverage was 0.735 for n = 125. For the multivariate lognormal
distribution with n = 20p, the Olive (2013a) large sample nonparametric 95%
prediction region (4.5) had coverages 0.970, 0.959, and 0.964 for p = 100, 200,
and 500. Some R code is below.

nruns=1000 #p = 1

count<-0

for(i in 1:nruns){

x <- rnorm(40)

xff <- rnorm(1)

count <- count + hdr2(x,xf=xff)$inr}

count #933/1000

count<-0 #p = 5

for(i in 1:nruns){

x <- matrix(rnorm(1000),ncol=5,nrow=200)

xff <- as.vector(rnorm(5))

count <- count + hdr2(x,xf=xff)$inr}

count #886/1000

#lognormal, p = 100

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000

Olive (2013a) used three prediction regions (4.7) that can be displayed
with the DD plot. The nonparametric prediction region (4.5) uses the classical
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estimator (T,C) = (x,S) and h = D(Un). The other two prediction regions
are defined below.

Definition 4.4. The semiparametric prediction region uses (T,C) =
(TRMV N ,CRMV N ) and h = D(Un). The parametric MVN prediction region
uses (T,C) = (TRMV N ,CRMV N) and h2 = χ2

p,qn
where P (W ≤ χ2

p,δ) = δ if

W ∼ χ2
p.

All three prediction regions are asymptotically optimal for MVN distribu-
tions with nonsingular Σ. The first two prediction regions are asymptotically
optimal for a large class of EC(µ,Σ, g) distributions given by Assumption
(E1) used in Theorem 3.20, provided g is continuous and decreasing. For dis-
tributions with nonsingular covariance matrix cXΣ, the nonparametric re-
gion is a large sample (1−δ)100% prediction region, but regions with smaller
volume may exist.

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1−δ+0.05 for n ≤ 20p and qn → 1−δ as n → ∞. If qn ≡ 1−δ and (T,C)
is a consistent estimator of (µ, dΣ) where d > 0 and Σ is nonsingular, then
(4.7) is a large sample prediction region, but taking qn given by (4.4) improves
the finite sample performance of the prediction region. Taking qn ≡ 1 − δ
does not take into account variability of (T,C), and for small n the resulting
prediction region tended to have undercoverage as high as min(0.05, δ/2).
Using (4.4) helped reduce undercoverage for small n due to the unknown
variability of (T,C).

Example 4.1. An artificial data set consisting of 100 iid cases from a

N2

((
0
0

)
,

(
1.49 1.4
1.4 1.49

))

distribution and 40 iid cases from a bivariate normal distribution with mean
(0,−3)T and covariance I2. Figure 4.1 shows the classical ellipsoid (with

MD ≤
√
χ2

2,0.95) that uses (T,C) = (x,S). The symbol “1” denotes the data

while the symbol “2” is on the border of the covering ellipse. There is an R
package that makes an ellipse. Notice that the classical parametric ellipsoid
covers almost all of the data. Figure 4.2 displays the robust ellipsoid (using

RD ≤
√
χ2

2,0.95) which contains most of the 100 “clean” cases and excludes

the 40 outliers. Problem 4.5 recreates similar figures with the classical and
RMVN estimators using qn = 0.95.
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Fig. 4.1 Artificial Bivariate Data
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Fig. 4.2 Artificial Data
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Fig. 4.3 Ellipsoid is Inflated by Outliers
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Example 4.2. Buxton (1920) gave various measurements on 87 men in-
cluding height, head length, nasal height, bigonal breadth, and cephalic index.
Five heights were recorded to be about 19mm (and the actual heights for
these cases were recorded as the head lengths) and are massive outliers. First
height and nasal height were used with qn = 0.95. Figure 4.3 shows that the

classical parametric prediction region (using MD ≤
√
χ2

2,.95) is quite large

but does not include any of the outliers. Figure 4.4 shows that the parametric

MVN prediction region (using RD ≤
√
χ2

2,.95) is not inflated by the outliers.

Next all 87 cases and 5 predictors were used. Figure 4.5 shows the RMVN
DD plot with the identity line added as a visual aid. Points to the left of
the vertical line are in the nonparametric large sample 90% prediction re-
gion. Points below the horizontal line are in the semiparametric region. The
horizontal line at RD = 3.33 corresponding to the parametric MVN 90%
region is obscured by the identity line. This region contains 78 of the cases.
Since n = 87, the nonparametric and semiparametric regions used the 95th
quantile. Since there were 5 outliers, this quantile was a linear combination
of the largest clean distance and the smallest outlier distance. The nonpara-
metric and semiparametric 90% regions blow up unless the outlier proportion
is small.

Figure 4.5 can be made with the following R commands, assuming source
commands for pack and robdata have been performed. See the Preface or
Section 11.2. Right click Stop to get the cursor.

x <- cbind(buxy,buxx)

ddplot4(x) #right click Stop

Figure 4.6 shows the DD plot and 3 prediction regions after the 5 outliers
were removed. The classical and robust distances cluster about the identity
line and the three regions are similar, with the parametric MVN region cutoff
again at 3.33, slightly below the semiparametric region cutoff of 3.44. Cases
to the left of the vertical line MD = 3.33 (not shown since you can mentally
drop down a vertical line where the horizontal line ends at the identity line),
correspond to a (modified) classical prediction region.

Figure 4.6 can be made with the following R commands. Right click Stop
to get the cursor and the output following the two commands.

zx <- x[-c(61:65),]

ddplot4(zx) #right click Stop

$cuplim

95%

3.086005

$ruplim

95%

3.438821

$mvnlim

[1] 3.327236
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Simulations for the prediction regions used x = Aw where A =
diag(

√
1, ...,

√
p), w ∼ Np(0, Ip) (MVN), w ∼ LN(0, Ip) where the marginals

are iid lognormal(0,1), or w ∼MV Tp(1), a multivariate t distribution with 1
degree of freedom so the marginals are iid Cauchy(0,1). All simulations used
5000 runs and δ = 0.1.

Often the coverage for the semiparametric region was better than that of
the nonparametric region for n near 10p. The nonparametric covering region
{z : (z − x)T S−1(z − x) ≤ D2

(n)(x,S)} uses all of the data, but for small
n, data is sparse, and the covering region overfits and hence the volume is
too small. The nonparametric prediction region is a hyperellipsoid that is
concentric with the covering region (that replaces D2

(Un) with D2
(n)). The

semiparametric region is based on the RMVN half set of data. This region
is not a good estimator of the population 50% covering region for small n.
Hence when it is blown up to cover 95% of the training data, the region is
quite large, so it is likely that a future xf is in the region.

For large n, the semiparametric and nonparametric regions are likely to
have coverage near 0.90 because the coverage on the training sample is slightly
larger than 0.9 and xf comes from the same distribution as the xi. For
n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9.
The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semi-
parametric region, and i = 3 was the parametric MVN region. The volume
ratio converges in probability to 1 for Np(µ,Σ) data, and the ratio converges
to 1 for i = 1 if Assumption (E1) holds. The parametric MVN region often
had coverage much lower than 0.9 with a volume ratio near 0, recorded as
0+. The volume ratio tends to be tiny when the coverage is much less than
the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric region often
had good coverage (and volume ratio near 0.5 for MVN data).

Table 4.1 Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm
MVN 600 30 0.906 0.919 0.902 0.503 0.512
MVN 1500 30 0.899 0.899 0.900 1.014 1.027
LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

Simulations and Table 4.1 suggest that for MVN data, the coverages (ncov,
scov, and mcov) for the 3 regions are near 90% for n = 20p and that the
volume ratios voln and volm are near 1 for n = 50p. With fewer than 5000
runs, this result held for 2 ≤ p ≤ 80. For the non–elliptically contoured LN
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data, the nonparametric region had voln well under 1, but the volume ratio
blew up for w ∼MV Tp(1).

4.2 Bootstrap Confidence Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 4.1 to a bootstrap sample results in a
confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1 − δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal. If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An) → 1 − δ as n→ ∞.

Definition 4.5. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

Suppose a statistic Tn is computed from a data set of n cases. The non-
parametric bootstrap draws n cases with replacement from that data set.
Then T ∗

1 is the statistic Tn computed from the sample. This process is re-
peated B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases

with replacement uses the empirical distribution.

Definition 4.6. Suppose that data x1, ...,xn has been collected and ob-
served. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 4.3. Let w be a random variable having the empirical distri-
bution given by Definition 4.6. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence
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E(w) =

n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �

Example 2.8 was similar to Example 4.3, and see Example 2.9 for the
empirical cdf of a random variable. Suppose there is data w1, ...,wn col-
lected into an n × p matrix W . Let the statistic Tn = t(W ) = T (Fn) be
computed from the data. Suppose the statistic estimates µ = T (F ), and
let t(W ∗) = t(F ∗

n) = T ∗
n indicate that t was computed from an iid sam-

ple from the empirical distribution Fn: a sample w∗
1, ...,w

∗
n of size n was

drawn with replacement from the observed sample w1, ...,wn. This notation
is used for von Mises differentiable statistical functions in large sample the-
ory. See Serfling (1980, ch. 6). The empirical distribution is also important
for the influence function (widely used in robust statistics). The nonpara-
metric bootstrap draws B samples of size n from the rows of W , e.g. from
the empirical distribution of w1, ...,wn. Then T ∗

jn is computed from the jth
bootstrap sample for j = 1, ..., B where the n is often suppressed.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (4.9)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n.

When the bootstrap is used, a large sample 100(1− δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B → ∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1
vector. Then reject H0 if θ0 is not in the confidence region An. Let the g× 1
vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap sample for

Tn. Let kB = dB(1 − δ)e.
Remark 4.4. A useful fact for the F and chi-square distributions is

dnFg,dn,1−δ → χ2
g,1−δ as dn → ∞. Here P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g,

and P (X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn .

Definition 4.7. a) The standard bootstrap large sample 100(1 − δ)%
confidence region for θ is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (4.10)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n → ∞. b)

The Bickel and Ren (2001) large sample 100(1− δ)% confidence region for θ

is {w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kB ,T )} =
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{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kB,T )} (4.11)

where the cutoff D2
(kB,T ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (4.10) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity condi-
tions for this assumption.

The following three confidence regions will be used for inference after vari-
able selection. The Olive (2017ab, 2018) prediction region method applies
the nonparametric prediction region (4.5) to the bootstrap sample. Olive
(2017ab, 2018) also gave the modified Bickel and Ren confidence region that

uses Σ̂A = nS∗
T . The hybrid confidence region is due to Pelawa Watagoda

and Olive (2019). Let qB = min(1 − δ + 0.05, 1− δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (4.12)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (4.12) as a correction factor for finite
B ≥ 50p.

Definition 4.8. a) The prediction region method large sample 100(1−δ)%
confidence region for θ is {w : (w − T

∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (4.13)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).) b) The modified Bickel

and Ren (2001) large sample 100(1 − δ)% confidence region is {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB,T )} (4.14)

where the cutoff D2
(UB ,T ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)T [S∗
T ]−1(T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UB ,T ). c) Shift region (4.13) to

have center Tn, or equivalently, change the cutoff of region (4.14) to D2
(UB)

to get the hybrid large sample 100(1 − δ)% confidence region: {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (4.15)
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Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).

Hyperellipsoids (4.13) and (4.15) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (4.13) and (4.14) is

|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UB,T )

)g

=

(
D(UB)

D(UB ,T )

)g

. (4.16)

The volume of confidence region (4.14) tends to be greater than that of (4.13)

since the T ∗
i are closer to T

∗
than Tn on average.

Next we review the Section 2.5 confidence intervals corresponding to the
three confidence regions if g = 1. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval
that contains UB ≈ kB = dB(1 − δ)e of the T ∗

i . Let ai = |T ∗
i − T

∗|. Let

T
∗

and S2∗
T be the sample mean and variance of the T ∗

i . Then the squared

Mahalanobis distance D2
θ = (θ − T

∗
)2/S∗2

T ≤ D2
(UB) is equivalent to θ ∈

[T
∗−S∗

TD(UB), T
∗
+S∗

TD(UB)] = [T
∗−a(UB), T

∗
+a(UB)], which is an interval

centered at T
∗

just long enough to cover UB of the T ∗
i . Hence the prediction

region method is a special case of the percentile method if g = 1. Efron
(2014) used a similar large sample 100(1− δ)% confidence interval assuming

that T
∗

is asymptotically normal. The CI corresponding to (4.14) is defined
similarly, and [Tn−a(UB), Tn +a(UB)] is the CI for (4.15). Note that the three
CIs corresponding to (4.13)–(4.15) can be computed without finding S∗

T or
D(UB) even if S∗

T = 0. The shorth(c) CI (2.13) computed from the T ∗
i can be

much shorter than the Efron (2014) or prediction region method confidence
intervals. See Remark 2.5 for some theory for bootstrap CIs.

Remark 4.5. Suppose the p× 1 vector β̂, and θ = Aβ̂ is g × 1. We will
often want n ≥ 20p and B ≥ max(100, n, 50p). If Tn = Aβ̂ is g×1, we might
replace p by g or replace p by d if d is the model degrees of freedom. Sometimes
much larger n is needed to avoid undercoverage. We want B ≥ 50g so that
S∗

T is a good estimator of Cov(T ∗
n). Prediction region theory uses correction

factors like (4.4) to compensate for finite n. The bootstrap confidence regions
(4.13)–(4.15) and the shorth CI use the correction factors (4.12) and (2.14)
to compensate for finite B ≥ 50g. Note that the correction factors make
the volume of the confidence region larger as B decreases. Hence a test with
larger B will have more power.
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4.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator. Since (4.14) is a large sample confidence region by

Bickel and Ren (2001), (4.13) and (4.15) are too, provided
√
n(T

∗−Tn)
P→ 0.

If i)
√
n(Tn−θ)

D→ u, then under regularity conditions, ii)
√
n(T ∗

i −Tn)
D→

u, iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u).
Suppose i) and ii) hold with E(u) = 0 and Cov(u) = Σu. With respect

to the bootstrap sample, Tn is a constant and the
√
n(T ∗

i − Tn) are iid for

i = 1, ..., B. Let
√
n(T ∗

i − Tn)
D→ vi ∼ u where the vi are iid with the same

distribution as u. Fix B. Then the average of the
√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu

B

)

where z ∼ ANg(0,Σ) is an asymptotic multivariate normal approximation.

Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii) and iv) hold. If B is fixed and

u ∼ Ng(0,Σu), then

1

B

B∑

i=1

vi ∼ Ng

(
0,

Σu

B

)
and

√
B
√

n(T
∗ − Tn)

D→ Ng(0,Σu).

Hence the prediction region method gives a large sample confidence region for
θ provided that the sample percentile D̂2

1−δ of the D2
T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −
T

∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
) is a consistent estimator of the percentile D2

n,1−δ

of the random variable D2
θ
(T

∗
,S∗

T ) =
√
n(θ − T

∗
)T (nS∗

T )−1
√
n(θ − T

∗
) in

that D̂2
1−δ −D2

n,1−δ
P→ 0. Since iii) and iv) hold, the sample percentile will

be consistent under much weaker conditions than v) if Σu is nonsingular.
Olive (2017b:

∮
5.3.3, 2018) proved that the prediction region method gives

a large sample confidence region under the much stronger conditions of v)
and u ∼ Ng(0,Σu), but the above Pelawa Watagoda and Olive (2019) proof
is simpler. Remark 2.5 gave theory for bootstrap confidence intervals.

Assume nS∗
T

P→ ΣA as n, B → ∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that

√
n (Tn − θ)

D→ u (4.17)
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as n → ∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zT z = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (4.18)

as n, B → ∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (4.10) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A .

Remark 4.6. Under reasonable conditions, i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u, and iv)

√
n(T ∗

i − T
∗
)

D→ u. Then

D2
1 = D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1

√
n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1

√
n(T ∗

i − Tn),

are well behaved. If (nS∗
T )−1 P→ Σ−1

A , thenD2
j

D→ D2 = uT Σ−1
A u. If (nS∗

T )−1

is “not too ill conditioned” then D2
j ≈ uT (nS∗

T )−1u for large n, and the
confidence regions (4.13), (4.14), and (4.15) will have coverage near 1 − δ.
The regularity conditions for (4.13)–(4.15) are weaker when g = 1, since S∗

T

does not need to be computed.

The following Pelawa Watagoda and Olive (2019) theorem is very useful.
Let D2

(UB) be the cutoff for the nonparametric prediction region (4.5) com-

puted from the D2
i (T ,ST ) for i = 1, ..., B. Hence n is replaced by B. Since

Tn depends on the sample size n, we need (nST )−1 to be fairly well behaved
(“not too ill conditioned”) for each n ≥ 20g, say. This condition is weaker

than (nST )−1 P→ Σ−1
A . Note that Ti = Tin. In the following theorem, note

that we an replace
√
n by nδ where 0 < δ ≤ 1.

Theorem 4.1: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u with
E(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular

covariance matrix ΣTn . Assume (nST )−1 P→ Σ−1
A . Then the large sample
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100(1 − δ)% prediction region Rp = {w : D2
w(T ,ST ) ≤ D2

(UB)} centered at

T contains a future value of the statistic Tf with probability 1− δB → 1 − δ
as B → ∞. Hence the region Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large

sample 100(1− δ)% confidence region for θ where Tn is a randomly selected
Ti.

Proof. The region Rc centered at a randomly selected Tn contains T with
probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 11.26
and 11.27, and see Example 11.12.) For fixed B, the average of these random
vectors is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu

B

)

by Theorem 11.29. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily
close to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1− δ)%
confidence region for θ as n, B → ∞. �

Remark 4.7. Theorem 4.1 is useful for explaining why a correction factor
is needed. Rc contains T with probability 1−δB and there is a hyperellipsoid
RT about T that contains θ with high probability where the volume of RT

goes to 0 as B → ∞. For finite B ≈ 50g, the volume of the hyperellipsoid
RT is small compared to that of Rc but is not zero. As B increases, covering
T also covers most of RT , and the confidence region coverage gets near the
nominal level 1−δ. When B is near 50g, covering T does not necessarily cover
most of RT , and hence there may be undercoverage for θ if UB = dB(1− δ)e.
Using the correction factor (4.12) increases the coverage of T , RT , and θ when
B is near 50g.

Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u, then the bootstrap
sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid T1, ..., TB shifted

to be centered at Tn. The nonparametric confidence region (4.13) applies the
prediction region to the bootstrap. Then the hybrid region (4.15) centers that
region at Tn. Hence (4.15) is a confidence region by the geometric argument,

and (4.13) is a confidence region if
√
n(T

∗−Tn)
P→ 0. Since the T ∗

i are closer

to T
∗

than Tn on average, D2
(UB,T ) tends to be greater than D2

(UB). Hence
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the coverage and volume of (4.14) tend to be at least as large as the coverage
and volume of (4.15).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
D2

T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 3.1 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 3.1 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.

If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 4.1, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 3.1. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 4.8. Even if the statistic Tn is asymptotically normal so the
Mahalanobis distances are asymptotically χ2

g , the prediction region method
can give better results for moderate n by using the cutoff D2

(UB) instead

of the cutoff χ2
g,1−δ. Theorem 4.1 says that the hyperellipsoidal prediction

and confidence regions have exactly the same volume. We compensate for
the prediction region undercoverage when n is moderate by using D2

(Un). If

n is large, by using D2
(UB), the prediction region method confidence region

compensates for undercoverage when B is moderate, say B ≥ Jg where
J = 20 or 50. This result can be useful if a simulation with B = 1000 or
B = 10000 is much slower than a simulation with B = Jg. The price to
pay is that the prediction region method confidence region is inflated to have
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better coverage, so the power of the hypothesis test is decreased if moderate
B is used instead of larger B.

4.4 Data Splitting

Data splitting can be used to get prediction regions using estimators such as
(T,C) = (TRMV N ,CRMV N) or (T,C) = (MED(W ), Ip) if
x1, ...,xn,xf are iid. Data splitting divides the training data x1, ...,xn into
two sets H and V where H has nH ≥ n/2 of the cases and V has the remaining
nV = n−nH cases i1, ..., inV . The estimator (TH ,CH) is computed using the
data set H . Then the squared validation distances D2

j = D2
xij

(TH ,CH) =

(xij − TH)T C−1
H (xij − TH) are computed for the j = 1, ..., nV cases in the

validation set V . Let D2
(UV ) be the UV th order statistic of the D2

j where

UV = min(nV , d(nV + 1)(1 − δ)e). (4.19)

Definition 4.9. The large sample 100(1 − δ)% data splitting prediction
region for xf is

{z : D2
z(TH ,CH) ≤ D2

(UV )}. (4.20)

To show that (4.20) is a prediction region, suppose the xi are iid for
i = 1, ..., n, n+ 1 where xf = xn+1. Compute (TH ,CH) from the cases in
H . Consider the squared validation distances D2

k for k = 1, ..., nV and the
squared validation distance D2

nV +1 for case xf . Since these nV + 1 cases are
iid, the probability that D2

t has rank j for j = 1, ..., nV + 1 is 1/(nV + 1)
for each t, i.e., the ranks follow the discrete uniform distribution. Let t =
nV + 1 and let the D2

(j) be the ordered squared validation distances using
j = 1, ..., nV . That is, get the order statistics without using the unknown
squared validation distance D2

nV +1. Then D2
(i) has rank i if D2

(i) < D2
nV +1

but rank i+1 if D2
(i) > D2

nV +1. Thus D2
(UV ) has rank UV +1 if D2

xf
< D2

(UV )

and

P (xf ∈ {z : D2
z(TH ,CH) ≤ D2

(UV )}) = P (D2
xf

≤ D2
(UV )) ≥ UV /(1 + nV ) →

1− δ as nV → ∞. If there are no tied ranks, then

P (D2
xf

≤ D2
(UV )) = P (D2

xf
< D2

(UV )) = P (rank of D2
xf

≤ UV) = UV/(1+nV).

Note that we can get coverage close to 1 − δ for nV ≥ 20 for δ = 0.05
even if (TH ,CH) is a bad estimator. The volume of the prediction region
tends to be much larger than that of the highest density region, even if CH

is well conditioned. We likely need UV ≥ 50 for D2
(UV ) to approximate the

population percentile of D2
j = (xij − TH)T C−1

H (xij − TH).
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As an example, consider using (T,C) = (MED(W ), Ip). Then the pre-
diction region is a hypersphere centered at the coordinatewise median. The
prediction region is good if the iid xi ∼ Np(µ, σ2Ip), but if the xi ∼ Np(µ,Σ)
such that highest density region is a hyperellipsoid tightly clustered about a
vector in the direction of 1, then the prediction region (4.20) has huge volume
compared to the highest density region.

If p > n, prediction region (4.20) can be used as long as C is nonsingular.
Then C = Ip, C = diag(S2

1 , ..., S
2
p), or

C = diag([MAD(x11, ..., xn1)]
2, ..., [MAD(x1p, ..., xnp)]

2)

could be used. Regularized covariance matrices or precision matrices could
also be used.

If n ≥ 20p, using (T,C) = (TRMV N ,CRMV N ) might result in a predic-
tion region with smaller volume then using (T,C) = (x,S) since the ro-
bust estimator attempts to estimate a small volume hyperellipsoid. Also, if
D2

(UV ) ≈ D2
(Un) in Definition 4.4, then the semiparametric region using all n

cases should have good coverage.

4.5 Summary

4) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is
in this region if Dxf

≤ h. A large sample 100(1− δ)% prediction region is a
set An such that P (xf ∈ An) is eventually bounded below by 1−δ as n → ∞
where 0 < δ < 1. A large sample 100(1−δ)% confidence region for a vector of
parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

5) Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If
(T,C) is a consistent estimator of (µ, dΣ), then {z : Dz(T,C) ≤ h} is a large
sample 100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth
sample quantile of the Di. The large sample 100(1 − δ)% nonparametric
prediction region {z : D2

z (x,S) ≤ D2
(Un)} uses (T,C) = (x,S). We want

n ≥ 10p for good coverage and n ≥ 50p for good volume.
6) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known

g × 1 vector. Make a confidence region and reject H0 if θ0 is not in the
confidence region. Let qB and UB be as in 5) with n replaced by B and p

replaced by g. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. a) The prediction region method

large sample 100(1−δ)% confidence region for θ is {w : (w−T ∗
)T [S∗

T ]−1(w−
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding
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test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample

quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

For some data sets, S∗
T may be singular due to one or more columns of

zeroes in the bootstrap sample for β1, ..., βp. The variables corresponding to
these columns are likely not needed in the model given that the other predic-
tors are in the model if n and B are large enough. Let βO = (βi1 , ..., βig)

T ,

and consider testing H0 : AβO = 0. If Aβ̂
∗
O,i = 0 for greater than Bδ of the

bootstrap samples i = 1, ..., B, then fail to reject H0. (If S∗
T is nonsingular,

the 100(1− δ)% prediction region method confidence region contains 0.)

7) Theorem 4.1: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u

withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ.
8) Applying the nonparametric prediction region (4.24) to the iid data

T1, ..., TB results in the 100(1−δ)% confidence region {w : (w−Tn)T S−1
T (w−

Tn) ≤ D2
(UB)(Tn,ST )} where D2

(UB)(Tn,ST ) is computed from the (Ti −
Tn)T S−1

T (Ti − Tn) provided the ST = STn are “not too ill conditioned.”
For OLS variable selection, assume there are two or more component clouds.
The bootstrap component data clouds have the same asymptotic covariance
matrix as the iid component data clouds, which are centered at θ. The jth
bootstrap component data cloud is centered at E(T ∗

ij) and often E(T ∗
jn) =

Tjn. Confidence region (4.32) is the prediction region (4.24) applied to the
bootstrap sample, and (4.32) is slightly larger in volume than (4.24) applied
to the iid sample, asymptotically. The hybrid region (4.34) shifts (4.32) to be
centered at Tn. Shifting the component clouds slightly and computing (4.24)
does not change the axes of the prediction region (4.24) much compared
to not shifting the component clouds. Hence by the geometric argument, we
expect (4.34) to have coverage at least as high as the nominal, asymptotically,
provided the S∗

T are “not too ill conditioned.” The Bickel and Ren confidence

region (4.33) tends to have higher coverage and volume than (4.34). Since T
∗

tends to be closer to θ than Tn, (4.32) tends to have good coverage.
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9) Suppose m independent large sample 100(1 − δ)% prediction regions
are made where x1, ...,xn,xf are iid from the same distribution for each of
the m runs. Let Y count the number of times xf is in the prediction region.
Then Y ∼ binomial (m, 1− δn) where 1− δn is the true coverage. Simulation
can be used to see if the true or actual coverage 1−δn is close to the nominal
coverage 1− δ. A prediction region with 1− δn < 1− δ is liberal and a region
with 1− δn > 1− δ is conservative. It is better to be conservative by 3% than
liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

4.6 Complements

There are few practical competitors for the prediction regions in Sections
4.1 and 4.3. Parametric regions such as the classical region for multivariate
normal data tend to have severe undercoverage because the data rarely follows
the parametric distribution. Procedures that use brand name high breakdown
multivariate location and dispersion estimators take too long to compute for
p > 2. An interesting idea is to estimate the pdf of the data, then use the
pdf to find small prediction regions. The problem with these regions is that
nonparametric pdf estimators do not work well for p > 4. See Lei et al. (2013).
A useful application of prediction regions is Mykland (2003).

Bickel and Ren (2001) have interesting sufficient conditions for (4.11) to

be a confidence region when Σ̂A is a consistent estimator of positive definite
ΣA. Let the vector of parameters θ = T (F ), the statistic Tn = T (Fn), and
the bootstrapped statistic T ∗ = T (F ∗

n) where F is the cdf of iid x1, ...,xn, Fn

is the empirical cdf, and F ∗
n is the empirical cdf of x∗

1, ...,x
∗
n, a sample from Fn

using the nonparametric bootstrap. If
√
n(Fn−F )

D→ zF , a Gaussian random
process, and if T is sufficiently smooth (has a Hadamard derivative Ṫ (F )),

then
√
n(Tn−θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn

is a perfectly good cdf “F ” and F ∗
n is a perfectly good empirical cdf from Fn =

“F .” Thus if n is fixed, and a sample of size m is drawn with replacement

from the empirical distribution, then
√
m(T (F ∗

m) − Tn)
D→ Ṫ (Fn)zFn . Now

let n → ∞ with m = n. Then bootstrap theory gives
√
n(T ∗

i − Tn)
D→

limn→∞ Ṫ (Fn)zFn = Ṫ (F )zF ∼ u.
Good references for the bootstrap include Efron (1979, 1982), Efron and

Hastie (2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen
(2016), Hesterberg (2014), and Rajapaksha and Olive (2021). One of the
sufficient conditions for the bootstrap confidence region is that T has a well
behaved Hadamard derivative. Fréchet differentiability implies Hadamard dif-
ferentiability, and many statistics are shown to be Hadamard differentiable in
Bickel and Ren (2001), Clarke (1986b, 2000), Fernholtz (1983), Gill (1989),
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Ren (1991), and Ren and Sen (1995). Bickel and Ren (2001) showed that
their method can work when Hadamard differentiability fails.

For bootstrapping robust estimators, see Olive (2017b), Rupasinghe Arachchige
Don and Olive D.J. (2019) and Rupasinghe Arachchige Don and Pelawa
Watagoda (2018).

4.7 Problems

R Problems Use the command source(“G:/rpack.txt”) to download
the functions and the command source(“G:/robdata.txt”) to download
the data. See Preface or Section 11.2. Typing the name of the rpack
function, e.g. covmba, will display the code for the function. Use the args

command, e.g. args(covmba), to display the needed arguments for the func-
tion. For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/robRhw.txt) into R.

4.1. Use the R source commands and then type ddplot4(buxx, alpha=0.2)
and put the plot in Word. The Buxton data has 5 outliers, p = 4, and n = 87,
so the 80% prediction region uses the 100(1 − δ + p/n) = 84.6th percentile.
The output shows that the cutoffs are 2.527, 2.734, and 2.583 for the non-
parametric, semiparametric, and robust parametric prediction regions. The
two horizontal lines that correspond to the robust distances are obscured by
the identity line. (Right click Stop once on the plot.)

4.2. Type the R command predsim() and paste the output into Word.

This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and
xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞. Were the three coverages near 90%?

4.3. The function predsim2 computes the data splitting prediction re-
gion. The output gives cvr = observed coverage, up ≈ actual coverage, and
mnhsq = mean cutoff D2

(UV ). With 5000 runs, expect observed coverage

∈ [0.94, 0.96] if the actual coverage is close to 0.95.
a) When xtype=3 and dtype=1, (T, C) = (x, Ip) where xi ∼ Np(0, Ip). If

n ≥ max(20p, 200) and nV = 100, then D2
(UV ) should estimate the population

percentile χ2
p,0.95. Copy and paste the commands for this problem into R.

Include the output in Word.
i) Was the observed coverage near the actual coverage?
ii) Was the mnhsq near 18.3?
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b) When xtype = 1, xi ∼ Np(0, diag(1, ..., p)) and the χ2 approximation
no longer holds. Copy and paste the commands for this problem into R.
Include the output in Word.

i) Was the observed coverage near the actual coverage?
ii) Was the mnhsq a lot larger than 18.3? (If so, then the volume of the

prediction region is much larger than that in a).)
c) Copy and paste the commands for this problem into R. Include the

output in Word. Now p > n. Were the observed and actual coverages close?





Chapter 5

Multiple Linear Regression

In the multiple linear regression (MLR) model,

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (5.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (5.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p×1 vector of unknown coefficients, and e is an n×1 vector
of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (5.3)

Often the first column of X is 1, the n × 1 vector of ones. The ith case
(xT

i , Yi) corresponds to the ith row xT
i of X and the ith element of Y . If the

ei are iid with zero mean and variance σ2, then regression is used to estimate
the unknown parameters β and σ2.

Definition 5.1. Given an estimate β̂ of β, the corresponding vector of
predicted or fitted values is Ŷ = Xβ̂. The residual vector is r = r(β̂) =

Y − Ŷ .

Most regression methods attempt to find an estimate β̂ for β which min-
imizes some criterion function Q(b) of the residuals where the ith residual
ri(b) = ri = Yi−xT

i b = Yi− Ŷi. The order statistics for the absolute residuals
are denoted by

|r|(1) ≤ |r|(2) ≤ · · · ≤ |r|(n).

191
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Two of the most used classical regression methods are ordinary least squares
(OLS) and least absolute deviations (L1).

Definition 5.2. The ordinary least squares estimator β̂OLS minimizes

QOLS(b) =

n∑

i=1

r2i (b), (5.4)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists.

Definition 5.3. The least absolute deviations estimator β̂L1
minimizes

QL1(b) =

n∑

i=1

|ri(b)|. (5.5)

Definition 5.4. The Chebyshev (L∞) estimator β̂L∞

minimizes the max-
imum absolute residual QL∞

(b) = |r(b)|(n).

The location model is a special case of the multiple linear regression (MLR)
model where p = 1, X = 1 and β = µ. One very important change in the
notation will be used. In the location model, Y1, ..., Yn were assumed to be iid
with cdf F. For regression, the errors e1, ..., en will be assumed to be iid with
cdf F. For now, assume that the xT

i β are constants. Note that Y1, ..., Yn are
independent if the ei are independent, but they are not identically distributed
since if E(ei) = 0, then E(Yi) = xT

i β depends on i.

In the location model, β̂OLS = Y , β̂L1
= MED(n) and the Chebyshev

estimator is the midrange β̂L∞

= (Y(1)+Y(n))/2. These estimators are simple
to compute, but computation in the multiple linear regression case requires a
computer. Most statistical software packages have OLS routines, and the L1

and Chebyshev fits can be efficiently computed using linear programming.
The L1 fit can also be found by examining all

C(n, p) =

(
n

p

)
=

n!

p!(n− p)!

subsets of size p where n! = n(n− 1)(n− 2) · · ·1 and 0! = 1. The Chebyshev
fit to a sample of size n > p is also a Chebyshev fit to some subsample of size
h = p+ 1. Thus the Chebyshev fit can be found by examining all C(n, p+ 1)
subsets of size p+1. These two combinatorial facts will be useful for the high
breakdown regression estimators LMS and LTA described in Sections 5.9 and
6.3.
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5.1 Predictor Transformations

As a general rule, inferring about the distribution of Y |X from a lower
dimensional plot should be avoided when there are strong nonlinearities

among the predictors.
Cook and Weisberg (1999b, p. 34)

Predictor transformations are used to remove gross nonlinearities in the
predictors, and this technique is often very useful for regression methods such
as multiple linear regression, generalized linear models, generalized additive
models, 1D regression, nonlinear regression, and nonparametric regression.
Power transformations are particularly effective, and a power transformation
has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for λ = 0.
Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (5.6)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder”, e.g. from λ = 1 to λ = 0, will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added.

Definition 5.5. A scatterplot of x versus Y is used to visualize the
conditional distribution of Y |x. A scatterplot matrix is an array of scat-
terplots. It is used to examine the marginal relationships of the predictors
and the response variable Y .

In this section we will only make a scatterplot matrix of the predictors.
Often nine or ten variables can be placed in a scatterplot matrix. The names
of the variables appear on the diagonal of the scatterplot matrix. The R
software labels the values of each variable in two places, see Example 5.2
below. Let one of the variables be W . All of the marginal plots above and
below W have W on the horizontal axis. All of the marginal plots to the left
and the right of W have W on the vertical axis.

There are several rules of thumb that are useful for visually selecting a
power transformation to remove nonlinearities from the predictors. Several
of these rules need p small, but the log rule can be used when p is large. The
rules are also useful for response transformations covered in Section 5.2. In
this text, log(x) = ln(x) = loge(x).

Rule of thumb 5.1. a) If strong nonlinearities are apparent in the scat-
terplot matrix of the predictors w2, ..., wp, it is often useful to remove the
nonlinearities by transforming the predictors using power transformations.

b) Use theory if available.
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c) Suppose that variable X2 is on the vertical axis and X1 is on the hori-
zontal axis and that the plot of X1 versus X2 is nonlinear. The unit rule says
that if X1 and X2 have the same units, then try the same transformation for
both X1 and X2.

Assume that all values of X1 and X2 are positive. Then the following six
rules are often used.

d) The log rule states that a positive predictor that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So X > 0 and max(X)/min(X) > 10 suggests using log(X).

e) The range rule states that a positive predictor that has the ratio be-
tween the largest and smallest values less than two should not be transformed.
So X > 0 and max(X)/min(X) < 2 suggests keeping X.

f) The bulging rule states that changes to the power of X2 and the power
of X1 can be determined by the direction that the bulging side of the curve
points. If the curve is hollow up (the bulge points down), decrease the power
of X2. If the curve is hollow down (the bulge points up), increase the power
of X2. If the curve bulges towards large values of X1 increase the power of
X1. If the curve bulges towards small values of X1 decrease the power of X1.
See Tukey (1977, p. 173–176).

g) The ladder rule appears in Cook and Weisberg (1999a, p. 86).
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

h) If it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are such that

this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. Note

that log(X2) ≈ λ log(X1), so taking logs of both variables will also linearize
the plot. This relationship frequently occurs if there is a volume present. For
example let X2 be the volume of a sphere and let X1 be the circumference
of a sphere.

i) The cube root rule says that if X is a volume measurement, then cube
root transformation X1/3 may be useful.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning
is that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same
as the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]:
there is simply a change of labeling. Certainly if Y |x = 9 ∼ N(0, 1), then
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Y |√x = 3 ∼ N(0, 1). To see that Rule of thumb 5.1a does not always work,
suppose that Y = β1+β2x2+· · ·+βpxp+e where the xi are iid lognormal(0,1)
random variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p and the
scatterplot matrix of the wi will be linear while the scatterplot matrix of the
xi will show strong nonlinearities if the sample size is large. However, there is
an MLR relationship between Y and the xi while the relationship between Y
and the wi is nonlinear: Y = β1 + β2e

w2 + · · ·+ βpe
wp + e 6= βT w + e. Given

Y and the wi with no information of the relationship, it would be difficult to
find the exponential transformation and to estimate the βi. The moral is that
predictor transformations, especially the log transformation, can and often
do greatly simplify the MLR analysis, but predictor transformations can turn
a simple MLR analysis into a very complex nonlinear analysis.

Theory, if available, should be used to select a transformation. Frequently
more than one transformation will work. For example ifW = weight andX1 =

volume = (X2)(X3)(X4), then W versus X
1/3
1 and log(W ) versus log(X1) =

log(X2) + log(X3) + log(X4) may both work. Also if W is linearly related
with X2, X3, X4 and these three variables all have length units mm, say, then

the units of X1 are (mm)3 . Hence the units of X
1/3
1 are mm.

Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/min(wi) > 10. This rule often works
wonders on the data and the log transformation is the most used (modified)
power transformation. If the variablew can take on the value of 0, use log(w+
c) where c is a small constant like 1, 1/2, or 3/8.

To use the ladder rule, suppose you have a scatterplot of two variables
xλ1

1 versus xλ2
2 where both x1 > 0 and x2 > 0. Also assume that the plotted

points follow a nonlinear one to one function. Consider the ladder of powers

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1, }.

To spread small values of the variable, make λi smaller. To spread large values
of the variable, make λi larger.

For example, if both variables are right skewed, then there will be many
more cases in the lower left of the plot than in the upper right. Hence small
values of both variables need spreading.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.

Example 5.1. Examine Figure 5.1. Let X1 = w andX2 = x. Since w is on
the horizontal axis, mentally add a narrow vertical slice to the plot. If a large
amount of data falls in the slice at the left of the plot, then small values need
spreading. Similarly, if a large amount of data falls in the slice at the right of
the plot (compared to the middle and left of the plot), then large values need
spreading. For the variable on the vertical axis, make a narrow horizontal
slice. If the plot looks roughly like the northwest corner of a square then
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Fig. 5.1 Plots to Illustrate the Bulging and Ladder Rules

small values of the horizontal and large values of the vertical variable need
spreading. Hence in Figure 5.1a, small values of w need spreading. Notice that
the plotted points bulge up towards small values of the horizontal variable.
If the plot looks roughly like the northeast corner of a square, then large
values of both variables need spreading. Hence in Figure 5.1b, large values
of x need spreading. Notice that the plotted points bulge up towards large
values of the horizontal variable. If the plot looks roughly like the southwest
corner of a square, as in Figure 5.1c, then small values of both variables
need spreading. Notice that the plotted points bulge down towards small
values of the horizontal variable. If the plot looks roughly like the southeast
corner of a square, then large values of the horizontal and small values of the
vertical variable need spreading. Hence in Figure 5.1d, small values of x need
spreading. Notice that the plotted points bulge down towards large values of
the horizontal variable.

Example 5.2: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand. The
response is muscle mass M in grams, and the predictors are a constant, the
length L and heightH of the shell in mm, the shell widthW and the shell mass
S. Figure 5.2 shows the scatterplot matrix of the predictors L, H , W and S.
Examine the variable length. Length is on the vertical axis on the three top
plots and the right of the scatterplot matrix labels this axis from 150 to 300.
Length is on the horizontal axis on the three leftmost marginal plots, and this
axis is labelled from 150 to 300 on the bottom of the scatterplot matrix. The
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Fig. 5.2 Scatterplot Matrix for Original Mussel Data Predictors
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marginal plot in the bottom left corner has length on the horizontal and shell
on the vertical axis. The marginal plot that is second from the top and second
from the right has height on the horizontal and width on the vertical axis. If
the data is stored in x, the plot can be made with the following command in
R.

pairs(x,labels=c("length",‘"width","height","shell"))

Nonlinearity is present in several of the plots. For example, width and
length seem to be linearly related while length and shell have a nonlinear
relationship. The minimum value of shell is 10 while the max is 350. Since
350/10 = 35 > 10, the log rule suggests that logS may be useful. If logS
replaces S in the scatterplot matrix, then there may be some nonlinearity
present in the plot of logS versus W with small values of W needing spread-
ing. Hence the ladder rule suggests reducing λ from 1 and we tried log(W ).
Figure 5.3 shows that taking the log transformations of W and S results in
a scatterplot matrix that is much more linear than the scatterplot matrix of
Figure 5.2. Notice that the plot of W versus L and the plot of log(W ) versus
L both appear linear. This plot can be made with the following commands.

z <- x; z[,2] <- log(z[,2]); z[,4] <- log(z[,4])

pairs(z,labels=c("length","Log W","height","Log S"))

The plot of shell versus height in Figure 5.2 is nonlinear, and small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

5.2 A Graphical Method for Response Transformations

If the ratio of largest to smallest value of y is substantial, we usually begin
by looking at log y.

Mosteller and Tukey (1977, p. 91)

The applicability of the multiple linear regression model can be expanded
by allowing response transformations. An important class of response trans-
formation models adds an additional unknown transformation parameter λo,
such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi|xi) + ei = xT

i β + ei. (5.7)

If λo was known, then Yi = tλo(Zi) would follow a multiple linear regression
model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
that are assumed to be measured with negligible error, and the errors ei are
assumed to be iid with zero mean.
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Definition 5.6. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 5.7. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(5.8)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1.Generally

λ ∈ Λ where Λ is some interval such as [−1, 1] or a coarse subset such as ΛL.

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values
of λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations
from the identity line are the “residuals” ri = Wi − Ŵi. Then a candidate
response transformation Y = tλ∗(Z) is reasonable if the plotted points fol-
low the identity line in a roughly evenly populated band if the unimodal
MLR model is reasonable for Y = W and x. See Definition 5.13. Curvature
from the identity line suggests that the candidate response transformation is
inappropriate.

By adding the “response” Z to the scatterplot matrix, the methods of
the previous section can also be used to suggest good values of λ, and it is
usually a good idea to use predictor transformations to remove nonlinearities
from the predictors before selecting a response transformation. Check that
the scatterplot matrix with the transformed variables is better than the scat-
terplot matrix of the original variables. Notice that the graphical method is
equivalent to making “response plots” for the seven values of W = tλ(Z),
and choosing the “best response plot” where the MLR model seems “most
reasonable.” The seven “response plots” are called transformation plots be-
low. Our convention is that a plot of X versus Y means that X is on the
horizontal axis and Y is on the vertical axis.

Warning: The Rule of thumb 5.1 does not always work. For example, the
log rule may fail. If the relationships in the scatterplot matrix are already lin-
ear or if taking the transformation does not increase the linearity (especially
in the row containing the response), then no transformation may be better
than taking a transformation. For the Cook and Weisberg (1999a) Arc data
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set evaporat.lsp, the log rule suggests transforming the response variable
Evap, but no transformation works better.

Definition 5.8. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several of
the powers correspond to simple transformations such as the log, square root,
and cube root. These powers are easier to interpret than λ = .28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
power transformations are the λ = 0 (log), λ = 1/2, λ = −1 and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n

can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 5.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform OLS on (Wi,xi) and make the transformation plot of
Ŵi versus Wi. If the plotted points follow the identity line for λ∗, then take
λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation. (Note that this
procedure can be modified to create a graphical diagnostic for a numerical
estimator λ̂ of λo by adding λ̂ to ΛL. OLS can be replaced by other methods
such as lasso.)

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W − Ŵ look reasonable. The values of λ in decreasing
order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation would
be chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show tλ(Z) on the vertical axis. The
label “TZHAT” of the horizontal axis are the “fitted values” that result from
using tλ(Z) as the “response” in the OLS software.

Example 5.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response” Z
is the number of cycles to failure and a constant is used along with the three
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Fig. 5.4 Four Transformation Plots for the Textile Data

predictors length, amplitude and load. Using the normal profile log likelihood
for λo, Box and Cox determine λ̂o = −0.06 with approximate 95 percent
confidence interval −0.18 to 0.06. These results give a strong indication that
the log transformation may result in a relatively simple model, as argued by
Box and Cox. Nevertheless, the numerical Box–Cox transformation method
provides no direct way of judging the transformation against the data.

Shown in Figure 5.4 are transformation plots of Ẑ versus Zλ for four values
of λ except log(Z) is used if λ = 0. The plots show how the transformations
bend the data to achieve a homoscedastic linear trend. Perhaps more impor-
tantly, they indicate that the information on the transformation is spread
throughout the data in the plot since changing λ causes all points along the
curvilinear scatter in Figure 5.4a to form along a linear scatter in Figure
5.4c. Dynamic plotting using λ as a control seems quite effective for judging
transformations against the data and the log response transformation does
indeed seem reasonable.

Note the simplicity of the method: Figure 5.4a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
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Fig. 5.5 Transformation Plots for the Mussel Data

Figure 5.4c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
5.4a suggests that the log rule is reasonable since max(Z)/min(Z) > 10.

The essential point of the next example is that observations that influence
the choice of the usual Box–Cox numerical power transformation are often
easily identified in the transformation plots. The transformation plots are
especially useful if the bivariate relationships of the predictors, as seen in the
scatterplot matrix of the predictors, are linear.

Example 5.4: Mussel Data. Consider the mussel data of Example 5.2
where the response is muscle mass M in grams, and the predictors are the
length L and height H of the shell in mm, the logarithm logW of the shell
width W, the logarithm logS of the shell mass S and a constant. With this
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starting point, we might expect a log transformation of M to be needed
because M and S are both mass measurements and logS is being used as
a predictor. Using logM would essentially reduce all measurements to the
scale of length. The Box–Cox likelihood method gave λ̂0 = 0.28 with ap-
proximate 95 percent confidence interval 0.15 to 0.4. The log transformation
is excluded under this inference leading to the possibility of using different
transformations of the two mass measurements.

Shown in Figure 5.5 are transformation plots for four values of λ. A striking
feature of these plots is the two points that stand out in three of the four
plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evidently influenced
by the two outlying points and, judging deviations from the identity line in
Figure 5.5c, the mean function for the remaining points is curved. In other
words, the Box–Cox estimate is allowing some visually evident curvature
in the bulk of the data so it can accommodate the two outlying points.
Recomputing the estimate of λo without the highlighted points gives λ̂o =
−0.02, which is in good agreement with the log transformation anticipated
at the outset. Reconstruction of the transformation plots indicated that now
the information for the transformation is consistent throughout the data on
the horizontal axis of the plot.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ ΛL. Example 5.4 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

Example 5.5: Mussel Data Again. Return to the mussel data, this time
considering the regression of M on a constant and the four untransformed
predictors L, H , W and S. Figure 5.2 shows the scatterplot matrix of the
predictors L, H , W and S. Again nonlinearity is present. Figure 5.3 shows
that taking the log transformations of W and S results in a linear scatterplot
matrix for the new set of predictors L, H , logW , and logS. Then the search
for the response transformation can be done as in Example 5.4.

5.3 A Review of Multiple Linear Regression

Good online references for multiple linear regression are Olive (2008, 2010).
Good texts are Cook and Weisberg (1999a), Olive (2017a), Ryan (2009), and
Weisberg (2005). The following review follows Olive (2017a: ch. 2) closely.

Definition 5.9. Regression is the study of the conditional distribution
Y |x of the response variable Y given the vector of predictors x = (x1, ..., xp)

T .
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Definition 5.10. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.

Definition 5.11. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (5.9)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

See the beginning of this chapter for the model Y = Xβ + e in matrix
form. In the MLR model Y = xT β+e, the Y and e are random variables, but
we only have observed values Yi and xi. If the ei are iid (independent and
identically distributed) with zero mean E(ei) = 0 and variance VAR(ei) =
V (ei) = σ2, then regression is used to estimate the unknown parameters β

and σ2.

Definition 5.12. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 5.13. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 5.14. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

See Definitions 5.1 and 5.2 for fitted values, residuals, and the OLS esti-
mator. Given an estimate b of β, the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp,
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and the ith residual ri ≡ ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. For

the ordinary least squares (OLS) estimator, Ŷ OLS = Xβ̂OLS = HY where
the hat matrix H = X(XT X)−1XT provided the inverse exists. Typically
the subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 5.15. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response variables Yi, while the residual plot is a plot
of the ESP = Ŷi versus the residuals ri.

Theorem 5.1. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Parts f) and g) make residual plots useful.
If the plotted points are linear with roughly constant variance and the cor-
relation is zero, then the plotted points scatter about the r = 0 line with no
other pattern. If the plotted points in a residual plot of w versus r do show a
pattern such as a curve or a right opening megaphone, zero correlation will
usually force symmetry about either the r = 0 line or the w = median(w)
line. Hence departures from the ideal plot of random scatter about the r = 0
line are often easy to detect.

Let the n× p design matrix of predictor variables be

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 5.2. Suppose that X is an n× p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.
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e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p× p identity matrix.

c) XT r = XT (Ip − H)Y = [XT − XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.

f) The sample correlation between W and Z is corr(W,Z) =

∑n
i=1(wi − w)(zi − z)

(n− 1)swsz
=

∑n
i=1(wi −w)(zi − z)√∑n

i=1(wi −w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =

n∑

i=1

Ŷiri − Ŷ

n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �
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5.3.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean Y is given by Definition 2.2.
In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 5.16. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =

n∑

i=1

(Yi − Y )2. (5.10)

b) The regression sum of squares

SSR =

n∑

i=1

(Ŷi − Y )2. (5.11)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (5.12)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 5.3. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =

n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2

n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But
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A =

n∑

i=1

riŶi − Y

n∑

i=1

ri = 0

by Theorem 5.2 d) and e). �

Definition 5.17. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
v) R2 tends to be too high if there are two or more separated clusters of

data in the response plot.
vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 5.5 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 5.5, E(R2) ≤ 0.1.

Theorem 5.4. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 5.5. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2
, n−p

2
).

b)



5.3 A Review of Multiple Linear Regression 209

E(R2) =
p− 1

n− 1
.

c)

VAR(R2) =
2(p− 1)(n− p)

(n− 1)2(n+ 1)
.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 5.18. Assume that a constant is in the MLR model. Associated
with each SS in Definition 5.16 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p− 1 SSR MSR F0=MSR/MSE for H0:
Residual n− p SSE MSE β2 = · · · = βp = 0

Remark 5.1. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0
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(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n → ∞. Then the computer output pval is a good estimator
of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and Ha ≡ HA ≡ H1.

The 4 step ANOVA F test of hypotheses is below.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n− p)/(p− 1) decreases
to 0 as p increases to n, Theorem 5.6a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 5.6. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1 − R2

n− p

p− 1
.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p− 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.
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c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 5.2. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.”

5.3.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 5.19. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.

The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1 = · · · = βip = 0, and alternative
hypothesis HA : at least one of the βij 6= 0 for j > q. The null hypothesis is
equivalent to H0: “the reduced model is good.” Since only the full model and
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reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.
Full model

Source df SS MS F0 and p-value

Regression p − 1 SSR MSR F0=MSR/MSE
Residual dfF = n− p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n− q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0

The 4 step partial F test of hypotheses is below. i) State the hy-
potheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). ( Here dfR−dfF = p−q = number
of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let
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‖a‖ =
√
a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 5.7. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =

SSE(R) − SSE(F )

SSE(F )

n− p

p − q
=
R2 −R2

R

1 −R2

n− p

p− q
.

Definition 5.20. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
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be good if the main goal of the analysis is to predict Y. These plots are also
useful for other methods such as lasso.

5.3.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 5.21. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).

Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall thatH0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
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not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.

5.3.4 The OLS Criterion
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a) OLS Minimizes Sum of Squared Vertical Deviations
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b) This ESP Has a Much Larger Sum

Fig. 5.6 The OLS Fit Minimizes the Sum of Squared Residuals

The OLS estimator β̂ minimizes the OLS criterion
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QOLS(η) =

n∑

i=1

r2i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r
2
i ≤

∑n
i=1 r

2
i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
In particular, if X has full rank p, then

∑n
i=1 r

2
i <

∑n
i=1 r

2
i (β) =

∑n
i=1 e

2
i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r

2
i (β). This no-

tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 5.6. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 5.6a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of
squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 5.6b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 5.8. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
and that HX = X . Let η be any p× 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) = ‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ − Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ − Xη).

Hence
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‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2. (5.13)

So
‖Y − Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives

XT Y − XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (5.14)

Equation (5.14) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (5.13).

5.4 Asymptotically Optimal Prediction Intervals

This section gives estimators for predicting a future or new value Yf of
the response variable given the predictors xf , and for estimating the mean
E(Yf) ≡ E(Yf |xf). This mean is conditional on the values of the predictors
xf , but the conditioning is often suppressed. See

Warning: All too often the MLR model seems to fit the data

(Y1,x1), ..., (Yn,xn)

well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data
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(Yi,xi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a

new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data well. i)
The model building process is usually iterative. Data Z, w1, ..., wk is collected.
If the model is not linear, then functions of Z are used as a potential response
and functions of the wi as potential predictors. After trial and error, the
functions are chosen, resulting in a final MLR model using Y and x1, ..., xp.
Since the same data set was used during the model building process, biases
are introduced and the MLR model fits the “training data” better than it
fits new data. Suppose that Y , x1, ..., xp are specified before collecting data
and that the residual and response plots from the resulting MLR model look
good. Then predictions from the prespecified model will often be better for
predicting new data than a model built from an iterative process.

ii) If (Yf ,xf) come from a different population than the population of
(Y1,x1), ..., (Yn,xn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also, often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate.

Definition 5.22. Consider the MLR model Y = Xβ + e and the hat
matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H

for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XT X)−1xi.

Suppose new data is to be collected with predictor vector xf . Then the

leverage of xf is hf = xT
f (XT X)−1xf . Extrapolation occurs if xf is far

from the x1, ...,xn.

Rule of thumb 5.3. Predictions based on extrapolation are not reliable.
A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn). This
rule works best if the predictors are linearly related in that a plot of xi versus
xj should not have any strong nonlinearities. If there are strong nonlinearities
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among the predictors, then xf could be far from the xi but still have hf <
max(h1, ..., hn).

Example 5.7. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

Definition 5.23. Consider the iid error MLR model Y = xT β + e where
E(e) = 0. Then regression function is the hyperplane

E(Y ) ≡ E(Y |x) = x1β1 + x2β2 + · · ·+ xpβp = xT β. (5.15)

Assume OLS is used to find β̂. Then the point estimator of Yf given x = xf

is
Ŷf = xf,1β̂1 + · · ·+ xf,pβ̂p = xT

f β̂. (5.16)

The point estimator of E(Yf ) ≡ E(Yf |xf) given x = xf is also Ŷf = xT
f β̂.

Assume that the MLR model contains a constant β1 so that x1 ≡ 1. The large
sample 100 (1 − δ)% confidence interval (CI) for E(Yf |xf ) = xT

f β = E(Ŷf )
is

Ŷf ± tn−p,1−δ/2se(Ŷf ) (5.17)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees of

freedom. Generally se(Ŷf ) will come from output, but

se(Ŷf ) =
√
MSE hf =

√
MSE xT

f (XT X)−1xf .

Recall the interpretation of a 100 (1 − δ)% CI for a parameter µ is that
if you collect data then form the CI, and repeat for a total of k times where
the k trials are independent from the same population, then the probability
that m of the CIs will contain µ follows a binomial(k, ρ= 1− δ) distribution.
Hence if 100 95% CIs are made, ρ = 0.95 and about 95 of the CIs will contain
µ while about 5 will not. Any given CI may (good sample) or may not (bad
sample) contain µ, but the probability of a “bad sample” is δ.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition maxhi → 0 in
probability usually holds if the researcher picked the design matrix X or if
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the xi are iid random vectors from a well behaved population. Outliers can

cause the condition to fail. Convergence in probability, Yn
P→ c, is similar to

other types of convergence: Yn is likely to be close to c if the sample size n is
large enough. Parts a) and b) of Theorem 5.2 are due to Huber and Ronchetti
(2009, pp. 156-158). For c), see Sen and Singer (1993, p. 280). Part c) implies

that β̂ ≈ Np(β, σ
2(XT X)−1)).

Theorem 5.9: Consider the MLR model Yi = xT
i β+ei and assume that

the errors are independent with zero mean and the same variance: E(ei) = 0
and VAR(ei) = σ2. Also assume that maxi(h1, ..., hn) → 0 in probability as
n→ ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal where
a is any fixed constant p× 1 vector.

c) OLS CLT: Suppose that the ei are iid and

XT X

n
→ W−1.

Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ). (5.18)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (5.19)

Definition 5.24. A large sample 100(1− δ)% prediction interval (PI) has
the form (L̂n, Ûn) where P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by
1− δ as the sample size n→ ∞. For the Gaussian MLR model, assume that
the random variable Yf is independent of Y1, ..., Yn. Then the 100(1− δ)% PI
for Yf is

Ŷf ± tn−p,1−δ/2se(pred) (5.20)

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees
of freedom. Generally se(pred) will come from output, but se(pred) =√
MSE (1 + hf ).

Often we want the coverage P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞. The
interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar to
that of a CI. Collect data, then form the PI, and repeat for a total of k times
where k trials are independent from the same population. If Yfi is the ith
random variable and PIi is the ith PI, then the probability that Yfi ∈ PIi
for m of the PIs follows a binomial(k, ρ = 1 − δ) distribution. Hence if 100
95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens about 95 times.
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There are two big differences between CIs and PIs. First, the length of
the CI goes to 0 as the sample size n goes to ∞ while the length of the PI
converges to some nonzero number L, say. Secondly, the CI for E(Yf |xf)
given in Definition 5.23 tends to work well for the iid error MLR model if
the sample size is large while the PI in Definition 5.24 is made under the
assumption that the ei are iid N(0, σ2) and may not perform well if the
normality assumption is violated.

To see this, consider xf such that the heights Y of women between 18
and 24 is normal with a mean of 66 inches and an SD of 3 inches. A 95%
CI for E(Y |xf) should be centered at about 66 and the length should go
to zero as n gets large. But a 95% PI needs to contain about 95% of the
heights so the PI should converge to the interval 66 ± 1.96(3). This result
follows because if Y ∼ N(66, 9) then P (Y < 66 − 1.96(3)) = P (Y > 66 +
1.96(3)) = 0.025. In other words, the endpoints of the PI estimate the 97.5
and 2.5 percentiles of the normal distribution. However, the percentiles of a
parametric error distribution depend heavily on the parametric distribution
and the parametric formulas are violated if the assumed error distribution is
incorrect.

Assume that the iid error MLR model is valid so that e is from some
distribution with 0 mean and variance σ2. Olive (2007) shows that if 1− γ is
the asymptotic coverage of the classical nominal 100(1− δ)% PI (5.20), then

1 − γ = P (−σz1−δ/2 ≤ e ≤ σz1−δ/2) ≥ 1 − 1

z2
1−δ/2

(5.21)

where the inequality follows from Chebyshev’s inequality. Hence the asymp-
totic coverage of the nominal 95% PI is at least 73.9%. The 95% PI (5.20)
was often quite accurate in that the asymptotic coverage was close to 95% for
a wide variety of error distributions. The 99% and 90% PIs did not perform
as well.

Let ξδ be the δ percentile of the error e, i.e., P (e ≤ ξδ) = δ. Let ξ̂δ be
the sample δ percentile of the residuals. Then the results from Theorem 5.9
suggest that the residuals ri estimate the errors ei, and that the sample
percentiles of the residuals ξ̂δ estimate ξδ. For many error distributions,

E(MSE) = E

(
n∑

i=1

r2i
n− p

)
= σ2 = E

(
n∑

i=1

e2i
n

)
.

This result suggests that

√
n

n− p
ri ≈ ei. Using

an =

(
1 +

15

n

)√
n

n− p

√
(1 + hf), (5.22)
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a large sample semiparametric 100(1 − δ)% PI for Yf is

[Ŷf + anξ̂δ/2, Ŷf + anξ̂1−δ/2]. (5.23)

This PI is very similar to the classical PI except that ξ̂δ is used instead of
σzδ to estimate the error percentiles ξδ.
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Fig. 5.7 95% PI Limits for Buxton Data

Example 5.8. For the Buxton (1920) data suppose that the response Y =
height and the predictors were a constant, head length, nasal height, bigonal
breadth and cephalic index. Five outliers were deleted leaving 82 cases. Figure
5.7 shows a response plot of the fitted values versus the response Y with the
identity line added as a visual aid. The plot suggests that the model is good
since the plotted points scatter about the identity line in an evenly populated
band although the relationship is rather weak since the correlation of the
plotted points is not very high. The triangles represent the upper and lower
limits of the semiparametric 95% PI (5.23). Notice that 79 (or 96%) of the
Yi fell within their corresponding PI while 3 Yi did not. A plot using the
classical PI (5.20) would be very similar for this data. The plot was made
with the following R commands, using the rpack function piplot.

x <- buxx[-c(61,62,63,64,65),]

Y <- buxy[-c(61,62,63,64,65)]

piplot(x,Y)
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Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

Given output showing β̂i and given xf , se(pred) and se(Ŷf ), Example 5.9

shows how to find Ŷf , a CI for E(Yf |xf) and a PI for Yf . Shown above is
typical output in symbols.

Example 5.9. The Rouncefield (1995) data are female and male life ex-
pectancies from n = 91 countries. Suppose that it is desired to predict female
life expectancy Y from male life expectancy X. Suppose that if Xf = 60,

then se(pred) = 2.1285, and se(Ŷf ) = 0.2241. Below is some output.

Label Estimate Std. Error t-value p-value

Constant -2.93739 1.42523 -2.061 0.0422

mlife 1.12359 0.0229362 48.988 0.0000

a) Find Ŷf if Xf = 60.

Solution: In this example, xf = (1, Xf )T since a constant is in the output

above. Thus Ŷf = β̂1 + β̂2Xf = −2.93739 + 1.12359(60) = 64.478.

b) If Xf = 60, find a 90% confidence interval for E(Y ) ≡ E(Yf |xf ).

Solution: The CI is Ŷf ± t1−α/2,n−2se(Ŷf ) = 64.478 ± 1.645(0.2241) =
64.478± 0.3686 = (64.1094, 64.8466). To use the t–table on the last page of
Chapter 14, use the 2nd to last row marked by Z since d = df = n − 2 =
90 > 30. In the 3rd to last row find CI = 90% and intersect the 90% column
and the Z row to get the value of t0.95,90 ≈ z.95 = 1.645.

c) If Xf = 60, find a 90% prediction interval for Yf .

Solution: The CI is Ŷf ± t1−α/2,n−2se(pred) = 64.478 ± 1.645(2.1285) =
64.478± 3.5014 = (60.9766, 67.9794).

An asymptotically conservative (ac) 100(1 − δ)% PI has asymptotic cov-
erage 1 − γ ≥ 1 − δ. We used the (ac) 100(1 − δ)% PI

Ŷf ±
√

n

n− p
max(|ξ̂δ/2|, |ξ̂1−δ/2|)

√
(1 + hf ) (5.24)

which has asymptotic coverage

1− γ = P [−max(|ξδ/2|, |ξ1−δ/2|) < e < max(|ξδ/2|, |ξ1−δ/2|)]. (5.25)
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Notice that 1− δ ≤ 1−γ ≤ 1− δ/2 and 1−γ = 1− δ if the error distribution
is symmetric with a pdf.

In the simulations described below, ξ̂δ will be the sample percentile for the
PIs (5.23) and (5.24). A PI is asymptotically optimal if it has the shortest
asymptotic length that gives the desired asymptotic coverage. If the error
distribution is unimodal, an asymptotically optimal PI can be created by
applying the shorth(c) estimator to the residuals where c = dn(1−δ)e and dxe
is the smallest integer ≥ x, e.g., d7.7e = 8. That is, let r(1), ..., r(n) be the order
statistics of the residuals. Compute r(c)−r(1), r(c+1)−r(2), ..., r(n)−r(n−c+1).

Let [r(d), r(d+c−1)] = [ξ̃δ1 , ξ̃1−δ2] correspond to the interval with the smallest
distance. Then the large sample 100 (1 − δ)% PI for Yf is

[Ŷf + anξ̃δ1 , Ŷf + anξ̃1−δ2 ] (5.26)

where an is given by (5.22).
A small simulation study compares the PI lengths and coverages for sample

sizes n = 50, 100 and 1000 for several error distributions. The value n = ∞
gives the asymptotic coverages and lengths. The MLR model with E(Yi) =
1 + xi2 + · · · + xi8 was used. The vectors (x2, ..., x8)

T were iid N7(0, I7).
The error distributions were N(0,1), t3, and exponential(1) −1. Also, a small
sensitivity study to examine the effects of changing (1 + 15/n) to (1 + k/n)
on the 99% PIs (5.23) and (5.26) was performed. For n = 50 and k between
10 and 20, the coverage increased by roughly 0.001 as k increased by 1.

Table 5.1 N(0,1) Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 5.860 6.172 5.191 6.448 .989 .988 .972 .990
0.01 100 5.470 5.625 5.257 5.412 .990 .988 .985 .985
0.01 1000 5.182 5.181 5.263 5.097 .992 .993 .994 .992
0.01 ∞ 5.152 5.152 5.152 5.152 .990 .990 .990 .990
0.05 50 4.379 5.167 4.290 5.111 .948 .974 .940 .968
0.05 100 4.136 4.531 4.172 4.359 .956 .970 .956 .958
0.05 1000 3.938 3.977 4.001 3.927 .952 .952 .954 .948
0.05 ∞ 3.920 3.920 3.920 3.920 .950 .950 .950 .950
0.1 50 3.642 4.445 3.658 4.193 .894 .945 .895 .929
0.1 100 3.455 3.841 3.519 3.690 .900 .930 .905 .913
0.1 1000 3.304 3.343 3.352 3.304 .901 .903 .907 .901
0.1 ∞ 3.290 3.290 3.290 3.290 .900 .900 .900 .900

The simulation compared coverages and lengths of the classical (5.20),
semiparametric (5.23), asymptotically conservative (5.24) and asymptotically
optimal (5.26) PIs. The latter 3 intervals are asymptotically optimal for sym-
metric unimodal error distributions in that they have the shortest asymptotic
length that gives the desired asymptotic coverage. The semiparametric PI
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Table 5.2 t3 Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 9.539 12.164 11.398 13.297 .972 .978 .975 .981
0.01 100 9.114 12.202 12.747 10.621 .978 .983 .985 .978
0.01 1000 8.840 11.614 12.411 11.142 .975 .990 .992 .988
0.01 ∞ 8.924 11.681 11.681 11.681 .979 .990 .990 .990
0.05 50 7.160 8.313 7.210 8.139 .945 .956 .943 .956
0.05 100 6.874 7.326 7.030 6.834 .950 .955 .951 .945
0.05 1000 6.732 6.452 6.599 6.317 .951 .947 .950 .945
0.05 ∞ 6.790 6.365 6.365 6.365 .957 .950 .950 .950
0.1 50 5.978 6.591 5.532 6.098 .915 .935 .900 .917
0.1 100 5.696 5.756 5.223 5.274 .916 .913 .901 .900
0.1 1000 5.648 4.784 4.842 4.706 .929 .901 .904 .898
0.1 ∞ 5.698 4.707 4.707 4.707 .935 .900 .900 .900

Table 5.3 Exponential(1) −1 Errors

δ n clen slen alen olen ccov scov acov ocov
0.01 50 5.795 6.432 6.821 6.817 .971 .987 .976 .988
0.01 100 5.427 5.907 7.525 5.377 .974 .987 .986 .985
0.01 1000 5.182 5.387 8.432 4.807 .972 .987 .992 .987
0.01 ∞ 5.152 5.293 8.597 4.605 .972 .990 .995 .990
0.05 50 4.310 5.047 5.036 4.746 .946 .971 .955 .964
0.05 100 4.100 4.381 5.189 3.840 .947 .971 .966 .955
0.05 1000 3.932 3.745 5.354 3.175 .945 .954 .972 .947
0.05 ∞ 3.920 3.664 5.378 2.996 .948 .950 .975 .950
0.1 50 3.601 4.183 3.960 3.629 .920 .945 .925 .916
0.1 100 3.429 3.557 3.959 3.047 .930 .943 .945 .913
0.1 1000 3.303 3.005 3.989 2.460 .931 .906 .951 .901
0.1 ∞ 3.290 2.944 3.991 2.303 .929 .900 .950 .900

gives the correct asymptotic coverage if the unimodal errors are not symmet-
ric while the PI (5.24) gives higher coverage (is conservative). The simulation
used 5000 runs and gave the proportion p̂ of runs where Yf fell within the
nominal 100(1−δ)% PI. The count mp̂ has a binomial(m= 5000, p = 1−γn)
distribution where 1− γn converges to the asymptotic coverage (1− γ). The
standard error for the proportion is

√
p̂(1 − p̂)/5000 = 0.0014, 0.0031 and

0.0042 for p = 0.01, 0.05 and 0.1, respectively. Hence an observed coverage
p̂ ∈ [0.986, 0.994] for 99%, p̂ ∈ [0.941, 0.959] for 95% and p̂ ∈ [0.887, 0.913]
for 90% PIs suggests that there is no reason to doubt that the PI has the
nominal coverage.

Tables 5.1–5.3 show the results of the simulations for the 3 error distri-
butions. The letters c, s, a and o refer to intervals (5.20), (5.23), (5.24) and
(5.26) respectively. For the normal errors, the coverages were about right and
the semiparametric interval tended to be rather long for n = 50 and 100. The
classical PI asymptotic coverage 1−γ tended to be fairly close to the nominal
coverage 1 − δ for all 3 distributions and δ = 0.01, 0.05, and 0.1.
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5.5 Numerical Diagnostics

Using one or a few numerical summaries to characterize the relationship
between x and y runs the risk of missing important features, or worse, of

being misled.
Chambers, Cleveland, Kleiner, and Tukey (1983, p. 76)

Diagnostics are used to check whether model assumptions are reason-
able. Section 5.6 provides graphical diagnostics for assessing the unimodal
MLR model adequacy while this section focuses on diagnostics for the uni-
modal MLR model Yi = xT

i β + ei for i = 1, ..., n where the errors are iid
from a unimodal distribution that is not highly skewed with E(ei) = 0 and
VAR(ei) = σ2. See Definition 5.13.

It is often useful to use notation to separate the constant from the non-
trivial predictors. Assume that xi = (1, xi,2, ..., xi,p)

T ≡ (1,uT
i )T where the

(p−1)×1 vector of nontrivial predictors ui = (xi,2, ..., xi,p)
T . In matrix form,

Y = Xβ +e, X = [X1, X2, ..., Xp] = [1,U ], 1 is an n×1 vector of ones, and
U = [X2, ..., Xp] is the n × (p − 1) matrix of nontrivial predictors. The kth
column of U is the n × 1 vector of the jth predictor Xj = (x1,j, ..., xn,j)

T

where j = k + 1. The sample mean and covariance matrix of the nontrivial
predictors are

u =
1

n

n∑

i=1

ui (5.27)

and

C = Cov(U) =
1

n− 1

n∑

i=1

(ui − u)(ui − u)T , (5.28)

respectively.

Some important numerical quantities that are used as diagnostics measure
the distance of ui from u and the influence of case i on the OLS fit β̂ ≡ β̂OLS .

The ith residual ri = Yi − Ŷi, and the vector of fitted values is Ŷ = Xβ̂ =
X(XT X)−1XT Y = HY where H is the hat matrix. Case (or leave one out
or deletion) diagnostics are computed by omitting the ith case from the OLS
regression. Let

Ŷ (i) = Xβ̂(i) (5.29)

denote the n× 1 vector of fitted values from estimating β with OLS without
the ith case. Denote the jth element of Ŷ (i) by Ŷ(i),j. It can be shown that
the variance of the ith residual VAR(ri) = σ2(1 − hi). The usual estimator

of the error variance is σ̂2 =

∑n
i=1 r

2
i

n− p
. The (internally) studentized residual

êi =
ri

σ̂
√

1 − hi

has zero mean and approximately unit variance.
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Definition 5.25. The ith leverage hi = Hii is the ith diagonal element of
the hat matrix H. The ith squared (classical) Mahalanobis distance MD2

i =
(ui − u)T C−1(ui − u). The ith Cook’s distance

CDi =
(β̂(i) − β̂)T XT X(β̂(i) − β̂)

pσ̂2
=

(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
(5.30)

=
1

pσ̂2

n∑

j=1

(Ŷ(i),j − Ŷj)
2.

Theorem 5.10. a) (Rousseeuw and Leroy 1987, p. 225)

hi =
1

n− 1
MD2

i +
1

n
.

b) (Cook and Weisberg 1999a, p. 184)

hi = xT
i (XT X)−1xi = (xi − x)T (UT U)−1(xi − x) +

1

n
.

c) (Cook and Weisberg 1999a, p. 360)

CDi =
r2i

pσ̂2(1 − hi)

hi

1 − hi
=
ê2i
p

hi

1 − hi
.

When the statistics CDi, hi and MDi are large, case i may be an outlier or
influential case. Examining a dot plot of these three statistics for unusually
large values can be useful for flagging influential cases. Cook and Weisberg
(1999a, p. 358) suggest examining cases with CDi > 0.5 and that cases with
CDi > 1 should always be studied. Since H = HT and H = HH , the hat
matrix is symmetric and idempotent. Hence the eigenvalues of H are zero or
one and trace(H) =

∑n
i=1 hi = p. Rousseeuw and Leroy (1987, p. 220 and

p. 224) suggest using hi > 2p/n and MD2
i > χ2

p−1,0.95 as benchmarks for
leverages and Mahalanobis distances where χ2

p−1,0.95 is the 95th percentile of
a chi–square distribution with p− 1 degrees of freedom.

Note that Theorem 5.10c) implies that Cook’s distance is the product of
the squared residual and a quantity that becomes larger the farther ui is
from u. Hence influence is roughly the product of leverage and distance of
Yi from Ŷi (see Fox 1991, p. 21). Mahalanobis distances and leverages both
define ellipsoids based on a metric closely related to the sample covariance
matrix of the nontrivial predictors. All points ui on the same ellipsoidal
contour are the same distance from u and have the same leverage (or the
same Mahalanobis distance).

Cook’s distances, leverages, and Mahalanobis distances can be effective for
finding influential cases when there is a single outlier, but can fail if there
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are two or more outliers. Nevertheless, these numerical diagnostics combined
with response and residual plots of the next section are probably the most
effective techniques for detecting cases that effect the fitted values when the
unimodal MLR model is a good approximation for the bulk of the data.

5.6 Graphical Diagnostics

Automatic or blind use of regression models, especially in exploratory work,
all too often leads to incorrect or meaningless results and to confusion

rather than insight. At the very least, a user should be prepared to make and
study a number of plots before, during, and after fitting the model.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 306)

A scatterplot of x versus y (recall the convention that a plot of x versus
y means that x is on the horizontal axis and y is on the vertical axis) is
used to visualize the conditional distribution y|x of y given x (see Cook and
Weisberg 1999a, p. 31). For the simple linear regression model (with one
nontrivial predictor x2), an effective technique for checking the assumptions
of the model is to make a scatterplot of x2 versus Y and a residual plot
of x2 versus ri. Departures from linearity in the scatterplot suggest that the
simple linear regression model is not adequate. The points in the residual plot
should scatter about the line r = 0 with no pattern. If curvature is present
or if the distribution of the residuals depends on the value of x2, then the
simple linear regression model is not adequate. The following two plots are
crucial for any multiple linear regression analysis, regardless of the
regression estimator (e.g. OLS, L1, lasso, etc.).

Definition 5.26. A residual plot is a plot of a variable wi versus the
residuals ri. Typically wi is a linear combination of the predictors: wi = aT xi

where a is a known p× 1 vector. A response plot is a plot of the fitted values
Ŷi versus the response Yi.

The most used residual plot takes a = β̂ with wi = Ŷi. Plots against
the individual predictors xj and potential predictors are also used. If the
residual plot is not ellipsoidal with zero slope, then the unimodal MLR model
(where the iid constant variance errors are from a unimodal distribution that
is not highly skewed) is not sustained. In other words, if the variables in the
residual plot show some type of dependency, e.g. increasing variance or a
curved pattern, then the unimodal MLR model may be inadequate. Theorem
5.1 showed that the response plot simultaneously displays the fitted values,
response, and residuals. The plotted points in the response plot should scatter
about the identity line if the unimodal MLR model holds. Note that residual
plots magnify departures from the model while the response plot emphasizes
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how well the model fits the data. Cook and Weisberg (1997, 1999a ch. 17) call
a plot that emphasizes model agreement a model checking plot.

One of the themes of this text is to use a several estimators to create plots
and estimators. Many estimators bj are consistent estimators of β when the
multiple linear regression model holds.

Definition 5.27. Let b1, ..., bJ be J estimators of β. Assume that J ≥ 2
and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix of the

fitted values Ŷ (b1), ..., Ŷ (bJ). Often Y is also included in the top or bottom
row of the FF plot to see the response plots. A residual-residual (RR) plot is
a scatterplot matrix of the residuals r(b1), ..., r(bJ). Often Ŷ is also included
in the top or bottom row of the RR plot to see the residual plots.

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the
subplots in the FF and RR plots should be linear with a correlation tending
to one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi−xT

i bj where (Yi,x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj . Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (5.31)

The FF plot is a powerful way for comparing fits. The commonly suggested
alternative is to look at a table of the estimated coefficients, but coefficients
can differ greatly while yielding similar fits if some of the predictors are highly
correlated or if several of the predictors are independent of the response.

To illustrate the RR plot, consider the four R estimators: OLS, ALMS =
the default version of lmsreg, ALTS = the default version of ltsreg and
the MBA estimator described in Chapter 6. In the 2007 version of R, the last
three estimators change with each call.

Example 5.10. Gladstone (1905) records the brain weight and various
head measurements for 276 individuals. This data set, along with the Buxton
data set in the following example, can be downloaded from the text’s website.
We’ll predict brain weight using six head measurements (head height, length,
breadth, size, cephalic index and circumference) as predictors, deleting cases
188 and 239 because of missing values. There are five infants (cases 238, and
263-266) of age less than 7 months that are x-outliers. Nine toddlers were
between 7 months and 3.5 years of age, four of whom appear to be x-outliers
(cases 241, 243, 267, and 269). (The points are not labeled on the plot, but
the five infants are easy to recognize.)

Figure 1.1 shows the RR plot. The five infants seem to be “good leverage
points” in that the fit to the bulk of the data passes through the infants. Hence
the OLS fit may be best, followed by ALMS. Note that ALTS and MBA make
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the absolute residuals for the infants large. The ALTS and MBA fits are not
highly correlated for the remaining 265 points, but the remaining correlations
are high. Thus the fits agree on these cases, focusing attention on the infants.
The ALTS and ALMS estimators change frequently, and are implemented
differently in R and Splus. Often the “new and improved” implementation is
much worse than older implementations.

Figure 1.2 shows the residual plots for the Gladstone data when one ob-
servation, 119, had head length entered incorrectly as 109 instead of 199. This
outlier is easier to detect with MBA and ALTS than with ALMS.

Example 5.11. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
Consider predicting stature using an intercept, head length, nasal height, big-
onal breadth, and cephalic index. One case was deleted since it had missing
values. Five individuals, numbers 61-65, were reported to be about 0.75 inches
tall with head lengths well over five feet! This appears to be a clerical error;
these individuals’ stature was recorded as head length and the integer 18 or
19 given for stature, making the cases massive outliers with enormous lever-
age. These absurdly bad observations turned out to confound the standard
high breakdown (HB) estimators. Figure 6.4 shows the RR plot for several
estimators. The BB, MBA and MBALATA estimators, described in Chapter
6, give large absolute residuals for the outliers. Problem 5.9 shows how to
create RR and FF plots.

5.7 MLR Outlier Detection

Do not attempt to build a model on a set of poor data! In human surveys,
one often finds 14–inch men, 1000–pound women, students with “no” lungs,
and so on. In manufacturing data, one can find 10,000 pounds of material

in a 100 pound capacity barrel, and similar obvious errors. All the planning,
and training in the world will not eliminate these sorts of problems. ... In
our decades of experience with “messy data,” we have yet to find a large

data set completely free of such quality problems.
Draper and Smith (1981, p. 418)

There is an enormous literature on outlier detection in multiple linear
regression. Typically a numerical measure such as Cook’s distance or a resid-
ual plot based on resistant fits is used. The following terms are frequently
encountered.

Definition 5.28. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers are
in fact good cases. Swamping occurs if the analysis suggests that one or more
good cases are outliers.
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The following techniques are useful for detecting outliers when the multiple
linear regression model is appropriate.
1) Find the OLS residuals and fitted values and make a response plot and
a residual plot. Look for clusters of points that are separated from the bulk
of the data and look for residuals that have large absolute values. Beginners
frequently label too many points as outliers. Try to estimate the standard
deviation of the residuals in both plots. In the residual plot, look for residuals
that are more than 5 standard deviations away from the r = 0 line.
2) Make an RR plot. See Figures 1.1 and 6.4.
3) Make an FF plot. See Figure 6.3 and Problem 5.9.
4) Display the residual plots from several different estimators. See Figure 1.2.
5) Display the response plots from several different estimators. This can be
done by adding Y to the FF plot.
6) Make a DD plot of the continuous predictors.
7) Make a scatterplot matrix of several diagnostics such as leverages, Cook’s
distances and studentized residuals.
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Fig. 5.8 Residual and Response Plots for the Tremearne Data
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Example 5.12. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable Y .
The five predictor variables used were height when sitting, height when kneel-
ing, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 5.8 presents the OLS residual and response plots for this data
set. Points corresponding to cases with Cook’s distance > min(0.5, 2p/n) are
shown as highlighted squares (cases 3, 44 and 63). The 3rd person was very
tall while the 44th person was rather short. From the plots, the standard
deviation of the residuals appears to be around 10. Hence cases 3 and 44 are
certainly worth examining, but are not necessarily outliers. Two other cases
have residuals near fifty. The plots can be made with the following commands.

source("G:/rpack.txt")

#assume the data is stored in R matrix major

X<-major[,-6]; Y <- major[,6]; MLRplot(X,Y)

Data sets like this one are very common. The majority of the cases seem to
follow a multiple linear regression model with iid Gaussian errors, but a small
percentage of cases seem to come from an error distribution with heavier tails
than a Gaussian distribution.

Detecting outliers is much easier than deciding what to do with them.
After detection, the investigator should see whether the outliers are recording
errors. The outliers may become good cases after they are corrected. But
frequently there is no simple explanation for why the cases are outlying.
Typical advice is that outlying cases should never be blindly deleted and that
the investigator should analyze the full data set including the outliers as well
as the data set after the outliers have been removed (either by deleting the
cases or the variables that contain the outliers).

Typically two methods are used to find the cases (or variables) to delete.
The investigator computes OLS diagnostics and subjectively deletes cases,
or a resistant multiple linear regression estimator is used that automatically
gives certain cases zero weight.

Suppose that the data has been examined, recording errors corrected, and
impossible cases deleted. For example, in the Buxton (1920) data, 5 people
with heights of 0.75 inches were recorded. For this data set, these heights
could be corrected. If they could not be corrected, then these cases should be
discarded since they are impossible. If outliers are present even after correct-
ing recording errors and discarding impossible cases, then we can add two
additional rough guidelines.

First, if the purpose is to display the relationship between the predictors
and the response, make a response plot using the full data set (computing the
fitted values by giving the outliers weight zero) and using the data set with
the outliers removed. Both plots are needed if the relationship that holds for
the bulk of the data is obscured by outliers. The outliers are removed from
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the data set in order to get reliable estimates for the bulk of the data. The
identity line should be added as a visual aid and the proportion of outliers
should be given. Secondly, if the purpose is to predict a future value of the
response variable, then a procedure such as that described in Example 1.5
may be useful. The prediction interval based on the shorth given by Equation
(5.26) may also be useful.

For multiple linear regression, the OLS response and residual plots are
very useful for detecting outliers. The DD plot of the continuous predictors is
also useful. Use the rpack functions MLRplot and ddplot4. Response and
residual plots from outlier resistant methods are also useful. See Chapter 6.

Huber and Ronchetti (2009, p. 154) noted that efficient methods for iden-
tifying leverage groups are needed. Such groups are often difficult to detect
with regression diagnostics and residuals, but often have outlying fitted val-
ues and responses that can be detected with response and residual plots. The
following rules of thumb are useful for finding influential cases and outliers.
The trimmed views estimator of Section 6.1 is also useful. Dragging the plots,
so that they are roughly square, can be useful.

When the bulk of the data follows the unimodal MLR model of Definition
5.13, the following rules of thumb are useful for finding influential cases and
outliers. Look for points with large absolute residuals and for points far away
from Y . Also look for gaps separating the data into clusters. The OLS fit often
passes through a cluster of outliers, causing a large gap between a cluster
corresponding to the bulk of the data and the cluster of outliers. When such
a gap appears, it is possible that the smaller cluster corresponds to good
leverage points: the cases follow the same model as the bulk of the data. To
determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit an MLR estimator such as OLS to the
bulk of the data. Denote the weighted estimator by β̂w. Then plot Ŷw versus
Y using the entire data set. If the identity line passes through the cluster,
then the cases in the cluster may be good leverage points, otherwise they
may be outliers.

To see why gaps are important, suppose that OLS was used to obtain
Ŷ = m̂. If the model contains a constant, then the squared correlation
(corr(Y, Ŷ ))2 is equal to the coefficient of determination R2. Even if an alter-
native MLR estimator is used, R2 over emphasizes the strength of the MLR
relationship when there are two clusters of data since much of the variability
of Y is due to the smaller cluster.

Assume that OLS is used to fit the model and to make the response plot
Ŷ versus Y . Then the ith Cook’s distance CDi tends to be large if Ŷ is far
from the sample mean Y and if the corresponding absolute residual |ri| is not
small. If Ŷ is close to Y then CDi tends to be small unless |ri| is large. An
exception to these rules of thumb occurs if a group of cases form a cluster
and the OLS fit passes through the cluster. Then the CDi’s corresponding
to these cases tend to be small even if the cluster is far from Y .
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Influence diagnostics such as Cook’s distances CDi from Cook (1977)
and the weighted Cook’s distances WCDi from Peña (2005) are some-
times useful. Although an index plot of Cook’s distance CDi may be use-
ful for flagging influential cases, the index plot provides no direct way of
judging the model against the data. As a remedy, cases in the plots with
CDi > min(0.5, 2p/n) are highlighted with open squares, and cases with
|WCDi − median(WCDi)| > 4.5MAD(WCDi) are highlighted with crosses,
where the median absolute deviation MAD(wi) = median(|wi−median(wi)|).

Example 5.11 (continued): Figure 5.9 shows the response plot and
residual plot for the Buxton data. Notice that the OLS fit passes through
the outliers, but the response plot is resistant to Y –outliers since Y is on the
vertical axis. Also notice that although the outlying cluster is far from Y ,
only two of the outliers had large Cook’s distance and only one case had a
large WCDi. Hence masking occurred for the Cook’s distances, the WCDi

and for the OLS residuals, but not for the OLS fitted values. Figure 6.1 shows
that plots using lmsreg and ltsreg were similar, but MBA was effective.
Figure 5.9 was made with the following R commands.

source("G:/rpack.txt"); source("G:/robdata.txt")

mlrplot4(buxx,buxy) #right click Stop twice

High leverage outliers are a particular challenge to conventional numerical
MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 6.1
is also effective for detecting outliers and other departures from the MLR
model.)

Example 5.13. Hawkins et al. (1984) present a well known artificial data
set where the first 10 cases are outliers while cases 11-14 are good leverage
points. Figure 5.10 shows the residual and response plots based on the OLS
estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n), and
the identity line is shown in the response plot. Since the good cases 11-14
have the largest Cook’s distances and absolute OLS residuals, swamping has
occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 6.1 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity line
often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
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response plot and residual plot is usually able to detect the outliers. The
CDi and WCDi are the most effective when there is a single cluster about
the identity line as in Example 5.12. If there is a second cluster of outliers or
good leverage points or if there is nonconstant variance, then these numerical
diagnostics tend to fail.

Example 5.14. Wood (1973) provides data where the octane number is
predicted from 3 feed compositions and the log of a combination of process
conditions. The OLS response and residual plots in Figure 5.11 suggest that
the model is linear but the constant variance assumption may not be rea-
sonable. There appear to be three groups of data. For this data, none of the
cases had large CDi or WCDi. Tremendous profit can be gained by raising
the octane number by one point, and the two cases with the largest fitted
values Ŷ ≈ 97 were of the greatest interest.

FIT

Y

90 92 94 96

9
0

9
2

9
4

9
6

Response Plot

FIT

R
E

S

90 92 94 96

-1
.0

-0
.5

0
.0

0
.5

1
.0

Residual Plot

Fig. 5.11 Octane Data

5.8 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X,Y ) = T (X ,Y ), (5.32)

the vector of predicted values is
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Ŷ = Ŷ (X,Y ) = Xβ̂(X ,Y ), (5.33)

and the vector of residuals is

r = r(X ,Y ) = Y − Ŷ . (5.34)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W ,Z) is the new data set.

Definition 5.29. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X ,Y + Xu) = T (X ,Y + Xu) = T (X ,Y ) + u = β̂(X ,Y ) + u. (5.35)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W ,Z) =

Z − Ẑ = r(X ,Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .
Also see Problem 5.6.

Definition 5.30. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X ,Y ) = cβ̂(X ,Y ). (5.36)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X ,Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 5.31. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA,Y ) = T (XA,Y ) = A−1T (X ,Y ) = A−1β̂(X ,Y ). (5.37)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA,Y ) =

XAA−1β̂(X,Y ) = Ŷ , and r(XA,Y ) = Z − Ẑ = Y − Ŷ = r(X,Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 5.32. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P T P = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX ,PY ) = T (P X,P Y ) = T (X,Y ) = β̂(X,Y ). (5.38)
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Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X ,PY ) =
P r(X ,Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p+ 1) augmented matrix (X ,Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 5.3. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 7.11 is used to fit the data with Z = Wη +e.
Then obtain β̂ from η̂.

The remainder of this section gives a standard definition of breakdown and
then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated
cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 5.33. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T,W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 5.34. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.
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Theorem 5.11. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 5.33.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
In the literature it is usually assumed that the original data are in general
position: q = p− 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)
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If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 5.35. Let y be an n× 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ Rn with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ Rn and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in Rn.

Definition 5.36. Let G be an n× p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n× p matrices G and H .

Example 5.15. The q-norm of a vector y is ‖y‖q = (|y1|q + · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q

‖y‖q
. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GT G. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (5.39)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (5.40)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (5.41)
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1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (5.42)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 5.16. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (5.40), (5.41),
and (5.42). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 5.17. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression

model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 5.12. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]
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where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) <∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of
cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

5.9 MLR Concentration Algorithms

Resistant estimators are often created by computing several trial fits bi that
are estimators of β. Then a criterion is used to select the trial fit to be used
in the resistant estimator.

Definition 5.37. Suppose c = cn ≈ n/2. The LMS(c) criterion is

QLMS(b) = r2(c)(b) (5.43)

where r2(1) ≤ · · · ≤ r2(n) are the ordered squared residuals, and the LTS(c)
criterion is

QLTS(b) =

c∑

i=1

r2(i)(b). (5.44)

The LTA(c) criterion is

QLTA(b) =

c∑

i=1

|r(b)|(i) (5.45)

where |r(b)|(i) is the ith ordered absolute residual.
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Three impractical high breakdown robust estimators are the Hampel
(1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ Rp that minimizes
the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
too long to compute. LTS and LTA are

√
n consistent while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.

Concentration algorithms are widely used since impractical brand name
estimators, such as LMS, LTA, and LTS, take too long to compute. The
FLTS concentration algorithm, defined in Definition 5.40, use K starts and
attractors. The letter “F” is used since a fixed number of K starts, such as
K = 500, is used. A start is an initial estimator of β, and an attractor is an
estimator of β obtained by refining the start. For example, let the start be
an estimator b of β. Find the half set of cn cases with the smallest squared
residuals r2i where ri(b) = Yi −xT

i b. Compute OLS on this set. This process
could be iterated for k concentration steps, producing an attractor.

Definition 5.38. For multiple linear regression, an elemental set is a set
of p cases.

Some notation is needed for algorithms that use many elemental sets. Let

J ≡ Jm = {m1, ..., mp}

denote the set of indices for the mth elemental set. Since there are n cases,
m1, ..., mp are p distinct integers between 1 and n. For example, if n = 7 and
p = 3, the first elemental set may use cases J1 = {1, 7, 4}, and the second
elemental set may use cases J2 = {5, 3, 6}. The data for the mth elemental
set is (Y Jm ,XJm) where Y Jm = (Ym1, ..., Ymp)

T is a p × 1 vector, and the
p× p matrix

XJm =




xT
m1

xT
m2
...

xT
mp


 =




xm1,1 xm1,2 . . . xm1,p

xm2,1 xm2,2 . . . xm2,p

...
...

. . .
...

xmp,1 xmp,2 . . . xmp,p


 .

Then the elemental fit is a hyperplane that passes through the p cases of the
elemental set. For p = 2, the hyperplane is a line.

Definition 5.39. The elemental fit from the ith elemental set Ji is the
OLS estimator β̂Ji

= (XT
Ji

XJi)
−1XT

Ji
Y Ji = X−1

Ji
Y Ji applied to the cases

corresponding to the elemental set provided that the inverse of XJi exists.
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Definition 5.40. A start is an initial trial fit and an attractor is the final
fit generated by the algorithm from the start. Let b0,j be the jth start and
compute all n residuals ri(b0,j) = Yi − xT

i b0,j. Let bn/2c ≤ cn ≤ bn/2c +
b(p + 1)/2c. i) For an FLTS concentration algorithm, at the next iteration,
the OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding
to the smallest squared residuals r2i (b0,j). This iteration can be continued for
k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. The result
of the iteration bk,j is called the jth attractor where j = 1, ..., K. The final
FLTS concentration algorithm estimator uses the attractor that minimizes
the LTS criterion.

ii) For an FLTA concentration algorithm, at the next iteration, the L1

estimator b1,j is computed from the cn ≈ n/2 cases corresponding to the
smallest absolute residuals |ri(b0,j)|. This iteration can be continued for k
steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j where bk,j is
the jth attractor and j = 1, ..., K. The final FLTA concentration algorithm
estimator uses the attractor that minimizes the LTA criterion.

iii) The FLMS concentration algorithm uses the L∞ estimator and the
LMS criterion.

Using k = 10 concentration steps often works well, and the basic resam-
pling algorithm is a special case with k = 0 concentration steps, i.e., the
attractors are the starts.

Definition 5.41. The elemental basic resampling algorithm uses K ele-
mental starts that are equal to the attractors (hence k = 0). Compute the
attractors b0,1, ..., b0,K, and the elemental basic resampling estimator uses
the attractor that minimizes the (e.g. LMS, LTA, or LTS) criterion.

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g.K = 500. Note that an estimator can not be consistent for θ unless
the number of randomly selected cases goes to ∞, except in degenerate situa-
tions. The following theorem shows the widely used elemental estimators are
zero breakdown estimators. (If K = Kn → ∞, then the elemental estimator
is zero breakdown if Kn = o(n). A necessary condition for the elemental basic
resampling estimator to be consistent is Kn → ∞.)

Theorem 5.13: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

Remark 5.4. The number of randomly selected elemental sets needs to
go to ∞ as n → ∞ to get a consistent estimator. The L1 estimator and
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b) The Attractor for the Start

Fig. 5.12 The Highlighted Points are More Concentrated about the Attractor

the sample median (when n is odd) are consistent and both estimators are
determined by an elemental set, but all n cases are used to choose those
elemental sets.

Remark 5.5. Theorem 5.13 shows that shows that the elemental basic
resampling PROGRESS estimators of Rousseeuw (1984) and Rousseeuw and
Leroy (1987) are zero breakdown and inconsistent. Yohai’s two stage estima-
tors, such as MM, need initial consistent high breakdown estimators such as
LMS, but were implemented with the inconsistent zero breakdown elemental
estimators such as lmsreg. See Hawkins and Olive (2002, p. 157). You can
get consistent estimators if K = Kn → ∞. If the concentration algorithm is
iterated to convergence, it is not known whether the resulting estimator is
consistent or not. The Hubert et al. (2008) claim that LTS can be computed
efficiently by FLTS = Fast-LTS is false. See similar results below Theorem
3.15 for multivariate location and dispersion.

Example 5.18. As an illustration of the FLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The re-
sponse Y is the log brain weight and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of

the c = 14 smallest absolute residuals

14∑

i=1

|r|(i)(b0,1) = 12.101. Figure 5.12a
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b) The Corresponding Attractors

Fig. 5.13 Starts and Attractors for the Animal Data

shows the scatterplot of x and y. The start is also shown and the 14 cases
corresponding to the smallest absolute residuals are highlighted. The L1 fit to

these c highlighted cases is b1,1 = (2.076, 0.979)T and

14∑

i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
absolute residuals, obtaining the corresponding L1 fit and repeating. The
attractor ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated

at the attractor is

14∑

i=1

|r|(i)(ba,1) = 2.172. Figure 5.12b shows the attractor

and that the c highlighted cases corresponding to the smallest absolute resid-
uals are much more concentrated than those in Figure 5.12a. Figure 5.13a
shows 5 randomly selected starts while Figure 5.13b shows the corresponding
attractors. Notice that the elemental starts have more variability than the
attractors, but if the start passes through an outlier, so does the attractor.

Remark 5.6. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms that use K elemental sets decreases rapidly
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as p increases. All practical estimators have outlier configurations where they
perform poorly. If p is small, elemental algorithms tend to have trouble when
there is a weak regression relationship for the bulk of the data and a cluster
of outliers that are not good leverage points (do not fall near the hyperplane
followed by the bulk of the data). The Buxton (1920) data set is an example.

Suppose the MLR data set has n cases where d are outliers and n− d are
“clean” (not outliers). The the outlier proportion γ = d/n. Suppose that K
elemental sets are chosen with replacement and that it is desired to find K
such that the probability P(that at least one of the elemental sets is clean)
≡ P1 ≈ 1 − α where α = 0.05 is a common choice. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1− [1− (1− γ)p]K by independence. Hence
α ≈ [1− (1 − γ)p]K or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(5.46)

using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Figures 3.9–
3.15.

Table 5.4 Largest p for a 95% Chance of a Clean Subsample.

K
γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952
0.05 99 134 158 203 247 292 337 382
0.10 48 65 76 98 120 142 164 186
0.15 31 42 49 64 78 92 106 120
0.20 22 30 36 46 56 67 77 87
0.25 17 24 28 36 44 52 60 68
0.30 14 19 22 29 35 42 48 55
0.35 11 16 18 24 29 34 40 45
0.40 10 13 15 20 24 29 33 38
0.45 8 11 13 17 21 25 28 32
0.50 7 9 11 15 18 21 24 28

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
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p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 5.13.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(5.47)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Table 5.4 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given by
Equation (5.47). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contami-
nation proportion γ = 0.5. Since clean elemental fits have great variability,
an algorithm needs to produce many clean fits in order for the best fit to
be good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

Theorem 5.14. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (5.48)

Proof. As in Remark 3.5, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �

The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
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every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

Theorem 5.15. If the clean data are in general position and if a high
breakdown start is added to an FLTA, FLTS, or FLMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn. Then QLTS(b1m) =

cn∑

i=1

r2(i)(b1m) ≤
cn∑

j=1

r2ij
(b1m) ≤

cn∑

j=1

r2ij
(b0m) =

cn∑

j=1

r2(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 5.15 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 6.15.

Definition 5.42. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 5.16. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.

Proof. The start can be taken to be β̂w with w = 1 from Theorem 5.12.

Since the start is high breakdown, so is the attractor β̂B by Theorem 5.15.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
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estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2i (β̂))/MED(r2i (β)) → 1 as
n→ ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 5.17. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2i (β̂C)) ≤ MED(r2i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2i (β̂C)) → MED(e2) in probability where MED(e2) is the population
median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

5.10 Complements

Following Cook and Weisberg (1999a, p. 396), a residual plot is a plot of a
function of the predictors versus the residuals r, while a model checking plot
is a plot of a function of the predictors versus the response. Researchers need
to know what are the most important residual and model checking plots. For
the 1D regression model of Definition 1.1, the most important model checking
plot is the response plot of ĥ(x) versus Y , and the most important residual

plot is the plot of ĥ(x) versus r. If p = 1 so there is a single predictor x, then

h(x) = ĥ(x) = x and the response plot is widely used. For p > 2 the response
plot is more important than any residual plot, but is not yet widely used.

Application 5.1 was suggested by Olive (2004b). An advantage of this
graphical method is that it works for linear models: that is, for multiple lin-
ear regression and for many experimental design models. Notice that if the
plotted points in the transformation plot follow the identity line, then the plot
is also a response plot. The method is also easily performed for MLR meth-
ods other than least squares. Plotting the residual plots can also be useful,
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but they do not distinguish between nonlinear monotone relationships and
nonmonotone relationships. See Fox (1991, p. 55). Response, residual, and
transformation plots also very useful for outlier detection for linear models.

Cook and Olive (2001) also suggest a graphical method for selecting and
assessing response transformations for linear models where the “transforma-
tion plot” of Ẑi versus Wi is made for each of the seven values of λ ∈ ΛL.

In a classic paper, Box and Cox (1964) developed numerical methods for
estimating λo in the family of power transformations. This method also works
for many experimental design models. It is well known that the Box–Cox
normal likelihood method for estimating λo can be sensitive to remote or
outlying observations. Also see Tukey (1957). Yeo and Johnson (2000) provide
a family of transformations that does not require the variables to be positive.

Section 5.4 followed Olive (2007) closely. See Di Bucchianico, Einmahl, and
Mushkudiani (2001) for related intervals for the location model and Preston
(2000) for related intervals for MLR. For a review of prediction intervals, see
Patel (1989). Cai, Tian, Solomon, and Wei (2008) show that the Olive (2007)
intervals are not optimal for symmetric bimodal distributions. Some refer-
ences for PIs based on robust regression estimators are given by Giummolè
and Ventura (2006). Chapter 7 gives PIs for after variable selection.

Excellent introductions to OLS diagnostics include Fox (1991) and Cook
and Weisberg (1999a, p. 161-163, 183-184, section 10.5, section 10.6, ch. 14,
ch. 15, ch. 17, ch. 18, and section 19.3). Hoaglin and Welsh (1978) examines
the hat matrix while Cook (1977) introduces Cook’s distance. Some other pa-
pers of interest include Hettmansperger and Sheather (1992), Velilla (1998),
and Velleman and Welsch (1981).

Olive (2005) suggests using residual, response, RR, and FF plots to detect
outliers while Hawkins and Olive (2002, p. 141, 158) suggest using the RR
and FF plots. The four plots are best for n > 5p. Typically RR and FF
plots are used if there are several estimators for one fixed model, e.g. OLS
versus L1 or frequentist versus Bayesian for multiple linear regression, or if
there are several competing models. An advantage of the FF plot is that the
response Y can be added to the plot. FF and RR plots are useful for variable
selection. Park, Kim, and Kim (2012) show response plots are competitive
with the best robust regression methods for outlier detection on some outlier
data sets that have appeared in the literature.

Rousseeuw and van Zomeren (1990) suggest that Mahalanobis distances
based on “robust estimators” of location and dispersion can be more useful
than the distances based on the sample mean and covariance matrix. They
show that a plot of robust Mahalanobis distances RDi versus residuals from
“robust regression” can be useful.

Several authors have suggested using the response plot to visualize the
coefficient of determination R2 in multiple linear regression. See for example
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Chambers, Cleveland, Kleiner, and Tukey (1983, p. 280). Anderson-Sprecher
(1994) provides an excellent discussion about R2.

The fact that response plots are extremely useful for model assessment
and for detecting influential cases and outliers for an enormous variety of
statistical models does not seem to be well known. Certainly in any multiple
linear regression analysis, the response plot and the residual plot of Ŷ versus
r should always be made. Section 5.4 and Olive (2007) use the response plot
to explain prediction intervals.

For more on the behavior of fits from randomly selected elemental sets,
see Hawkins and Olive (2002), Olive (2008), and Olive and Hawkins (2007a).

5.11 Problems

Problems with an asterisk * are especially important.

5.1. Show that the hat matrix H = X(XT X)−1XT is idempotent, that
is, show that HH = H2 = H .

5.2. Show that I −H = I −X(XT X)−1XT is idempotent, that is, show
that (I − H)(I − H) = (I − H)2 = I − H.

Output for Problem 5.3 Coefficient Estimates Response = height

Label Estimate Std. Error t-value p-value

Constant 227.351 65.1732 3.488 0.0008

sternal height 0.955973 0.0515390 18.549 0.0000

finger to ground 0.197429 0.0889004 2.221 0.0295

R Squared: 0.879324 Sigma hat: 22.0731

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 259167. 129583. 265.96 0.0000

Residual 73 35567.2 487.222

5.3. The output above is from the multiple linear regression of the response
Y = height on the two nontrivial predictors sternal height = height at shoulder
and finger to ground = distance from the tip of a person’s middle finger to
the ground.

a) Consider the plot with Yi on the vertical axis and the least squares
fitted values Ŷi on the horizontal axis. Sketch how this plot should look if the
multiple linear regression model is appropriate.

b) Sketch how the residual plot should look if the residuals ri are on the
vertical axis and the fitted values Ŷi are on the horizontal axis.
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c) From the output, are sternal height and finger to ground useful for
predicting height? (Perform the ANOVA F test.)

5.4. Suppose that the scatterplot of X versus Y is strongly curved rather
than ellipsoidal. Should you use simple linear regression to predict Y from
X? Explain.

5.5. Suppose that the 95% confidence interval for β2 is [−17.457, 15.832].
Suppose only a constant and X2 are in the MLR model. Is X2 a useful linear
predictor for Y ? If your answer is no, could X2 be a useful predictor for Y ?
Explain.

5.6. Assume that the model has a constant β1 so that the first column of
X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.

5.7. By the OLS CLT, under mild regularity conditions,
√
n(β̂ − β)

D→
Np(0,V ). If A is a constant k × p matrix with rank k, what is the limiting

distribution of A
√
n(β̂ − β) =

√
n(Aβ̂ − Aβ)?

Problems using R. Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. tplot, will display the code for the function. Use the
args command, e.g. args(tplot), to display the needed arguments for the
function.

5.8∗. a) Download the R function tplot that makes the transformation
plots for λ ∈ ΛL.

b) Use the following R command to make a 100 × 3 matrix. The columns
of this matrix are the three nontrivial predictor variables.

nx <- matrix(rnorm(300),nrow=100,ncol=3)

Use the following command to make the response variable Y.

y <- exp( 4 + nx%*%c(1,1,1) + 0.5*rnorm(100) )

This command means the MLR model log(Y ) = 4+X2 +X3 +X4 +e will
hold where e ∼ N(0, 0.25).

To find the response transformation, you need the program tplot given
in a). Type ls() to see if the programs were downloaded correctly.

c) To make the transformation plots type the following command.

tplot(nx,y)
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The first plot will be for λ = −1. Move the cursor to the plot and hold the
rightmost mouse key down (and in R, highlight stop) to go to the next
plot. Repeat these mouse operations to look at all of the plots. The identity
line is included in each plot. When you get a plot where the plotted points
cluster about the identity line with no other pattern, include this transfor-
mation plot in Word by pressing the Ctrl and c keys simultaneously. This
will copy the graph. Then in Word use the menu commands “File>Paste”.
You should get the log transformation.

d) Type the following commands.

out <- lsfit(nx,log(y))

ls.print(out)

Use the mouse to highlight the created output and include the output in
Word.

e) Write down the least squares equation for ̂log(Y ) using the output in
d).

5.9. a) Download the R functions piplot and pisim.

b) The command pisim(n=100, type = 1) will produce the mean
length of the classical, semiparametric, conservative and asymptotically op-
timal PIs when the errors are normal, as well as the coverage proportions.
Give the simulated lengths and coverages.

c) Repeat b) using the command pisim(n=100, type = 3). Now the
errors are EXP(1) - 1.

d) Download robdata.txt and type the command
piplot(cbrainx,cbrainy). This command gives the semiparametric PI
limits for the Gladstone data. Include the plot in Word.

e) The infants are in the lower left corner of the plot. Do the PIs seem to
be better for the infants or the bulk of the data? Explain briefly.

5.10∗. a) After entering the two source commands above, enter the fol-
lowing command.

> MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys to
make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping or masking?
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c) RR plots: One feature of the MBA estimator (see Chapter 6) is that it
depends on the sample of 7 centers drawn and changes each time the function
is called. In ten runs, about seven plots will look like Figure 6.1, but in about
three plots the MBA estimator will also pass through the outliers. Make the
RR plot by pasting the commands for this problem into R, and include the
plot in Word.

d) FF plots: the plots in the top row will cluster about the identity line if
the MLR model is good or if the fit passes through the outliers. Make the FF
plot by pasting the commands for this problem into R, and include the plot
in Word.

5.11. a) If necessary, enter the two source commands above Problem 5.7.
The diagplot function makes a scatterplot matrix of various OLS diagnos-
tics.

b) Enter the following command and include the resulting plot in Word.

> diagplot(buxx,buxy)

5.12. This problem fits OLS to n inliers and k outliers. The inliers follow
the model Y = x+e (the mean function is the identity line) while the outliers
are a near point mass with (x, y) ≈ (20,−20). Copy and paste the commands
for this problem into R. Then copy and paste the four plots into Word.

The first three plots a), b), and c) use 1 outlier and n = 10, 100, and 1000.

The OLS line Ŷ = β̂1 + β̂2x is added to each plot. When n = 10, the OLS
line is tilted away from the identity line. There is still some tilt for n = 100
but little tilt for n = 1000. Plot d) uses 40 outliers but 10000 inliers, and the
OLS line is close to the identity line. (The outlier resistance occurs since OLS
minimizes

∑
r2i . If the OLS line goes through the outliers, then the inliers

are fit badly. If there are enough inliers, then fitting the inliers well and the
outliers poorly leads to a lower OLS criterion than fitting the outliers well.
One outlier can tilt OLS arbitrarily badly, but the one outlier needs to be
very far from the bulk of the data if the number of inliers is large. A small
percentage of outliers, e.g. 1%, can tilt OLS even if the outliers are not very
fall from the bulk of the data.)





Chapter 6

Robust and Resistant Regression

The brand name high breakdown regression estimators discussed in the last
chapter take too long to compute, but the LMS, LTA, and LTS criteria are
used in practical regression algorithms to screen attractors. The practical
algorithms in the literature tend to be zero breakdown and inconsistent.
Chapter 5 showed that the response plot is useful for detecting MLR out-
liers, defined MLR breakdown, and the MLR concentration algorithm. This
chapter gives several practical outlier resistant MLR estimators that are

√
n

consistent.

6.1 Resistant Multiple Linear Regression

The first outlier resistant regression method was given by Application 3.3.
Call the estimator the MLD set MLR estimator. Let the ith case wi =
(Yi,x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Now let D be the RMVN set U , the RFCH set V , or the covmb2
set B. Find D by applying the MLD estimator to the ui, and then run the
MLR method on the m cases wi corresponding to the set D indices i1, ..., im,
where m ≥ n/2. The set B can be used even if p > n. The theory of the
MLR method applies to the cleaned data set since Y was not used to pick
the subset of the data. Efficiency can be much lower since m cases are used
where n/2 ≤ m ≤ n, and the trimmed cases tend to be the “farthest” from
the center of u. The rpack function getu gets the RMVN set U . See the
following R code for the Buxton (1920) data where we could use the covmb2
set B instead of the RMVN set U by replacing the command getu(x) by
getB(x).

Y <- buxy

x <- buxx

indx <- getu(x)$indx #u = x for this example

257



258 6 Robust and Resistant Regression

Yc <- Y[indx]

Xc <- x[indx,]

length(Y) - length(Yc) #the RMVN set (= cleaned data)

#omitted 4 inliers and 5 outliers

MLRplot(Xc,Yc) #right click Stop two times,

#response plot for cleaned data

out<-lsfit(Xc,Yc)

ESP <- x%*%out$coef[-1] + out$coef[1]

plot(ESP,Y)

abline(0,1) #response plot using the resistant

#MLR estimator and all of the data

A good resistant estimator is the Olive (2005a) median ball algorithm
(MBA or mbareg). The Euclidean distance of the ith vector of predictors xi

from the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p+3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits (attractors)
are generated and the MBA estimator is the fit that minimizes the criterion.
The median squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, the
MBA estimator is a

√
n consistent estimator of the same parameter vector β

estimated by OLS under mild conditions on the zero mean error distribution.
This result occurs since each of the 7K + 1 attractors is

√
n consistent when

there are no outliers. See Remark 6.1 and Theorem 6.1.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T,C)
is computed and used to create the squared Mahalanobis distances D2

i for
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each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (6.1)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from the MLD set MLR estimator
that uses the MLD set on the xi, since the MLD set uses a random amount
of trimming. (The ellipsoidal trimming technique can also be used for other
regression models, and the theory of the regression method tends to apply
to the method applied to the cleaned data that was not trimmed since the
response variables were not used to select the cases. See Chapter 9.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The Olive (2005a) resistant trimmed views estimator combines ellipsoidal
trimming and the response plot. First compute (T,C) on the xi, perhaps
using the RMVN estimator. Trim the M% of the cases with the largest Ma-
halanobis distances, and then compute the MLR estimator β̂M from the
remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate

ten response plots of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer

plots are used for small data sets if β̂M can not be computed for large M .)
These plots are called “trimmed views.” The TV estimator will also be called
the tvreg estimator. Since each of the 10 attractors β̂M is

√
n consistent,

so is the TV estimator. See Theorem 6.1.

Definition 6.1. The trimmed views (TV) estimator β̂T,n corresponds to
the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 6.1. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well over
five feet! OLS was used on the cases remaining after trimming, and Figure
6.1 shows four trimmed views corresponding to 90%, 70%, 40%, and 0% trim-
ming. The OLS TV estimator used 70% trimming since this trimmed view
was best. Since the vertical distance from a plotted point to the identity line
is equal to the case’s residual, the outliers had massive residuals for 90%,
70%, and 40% trimming. Notice that the OLS trimmed view with 0% trim-
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ming “passed through the outliers” since the cluster of outliers is scattered
about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n,Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959). See Theorems
6.1 and 11.17.
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Fig. 6.1 4 Trimmed Views for the Buxton Data

Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of
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(
XT

M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√
n(β̂M,n − β) ∼ Np(0, σ2(XT

M,nXM,n/n)−1). Notice that this result

does not imply that the distribution of β̂T,n is normal.

Remark 6.1. When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators
do estimate the same β as OLS asymptotically, but samples may need to
be huge before the MBA and trimmed views estimates of the constant are
close to the OLS estimate of the constant. If the trimmed views estimator
is modified so that the LTS, LTA, or LMS criterion is used to select the
final estimator, then a conjecture is that the limiting distribution is similar

to that of the variable selection estimator:
√
n(β̂MTV − β)

D→ ∑k
i=1 πiwi

where 0 ≤ πi ≤ 1 and
∑k

i=1 πi = 1. The index i corresponds to the fits
considered by the modified trimmed views estimator with k = 10. For the
MBA estimator and the modified trimmed views estimator, the prediction
region method, described in Section 7.5, may be useful for testing hypotheses.
Large sample sizes may be needed if the error distribution is not symmetric
since the constant β̂1 needs large samples. See Olive (2017b, p. 444) for
an explanation for why large sample sizes may be needed to estimate the
constant.

6.1.1 The rmreg2 Estimator

The Olive (2017b) robust multiple linear regression estimator rmreg2 is the
classical multiple linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi)

T for i = 1, ..., n.
Hence ui is the ith case with xi1 = 1 deleted. This estimator is one of the most
outlier resistant practical robust MLR estimators. The rmreg2 estimator has
been shown to be consistent if the ui are iid from a large class of elliptically
contoured distributions, which is a much stronger assumption than having
iid errors ei.
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First we will review some results for multiple linear regression. Let x =
(1,wT )T and let

Cov(w) = E[(w − E(w))(w − E(w))T] = Σw

and Cov(w, Y ) = E[(w − E(w))(Y − E(Y ))] = ΣwY . Let β = (α,ηT )T

be the population OLS coefficients from the regression of Y on x (w and a
constant), where α is the constant and η is the vector of slopes. Let the OLS

estimator be β̂ = (α̂, η̂T )T . Then the population coefficients from an OLS
regression of Y on x are

α = E(Y ) − ηTE(w) and η = Σ−1
w ΣwY. (6.2)

Then the OLS estimator β̂ = (XT X)−1XT Y . The sample covariance
matrix of w is

Σ̂w =
1

n− 1

n∑

i=1

(wi−w)(wi−w)T where the sample mean w =
1

n

n∑

i=1

wi.

Similarly, define the sample covariance vector of w and Y to be

Σ̂wY =
1

n− 1

n∑

i=1

(wi − w)(Yi − Y ).

Suppose that (Yi,w
T
i )T are iid random vectors such that Σ−1

w and ΣwY

exist. Then a second way to compute the OLS estimator is

α̂ = Y − η̂
T
w

P→ α

and
η̂ = Σ̂

−1

w Σ̂wY
P→ η as n → ∞.

A common technique to try to get a robust MLR estimator is to plug
a robust MLD estimator (T,C) for the above quantities. These techniques
were not very good because the robust MLD estimators were poor before the
FCH, RFCH, and RMVN estimators. The rmreg2 estimator is the OLS es-
timator computed from the cases in the RMVN set and the plug in estimator
where (T,C) is the sample mean and sample covariance matrix applied to
the RMVN set when RMVN is applied to vectors ui for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µu, c Σu) if the

ui are iid from a large class of ECp(µu,Σu, g) distributions. Thus rmreg2
estimator is a

√
n consistent estimators of β if the ui are iid from a large

class of elliptically contoured distributions. This assumption is quite strong,
but the robust estimator is useful for detecting outliers. When there are cat-
egorical predictors or the joint distribution of u is not elliptically contoured,
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it is possible that the robust estimator is bad and very different from the
good classical least squares estimator.

The rpack function rmreg2 computes the rmreg2 estimator and produces
the response and residual plots. The function rmreg3 computes the estimator
without the plots. See the following R code.

rmreg2(buxx,buxy) #right click Stop 2 times

rmreg3(buxx,buxy)

The conditions under which the rmreg2 estimator has been shown to
be

√
n consistent are quite strong, but it seems likely that the estimator is

a
√
n consistent estimator of β under mild conditions where the parameter

vector β is not, in general, the parameter vector estimated by OLS. For MLR,
the rpack function rmregboot bootstraps the rmreg2 estimator, and the
function rmregbootsim can be used to simulate rmreg2. Both functions
use the residual bootstrap where the residuals come from OLS. See the R
code below.

out<-rmregboot(belx,bely)

plot(out$betas)

ddplot4(out$betas) #right click Stop

out<-rmregboot(cbrainx,cbrainy)

ddplot4(out$betas) #right click Stop

6.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This section
follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2020. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 5.13.

The following theorem is powerful because it does not depend on the cri-
terion used to choose the attractor, and proves that the mbareg and tvreg

estimators are
√
n consistent. Suppose there are K consistent estimators β̂j

of β, each with the same rate nδ. If β̂A is an estimator obtained by choosing

one of the K estimators, then β̂A is a consistent estimator of β with rate nδ

by Pratt (1959). See Theorem 11.17.
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Theorem 6.1. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n→ ∞. �

The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 6.2. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 6.2. Theorem 5.11 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
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a high breakdown start results in a high breakdown attractor. See Theorem
5.15.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values of
the outliers are large enough, the |ri| values of the outliers will be large, sug-
gesting that the high breakdown estimator is useful for outlier detection. On
the other hand, if the Yi’s are fixed at any values and the x values perturbed,
sufficiently large x-outliers tend to drive the slope estimates to 0, not ∞. For
many estimators, including LTS, LMS, and LTA, a cluster of Y outliers can
be moved arbitrarily far from the bulk of the data but still, by perturbing
their x values, have arbitrarily small residuals. See Example 6.2.

Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 5.42
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 6.2. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√
n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 6.3. Assume the clean data are in general position, and suppose
that both β̂L and β̂C are consistent estimators of β where the regression
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model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n→ ∞,

consistent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗
L(β̂L), it

follows that Q∗
L(β̂C) −Q∗

L(β̂L) → 0 in probability, while Q∗
L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < amin(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �

Remark 6.3. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiva-
lent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n→ ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√
n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√
n consistent estimator of β when β̂C = OLS is

a
√
n consistent estimator of β, but massive sample sizes were still needed to

get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

The situation is worse for multivariate linear regression when hbreg is
used instead of OLS, since there are m constants to be estimated. If the
distribution of the iid error vectors ei is not elliptically contoured, getting
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all m mbareg estimators to estimate all m constants well needs even larger
sample sizes.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS
criteria. We want a near 1 so that hbreg has outlier resistance similar to
β̂A, but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice. The
default hbreg program from rpack uses the

√
n consistent outlier resistant

estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

Next we will show that the hbreg estimator implemented with a = 1.4
using QLTA, β̂C = OLS, and β̂B can greatly improve the estimator β̂A. We

will use β̂A = ltsreg in R and Splus 2000. Depending on the implemen-
tation, the ltsreg estimators use the elemental resampling algorithm, the
elemental concentration algorithm, or a genetic algorithm. Coverage is 50%,
75%, or 90%. The Splus 2000 implementation is an unusually poor genetic
algorithm with 90% coverage. The R implementation appears to be the zero
breakdown inconsistent elemental basic resampling algorithm that uses 50%
coverage. The ltsreg function changes often.

Simulations were run in R with the xij (for j > 1) and ei iid N(0, σ2)

and β = 1, the p× 1 vector of ones. Then β̂ was recorded for 100 runs. The
mean and standard deviation of the β̂j were recorded for j = 1, ..., p. For
n ≥ 10p and OLS, the vector of means should be close to 1 and the vector
of standard deviations should be close to 1/

√
n. The

√
n consistent high

breakdown hbreg estimator performed like OLS if n ≈ 35p and 2 ≤ p ≤ 6,
if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table
7.7 for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg,
and BB denotes β̂B. In the simulations, hbreg estimated the slopes well for
the highly skewed lognormal data, but not the OLS constant. Use the rpack
function hbregsim.
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Table 6.1 MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231
sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019
sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374
sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752
sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214
sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794
sd 0.1273 0.1084 0.1215 0.1206 0.1269

As implemented in rpack, the hbreg estimator is a practical
√
n consistent

high breakdown estimator that appears to perform like OLS for moderate n
if the errors are unimodal and symmetric, and to have outlier resistance
comparable to competing practical “outlier resistant” estimators.

The hbreg, lmsreg, ltsreg, OLS, and β̂B estimators were compared
on the same 25 benchmark data sets. Also see Park et al. (2012). The HB

estimator β̂B was surprisingly good in that the response plots showed that it
was the best estimator for 2 data sets and that it usually tracked the data, but
it performed poorly in 7 of the 25 data sets. The hbreg estimator performed
well, but for a few data sets hbreg did not pick the attractor with the best
response plot, as illustrated in the following example.

Example 6.2. The LMS, LTA, and LTS estimators are determined by a
“narrowest band” covering half of the cases. Hawkins and Olive (2002) sug-
gested that the fit will pass through outliers if the band through the outliers
is narrower than the band through the clean cases. This behavior tends to
occur if the regression relationship is weak, and if there is a tight cluster of
outliers where |Y | is not too large. Also see Wang and Suter (2003). As an
illustration, Buxton (1920, pp. 232-5) gave 20 measurements of 88 men. Con-
sider predicting stature using an intercept, head length, nasal height, bigonal
breadth, and cephalic index. One case was deleted since it had missing values.
Five individuals, numbers 61-65, were reported to be about 0.75 inches tall
with head lengths well over five feet! Figure 6.2 shows the response plots for
hbreg, OLS, ltsreg, and β̂B . Notice that only the fit from β̂B (BBFIT) did
not pass through the outliers, but hbreg selected the OLS attractor. There
are always outlier configurations where an estimator will fail, and hbreg

should fail on configurations where LTA, LTS, and LMS would fail.
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Fig. 6.2 Response Plots Comparing Robust Regression Estimators

The rpack functions ffplot2 and rrplot2 make FF and RR plots using
OLS, ALMS from lmsreg, ALTS from ltsreg, mbareg, an outlier detector
mbalata, BB, and rmreg2. The mbalata estimator is described in Olive
(2017b,

∮
12.6.2). OLS, BB, and mbareg are the three trial fits used by the

default version of the
√
n consistent high breakdown hbreg estimator. The

top row of ffplot2 shows the response plots. The R code below is useful
and shows how to get some of the text’s data sets into R.

library(MASS)

rrplot2(buxx,buxy)

ffplot2(buxx,buxy)

#The following three data sets can be obtained with

#the source("G:/robdata.txt") command

#if the data file is on flash drive G.

rmreg2(buxx,buxy) #right click Stop twice

rmreg2(cbrainx,cbrainy)

rmreg2(gladox,gladoy)

hbk <- matrix(scan(),nrow=75,ncol=5,byrow=T)

hbk <- hbk[,-1]

rmreg2(hbk[,1:3],hbk[,4]) #Outliers are clear

#but fit avoids good leverage points.
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nasty <- matrix(scan(),nrow=32,ncol=6,byrow=T)

nasty <- nasty[,-1]

rmreg2(nasty[,1:4],nasty[,5])

wood <- matrix(scan(),nrow=20,ncol=7,byrow=T)

wood <- wood[,-1]

rmreg2(wood[,1:5],wood[,6]) #failed to find

#the outliers

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

major <- major[,-1]

rmreg2(major[,1:5],major[,6])

Example 6.1, continued. The FF and RR plots for the Buxton (1920)
data are shown in Figures 6.3 and 6.4. Note that only the last four estimators
gives large absolute residuals to the outliers. The top row of Figure 6.3 gives
the response plots for the estimators. If there are two clusters, one in the
upper right and one in the lower left of the response plot, then the identity
line goes through both clusters. Hence the fit passes through the outliers. One
feature of the MBA estimator is that it depends on the sample of 7 centers
drawn and changes each time the function is called. In ten runs, about seven
plots will look like Figures 6.3 and 6.4, but in about three plots the MBA
estimator will also pass through the outliers.

Table 6.2 Summaries for Seven Data Sets, the Correlations of the Residuals from
TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 115 1-10 3,44 2,6,...,30 4,6,8,19
n 87 267 267 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

Table 6.2 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1, and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used
by the TV estimator, the correlation of the residuals from the TV estimator
with the corresponding alternative estimator, and the cases that were out-
liers. If the correlation was greater than 0.9, then the method was effective
in detecting the outliers, and the method failed, otherwise. Sometimes the
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Fig. 6.3 FF Plots for Buxton Data

trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers. Each
model included a constant.

Notice that the TV, MBA, and OLS estimators were the same for the
Gladstone (1905) data and for the Tremearne (1911) major data which had
two small Y –outliers. For the Gladstone data, there is a cluster of infants
that are good leverage points, and we attempt to predict brain weight with
the head measurements height, length, breadth, size, and cephalic index. Orig-
inally, the variable length was incorrectly entered as 109 instead of 199 for
case 115, and the glado data contains this outlier. In 1997, lmsreg was not
able to detect the outlier while ltsreg did. Due to changes in the Splus 2000
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Fig. 6.4 RR Plots for Buxton Data

code, lmsreg detected the outlier but ltsreg did not. These two functions
change often, not always for the better.

6.3 High Breakdown Estimators

Assume that the multiple linear regression model Y = Xβ+e is appropriate
for all or for the bulk of the data and that the clean data are in general posi-
tion. Following Section 5.8, for a high breakdown (HB) regression estimator
b of β, the median absolute residual MED(|r|i) ≡ MED(|r(b)|1, ..., |r(b)|n)
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stays bounded even if close to half of the data set cases are replaced by
arbitrarily bad outlying cases; i.e., the breakdown value of the regression
estimator is close to 0.5.

Perhaps the first HB MLR estimator proposed was the least median of
squares (LMS) estimator. Let |r(b)|(i) denote the ith ordered absolute resid-
ual from the estimate b sorted from smallest to largest, and let r2(i)(b) denote
the ith ordered squared residual. Next, three of the most important robust
criteria are defined, but the robust estimators take too long to compute. In
the literature, LMS(cn) is used more that LQS(cn), but the term “LMS”
makes the most sense when cn/n→ 0.5 as n → ∞.

Definition 6.3. The least quantile of squares (LQS(cn)) estimator mini-
mizes the criterion

QLQS(b) ≡ QLMS(b) = r2(cn)(b). (6.3)

The LQS(cn) estimator is also known as the least median of squares LMS(cn)
estimator (Hampel 1975, p. 380).

Definition 6.4. The least trimmed sum of squares (LTS(cn)) estimator
(Rousseeuw 1984) minimizes the criterion

QLTS(b) =

cn∑

i=1

r2(i)(b). (6.4)

Definition 6.5. The least trimmed sum of absolute deviations (LTA(cn))
estimator (Hössjer 1991) minimizes the criterion

QLTA(b) =

cn∑

i=1

|r(b)|(i). (6.5)

These three estimators all find a set of fixed size cn = cn(p) ≥ n/2 cases
to cover, and then fit a classical estimator to the covered cases. LQS uses
the Chebyshev fit, LTA uses L1, and LTS uses OLS. Let bxc be the greatest
integer less than or equal to x. For example, b7.7c = 7.

Definition 6.6. The integer valued parameter cn is the coverage of the
estimator. The remaining n−cn cases are given weight zero. In the literature
and software,

cn = bn/2c+ b(p + 1)/2c (6.6)

is often used as the default.

Remark 6.4. Warning: In the literature, “HB regression” estimators
seem to come in two categories. The first category consists of estimators that
have no rigorous asymptotic theory but can be computed for moderate data
sets. The second category consists of estimators that have rigorous asymp-
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totic theory but are impractical to compute. Due to the high computational
complexity of these estimators, they are rarely used; however, the criterion
are widely used for fast approximate algorithm estimators that can detect
certain configurations of outliers. These approximations are typically zero
breakdown inconsistent estimators. One of the most disappointing aspects of
robust literature is that frequently no distinction is made between the im-
practical HB estimators and the inconsistent algorithm estimators used to
detect outliers. Section 6.2 shows how to fix the practical algorithms so that
the resulting estimator is

√
n consistent and high breakdown.

The LTA and LTS estimators are very similar to trimmed means. If the
coverage cn is a sequence of integers such that cn/n → τ ≥ 0.5, then 1 −
τ is the approximate amount of trimming. There is a tradeoff in that the
Gaussian efficiency of LTA and LTS seems to rapidly increase to that of the
L1 and OLS estimators, respectively, as τ tends to 1, but the breakdown value
1− τ decreases to 0, although asymptotic normality of LTA has not yet been
proven. We will use the unifying notation LTx(τ ) for the LTx(cn) estimator
where x is A, Q, or S for LTA, LQS, and LTS, respectively. Since the exact
algorithms for the LTx criteria have very high computational complexity,
approximations based on iterative algorithms are generally used. We will call
the algorithm estimator β̂A the ALTx(τ ) estimator.

Many algorithms use Kn randomly selected “elemental” subsets of p cases
called a “start,” from which the residuals are computed for all n cases. The
consistency and resistance properties of the ALTx estimator depend strongly
on the number of starts Kn used.

For a fixed choice of Kn, increasing the coverage cn in the LTx criterion
seems to result in a more stable ALTA or ALTS estimator. For this reason,
in 2000 Splus increased the default coverage of the ltsreg function to 0.9n
while Rousseeuw and Hubert (1999) recommend 0.75n. The price paid for
this stability is greatly decreased resistance to outliers. Similar issues occur
in the location model: as the trimming proportion α decreases, the Gaussian
efficiency of the α trimmed mean increases to 1, but the breakdown value
decreases to 0.

6.3.1 Theoretical Properties

Many regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (6.7)

when
XT X

n
→ W−1, and when the errors ei are iid with a cdf F and a

unimodal pdf f that is symmetric with a unique maximum at 0. When the
variance V (ei) exists,
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V (OLS, F ) = V (ei) = σ2 while V(L1,F) =
1

4[f(0)]2
.

See Bassett and Koenker (1978). Broffitt (1974) compares OLS, L1, and L∞
in the location model and shows that the rate of convergence of the Chebyshev
estimator is often very poor.

Remark 6.5. Obtaining asymptotic theory for LTA and LTS is a very
challenging problem. Maš̈ıček (2004), Č́ıžek (2006) and V́ıšek (2006) claim
to have shown asymptotic normality of LTS under general conditions. Č́ıžek
(2008) shows that LTA is

√
n consistent. For the location model, Yohai and

Maronna (1976) and Butler (1982) derived asymptotic theory for LTS while
Tableman (1994ab) derived asymptotic theory for LTA. Shorack (1974) and
Shorack and Wellner (1986, section 19.3) derived the asymptotic theory for
a large class of location estimators that use random coverage (as do many
others). In the regression setting, it is known that LQS(τ ) converges at a
cube root rate to a non-Gaussian limit (Davies 1990, Kim and Pollard 1990,
and Davies 1993, p. 1897), and it is known that scale estimators based on
regression residuals behave well (see Welsh 1986).

Negative results are easily obtained. All of the “brand name” high break-
down regression estimators take far too long to compute, and if the “shortest
half” is not unique, then LQS, LTA, and LTS are inconsistent. For example,
the shortest half is not unique for the uniform distribution.

The breakdown results for the LTx estimators are well known. See Hössjer
(1994, p. 151). See Section 5.8 for the definition of breakdown.

Theorem 6.4: Breakdown of LTx Estimators. Assume the clean data
are in general position. Then LMS(τ ), LTS(τ ), and LTA(τ ) have breakdown
value

min(1 − τ, τ ).

Theorem 6.5. Under regularity conditions similar to those in Conjecture
6.1 below, a) the LMS(τ ) converges at a cubed root rate to a non-Gaussian

limit. b) The estimator β̂LTS satisfies Equation (6.7) and

V (LTS(τ ), F ) =

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)
w2dF (w)

[τ − 2F−1(1/2 + τ/2)f(F−1(1/2 + τ/2))]2
. (6.8)

The proof of Theorem 6.5a is given in Davies (1990) and Kim and Pollard
(1990). Also see Davies (1993, p. 1897). The proof of b) is given in Maš̈ıček
(2004), Č́ıžek (2006), and V́ıšek (2006).
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Conjecture 6.1. Let the iid errors ei have a cdf F that is continuous
and strictly increasing on its interval support with a symmetric, unimodal,
differentiable density f that strictly decreases as |x| increases on the support.

Then the estimator β̂LTA satisfies Equation (6.7) and

V (LTA(τ ), F ) =
τ

4[f(0) − f(F−1(1/2 + τ/2))]2
. (6.9)

See Tableman (1994b, p. 392) and Hössjer (1994).

Č́ıžek (2008a) shows that LTA is
√
n consistent, but does not prove that

LTA is asymptotically normal. Assume Conjecture 6.1 is true for the fol-
lowing LTA remarks in this section. Then as τ → 1, the efficiency of LTS
approaches that of OLS and the efficiency of LTA approaches that of L1.
Hence for τ close to 1, LTA will be more efficient than LTS when the er-
rors come from a distribution for which the sample median is more efficient
than the sample mean (Koenker and Bassett, 1978). The results of Ooster-
hoff (1994) suggest that when τ = 0.5, LTA will be more efficient than LTS
only for sharply peaked distributions such as the double exponential. To sim-
plify computations for the asymptotic variance of LTS, we will use truncated
random variables (see Definition 2.27).

Theorem 6.6. Under the symmetry conditions given in Conjecture 6.1,

V (LTS(τ ), F ) =
τσ2

TF (−k, k)
[τ − 2kf(k)]2

(6.10)

and
V (LTA(τ ), F ) =

τ

4[f(0) − f(k)]2
(6.11)

where
k = F−1(0.5 + τ/2). (6.12)

Proof. Let W have cdf F and pdf f . Suppose that W is symmetric about
zero, and by symmetry, k = F−1(0.5 + τ/2) = −F−1(0.5 − τ/2). If W has
been truncated at a = −k and b = k, then the variance of the truncated

random variable WT is V (WT ) = σ2
TF (−k, k) =

∫ k

−k
w2dF (w)

F (k) − F (−k) by Definition

2.27. Hence ∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)

w2dF (w) = τσ2
TF (−k, k)

and the result follows from the definition of k.
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This result is useful since formulas for the truncated variance have been
given in Chapter 11. The following examples illustrate the result. See Hawkins
and Olive (1999b).

Example 6.3: N(0,1) Errors. If YT is a N(0, σ2) truncated at a = −kσ
and b = kσ, V (YT ) = σ2[1 − 2kφ(k)

2Φ(k) − 1
]. At the standard normal

V (LTS(τ ), Φ) =
1

τ − 2kφ(k)
(6.13)

while V(LTA(τ ),Φ) =
τ

4[φ(0)− φ(k)]2
=

2πτ

4[1 − exp(−k2/2)]2
(6.14)

where φ is the standard normal pdf and k = Φ−1(0.5+τ/2).Thus for τ ≥ 1/2,
LTS(τ ) has breakdown value of 1 − τ and Gaussian efficiency

1

V (LTS(τ ), Φ)
= τ − 2kφ(k). (6.15)

The 50% breakdown estimator LTS(0.5) has a Gaussian efficiency of 7.1%.
If it is appropriate to reduce the amount of trimming, we can use the 25%
breakdown estimator LTS(0.75) which has a much higher Gaussian efficiency
of 27.6% as reported in Ruppert (1992, p. 255). Also see the column labeled
“Normal” in table 1 of Hössjer (1994).

Example 6.4: Double Exponential Errors. The double exponential
(Laplace) distribution is interesting since the L1 estimator corresponds to
maximum likelihood and so L1 beats OLS, reversing the comparison of the
normal case. For a double exponential DE(0, 1) random variable,

V (LTS(τ ), DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[τ − k exp(−k)]2

while V(LTA(τ ),DE(0, 1)) =
τ

4[0.5− 0.5 exp(−k)]2
=

1

τ

where k = − log(1− τ ). Note that LTA(0.5) and OLS have the same asymp-
totic efficiency at the double exponential distribution. Also see Tableman
(1994ab).

Example 6.5: Cauchy Errors. Although the L1 estimator and the
trimmed estimators have finite variance when the errors are Cauchy, the
OLS estimator has infinite variance (because the Cauchy distribution has
infinite variance). If XT is a Cauchy C(0, 1) random variable symmetrically

truncated at −k and k, then V (XT ) =
k − tan−1(k)

tan−1(k)
. Hence
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V (LTS(τ ), C(0, 1)) =
2k − πτ

π[τ − 2k
π(1+k2)

]2

and V (LTA(τ ), C(0, 1)) =
τ

4[ 1
π
− 1

π(1+k2)
]2

where k = tan(πτ/2). The LTA sampling variance converges to a finite value
as τ → 1 while that of LTS increases without bound. LTS(0.5) is slightly
more efficient than LTA(0.5), but LTA pulls ahead of LTS if the amount of
trimming is very small.

6.3.2 Computation and Simulations

Theorem 6.7. a) There is an LTS(c) estimator β̂LTS that is the OLS fit to
the cases corresponding to the c smallest LTS squared residuals.
b) There is an LTA(c) estimator β̂LTA that is the L1 fit to the cases corre-
sponding to the c smallest LTA absolute residuals.
c) There is an LQS(c) estimator β̂LQS that is the Chebyshev fit to the cases
corresponding to the c smallest LQS absolute residuals.

Proof. a) By the definition of the LTS(c) estimator,

c∑

i=1

r2(i)(β̂LTS) ≤
c∑

i=1

r2(i)(b)

where b is any p×1 vector. Without loss of generality, assume that the cases
have been reordered so that the first c cases correspond to the cases with the
c smallest residuals. Let β̂OLS(c) denote the OLS fit to these c cases. By the
definition of the OLS estimator,

c∑

i=1

r2i (β̂OLS(c)) ≤
c∑

i=1

r2i (b)

where b is any p× 1 vector. Hence β̂OLS(c) also minimizes the LTS criterion

and thus β̂OLS(c) is an LTS estimator. The proofs of b) and c) are similar.
�

One way to compute these estimators exactly is to generate all C(n, c)
subsets of size c, compute the classical estimator b on each subset, and find
the criterion Q(b). The robust estimator is equal to the bo that minimizes the
criterion. Since c ≈ n/2, this algorithm is impractical for all but the smallest
data sets. Since the L1 fit is an elemental fit, the LTA estimator can be found
by evaluating all C(n, p) elemental sets. See Hawkins and Olive (1999b). Since
any Chebyshev fit is also a Chebyshev fit to a set of p + 1 cases, the LQS
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Table 6.3 Monte Carlo Efficiencies Relative to OLS.

dist n L1 LTA(0.5) LTS(0.5) LTA(0.75)
N(0,1) 20 .668 .206 .223 .377
N(0,1) 40 .692 .155 .174 .293
N(0,1) 100 .634 .100 .114 .230
N(0,1) 400 .652 .065 .085 .209
N(0,1) 600 .643 .066 .091 .209
N(0,1) ∞ .637 .053 .071 .199

DE(0,1) 20 1.560 .664 .783 1.157
DE(0,1) 40 1.596 .648 .686 1.069
DE(0,1) 100 1.788 .656 .684 1.204
DE(0,1) 400 1.745 .736 .657 1.236
DE(0,1) 600 1.856 .845 .709 1.355
DE(0,1) ∞ 2.000 1.000 .71 1.500

estimator can be found by evaluating all C(n, p + 1) cases. See Stromberg
(1993ab) and Appa and Land (1993). The LMS, LTA, and LTS estimators
can also be evaluated exactly using branch and bound algorithms if the data
set size is small enough. See Agulló (1997, 2001), Bertsimas and Mazumder
(2014), Hofmann et al. (2010), and Klouda (2015).

These three estimators have O(np) complexity or higher, and estimators
with O(n4) or higher complexity take too long to compute and will rarely
be used. The literature on estimators with O(np) complexity typically claims
that the estimator can be computed for up to a few hundred cases if p ≤ 4,
while simulations use p ≤ 2. Since estimators need to be widely used before
they are trustworthy, the brand name HB robust regression estimators are
untrustworthy for p > 2.

We simulated LTA and LTS for the location model using normal, double
exponential, and Cauchy error models. For the location model, these estima-
tors can be computed exactly: find the order statistics

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

of the data. For LTS compute the sample mean and for LTA compute the
sample median (or the low or high median) and evaluate the LTS and LTA
criteria of each of the n−c+1 “c-samples” Y(i), . . . , Y(i+c−1), for i = 1, . . . , n−
c + 1. The minimum across these samples then defines the LTA and LTS
estimates. See Section 2.12.

We computed the sample standard deviations of the resulting location es-
timate from 1000 runs of each sample size studied. The results are shown in
Table 6.1. For Gaussian errors, the observed standard deviations are smaller
than the asymptotic standard deviations but for the double exponential er-
rors, the sample size needs to be quite large before the observed standard
deviations agree with the asymptotic theory.
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6.4 Complements

Olive (2008, ch. 7-9) covers robust and resistant regression. Also see Hawkins
and Olive (1999b), Olive and Hawkins (2003) and Olive (2005a, 2017b). The
outlier resistance of elemental algorithms decreases rapidly as p increases.
However, for p < 10, such elemental algorithms are often useful for outlier
detection. They can perform better than MBA, trimmed views, and rmreg2

if p is small and the outliers are close to the bulk of the data or if p is small
and there is a mixture distribution: the bulk of the data follows one MLR
model, but “outliers” and some of the clean data are fit well by another MLR
model.

A promising resistant regression estimator is given by Park et al. (2012).
Bassett (1991) suggested the LTA estimator for location and Hössjer (1991)

suggested the LTA regression estimator. Oldford (1983) proves that β̂B is
high breakdown.

The LMS, LTA, and LTS estimators are not useful for applications because
they are impractical to compute; however, the criterion are useful for making
resistant or robust algorithm estimators. In particular the robust criteria are
used in the MBA estimator and in the easily computed

√
n consistent high

breakdown hbreg estimator.
In addition to the LMS, LTA, and LTS estimators, there are at least two

other regression estimators, the least quantile of differences (LQD) and the
regression depth estimator, that have rather high breakdown and rigorous
asymptotic theory. The LQD estimator is the LMS estimator computed on the
(n− 1)n/2 pairs of case difference (Croux et al. 1994). The regression depth
estimator (Rousseeuw and Hubert 1999) is interesting because its criterion
does not use residuals. The large sample theory for the depth estimator is
given by Bai and He (1999). The LMS, LTS, LTA, LQD and depth estimators
can be computed exactly only if the data set is tiny.

The complexity of the estimator depends on how many fits are computed
and on the complexity of the criterion evaluation. For example the LMS and
LTA criteria have O(n) complexity while the depth criterion complexity is
O(np−1 logn). The LTA and depth estimators evaluates O(np) elemental sets
while LMS evaluates the O(np+1) subsets of size p + 1. The LQD criterion
complexity is O(n2) and evaluates O(n2(p+1)) subsets of case distances. See
Bernholt (2005, 2006).

A large number of impractical “brand name” high breakdown regression
estimators have been proposed, including LTS, LMS, LTA, S, LQD, τ , con-
strained M, repeated median, cross checking, one step GM, one step GR,
t-type, and regression depth estimators. See Rousseeuw and Leroy (1987)
and Maronna et al. (2019). The practical algorithms used in the software use
a brand name criterion to evaluate a fixed number of trial fits and should be
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denoted as an F-brand name estimator such as FLTS. Two stage estimators,
such as the MM estimator, that need an initial consistent high breakdown
estimator often have the same breakdown value and consistency rate as the
initial estimator.

These impractical “brand name” estimators have at least O(np) complex-
ity, while the practical estimators used in the software have not been shown
to be both high breakdown and consistent. See Hawkins and Olive (2002),
Hubert et al. (2002), and Maronna and Yohai (2002). Huber and Ronchetti
(2009, pp. xiii, 8-9, 152-154, 196-197) suggested that high breakdown regres-
sion estimators do not provide an adequate remedy for the ill effects of out-
liers, that their statistical and computational properties are not adequately
understood, that high breakdown estimators “break down for all except the
smallest regression problems by failing to provide a timely answer!” and that
“there are no known high breakdown point estimators of regression that are
demonstrably stable.”

A massive problem with “robust high breakdown regression” research is
the claim that a brand name impractical estimator is being used since the
software nearly always actually replaces the brand name estimator by a prac-
tical F-brand name estimator that is not backed by theory, such as FLTS. In
particular, the claim that “LTS can be computed with Fast-LTS” is false. See
Theorem 5.13. An estimator implemented with a zero breakdown inconsistent
initial estimator tends to be zero breakdown and is often inconsistent. Hence√
n consistent resistant estimators such as the MBA estimator often have

higher outlier resistance than zero breakdown implementations of HB esti-
mators such as ltsreg. Recent examples are Bondell and Stefanski (2013)
and Jiang et al. (2019).

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
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fit is selected is close to one for a skewed error distribution as n→ ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

6.5 Problems

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, e.g. mbamv, will display the code for the function. Use the
args command, e.g. args(mbamv), to display the needed arguments for the
function.

The “asymptotic variance” for LTA in Problems 8.1, 8.2 and 8.3 is actually
the conjectured asymptotic variance for LTA if the multiple linear regression
model is used instead of the location model.

6.1. a) Download the R function nltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are N(0,1).
b) Enter the commands nltv(0.5), nltv(0.75), nltv(0.9) and nltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.2. a) Download the R function deltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are double exponential
DE(0,1).
b) Enter the commands deltv(0.5), deltv(0.75), deltv(0.9) and deltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.3. a) Download the R function cltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are Cauchy C(0,1).

b) Enter the commands cltv(0.5), cltv(0.75), cltv(0.9) and cltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

6.4∗. a) If necessary, use the commands source(“G:/rpack.txt”) and
source(“G:/robdata.txt”).
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b) Enter the command mbamv(belx,bely) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 7 times be-
fore the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) Enter the command mbamv2(buxx,buxy) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 14 times before
the program ends. There are four predictors x1, ..., x4 and one response Y .
The function makes the response and residual plots based on the OLS fit to
the highlighted cases. Each MBA sphere covers half of the data. When you
find a good fit to the bulk of the data, hold down the Ctrl and c keys to make
a copy of the two plots. Then paste the plots in Word.

6.5∗. This problem compares the MBA estimator that uses the median
squared residual MED(r2i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√
n consistent OLS estimators. The MED(r2i ) criterion has trouble

with data sets where the multiple linear regression relationship is weak and
there is a cluster of outliers. The LATA criterion tries to give all x–outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“G:/rpack.txt”) and
source(“G:/robdata.txt”). The mlrplot2 function is used to compute both
MBA estimators. Use the rightmost mouse button to advance the plot (and
in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same?

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include the
resulting plot in Word. For this data set, most of the cases are based on
humans but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2i ).

e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered
about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the pre-
vious command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estimator
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can be used to find the outliers. In Splus, use the command ffplot(hx,hy) and in
R use the commands library(MASS) and ffplot2(hx,hy). Include the resulting
plot in Word.

6.6. a) In addition to the source(“G:/rpack.txt”) command, also use the
source(“G:/robdata.txt”) command (and in R, type the library(MASS) com-
mand).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button (and in R, highlight Stop). The response plot should appear. Repeat
10 times and remember which plot percentage M (say M = 0) had the best
response plot. Then type the command tvreg2(buxx,buxy, M = 0) (except use
your value of M, not 0). Again, click the rightmost mouse button (and in R,
highlight Stop). The response plot should appear. Hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.



Chapter 7

MLR Variable Selection and Lasso

This chapter considers MLR variable selection and prediction intervals. Pre-
diction regions and prediction intervals applied to a bootstrap sample can
result in confidence regions and confidence intervals. The bootstrap confi-
dence regions will be used for inference after variable selection.

Some shrinkage methods do variable selection: the MLR method, such as
a OLS, uses the predictors that had nonzero shrinkage estimator coefficients.
These methods include least angle regression, lasso, relaxed lasso, and elastic
net. Least angle regression variable selection is the LARS-OLS hybrid esti-
mator of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed
lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator with
φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li (2001), Tibshirani
(1996), and Zou and Hastie (2005). The Meinshausen (2007) relaxed lasso
estimator fits lasso with penalty λn to get a subset of variables with nonzero
coefficients, and then fits lasso with a smaller penalty φn to this subset of
variables where n is the sample size.

7.1 Introduction

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted without important loss of
information if n/p is large (and the search for a useful subset of predictors if
n/p is not large). Consider the 1D regression model where Y x|SP where
SP = xT β. See Chapters 1 and 10. A model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (7.1)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS) × 1 vector. Given that xS is in the model, βE = 0 and

285
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E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (7.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is
always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible
subsets of {1, 2, ..., p} that always contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that

S ⊆ Ij. Let β̂I7
= (β̂1 , β̂3, β̂4)

T and xI7 = (x1, x3, x4)
T .

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As

a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

Definition 7.1. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI .

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selec-
tion. Lasso variable selection or elastic net variable selection fits OLS to the
predictors than had nonzero lasso or elastic net coefficients. .

Underfitting occurs if submodel I does not contain S. Following, for ex-
ample, Pelawa Watagoda (2019), let X = [XI XO] and β = (βT

I ,β
T
O)T .

Then Xβ = XIβI + XOβO, and β̂I = (XIXI)
−1XT

I Y = AY . Assuming

the usual MLR model, Cov(β̂I) = Cov(AY ) = Aσ2IAT = σ2(XT
I XI)

−1.
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Now E(β̂I) = E(AY ) = AXβ = (XIXI)
−1XT

I (XIβI + XOβO) =

βI + (XIXI)
−1XT

I XOβO = βI + AXOβO.

If S ⊆ I, then βO = 0, but if underfitting occurs then the bias vector
AXOβO can be large.

7.2 OLS Variable Selection

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable se-
lection. For example, an OLS MLR model with unnecessary predictors has∑n

i=1 V (Ŷi) that is too large. If (7.1) holds, S ⊆ I, βS is an aS × 1 vector,
and βI is a j × 1 vector with j > aS , then

1

n

n∑

i=1

V (ŶIi) =
σ2j

n
>
σ2aS

n
=

1

n

n∑

i=1

V (ŶSi). (7.2)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ). A model I underfits if it does not include all of the
predictors in S. A model I does not underfit if S ⊆ I.

To see that (7.2) holds, assume that the full model includes all p possible

terms so the full model may overfit but does not underfit. Then Ŷ = HY

and Cov(Ŷ ) = σ2HIHT = σ2H. Thus

1

n

n∑

i=1

V (Ŷi) =
1

n
tr(σ2H) =

σ2

n
tr((XT X)−1XT X) =

σ2p

n

where tr(A) is the trace operation. Replacing p by j and aS and replac-
ing H by HI and HS implies Equation (7.2). Hence if only aS parame-
ters are needed and p >> aS , then serious overfitting occurs and increases

1

n

n∑

i=1

V (Ŷi).

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model,
and MSE(I) = σ̂2

I , the estimated error variance. See Definitions 5.17 and
5.18. Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where
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R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 −MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 7.2.

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k− n)MSE = rT (I)r(I) + (2k− n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor βT x = xT β,
such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xT

i β̂ = Yi−Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.

Theorem 7.1. Suppose that a numerical variable selection method sug-
gests several submodels with k predictors, including a constant, where 2 ≤
k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.
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Proof. These results are a corollary of Theorem 7.2 below. �

Remark 7.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi.

Using Definition 7.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.

More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p− k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 7.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (7.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 7.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
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the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 7.2. Suppose that every submodel contains a constant and that
X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and
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b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .

iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].
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Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 7.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
lection. Assuming the the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin) → 1 as n → ∞ by Theorem 7.2
vi). Referring to Equation (7.1), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞.

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 7.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Theorem 7.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP,ESP (I)) both go to 1.0 as n→ ∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, but overfit is likely. Let d be a lower
bound on corr(r, rI). Theorem 7.2 vi) implies that if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

d ≡ dn =

√
1 − p

n
.
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To avoid excluding too many good submodels, consider models I with
Cp(I) ≤ min(2k, p). Models under both the Cp = k line and the Cp = 2k line
are of interest.

Rule of thumb 7.1. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin)+1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model. Do
not use more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Underfit
is especially likely to occur if a predictor with one degree of freedom is deleted
(if the c − 1 indicator variables corresponding to a factor are deleted, then
the factor has c− 1 degrees of freedom) and the jump in Cp is large, greater
than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses j
predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a
constant but no nontrivial predictors. To form I2, consider all models I with
two predictors including x∗1. Compute SSE(I) = RSS(I) = rT (I)r(I) =∑n

i=1 r
2
i (I) =

∑n
i=1(Yi−Ŷi(I))

2 . Let I2 minimize SSE(I) for the p−1 models
I that contain x∗1 and one other predictor. Denote the predictors in I2 by
x∗1, x

∗
2. In general, to form Ij consider all models I with j predictors including

variables x∗1, ..., x
∗
j−1. Compute SSE(I), and let Ij minimize SSE(I) for the

p−j+1 models I that contain x∗1, ..., x
∗
j−1 and one other predictor not already

selected. Denote the predictors in Ij by x∗1, ..., x
∗
j. Continue in this manner

for j = 2, ...,M = p.
Backward elimination also forms a sequence of submodels I1, ..., Ip where

Ij uses j predictors including the constant. Let Ip be the full model. To
form Ip−1 consider all models I with p− 1 predictors including the constant.
Compute SSE(I) and let Ip−1 minimize SSE(I) for the p − 1 models I
that exclude one of the predictors x2, ..., xp. Denote the predictors in Ip−1

by x∗1, x
∗
2, ..., x

∗
p−1. In general, to form Ij consider all models I with j pre-

dictors including variables x∗1, ..., x
∗
j+1. Compute SSE(I), and let Ij mini-

mize SSE(I) for the p − j + 1 models I that exclude one of the predictors
x∗2, ..., x

∗
j+1. Denote the predictors in Ij by x∗1, ..., x

∗
j. Continue in this manner

for j = p = M, p− 1, ..., 2, 1 where I1 uses x∗1 = x1 ≡ 1.
Several criterion produce the same sequence of models if forward selection

or backward elimination are used, includingMSE(I), Cp(I), R
2
A(I), AIC(I),
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BIC(I), and EBIC(I). This result holds since if the number of predictors
k in the model I is fixed, the criterion is equivalent to minimizing SSE(I)
plus a constant. The constants differ so the model Imin that minimizes the
criterion often differ. Heuristically, backward elimination tries to delete the
variable that will increase Cp the least while forward selection tries to add
the variable that will decrease Cp the most.

When there is a sequence of M submodels, the final submodel Id needs to
be selected with ad terms, including a constant. Let the candidate model I
contain a terms, including a constant, and let xI and β̂I be a × 1 vectors.
Then there are many criteria used to select the final submodel Id. For a given
data set, the quantities p, n, and σ̂2 act as constants, and a criterion below
may add a constant or be divided by a positive constant without changing
the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 7.2.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p
and if the final model has n ≥ 10ad. For p < n < 5p, forward selection with
Cp and AIC tends to pick the full model (which overfits since n < 5p) too
often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989, 1991) AICC

criterion can be useful if n ≥ max(2p, 10ad).
The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.
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This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and relaxed lasso.
The Cp criterion can also be applied to lasso. See Efron and Hastie (2016,
pp. 221, 231).

Now suppose p = 6 and S in Equation (7.1) corresponds to x1 ≡ 1, x2,
and x3. Suppose the data set is such that underfitting (omitting a predic-
tor in S) does not occur. Then there are eight possible submodels that
contain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6;
v) x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full
model viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5,
or 6. Since the variable selection criteria for forward selection described above
minimize the MSE given that x∗1, ..., x

∗
k−1 are in the model, the MSE(Ik) are

too small and underestimate σ2. Also the model Imin fits the data a bit too
well. Suppose Imin = Id. Compared to selecting a model Ik before examining
the data, the residuals ri(Imin) are too small in magnitude, the |ŶImin,i −Yi|
are too small, and MSE(Imin) is too small. Hence using Imin = Id as the full
model for inference does not work. In particular, the partial F test statistic
FR in Theorem 5.7, using Id as the full model, is too large since the MSE is
too small. Thus the partial F test rejects H0 too often. Similarly, the confi-
dence intervals for βi are too short, and hypothesis tests reject H0 : βi = 0
too often when H0 is true. The fact that the selected model Imin from vari-
able selection cannot be used as the full model for classical inference is known
as selection bias. Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of β̂V S =

β̂Imin,0 from Definition 7.3 and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

7.3 Large Sample Theory for Some Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

The large sample theory for OLS variable selection estimators, such as
forward selection and lasso variable selection, in this section is due to Pelawa
Watagoda and Olive (2019, 2020). Rathnayake and Olive (2020) extend this
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theory to many other variable selection estimators such as generalized lin-
ear models. Charkhi and Claeskens (2018) have a related result for forward
selection with AIC when the iid errors are N(0, σ2). Assume p is fixed, and
n→ ∞. Suppose that model (7.1) holds. Assume the maximum leverage

max
i=1,...,n

xT
iIj

(XT
Ij

XIj )
−1xiIj → 0

in probability as n → ∞ for each Ij with S ⊆ Ij where the dimension of Ij

is aj. For the OLS model with S ⊆ Ij ,
√
n(β̂Ij

− βIj
)

D→ Naj (0,V j) where

V j = σ2W j and (XT
Ij

XIj )/n
P→ W−1

j by the OLS CLT Theorem 5.9. Then

ujn =
√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0,V j,0) (7.3)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model.

For MLR, V j,0 = σ2W j,0. For example, if p = 3 and model Ij uses a
constant x1 ≡ 1 and x3 with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. Use zero padding
to form the p×1 variable selection estimator β̂V S . For example, if p = 4 and

β̂Imin
= (β̂1, β̂3)

T , then β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)T . In the following
definition, if each subset contains at least one variable, then there are J =
2p − 1 subsets.

Definition 7.4. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 7.5. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

The large sample distribution of β̂MIX is simpler than that of β̂V S , and

is useful for explaining the large sample distribution of β̂V S . For how to

bootstrap β̂MIX , see Rathnayake and Olive (2020). For mixture distributions,
see Section 11.7.

The first assumption in Theorem 7.3 is P (S ⊆ Imin) → 1 as n→ ∞. Then
the variable selection estimator corresponding to Imin underfits with prob-
ability going to zero, and the assumption holds under regularity conditions
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if BIC or AIC is used. See Charkhi and Claeskens (2018) and Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232). For multiple linear regression with
Mallows (1973) Cp or AIC, see Li (1987), Nishii (1984), and Shao (1993).

For a shrinkage estimator that does variable selection, let β̂Imin
be the OLS

estimator applied to a constant and the variables with nonzero shrinkage es-
timator coefficients. If the shrinkage estimator is a consistent estimator of β,
then P (S ⊆ Imin) → 1 as n → ∞. See Zhao and Yu (2006, p. 2554). Hence
Theorem 7.3c) proves that the lasso variable selection and elastic net variable
selection estimators are

√
n consistent estimators of β if lasso and elastic net

are consistent. Also see Theorem 7.4 and Remark 7.5. The assumption on
ujn in Theorem 7.3 is reasonable by (7.3) since S ⊆ Ij for each πj, and since

β̂MIX uses random selection.

Theorem 7.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (7.4)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (7.5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun

(t) =
∑

k πknFukn
(t) → Fu(t) =

∑
j πjFuj

(t) at
continuity points of the Fuj (t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote
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the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use FULL to denote the full model β̂ = β̂FULL.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL

have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. Then the confi-

dence regions applied to Aβ̂
∗
SEL = Bβ̂

∗
S,SEL should have similar volume and

cutoffs where SEL is MIX, V S, or FULL.
Theorem 7.3 can be used to justify prediction intervals after variable se-

lection. See Pelawa Watagoda and Olive (2020). Theorem 7.3d) is useful for
variable selection consistency and the oracle property where πd = πS = 1 if
P (Imin = S) → 1 as n → ∞. See Claeskens and Hjort (2008, pp. 101-114) and
Fan and Li (2001) for references. A necessary condition for P (Imin = S) → 1
is that S is one of the models considered with probability going to one.
This condition holds under strong regularity conditions for fast methods. See
Wieczorek (2018) for forward selection and Hastie et al. (2015, pp. 295-302)
for lasso, where the predictors need a “near orthogonality” condition.

Remark 7.4. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S −β). Let W = WV S = k if β̂V S =

β̂Ik,0 where P (WV S = k) = πkn for k = 1, ..., J. Then (β̂V S:n,WV S:n) =

(β̂V S ,WV S) has a joint distribution where the sample size n is usually sup-

pressed. Note that β̂V S = β̂IW ,0. Define P (B|Ak)P (Ak) = 0 if P (Ak) = 0.
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Let β̂
C

Ik,0 be a random vector from the conditional distribution β̂Ik,0|(WV S =

k). Let wkn =
√
n(β̂Ik,0 − β)|(WV S = k) ∼ √

n(β̂
C

Ik,0 − β). Denote
Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by P (z ≤ t). Then

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj if

S ⊆ Ij for the MLE with AIC. Here wj is a multivariate truncated normal
distribution (where no truncation is possible) that is symmetric about 0.
Hence E(wj) = 0, and Cov(wj) = Σj exits. Referring to Definitions 7.3

and 7.4, note that both
√
n(β̂MIX −β) and

√
n(β̂V S −β) are selecting from

the ukn =
√
n(β̂Ik,0 − β) and asymptotically from the uj of Equation (7.3).

The random selection for β̂MIX does not change the distribution of ujn, but
selection bias does change the distribution of the selected ujn to that of wjn.
Similarly, selection bias does change the distribution of the selected uj to

that of wj . The reasonable Theorem 7.4 assumption that wjn
D→ wj may

not be mild.

Theorem 7.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj . Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj .

Then
wn =

√
n(β̂V S − β)

D→ w (7.6)

where the cdf of w is Fw(t) =
∑

j πjFwj (t). Thus w is a mixture distribution
of the wj with probabilities πj.

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn(t) =

∑
k πknFwkn

(t) → Fw(t) =
∑

j πjFwj(t) at
continuity points of the Fwj (t) as n → ∞. �

Remark 7.5. If P (S ⊆ Imin) → 1 as n→ ∞, then β̂V S is a
√
n consistent

estimator of β since selecting from a finite number J of
√
n consistent estima-
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tors (even on a set that goes to one in probability) results in a
√
n consistent

estimator by Pratt (1959). By both this result and Theorems 7.3 and 7.4, the
lasso variable selection and elastic net variable selection estimators are

√
n

consistent if lasso and elastic net are consistent.

7.4 Bootstrapping Variable Selection

This section considers bootstrapping the MLR variable selection model. Rath-
nayake and Olive (2020) shows how to bootstrap variable selection for many
other regression models. This section will explain why the bootstrap con-
fidence regions (4.13), (4.14), and (4.15) give useful results. Much of the
theory in Section 4.3 does not apply to the variable selection estimator
Tn = Aβ̂Imin,0 with θ = Aβ, because Tn is not smooth since Tn is equal to
the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known
full rank g × p matrix with 1 ≤ g ≤ p.

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate

Y ∗ and X∗ that would be used to produce β̂
∗

if the full model estimator β̂

was being bootstrapped. Instead of computing β̂
∗
, compute the variable selec-

tion estimator β̂
∗
V S,1 = β̂

∗C

Ik1,0. Then generate another Y ∗ and X∗ and com-

pute β̂
∗
MIX,1 = β̂

∗
Ik1 ,0 (using the same subset Ik1). This process is repeated

B times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn.

The key idea is to show that the bootstrap data cloud is slightly more
variable than the iid data cloud, so confidence region (4.14) applied to the
bootstrap data cloud has coverage bounded below by (1−δ) for large enough
n and B.

For the bootstrap, suppose that T ∗
i is equal to T ∗

ij with probability ρjn

for j = 1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count
the number of times T ∗

i = T ∗
ij in the bootstrap sample. Then the bootstrap

sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .
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Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Let Tn = β̂MIX and Tij = β̂Ij,0. If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)

D→
Naj(0,V j) and

√
n(β̂

∗
Ij

− β̂Ij
)

D→ Naj (0,V j). Then by Equation (7.3),

√
n(β̂Ij,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗
Ij,0− β̂Ij,0)

D→ Np(0,V j,0). (7.7)

This result means that the component clouds have the same variability
asymptotically. The iid data component clouds are all centered at β. If the
bootstrap data component clouds were all centered at the same value β̃, then
the bootstrap cloud would be like an iid data cloud shifted to be centered at
β̃, and (4.14) would be a confidence region for θ = β. Instead, the bootstrap
data component clouds are shifted slightly from a common center, and are
each centered at a β̂Ij,0. Geometrically, the shifting of the bootstrap compo-
nent data clouds makes the bootstrap data cloud similar but more variable
than the iid data cloud asymptotically (we want n ≥ 20p), and centering
the bootstrap data cloud at Tn results in the confidence region (4.14) hav-
ing slightly higher asymptotic coverage than applying (4.14) to the iid data
cloud. Also, (4.14) tends to have higher coverage than (4.15) since the cutoff
for (4.14) tends to be larger than the cutoff for (4.15). Region (4.13) has
the same volume as region (4.15), but tends to have higher coverage since

empirically, the bagging estimator T
∗

tends to estimate θ at least as well as
Tn for a mixture distribution. A similar argument holds if Tn = Aβ̂MIX ,

Tij = Aβ̂Ij,0, and θ = Aβ.
To see that T ∗ has more variability than Tn, asymptotically, look at Figure

3.1. Imagine that n is huge and the J = 6 ellipsoids are 99.9% covering
regions for the component data clouds corresponding to Tjn for j = 1, ..., J .
Separating the clouds slightly, without rotation, increases the variability of
the overall data cloud. The bootstrap distribution of T ∗ corresponds to the
separated clouds. The shape of the overall data cloud does not change much,
but the volume does increase.

Remark 7.6. Note that there are several important variable selection
models, including the model given by Equation (7.1) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi × 1. For example,
suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
Theorems 7.3 and 7.4 still hold if “P (S ⊆ Imin) → 1” is replaced by “P (Si ⊆
Imin for some i) → 1,” and the bootstrap sample is still more variable than
the iid sample.



302 7 MLR Variable Selection and Lasso

In the simulations for H0 : Aβ = BβS = θ0 with n ≥ 20p, the coverage
tended to get close to 1− δ for B ≥ max(200, 50p) so that S∗

T is a good esti-
mator of Cov(T ∗). In the simulations where S is not the full model, inference
with backward elimination with Imin using AIC was often more precise than
inference with the full model if n ≥ 20p and B ≥ 50p.

The matrix S∗
T can be singular due to one or more columns of zeros

in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the

full model estimator β̂
∗

= β̂
∗
FULL to the bootstrap sample. For example,

take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (4.13), (4.14), and (4.15). Using the confidence interval
[max(Ln, T

∗
(1)),min(Un, T

∗
(B))] can give a shorter covering region.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

The bootstrap component clouds for β̂
∗
V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗
S,V S is roughly similar to β̂

∗
S,MIX . Typically the distributions of β̂

∗
E,V S

and β̂
∗
E,MIX are not similar, but use the same zero padding. In simulations,

confidence regions for β̂V S tended to have less undercoverage than confidence

regions for β̂
∗
MIX .

7.4.1 The Parametric Bootstrap

For the multiple linear regression model, Y = Xβ +e, assume a constant x1

is in the model, and the zero mean ei are iid with variance V (ei) = σ2. Let
H = X(XT X)−1XT . For each I with S ⊆ I, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n → ∞. For OLS with

S ⊆ I,
√
n(β̂I − βI)

D→ NaI (0,V I) by Equation (7.3).
The parametric bootstrap generates Y ∗

j = (Y ∗
i ) from a parametric dis-

tribution. Then regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. Consider

the parametric bootstrap for the MLR model with Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼

Nn(HY , σ̂2
nI) where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i
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where the residuals are from the full OLS model. Then MSE is a
√
n con-

sistent estimator of σ2 under mild conditions by Su and Cook (2012). Hence

Y ∗ = Xβ̂OLS + e∗

where the e∗i are iid N(0,MSE) and β̂ = β̂OLS .

Thus β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ ∼ NaI (β̂I , σ̂
2
n(XT

I XI)
−1) since E(β̂

∗
I ) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗
I) = σ̂2

n(XT
I XI)

−1.
Hence √

n(β̂
∗
I − β̂I) ∼ NaI (0, nσ̂

2
n(XT

I XI)
−1)

D→ NaI (0,V I)

as n, B → ∞ if S ⊆ I.

7.4.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi),
and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0, replace ri by εi = ri − r, and r∗ij by ε∗ij.

Example 7.1. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with
ith element Ŷi = m̂(xi) = xT

i β̂. For j = 1, ..., B, regress Y ∗
j on X to form

β̂
∗
1,n, ..., β̂

∗
B,n using the residual bootstrap.

Now examine the OLS model. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the
fitted values from the OLS full model. Let rW denote an n×1 random vector
of elements selected with replacement from the OLS full model residuals.
Following Freedman (1981) and Efron (1982, p. 36),

Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rW
i of rW are iid from

the empirical distribution of the OLS full model residuals ri. Hence
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E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XT X)−1XT Y ∗ with Cov(β̂
∗
) = σ2

n(XT X)−1 =
n− p

n
MSE(XT X)−1, and E(β̂

∗
) = (XT X)−1XTE(Y ∗) =

(XT X)−1XT HY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗
) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗
i ) ≈

√
n− p

n
SE(β̂i) for i = 1, ..., p where

β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The OLS CLT Theorem 5.9 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2W )

where n(XT X)−1 → W . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞
nĈov(β̂

∗
)) ∼ Np(0, σ

2W ).

See Freedman (1981).

For the above residual bootstrap, β̂
∗
Ij

= (XT
Ij

XIj)
−1XT

Ij
Y ∗ = DjY

∗

with Cov(β̂
∗
Ij

) = σ2
n(XT

Ij
XIj)

−1 and E(β̂
∗
Ij

) = (XT
Ij

XIj )
−1XT

Ij
E(Y ∗) =

(XT
Ij

XIj)
−1XT

Ij
HY = β̂Ij

since HXIj = XIj . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗
I ) = β̂I and nCov(β̂

∗
I) = n[(n− p)/n]σ̂2

n(XT
I XI)

−1 P→ V I

as n → ∞ with σ̂2
n = MSE. Hence β̂

∗
I − β̂I

P→ 0 as n → ∞ by Lai et al

(1979). Note that β̂
∗
I = β̂

∗
I,n and β̂I = β̂I,n depend on n.

Remark 7.7. The Cauchy Schwartz inequality says |aT b| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if

√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence
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√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Remark 7.8. Note that both the residual bootstrap and parametric boot-
strap for OLS are robust to the unknown error distribution of the iid ei. For
the residual bootstrap with S ⊆ I where I is not the full model, it may

not be true that
√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I) as n, B → ∞. For the model
Y = Xβ + e, the ei are iid from a distribution that does not depend on n,
and βE = 0. For Y ∗ = Xβ̂ + rW , the distribution of the rW

i depends on n

and β̂E 6= 0 although
√
nβ̂E = OP (1).

7.4.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, the pairwise bootstrap, and the pairs bootstrap) draws a sam-
ple of n cases (Y ∗

i ,x
∗
i ) with replacement from the n cases (Yi,xi), and re-

gresses the Y ∗
i on the x∗

i to get β̂
∗
V S,1, and then draws another sample to get

β̂
∗
MIX,1. This process is repeated B times to get the two bootstrap samples

for i = 1, ..., B.
Then for the full model,

Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rW

I .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ). Hence if S ⊆ Ij ,

√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I)

as n, B → ∞. (Treat Ij as if Ij is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uT
i )T , then the wi = (Yi uT

i )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗
1, ...,w

∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 4.3, E(w∗) = w, and
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Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2

Y Σ̃Y u
Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then by Section 6.1.1,

β̂
∗

=

[
β̂∗

1

β̂
∗
u

]
=

[
Y

∗ − β̂
∗T

u u∗

Σ̃
−1∗

u Σ̃
∗
uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

7.4.4 Bootstrapping OLS Variable Selection

Undercoverage can occur if the bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in (7.1) so thatH0 is true. Suppose a nominal
95% confidence region is used and UB = 0.96. Hence the confidence region

(4.13) or (4.14) covers at least 96% of the bootstrap sample. If β̂
∗
O,j = 0 for

more than 4% of the β̂
∗
O,1, ..., β̂

∗
O,B , then 0 is in the confidence region and the

bootstrap test fails to reject H0. If this occurs for each run in the simulation,
then the observed coverage will be 100%.

Now suppose β̂
∗
O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (4.13),
(4.14), or (4.15) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗
O,j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from forward selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, B ≥ 50p, and the error distribution is unimodal and
not highly skewed. (Since the pvalue is one, this technique may be useful
for data snooping: applying OLS theory to submodel I may have negligible
selection bias.)

Remark 7.9. Note that there are several important variable selection
models, including the model given by Equation (7.1) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi × 1. For example,
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suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
If n and B are large enough, the singleton set {0} could still be the “100%”
confidence region for a vector βO . See Remark 7.7.

Suppose the predictors xi have been standardized. Then another important
regression model has the βi taper off rapidly, but no coefficients are equal to
zero. For example, βi = e−i for i = 1, ..., p.

Example 7.2. Cook and Weisberg (1999a, pp. 351, 433, 447) gives a data
set on 82 mussels sampled off the coast of New Zealand. Let the response
variable be the logarithm log(M) of the muscle mass, and the predictors are
the length L and heightH of the shell in mm, the logarithm log(W ) of the shell
width W, the logarithm log(S) of the shell mass S, and a constant. Inference
for the full model is shown below along with the shorth(c) nominal 95%
confidence intervals for βi computed using the nonparametric and residual
bootstraps. As expected, the residual bootstrap intervals are close to the
classical least squares confidence intervals ≈ β̂i ± 1.96SE(β̂i).

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel FS

Est. SE 95% shorth CI 95% shorth CI

int -0.9573 0.1519 [-3.294, 0.495] [-2.769, 0.460]

L 0 [-0.005, 0.004] [-0.004, 0.004]

logW 0 [ 0.000, 1.024] [-0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016] [ 0.000, 0.016]

logS 0.6530 0.1160 [ 0.322, 0.901] [ 0.324, 0.913]

for forward selection for all subsets

The minimum Cp model from all subsets variable selection and forward
selection both used a constant, H , and log(S). The shorth(c) nominal 95%
confidence intervals for βi using the residual bootstrap are shown. Note that
the intervals for H are right skewed and contain 0 when closed intervals
are used instead of open intervals. Some least squares output is shown, but
should only be used for inference if the model was selected before looking at
the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
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the Imin model selected by all subsets variable selection. (Of course this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2 , β3, β4)

T = 0. Using the prediction region method with the

full model gave an interval [0,2.930] with D0 = 1.641. Note that
√
χ2

3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0.

Then we redid the bootstrap with the full model and forward selection. The
full model had [0, D(UB)] = [0, 2.908] with D0 = 1.577. So fail to reject H0.
Using the prediction region method with the Imin forward selection model
had [0, D(UB)] = [0, 3.258] whileD0 = 1.245. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.392. (Use
(4.16) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test. Some R code used
to produce the above output is shown below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)

tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs

outfs <- fselboot(x,y,B=1000) #get bootstrap CIs

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3) #for all subsets

apply(outfs$betas,2,shorth3) #for forward selection

ls.print(outvs$full)

ls.print(outvs$sub)

ls.print(outfs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #full model

#prediction region method with residual bootstrap

out<-predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin all subsets

outvs <- predreg(Abeta)

Abeta <- outfs$betas[,2:4]

#prediction region method with Imin forward sel.

outfs<-predreg(Abeta)

#ratio of volumes for forward selection and full model

(sqrt(det(outfs$cov))*outfs$D0ˆ3)/(sqrt(det(out$cov))*out$D0ˆ3)

Example 7.3. Consider the Gladstone (1905) data set that has 12 vari-
ables on 267 persons after death. The response variable was brain weight.
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Head measurements were breadth, circumference, head height, length, and
size as well as cephalic index and brain weight. Age, height, and two categor-
ical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also
given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II ) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 7.3

Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]

age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]

breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]

cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]

circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]

headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]

height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]

len 13.475 9.422 1.43 0.154 [ -5.519,32.605]

sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]

output and shorth intervals for the min Cp submodel

Estimate SE t Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]

age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]

breadth 0 [-32.992, 8.148]

cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]

headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]

height 0 [ -2.859, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,30.508]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]

output and shorth for I_I model

Estimate Std.Err t-val Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]

age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]

breadth 0 [-31.012, 6.567]

cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]

headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]

height 0 [ -2.173, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,28.819]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]
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The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]

y<-cbrainy

library(leaps)

out <- regboot(x,y,B=1000)

outvs <- fselboot(x,cbrainy) #get bootstrap CIs,

apply(out$betas,2,shorth3)

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

outvs <- modIboot(x,cbrainy) #get bootstrap CIs,

apply(outvs$betas,2,shorth3)

ls.print(outvs$sub)

tem<-regsubsets(x,y,method="forward")

tem2<-summary(tem)

tem2$which

tem2$cp

7.4.5 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal

and not highly skewed. Then the plotted points in the response and residual
plots should scatter in roughly even bands about the identity line (with unit
slope and zero intercept) and the r = 0 line, respectively. See Figure 5.8. If
the error distribution is skewed or multimodal, then much larger sample sizes
may be needed.

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
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entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are Cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p − k − 1 zeros. The zero mean errors ei were iid from
five distributions: i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v)
0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal
value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 7.1 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 7.1 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (4.13),
hybrid region (4.15), and Bickel and Ren region (4.14). The 0 indicates the
test was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1.
The length and coverage = P(fail to reject H0) for the interval [0, D(UB)] or
[0, D(UB,T )] where D(UB) or D(UB,T ) is the cutoff for the confidence region.

The cutoff will often be near
√
χ2

g,0.95 if the statistic T is asymptotically nor-

mal. Note that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression

bootstrap tests.
Volume ratios of the three confidence regions can be compared using (4.16),

but there is not enough information in Table 7.1 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.
The inference for forward selection was often as precise or more precise

than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then from Section 7.2, β̂S may have the same limiting distribution for Imin

and the full model. Note that the average lengths and coverages were similar
for the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
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Table 7.1 Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

and Ren (4.14) cutoffs and coverages were at least as high as those of the
hybrid region (4.15).

For ψ > 0 and Imin, the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often

occurred for β̂∗
j for j = 3, 4. The average CI lengths were shorter for Imin

than for the OLS full model for β3 and β4. Note that for Imin, the coverage
for testing H0 : βS = 1 was higher than that for the OLS full model.

Table 7.2 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317
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Results for other values of n, p, k, and distributions of ei were similar. For
forward selection with ψ = 0.9 and Cp, the hybrid region (4.15) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S∗

T was singular.
For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(4.13) and (4.14) worked for much smaller n, but tended to be longer than
the shorth CIs.

See Table 7.2 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (4.13), and
(4.14), respectively. In Table 4.3, k = 8 and the two nonzero πj correspond

to the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0.
Hence confidence intervals for β10 had the highest coverage and usually the
shortest average length (for i 6= 1) due to zero padding. Theory in Section
7.2 showed that the CI lengths are proportional to 1/

√
n. When n = 25000,

the shorth CI uses the 95.16th percentile while CI (4.13) uses the 95.00th
percentile, allowing the average CI length of (4.13) to be shorter than that of

the shorth CI, but the distribution for β̂∗
i is likely approximately symmetric

for i 6= 10 since the average lengths of the three confidence intervals were
about the same for each i 6= 10.

When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (4.13) and (4.14). BIC
also occasionally had 100% coverage since BIC produces more zeroes than
Cp.

Some R code for the simulation is shown below.

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1

regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410

0.9368 0.9362 0.9370

$avelen

[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521

[8] 2.4496 2.4496 2.4508

$beta

[1] 1 1 0 0

$k

[1] 1

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914
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0.9384 0.9394 0.9402

$avelen

[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020

[8] 2.4497 2.4497 2.4570

$beta

[1] 1 1 0 0

$k

[1] 1

7.5 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. Forward selection with the Chen and Chen (2008)
EBIC criterion and lasso are useful for finding a reasonable fitted model.
BIC and the Hurvich and Tsai (1989) AICC criterion can be useful if n ≥
max(2p, 10ad). For example, if n = 500000 and p = 90, using n1 = 900 would
result in a much smaller loss of efficiency than n1 = 250000.

7.6 Some Alternative MLR Estimators

From Definition 5.11, the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (7.8)

for i = 1, ..., n.This model is also called the full model. Here n is the sample
size and the random variable ei is the ith error. Assume that the ei are iid



7.6 Some Alternative MLR Estimators 315

with variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an
n× p matrix of predictors, β is a p× 1 vector of unknown coefficients, and e

is an n× 1 vector of unknown errors.
There are many methods for estimating β, including (ordinary) least

squares (OLS) for the full model, forward selection with OLS, elastic net,
principal components regression (PCR), partial least squares (PLS), lasso,
lasso variable selection, and ridge regression (RR). For the last six methods,
it is convenient to use centered or scaled data. Suppose U has observed val-
ues U1, ..., Un. For example, if Ui = Yi then U corresponds to the response
variable Y . The observed values of a random variable V are centered if their
sample mean is 0. The centered values of U are Vi = Ui − U for i = 1, ..., n.
Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (7.9)

Remark 7.10. Let the nontrivial predictors uT
i = (xi,2, ..., xi,p) =

(ui,1, ..., ui,p−1). Then xi = (1,uT
i )T . Let the n× (p− 1) matrix of standard-

ized nontrivial predictors W g = (Wij) when the predictors are standardized
using σ̂g. Thus,

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n − g for j = 1, ..., p− 1.

Hence

Wij =
xi,j+1 − xj+1

σ̂j+1
where σ̂2

j+1 =
1

n − g

n∑

i=1

(xi,j+1 − xj+1)
2

is σ̂g for the (j + 1)th variable xj+1. Let wT
i = (wi,1, ..., wi,p−1) be the

standardized vector of nontrivial predictors for the ith case. Since the stan-
dardized data are also centered, w = 0. Then the sample covariance matrix
of the wi is the sample correlation matrix of the ui:

ρ̂u = Ru = (rij) =
W T

g W g

n − g
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where rij is the sample correlation of ui = xi+1 and uj = xj+1. Thus the
sample correlation matrix Ru does not depend on g. Let Z = Y −Y where
Y = Y 1. Since the R software tends to use g = 0, let W = W 0. Note that
n × (p − 1) matrix W does not include a vector 1 of ones. Then regression
through the origin is used for the model

Z = Wη + e (7.10)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp−1)
T . The vector of fitted values

Ŷ = Y + Ẑ.

Remark 7.11. i) Interest is in model (7.8): estimate Ŷf and β̂. For many
regression estimators, a method is needed so that everyone who uses the same
units of measurements for the predictors and Y gets the same (Ŷ , β̂). Also,
see Remark 5.3. Equation (7.10) Z = Wη + e is a commonly used method
for achieving this goal. Suppose g = 0. The method of moments estimator of
the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (7.10)
are used. Linear combinations of the wi are linear combinations of the ui,
which are linear combinations of the xi. (Note that γT u = (0 γT ) x.) Thus

the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear trans-
formation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units of
measurements for the xi and Y . Hence everyone using the same units of mea-
surements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Remark 7.12. Let σ̂j be the sample standard deviation of variable xj

(often with g = 0) for j = 2, ...., p. Let Ŷi = β̂1 +xi,2β̂2 + · · ·+xi,pβ̂p = xT
i β̂.

If standardized nontrivial predictors are used, then

Ŷi = γ̂ + wi,1η̂1 + · · ·+wi,p−1η̂p−1 = γ̂ +
xi,2 − x2

σ̂2
η̂1 + · · ·+ xi,p − xp

σ̂p
η̂p−1

= γ̂ + wT
i η̂ = γ̂ + Ẑi (7.11)

where
η̂j = σ̂j+1β̂j+1 (7.12)

for j = 1, ..., p− 1. Often γ̂ = Y so that Ŷi = Y if xi,j = xj for j = 2, ..., p.

Then Ŷ = Y + Ẑ where Y = Y 1. Note that
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γ̂ = β̂1 +
x2

σ̂2
η̂1 + · · ·+ xp

σ̂p
η̂p−1.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Most regression methods attempt to find an estimate β̂ of β which
minimizes some criterion function Q(b) of the residuals. As in Definition
5.1, given an estimate b of β, the corresponding vector of fitted values is
Ŷ ≡ Ŷ (b) = Xb, and the vector of residuals is r ≡ r(b) = Y − Ŷ (b). See
Definition 5.2 for the OLS model for Y = Xβ + e. The following model is
useful for the centered response and standardized nontrivial predictors, or if
Z = Y , W = XI , and η = βI corresponds to a submodel I.

Definition 7.6. If Z = Wη +e, where the n× q matrix W has full rank
q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
Rp−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (7.13)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Then by Theorem 5.9 (the OLS CLT), the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (7.14)

Remark 7.13: Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p is
large (and the search for a useful subset of predictors if n/p is not large). Refer
to Equation (7.1) where xT β = xT

SβS +xT
EβE = xT

S βS . Let p be the number
of predictors in the full model, including a constant. Let q = p − 1 be the
number of nontrivial predictors in the full model. Let a = aI be the number
of predictors in the submodel I, including a constant. Let k = kI = aI −1 be
the number of nontrivial predictors in the submodel. For submodel I, think
of I as indexing the predictors in the model, including the constant. Let
A index the nontrivial predictors in the model. Hence I adds the constant
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(trivial predictor) to the collection of nontrivial predictors in A. In Equation
(7.1), there is a “true submodel” Y = XSβS +e where all of the elements of
βS are nonzero but all of the elements of β that are not elements of βS are
zero. Then a = aS is the number of predictors in that submodel, including a
constant, and k = kS is the number of active predictors = number of nonnoise
variables = number of nontrivial predictors in the true model S = IS . Then
there are p − a noise variables (xi that have coefficient βi = 0) in the full
model. The true model is generally only known in simulations. For Equation
(7.1), we also assume that if xT β = xT

I βI , then S ⊆ I. Hence S is the unique
smallest subset of predictors such that xT β = xT

SβS . An alternative variable
selection model was given by Remark 7.6.

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) relaxed lasso which is OLS applied to
the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 7.7–7.11, Olive (2020: ch. 3, 2021a: ch. 4), and James
et al. (2013, ch. 6). For this chapter, PLS and PCR are MLR alternative
MLR methods, but will not be discussed in detail.

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). The number of models
M depends on the method. Often one of the models is the full model (7.8)
that uses all p−1 nontrivial predictors. The full model is (approximately) fit
with (ordinary) least squares. For one of the M models, some of the methods
use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y that uses none of the
nontrivial predictors. Forward selection, PCR, and PLS use variables v1 = 1
(the constant or trivial predictor) and vj = γT

j x that are linear combinations
of the predictors for j = 2, ..., p. Model Ii uses variables v1, v2, ..., vi for i =
1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then M models Ii are
used. (For forward selection and PCR, OLS is used to regress Y (or Z) on
v1, ..., vi.) Then a criterion chooses the final submodel Id from candidates
I1, ..., IM.

Remark 7.14. Prediction interval (7.34) used a number d that was often
the number of predictors in the selected model. For forward selection, PCR,
PLS, lasso, and lasso variable selection, let d be the number of predictors
vj = γT

j x in the final model (with nonzero coefficients), including a constant
v1. For forward selection, lasso, and lasso variable selection, vj corresponds
to a single nontrivial predictor, say vj = x∗j = xkj . Another method for
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obtaining d is to let d = j if j is the degrees of freedom of the selected model
if that model was chosen in advance without model or variable selection.
Hence d = j is not the model degrees of freedom if model selection was used.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n > p, X is not invertible,
but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y regardless of

how bad the predictors are. If n < p, then the OLS program fails or Ŷ = Y :
the fitted regression plane interpolates the training data response variables
Y1, ..., Yn. The following rule of thumb is useful for many regression methods.
Note that d = p for the full OLS model.

Rule of thumb 7.2. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 7.15. Use Zn ∼ ANr (µn,Σn) to indicate that a normal ap-
proximation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k× r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 5.9 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.

Definition 7.7. Let Q(η) be a real valued function of the k× 1 vector η.
The gradient of Q(η) is the k × 1 vector
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5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : Rk → Rk. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.

As a mnemonic (memory aid) for the following theorem, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 7.5. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 7.4. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z − Wη‖2

2 = (Z − Wη)T (Z − Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 7.5 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 7.5. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

ls.print(out)

Residual Standard Error=392.8709
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R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

7.7 Forward Selection

Variable selection methods such as forward selection were covered in Sections
7.2–7.4 where model Ij uses j predictors x∗1, ..., x

∗
j including the constant

x∗1 ≡ 1. If n/p is not large, forward selection can be done as in Section 7.2
except instead of forming p submodels I1, ..., Ip, form the sequence of M
submodels I1, ..., IM where M = min(dn/Je, p) for some positive integer J
such as J = 5, 10, or 20. Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8.
Then for each submodel Ij , OLS is used to regress Y on 1, x∗2, ..., x

∗
j. Then a

criterion chooses which model Id from candidates I1, ..., IM is to be used as
the final submodel.

Remark 7.16. Suppose n/J is an integer. If p ≤ n/J , then forward
selection fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where
p − i models are fit at step i for i = 1, ..., (p− 1). If n/J < p, then forward
selection uses (n/J)−1 steps and fits ≈ (p−1)+(p−2)+· · ·+(p−(n/J)+1) =
p((n/J) − 1) − (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1) −

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2

models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.
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#regsubsets works if p < n, e.g. p = n-1, and works

#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (4.14)

vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595

tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,
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228.3175, 224.4362, 221.5456, 218.7368, 212.8099,

210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 7.5, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175

X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
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of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem. Let Yi = xT

I,iβI + eI,i. Then V (eI,i) may not be a constant

σ2: V (eI,i) could depend on case i, and the model may no longer be linear.
Check model I with response and residual plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 7.8, 7.9, and 7.11.

Definition 7.8. Suppose the population MLR model has βS an aS × 1
vector. The population MLR model is sparse if aS is small. The population
MLR model is dense or abundant if n/aS < J where J = 5 or J = 10, say.

The fitted model β̂ = β̂Imin,0 is sparse if d = number of nonzero coefficients
is small. The fitted model is dense if n/d < J where J = 5 or J = 10.

7.8 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression uses the centered
response Zi = Yi − Y and standardized nontrivial predictors in the model
Z = Wη+e. Then Ŷi = Ẑi +Y . Note that in Definition 7.10, λ1,n is a tuning

parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ . Refer to
Definition 7.6 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 7.9. Consider the MLR model Z = Wη + e. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 7.10. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. Let λ ≥ 0 be a constant. The ridge regression estimator η̂R

minimizes the ridge regression criterion

QR(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

η2
i (7.15)

over all vectors η ∈ Rp−1 where λ1,n ≥ 0 and a > 0 are known constants
with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (7.16)
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The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QR is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 7.7. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b

where the minimization is over all vectors b ∈ Rp−1. Note that
∑p−1

i=1 η
2
i =

ηT η = ‖η‖2
2. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 7.17. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)(
W√

λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 7.17 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry
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is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 7.17 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.

The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− g
W T

g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.

Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(7.17)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
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Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and
df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1

u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119

svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (7.18)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(7.15).
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The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is
usually used, for example, after 10-fold cross validation. The fact that η̂R =
An,λη̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 7.6 for the ridge regression central limit theorem.

Remark 7.18. Ridge regression has a simple relationship with OLS if
n > p and (W T W )−1 exists. Then η̂R = (W T W + λ1,nIp−1)

−1W T Z =

(W T W+λ1,nIp−1)
−1(W T W )(W T W )−1W T Z = An,λη̂OLS where An,λ ≡

An = (W T W +λ1,nIp−1)
−1W T W . By the OLS CLT Equation (7.14) with

V̂ /n = (W T W )−1, a normal approximation for OLS is

η̂OLS ∼ ANn−p(η,MSE (W T W )−1).

Hence a normal approximation for ridge regression is

η̂R ∼ ANp−1(Anη,MSE An(W T W )−1AT
n ) ∼

ANp−1[Anη,MSE (W T W + λ1,nIp−1)
−1(W T W )(W T W + λ1,nIp−1)

−1].

If Equation (7.14) holds and λ1,n/n→ 0 as n→ ∞, then An
P→ Ip−1.

Remark 7.19. The ridge regression criterion from Definition 7.10 can also
be defined by

QR(η) = ‖Z − Wη‖2
2 + λ1,nηT η. (7.19)

Then by Theorem 7.5, the gradient 5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z − Wη̂R) + λ1,nη̂R = 0. (7.20)

Following Hastie and Efron (2016, pp. 381-382, 392), this means η̂R = W T a

for some n× 1 vector a. Hence −W T (Z − WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(W T W + λ1,nIp−1)

−1W T Z

= (W T W + λ1,nIp−1)
−1W T W (W T W )−1W T Z
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= (W T W + λ1,nIp−1)
−1W T Wη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]η̂OLS = Bnη̂OLS =

η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS

since An − Bn = 0. See Problem 7.7. Assume Equation (7.13) holds. If
λ1,n/n→ 0 then

W T W + λ1,nIp−1

n

P→ V −1, and n(W TW + λ1,nIp−1)
−1 P→ V .

Note that

An = An,λ =

(
W T W + λ1,nIp−1

n

)−1
W T W

n

P→ V V −1 = Ip−1

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 7.6, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂R − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

η̂R = [Ip−1 − λ̂1,n(W T W + λ̂1,nIp−1)
−1]η̂OLS .

Hence √
n(η̂R − η) =

√
n(η̂R − η̂OLS + η̂OLS − η) =

√
n(η̂OLS − η) −

√
n
λ̂1,n

n
n(W T W + λ̂1,nIp−1)

−1η̂OLS
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D→ Np−1(0, σ
2V ) − τV η ∼ Np−1(−τV η, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that η̂R is a consistent estimator
of η if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of η if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (7.1) and Remark
7.13 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Section 7.12.

Warning. Although the R functions glmnet and cv.glmnet appear to
do ridge regression, getting the fitted values, λ̂1,n, and degrees of freedom to
match up with the formulas of this section can be difficult.

Example 7.5, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]
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out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x

diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)

M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

7.9 Lasso

Consider the MLR model Y = Xβ + e. Lasso uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+e

as described in Remark 7.9. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.

Definition 7.11. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. The lasso estimator η̂L minimizes the lasso criterion
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QL(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (7.21)

over all vectors η ∈ Rp−1 where λ1,n ≥ 0 and a > 0 are known constants
with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.

The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 7.7. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (7.22)

where the minimization is over all vectors b ∈ Rp−1. The literature often uses
λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,

then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.

The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
W T (Z − Wη̂L) +

λ1,n

2n
sn = 0 or − W T(Z − Wη̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0. Here sign(ηi) = 1 if ηi > 1
and sign(ηi) = −1 if ηi < 1. Note that sn = sn,η̂L

depends on η̂L. Thus η̂L

= (W T W )−1W T Z− λ1,n

2n
n(W T W )−1 sn = η̂OLS − λ1,n

2n
n(W T W )−1 sn.
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If none of the elements of η are zero, and if η̂L is a consistent estimator of η,

then sn
P→ s = sη. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that η̂λM
= 0. Hence η̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(η̂L − η̂OLS) = op(1).

Theorem 7.7, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂L − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η) =

√
n(η̂L − η̂OLS + η̂OLS − η) =

√
n(η̂OLS − η) −

√
n
λ1,n

2n
n(W T W )−1sn

D→ Np−1(0, σ
2V ) − τ

2
V s

∼ Np−1

(−τ
2

V s, σ2V

)

since under the LS CLT, n(W T W )−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that η̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of η if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 7.7 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:

QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.
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The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (7.23)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (7.21).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 7.7, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 7.12. The active set A is the index set of the nontrivial pre-
dictors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
values

ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (7.23), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (7.24)

See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.
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Example 7.5, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.

7.10 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the active predictors
that have nonzero lasso η̂i. The method is called relaxed lasso by Hastie et al.
(2015, p. 12), and the relaxed lasso (φ = 0) estimator by Meinshausen (2007).
The method is also called OLS-post lasso and post model selection OLS.
Let XA denote the matrix with a column of ones and the unstandardized
active nontrivial predictors. Hence the lasso variable selection estimator is
β̂LV S = (XT

AXA)−1XT
AY , and lasso variable selection is an alternative to

forward selection. Let k be the number of active (nontrivial) predictors so

β̂LV S is (k + 1) × 1.

Let Imin correspond to the lasso variable selection estimator and β̂V S =

β̂LV S,0 = β̂Imin,0 to the zero padded lasso variable selection estimator. Then

by Remark 7.5 where p is fixed, β̂LV S,0 is
√
n consistent when lasso is consis-
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tent, with the limiting distribution for β̂V S = β̂LV S,0 given by Theorem 7.4.
Hence lasso variable selection can be bootstrapped as in Section 7.4. Lasso
vaiable selection will often be better than lasso when the model is sparse or
if n ≥ 10(k+1). Lasso can be better than lasso variable selection if (XT

AXA)
is ill conditioned or if n/(k + 1) < 10. Also see Pelawa Watagoda and Olive
(2020) and Rathnayake and Olive (2020).

Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The
following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##relaxed lasso =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin

#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) # lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 7.5, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ0 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Theorem 7.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]
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out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 7.5, forward selection selected the model with the
minimum Cp while the other methods used 10-fold CV. PLS and PCR used
the OLS full model with PI length 2395.74, forward selection used a constant
and mmen with PI length 2114.72, ridge regression had PI length 20336.58,
lasso and lasso variable selection used a constant, mmen, and pop with lasso
PI length 8482.62 and relaxed lasso PI length 2226.53. PI (4.14) was used.
Figure 7.1 shows the response plots for forward selection, ridge regression,
lasso, and lasso variable selection. The plots for PLS=PCR=OLS full model
were similar to those of forward selection and lasso variable selection. The
plots suggest that the MLR model is appropriate since the plotted points
scatter about the identity line. The 90% pointwise prediction bands are also
shown, and consist of two lines parallel to the identity line. These bands are
very narrow in Figure 7.1 a) and d).

7.11 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.



338 7 MLR Variable Selection and Lasso

50000 100000 150000

5
0
0
0
0

1
0
0
0
0
0

yhat

y

a) Forward Selection

50000 100000 150000

5
0
0
0
0

1
0
0
0
0
0

yhat

y

b) Ridge Regression

50000 100000 150000

5
0
0
0
0

1
0
0
0
0
0

yhat

y

c) Lasso

50000 100000 150000

5
0
0
0
0

1
0
0
0
0
0

yhat

y

d) Lasso Variable Selection

Fig. 7.1 Marry Data Response Plots

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 7.13. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (7.25)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (7.26)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.
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Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (7.27)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖2
2 + λ2‖η‖1 (7.28)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA −W Aη‖2
2. Then

η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes

QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (7.29)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA − W Aη‖2
2 = (ZA − W Aη)T (ZA − W Aη) =

ZT
AZA − ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =

ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)(
Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z − ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =
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RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 = QEN(η). �

Remark 7.20. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (7.29) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 7.8. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (7.29). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (7.29) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker (KKT)
conditions for convex optimality for Equation (7.28), η̂EN is optimal if

2W T Wη̂EN − 2W T Z + 2λ1η̂EN + λ2sn = 0, or

(W T W + λ1Ip−1)η̂EN = W T Z − λ2

2
sn, or

η̂EN = η̂R − n(W T W + λ1Ip−1)
−1 λ2

2n
sn. (7.30)

Hence

η̂EN = η̂OLS−
λ1

n
n(W T W +λ1Ip−1)

−1 η̂OLS−
λ2

2n
n(W T W+λ1Ip−1)

−1 sn

= η̂OLS − n(W T W + λ1Ip−1)
−1 [

λ1

n
η̂OLS +

λ2

2n
sn].
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Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(η̂EN −η) =

√
n(η̂OLS−η)−n(W T W + λ̂1Ip−1)

−1 [
λ̂1√
n

η̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2020).

Theorem 7.8, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (7.14) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂EN − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 7.6,

√
n(η̂EN − η) =

√
n(η̂EN − η̂R + η̂R − η) =

√
n(η̂R − η) +

√
n(η̂EN − η̂R)

D→ Np−1

(
−(1 − ψ)τV η, σ2V

)
− 2ψτ

2
V s

∼ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 7.5, continued. The rpack function enet does elastic net using
10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am = 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph

[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid
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The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net η̂i. Hence elastic net is used
as a variable selection method. Let XA denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is β̂ENV S = (XT

AXA)−1XT
AY , and relaxed

elastic net is an alternative to forward selection. Let k be the number of
active (nontrivial) predictors so β̂ENV S is (k+1)×1. Let Imin correspond to

the elastic net variable selection estimator and β̂V S = β̂ENV S,0 = β̂Imin,0 to
the zero padded elastic net variable selection estimator. Then by Remark 7.5
where p is fixed, β̂ENV S,0 is

√
n consistent when elastic net is consistent, with

the limiting distribution for β̂ENV S,0 given by Theorem 7.4. Hence elastic
net variable selection can be bootstrapped with the same methods used for
forward selection in Section 7.4. Elastic net variable selection will often be
better than elastic net when the model is sparse or if n ≥ 10(k + 1). The
elastic net can be better than elastic net variable selection if (XT

AXA) is ill
conditioned or if n/(k + 1) < 10. Also see Olive (2019) and Rathnayake and
Olive (2020).

7.12 Prediction Intervals

This section will develop prediction intervals after variable selection. Predic-
tion intervals were considered in Sections 2.4 and 5.4.

The additive error regression model is Y = m(x) + e where m(x) is a real
valued function and the ei are iid, often with zero mean and constant variance
V (e) = σ2. The large sample theory for prediction intervals is simple for this
model, and variable selection models for the multiple linear regression model
have this form withm(x) = xT β = xT

I βI if S ⊆ I. Let the residuals ri = Yi−
m̂(xi) = Yi−Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator ofm(x)
such that the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent
estimators of the population percentiles [L, U ] of the error distribution where
P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then P (Yf ∈ [Ŷf + L̂n(r), Ŷf +

Ûn(r)] → P (Yf ∈ [m(xf )+L,m(xf )+U ]) = P (e ∈ [L, U ]) = 1−δ as n→ ∞.
Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)
P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ with L = −U , and c)
the population shorth is the shortest interval (with length U − L) such that
P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically optimal while a) and b)
are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions. The split conformal PI (7.36), described below, estimates
[−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number
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of “variables” used by the method. For MLR, forward selection, lasso, and
relaxed lasso use variables x∗1, ..., x

∗
d while PCR and PLS use variables that

are linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. (We could

let d = j if j is the degrees of freedom of the selected model if that model
was chosen in advance without model or variable selection. Hence d = j is
not the model degrees of freedom if model selection was used.) See Hong et
al. (2018) for why classical prediction intervals after variable selection fail to
work.

For n/p large and d = p, Olive (2013a) developed prediction intervals for
models of the form Yi = m(xi) + ei, and variable selection models for MLR
have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2020)
gave two prediction intervals that can be useful even if n/p is not large. These
PIs will be defined below. The first PI modifies the Olive (2013a) PI that can
only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d

√
(1 + hf) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (7.31) is changed
to qn = 1 − δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (7.31)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (7.32)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(7.33)
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if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will
be less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1 , ξ̃1−δ2]. Then the first 100 (1 − δ)% large sample PI
for Yf is

[m̂(xf) + bnξ̃δ1 , m̂(xf) + bnξ̃1−δ2 ]. (7.34)

The second PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n−nH

cases i1, ..., inV . The estimator m̂H(x) is computed using the training data
set H . Then the validation residuals vj = Yij −m̂H(xij) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
of the validation residuals (replacing n in (2.11) by nV = n− nH). Then the
second new 100(1− δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf) + v(s+c−1)]. (7.35)

Remark 7.21. Note that correction factors bn → 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p,
but a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ →

1 if dn → ∞ as n → 1. Using correction factors for large sample confidence
intervals, tests, prediction intervals, prediction regions, and bootstrap confi-
dence regions improves the performance for moderate sample size n.

Remark 7.22. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(7.35) while PI (7.34) needs a stronger correction factor.

We can also motivate PI (7.35) by modifying the justification for the Lei
et al. (2018) split conformal prediction interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (7.36)

where aq is the 100(1 − α)th quantile of the absolute validation residuals.
PI (7.35) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H

from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
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order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (7.34) to (7.36) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the PIs (7.34) and (7.35) are
asymptotically optimal for a large class of error distributions while the split
conformal PI (7.36) needs the error distribution to be unimodal and symmet-
ric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half
the efficiency of m̂. When p ≥ n, the regularity conditions for consistent esti-
mators are strong. For example, EBIC and lasso can have P (S ⊆ Imin) → 1
as n → ∞. Then forward selection with EBIC and lasso variable selection
can produce consistent estimators. PLS can be

√
n consistent.

None of the three prediction intervals (7.34), (7.35), and (7.36) dominates
the other two. Recall that βS is an aS × 1 vector in (7.1). If a good fit-
ting method, such as lasso or forward selection with EBIC, is used, and
1.5aS ≤ n ≤ 5aS , then PI (7.34) can be much shorter than PIs (7.35) and
(7.36). For n/d large, PIs (7.34) and (7.35) can be shorter than PI (7.36) if
the error distribution is not unimodal and symmetric; however, PI (7.36) is
often shorter if n/d is not large since the sample shorth converges to the pop-
ulation shorth rather slowly. Grübel (1982) shows that for iid data, the length
and center the shorth(kn) interval are

√
n consistent and n1/3 consistent es-

timators of the length and center of the population shorth interval. For a
unimodal and symmetric error distribution, the three PIs are asymptotically
equivalent, but PI (4.16) can be the shortest PI due to different correction
factors.

If the estimator is poor, the split conformal PI (7.36) and PI (7.35) can
have coverage closer to the nominal coverage than PI (7.34). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (7.35) will be long compared
to PI (7.36).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
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as PIs (7.34) and (7.35), are the only easily computed asymptotically optimal

PIs for a wide range of consistent estimators β̂ of β for the multiple linear
regression model. If the error distribution is e ∼ EXP (1) − 1, then the
asymptotic length of the 95% PI (7.34) or (7.35) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, see Section 5.4 and Pelawa Watagoda and Olive (2020).

7.13 Outlier Resistant MLR Methods

Several methods from Section 6.1 can be modified to give outlier resistant
MLR methods. Replace OLS by the MLR method such as lasso, elastic net,
ridge regression, or forward selection.

The first outlier resistant regression method was given by Application
3.3. Call the estimator the MLD set MLR estimator. Let the ith case wi =
(Yi,x

T
i )T where the continuous predictors from xi are denoted by ui for

i = 1, ..., n. Now let D be the RMVN set U , the RFCH set V , or the covmb2
set B. Find D by applying the MLD estimator to the ui, and then run the
MLR method on the m cases wi corresponding to the set D indices i1, ..., im,
where m ≥ n/2. The set B can be used even if p > n. The theory of the
MLR method applies to the cleaned data set since Y was not used to pick
the subset of the data. Efficiency can be much lower since m cases are used
where n/2 ≤ m ≤ n, and the trimmed cases tend to be the “farthest” from
the center of u. The rpack function getu gets the RMVN set U . See the
following R code for the Buxton (1920) data where we could use the covmb2
set B instead of the RMVN set U by replacing the command getu(x) by
getB(x). See Example 3.9.

Second, replace OLS by the MLR method for the trimmed views or tvreg
estimator. For p > n or n/p not large, trimming could be use the Euclidean
distance from the coordinatewise median with C−1 = I or use a regularized
version of Ccovmb2 from Definition 3.26.

Third, the MLR estimator can be applied to the RMVN set when RMVN
is computed from the vectors ui = (xi2, ..., xip, Yi)

T for i = 1, ..., n. Hence ui

is the ith case with xi1 = 1 deleted. This estimator is similar to the rmreg2
estimator that used OLS.

7.14 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1

vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→ ∞.
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2) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI (0,V I) where (XT
I XI)/(nσ

2)
P→ V −1

I .

3) Theorem 7.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (7.37)

where the cdf of u is Fu(t) =
∑

j πjFuj(t). Thus u has a mixture distribution
of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0.

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (7.38)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

4) Theorem 7.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj . Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj .

Then
wn =

√
n(β̂V S − β)

D→ w (7.39)

where the cdf of w is Fw(t) =
∑

j πjFwj (t). Thus w is a mixture distribution
of the wj with probabilities πj.

5)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i ±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.
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6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7)

Ij model x2 x3 x4 x5 β̂Ij,0 if β̂ = β̂Ij

I2 1 * (β̂1 , 0, β̂3, 0, 0)T

I3 2 * * (β̂1, 0, β̂3, β̂4, 0)T

I4 3 * * * (β̂1, β̂2, β̂3, β̂4, 0)T

I5 4 * * * * (β̂1, β̂2, β̂3, β̂4, β̂4)
T = β̂OLS

Model Imin is the model, among p candidates, that minimizesCp if n ≥ 10,
or EBIC if n < 10p. Model Ij contains j predictors, x∗1, x

∗
2, ..., x

∗
j where

x∗1 = x1 ≡ 1, the constant.
8) Variable selection is a search for a subset of predictors that can be

deleted without important loss of information if n ≥ 10p and such that
model I (containing the remaining predictors that were not deleted) is good
for prediction if n < 10p. Note that the “100%” shorth CI for a βi that is a
component of βO is [0,0].

9) Underfitting occurs if S 6⊆ I so that xI is missing important predictors.
Underfitting will occur if xI is k × 1 with d = k < aS . Overfitting occurs if
S ⊂ I with S 6= I or if n < 5k.

10) In 7) sometimes TRUE = * and FALSE = blank. The xi may be
replaced by the variable name or letters like a b c d.

Ij model x2 x3 x4 x5

I2 1 FALSE TRUE FALSE FALSE
I3 2 FALSE TRUE TRUE FALSE
I4 3 TRUE TRUE TRUE FALSE
I5 4 TRUE TRUE TRUE TRUE

11) The out$cp line gives Cp(I2), Cp(I3), ..., Cp(Ip) = p and Imin is the Ij
with the smallest Cp.

12) Typical bootstrap output for forward selection, lasso, and elastic net is
shown below. The SE column is usually omitted except possibly for forward
selection. The term “coef” might be replaced by “Estimate.” This column
gives β̂I,0 where I = Imin for forward selection, I = L for lasso, and I = EN

for elastic net. Note that the SE entry is omitted if β̂i = 0 so variable xi was
omitted by the variable selection method. In the output below, β̂2 = β̂3 = 0.
The SE column corresponds to the OLS SE obtained by acting as if the OLS
full model contains a constant and the variables not omitted by the variable
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selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]

x3 0 [L̂3, Û3]

x4 0 [L̂4, Û4]
...

...
...

...

xp β̂p SE(β̂p) [L̂p, Ûp]

13) The OLS SE is also accurate for forward selection withCp if XT X/n→
V −1 = diag(d1, ..., dp) where all di > 0. The diagonal limit matrix will occur
if the predictors are orthogonal or if the nontrivial predictors are independent
with 0 mean and finite variance.

regbootsim3(nruns=500)

$cicov

0.942 0.954 0.950 0.948 0.944 0.946 0.946 0.940 0.938 0.940

$avelen

0.398 0.399 0.397 0.399 2.448 2.448 2.448 2.448 2.448 2.450

$beta

[1] 1 1 0 0

$k

[1] 1

14) Simulation output for regression is similar to that shown above. Usu-
ally want coverage near 0.95 since nominal 95% CIs are used and tests with
nominal δ = 0.05 are used. To suggest that the actual coverage is near the
nominal coverage of 0.95, want cov in [0.94,0.96] with 5000 runs, want cov in
[0.93,0.97], with 1000 runs, want cov in [0.92,0.98] with 500 runs, and want
cov in [0.91,0.99] with 100 runs. Let SP = xT β = β1 + 1xi,2 + · · ·+ 1xi,k+1

for i = 1, ..., n. Hence β = (β1, 1, ..., 1, 0, ..., 0)T with β1, k ones, and p−k−1
zeros. Then S = {1, ..., k+1} and E = {k+2, ..., p}. Note that S corresponds
to the first k + 1 βi while E corresponds to the last p− k + 1 βi.

The first 4 numbers are the bootstrap shorth confidence intervals for
β1, β2, βp−1, and βp. The average lengths of the CIs along with the proportion
of times (coverage) the CI for βi contained βi are given. The next three num-
bers test H0 : βE = 0. The prediction region method, hybrid method, and
Bickel and Ren methods are used. Hence the fifth interval gives the length of
the interval [0, D(c)] whereH0 is rejected ifD0 > D(c) and the fifth “coverage”
is the proportion of times the prediction region method test fails to reject H0.
The last three numbers are similar but test H0 : βS = (β1 , 1, ..., 1)T. Hence
the last length 2.450 corresponds to the Bickel and Ren method with cover-
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age 0.940. For the output shown, lengths near 2.45 correspond to
√
χ2

2(0.95)
where P (X ≤ χ2

2(0.95)) = 0.95 if X ∼ χ2
2.

15) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e

where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

16) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (7.40)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

17) The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (7.41)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
18) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,
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θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

19) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .

ii) η̂L = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

20) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) OLS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

7.15 Complements

This chapter followed Pelawa Watagoda and Olive (2019, 2020) closely. Also
see Olive (2013a, 2018), and Rathnayake and Olive (2020). For MLR, Olive

(2017a: p. 123, 2017b: p. 176) showed that β̂V S = β̂Imin,0 is a consistent es-
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timator. Olive (2014: p. 283, 2017ab, 2018) recommended using the shorth(c)
estimator as a confidence interval. Olive (2017a: p. 128, 2017b: p. 181, 2018)
showed that the prediction region method can simulate well for the p × 1
vector β̂V S = β̂Imin,0. Hastie et al. (2009, p. 57) noted that variable selec-
tion is a shrinkage estimator: the coefficients are shrunk to 0 for the omitted
variables.

There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2006, 2008), and Tibshirani et al. (2018). Knight and Fu (2000) have some
results on the residual bootstrap that uses residuals from one estimator, such
as full model OLS, but fit another estimator, such as lasso.

Inference techniques for the variable selection model, other than data split-
ting, have not had much success. For multiple linear regression, the methods
are often inferior to data splitting, often assume normality, or are asymptot-
ically equivalent to using the full model, or find a quantity to test that is not
Aβ. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality,
needs p no more than about 30, assumes σ2 can be estimated independently
of the data, and Leeb et al. (2015) say the method does not work. The

bootstrap confidence region (4.32) is centered at T
∗ ≈ ∑

j ρjnTjn, which is
closely related to a model averaging estimator. Wang and Zhou (2013) show
that the Hjort and Claeskens (2003) confidence intervals based on frequentist
model averaging are asymptotically equivalent to those obtained from the
full model. See Buckland et al. (1997) and Schomaker and Heumann (2014)
for standard errors when using the bootstrap or model averaging for linear
model confidence intervals.

Efron (2014) used the confidence interval T
∗ ± z1−δSE(T

∗
) assuming T

∗

is asymptotically normal and using delta method techniques, which require
nonsingular covariance matrices. There is not yet rigorous theory for this
method. Section 7.2 proved that T

∗
is asymptotically normal: under regular-

ity conditions: if
√
n(Tn − θ)

D→ Ng(0,ΣA) and
√
n(T ∗

i − Tn)
D→ Ng(0,ΣA),

then under regularity conditions
√
n(T

∗ − θ)
D→ Ng(0,ΣA). If g = 1,

then the prediction region method large sample 100(1 − δ)% CI for θ has

P (θ ∈ [T
∗ − a(UB), T

∗
+ a(UB)]) → 1 − δ as n → ∞. If the Frey CI also has

coverage converging to 1−δ, than the two methods have the same asymptotic
length (scaled by multiplying by

√
n), since otherwise the shorter interval will

have lower asymptotic coverage.
We can get a prediction region by randomly dividing the data into two

half sets H and V where H has nH = dn/2e of the cases and V has the
remaining m = nV = n− nH cases. See Section 4.4.

Robust Versions of OLS Alternatives: Hastie et al. (2015, pp. 26-27)
discuss some modifications of lasso that are robust to certain types of outliers.
Robust methods for forward selection and LARS are given by Uraibi et al.
(2017, 2019) that need n >> p. If n is not much larger than p, then Hoffman
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et al. (2015) have a robust Partial Least Squares–Lasso type estimator that
uses a clever weighting scheme.

7.16 Problems

7.1. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂V S = β̂Imin,0?

Selection Algorithm: forward #output for Problem 7.1

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

7.2 Consider the above output for the OLS full model. The column resboot
gives the large sample 95% CI for βi using the shorth applied to the β̂∗

ij for j =
1, ..., B using the residual bootstrap. The standard large sample 95% CI for βi

is β̂i±1.96SE(β̂i). Hence for β2 corresponding to L, the standard large sample
95% CI is −0.001 ± 1.96(0.002) = −0.001 ± 0.00392 = [−0.00492, 0.00292]
while the shorth 95% CI is [−0.005, 0.004].

a) Compute the standard 95% CIs for βi corresponding to W, H, and S.
Also write down the shorth 95% CI. Are the standard and shorth 95% CIs
fairly close?

b) Consider testing H0 : βi = 0 versus HA : βi 6= 0. If the corresponding
95% CI for βi does not contain 0, then reject H0 and conclude that the
predictor variable Xi is needed in the MLR model. If 0 is in the CI then fail
to reject H0 and conclude that the predictor variable Xi is not needed in the
MLR model given that the other predictors are in the MLR model.
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Which variables, if any, are needed in the MLR model? Use the standard
CI if the shorth CI gives a different result. The nontrivial predictor variables
are L, W, H, and S.

7.3. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.

Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
e) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

7.4. Suppose the full model has p predictors including a constant. Let
submodel I have k predictors. Then
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is for the full model. Since FI ≥ 0, Cp(Imin) ≥ −p and Cp(I) ≥
−p. Assume the full model is one of the submodels considered. Then −p ≤
Cp(Imin) ≤ p. Let r be the residual vector for the full model and rI that for
the submodel. Then the correlation

corr(r, rI) =

√
n− p

Cp(I) + n− 2k
.

a) Show corr(r, rImin) → 1 as n→ ∞.
b) Suppose S is not a subset of I. Under the model xT β = xT

SβS ,
corr(r, rI) will not converge to 1 as n → ∞. Suppose that for large enough
n, [corr(r, rI)]

2 ≤ γ < 1. Show that Cp(I) → ∞ as n → ∞.
7.5. The table below shows simulation results for bootstrapping OLS (reg)

and forward selection (vs) withCp when β = (1, 1, 0, 0)T . The βi columns give
coverage = the proportion of CIs that contained βi and the average length of
the CI. The test is for H0 : (β3, β4)

T = 0 and H0 is true. The “coverage” is
the proportion of times the prediction region method bootstrap test failed to
reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is reasonable for a
nominal value of 0.95. Output is given for three different error distributions.
If the coverage for both methods ≥ 0.93, the method with the shorter average
CI length was more precise. (If one method had coverage ≥ 0.93 and the other
had coverage < 0.93, we will say the method with coverage ≥ 0.93 was more
precise.)

a) For β2 , β3 , and β4, which method, forward selection or the OLS full
model, was more precise?

Table 7.3 Bootstrapping Forward Selection, n = 100, p = 4, ψ = 0.9, B = 1000

β1 β2 β3 β4 test
reg cov 0.93 0.95 0.95 0.94 0.95

len 1.266 10.703 10.666 10.650 2.547
vs cov 0.95 0.93 0.997 0.995 0.989

len 1.260 8.901 8.986 8.977 2.759
reg cov 0.94 0.93 0.95 0.94 0.95

len 0.393 3.285 3.266 3.279 2.475
vs cov 0.94 0.97 0.998 0.997 0.995

len 0.394 2.773 2.721 2.733 2.703
reg cov 0.95 0.94 0.95 0.95 0.95

len 0.656 5.493 5.465 5.427 2.493
vs cov 0.93 0.95 0.998 0.998 0.977

len 0.657 4.599 4.655 4.642 2.783

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
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asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

2,0.95 = 2.477.

Were the three values in the test column for reg within 0.11 of 2.477?
7.6. The table below shows simulation results for bootstrapping OLS (reg),

lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T . The
βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise. (If
one method had coverage ≥ 0.89 and the other had coverage < 0.89, we will
say the method with coverage ≥ 0.89 was more precise.) (Lengths for the test
column are not comparable unless the statistics have the same asymptotic
distribution.)

Table 7.4 Bootstrapping lasso and RR, n = 100, ψ = 0, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.945 0.947 0.941 0.941 0.937

len 0.397 0.399 0.400 0.398 2.451
RR cov 0.95 0.89 0.95 0.95 0.94

len 0.401 0.366 0.377 0.382 2.451
reg cov 0.928 0.948 0.953 0.952 0.943

len 0.661 0.673 0.675 0.676 2.490
lasso cov 0.97 0.90 0.99 0.98 0.97

len 0.684 0.741 0.612 0.610 2.650

a) For β3 and β4 which method, ridge regression or the OLS full model,
was more precise?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

7.7. For ridge regression, let An = (W T W + λ1,nIp−1)
−1W T W and

Bn = [Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

7.8. Table 7.5 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
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with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)

a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 7.5 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.

Were the three values in the test column for reg within 0.1 of 2.795?

7.9. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

7.10. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large

sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

7.11. For ridge regression, let An = (W T W + λ1,nIp−1)
−1W T W and

Bn = [Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

7.12. Consider choosing η̂ to minimize the elastic net criterion

Q(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression? (For example,

both are zero, λ1 is zero, or λ2 is zero.)



358 7 MLR Variable Selection and Lasso

b) Which values of λ1 and λ2 correspond to the OLS full model?

7.13. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, ridge regression, and lasso variable
selection.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

7.14.
R Problems Some R code for homework problems is at

(http://parker.ad.siu.edu/Olive/robRhw.txt).
Warning: Use a command like source(“G:/rpack.txt”) to download

the programs. See Preface or Section 14.2. Typing the name of the
rpack function, e.g. regbootsim3, will display the code for the function. Use
the args command, e.g. args(regbootsim3), to display the needed arguments
for the function.

regbootsim3(nruns=500)

#output similar to that for Problem 7.15

$cicov

0.942 0.954 0.950 0.948 0.944 0.946 0.946 0.940 0.938 0.940

$avelen

0.398 0.399 0.397 0.399 2.448 2.448 2.448 2.448 2.448 2.450

$beta

[1] 1 1 0 0

$k

[1] 1

7.15. Use the R command for this problem, and put the output in Word.
The output should be similar to that shown above. Consider the multiple
linear regression model Yi = β1 + β2xi,2 + β3xi,3 + β4xi,4 + ei where β =
(1, 1, 0, 0)T. The function regbootsim3 bootstraps the regression model
with the residual bootstrap. Note that S = {1, 2} and E = {3, 4}. The first 4
numbers are the bootstrap shorth confidence intervals for βi. The lengths of
the CIs along with the proportion of times (coverage) the CI for βi contained
βi are given. The CI lengths for the first 4 intervals should be near 0.392.
With 500 runs, coverage in [0.92,0.98] suggests that the actual coverage is
near the nominal coverage of 0.95. The next three numbers test H0 : βE = 0
where E corresponds to the last p− k+ 1 βi. The prediction region method,
hybrid method, and Bickel and Ren methods are used. Hence the fifth interval
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gives the length of the interval [0, D(c)] where H0 is rejected if D0 > D(c) and
the fifth “coverage” is the proportion of times the prediction region method
test fails to reject H0. The last three numbers are similar but test H0 :
βS = 1 where S corresponds to the first k+1 βi. Hence the last length 2.450
corresponds to the Bickel and Ren method with coverage 0.940. Want lengths
near 2.45 which correspond to

√
χ2

2(0.95) where P (X ≤ χ2
2(0.95)) = 0.95 if

X ∼ χ2
2.

7.16. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
j for j = 1, ..., 5.

c) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j . Copy and paste the output into Word. Is T

∗
close

to β̂OLS found in a)?
d) The commands for this part bootstrap the forward selection using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂V S,j = β̂

∗
Imin,0,j for j = 1, ..., 5. The last two variables may have a

few 0s.
e) B = 1000 T ∗

j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

7.17.
7.18.
7.19. For the Buxton (1920) data with multiple linear regression, height

was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.
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c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

7.20. This problem is like Problem 7.19, except elastic net is used instead
of lasso.

a) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. The identity line passes right through the
outliers which are obvious because of the large gap. Prediction interval (PI)
bands are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. This did elastic net for the cases in the
covmb2 set B applied to the predictors which included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. (Problem 7.19 c) shows the DD plot for the data.)

7.21. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

7.22. This simulation is similar to that used to form Table 7.5. Since 1000
runs are used, coverage in [0.93,0.97] suggests that the actual coverage is close
to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 7.5 with 4 lines.
Two lines are for reg (the OLS full model) and two lines are for vs (forward
selection with Imin). The βi columns give the coverage and lengths of the
95% CIs for βi. If the coverage ≥ 0.93, then the shorter CI length is more
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precise. Were the CIs for forward selection more precise than the CIs for the
OLS full model for β3 and β4?





Chapter 8

AER and Time Series

Additive error regression and some time series models are similar to multiple
linear regression for response plots and prediction intervals.

8.1 Additive Error Regression

Definition 8.1. The additive error regression (AER) model is

Y = m(x) + e (8.1)

where m is a real valued funtion and the errors ei are iid with zero mean and
finite variance σ2. The AER model is a 1D regression model with sufficient
predictor SP = h(x) = m(x) = E(Y |x). The estimated sufficient predictor
ESP = m̂(x) = Ŷ , and the residual r = Y − Ŷ . We will usually assume that
the error distribution is not highly skewed.

Definition 8.1. The response plot for the AER model is a plot of ESP
versus Y . The residual plot is a plot of ESP versus r.

Rule of thumb 8.1. If the error distribution is unimodal and not highly
skewed, the plotted points should follow the identity line in the response
plot and the r = 0 line in the residual plot with a rectangular or ellipsoidal
pattern. Hence the plots look like those for multiple linear regression when
the error distribution is unimodal and not highly skewed. Add the identity
line to the response plot. Pointwise prediction interval bands can also be
added.

Remark 8.1 Prediction intervals for the AER model were given in Section
7.12.

Many regression models are special cases of the AER model. The multiple
linear regression model is a special case with m(x) = xT β. Then AER single

363
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index model is a special case with m(x) = g(xT β). For this model, m(x)
and xT β are both sufficient predictors. See Chapter 9. Nonlinear regression
and nonparametric regression are also special cases. The nonlinear regression
model hasm(x) = gθ(x), a known function except the k unknown parameters
θ = (θ1, ..., θk)

T . The additive error generalized additive model (AE GAM)
has m(x) = SP = AP = α +

∑p
j=1 Sj(xj) for some (usually unknown)

functions Sj . Then ESP = EAP = α̂ +
∑p

j−1 Ŝj(xj). The AER GAM is

useful for checking the multiple linear regression model: check that each Ŝj

linear.
Multiple linear regression uses an inflexible hyperplane m̂(x) = xT β.

Many AER fitting methods use flexible estimators m̂(x). These flexible meth-
ods often fit outliers well so the outliers are masked. Hence, outlier detection
tends to be more difficult for AER than for MLR. In the response and resid-
ual plots, look for gaps in the plot with clusters of outliers far from the bulk
of the data.

EAP

Y

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
2

3
4

5

Fig. 8.1 Pointwise Prediction Interval Bands for Ozone Data

Example 8.1. Chambers and Hastie (1993, p. 251, 516) examine an envi-
ronmental study that measured the four variables Y = ozone concentration,
solar radiation, temperature, and wind speed for n = 111 consecutive days.
Figure 8.1 shows the response plot with the pointwise large sample 95%
PI bands for the additive model. Here m̂(x) = estimated additive predic-
tor (EAP). Note that the plotted points scatter about the identity line in a
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roughly evenly populated band, and that 3 of the 111 PIs corresponding to
the observed data do not contain Y .

8.1.1 Response Transformations

This subsection extends the graphical method for response transformations
of Section 5.2 to regression models of the form Yi = m(xi) + ei. Predictor
transformations from Section 5.1 are still useful for such models.

The applicability of the AER model (8.1) can be expanded by allowing re-
sponse transformations. An important class of response transformation mod-
els adds an additional unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = m(xi) + ei. (8.2)

If λo was known, then Yi = tλo(Zi) would follow model (8.1). The function
m depends on λo, the p predictors xj are assumed to be measured with
negligible error, and the zero mean constant variance errors ei are assumed
to be iid from a unimodal distribution that is not highly skewed. The power
transformation and modified power transformations of Definitions 5.6 and
5.7 are again used.

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the

identity line in a roughly evenly populated band. Then take λ̂o = λ∗, that is,
Y = tλ∗(Z) is the response transformation. Curvature from the identity line
suggests that the candidate response transformation is inappropriate. After
selecting the transformation, the usual checks should be made. In particular,
the transformation plot for the selected transformation is a response plot,
and a residual plot should also be made.

Each transformation plot is a “response plot” for the seven values of W =
tλ(Z), and the method chooses the “best response plot” where the model (8.1)
seems “most reasonable.” If more than one value of λ ∈ ΛL gives a linear plot,
take the simplest or most reasonable transformation or the transformation
that makes the most sense to subject matter experts. Also check that the
corresponding “residual plots” of Ŵ versus W − Ŵ look reasonable. The
values of λ in decreasing order of importance are 1, 0, 1/2,−1 and 1/3. So
the log transformation would be chosen over the cube root transformation if
both transformation plots look equally good. Note that this procedure can
be modified to create a graphical diagnostic for a numerical estimator λ̂ of
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Fig. 8.2 Transformation Plots for Ozone Data

λo by adding λ̂ to ΛL. For linear models, Box and Cox (1964) is widely used.
Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical methods
can also be added.

In the following example, the plots show tλ(Z) on the vertical axis. The
label “EAP” of the horizontal axis is for the fitted values that result from
using tλ(Z) as the “response” in the software.
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Response transformations for the AE GAM Y = AP + e are among the
most difficult for regression models with additive errors since AE GAMs are
very flexible and tend to fit more than one candidate response transformation
well. Rule out poor models with transformation and residual plots. For each
remaining competing model, check the Ŝj and whether any of the predictors
can be deleted.

Example 8.2. Chambers and Hastie (1993, p. 251, 516) examine an envi-
ronmental study that measured the four variables Z = ozone concentration,
solar radiation, temperature and wind speed for 111 consecutive days. Ad-
ditive models were fit using Z and Z1/3 as the response. Figure 8.2 shows
the four best transformation plots, and Figure 8.3 shows the corresponding
residual plots. The plotted points scatter about the identity line and r = 0
line in roughly evenly populated bands except possibly the case that appears
in the lower left corner. No transformation Y = Z may be best since the
predictor solar radiation does not seem to be needed for this model, and the
other transformations fit the case in the lower left corner poorly.

Similar graphical methods for response transformations can be used for
time series, which are covered briefly in the next section.

8.2 Time Series

See Haile (2022), Haile and Olive (2022ab) and Welagedara and Olive (2022).
A time series Y1, ..., Yn consists of observations Yt collected sequentially

at times 1, ..., n. We will use the R software notation and write a moving
average parameter θ with a positive sign. Many references and software will
write the model with a negative sign for the moving average parameters. For
the time series models described below, we will assume that the errors et are
independent and identically distributed (iid) with zero mean and variance
σ2. The backshift operator or lag operator B satisfies BWt = Wt−1 and
BjWt = Wt−j.

A moving average MA(q) times series is

Yt = τ+θ1et−1+θ2et−2+· · ·+θqet−q+et = τ+(1+θ1B+· · ·+θqB
q)et = τ+θ(B)et

where θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q and θq 6= 0. Note that E(Yt) =
µ = τ = θ0 for t ≥ 1. Since the et are iid, the Yt are identically distributed,
and Yj , Yj+q+1, Yj+2(q+1), ... are iid.

An autoregressive AR(p) times series is

Yt = τ+φ1Yt−1+φ2Yt−2+· · ·+φpYt−p+et or (1−φ1B−· · ·−φpB
p)Yt = τ+et,
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or φ(B)Yt = τ + et where φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p and φp 6= 0.
If E(Yt) = µ for t ≥ 1, write Yt − µ =

∑p
j=1 φj(Yt−j − µ) + et to get

τ = φ0 = µ(1 −
∑p

j=1 φj).
An autoregressive moving average ARMA(p, q) times series is

Yt = τ +φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p +θ1et−1 +θ2et−2 + · · ·+θqet−q +et,

or φ(B)Yt = τ + θ(B)et where θq 6= 0 and φp 6= 0. The ARMA(0,q) model
is the MA(q) model, and the ARMA(p,0) model is the AR(p) model. Again
τ = µ(1 −∑p

j=1 φj) if p ≥ 1, and τ = µ if p = 0. The ARMA(0,0) model is
Yt = µ+ et, often called the location model.

The results in this section also apply to a time series Xt that follows an
ARIMA(p, d, q) model with known d if the differenced time series model Yt

follows an ARMA(p, q) model. To describe ARIMA models, let the difference
operator 5 = (1 − B). Let Yt = 5dXt = (1 − B)dXt be the differenced
time series. The first difference is Yt = 5Xt = (1 − B)Xt = Xt − Xt−1.
The second difference is Yt = 52Xt = 5(5Xt) = Xt − 2Xt−1 + Xt−2. If
Xt follows an ARIMA(p, d, q) model, want Yt to follow a weakly stationary,
causal, and invertible ARMA(p, q) = ARIMA(p, 0, q) model. Typically d = 0
or 1, but occasionally d = 2. Usually τ = 0 if d > 1. The ARIMA(p, d = 1, q)
model is Xt = τ + (1 + φ1)Xt−1 + (φ2 − φ1)Xt−2 + · · ·+ (φp − φp−1)Xt−p −
φpXt−p−1 + θ1et−1 + · · · + θqet−q + et. The ARIMA(p, d, q) model can be
written compactly as φ(B) 5d Xt = τ + θ(B)et. See Box and Jenkins (1976)
for more on these models.

A stochastic process {Yt, t ∈ T} is a collection of random variables where
often T = Z, the set of integers. The observed time series is {Yt} = Y1, ..., Yn.
The mean function µt = E(Yt) for t ∈ Z. The autocovariance function γt,s =
Cov(Yt, Ys) = E[(Yt − µt)(Ys − µs)] = E(YtYs) − µtµs for t, s ∈ Z. The au-

tocorrelation function ρt,s = Corr(Yt, Ys) =
Cov(Yt, Ys)√
V ar(Tt)V ar(Ys)

=
γt,s√
γt,tγs,s

for t, s ∈ Z.
A process {Yt} is weakly stationary if a) E(Yt) = µt ≡ µ is constant over

time, and b) γt,t−k = γ0,k for all times t and lags k. Hence the covariance func-
tion γt,s depends only on the absolute difference |t−s|. For a weakly stationary
process {Yt}, write the autocovariance function as γk = Cov(Yt, Yt−k) and
the autocorrelation function as ρk = corr(Yt, Yt−k) = γk/γ0. Note that the
mean function E(Yt) = µ and the variance function V (Yt) = V ar(Yt) = γ0

are constant and do not depend on t. The autocovariance and autocorrelation
functions γk and ρk depend on the lag k but not on the time t.

We usually want the ARMA(p, q) model to be weakly stationary, causal,
and invertible. Let Zt = Yt − µ where µ = E(Yt) if {Yt} is weakly stationary
and µ is some origin otherwise. Then the causal property implies that Zt =∑∞

j=1 ψjet−j + et, which is an MA(∞) representation, where the ψj → 0

rapidly as j → ∞. Invertibility implies that Zt =
∑∞

j=1 χjZt−j + et, which is
an AR(∞) representation, where the χj → 0 rapidly as j → ∞. We will make



8.2 Time Series 369

the usual assumption that the AR(∞) and MA(∞) parameters are square
summable. Thus if the ARMA(p, q) model is weakly stationary, causal, and
invertible, then Yt depends almost entirely on nearby lags of Yt and et, not on
the distant past. Also, the time series model ≈ AR(py) ≈ MA(qy) for some
positive integers py and qy that do not depend on the sample size n.

Consider θ(B) and φ(B) as polynomials in B. An ARMA(p, q) model is
invertible if all of the roots of the polynomial θ(B) = 0 have modulus > 1,
and weakly stationary if all of the roots of the polynomial φ(B) = 0 have
modulus > 1. (Let the complex number W = W1 + W2 i have modulus
|W | = W 2

1 +W 2
2 .) Hence the roots of both polynomials lie outside the unit

circle. An AR(p) model is always invertible and an MA(q) model is always
causal. For the AR(1) model, need |φ1| < 1. For the MA(1) model, need
|θ1| < 1. For the ARMA(1,1) model, need |φ1| < 1 and |θ1| < 1.

Let τi stand for θi or φi. Let k stand for q or p, and let ψ(B) = 1− τ1B−
τ2B

2 − · · · − τkB
k stand for φ(B) or θ(B). A necessary but not sufficient

condition for the roots of ψ(B) = 0 to all be greater than 1 in modulus is
τ1 + · · ·+ τk < 1 and |τk| < 1.

8.2.1 Large Sample Theory

Some notation is needed for the large sample theory. The Gaussian maximum
likelihood estimator (GMLE) will be used. The Yule Walker and least squares
estimators will also be used for AR(p) models. Let the ri be the m (one step
ahead) residuals where oftenm = n orm = n−p. Under regularity conditions,

σ̃2 =

∑m
i=1 r

2
i

m− p − q − c
(8.3)

is a consistent estimator of σ2 where often c = 0 or c = 1. See Granger and
Newbold (1977, p. 85) and Hannan and Rissanen (1982, p. 89). Let σ̂2 be the
estimator of σ2 produced by the time series model. Let

Γ n =




γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0


 .

The following large sample theorem for the AR(p) model is due to Mann
and Wald (1943). Also see McElroy and Politis (2020, p. 333) and Anderson
(1971, pp. 210-217). For large sample theory for MA and ARMA models,
see Hannan (1973), Kreiss (1985), and Yao and Brockwell (2006). There is a
strong regularity condition for the GMLE for the ARMA model. Assume the
ARMA(pS, qS) model is the true model. If both p > pS and q > qS , then the
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GMLE is not a consistent estimator. See Chan, Ling, and Yau (2020) and
Hannan (1980). Pötscher (1990) shows how to estimate max(pS , qS) consis-
tently.

Theorem 8.1. Let the iid zero mean ei have variance σ2, and let the time
series have mean E(Yt) = µ.

a) Let Y1, ..., Yn be a weakly stationary and invertible AR(p) time series,

and let β = (φ1, ..., φp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D→ Np(0,V ) (8.4)

where V = V (β) = σ2Γ−1
p . Equation (8.2) also holds under mild regularity

conditions for the least squares estimator, and the GMLE of β.
b) Let Y1, ..., Yn be a weakly stationary, causal, and invertible MA(q) time

series, and let β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity condi-
tions, √

n(β̂ − β)
D→ Nq(0,V ). (8.5)

where V = V (β) = σ2Γ−1
q .

c) Let Y1, ..., Yn be a weakly stationary, causal, and invertible ARMA(p, q)

time series, and let β = (φ1, ..., φp, θ1, ..., θq) with g = p + q. Let β̂ be the
GMLE. Under regularity conditions,

√
n(β̂ − β)

D→ Ng(0,V ). (8.6)

The main point of Theorem 8.1 is that the theory can hold even if the et are
not iidN(0, σ2). The basic idea for the GMLE is that {Yt} satisfies an AR(∞)
model which is approximately an AR(py) model, and the large sample theory
for the AR(py) model depends on the zero mean error distribution through σ2

by Theorem 1a). See Anderson (1971: ch. 5, 1977), Durbin (1959), Hamilton
(1994, pp. 117, 429), Hannan and Rissanen (1982, p. 85), and Whittle (1953).
When the et are iid N(0, σ2

e), V = V (β) = I−1
1 (β), the inverse information

matrix. Then for the AR(p) model, V (φ) = σ2Γ−1
p (φ) = I−1

1 (φ), while for

the MA(q) model, V (θ) = σ2Γ−1
q (θ) = I−1

1 (θ). See Box and Jenkins (1976,
p. 241) and McElroy and Politis (2020, pp. 340-344).
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8.3 Summary

8.4 Complements

See Olive (2007, 2013a) and Pelawa Watagoda and Olive (2020) for prediction
intervals for AER. The graphical response transformation method is due to
Olive (2013b).

Experimental design models are often AER models. Response transforma-
tions for such models are given in Olive (2017a,

∮
5.4).

The literature on robust ARIMA time series is large. See, for example,
Agnieszka and Magdalena (2018), Allende and Heiler (1992), Bhatia, et al.
(2016), Bustos and Yohai (1986), Chakhchoukh (2010), Chang, Tiao, and
Chen (1988), Chen and Liu (1993), Choy (2001), de Luna and Genton (2001),
Denby and Martin (1979), Deutsch, Richards, and Swain (1990), Fox (1972),
Justel, Peña, and Tsay (2001), Lawrence (2014), Ledolter (1989), Liu, Kumar,
and Palomar (2019), Lucas, Franses, and Van Dijk (2009), Ma and Genton
(2000), Muler, Peña, and Yohai (2009), Stockinger and Dutter (1987), Tsay
(1986, 1988).

8.5 Problems

8.1. When doing a PI or CI simulation for a nominal 100(1 − δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑
i Yi/m. The

variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈
√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?
8.2. The smoothing spline simulation compares the PI lengths and cover-

ages of 3 large sample 95% PIs for Y = m(x) + e and a single measurement
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x. Values for the first PI were denoted by scov and slen, values for 2nd PI
were denoted by ocov and olen, and values for third PI by dcov and dlen. The
average degrees of freedom of the smoothing spline was recorded as adf. The
number of runs was 5000. The len was the average length of the PI and the
cov was the observed coverage. One student got the following results shown
in Table 4.2.

Table 8.1 Results for 3 PIs

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

5 100 18.028 17.300 18.741 0.9438 0.9382 0.9508 9.017

For the PIs with coverage ≥ 0.94, which PI was the most precise (best)?

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. regbootsim3, will display the code for the function. Use
the args command, e.g. args(regbootsim3), to display the needed arguments
for the function.

8.6. A problem with response and residual plots is that there can be a
lot of black in the plot if the sample size n is large (more than a few thou-
sand). A variant of the response plot for the additive error regression model
Y = m(x) + e would plot the identity line, the two lines parallel to the
identity line corresponding to the Section 7.12 large sample 100(1− δ)% pre-
diction intervals for Yf that depends on Ŷf . Then plot points corresponding
to training data cases that do not lie in their 100(1 − δ)% PI. We will use
δ = 0.01, n = 100000, and p = 8.

a) Copy and paste the commands for this part into R. They make the
usual response plot with a lot of black. Do not include the plot in Word.

b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.

c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

8.7. The Rousseeuw and Leroy (1987, p. 26) Belgian telephone data has
response Y = number of international phone calls (in tens of millions) made
per year in Belgium. The predictor variable x = year (1950-1973). From 1964
to 1969 total number of minutes of calls was recorded instead, and years 1963
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and 1970 were also partially effected. Hence there are 6 large outliers and 2
additional cases that have been corrupted.

a) The simple linear regression model is Y = α + βx + e = SP + e.
Copy and paste the R commands for this part to make a response plot of
ESP = Ŷ = α̂+ β̂x versus Y for this model. Include the plot in Word.

b) The additive error GAM is Y = α + S(x) + e = AP + e where S
is some unknown function of x. The R commands make a response plot of
EAP = α̂+ Ŝ(x) versus Y for this model. Include the plot in Word.

c) The simple linear regression model is a special case of the additive
error GAM with S(x) = βx. The additive error GAM is a special case of
the additive error regression model Y = m(x) + e where m(x) = α + S(x).
The response plots for these three models are used in the same way as the
response plot for the multiple linear regression model: if the model is good,
then the plotted points should cluster about the identity line with no other
pattern. Which response plot is better for showing that something is wrong
with the model? Explain briefly.





Chapter 9

1D Regression

... estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.

Brillinger (1977, p. 509)

After computing β̂, one may go on to prepare a scatter plot of the points
(β̂xj, yj), j = 1, ..., n and look for a functional form for g(·).

Brillinger (1983, p. 98)

Regression is the study of the conditional distribution Y |x of the response
Y given the k×1 vector of nontrivial predictors x. The scalar Y is a random
variable and x is a random vector. In Chapter 5, a special case of regression
was the multiple linear regression model Yi = wi,1η1+wi,2η2+· · ·+wi,pηp+ei

= wT
i η+ei for i = 1, . . . , n. In this chapter, the subscript i is often suppressed

and the multiple linear regression model is written as Y = α + x1β1 + · · ·+
xkβk + e = α + βT x + e where k = p − 1. The primary difference is the
separation of the constant term α and the nontrivial predictors x. In Chapter
5, wi,1 ≡ 1 for i = 1, ..., n.Taking Y = Yi, α = η1, βj = ηj+1, and xj = wi,j+1

and e = ei for j = 1, ..., k = p− 1 shows that the two models are equivalent.
The change in notation was made because the distribution of the nontrivial
predictors is very important for the theory of the more general regression
models.

Definition 9.1: In a 1D regression model, Y is conditionally independent
of x given the sufficient predictor SP = h(x), written

Y x|h(x), (9.1)

where the real valued function h : Rp → R.

This chapter will primarily consider 1D regression models where h(x) =
α + βT x. An important 1D regression model, introduced by Li and Duan
(1989), has the form

Y = g(α + βT x, e) (9.2)

375
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where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.

Special cases of the 1D regression model (9.1) include many important
generalized linear models (GLMs) and the additive error single index model

Y = m(α+ βT x) + e. (9.3)

Typically m is the conditional mean or median function. For example if all
of the expectations exist, then

E[Y |x] = E[m(α+ βT x)|x] + E[e|x] = m(α + βT x).

The multiple linear regression model is an important special case where m is
the identity function: m(α + βT x) = α + βT x. Another important special
case of 1D regression is the response transformation model where

g(α + βT x, e) = t−1(α+ βT x + e) (9.4)

and t−1 is a one to one (typically monotone) function. Hence

t(Y ) = α+ βT x + e.

If Yi is an observed survival time, then many survival regression models, in-
cluding the Cox (1972) proportional hazards model, are 1D regression models.

Definition 9.2. Regression is the study of the conditional distribution
of Y |x. Focus is often on the mean function E(Y |x) and/or the variance
function VAR(Y |x). There is a distribution for each value of x = xo such
that Y |x = xo is defined. For a 1D regression with h(x) = βT x,

E(Y |x = xo) = E(Y |βT x = βT xo) ≡M(βT xo) and

VAR(Y |x = xo) = VAR(Y |βT x = βT xo) ≡ V (βT xo)

where M is the kernel mean function and V is the kernel variance function.

Notice that the mean and variance functions depend on the same linear
combination if the 1D regression model is valid. This dependence is typical of
GLMs where M and V are known kernel mean and variance functions that
depend on the family of GLMs. See Cook and Weisberg (1999a, section 23.1).
A heteroscedastic regression model

Y = M(βT
1 x) +

√
V (βT

2 x) e (9.5)

is a 1D regression model if β2 = cβ1 for some scalar c.
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In multiple linear regression, the difference between the response Yi and

the estimated conditional mean function α̂+ β̂
T
xi is the residual. For more

general regression models this difference may not be the residual, and the

“discrepancy” Yi−M(β̂
T
xi) may not be estimating the error ei. To guarantee

that the residuals are estimating the errors, the following definition is used
when possible.

Definition 9.3: Cox and Snell (1968). Let the errors ei be iid with
pdf f and assume that the regression model Yi = g(xi,η, ei) has a unique
solution for ei :

ei = h(xi,η, Yi).

Then the ith residual
êi = h(xi, η̂, Yi)

where η̂ is a consistent estimator of η.

Example 9.1. Let η = (α,βT )T . If Y = m(α + βT x) + e where m is

known, then e = Y −m(α + βT x). Hence êi = Yi −m(α̂ + β̂
T
xi) which is

the usual definition of the ith residual for such models.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y |x. If a 1D regression model is appropriate, then the
k–dimensional vector x can be replaced by the 1–dimensional scalar βT x

with “no loss of information about the conditional distribution.” Cook and
Weisberg (1999a, p. 411) define a sufficient summary plot (SSP) to be a plot
that contains all the sample regression information about the conditional
distribution Y |x of the response given the predictors.

Definition 9.4: For a 1D regression model, a sufficient summary plot is
a plot of h(x) versus Y . A response plot or estimated sufficient summary
plot (ESSP) is a plot of the estimated sufficient predictor (ESP) versus Y . If
h(x) = βT x, then Y x|(a + cβT x) for any constants a and c 6= 0. Hence

a + cβT x is a SP with ESP = α̃ + β̃
T
x where β̃ is an estimator of cβ for

some nonzero constant c.

If there is only one predictor x, then the plot of x versus Y is both a
sufficient summary plot and a response plot, but generally only a response
plot can be made. Since a can be any constant, a = 0 is often used. The
following section shows how to use the OLS regression of Y on x to obtain
an ESP. If we plot the fitted values and the ESP versus Y , the plots are called
fit–response and ESP-response plots. For multiple linear regression, these two
plots are the same.
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9.1 Estimating the Sufficient Predictor

Some notation is needed before giving theoretical results. Let x, a, t, and β

be k × 1 vectors where only x is random.

Definition 9.5: Cook and Weisberg (1999a, p. 431). The predictors
x satisfy the condition of linearly related predictors with 1D structure if

E[x|βT x] = a + tβT x. (9.6)

If the predictors x satisfy this condition, then for any given predictor xj,

E[xj|βT x] = aj + tjβ
T x.

Notice that β is a fixed k× 1 vector. If x is elliptically contoured (EC) with
1st moments, then the assumption of linearly related predictors holds since

E[x|bT x] = ab + tbb
T x

for any nonzero k×1 vector b. The condition of linearly related predictors is
impossible to check since β is unknown, but the condition is far weaker than
the assumption that x is EC. The stronger EC condition is often used since
there are checks for whether this condition is reasonable, e.g. use the DD plot.
The following proposition gives an equivalent definition of linearly related
predictors. Both definitions are frequently used in the dimension reduction
literature.

Theorem 9.1. The predictors x are linearly related iff

E[bT x|βT x] = ab + tbβ
T x (9.7)

for any k×1 constant vector b where ab and tb are constants that depend on
b.

Proof. Suppose that the assumption of linearly related predictors holds.
Then

E[bT x|βT x] = bTE[x|βT x] = bT a + bT tβT x.

Thus the result holds with ab = bT a and tb = bT t.
Now assume that Equation (9.7) holds. Take bi = (0, ..., 0, 1, 0, ..., 0)T , the

vector of zeroes except for a one in the ith position. Then Equation (9.6)
holds since E[x|βT x] = E[Ik x|βT x] =

E[




bT
1 x
...

bT
k x


 | βT x] =



a1 + t1β

T x
...

ak + tkβT x


 ≡ a + tβT x. �
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Following Cook (1998a, p. 143-144), assume that there is an objective
function

Ln(a, b) =
1

n

n∑

i=1

L(a+ bT xi, Yi) (9.8)

where L(u, v) is a bivariate function that is a convex function of the first

argument u. Assume that the estimate (â, b̂) of (a, b) satisfies

(â, b̂) = argmin
a,b

Ln(a, b). (9.9)

For example, the ordinary least squares (OLS) estimator uses

L(a+ bT x, Y ) = (Y − a− bT x)2.

Maximum likelihood type estimators such as those used to compute GLMs
and Huber’s M–estimator also work, as does the Wilcoxon rank estima-
tor. Assume that the population analog (α∗,β∗) is the unique minimizer
of E[L(a + bT x, Y )] where the expectation exists and is with respect to the
joint distribution of (Y,xT )T . For example, (α∗,β∗) is unique if L(u, v) is
strictly convex in its first argument. The following result is a useful extension
of Brillinger (1977, 1983).

Theorem 9.2 (Li and Duan 1989, p. 1016): Assume that the x are lin-
early related predictors, that (Yi,x

T
i )T are iid observations from some joint

distribution with Cov(xi) nonsingular. Assume L(u, v) is convex in its first
argument and that β∗ is unique. Assume that Y x|βT x. Then β∗ = cβ for
some scalar c.

Proof. See Li and Duan (1989) or Cook (1998a, p. 144).

Remark 9.1. This theorem basically means that if the 1D regression
model is appropriate and if the condition of linearly related predictors holds,

then the (e.g. OLS) estimator b̂ ≡ β̂
∗ ≈ cβ. Li and Duan (1989, p. 1031)

show that under additional conditions, (â, b̂) is asymptotically normal. In
particular, the OLS estimator frequently has a

√
n convergence rate. If the

OLS estimator (α̂, β̂) satisfies β̂ ≈ cβ when model (9.1) holds, then the
response plot of

α̂+ β̂
T
x versus Y

can be used to visualize the conditional distribution Y |(α + βT x) provided
that c 6= 0.

Remark 9.2. If b̂ is a consistent estimator of β∗, then certainly

β∗ = cxβ + ug
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where ug = β∗ − cxβ is the bias vector. Moreover, the bias vector ug = 0 if
x is elliptically contoured under the assumptions of Theorem 9.2. This result
suggests that the bias vector might be negligible if the distribution of the
predictors is close to being EC. Often if no strong nonlinearities are
present among the predictors, the bias vector is small enough so that

b̂
T
x is a useful ESP.

Remark 9.3. Suppose that the 1D regression model is appropriate and
Y x|βT x. Then Y x|cβT x for any nonzero scalar c. If Y = g(βT x, e)
and both g and β are unknown, then g(βT x, e) = ha,c(a + cβT x, e) where

ha,c(w, e) = g(
w − a

c
, e)

for c 6= 0. In other words, if g is unknown, we can estimate cβ but we can
not determine c or β; i.e., we can only estimate β up to a constant.

A very useful result is that if Y = m(x) for some function m, then m can
be visualized with both a plot of x versus Y and a plot of cx versus Y if c 6= 0.
In fact, there are only three possibilities, if c > 0 then the two plots are nearly
identical: except the labels of the horizontal axis change. (The two plots are
usually not exactly identical since plotting controls to “fill space” depend on
several factors and will change slightly.) If c < 0, then the plot appears to
be flipped about the vertical axis. If c = 0, then m(0) is a constant, and the
plot is basically a dot plot. Similar results hold if Yi = g(α+ βT xi, ei) if the
errors ei are small. OLS often provides a useful estimator of cβ where c 6= 0,
but OLS can result in c = 0 if g is symmetric about the population median
of α+ βT x.

Definition 9.6. If the 1D regression model (9.1) holds with h(x) = α +
βT x, and OLS is used, then the ESP may be called the OLS ESP and the
response plot may be called the OLS response plot. Other estimators, such
as SIR, may have similar labels.

Example 9.2. Suppose that xi ∼ N3(0, I3) and that

Y = m(βT x) + e = (x1 + 2x2 + 3x3)
3 + e.

Then a 1D regression model Y x|βT x holds with β = (1, 2, 3)T . Figure 9.1
shows the sufficient summary plot of βT x versus Y , and Figure 9.2 shows the
sufficient summary plot of −βT x versus Y . Notice that the functional form
m appears to be cubic in both plots and that both plots can be smoothed
by eye or with a scatterplot smoother such as lowess. The two figures were
generated with the following R commands.

X <- matrix(rnorm(300),nrow=100,ncol=3)

SP <- X%*%1:3

Y <- (SP)ˆ3 + rnorm(100)
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plot(SP,Y)

plot(-SP,Y)
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Y
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Sufficient Summary Plot for Gaussian Predictors

Fig. 9.1 SSP for m(u) = u3

We particularly want to use the OLS estimator (α̂, β̂) to produce an es-
timated sufficient summary plot. This estimator is obtained from the usual
multiple linear regression of Yi on xi, but we are not assuming that the
multiple linear regression model holds; however, we are hoping that the 1D
regression model Y x|βT x is a useful approximation to the data and that

β̂ ≈ cβ for some nonzero constant c. In addition to Theorem 9.2, nice results
exist if the single index model is appropriate. Recall that

Cov(x,Y ) = E[(x− E(x))((Y −E(Y ))T ].

Definition 9.7. Suppose that (Yi,x
T
i )T are iid observations and that the

positive definite k×k matrix Cov(x) = ΣX and the k×1 vector Cov(x, Y ) =

ΣX,Y . Let the OLS estimator (α̂, β̂) be computed from the multiple linear

regression of Y on x plus a constant. Then (α̂, β̂) estimates the population
quantity (αOLS,βOLS) where

βOLS = Σ−1
X ΣX,Y . (9.10)
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The SSP using -SP.

Fig. 9.2 Another SSP for m(u) = u3

The following notation will be useful for studying the OLS estimator. Let
the sufficient predictor z = βT x and let w = x − E(x). Let r = w −
(ΣXβ)βT w.

Theorem 9.3. In addition to the conditions of Definition 9.7, also assume
that Yi = m(βT xi) + ei where the zero mean constant variance iid errors ei

are independent of the predictors xi. Then

βOLS = Σ−1
X ΣX,Y = cm,Xβ + um,X (9.11)

where the scalar
cm,X = E[βT (x− E(x)) m(βT x)] (9.12)

and the bias vector
um,X = Σ−1

X E[m(βT x)r]. (9.13)

Moreover, um,X = 0 if x is from an EC distribution with nonsingular ΣX ,
and cm,X 6= 0 unless Cov(x, Y ) = 0. If the multiple linear regression model
holds, then cm,X = 1, and um,X = 0.

The proof of the above result is outlined in Problem 9.2 using an argument
due to Aldrin, Bφlviken, and Schweder (1993). See related results in Stoker
(1986) and Cook, Hawkins, and Weisberg (1992). If the 1D regression model
is appropriate, then typically Cov(x, Y ) 6= 0 unless βT x follows a symmetric
distribution and m is symmetric about the median of βT x.
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Definition 9.8. Let (α̂, β̂) denote the OLS estimate obtained from the
OLS multiple linear regression of Y on x. The OLS view is a response plot

of a+ β̂
T
x versus Y . Typically a = 0 or a = α̂.

Remark 9.4. All of this awkward notation and theory leads to a remark-
able result, perhaps first noted by Brillinger (1977, 1983) and called the 1D
Estimation Result by Cook and Weisberg (1999a, p. 432). The result is that
if the 1D regression model Y x|βT x is appropriate, then the OLS view will
frequently be a useful estimated sufficient summary plot (ESSP). Hence the

OLS predictor β̂
T
x is a useful estimated sufficient predictor (ESP).

Although the OLS view is frequently a good ESSP if no strong nonlineari-
ties are present in the predictors and if cm,X 6= 0 (e.g. the sufficient summary

plot of βT x versus Y is not approximately symmetric), even better estimated
sufficient summary plots can be obtained by using ellipsoidal trimming. This
topic is discussed in the following section and follows Olive (2002) closely.

9.2 Visualizing 1D Regression

Cook and Nachtsheim (1994) and Cook (1998a, p. 152) demonstrate that
the bias um,X can often be made small by ellipsoidal trimming. To perform
ellipsoidal trimming, an estimator (T,C) is computed where T is a k × 1
multivariate location estimator and C is a k × k symmetric positive defi-
nite dispersion estimator. Then the ith squared Mahalanobis distance is the
random variable

D2
i = (xi − T )T C−1(xi − T ) (9.14)

for each vector of observed predictors xi. If the ordered distances D(j) are
unique, then j of the xi are in the hyperellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (9.15)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Thus if j ≈ 0.9n, then about

10% of the cases are trimmed.

We suggest that the estimator (T,C) should be the classical sample mean
and covariance matrix (x,S) or a robust multivariate location and dispersion
estimator such as RFCH. See Section 10.7. When j ≈ n/2, the RFCH esti-
mator attempts to make the volume of the hyperellipsoid given by Equation
(9.15) small.

Ellipsoidal trimming seems to work for at least three reasons. The trim-
ming divides the data into two groups: the trimmed cases and the remaining
cases (xM , YM) where M% is the amount of trimming, e.g. M = 10 for 10%
trimming. If the distribution of the predictors x is EC then the distribution
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Fig. 9.3 Scatterplot for Mussel Data, o Corresponds to Trimmed Cases

of xM still retains enough symmetry so that the bias vector is approximately
zero. If the distribution of x is not EC, then the distribution of xM will
often have enough symmetry so that the bias vector is small. In particular,
trimming often removes strong nonlinearities from the predictors and the
weighted predictor distribution is more nearly elliptically symmetric than
the predictor distribution of the entire data set (Winsor’s principle: “all data
are roughly Gaussian in the middle”). Secondly, under heavy trimming, the
mean function of the remaining cases may be more linear than the mean func-
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tion of the entire data set. Thirdly, if |c| is very large, then the bias vector
may be small relative to cβ. Trimming sometimes inflates |c|. From Theorem
9.3, any of these three reasons should produce a better estimated sufficient
predictor.

For example, examine Figure 4.4. The data are not EC, but the data within
the resistant covering ellipsoid are approximately EC.

Example 9.3. Cook and Weisberg (1999a, p. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. The variables are the
muscle mass M in grams, the length L and height H of the shell in mm, the
shell width W and the shell mass S. The robust and classical Mahalanobis
distances were calculated, and Figure 9.3 shows a scatterplot matrix of the
mussel data, the RDi’s, and the MDi’s. Notice that many of the subplots are
nonlinear. The cases marked by open circles were given weight zero by the
FMCD algorithm, and the linearity of the retained cases has increased. Note
that only one trimming proportion is shown and that a heavier trimming
proportion would increase the linearity of the cases that were not trimmed.

The two ideas of using ellipsoidal trimming to reduce the bias and choosing
a view with a smooth mean function and smallest variance function can
be combined into a graphical method for finding the estimated sufficient
summary plot and the estimated sufficient predictor. Trim the M% of the
cases with the largest Mahalanobis distances, and then compute the OLS
estimator (α̂M , β̂M) from the cases that remain. Use M = 0, 10, 20, 30,

40, 50, 60, 70, 80, and 90 to generate ten plots of β̂
T

Mx versus Y using all
n cases. In analogy with the Cook and Weisberg procedure for visualizing
1D structure with two predictors, the plots will be called “trimmed views.”
Notice that M = 0 corresponds to the OLS view.

Definition 9.9. The best trimmed view is the trimmed view with a smooth
mean function and the smallest variance function and is the estimated suf-
ficient summary plot. If M∗ = E is the percentage of cases trimmed that

corresponds to the best trimmed view, then β̂
T

Ex is the estimated sufficient
predictor.

The following examples illustrate the R/Splus function trviews that is
used to produce the ESSP. If R is used instead of Splus, the command

library(MASS)

needs to be entered to access the function cov.mcd called by trviews.
The function trviews is used in Problem 9.6. Also notice the trviews

estimator is basically the same as the tvreg estimator described in Section
11.3. The tvreg estimator can be used to simultaneously detect whether
the data is following a multiple linear regression model or some other single

index model. Plot α̂E +β̂
T

Ex versus Y and add the identity line. If the plotted
points follow the identity line then the MLR model is reasonable, but if the
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plotted points follow a nonlinear mean function, then a nonlinear single index
model may be reasonable.

Example 9.2 continued. The command

trviews(X, Y)

produced the following output.

Intercept X1 X2 X3

0.6701255 3.133926 4.031048 7.593501

Intercept X1 X2 X3

1.101398 8.873677 12.99655 18.29054

Intercept X1 X2 X3

0.9702788 10.71646 15.40126 23.35055

Intercept X1 X2 X3

0.5937255 13.44889 23.47785 32.74164

Intercept X1 X2 X3

1.086138 12.60514 25.06613 37.25504

Intercept X1 X2 X3

4.621724 19.54774 34.87627 48.79709

Intercept X1 X2 X3

3.165427 22.85721 36.09381 53.15153

Intercept X1 X2 X3

5.829141 31.63738 56.56191 82.94031

Intercept X1 X2 X3

4.241797 36.24316 70.94507 105.3816

Intercept X1 X2 X3

6.485165 41.67623 87.39663 120.8251

The function generates 10 trimmed views. The first plot trims 90% of
the cases while the last plot does not trim any of the cases and is the OLS
view. To advance a plot, press the right button on the mouse (in R, highlight
stop rather than continue). After all of the trimmed views have been
generated, the output is presented. For example, the 5th line of numbers in

the output corresponds to α̂50 = 1.086138 and β̂
T

50 where 50% trimming was
used. The second line of numbers corresponds to 80% trimming while the

last line corresponds to 0% trimming and gives the OLS estimate (α̂0, β̂
T

0 ) =

(â, b̂). The trimmed views with 50% and 90% trimming were very good.

We decided that the view with 50% trimming was the best. Hence β̂E =
(12.60514, 25.06613, 37.25504)T ≈ 12.5β. The best view is shown in Figure
9.4 and is nearly identical to the sufficient summary plot shown in Figure
9.1. Notice that the OLS estimate = (41.68, 87.40, 120.83)T ≈ 42β. The OLS
view is Figure 1.5 in Chapter 1, and is again very similar to the sufficient
summary plot, but it is not quite as smooth as the best trimmed view.

The plot of the estimated sufficient predictor versus the sufficient predictor
is also informative. Of course this plot can usually only be generated for
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simulated data since β is generally unknown. If the plotted points are highly
correlated (with |corr(ESP,SP)| > 0.95) and follow a line through the origin,
then the estimated sufficient summary plot is nearly as good as the sufficient
summary plot. The simulated data used β = (1, 2, 3)T , and the commands

SP <- X %*% 1:3

ESP <- X %*% c(12.60514, 25.06613, 37.25504)

plot(ESP,SP)

generated the plot shown in Figure 9.5.

Example 9.4. An artificial data set with 200 trivariate vectors xi was
generated. The marginal distributions of xi,j are iid lognormal for j = 1, 2,

and 3. Since the response Yi = sin(βT xi)/β
T xi where β = (1, 2, 3)T , the

random vector xi is not elliptically contoured and the function m is strongly
nonlinear. Figure 9.6d shows the OLS view and Figure 9.7d shows the best
trimmed view. Notice that it is difficult to visualize the mean function with
the OLS view, and notice that the correlation between Y and the ESP is very
low. By focusing on a part of the data where the correlation is high, it may be
possible to improve the estimated sufficient summary plot. For example, in
Figure 9.7d, temporarily omit cases that have ESP less than 0.3 and greater
than 0.75. From the untrimmed cases, obtained the ten trimmed estimates
β̂90, ..., β̂0. Then using all of the data, obtain the ten views. The best view
could be used as the ESSP.

Application 9.1. Suppose that a 1D regression analysis is desired on a
data set, use the trimmed views as an exploratory data analysis technique
to visualize the conditional distribution Y |βT x. The best trimmed view is
an estimated sufficient summary plot. If the single index model (9.3) holds,
the function m can be estimated from this plot using parametric models
or scatterplot smoothers such as lowess. Notice that Y can be predicted
visually using up and over lines.

Table 9.1 Estimated Sufficient Predictors Coefficients Estimating c(1,2,3)T

method b1 b2 b3
OLS View 0.0032 0.0011 0.0047

90% Trimmed OLS View 0.086 0.182 0.338
SIR View −0.394 −0.361 −0.845

10% Trimmed SIR VIEW −0.284 −0.473 −0.834
SAVE View −1.09 0.870 -0.480

40% Trimmed SAVE VIEW 0.256 0.591 0.765
PHD View −0.072 −0.029 −0.0097

90% Trimmed PHD VIEW −0.558 −0.499 −0.664
LMSREG VIEW −0.003 −0.005 −0.059

70% Trimmed LMSREG VIEW 0.143 0.287 0.428
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Application 9.2. The best trimmed view can also be used as a diagnostic
for linearity and monotonicity.

For example in Figure 9.4, if ESP = 0, then Ŷ = 0 and if ESP = 100, then
Ŷ = 500. Figure 9.4 suggests that the mean function is monotone but not
linear, and Figure 9.7 suggests that the mean function is neither linear nor
monotone.

Application 9.3. Assume that a known 1D regression model is assumed
for the data. Then the best trimmed view is a model checking plot and can
be used as a diagnostic for whether the assumed model is appropriate.

The trimmed views are sometimes useful even when the assumption of lin-
early related predictors fails. Cook and Li (2002) summarize when competing
methods such as the OLS view, sliced inverse regression (SIR), principal Hes-
sian directions (PHD), and sliced average variance estimation (SAVE) can
fail. All four methods frequently perform well if there are no strong nonlin-
earities present in the predictors.

Example 9.4 (continued). Figure 9.6 shows that the response plots for
SIR, PHD, SAVE, and OLS are not very good while Figure 9.7 shows that
trimming improved the SIR, SAVE and OLS methods.

One goal for future research is to develop better methods for visualizing
1D regression. Trimmed views seem to become less effective as the num-
ber of predictors k = p − 1 increases. Consider the sufficient predictor SP
= x1 + · · · + xk. With the sin(SP)/SP data, several trimming proportions
gave good views with k = 3, but only one of the ten trimming proportions
gave a good view with k = 10. In addition to problems with dimension, it is
not clear which covariance estimator and which regression estimator should
be used. We suggest using the RFCH estimator with OLS, and preliminary
investigations suggest that the classical covariance estimator gives better es-
timates than cov.mcd. But among the many Splus regression estimators,
lmsreg often worked well. Theorem 9.2 suggests that strictly convex regres-
sion estimators such as OLS will often work well, but there is no theory for
the robust regression estimators.

Example 9.4 continued. Replacing the OLS trimmed views by alter-
native MLR estimators often produced good response plots, and for single
index models, the lmsreg estimator often worked the best. Figure 9.8 shows
a scatterplot matrix of Y , ESP and SP where the sufficient predictor SP =
βT x. The ESP used ellipsoidal trimming with cov.mcd and with lmsreg

instead of OLS. The top row of Figure 9.8 shows that the estimated suf-
ficient summary plot and the sufficient summary plot are nearly identical.
Also the correlation of the ESP and the SP is nearly one. Table 9.1 shows
the estimated sufficient predictor coefficients b when the sufficient predictor
coefficients are c(1, 2, 3)T . Only the SIR, SAVE, OLS and lmsreg trimmed
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views produce estimated sufficient predictors that are highly correlated with
the sufficient predictor.

Figure 9.9 helps illustrate why ellipsoidal trimming works. This view used
70% trimming and the open circles denote cases that were trimmed. The
highlighted squares correspond to the cases (x70, Y70) that were not trimmed.
Note that the highlighted cases are far more linear than the data set as
a whole. Also lmsreg will give half of the highlighted cases zero weight,
further linearizing the function. In Figure 9.9, the lmsreg constant α̂70 is
included, and the plot is simply the response plot of the weighted lmsreg

fitted values versus Y . The vertical deviations from the line through the origin

are the “residuals” Yi − α̂70 − β̂
T

70x and at least half of the highlighted cases
have small residuals.

9.3 Predictor Transformations

Even if the multiple linear regression model is valid, a model based on a
subset of the predictor variables depends on the predictor distribution. If the
predictors are linearly related (e.g. EC), then the submodel mean function
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is often well behaved, but otherwise the submodel mean function could be
nonlinear and the submodel variance function could be nonconstant.

For 1D regression models, the presence of strong nonlinearities among
the predictors can invalidate inferences. A necessary condition for x to have
an EC distribution (or for no strong nonlinearities to be present among the
predictors) is for each marginal plot of the scatterplot matrix of the predictors
to have a linear or ellipsoidal shape if n is large.

One of the most useful techniques in regression is to remove gross non-
linearities in the predictors by using predictor transformations. Power trans-
formations are particularly effective. A multivariate version of the Box–Cox
transformation due to Velilla (1993) can cause the distribution of the trans-
formed predictors to be closer to multivariate normal, and the Cook and
Nachtsheim (1994) procedure can cause the distribution to be closer to ellip-
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tical symmetry. Marginal Box-Cox transformations also seem to be effective.
Power transformations can also be selected with slider bars in Arc.

Sections 5.1 gives several rules for predictor transformations, including the
unit rule, log rule, and ladder rule. As an illustration of the ladder rule and
log rule, in Figure 9.14c, small values of Y and large values of FESP need
spreading, and using log(Y ) would make the plot more linear.

9.4 Variable Selection

A standard problem in 1D regression is variable selection, also called subset
or model selection. Assume that Y x|(α+ βT x), that a constant is always
included, and that x = (x1, ..., xp−1)

T are the p − 1 nontrivial predictors,
which we assume to be of full rank. Then variable selection is a search for a
subset of predictor variables that can be deleted without important loss of
information. This section follows Olive and Hawkins (2005) closely.

Variable selection for the 1D regression model is very similar to variable
selection for the multiple linear regression model (see Section 5.3). To clarify
ideas, assume that there exists a subset S of predictor variables such that
if xS is in the 1D model, then none of the other predictors are needed in
the model. Write E for these (‘extraneous’) variables not in S, partitioning
x = (xT

S ,x
T
E)T . Then

SP = α+ βT x = α+ βT
SxS + βT

ExE = α+ βT
S xS . (9.16)

The extraneous terms that can be eliminated given that the subset S is in
the model have zero coefficients.

Now suppose that I is a candidate subset of predictors, that S ⊆ I and
that O is the set of predictors not in I. Then

SP = α+ βT x = α+ βT
SxS = α+βT

SxS + βT
(I/S)xI/S + 0T xO = α+ βT

I xI ,

(if I includes predictors from E, these will have zero coefficients). For any
subset I that contains the subset S of relevant predictors, the correlation

corr(α+ βTxi, α+ βT
I xI,i) = 1. (9.17)

This observation, which is true regardless of the explanatory power of the
model, suggests that variable selection for 1D regression models is simple
in principle. For each value of j = 1, 2, ..., p− 1 nontrivial predictors, keep
track of subsets I that provide the largest values of corr(ESP,ESP(I)). Any
such subset for which the correlation is high is worth closer investigation and
consideration. To make this advice more specific, use the rule of thumb that a
candidate subset of predictors I is worth considering if the sample correlation



394 9 1D Regression

of ESP and ESP(I) satisfies

corr(α̃+ β̃
T
xi, α̃I + β̃

T

I xI,i) = corr(β̃
T
xi, β̃

T

I xI,i) ≥ 0.95. (9.18)

The difficulty with this approach is that fitting all of the possible sub-
models involves substantial computation. An exception to this difficulty is
multiple linear regression where there are efficient “leaps and bounds” algo-
rithms for searching all subsets when OLS is used (see Furnival and Wilson
1974). Since OLS often gives a useful ESP, the following all subsets procedure
can be used for 1D models when p ≤ 20. Forward selection and backward
elimination can be for much larger values of p.

• Fit a full model using the methods appropriate to that 1D problem to find

the ESP α̂+ β̂
T
x.

• Find the OLS ESP α̂OLS + β̂
T

OLSx.
• If the 1D ESP and the OLS ESP have “a strong linear relationship” (for

example |corr(ESP,OLS ESP)| ≥ 0.95), then infer that the 1D problem is
one in which OLS may serve as an adequate surrogate for the correct 1D
model fitting procedure.

• Use computationally fast OLS variable selection procedures such as for-
ward selection, backward elimination and the leaps and bounds all sub-
sets algorithm along with the Mallows (1973) Cp criterion to identify
predictor subsets I containing k variables (including the constant) with
Cp(I) ≤ min(2k, p).

• Perform a final check on the subsets that satisfy the Cp screen by using
them to fit the 1D model.

For a 1D model, the response, ESP and vertical discrepancies V = Y −
ESP are important. When the multiple linear regression (MLR) model holds,
the fitted values are the ESP: Ŷ = ESP , and the vertical discrepancies are
the residuals.

Definition 9.10. a) The plot of α̃I + β̃
T

I xI,i versus α̃+ β̃
T
xi is called an

EE plot (also called an FF plot for MLR).

b) The plot of discrepancies Yi − α̃I − β̃
T

I xI,i versus Yi − α̃− β̃
T
xi is called

a VV plot (also called an RR plot for MLR).

c) The plots of α̃I + β̃
T

I xI,i versus Yi and of α̃ + β̃
T
xi versus Yi are called

estimated sufficient summary plots or response plots.

Many numerical methods such as forward selection, backward elimination,
stepwise and all subset methods using the Cp criterion (Jones 1946, Mallows
1973), have been suggested for variable selection. The four plots in Definition
9.10 contain valuable information to supplement the raw numerical results of
these selection methods. Particular uses include:
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• The key to understanding which plots are the most useful is the observa-
tion that a plot of w versus z is used to visualize the conditional distribu-
tion of z given w. Since the 1D regression is the study of the conditional
distribution of Y given α + βT x, the response plot is used to visualize
this conditional distribution and should always be made. A major problem
with variable selection is that deleting important predictors can change
the functional form of the model. In particular, if a multiple linear regres-
sion model is appropriate for the full model, linearity may be destroyed if
important predictors are deleted. When the single index model (9.3) holds,
m can be visualized with a response plot. Adding visual aids such as the

estimated parametric mean function m(α̂ + β̂
T
x) can be useful. If an es-

timated nonparametric mean function m̂(α̂+ β̂
T
x) such as lowess follows

the parametric curve closely, then often numerical goodness of fit tests
will suggest that the model is good. See Chambers, Cleveland, Kleiner,
and Tukey (1983, p. 280) and Cook and Weisberg (1999a, p. 425, 432).
For variable selection, the response plots from the full model and submodel
should be very similar if the submodel is good.

• Sometimes outliers will influence numerical methods for variable selection.
Outliers tend to stand out in at least one of the plots. An EE plot is
useful for variable selection because the correlation of ESP(I) and ESP is
important. The EE plot can be used to quickly check that the correlation
is high, that the plotted points fall about some line, that the line is the
identity line, and that the correlation is high because the relationship is
linear, rather than because of outliers.

• Numerical methods may include too many predictors. Investigators can ex-
amine the p–values for individual predictors, but the assumptions needed
to obtain valid p–values are often violated; however, the OLS t tests for
individual predictors are meaningful since deleting a predictor changes the
Cp value by t2−2 where t is the test statistic for the predictor. See Section
9.5, Daniel and Wood (1980, p. 100-101) and the following two remarks.

Remark 9.5. Variable selection with the Cp criterion is closely related
to the partial F test that uses test statistic FI . Suppose that the full model
contains p predictors including a constant and the submodel I includes k pre-
dictors including a constant. If n ≥ 10p, then the submodel I is “interesting”
if Cp(I) ≤ min(2k, p).

To see this claim notice that the following results are properties of OLS
and hold even if the data does not follow a 1D model. If the candidate model
of xI has k terms (including the constant), then

FI =
SSE(I) − SSE

(n− k) − (n− p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the “residual” sum of squares from the full model and SSE(I)
is the “residual” sum of squares from the candidate submodel. Then
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k (9.19)

where MSE is the “residual” mean square for the full model. Let ESP(I)

= α̂I + β̂
T

I xI be the ESP for the submodel and let VI = Y − ESP (I) so

that VI,i = Yi − α̂I − β̂
T

I xI,i. Let ESP and V denote the corresponding
quantities for the full model. Using Proposition 5.1 and Remarks 5.1 and 5.2
with corr(r, rI) replaced by corr(V, VI ), it can be shown that

corr(V, VI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n− 2k
=

√
n − p

(p− k)FI + n− p
.

It can also be shown that Cp(I) ≤ 2k corresponds to corr(V, VI ) ≥ dn where

dn =

√
1 − p

n
.

Notice that for a fixed value of k, the submodel Ik that minimizes Cp(I) also
maximizes corr(V, VI). If Cp(I) ≤ 2k and n ≥ 10p, then 0.948 ≤ corr(V, VI ),
and both corr(V, VI ) → 1.0 and corr(OLS ESP, OLS ESP(I)) → 1.0 as n →
∞. Hence the plotted points in both the VV plot and the EE plot will cluster
about the identity line (see Proposition 5.1 vi).

Remark 9.6. Suppose that the OLS ESP and the standard ESP are highly
correlated: |corr(ESP,OLS ESP)| ≥ 0.95. Then often OLS variable selection
can be used for the 1D data, and using the p–values from OLS output seems
to be a useful benchmark. To see this, suppose that n > 5p and first consider
the model Ii that deletes the predictor Xi. Then the model has k = p − 1
predictors including the constant, and the test statistic is ti where

t2i = FIi.

Using (9.19) and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor Xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p− k
.
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Now k is the number of terms in the model including a constant while p− k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e., say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

The Cp(I) ≤ k screen tends to overfit. We simulated multiple linear regres-
sion and single index model data sets with p = 8 and n = 50, 100, 1000 and
10000. The true model S satisfied Cp(S) ≤ k for about 60% of the simulated
data sets, but S satisfied Cp(S) ≤ 2k for about 97% of the data sets.

In many settings, not all of which meet the Li–Duan sufficient conditions,
the full model OLS ESP is a good estimator of the sufficient predictor. If
the fitted full 1D model Y x|(α + βT x) is a useful approximation to the

data and if β̂OLS is a good estimator of cβ where c 6= 0, then a subset I
will produce a response plot similar to the response plot of the full model
if corr(OLS ESP, OLS ESP(I)) ≥ 0.95. Hence the response plots based on
the full and submodel ESP can both be used to visualize the conditional
distribution of Y .

Assuming that a 1D model holds, a common assumption made for variable
selection is that the fitted full model ESP is a good estimator of the sufficient
predictor, and the usual numerical and graphical checks on this assumption
should be made. To see that this assumption is weaker than the assumption
that the OLS ESP is good, notice that if a 1D model holds but β̂OLS estimates
cβ where c = 0, then the Cp(I) criterion could wrongly suggest that all
subsets I have Cp(I) ≤ 2k. Hence we also need to check that c 6= 0.

There are several methods are for checking the OLS ESP, including: a)
if an ESP from an alternative fitting method is believed to be useful, check
that the ESP and the OLS ESP have a strong linear relationship: for exam-
ple that |corr(ESP, OLS ESP)| ≥ 0.95. b) Often examining the OLS response
plot shows that a 1D model is reasonable. For example, if the data are tightly
clustered about a smooth curve, then a single index model may be appro-
priate. c) Verify that a 1D model is appropriate using graphical techniques
given by Cook and Weisberg (1999a, p. 434-441). d) Verify that x has an
EC distribution with nonsingular covariance matrix and that the mean func-
tion m(α + βT x) is not symmetric about the median of the distribution of
α+ βT x. Then results from Li and Duan (1989) suggest that c 6= 0.

Condition a) is both the most useful (being a direct performance check)
and the easiest to check. A standard fitting method should be used when
available (e.g., for parametric 1D models such as GLMs). Conditions c) and
d) need x to have a continuous multivariate distribution while the predictors
can be factors for a) and b). Using trimmed views results in an ESP that can
sometimes cause condition b) to hold when d) is violated.
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To summarize, variable selection procedures, originally meant for MLR,
can often be used for 1D data. If the fitted full 1D model Y x|(α+ βT x)

is a useful approximation to the data and if β̂OLS is a good estimator of
cβ where c 6= 0, then a subset I is good if corr(OLS ESP, OLS ESP(I)) ≥
0.95. If n is large enough, Remark 9.5 implies that this condition will hold if
Cp(I) ≤ 2k or if FI ≤ 1. This result suggests that within the (large) subclass
of 1D models where the OLS ESP is useful, the OLS partial F test is robust
(asymptotically) to model misspecifications in that FI ≤ 1 correctly suggests
that submodel I is good. The OLS t tests for individual predictors are also
meaningful since if |t| <

√
2 then the predictor can probably be deleted since

Cp decreases while if |t| ≥ 2 then the predictor is probably useful even when
the other predictors are in the model. Section 9.5 provides related theory,
and the following examples help illustrate the above discussion.

Example 9.5. This example illustrates that the plots are useful for general
1D regression models such as the response transformation model. Consider
the data set on 82 mussels in Example 9.3. The response Y is the muscle mass
in grams, and the four predictors are the logarithms of the shell length, width,
height and mass. The logarithm transformation was used to remove strong
nonlinearities that were evident in a scatterplot matrix of the untransformed
predictors. The Cp criterion suggests using log(width) and log(shell mass) as
predictors. The EE and VV plots are shown in Figure 9.10ab. The response
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plots based on the full and submodel are shown in Figure 9.10cd and are
nearly identical, but not linear.

When log(muscle mass) is used as the response, the Cp criterion suggests
using log(height) and log(shell mass) as predictors (the correlation between
log(height) and log(width) is very high). Figure 9.11a shows the RR plot and
2 outliers are evident. These outliers correspond to the two cases with large
negative residuals in the response plot shown in Figure 9.11b. After deleting
the outliers, the Cp criterion still suggested using log(height) and log(shell
mass) as predictors. The p–value for including log(height) in the model was
0.03, and making the FF and RR plots after deleting log(height) suggests
that log(height) may not be needed in the model.

Example 9.6. According to Li (1997), the predictors in the Boston hous-
ing data of Harrison and Rubinfeld (1978) have a nonlinear quasi–helix re-
lationship which can cause regression graphics methods to fail. Nevertheless,
the graphical diagnostics can be used to gain interesting information from
the data. The response Y = log(CRIM) where CRIM is the per capita crime
rate by town. The predictors used were x1 = proportion of residential land
zoned for lots over 25,000 sq.ft., log(x2) where x2 is the proportion of non-
retail business acres per town, x3 = Charles River dummy variable (= 1 if
tract bounds river; 0 otherwise), x4 = NOX = nitric oxides concentration
(parts per 10 million), x5 = average number of rooms per dwelling, x6 =
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proportion of owner-occupied units built prior to 1940, log(x7) where x7 =
weighted distances to five Boston employment centers, x8 = RAD = index of
accessibility to radial highways, log(x9) where x9 = full-value property-tax
rate per $10,000, x10 = pupil-teacher ratio by town, x11 = 1000(Bk− 0.63)2

where Bk is the proportion of blacks by town, log(x12) where x12 = % lower
status of the population, and log(x13) where x13 = median value of owner-
occupied homes in $1000’s. The full model has 506 cases and 13 nontrivial
predictor variables.

Figure 9.12ab shows the response plot and residual plot for the full model.
The residual plot suggests that there may be three or four groups of data,
but a linear model does seem reasonable. Backward elimination with Cp

suggested the “min Cp submodel” with the variables x1, log(x2), NOX, x6,
log(x7), RAD, x10, x11 and log(x13). The full model had R2 = 0.878 and
σ̂ = 0.7642. The Cp submodel had Cp(I) = 6.576, R2

I = 0.878, and
σ̂I = 0.762. Deleting log(x7) resulted in a model with Cp = 8.483 and
the smallest coefficient p–value was 0.0095. The FF and RR plots for this
model (not shown) looked like the identity line. Examining further submodels
showed that NOX and RAD were the most important predictors. In particu-
lar, the OLS coefficients of x1, x6 and x11 were orders of magnitude smaller
than those of NOX and RAD. The submodel including a constant, NOX,
RAD and log(x2) had R2 = 0.860, σ̂ = 0.811 and Cp = 67.368. Figure 9.12cd
shows the response plot and residual plot for this submodel.

Although this submodel has nearly the same R2 as the full model, the
residuals show more variability than those of the full model. Nevertheless,
we can examine the effect of NOX and RAD on the response by deleting
log(x2). This submodel had R2 = 0.842, σ̂ = 0.861 and Cp = 138.727. Figure
9.13a shows that the response plot for this model is no longer linear. The
residual plot (not shown) also displays curvature. Figure 9.13a shows that
there are two groups, one with high Y and one with low Y . There are three
clusters of points in the plot of NOX versus RAD shown in Figure 9.13b (the
single isolated point in the southeast corner of the plot actually corresponds to
several cases). The two clusters of high NOX and high RAD points correspond
to the cases with high per capita crime rate.

The tiny filled in triangles if Figure 9.13a represent the fitted values for a
quadratic. We added NOX2, RAD2 and NOX ∗RAD to the full model and
again tried variable selection. Although the full quadratic in NOX and RAD
had a linear response plot, the submodel with NOX, RAD and log(x2) was
very similar. For this data set, NOX and RAD seem to be the most important
predictors, but other predictors are needed to make the model linear and to
reduce residual variation.

In the Boston housing data, now let Y = CRIM. Since log(Y ) has a linear
relationship with the predictors, Y should follow a nonlinear 1D regression
model. Consider the full model with predictors log(x2), x3, x4, x5, log(x7),
x8, log(x9) and log(x12). Regardless of whether Y or log(Y ) is used as the
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Fig. 9.14 Boston Housing Data: Nonlinear 1D Regression Model

response, the minimumCp model from backward elimination used a constant,
log(x2), x4, log(x7), x8 and log(x12) as predictors. If Y is the response, then
the model is nonlinear and Cp = 5.699. Remark 9.5 suggests that if Cp ≤ 2k,
then the points in the VV plot should tightly cluster about the identity line
even if a multiple linear regression model fails to hold. Figure 9.14 shows
the VV and EE plots for the minimum Cp submodel. The response plots for
the full model and submodel are also shown. Note that the clustering in the
VV plot is indeed higher than the clustering in the EE plot. Note that the
response plots are highly nonlinear but are nearly identical.

Example 9.7. This insulation data was contributed by Ms. Spector. A
box with insulation was heated for 20 minutes then allowed to cool down.
The response variable Y = temperature in middle of box was taken at time
0, 5, ..., 40. The type of insulation was a factor with type 1 = no insulation,
2 = corn pith, 3 = fiberglass, 4 = styrofoam and 5 = bubbles. There were 45
temperature measurements, one for each time type combination. The mea-
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surements were averages of ten trials and starting temperatures were close
but not exactly equal.

The model using time, (time)2, type, and the interactions type:time and
type:(time)2 had E(Y |x) ≈ (xT β)2. A second model used time, (time)2

and type, and rather awkward R code for producing the response plot in
Figure 9.15 is shown below. The solid curve corresponds to (xT β̂, (xT β̂)2) =

(FIT, (FIT )3) where β̂ is the OLS estimator from regressing Y on xT =
(1, time, (time)2, type). The thin curve corresponds to lowess. Since the two
curves correspond, E(Y |x) ≈ (xT β)3 or Y = m(xT β)+e where m(w) = w3.
See Problem 9.10 for producing the response plot in Arc.

#assume the insulation data is loaded

ftype <- as.factor(insulation[,2])

zi <- as.data.frame(insulation)

iout <- lm(ytemp˜time+I(timeˆ2)+ftype,data=zi)

FIT <- iout$fit

Y <- insulation[,1]

plot(FIT,Y)
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lines(lowess(FIT,Y)) #get (FIT,(FIT)ˆ3) curve

zx <- FIT

z <- lsfit(cbind(zx,zxˆ2,zxˆ3),Y)

zfit <- Y-z$resid

lines(FIT,zfit)

9.5 Inference

This section follows Chang and Olive (2007, 2010) closely. Inference can be
performed for trimmed views if M is chosen without using the response, e.g.
if the trimming is done with a DD plot, and the dimension reduction (DR)
method such as OLS or sliced inverse regression (SIR) is performed on the
data (YMi,xMi) that remains after trimmingM% of the cases with ellipsoidal
trimming based on the FCH or RFCH estimator.

First we review some theoretical results for the DR methods OLS and SIR
and give the main theoretical result for OLS. Let

Cov(x) = E[(x − E(x))(x − E(x))T] = Σx

and Cov(x, Y ) = E[(x− E(x))(Y − E(Y ))] = ΣxY . Let the OLS estimator

be (α̂OLS , β̂OLS). Then the population coefficients from an OLS regression
of Y on x are

αOLS = E(Y ) − βT
OLSE(x) and βOLS = Σ−1

x ΣxY. (9.20)

Let the data be (Yi,xi) for i = 1, ..., n. Let the p× 1 vector η = (α,βT )T ,
let X be the n × p OLS design matrix with ith row (1,xT

i ), and let Y =
(Y1, ..., Yn)T . Then the OLS estimator η̂ = (XT X)−1XT Y . The sample
covariance of x is

Σ̂x =
1

n− 1

n∑

i=1

(xi − x)(xi − x)T where the sample mean x =
1

n

n∑

i=1

xi.

Similarly, define the sample covariance of x and Y to be

Σ̂xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The first result shows that η̂ is a consistent estimator of η.
i) Suppose that (Yi,x

T
i )T are iid random vectors such that Σ−1

x and ΣxY

exist. Then
α̂OLS = Y − β̂

T

OLSx
D→ αOLS
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and
β̂OLS =

n

n− 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞.

Some notation is needed for the following results. Many 1D regression
models have an error e with

σ2 = Var(e) = E(e2). (9.21)

Let ê be the error residual for e. Let the population OLS residual

v = Y − αOLS − βT
OLSx (9.22)

with
τ2 = E[(Y − αOLS − βT

OLSx)2] = E(v2), (9.23)

and let the OLS residual be

r = Y − α̂OLS − β̂
T

OLSx. (9.24)

Typically the OLS residual r is not estimating the error e and τ2 6= σ2, but
the following results show that the OLS residual is of great interest for 1D
regression models.

Assume that a 1D model holds, Y x|(α+ βT x), which is equivalent to
Y x|βT x. Then under regularity conditions, results ii) – iv) below hold.

ii) Li and Duan (1989): βOLS = cβ for some constant c.
iii) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂OLS − cβ)

D→ Np−1(0,COLS) (9.25)

where

COLS = Σ−1
x E[(Y −αOLS −βT

OLSx)2(x−E(x))(x−E(x))T ]Σ−1
x . (9.26)

iv) Chen and Li (1998): Let A be a known full rank constant k × (p − 1)
matrix. If the null hypothesis Ho: Aβ = 0 is true, then

√
n(Aβ̂OLS − cAβ) =

√
nAβ̂OLS

D→ Nk(0,ACOLSAT )

and
ACOLSAT = τ2AΣ−1

x AT . (9.27)

Notice that COLS = τ2Σ−1
x if v = Y −αOLS −βT

OLSx x or if the MLR
model holds. If the MLR model holds, τ2 = σ2.

To create test statistics, the estimator

τ̂2 = MSE =
1

n − p

n∑

i=1

r2i =
1

n − p

n∑

i=1

(Yi − α̂OLS − β̂
T

OLSxi)
2
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will be useful. The estimator ĈOLS =

Σ̂
−1

x

[
1

n

n∑

i=1

[(Yi − α̂OLS − β̂
T

OLSxi)
2(xi − x)(xi − x)T ]

]
Σ̂

−1

x (9.28)

can also be useful. Notice that for general 1D regression models, the OLS
MSE estimates τ2 rather than the error variance σ2.

v) Result iv) suggests that a test statistic for Ho : Aβ = 0 is

WOLS = nβ̂
T

OLSAT [AΣ̂
−1

x AT ]−1Aβ̂OLS/τ̂
2 D→ χ2

k, (9.29)

the chi–square distribution with k degrees of freedom.

Before presenting the main theoretical result, some results from OLS MLR
theory are needed. Let the p×1 vector η = (α,βT )T , the known k×p constant
matrix Ã = [a A] where a is a k×1 vector, and let c be a known k×1 constant
vector. Following Seber and Lee (2003, p. 99–106), the usual F statistic for
testing Ho : Ãη = c is

F0 =
(SSE(Ho) − SSE)/k

SSE/(n − p)
= (9.30)

(Ãη̂ − c)T [Ã(XT X)−1Ã
T
]−1(Ãη̂ − c)/(kτ̂2)

where MSE = τ̂2 = SSE/(n − p), SSE =
∑n

i=1 r
2
i and

SSE(Ho) =

n∑

i=1

r2i (Ho)

is the minimum sum of squared residuals subject to the constraint Ãη = c.
If Ho is true, the MLR model holds and the errors ei are iid N(0, σ2), then
Fo ∼ Fk,n−p, the F distribution with k and n − p degrees of freedom. Also,
if Zn ∼ Fk,n−p, then

Zn
D→ χ2

k/k (9.31)

as n → ∞.
The main theoretical result of this section is Theorem 9.4 below. This

theorem and (9.31) suggest that OLS output, originally meant for testing
with the MLR model, can also be used for testing with many 1D regression
data sets. Without loss of generality, let the 1D model Y x|(α+ βT x) be
written as

Y x|(α+ βT
RxR + βT

OxO)

where the reduced model is Y x|(α + βT
RxR) and xO denotes the terms

outside of the reduced model. Notice that OLS ANOVA F test corresponds
to Ho: β = 0 and uses A = Ip−1. The tests for Ho: βi = 0 use A =
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(0, ..., 0, 1, 0, ..., 0) where the 1 is in the ith position and are equivalent to the
OLS t tests. The test Ho: βO = 0 uses A = [0 Ij] if βO is a j×1 vector, and
the test statistic (9.30) can be computed with the OLS partial F test: run
OLS on the full model to obtain SSE and on the reduced model to obtain
SSE(R) ≡ SSE(Ho).

In the theorem below, it is crucial that Ho: Aβ = 0. Tests for Ho: Aβ = 1,
say, may not be valid even if the sample size n is large. Also, confidence
intervals corresponding to the t tests are for cβi, and are usually not very
useful when c is unknown.

Theorem 9.4. Assume that a 1D regression model (9.1) holds with h(x) =
α + βT x and that Equation (9.29) holds when Ho : Aβ = 0 is true. Then
the test statistic (9.30) satisfies

F0 =
n− 1

kn
WOLS

D→ χ2
k/k

as n → ∞.
Proof. Notice that by (9.29), the result follows if F0 = (n−1)WOLS/(kn).

Let Ã = [0 A] so that Ho:Ãη = 0 is equivalent to Ho:Aβ = 0. Following
Seber and Lee (2003, p. 106),

(XT X)−1 =

(
1
n + xT D−1x −xT D−1

−D−1x D−1

)
(9.32)

where the (p− 1) × (p − 1) matrix

D−1 = [(n− 1)Σ̂x]−1 = Σ̂
−1

x /(n− 1). (9.33)

Using Ã and (9.32) in (9.30) shows that F0 =

(Aβ̂OLS)T

[
[0 A]

(
1
n + xT D−1x −xT D−1

−D−1x D−1

)(
0T

AT

)]−1

Aβ̂OLS/(kτ̂
2),

and the result follows from (9.33) after algebra. �

For SIR, the theory is more complicated. Following Chen and Li (1998),

SIR produces eigenvalues λ̂i and associated SIR directions β̂i,SIR for i =

1, ..., p−1.The SIR directions β̂i,SIR for i = 1, ..., d are used for dD regression.
vi) Chen and Li (1998): For a 1D regression and vector A, a test statistic

for Ho : Aβ1 = 0 is

WS = nβ̂
T

1,SIRAT [AΣ̂
−1

x AT ]−1Aβ̂1,SIR/[(1 − λ̂1)/λ̂1]
D→ χ2

1. (9.34)

Ellipsoidal trimming can be used to create outlier resistant dimension re-
duction (DR) methods that can give useful results when the assumption of
linearly related predictors (9.6) is violated. To perform ellipsoidal trimming,
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a robust estimator of multivariate location and dispersion (T,C) is computed
and used to create the Mahalanobis distances Di(T,C). The ith case (Yi,xi)
is trimmed if Di > D(j). For example, if j ≈ 0.9n, then about M% = 10% of
the cases are trimmed, and a DR method can be computed from the cases
that remain.

For theory and outlier resistance, the choice of (T,C) and M are impor-
tant. Chang and Olive (2007) used the MBA estimator (TMBA,CMBA) for
(T,C), but we would now use the RFCH estimator because of its combi-
nation of speed, robustness and theory. The classical Mahalanobis distance
uses (T,C) = (x, Σ̂x). Denote the robust distances by RDi and the classical
distances by MDi. Then the DD plot of the MDi versus the RDi can be
used to choose M . Chapter 11 showed that the plotted points in the DD plot
will follow the identity line with zero intercept and unit slope if the predictor
distribution is multivariate normal (MVN), and will follow a line with zero
intercept but non–unit slope for a large class of non-MVN elliptically con-
toured distributions that have a nonsingular covariance matrix. Delete M%
of the cases with the largest RFCH distances so that the remaining cases fol-
low the identity line (or some line through the origin) closely. Let (YMi,xMi)
denote the data that was not trimmed where i = 1, ..., nM. Then apply the
DR method on these nM cases.

As long as M is chosen only using the predictors, DR theory will apply
if the data (YM ,xM ) satisfies the regularity conditions. For example, if the
MLR model is valid and the errors are iid N(0, σ2), then the OLS estimator

η̂M = (XT
MXM)−1XT

MY M ∼ Np(η, σ2(XT
MXM )−1).

More generally, let β̂DM denote a DR estimator applied to (YMi,xMi) and
assume that √

nM (β̂DM − cMβ)
D→ Np−1(0,CDM )

where CDM is nonsingular. Let φM = limn→∞ n/nM . Then

√
n(β̂DM − cMβ) =

√
n√
nM

√
nM (β̂DM − cMβ)

D→ Np−1(0, φMCDM ). (9.35)

If Ho : Aβ = 0 is true and ĈDM is a consistent estimator of CDM , then

WDM = nM β̂
T

DMAT [AĈDMAT ]−1Aβ̂DM/τ̂2
M

D→ χ2
k.

Notice that M = 0 corresponds to the full data set and n0 = n.

The tradeoff is that if low amounts of trimming do not work, then larger
amounts of trimming sometimes greatly improve DR methods, but large
amounts of trimming will have large efficiency losses if low amounts of trim-
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ming work since n/nM ≥ 1 and the diagonal elements of CDM typically
become larger with M .

Trimmed views can also be used to select M ≡ MTV . If the MLR model
holds and OLS is used, then the resulting trimmed views estimator β̂M,TV

is
√
n consistent, but need not be asymptotically normal.

Adaptive trimming can be used to obtain an asymptotically normal esti-
mator that may avoid large efficiency losses. First, choose an initial amount
of trimming MI by using, e.g., the DD plot or trimmed views. Let β̂ denote

the first direction of the DR method. Next compute |corr(β̂T

Mx, β̂
T

MI
x)| for

M = 0, 10, ..., 90 and find the smallest valueMA ≤MI such that the absolute
correlation is greater than 0.95. If no such value exists, then use MA = MI .
The resulting adaptive trimming estimator is asymptotically equivalent to
the estimator that uses 0% trimming if β̂0 is a consistent estimator of c0β

and if β̂MI
is a consistent estimator of cMIβ.

Detecting outlying x is useful for any regression method, and now that
effective methods such as RFCH are available, the DD plot should be used
routinely. In a small simulation, the clean data Y = (α+βT x)3+e where α =
1,β = (1, 0, 0, 0)T, e ∼ N(0, 1) and x ∼ N4(0, I4). The outlier percentage γ
was either 0% or 49%. The 2 clusters of outliers were about the same size
and had Y ∼ N(0, 1), x ∼ N4(±10(1, 1, 1, 1)T , I4). Table 9.2 records the

averages of β̂i over 100 runs where the DR method used M = 0 or M = 50%
trimming. SIR, SAVE and PHD were very similar except when γ = 49 and
M = 0. When outliers were present, the average of β̂F,50 ≈ cF (1, 0, 0, 0)T

where cF depended on the DR method and F was OLS, SIR, SAVE or PHD.
The sample size n = 1000 was used although OLS gave reasonable estimates
for much smaller sample sizes. The rpack function drsim7 can be used to
duplicate the simulation in R.

The following simulations show that ellipsoidal trimming based on the
MBA estimator is useful for DR even when no outliers are present.

In the simulations, we used eight types of predictor distributions: d1)
x ∼ Np−1(0, Ip−1), d2) x ∼ 0.6Np−1(0, Ip−1) + 0.4Np−1(0, 25Ip−1), d3)
x ∼ 0.4Np−1(0, Ip−1) + 0.6Np−1(0, 25Ip−1), d4) x ∼ 0.9Np−1(0, Ip−1) +
0.1Np−1(0, 25Ip−1), d5) x ∼ LN(0, I) where the marginals are iid log-
normal(0,1), d6) x ∼ MV Tp−1(3), d7) x ∼ MV Tp−1(5) and d8) x ∼
MV Tp−1(19). Here x has a multivariate t distribution xi ∼ MV Tp−1(ν)

if xi = zi/
√
Wi/ν where zi ∼ Np−1(0, Ip−1) is independent of the chi–

square random variable Wi ∼ χ2
ν. Of the eight distributions, only d5) is not

elliptically contoured. The MVT distribution gets closer to the multivariate
normal (MVN) distribution d1) as ν → ∞. The MVT distribution has first
moments for ν ≥ 2 and second moments for ν ≥ 3. See Johnson and Kotz
(1972, p. 134-135) and Press (2005, p. 136). All simulations used 1000 runs.
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Table 9.2 DR Coefficient Estimation with Trimming

type γ M β̂1 β̂2 β̂3 β̂4

SIR 0 0 .0400 .0021 −.0006 .0012
SIR 0 50 −.0201 −.0015 .0014 .0027
SIR 49 0 .0004 −.0029 −.0013 .0039
SIR 49 50 −.0798 −.0014 .0004 −.0015

SAVE 0 0 .0400 .0012 .0010 .0018
SAVE 0 50 −.0201 −.0018 .0024 .0030
SAVE 49 0 −.4292 −.2861 −.3264 −.3442
SAVE 49 50 −.0797 −.0016 −.0006 −.0024
PHD 0 0 .0396 −.0009 −.0071 −.0063
PHD 0 50 −.0200 −.0013 .0024 .0025
PHD 49 0 −.1068 −.1733 −.1856 −.1403
PHD 49 50 −.0795 .0023 .0000 −.0037
OLS 0 0 5.974 .0083 −.0221 .0008
OLS 0 50 4.098 .0166 .0017 −.0016
OLS 49 0 2.269 −.7509 −.7390 −.7625
OLS 49 50 5.647 .0305 .0011 .0053

The simulations were for single index models with α = 1. Let the sufficient
predictor SP = α + βT x. Then the seven models considered were m1) Y =
SP + e, m2) Y = (SP )2 + e, m3) Y = exp(SP ) + e, m4) Y = (SP )3 + e,
m5) Y = sin(SP )/SP + 0.01e, m6) Y = SP + sin(SP ) + 0.1e and m7)
Y =

√
|SP |+ 0.1e where e ∼ N(0, 1).

First, coefficient estimation was examined with β = (1, 1, 1, 1)T , and for

OLS the sample standard deviation (SD) of each entry β̂Mi,j of β̂M,j was
computed for i = 1, 2, 3, 4 with j = 1, ..., 1000. For each of the 1000 runs, the
Chen and Li formula

SEcl(β̂Mi) =

√
n−1

M (ĈM )ii

was computed where

ĈM = Σ̂
−1

xM

[
1

nM

nM∑

i=1

[(YMi − α̂M − β̂
T

MxMi)
2(xMi − xM )(xMi − xM)T ]

]
Σ̂

−1

xM

is the estimate (9.28) applied to (YM ,xM ). The average of β̂M and of
√
nSEcl

were recorded as well as
√
nSD of β̂Mi,j under the labels βM ,

√
n SEcl and√

nSD. Under regularity,

√
n SEcl ≈

√
nSD ≈

√
1

1− M
100

diag(CM)

where CM is (9.26) applied to (YM ,xM).
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Table 9.3 OLS Coefficient Estimation with Trimming

m x M βM

√
nSEcl

√
nSD

m2 d1 0 2.00,2.01,2.00,2.00 7.81,7.79,7.76,7.80 7.87,8.00,8.02,7.88
m5 d4 0 −.03,−.03,−.03,−.03 .30,.30,.30,.30 .31,.32,.33,.31
m6 d5 0 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.40
m7 d6 10 .11,.11,.11,.11 .58,.57,.57,.57 .60,.58,.62,.61

For MVN x, MLR and 0% trimming, all three recorded quantities were
near (1,1,1,1) for n = 60, 500, and 1000. For 90% trimming and n = 1000, the
results were β90 = (1.00, 1.00, 1.01, 0.99),

√
n SEcl = (7.56, 7.61, 7.60, 7.54)

and
√
nSD = (7.81, 8.02, 7.76, 7.59), suggesting that β̂90 is asymptotically

normal but inefficient.
For other distributions, results for 0 and 10% trimming were recorded as

well as a “good” trimming value MB . Results are “good” if all of the entries
of both βMB

and
√
n SEcl were approximately equal, and if the theoretical√

n SEcl was close to the simulated
√
nSD. The results were good for MVN x

and all seven models, and the results were similar for n = 500 and n = 1000.
The results were good for models m1 and m5 for all eight distributions. Model
m6 was good for 0% trimming except for distribution d5 and model m7 was
good for 0% trimming except for distributions d5, d6 and d7. Trimming
usually helped for models m2, m3 and m4 for distributions d5 – d8. Some
results are shown in Table 9.3 for n = 500.

For SIR with h = 4 slices βM was recorded. The SIR results were similar to
those for OLS, but often more trimming and larger sample sizes were needed
than those for OLS. The results depended on h in that the largest sample
sizes were needed for 2 slices and then for 3 slices.

Next testing was considered. Let FM and WM denote the OLS and SIR
statistics (9.30) and (9.34) applied to the nM cases (YM ,xM ) that remained
after trimming. Ho was rejected for OLS if FM > Fk,nM−p(0.95) and for SIR
if WM > χ2

k(0.95). For SIR, 2 slices were used since using more than h = 2

slices rejected Ho too often. As h increased from 2 to 3 to 4, λ̂1 and the SIR
chi–square test statistic W0 rapidly increased. For h > 4 the increase was
much slower.

For testing the nominal level was 0.05, and we recorded the proportion p̂
of runs where Ho was rejected. Since 1000 runs were used, the count 1000p̂ ∼
binomial(1000, 1− δn) where 1 − δn converges to the true large sample level
1− δ. The standard error for the proportion is

√
p̂(1 − p̂)/1000 ≈ 0.0069 for

p = 0.05. An observed coverage p̂ ∈ (0.03, 0.07) suggests that there is no
reason to doubt that the true level is 0.05.

Suppose a 1D model holds but Y x. Then the Yi are iid and the model
reduces to Y = E(Y ) + e = cα + e where e = Y −E(Y ). As a special case, if
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Table 9.4 Rejection Proportions for H0: β = 0

x n F SIR n F SIR
d1 100 0.041 0.057 500 0.050 0.048
d2 100 0.050 0.908 500 0.045 0.930
d3 100 0.047 0.955 500 0.050 0.930
d4 100 0.045 0.526 500 0.048 0.599
d5 100 0.055 0.621 500 0.061 0.709
d6 100 0.042 0.439 500 0.036 0.472
d7 100 0.054 0.214 500 0.047 0.197
d8 100 0.044 0.074 500 0.060 0.077

Table 9.5 Rejection Proportions for Ho: β2 = 0

m x Test 70 60 50 40 30 20 10 0 ADAP
1 1 F .061 .056 .062 .051 .046 .050 .044 .043 .043
1 1 W .007 .013 .015 .020 .027 .032 .045 .056 .056
5 1 F .019 .023 .019 .019 .020 .022 .027 .037 .029
5 1 W .002 .003 .006 .005 .010 .014 .025 .055 .026
2 2 F .023 .024 .026 .070 .183 .182 .142 .166 .040
2 2 W .007 .010 .021 .067 .177 .328 .452 .576 .050
4 3 F .027 .058 .096 .081 .071 .057 .062 .123 .120
4 3 W .028 .069 .152 .263 .337 .378 .465 .541 .539
6 4 F .026 .024 .030 .032 .028 .044 .051 .088 .088
6 4 W .012 .009 .013 .016 .030 .040 .076 .386 .319
7 5 F .058 .058 .053 .054 .046 .044 .051 .037 .037
7 5 W .001 .000 .005 .005 .034 .080 .118 .319 .250
3 6 F .021 .024 .019 .025 .025 .034 .080 .374 .036
3 6 W .003 .008 .007 .021 .019 .041 .084 .329 .264
6 7 F .027 .032 .023 .041 .047 .053 .052 .055 .055
6 7 W .007 .006 .013 .022 .019 .025 .054 .176 .169

Y = m(α+βT x)+e and if Y x, then Y = m(α)+e. For the corresponding
test H0 : β = 0 versus H1 : β 6= 0, and the OLS F statistic (9.30) and SIR W
statistic (9.34) are invariant with respect to a constant. This test is interesting
since if Ho holds, then the results do not depend on the 1D model (9.1), but
only on the distribution of x and the distribution of e. Since βOLS = cβ,
power can be good if c 6= 0. The OLS test is equivalent to the ANOVA F
test from MLR of Y on x. Under H0, the test should perform well provided
that the design matrix is nonsingular and the error distribution and sample
size are such that the central limit theorem holds. Table 9.4 shows the results
for OLS and SIR for n = 100, 500 and for the eight different distributions.
Since the true model was linear and normal, the exact OLS level is 0.05 even
for n = 10. Table 9.4 shows that OLS performed as expected while SIR only
gave good results for MVN x.

Next the test Ho : β2 = 0 was considered. The OLS test is equivalent
to the t test from MLR of Y on x. The true model used α = 1 and β =

(1, 0, 1, 1)T. To simulate adaptive trimming, |corr(β̂T

Mx,βT x)| was computed
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for M = 0, 10, ..., 90 and the initial trimming proportion MI maximized this
correlation. This process should be similar to choosing the best trimmed
view by examining 10 plots. The rejection proportions were recorded for M =
0, ..., 90 and for adaptive trimming. The seven models, eight distributions and
sample sizes n = 60, 150, and 500 were used. Table 9.5 shows some results
for n = 150.

For OLS, the test that used adaptive trimming had proportions ≤ 0.072
except for model m4 with distributions d2, d3, d4, d6, d7 and d8; m2 with d4,
d6 and d7 for n = 500 and d6 with n = 150; m6 with d4 and n = 60, 150; m5
with d7 and n = 500 and m7 with d7 and n = 500. With the exception of m4,
when the adaptive p̂ > 0.072, then 0% trimming had a rejection proportion
near 0.1. Occasionally adaptive trimming was conservative with p̂ < 0.03.
The 0% trimming worked well for m1 and m6 for all eight distributions and
for d1 and d5 for all seven models. Models m2 and m3 usually benefited
from adaptive trimming. For distribution d1, the adaptive and 0% trimming
methods had identical p̂ for n = 500 except for m3 where the values were
0.038 and 0.042. Chang (2006) has much more extensive tables.

For SIR results were not as good. Adaptive trimming worked about as
often as it failed, and failed for model m1. Also, 0% trimming performed well
for all seven models for the MVN distribution d1, and there was always an
M such the WM did not reject Ho too often.

9.6 Complements

Introductions to 1D regression and regression graphics are Cook and Weisberg
(1999a, ch. 18, 19, and 20) and Cook and Weisberg (1999b), while Olive (2010)
considers 1D regression. More advanced treatments are Cook (1998a) and Li
(2000). Important papers include Brillinger (1977, 1983) and Li and Duan
(1989). Formal testing procedures for the single index model are given by
Simonoff and Tsai (2002) and Gao and Liang (1997). Li (1997) shows that
OLS F tests can be asymptotically valid for model (9.2) if x is multivariate
normal and Σ−1

x ΣxY 6= 0.

Let η = (α,βT )T . Then the ith Cook’s distance

CDi =
(Ŷ (i) − Ŷ )T (Ŷ (i) − Ŷ )

pσ̂2
=

‖ESP (i) − ESP ‖2

(p + 1)MSE
(9.36)

where ESP (i) = XT η̂(i) and the estimated sufficient predictor ESP = XT η̂

estimates dxT
j η for some constant d and j = 1, ..., n. This fact suggests

that Cook’s distances and MD2
i still give useful information on cases that

influence the estimated sufficient summary plot although MSE is estimating
E(r2) = E[(Y − αOLS − xT βOLS)2] = τ2.
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There are many ways to estimate 1D models, including maximum likeli-
hood for parametric models. The literature for estimating cβ when model
(9.2) holds is growing, and Cook and Li (2002) summarize when competing
methods such as ordinary least squares (OLS), sliced inverse regression (SIR),
principal Hessian directions (PHD), and sliced average variance estimation
(SAVE) can fail. All four methods frequently perform well if there are no
strong nonlinearities present in the predictors. Cook and Ni (2005) provides
theory for inverse regression methods such as SAVE. Further information
about these and related methods can be found, for example, in Brillinger
(1977, 1983), Chen and Li (1998), Cook (1998ab, 2004), Cook and Critchley
(2000), Cook and Weisberg (1991, 1999ab), Li (1991, 1992, 2000) and Li and
Zhu (2007).

Several papers have suggested that outliers and strong nonlinearities need
to be removed from the predictors. See Brillinger (1991), Cook (1998a, p.
152), Cook and Nachtsheim (1994), Heng-Hui (2001), Li and Duan (1989, p.
1011, 1041, 1042) and Li (1991, p. 319). Outlier resistant methods for general
methods such as SIR are less common, but see Gather, Hilker and Becker
(2001, 2002) (where FMCD should be replaced by RFCH) and Ćıžek and
Härdle (2006). Trimmed views were introduced by Olive (2002, 2004b).

Section 9.4 follows Olive and Hawkins (2005) closely. The literature on
numerical methods for variable selection in the OLS multiple linear regression
model is enormous, and the literature for other given 1D regression models
is also growing. See Naik and Tsai (2001) and Kong and Xia (2007).

Section 9.5 followed Chang and Olive (2007, 2010) closely. More examples
and much more simulations are in Chang (2006). Severini (1998) discusses
when OLS output is relevant for the Gaussian additive error single index
model. Also see Yoo, Patterson and Datta (2009).

The mussel data set is included as the file mussel.lsp in the Arc software
and can be obtained from the web site (http://www.stat.umn.edu/arc/). The
Boston housing data can be obtained from the STATLIB website
(http://lib.stat.cmu.edu/datasets/boston). Both data sets can be obtained
from the text website.

9.7 Problems

9.1. Refer to Definition 9.3 for the Cox and Snell (1968) definition for resid-
uals, but replace η by β.

a) Find êi if Yi = µ+ ei and T (Y ) is used to estimate µ.
b) Find êi if Yi = xT

i β + ei.
c) Find êi if Yi = β1 exp[β2(xi − x̄)]ei where the ei are iid exponential(1)

random variables and x̄ is the sample mean of the x′is.
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d) Find êi if Yi = xT
i β + ei/

√
wi.

9.2∗. (Aldrin, Bφlviken, and Schweder 1993). Suppose

Y = m(βT x) + e (9.37)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = βT x and let w = x −E(x). Let Σx,Y =

Cov(x, Y ), and let Σx =Cov(x) = Cov(w). Let r = w − (Σxβ)βT w.

a) Recall that Cov(x,Y ) = E[(x − E(x))(Y − E(Y ))T ] and show that
Σx,Y = E(wY ).

b) Show that E(wY ) = Σx,Y = E[(r + (Σxβ)βT w) m(z)] =

E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using βOLS = Σ−1
x Σx,Y , show that βOLS = c(x)β + u(x) where the

constant
c(x) = E[βT (x −E(x))m(βT x)]

and the bias vector u(x) = Σ−1
x E[m(βT x)r].

d) Show that E(wz) = Σxβ. (Hint: Use E(wz) = E[(x −E(x))xT β] =
E[(x−E(x))(xT − E(xT ) +E(xT ))β].)

e) Assume m(z) = z. Using d), show that c(x) = 1 if βT Σxβ = 1.

f) Assume that βT Σxβ = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that βT Σxβ = 1 and that the distribution of x is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that u(x) = 0.

(Note: the assumption βT Σxβ = 1 can be made without loss of generality
since if βT Σxβ = d2 > 0 (assuming Σx is positive definite), then y =
m(d(β/d)Tx) + e ≡ md(ηT x) + e where md(u) = m(du), η = β/d and
ηT Σxη = 1.)

9.3. Suppose that you have a statistical model where both fitted values
and residuals can be obtained. For example this is true for time series and
for nonparametric regression models such as Y = f(x1, ..., xp) + e where

Ŷ = f̂(x1, ..., xp) and the residual ê = Y − f̂(x1, ..., xp). Suggest graphs for
variable selection for such models.

Output for Problem 9.4.

BEST SUBSET REGRESSION MODELS FOR CRIM
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(A)LogX2 (B)X3 (C)X4 (D)X5 (E)LogX7 (F)X8 (G)LogX9 (H)LogX12

3 "BEST" MODELS FROM EACH SUBSET SIZE LISTED.

ADJUSTED

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- ---------------

1 379.8 0.0000 0.0000 37363.2 INTERCEPT ONLY

2 36.0 0.3900 0.3913 22744.6 F

2 113.2 0.3025 0.3039 26007.8 G

2 191.3 0.2140 0.2155 29310.8 E

3 21.3 0.4078 0.4101 22039.9 E F

3 25.0 0.4036 0.4059 22196.7 F H

3 30.8 0.3970 0.3994 22442.0 D F

4 17.5 0.4132 0.4167 21794.9 C E F

4 18.1 0.4125 0.4160 21821.0 E F H

4 18.8 0.4117 0.4152 21850.4 A E F

5 10.2 0.4226 0.4272 21402.3 A E F H

5 10.8 0.4219 0.4265 21427.7 C E F H

5 12.0 0.4206 0.4252 21476.6 A D E F

6 5.7 0.4289 0.4346 21125.8 A C E F H

6 9.3 0.4248 0.4305 21279.1 A C D E F

6 10.3 0.4237 0.4294 21319.9 A B E F H

7 6.3 0.4294 0.4362 21065.0 A B C E F H

7 6.3 0.4294 0.4362 21066.3 A C D E F H

7 7.7 0.4278 0.4346 21124.3 A C E F G H

8 7.0 0.4297 0.4376 21011.8 A B C D E F H

8 8.3 0.4283 0.4362 21064.9 A B C E F G H

8 8.3 0.4283 0.4362 21065.8 A C D E F G H

9 9.0 0.4286 0.4376 21011.8 A B C D E F G H

9.4. The output above is for the Boston housing data from software that
does all subsets variable selection. The full model is a 1D transformation
model with response variable Y = CRIM and uses a constant and variables
A, B, C, D, E, F, G and H. (Using log(CRIM) as the response would give an
MLR model.) From this output, what is the best submodel? Explain briefly.

9.5∗. a) Show that Cp(I) ≤ 2k if and only if FI ≤ p/(p− k).

b) Using (9.19), find E(Cp) and Var(Cp) assuming that an MLR model is
appropriate and that Ho (the reduced model I can be used) is true.

c) Using (9.19), Cp(Ifull) = p and the notation in Section 9.4, show that

Cp(Ii) = Cp(Ifull) + (t2i − 2).
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R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. trviews, will display the code for the function. Use the
args command, e.g. args(trviews), to display the needed arguments for the
function.

9.6. Use the following R commands to make 100 N3(0, I3) cases and 100
trivariate non-EC cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)

ln3x <- exp(n3x)

In R, type the command library(MASS).

a) Using the commands pairs(n3x) and pairs(ln3x) and include both scat-
terplot matrices in Word. (Click on the plot and hit Ctrl and c at the same
time. Then go to file in the Word menu and select paste.) Are strong nonlin-
earities present among the MVN predictors? How about the non-EC predic-
tors? (Hint: a box or ball shaped plot is linear.)

b) Make a single index model and the sufficient summary plot with the
following commands

ncy <- (n3x%*%1:3)ˆ3 + 0.1*rnorm(100)

plot(n3x%*%(1:3),ncy)

and include the plot in Word.
c) The command trviews(n3x, ncy) will produce ten plots. To advance the

plots, click on the rightmost mouse button (and in R select stop) to advance
to the next plot. The last plot is the OLS view. Include this plot in Word.

d) After all 10 plots have been looked at the output will show 10 estimated
predictors. The last estimate is the OLS (least squares) view and might look
like

Intercept X1 X2 X3

4.417988 22.468779 61.242178 75.284664

If the OLS view is a good estimated sufficient summary plot, then the plot
created from the command (leave out the intercept)

plot(n3x%*%c(22.469,61.242,75.285),n3x%*%1:3)

should cluster tightly about some line. Your linear combination will be dif-
ferent than the one used above. Using your OLS view, include the plot using
the command above (but with your linear combination) in Word. Was this
plot linear? Did some of the other trimmed views seem to be better than the
OLS view, that is, did one of the trimmed views seem to have a smooth mean
function with a smaller variance function than the OLS view?
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e) Now type the R command

lncy <- (ln3x%*%1:3)ˆ3 + 0.1*rnorm(100).

Use the command trviews(ln3x,lncy) to find the best view with a smooth
mean function and the smallest variance function. This view should not be
the OLS view. Include your best view in Word.

f) Get the linear combination from your view, say (94.848, 216.719, 328.444)T ,
and obtain a plot with the command

plot(ln3x%*%c(94.848,216.719,328.444),ln3x%*%1:3).

Include the plot in Word. If the plot is linear with high correlation, then your
response plot in e) should be good.

9.7. (At the beginning of your R session, use source(“G:/rpack.txt”) com-
mand and the library(MASS) command.)

a) Perform the commands

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

For parts b), c) and d) below, to make the best trimmed view with
trviews, ctrviews or lmsviews, you may need to use the function twice.
The first view trims 90% of the data, the next view trims 80%, etc. The last
view trims 0% and is the OLS view (or lmsreg view). Remember to advance
the view with the rightmost mouse button (and in R, highlight “stop”). Then
click on the plot and next simultaneously hit Ctrl and c. This makes a copy
of the plot. Then in Word, use the menu commands “Copy>paste.”

b) Find the best trimmed view with OLS and covfch with the following
commands and include the view in Word.

> trviews(lnx,lnsincy)

(With trviews, suppose that 40% trimming gave the best view. Then
instead of using the procedure above b), you can use the command

> essp(lnx,lnsincy,M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”. Click the rightmost mouse button (and in
R, highlight “stop”) to return the command prompt.)

c) Find the best trimmed view with OLS and (x,S) using the following
commands and include the view in Word. See the paragraph above b).

> ctrviews(lnx,lnsincy)



9.7 Problems 419

d) Find the best trimmed view with lmsreg and cov.mcd using the
following commands and include the view in Word. See the paragraph above
b).

> lmsviews(lnx,lnsincy)

e) Which method or methods gave the best response plot? Explain briefly.

9.8. Warning: this problem may take too much time. This problem
is like Problem 9.7 but uses many more single index models.
a) Make some prototype functions with the following commands.

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> SP <- nx%*%1:3

> ncuby <- SPˆ3 + rnorm(100)

> nexpy <- exp(SP) + rnorm(100)

> nlinsy <- SP + 4*sin(SP) + 0.1*rnorm(100)

> nsincy <- sin(SP)/SP + 0.01*rnorm(100)

> nsiny <- sin(SP) + 0.1*rnorm(100)

> nsqrty <- sqrt(abs(SP)) + 0.1*rnorm(100)

> nsqy <- SPˆ2 + rnorm(100)

b) Make sufficient summary plots similar to Figures 9.1 and 9.2 with the
following commands and include both plots in Word.

> plot(SP,ncuby)

> plot(-SP,ncuby)

c) Find the best trimmed view with the following commands (first type
library(MASS) if you are using R). Include the view in Word.

> trviews(nx,ncuby)

You may need to use the function twice. The first view trims 90% of the data,
the next view trims 80%, etc. The last view trims 0% and is the OLS view.
Remember to advance the view with the rightmost mouse button (and in R,
highlight “stop”). Suppose that 40% trimming gave the best view. Then use
the command

> essp(nx,ncuby, M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”.

d) To make a plot like Figure 9.5, use the following commands. Let tem

= β̂ obtained from the trviews output. In Example 9.2 (continued), tem can
be obtained with the following command.

> tem <- c(12.60514, 25.06613, 37.25504)
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Include the plot in Word.

> ESP <- nx%*%tem

> plot(ESP,SP)

e) Repeat b), c) and d) with the following data sets.
i) nx and nexpy
ii) nx and nlinsy
iii) nx and nsincy
iv) nx and nsiny
v) nx and nsqrty
vi) nx and nsqy
Enter the following commands to do parts vii) to x).

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lncuby <- (SP/3)ˆ3 + rnorm(100)

> lnlinsy <- SP + 10*sin(SP) + 0.1*rnorm(100)

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

> lnsiny <- sin(SP/3) + 0.1*rnorm(100)

> ESP <- lnx%*%tem

vii) lnx and lncuby
viii) lnx and lnlinsy
ix) lnx and lnsincy
x) lnx and lnsiny

9.9. Warning: this problem may take too much time. Repeat Prob-
lem 9.8 but replace trviews with a) lmsviews, b) symviews (that creates
views that sometimes work even when symmetry is present), c) ctrviews
and d) sirviews.

Except for part a), the essp command will not work. Instead, for the
best trimmed view, click on the plot and next simultaneously hit Ctrl and
c. This makes a copy of the plot. Then in Word, use the menu commands
“Copy>paste”.



Chapter 10

GLMs and GAMs

10.1 Introduction

Generalized linear models are an important class of parametric 1D regression
models that include multiple linear regression, logistic regression and Poisson
regression. Assume that there is a response variable Y and a k × 1 vector
of nontrivial predictors u. Before defining a generalized linear model, the
definition of a one parameter exponential family is needed. Let f(y) be a
probability density function (pdf) if Y is a continuous random variable and
let f(y) be a probability mass function (pmf) if Y is a discrete random
variable. Assume that the support of the distribution of Y is Y and that the
parameter space of θ is Θ. Let x = (1,uT )T and β = (β1 ,β

T
s )T .

Definition 10.1. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (10.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by m.
Many other parameterizations are possible. If h(y) = g(y)IY (y), then usually
k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY (y) (10.2)

where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.

421
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Definition 10.2. Assume that the data is (Yi,xi) for i = 1, ..., n. An
important type of generalized linear model (GLM) for the data states
that the Y1, ..., Yn are independent random variables from a 1-parameter ex-
ponential family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (10.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(βT xi). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The
GLM also states that g(µ(xi)) = βT xi where the link function g is a
differentiable monotone function. Then the canonical link function is
g(µ(xi)) = c(µ(xi)) = βT xi, and the quantity βT x is called the linear
predictor.

The GLM parameterization (10.3) can be written in several ways. By
Equation (10.2), f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY (y) =

exp

[
c(θ(xi))

a(φ)
yi −

b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi −

b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(βT xi). (10.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,

and notice that the value of the parameter θ(xi) = η(βT xi) depends on the
value of xi. Since the model depends on x only through the linear predictor
βT x, a GLM is a 1D regression model. Thus the linear predictor is also a
sufficient predictor.

The following three sections illustrate three of the most important gener-
alized linear models. After selecting a GLM, the investigator will often want
to check whether the model is useful and to perform inference. Several things
to consider are listed below.
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i) Show that the GLM provides a simple, useful approximation for the
relationship between the response variable Y and the predictors x.

ii) Estimate β using maximum likelihood estimators.
iii) Estimate µ(xi) = diτ (xi) or estimate τ (xi) where the di are known

constants.
iv) Check for goodness of fit of the GLM with a response plot = estimated

sufficient summary plot.
v) Check for lack of fit of the GLM (e.g. with a residual plot).
vi) Check for overdispersion with an OD plot.
vii) Check whether Y is independent of u; i.e., check whether βs = 0.
viii) Check whether a reduced model can be used instead of the full model.
ix) Use variable selection to find a good submodel.
x) Predict Yi given xi.

10.2 Multiple Linear Regression

Suppose that the response variable Y is quantitative. Then the multiple linear
regression model is often a very useful model and is closely related to the
GLM based on the normal distribution. To see this claim, let f(y|µ) be the
N(µ, σ2) family of pdfs where −∞ < µ <∞ and σ > 0 is known. Recall that
µ is the mean and σ is the standard deviation of the distribution. Then the
pdf of Y is

f(y|µ) =
1√
2πσ

exp

(−(y − µ)2

2σ2

)
.

Since

f(y|µ) =
1√
2πσ

exp(
−1

2σ2
µ2)

︸ ︷︷ ︸
k(µ)≥0

exp(
−1

2σ2
y2)

︸ ︷︷ ︸
h(y)≥0

exp(
µ

σ2︸︷︷︸
c(µ)/a(σ2)

y),

this family is a 1-parameter exponential family. For this family, θ = µ =
E(Y ), and the known dispersion parameter φ = σ2. Thus a(σ2) = σ2 and
the canonical link is the identity link c(µ) = µ.

Hence the GLM corresponding to the N(µ, σ2) distribution with canonical
link states that Y1, ..., Yn are independent random variables where

Yi ∼ N(µ(xi), σ
2) and E(Yi) ≡ E(Yi|xi) = µ(xi) = βT xi

for i = 1, ..., n. This model can be written as Yi ≡ Yi|xi = βT xi + ei where
ei ∼ N(0, σ2).

When the predictor variables are quantitative, the above model is called a
multiple linear regression (MLR) model. When the predictors are categorical,
the above model is called an analysis of variance (ANOVA) model, and when
the predictors are both quantitative and categorical, the model is called an
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MLR or analysis of covariance model. The MLR model is discussed in detail
in Chapter 5, where the normality assumption and the assumption that σ is
known can be relaxed.
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Fig. 10.1 SSP for MLR Data

A sufficient summary plot (SSP) of the sufficient predictor SP = βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the multiple linear regression model. This plot
can not be used for real data since β is unknown. The artificial data used to
make Figure 10.1 used n = 100 cases with k = 5 nontrivial predictors. The
data used β = (−1, 1, 2, 3, 0, 0)T , ei ∼ N(0, 1) and u ∼ N5(0, I).

In Figure 10.1, notice that the identity line with unit mean and zero in-
tercept corresponds to the mean function since the identity line is the line
Y = SP = βT x = g(µ(x)). The vertical deviation of Yi from the line is
equal to ei = Yi − (βT xi). For a given value of SP , Yi ∼ N(SP, σ2). For the
artificial data, σ2 = 1. Hence if SP = 0 then Yi ∼ N(0, 1), and if SP = 5 the
Yi ∼ N(5, 1). Imagine superimposing the N(SP, σ2) curve at various values
of SP . If all of the curves were shown, then the plot would resemble a road
through a tunnel. For the artificial data, each Yi is a sample of size 1 from
the normal curve with mean βT xi.

The estimated sufficient summary plot (ESSP), also called a response

plot, is a plot of β̂
T
xi versus Yi with the identity line added as a visual

aid. Now the vertical deviation of Yi from the line is equal to the residual



10.2 Multiple Linear Regression 425

−10 −5 0 5

−
1

0
−

5
0

5

ESP

Y

Fig. 10.2 ESSP = Response Plot for MLR Data
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Fig. 10.3 Residual Plot for MLR Data
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Fig. 10.4 Response Plot when Y is Independent of the Predictors

ri = Yi − (β̂
T
xi). The interpretation of the ESSP is almost the same as that

of the SSP, but now the mean SP is estimated by the estimated sufficient
predictor (ESP). This plot is used as a goodness of fit diagnostic. The residual
plot is a plot of the ESP versus ri and is used as a lack of fit diagnostic.
These two plots should be made immediately after fitting the MLR model
and before performing inference. Figures 10.2 and 10.3 show the response
plot and residual plot for the artificial data.

The response plot is also a useful visual aid for describing the ANOVA
F test (see Section 5.5) which tests whether β = 0, that is, whether the
predictors x are needed in the model. If the predictors are not needed in the
model, then Yi and E(Yi|xi) should be estimated by the sample mean Y .
If the predictors are needed, then Yi and E(Yi|xi) should be estimated by

the ESP Ŷi = β̂
T
xi. The fitted value Ŷi is the maximum likelihood estimator

computed using ordinary least squares. If the identity line clearly fits the data
better than the horizontal line Y = Y , then the ANOVA F test should have
a small p–value and reject the null hypothesis Ho that the predictors x are
not needed in the MLR model. Figure 10.4 shows the response plot for the
artificial data when only X4 and X5 are used as predictors with the identity
line and the line Y = Y added as visual aids. In this plot the horizontal line
fits the data about as well as the identity line which was expected since Y is
independent of X4 and X5.

It is easy to find data sets where the response plot looks like Figure 10.4,
but the p–value for the ANOVA F test is very small. In this case, the MLR
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model is statistically significant, but the investigator needs to decide whether
the MLR model is practically significant.

10.3 Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as a
1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, e.g., if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1 if the
subject is male and Y = 0 if the subject is female. If females are counted then
this labelling is reversed. For a binary response variable, a binary regression
model is often appropriate.

Definition 10.3. The binomial regression model states that Y1, ..., Yn

are independent random variables with Yi ∼ binomial(mi, ρ(xi)). The binary
regression model is the special case where mi ≡ 1 for i = 1, ..., n while the
logistic regression (LR) model is the special case of binomial regression
where

P (success|xi) = ρ(xi) =
exp(βTxi)

1 + exp(βTxi)
. (10.5)

If the sufficient predictor SP = βT x, then the most used binomial regres-
sion models are such that Y1, ..., Yn are independent random variables with
Yi ∼ binomial(mi, ρ(β

Txi)), or

Yi|SPi ∼ binomial(mi, ρ(SPi)). (10.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)). Note that
the LR model has

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

To see that the binary logistic regression model is a GLM, assume that Y is
a binomial(1, ρ) random variable. For a one parameter family, take a(φ) ≡ 1.
Then the pmf of Y is

f(y) = P (Y = y) =

(
1

y

)
ρy(1 − ρ)1−y =

(
1

y

)

︸︷︷︸
h(y)≥0

(1 − ρ)︸ ︷︷ ︸
k(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸
c(ρ)

y].
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Hence this family is a 1-parameter exponential family with θ = ρ = E(Y )

and canonical link c(ρ) = log

(
ρ

1 − ρ

)
. This link is known as the logit link,

and if g(µ(x)) = g(ρ(x)) = c(ρ(x)) = βT x then the inverse link satisfies

g−1(βT x) =
exp(βT x)

1 + exp(βT x)
= ρ(x) = µ(x).

Hence the GLM corresponding to the binomial(1, ρ) distribution with canon-
ical link is the binary logistic regression model.

Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1 − ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary re-
gression, ρ(x) = P (Y = 1|x) = 1−P (Y = 0|x). If this population proportion
ρ = ρ(βT x), then the model is a 1D regression model. The model is a GLM if
the link function g is differentiable and monotone so that g(ρ(βT x)) = βT x

and g−1(βT x) = ρ(βT x). Usually the inverse link function corresponds to
the cumulative distribution function of a location scale family. For example,
for logistic regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the
logistic L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the
cdf of the Normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1 − ρ(x))] = βT x.

Another important binary regression model is the discriminant function
model. See Hosmer and Lemeshow (2000, p. 43–44).let β = (β1,β

T
s )T and

x = (1,uT )T . Assume that πj = P (Y = j) and that u|Y = j ∼ Nk(µj ,Σ)
for j = 0, 1. That is, the conditional distribution of u given Y = j follows a
multivariate normal distribution with mean vector µj and covariance matrix
Σ which does not depend on j. Notice that Σ = Cov(u|Y ) 6= Cov(u). Then
as for the binary logistic regression model,

P (Y = 1|x) = ρ(x) =
exp(βT x)

1 + exp(βT x)
.

Definition 10.4. Under the conditions above, the discriminant func-
tion parameters are given by

βs = Σ−1(µ1 − µ0) (10.7)

and β1 = log

(
π1

π0

)
− 0.5(µ1 − µ0)

T Σ−1(µ1 + µ0).

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y = 1 cases can be perfectly or nearly perfectly classified by the ESP. Let
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the logistic regression ESP = β̂
T
x. Consider the response plot of the ESP

versus Y . If the Y = 0 values can be separated from the Y = 1 values by
the vertical line ESP = 0, then there is perfect classification. In this case the
maximum likelihood estimator for the logistic regression parameters (α,β)
does not exist because the logistic curve can not approximate a step function
perfectly. If only a few cases need to be deleted in order for the data set to
have perfect classification, then the amount of “overlap” is small and there
is nearly “perfect classification.”

Ordinary least squares (OLS) can also be useful for logistic regression.
The ANOVA F test, partial F test, and OLS t tests are often asymptotically
valid when the conditions in Definition 10.4 are met, and the OLS ESP and
LR ESP are often highly correlated. See Haggstrom (1983) and Theorem
10.1 below. Assume that Cov(u) ≡ Σu and that Cov(u, Y ) = Σu,Y . Let
µj = E(u|Y = j) for j = 0, 1. Let Ni be the number of Ys that are equal to
i for i = 0, 1. Then

µ̂i =
1

Ni

∑

j:Yj=i

uj

for i = 0, 1 while π̂i = Ni/n and π̂1 = 1− π̂0. Notice that Theorem 10.1 holds
as long as Cov(u) is nonsingular and Y is binary with values 0 and 1. The
LR and discriminant function models need not be appropriate.

Theorem 10.1. Assume that Y is binary and that Cov(u) = Σu is

nonsingular. Let (β̂OLS,1, β̂OLS,s) be the OLS estimator found from regressing
Y on a constant and u (using software originally meant for multiple linear
regression). Then

β̂OLS,s =
n

n − 1
Σ̂

−1

u Σ̂uY =
n

n− 1
π̂0π̂1Σ̂

−1

u (µ̂1 − µ̂0)

D→ βOLS,s = π0π1Σ
−1
u (µ1 − µ0) as n → ∞.

Proof. From Section 5.5,

β̂OLS,s =
n

n − 1
Σ̂

−1

u Σ̂xY
D→ βOLS as n → ∞

and Σ̂uY =
1

n

n∑

i=1

uiYi − u Y .

Thus Σ̂uY =
1

n


 ∑

j:Yj=1

uj(1) +
∑

j:Yj=0

uj(0)


− u π̂1 =

1

n
(N1µ̂1) −

1

n
(N1µ̂1 +N0µ̂0)π̂1 = π̂1µ̂1 − π̂2

1µ̂1 − π̂1π̂0µ̂0 =
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π̂1(1 − π̂1)µ̂1 − π̂1π̂0µ̂0 = π̂1π̂0(µ̂1 − µ̂0)

and the result follows. QED

The discriminant function estimators β̂D,1 and β̂D,s are found by replacing
the population quantities π1, π0, µ1, µ0 and Σ by sample quantities. Also

β̂D,s =
n(n− 1)

N0N1
Σ̂

−1
Σ̂uβ̂OLS,s.

Now when the conditions of Definition 10.4 are met and if µ1−µ0 is small
enough so that there is not perfect classification, then βLR = Σ−1(µ1 −µ0).
Empirically, the OLS ESP and LR ESP are highly correlated for many LR
data sets where the conditions are not met, e.g. when some of the predictors
are factors. This suggests that βLR ≈ d Σ−1

x (µ1 − µ0) for many LR data
sets where d is some constant depending on the data.

Using Definition 10.4 makes simulation of logistic regression data straight-
forward. Set π0 = π1 = 0.5, Σ = I , and µ0 = 0. Then β1 = −0.5µT

1 µ1

and βs = µ1. The artificial data set used in the following discussion used
β = (1, 1, 1, 0, 0)T and hence β1 = −1.5. Let Ni be the number of cases
where Y = i for i = 0, 1. For the artificial data, N0 = N1 = 100, and hence
the total sample size n = N1 +N0 = 200.
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Fig. 10.5 SSP for LR Data
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Again a sufficient summary plot of the sufficient predictor SP = βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the binary logistic regression (LR) model. The
artificial data described above was used because the plot can not be used for
real data since β are unknown.

Unlike the SSP for multiple linear regression where the mean function
is always the identity line, the mean function in the SSP for LR can take
a variety of shapes depending on the range of the SP. For the LR SSP,

the mean function is ρ(SP ) =
exp(SP )

1 + exp(SP )
. If the SP = 0 then Y |SP ∼

binomial(1,0.5). If the SP = −5, then Y |SP ∼ binomial(1,ρ ≈ 0.007) while
if the SP = 5, then Y |SP ∼ binomial(1,ρ≈ 0.993). Hence if the range of the
SP is in the interval (−∞,−5) then the mean function is flat and ρ(SP ) ≈ 0.
If the range of the SP is in the interval (5,∞) then the mean function is
again flat but ρ(SP ) ≈ 1. If −5 < SP < 0 then the mean function looks like
a slide. If −1 < SP < 1 then the mean function looks linear. If 0 < SP < 5
then the mean function first increases rapidly and then less and less rapidly.
Finally, if −5 < SP < 5 then the mean function has the characteristic “ESS”
shape shown in Figure 10.5.

The estimated sufficient summary plot (ESSP or response plot) is a plot

of ESP = β̂
T
xi versus Yi with the estimated mean function ρ̂(SP ) =

ρ(ESP ) =
exp(ESP )

1 + exp(ESP )
added as a visual aid. The interpretation of the
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Fig. 10.6 Response Plot for LR Data
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response plot is almost the same as that of the SSP, but now the SP is
estimated by the estimated sufficient predictor (ESP).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Y ’s in each slice and add the resulting
step function to the response plot. This is done in Figure 10.6 with J = 10
slices. This step function is a simple nonparametric estimator of the mean
function ρ(SP ). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, p. 147–156).
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Fig. 10.7 Response Plot When Y Is Independent Of The Predictors

The deviance test described in Section 10.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
binary LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the

LR estimator ρ̂(xi) =
exp(β̂

T
xi)

1 + exp(β̂
T
xi)

. If the logistic curve clearly fits the step

function better than the line Y = Y , then Ho will be rejected, but if the line
Y = Y fits the step function about as well as the logistic curve (which should
only happen if the logistic curve is linear with a small slope), then Y may be
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independent of the predictors. Figure 10.7 shows the response plot when only
X4 and X5 are used as predictors for the artificial data, and Y is independent
of these two predictors by construction. It is possible to find data sets that
look like Figure 10.7 where the p–value for the deviance test is very small.
Then the LR relationship is statistically significant, but the investigator needs
to decide whether the relationship is practically significant.

For binary data the Yi only take two values, 0 and 1, and the residuals do
not behave very well. Hence the response plot will be used both as a goodness
of fit plot and as a lack of fit plot.

For binomial regression, the response plot needs to be modified and a
check for overdispersion is needed. Let Zi = Yi/mi. Then the conditional
distribution Zi|xi of the LR binomial regression model can be visualized

with a response plot of the ESP = β̂
T
xi versus Zi with the estimated mean

function ρ̂(SP ) = ρ(ESP ) =
exp(ESP )

1 + exp(ESP )
added as a visual aid. Divide

the ESP into J slices with approximately the same number of cases in each
slice. Then compute ρ̂s =

∑
s Yi/

∑
smi where the sum is over the cases

in slice s. Then plot the resulting step function. For binary data the step
function is simply the sample proportion in each slice. Either the step function
or the lowess curve could be added to the response plot. Both the lowess
curve and step function are simple nonparametric estimators of the mean
function ρ(SP ). If the lowess curve or step function tracks the logistic curve
(the estimated mean) closely, then the LR mean function is a reasonable
approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1, ...,m if m ≥ 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good approx-
imation to the data, the LR MLE is a consistent estimator of β, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)).
This phenomenon is called overdispersion.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, p. 93-94) and Agresti
(2002, p. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and

θ = 1/(δ+ν). Let B(δ, ν) =
Γ (δ)Γ (ν)

Γ (δ + ν)
. If Y has a beta–binomial distribution,

Y ∼ BB(m, ρ, θ), then the probability mass function of Y is P (Y = y) =(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)
for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1 + (m− 1)θ/(1 + θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ).
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Definition 10.5. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ).

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. Note that E(Yi|SPi) = miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

As θ → 0, it can be shown that V (π) → 0 and the BBR model converges to
the binomial regression model.

For both the LR and BBR models, the conditional distribution of Y |x can
still be visualized with a response plot of the ESP versus Zi = Yi/mi with the
estimated mean function Ê(Zi|xi) = ρ̂(SP ) = ρ(ESP ) and a step function
or lowess curve added as visual aids.

Since binomial regression is the study of Zi|xi (or equivalently of Yi|xi),
the response plot is crucial for analyzing LR models. The response plot is a
special case of the model checking plot and emphasizes goodness of fit.

Since the binomial regression model is simpler than the BBR model, graph-
ical diagnostics for the goodness of fit of the LR model would be useful. To
check for overdispersion, we suggest using the OD plot of V̂ (Y |SP ) versus
V̂ = [Y − Ê(Y |SP )]2. This plot was suggested by Winkelmann (2000, p. 110)
to check overdispersion for Poisson regression.

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R2

is used for multiple linear regression. When the mi are small, G2 may not
be reliable but the response plot is still useful. If the Yi are not too close
to 0 or mi, if the response and OD plots look good, and the deviance G2

satisfies G2/(n − k − 1) ≈ 1, then the LR model is likely useful. If G2 >
(n − k − 1) + 3

√
n− k + 1, then a more complicated count model may be

needed.
The response plot is a powerful method for assessing the adequacy of the

binary LR regression model. Suppose that both the number of 0s and the
number of 1s is large compared to the number of predictors k, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y |x ≈ Binomial(1, ρ(ESP ). For example if the ESP =
0 then Y |x ≈ Binomial(1,0.5). If −5 < ESP < 5 then the estimated mean
function has the characteristic “ESS” shape of the logistic curve.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too close to 0 or m, then a normal approximation is good
for the binomial distribution. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ),

then [Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and
estimated variance functions are good approximations, and if the counts are
not too close to 0 or mi, then the plotted points in the OD plot will scatter
about a wedge formed by the V̂ = 0 line and the line through the origin
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with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should
be above this line.

If the data are binary, the response plot is enough to check the binomial
regression assumption. When the counts are small, the OD plot is not wedge
shaped, but if the LR model is correct, the least squares (OLS) line should
be close to the identity line through the origin with unit slope.

Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line and OLS line will be added to the plot
as visual aids. It is easier to use the OD plot to check the variance function
than the response plot since judging the variance function with the straight
lines of the OD plot is simpler than judging the variability about the logistic
curve. Also outliers are often easier to spot with the OD plot. For the LR
model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi)) and Ê(Yi|SP ) = miρ(ESPi).
The evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta–binomial re-
gression model, then V̂mod = V̂ (Yi|SP ) ≈ miρ(ESP )(1−ρ(ESP )) while V̂ =
[Yi −miρ(ESP )]2 ≈ (Yi − E(Yi))

2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 −
ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should

scatter about a line with slope ≈ 1 + (m− 1)
θ

1 + θ
=

1 +mθ

1 + θ
.

The first example is for binary data. For binary data, G2 is not approxi-
mately χ2 and some plots of residuals have a pattern whether the model is
correct or not. For binary data the OD plot is not needed, and the plotted
points follow a curve rather than falling in a wedge. The response plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability
of success. For example, when ESP = 0, the estimated probability is 0.5.

Example 10.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The response plot in Figure 10.8a) uses
the predictor face length. The model fits very poorly since the probability
of a 1 decreases then increases. The response plot in Figure 10.8b) uses the
predictor head height and perfectly classifies the data since the ape skulls
can be separated from the human skulls with a vertical line at ESP = 0.
Christmann and Rousseeuw (2001) also used the response plot to visualize
overlap. The response plot in Figure 10.8c uses predictors lower jaw length,
face length, and upper jaw length. None of the predictors is good individually,
but together provide a good LR model since the observed proportions (the
step function) track the model proportions (logistic curve) closely. The OD
plot in Figure 10.8d) is curved and is not needed for a binary response.
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Fig. 10.8 Response Plots for Museum Data

Example 10.2. Abraham and Ledolter (2006, p. 360-364) describe death
penalty sentencing in Georgia. The predictors are aggravation level from 1 to
6 (treated as a continuous variable) and race of victim coded as 1 for white
and 0 for black. There were 362 jury decisions and 12 level race combinations.
The response variable was the number of death sentences in each combination.
The response plot (ESSP) in Figure 10.9a shows that the Yi/mi are close to
the estimated LR mean function (the logistic curve). The step function based
on 5 slices also tracks the logistic curve well. The OD plot is shown in Figure
10.9b with the identity, slope 4 and OLS lines added as visual aids. The
vertical scale is less than the horizontal scale and there is no evidence of
overdispersion.

Example 10.3. Collett (1999, p. 216-219) describes a data set where the
response variable is the number of rotifers that remain in suspension in a
tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1
for polyarthra major and 0 for keratella cochlearis. Figure 10.10a shows the
response plot (ESSP). Both the observed proportions and the step function
track the logistic curve well, suggesting that the LR mean function is a good
approximation to the data. The OD plot suggests that there is overdispersion
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since the vertical scale is about 30 times the horizontal scale. The OLS line
has slope much larger than 4 and two outliers seem to be present.

10.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a region
is divided into subregions and Yi is the number of a specified type of animal
found in the subregion.

Definition 10.6. The Poisson regression (PR) model states that
Y1, ..., Yn are independent random variables with Yi ∼ Poisson(µ(xi)). The
Poisson regression model is the special case where

µ(xi) = exp(βT xi). (10.8)

To see that the PR model is a GLM, assume that Y is a Poisson(µ) random
variable. For a one parameter family, take a(φ) ≡ 1. Then the pmf of Y is

f(y) = P (Y = y) =
e−µµy

y!
= e−µ
︸︷︷︸

k(µ)≥0

1

y!︸︷︷︸
h(y)≥0

exp[log(µ)︸ ︷︷ ︸
c(µ)

y]

for y = 0, 1, . . . , where µ > 0. Hence this family is a 1-parameter exponential
family with θ = µ = E(Y ), and the canonical link is the log link c(µ) =
log(µ). Since g(µ(x)) = c(µ(x)) = βT x, the inverse link satisfies

g−1(βT x) = exp(βT x) = µ(x).

Hence the GLM corresponding to the Poisson(µ) distribution with canonical
link is the Poisson regression model.

A sufficient summary plot of the sufficient predictor SP = βT xi versus
the response variable Yi with the mean function added as a visual aid can be
useful for describing the Poisson regression (PR) model. Artificial data needs
to be used because the plot can not be used for real data since β is unknown.
The data used in the discussion below had n = 100, u ∼ N5(1, I/4) and
Yi ∼ Poisson(exp(βTxi)) where β = (−2.5, 1, 1, 1, 0, 0)T.

Model (10.8) can be written compactly as Y |SP ∼ Poisson(exp(SP)).
Notice that Y |SP = 0 ∼ Poisson(1). Also note that the conditional mean
and variance functions are equal: E(Y |SP ) = V (Y |SP ) = exp(SP ). The
shape of the mean function µ(SP ) = exp(SP ) for Poisson regression depends



10.4 Poisson Regression 439

−2 −1 0 1 2

0
5

1
0

1
5

SP

Y

Fig. 10.11 SSP for Poisson Regression

−2 −1 0 1 2

0
5

1
0

1
5

ESP

Y

Fig. 10.12 Response Plot for Poisson Regression



440 10 GLMs and GAMs

strongly on the range of the SP. The variety of shapes occurs because the
plotting software attempts to fill the vertical axis. Hence the range of the SP
is narrow, then the exponential function will be rather flat. If the range of
the SP is wide, then the exponential curve will look flat in the left of the plot
but will increase sharply in the right of the plot. Figure 10.11 shows the SSP
for the artificial data.

The estimated sufficient summary plot (ESSP or response plot) is a plot

of the ESP = β̂
T
xi versus Yi with the estimated mean function µ̂(ESP ) =

exp(ESP ) added as a visual aid. The interpretation of the response plot is
almost the same as that of the SSP, but now the SP is estimated by the
estimated sufficient predictor (ESP).

This plot is very useful as a goodness of fit diagnostic. The lowess curve
is a nonparametric estimator of the mean function called a “scatterplot
smoother.” The lowess curve is represented as a jagged curve to distinguish
it from the estimated PR mean function (the exponential curve) in Figure
10.12. If the lowess curve follows the exponential curve closely (except pos-
sibly for the largest values of the ESP), then the PR model may fit the data
well. A useful lack of fit plot is a plot of the ESP versus the deviance
residuals that are often available from the software.

The deviance test described in Section 10.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If
the PR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and µ̂(xi) ≡ µ̂ = Y (the sample

mean) should be used instead of the PR estimator µ̂(xi) = exp(β̂
T
xi). If the

exponential curve clearly fits the lowess curve better than the line Y = Y ,
then Ho should be rejected, but if the line Y = Y fits the lowess curve
about as well as the exponential curve (which should only happen if the
exponential curve is approximately linear with a small slope), then Y may be
independent of the predictors. Figure 10.13 shows the ESSP when only X4

and X5 are used as predictors for the artificial data, and Y is independent of
these two predictors by construction. It is possible to find data sets that look
like Figure 10.13 where the p–value for the deviance test is very small. Then
the PR relationship is statistically significant, but the investigator needs to
decide whether the relationship is practically significant.

Warning: For many count data sets where the PR mean function is
correct, the PR model is not appropriate but the PR MLE is still a con-
sistent estimator of β. The problem is that for many data sets where
E(Y |x) = µ(x) = exp(SP ), it turns out that V (Y |x) > exp(SP ). This
phenomenon is called overdispersion. Adding parametric and nonparamet-
ric estimators of the standard deviation function to the response plot can
be useful. See Cook and Weisberg (1999a, p. 401-403). Alternatively, if the
response plot looks good and G2/(n−k−1) ≈ 1, then the PR model is likely
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useful. If G2/(n−k−1) > 1+3/
√
n− k − 1, then a more complicated count

model may be needed. Here the deviance G2 is described in Section 10.5.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(µ, κ), then the probability mass function of Y is

P (Y = y) =
Γ (y+ κ)

Γ (κ)Γ (y+ 1)

(
κ

µ + κ

)κ (
1 − κ

µ+ κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) =
µ+µ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution with ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 10.7. The negative binomial regression (NBR) model
states that Y1, ..., Yn are independent random variables where Yi ∼ NB(µ(xi), κ)
with µ(xi) = exp(βT xi). Hence Y |SP ∼ NB(exp(SP), κ), E(Y |SP ) =
exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
.

The NBR model has the same mean function as the PR model but allows
for overdispersion. As κ → ∞, the NBR model converges to the PR model.
See Section 10.8.
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Judging the mean function from the response plot may be rather diffi-
cult for large counts since the mean function is curved and lowess does not
track the exponential function very well for large counts. Simple diagnos-
tic plots for the Poisson regression model can be made using weighted least
squares (WLS). To see this, assume that all n of the counts Yi are large. Then
log(µ(xi)) = log(µ(xi)) + log(Yi) − log(Yi) = βT xi, or

log(Yi) = βT xi + ei where ei = log

(
Yi

µ(xi)

)
. The error ei does not have

zero mean or constant variance, but if µ(xi) is large
Yi − µ(xi)√

µ(xi)
≈ N(0, 1)

by the central limit theorem. Recall that log(1 + x) ≈ x for |x| < 0.1. Then,
heuristically,

ei = log

(
µ(xi) + Yi − µ(xi)

µ(xi)

)
≈ Yi − µ(xi)

µ(xi)
=

1√
µ(xi)

Yi − µ(xi)√
µ(xi)

≈ N

(
0,

1

µ(xi)

)
.

This suggests that for large µ(xi), the errors ei are approximately 0 mean
with variance 1/µ(xi). If the µ(xi) were known, and all of the Yi were large,
then a weighted least squares of log(Yi) on xi with weights wi = µ(xi) should
produce good estimates of β. Since the µ(xi) are unknown, the estimated
weights wi = Yi could be used. Since P (Yi = 0) > 0, the estimators given in
the following definition are used. Let Zi = Yi if Yi > 0, and let Zi = 0.5 if
Yi = 0.

Definition 10.8. The minimum chi–square estimator of β in a Pois-
son regression model is β̂M , and is found from the weighted least squares
regression of log(Zi) on xi with weights wi = Zi. Equivalently, use the or-
dinary least squares (OLS) regression (without intercept) of

√
Zi log(Zi) on√

Zixi.

The minimum chi–square estimator tends to be consistent if n is fixed
and all n counts Yi increase to ∞ while the Poisson regression maximum
likelihood estimator tends to be consistent if the sample size n → ∞. See
Agresti (2002, p. 611-612). However, the two estimators are often close for
many data sets. This result and the equivalence of the minimum chi–square
estimator to an OLS estimator suggest the following diagnostic plots. Let β̃

be an estimator of β.

Definition 10.9. For a Poisson regression model, a weighted fit re-

sponse plot is a plot of
√
ZiESP =

√
Ziβ̃

T
xi versus

√
Zi log(Zi). The

weighted residual plot is a plot of
√
Ziβ̃

T
xi versus the WLS residuals

rWi =
√
Zi log(Zi) −

√
Ziβ̃

T
xi.
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If the Poisson regression model is appropriate and if the minimum chi–
square estimators are reasonable, then the plotted points in the weighted fit
response plot should follow the identity line. Cases with large WLS residuals
may not be fit very well by the model. When the counts Yi are small, the
WLS residuals can not be expected to be approximately normal. Notice that
a resistant estimator for β can be obtained by replacing OLS (in Definition
10.9) with a resistant MLR estimator.

Example 10.4. For the Ceriodaphnia data of Myers, Montgomery and
Vining (2002, p. 136-139), the response variable Y is the number of Ceri-
odaphnia organisms counted in a container. The sample size was n = 70
and seven concentrations of jet fuel (x1) and an indicator for two strains
of organism (x2) were used as predictors. The jet fuel was believed to im-
pair reproduction so high concentrations should have smaller counts. Figure
10.14 shows the 4 plots for this data. In the response plot of Figure 10.14a,
the lowess curve is represented as a jagged curve to distinguish it from the
estimated PR mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y . The OD plot in Figure 10.14b suggests
that there is little evidence of overdispersion. These two plots as well as Fig-
ures 10.14c and 10.14d suggest that the Poisson regression model is a useful
approximation to the data.
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Example 10.5. For the crab data, the response Y is the number of satel-
lites (male crabs) near a female crab. The sample size n = 173 and the pre-
dictor variables were the color, spine condition, caparice width and weight of
the female crab. Agresti (2002, p. 126-131) first uses Poisson regression, and
then uses the NBR model with κ̂ = 0.98 ≈ 1. Figure 10.15a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 10.15b suggests that
overdispersion is present since the vertical scale is about 10 times that of the
horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 10.15c also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y , an alternative model to the NBR model may fit
the data better. In later chapters, Agresti uses binomial regression models
for this data.

Example 10.6. For the popcorn data of Myers, Montgomery and Vining
(2002, p. 154), the response variable Y is the number of inedible popcorn
kernels. The sample size was n = 15 and the predictor variables were tem-
perature (coded as 5, 6 or 7), amount of oil (coded as 2, 3 or 4) and popping
time (75, 90 or 105). One batch of popcorn had more than twice as many
inedible kernels as any other batch and is an outlier. Ignoring the outlier in
Figure 10.16a suggests that the line Y = Y will fit the data and lowess curve
better than the exponential curve. Hence Y seems to be independent of the
predictors. Notice that the outlier sticks out in Figure 10.16b and that the
vertical scale is well over 10 times that of the horizontal scale. If the outlier
was not detected, then the Poisson regression model would suggest that tem-
perature and time are important predictors, and overdispersion diagnostics
such as the deviance would be greatly inflated.

10.5 Inference

This section gives a very brief discussion of inference for the logistic regression
(LR) and Poisson regression (PR) models. Inference for these two models is
very similar to inference for the multiple linear regression (MLR) model. For
all three of these models, Y is independent of the k × 1 vector of predictors
x = (x1, ..., xk)

T given the sufficient predictor βT x: Y x|(βT x).
Response = Y
Coefficient Estimates
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Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Number of cases: n

Degrees of freedom: n - k - 1

Pearson X2:

Deviance: D = Gˆ2

-------------------------------------

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169

To perform inference for LR and PR, computer output is needed. Above
is shown output using symbols and Arc output from a real data set with
k = 2 nontrivial predictors. This data set is the banknote data set described
in Cook and Weisberg (1999a, p. 524). There were 200 Swiss bank notes of
which 100 were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the
analysis was to determine whether a selected bill was genuine or counterfeit
from physical measurements of the bill.

Point estimators for the mean function are important. Given values of
x = (x1, ..., xk)

T , a major goal of binary logistic regression is to estimate the
success probability P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(β̂

T
x)

1 + exp(β̂
T
x)
. (10.9)

Similarly, a major goal of Poisson regression is to estimate the mean
E(Y |x) = µ(x) with the estimator
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µ̂(x) = exp(β̂
T
x). (10.10)

For tests, the p–value is an important quantity. Recall that Ho is rejected if
the p–value< δ. A p–value between 0.07 and 1.0 provides little evidence that
Ho should be rejected, a p–value between 0.01 and 0.07 provides moderate
evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

Investigators also sometimes test whether a predictor Xj is needed in the
model given that the other k− 1 nontrivial predictors are in the model with
a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j ) or obtain it from output.
iii) The p–value = 2P (Z < −|zoj |) = 2P (Z > |zoj |). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the GLM model for
Y given that the other k− 1 predictors are in the model. If you fail to reject
Ho, then conclude that Xj is not needed in the GLM model for Y given that
the other k − 1 predictors are in the model. Note that Xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained using the

output: the large sample 100 (1 − δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j ).

The Wald test and CI tend to give good results if the sample size n is large.
Here 1 − δ refers to the coverage of the CI. A 90% CI uses z1−δ/2 = 1.645, a
95% CI uses z1−δ/2 = 1.96, and a 99% CI uses z1−δ/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all
p of the predictors xT = (xT

R,x
T
O), the reduced model that uses the r

predictors xR, and the saturated model that uses n parameters θ1, ..., θn

where n is the sample size. For the full model the p parameters β1, ..., βp

are estimated while the reduced model has r parameters. Let lSAT (θ1 , ..., θn)
be the likelihood function for the saturated model and let lFULL(β) be the

likelihood function for the full model. Let LSAT = log lSAT (θ̂1 , ..., θ̂n) be the
log likelihood function for the saturated model evaluated at the maximum
likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let LFULL = log lFULL(β̂) be

the log likelihood function for the full model evaluated at the MLE β̂. Then
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the deviance D = G2 = −2(LFULL − LSAT ). The degrees of freedom for
the deviance = dfFULL = n− p where n is the number of parameters for the
saturated model and p is the number of parameters for the full model.

The saturated model for logistic regression states that for i = 1, ..., n, the
Yi|xi are independent binomial(mi, ρi) random variables where ρ̂i = Yi/mi.
The saturated model is usually not very good for binary data (all mi = 1)
or if the mi are small. The saturated model can be good if all of the mi are
large or if ρi is very close to 0 or 1 whenever mi is not large.

The saturated model for Poisson regression states that for i = 1, ..., n,
the Yi|xi are independent Poisson(µi) random variables where µ̂i = Yi. The
saturated model is usually not very good for Poisson data, but the saturated
model may be good if n is fixed and all of the counts Yi are large.

If X ∼ χ2
d then E(X) = d and VAR(X) = 2d. An observed value of

X > d + 3
√
d is unusually large and an observed value of X < d − 3

√
d is

unusually small.

When the saturated model is good, a rule of thumb is that the logistic or
Poisson regression model is ok if G2 ≤ n−p (or if G2 ≤ n−p+3

√
n− p). For

binary LR, the χ2
n−p+3 approximation for G2 is rarely good even for large

sample sizes n. For LR, the response plot is often a much better diagnostic
for goodness of fit, especially when ESP = βT xi takes on many values and
when p << n. For PR, both the response plot and G2 ≤ n − p + 3

√
n− p

should be checked.
The Arc output on the following two pages, shown in symbols and for a

real data set, is used for the deviance test described below. Assume that the
estimated sufficient summary plot has been made and that the logistic or
Poisson regression model fits the data well in that the nonparametric step or
lowess estimated mean function follows the estimated model mean function
closely and there is no evidence of overdispersion. The deviance test is used
to test whether βs = 0. If this is the case, then the nontrivial predictors
are not needed in the GLM model. If Ho : βs = 0 is not rejected, then
for Poisson regression the estimator µ̂ = Y should be used while for logistic

regression ρ̂ =

n∑

i=1

Yi/

n∑

i=1

mi should be used. Note that ρ̂ = Y for binary

logistic regression.

The 4 step deviance test is
i) Ho : βs = 0 HA : βs 6= 0
ii) test statistic G2(o|F ) = G2

o −G2
FULL.

iii) The p–value = P (χ2 > G2(o|F )) where χ2 ∼ χ2
k has a chi–square

distribution with k = p − 1 degrees of freedom. Note that k = k + 1 − 1 =
dfo − dfFULL = n− 1 − (n− k − 1).

iv) Reject Ho if the p–value < δ and conclude that there is a GLM rela-
tionship between Y and the predictors X2, ..., Xp. If p–value ≥ δ, then fail to
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reject Ho and conclude that there is not a GLM relationship between Y and
the predictors X2, ..., Xp.

This test can be performed in R by obtaining output from the full and
null model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outn <- glm(Y˜1,family = binomial); anova(outn,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** k Gˆ2(0|F) pvalue

Response = Y
Terms = (X2, ..., Xp)
Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones n− 1 = dfo G2
o

X2 n− 2 1
X3 n− 3 1
...

...
...

...
Xp n− p = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance

Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484
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Response = Y Terms = (X2, ..., Xp) (Full Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0
Degrees of freedom: n - p = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (X2, ..., Xr) (Reduced Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

...
...

...
...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) for Ho: βr = 0
Degrees of freedom: n - r - 1 = dfRED

Deviance: D = G2
RED

(Full Model) Response = Status, Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000

Degrees of freedom: 198

Deviance: 21.109
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The above output, shown both in symbols and for a real data set, can be
used to perform the change in deviance test. If the reduced model leaves out
a single variable Xi, then the change in deviance test becomes Ho : βi = 0
versus HA : βi 6= 0. This test is a competitor of the Wald test. This change in
deviance test is usually better than the Wald test if the sample size n is not
large, but the Wald test is often easier for software to produce. For large n
the test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should be highly correlated with the identity line with

unit slope and zero intercept.
After obtaining an acceptable full model where

SP = β1 + β2x2 + · · ·+ βpxp = βT x = βT
RxR + βT

OxO

try to obtain a reduced model

SP (red) = βR1 + βR2xR2 + · · ·+ βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for Poisson regression the reduced
model is Yi|xRi ∼ independent Poisson(µ(xRi)) for i = 1, ..., n.

Assume that the response plot looks good. Then we want to test Ho: the
reduced model is good (can be used instead of the full model) versus HA: use
the full model (the full model is significantly better than the reduced model).
Fit the full model and the reduced model to get the deviances G2

FULL and
G2

RED.

The 4 step change in deviance test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic G2(R|F ) = G2

RED −G2
FULL.

iii) The p–value = P (χ2 > G2(R|F )) where χ2 ∼ χ2
p−r has a chi–square

distribution with p − r degrees of freedom. Note that p is the number of
predictors in the full model while r is the number of predictors in the reduced
model. Also notice that p− r = dfRED − dfFULL = n− r − (n− p).

iv) Reject Ho if the p–value < δ and conclude that the full model should
be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

This test can be performed in R by obtaining output from the full and
reduced model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outr <- glm(Y˜ x3 + x5 + x7,family = binomial)
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anova(outr,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** p-r Gˆ2(R|F) pvalue

Interpretation of coefficients: if x2, ..., xi−1, xi+1, ..., xp can be held fixed,
then increasing xi by 1 unit increases the sufficient predictor SP by βi units.
As a special case, consider logistic regression. Let ρ(x) = P (success|x) = 1−
P(failure|x) where a “success” is what is counted and a “failure” is what is not
counted (so if the Yi are binary, ρ(x) = P (Yi = 1|x)). Then the estimated

odds of success is Ω̂(x) =
ρ̂(x)

1 − ρ̂(x)
= exp(β̂

T
x). In logistic regression,

increasing a predictor xi by 1 unit (while holding all other predictors fixed)

multiplies the estimated odds of success by a factor of exp(β̂i).

10.6 Variable Selection

This section gives some rules of thumb for variable selection for logistic and
Poisson regression. Before performing variable selection, a useful full model
needs to be found. The process of finding a useful full model is an iterative
process. Given a predictor x, sometimes x is not used by itself in the full
model. Suppose that Y is binary. Then to decide what functions of x should
be in the model, look at the conditional distribution of x|Y = i for i = 0, 1.
The rules shown in Table 10.1 are used if x is an indicator variable or if x is a
continuous variable. Replace normality by “symmetric with similar spreads”
and “symmetric with different spreads” in the second and third lines of the
table. See Cook and Weisberg (1999a, p. 501) and Kay and Little (1987).

The full model will often contain factors and interactions. If w is a nominal
variable with J levels, make w into a factor by using use J − 1 (indicator or)
dummy variables x1,w, ..., xJ−1,w in the full model. For example, let xi,w = 1
if w is at its ith level, and let xi,w = 0, otherwise. An interaction is a product
of two or more predictor variables. Interactions are difficult to interpret.
Often interactions are included in the full model, and then the reduced model
without any interactions is tested. The investigator is often hoping that the
interactions are not needed.

As in Chapter 5, a scatterplot matrix is used to examine the marginal
relationships of the predictors and response. Place Y on the top or bottom
of the scatterplot matrix. Variables with outliers, missing values or strong
nonlinearities may be so bad that they should not be included in the full
model. Suppose that all values of the variable x are positive. The log rule
says add log(x) to the full model if max(xi)/min(xi) > 10. For the binary
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Table 10.1 Building the Full Logistic Regression Model

distribution of x|y = i variables to include in the model
x|y = i is an indicator x
x|y = i ∼ N(µi, σ2) x
x|y = i ∼ N(µi, σ2

i ) x and x2

x|y = i has a skewed distribution x and log(x)
x|y = i has support on (0,1) log(x) and log(1 − x)

logistic regression model, it is often useful to mark the plotted points by a 0
if Y = 0 and by a + if Y = 1.

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1’s and

N0 = n−N1 = the number of 0’s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
For Poisson regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss of
information. A model for variable selection for a GLM can be described by

SP = βT x = βT
S xS + βT

ExE = βT
SxS (10.11)

where x = (xT
S ,x

T
E)T is a p× 1 vector of nontrivial predictors, xS is a rS × 1

vector and xE is a (p−rS)×1 vector. Given that xS is in the model, βE = 0
and E denotes the subset of terms that can be eliminated given that the
subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of r terms from a candidate subset indexed by I, and let xO be the
vector of the remaining terms (out of the candidate submodel). Then

SP = βT
I xI + βT

OxO. (10.12)

Definition 10.10. The model with SP = βT x that uses all of the pre-
dictors is called the full model. A model with SP = βT

I xI that only uses the
constant and a subset xI of the nontrivial predictors is called a submodel.
The full model is a submodel.
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Suppose that S is a subset of I and that model (10.11) holds. Then

SP = βT
SxS = βT

S xS + βT
(I/S)xI/S + 0T xO = βT

I xI (10.13)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if the set of predictors S

is a subset of I. Let β̂ and β̂I be the estimates of β and βI obtained from
fitting the full model and the submodel, respectively. Denote the ESP from

the full model by ESP = β̂
T
xi and denote the ESP from the submodel by

ESP (I) = β̂IxIi.

Definition 10.11. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin found with the smallest
AIC are always of interest. Burnham and Anderson (2004) suggest that if
∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, models
with 4 ≤ ∆(I) ≤ 7 are borderline, and models with ∆(I) > 10 should not be
used as the final submodel. Create a full model. The full model has a deviance
at least as small as that of any submodel. The final submodel should have an
EE plot that clusters tightly about the identity line. As a rough rule of thumb,
a good submodel I has corr(ESP (I), ESP ) ≥ 0.95. Find the submodel II
with the smallest number of predictors such that ∆(II) ≤ 2. Then submodel
II is the initial submodel to examine. Also examine submodels I with fewer
predictors than II with ∆(I) ≤ 7.

Backward elimination starts with the full model and always contains
the constant x1 = x∗1, and the predictor that optimizes some criterion is
deleted. Then there are p− 1 variables left, and the predictor that optimizes
some criterion is deleted. This process continues for models with p − 2, p−
3, ..., 2 and 1 predictors. The last model just has the constant x1 = x∗1.

Forward selection starts with the model with a constant x1 = x∗1 vari-
ables, and the predictor that optimizes some criterion is added. Then there
is 2 variables in the model, and the predictor that optimizes some criterion
is added. This process continues for models with 3, ..., p− 1 and p predictors.
Both forward selection and backward elimination result in a sequence, often
different, of p models {x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} =
full model.

All subsets variable selection can be performed with the following
procedure. Compute the ESP of the GLM and compute the OLS ESP found
by the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.
This high correlation will exist for many data sets. Then perform multiple
linear regression and the corresponding all subsets OLS variable selection
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with the Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2(r + 1)
where the subset I has r + 1 variables including a constant, then corr(OLS
ESP, OLS ESP(I)) will be high by the proof of Proposition 5.1, and hence
corr(ESP, ESP(I)) will be high. In other words, if the OLS ESP and GLM
ESP are highly correlated, then performing multiple linear regression and
the corresponding MLR variable selection (e.g. forward selection, backward
elimination or all subsets selection) based on the Cp(I) criterion may provide
many interesting submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 12 rules of thumb to hold simultaneously. Let submodel I
have rI +1 predictors, including a constant. Do not use more predictors than
submodel II , which has no more predictors than the minimum AIC model.
It is possible that II = Imin = Ifull . Assume the response plot for the full
model is good. Then the submodel I is good if
i) the response plot for the submodel looks like the response plot for the full
model.
ii) corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the change in deviance test that uses I as
the reduced model.
v) For binary LR want rI +1 ≤ min(N1 , N0)/10. For PR, want rI +1 ≤ n/10.
vi) The plotted points in the VV plot cluster tightly about the identity line.
vii) Want the deviance G2(I) ≥ G2(full) but close. (G2(I) ≥ G2(full) since
adding predictors to I does not increase the deviance.)
viii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.
xi) Want G2(I) ≤ n− rI − 1 + 3

√
n− rI − 1.

xii) The OD plot should look good.

Heuristically, backward elimination tries to delete the variable that will
increase the deviance the least. An increase in deviance greater than 4 (if the
predictor has 1 degree of freedom) may be troubling in that a good predictor
may have been deleted. In practice, the backward elimination program may
delete the variable such that the submodel I with j predictors has a) the
smallest AIC(I), b) the smallest deviance G2(I) or c) the biggest p–value
(preferably from a change in deviance test but possibly from a Wald test)
in the test Ho βi = 0 versus HA βi 6= 0 where the model with j + 1 terms
from the previous step (using the j predictors in I and the variable x∗j+1) is
treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor has
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1 degree of freedom) may be troubling in that a bad predictor may have been
added. In practice, the forward selection program may add the variable such
that the submodel I with j nontrivial predictors has a) the smallest AIC(I),
b) the smallest deviance G2(I) or c) the smallest p–value (preferably from a
change in deviance test but possibly from a Wald test) in the test Ho βi = 0
versus HA βi 6= 0 where the current model with j terms plus the predictor
xi is treated as the full model (for all variables xi not yet in the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4 and M5 be candidate submodels found after forward selection, backward
elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4, M5
and M1. Good candidates should have estimated sufficient predictors that
are highly correlated with the full model estimated sufficient predictor (the
correlation should be at least 0.9 and preferably greater than 0.95). For binary
logistic regression, mark the symbols (0 and +) using the response variable
Y .

−20 −10 0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ESP

Y

Response Plot

Fig. 10.17 Visualizing the ICU Data

The final submodel should have few predictors, few variables with large
Wald p–values (0.01 to 0.05 is borderline), a good response plot and an EE
plot that clusters tightly about the identity line. If a factor has I − 1 dummy
variables, either keep all I − 1 dummy variables or delete all I − 1 dummy
variables, do not delete some of the dummy variables.
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Some logistic regression output can be unreliable if ρ̂(x) = 1 or ρ̂(x) = 0
exactly. Then ESP = ∞ or ESP = −∞ respectively. Some binary logistic
regression output can also be unreliable if there is perfect classification of 0’s
and 1’s so that the 0’s are to the left and the 1’s to the right of ESP = 0 in
the response plot. Then the logistic regression MLE β̂LR does not exist, and
variable selection rules of thumb may fail. Note that when there is perfect
classification, the logistic regression model is very useful, but the logistic
curve can not approximate a step function rising from 0 to 1 at ESP = 0,
arbitrarily closely.
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Fig. 10.18 EE Plot Suggests Race is an Important Predictor

Example 10.7. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also
see Hosmer and Lemeshow (2000, p. 23-25). The survival of 200 patients
following admission to an intensive care unit was studied with logistic regres-
sion. The response variable was STA (0 = Lived, 1 = Died). Predictors were
AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black, 3 =
Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN=
Is cancer part of the present problem? (0 = No, 1 = Yes), CRN= History
of chronic renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU
admission (0 = No, 1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1
= Yes), SYS= Systolic blood pressure at ICU admission (in mm Hg), HRA=
Heart rate at ICU admission (beats/min), PRE= Previous admission to an
ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 =
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Elective, 1 = Emergency), FRA= Long bone, multiple, neck, single area, or
hip fracture (0 = No, 1 = Yes), PO2= PO2 from initial blood gases (0 =
>60, 1 = 60), PH= PH from initial blood gases (0 = 7.25, 1 <7.25), PCO=
PCO2 from initial blood gases (0 = 45, 1 = >45), Bic= Bicarbonate from
initial blood gases (0 = 18, 1 = <18), CRE= Creatinine from initial blood
gases (0 = 2.0, 1 = >2.0), and LOC= Level of consciousness at admission (0
= no coma or stupor, 1= deep stupor, 2 = coma).
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Fig. 10.19 EE Plot Suggests Race is an Important Predictor

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 10.17 shows that the logistic regression
model using the 19 predictors is useful for predicting survival, although the
output has ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases. Note that the
step function of slice proportions tracks the model logistic curve fairly well.
Variable selection, using forward selection and backward elimination with
the AIC criterion, suggested the submodel using AGE, CAN, SYS, TYP and
LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 10.18.
The plotted points in the EE plot should cluster tightly about the identity
line if the full model and the submodel are good. Since this clustering did
not occur, the submodel seems to be poor. The lowest cluster of points and
the case on the right nearest to the identity line correspond to black patients.
The main cluster and upper right cluster correspond to patients who are not
black.
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Figure 10.19 shows the EE plot when RACE is added to the submodel.
Then all of the points cluster about the identity line. Although numerical
variable selection did not suggest that RACE is important, perhaps since
output had ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases, the two EE plots
suggest that RACE is important. Also the RACE variable could be replaced
by an indicator for black. This example illustrates how the plots can be
used to quickly improve and check the models obtained by following logistic
regression with variable selection even if the MLE β̂LR does not exist.

10.7 Generalized Additive Models

There are many alternatives to the binomial and Poisson regression GLMs.
Alternatives to the binomial GLM of Definition 10.3 include the discriminant
function model of Definition 10.4, the quasi-binomial model, the binomial
generalized additive model (GAM) and the beta-binomial model of Definition
10.5.

Alternatives to the Poisson GLM of Definition 10.6 include the the quasi-
Poisson model, the Poisson GAM and the negative binomial regression model
of Definition 10.7. Other alternatives include the zero truncated Poisson
model, the zero truncated negative binomial model, the hurdle or zero in-
flated Poisson model, the hurdle or zero inflated negative binomial model,
the hurdle or zero inflated additive Poisson model, and the hurdle or zero
inflated additive negative binomial model. See Zuur, Ieno, Walker, Saveliev
and Smith (2009), Simonoff (2003) and Hilbe (2011).

Many of these models can be visualized with response plots. An interesting
research project would be to make response plots for these models, adding
the conditional mean function and lowess to the plot. Also make OD plots to
check whether the model handled overdispersion. This section will examine
several of the above models, especially GAMs.

Definition 10.12. In a 1D regression, Y is independent of x given the
sufficient predictor SP = h(x) where SP = βT x for a GLM. In a generalized
additive model, Y is independent of x = (x2, ..., xp)

T given the additive pre-
dictor AP = α+

∑p
j=2 Sj(xj) for some (usually unknown) functions Sj . The

estimated sufficient predictor ESP = β̂
T
x. The estimated additive predictor

EAP = α̂ +
∑p

j=2 Ŝj(xj). An ESP–response plot is a plot of ESP versus Y
while an EAP–response plot is a plot of EAP versus Y .

Note that a GLM is a special case of the GAM using β1 = α and Sj(xj) =
βjxj for j = 2, ..., p. A GLM with SP = α+β2x2 +β3x3 +β4x2x3 is a special
case of a GAM with x4 ≡ x2x3. A GLM with SP = α+ β2x2 + β3x

2
2 + β4x3

is a special case of a GAM with S2(x2) = β2x2 + β3x
2
2 and S3(x3) = β4x3.
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A GLM with p terms may be equivalent to a GAM with k terms w1, ..., wk

where k < p.
The plotted points in the EE plot defined below should scatter tightly

about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP–response plot,
then examine the Ŝj of the GAM to see if some simple terms such as x2

i can
be added to the GLM so that the modified GLM has a good ESP–response
plot. (This technique is easiest if the GLM and GAM have the same p terms
x1 ≡ 1, x2, ..., xp. The technique is more difficult, for example, if the GLM
has terms x2, x

2
2 and x3 while the GAM has terms x2 and x3.)

Definition 10.13. An EE plot is a plot of EAP versus ESP.

Definition 10.14. Recall the binomial GLM

Yi|SPi ∼ binomial

(
mi,

exp(SPi)

1 + exp(SPi)

)
.

Let ρ(w) = exp(w)/[1 + exp(w)].

i) The binomial GAM is Yi|APi ∼ binomial

(
mi,

exp(APi)

1 + exp(APi)

)
. The

EAP–response plot adds the estimated mean function ρ(EAP ) and a step
function to the plot as done for the ESP–response plot of Section 10.3.

ii) The quasi-binomial model is a 1D regression model with E(Yi|xi) =
miρ(SPi) and V (Yi|xi) = φ mi ρ(SPi)(1 − ρ(SPi)) where the dispersion
parameter φ > 0. Note that this model and the binomial GLM have the
same conditional mean function, and the conditional variance functions are
the same if φ = 1.

Definition 10.15. Recall the Poisson GLM Y |SP ∼ Poisson(exp(SP )).
i) The Poisson GAM is Y |AP ∼ Poisson(exp(AP )). The EAP–response

plot adds the estimated mean function exp(EAP ) and lowess to the plot as
done for the ESP–response plot of Section 10.4.

ii) The quasi-Poisson model is a 1D regression model with E(Y |x) =
exp(SP ) and V (Y |x) = φ exp(SP ) where the dispersion parameter φ > 0.
Note that this model and the Poisson GLM have the same conditional mean
function, and the conditional variance functions are the same if φ = 1.

For the quasi-binomial model, the conditional mean and variance functions
are similar to those of the binomial distribution, but it is not assumed that
Y |SP has a binomial distribution. Similarly, it is not assumed that Y |SP
has a Poisson distribution for the quasi-Poisson model.

Next, some notation is needed to derive the zero truncated Poisson re-
gression model. Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),
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if the probability mass function (pmf) of Y is f(y) =
e−µ µy

(1 − eµ) y!
for

y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distri-
bution where y = 0 values are truncated, so not allowed. If W ∼ Poisson(µ)
with pmf fW (y), then P (W = 0) = e−µ, so

∑∞
y=1 fW (y) = 1 − e−µ =∑∞

y=0 fW (y) −∑∞
y=1 fW (y). So the ZTP pmf f(y) = fW (y)/(1 − eµ) for

y 6= 0.
Now E(Y ) =

∑∞
y=1 yf(y) =

∑∞
y=0 yf(y) =

∑∞
y=0 yfW (y)/(1 − e−µ) =

E(W )/(1 − e−µ) = µ/(1 − e−µ).
Similarly, E(Y 2) =

∑∞
y=1 y

2f(y) =
∑∞

y=0 y
2f(y) =

∑∞
y=0 y

2fW (y)/(1 −
e−µ) = E(W 2)/(1 − e−µ) = [µ2 + µ]/(1− e−µ). So

V (Y ) = E(Y 2) − (E(Y ))2 =
µ2 + µ

1 − e−µ
−
(

µ

1 − e−µ

)2

.

Definition 10.16. The zero truncated Poisson regression model has
Y |SP ∼ ZTP (exp(SP )). Hence the parameter µ(SP ) = exp(SP ),

E(Y |x) =
exp(SP )

1 − exp(− exp(SP ))
and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1 − exp(− exp(SP ))
−
(

exp(SP )

1 − exp(− exp(SP ))

)2

.

The quasi-binomial, quasi-Poisson and zero truncated Poisson regression
models have GAM analogs that replace SP by AP. The following examples
are important, and the GLM or 1D regression analog of the GAM can be
obtained by replacing AP by SP . Often the notation “GAM” can be replaced
by “regression model” to obtain the GLM analog of the GAM. Hence the
binary logistic regression model is the GLM analog of the binary logistic
GAM.

1) The additive model
Y |AP = AP + e (10.14)

has conditional mean function E(Y |AP ) = AP and conditional variance
function V (Y |AP ) = σ2 = V (e). Response transformations and prediction
intervals for this GAM were discussed in Section 5.6. Linear models, including
the multiple linear regression model, are the 1D regression analogs of the
additive model.

2) The response transformation model is

Z = t−1(AP + e) where Y = t(Z) = AP + e. (10.15)

Here, as is often the case when the error is additive, the conditioning Y |AP
is suppressed. See Section 5.6.
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3) The binary logistic GAM states that Y1, ..., Yn are independent with

Y |AP ∼ binomial(1, ρ(AP)) where ρ(AP) =
exp(AP)

1 + exp(AP)
, (10.16)

and ρ(AP ) = P (success|AP). This model has E(Y |AP ) = ρ(AP ) and
V (Y |AP ) = ρ(AP )(1 − ρ(AP )).

4) The binomial logistic GAM states that Y1, ..., Yn are independent with

Yi|APi ∼ binomial(mi, ρ(APi)). (10.17)

This model has E(Yi|APi) = miρ(APi) and V (Yi|APi) =
miρ(APi)(1 − ρ(APi)). The binary model is a special case with mi ≡ 1.

5) Following the notation for the beta-binomial distribution above Def-
inition 10.5, the beta-binomial GAM states that Y1, ..., Yn are independent
random variables with

Yi|APi ∼ BB(mi, ρ(APi), θ). (10.18)

This model has E(Yi|APi) = miρ(APi) and

V (Yi|APi) = miρ(APi)(1 − ρ(APi))[1 + (mi − 1)θ/(1 + θ)].

Following Agresti (2002, p. 554-555), as θ → 0, it can be shown that the
beta-binomial GAM converges to the binomial GAM.

6) The Poisson GAM states that Y1, ..., Yn are independent random vari-
ables with

Y |AP ∼ Poisson(exp(AP)). (10.19)

This model has E(Y |AP ) = V (Y |AP ) = exp(AP ).
7) Following the notation for the negative binomial distribution above Def-

inition 10.7, the negative binomial GAM states that Y1, ..., Yn are independent
random variables with

Y |AP ∼ NB(exp(AP), κ). (10.20)

This model has E(Y |AP ) = exp(AP ) and

V (Y |AP ) = exp(AP )

(
1 +

exp(AP )

κ

)
= exp(AP ) + τ exp(2 AP ).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the
negative binomial GAM converges to the Poisson GAM.

8) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and
V (Y ) = νλ2. The gamma GAM states that Y1, ..., Yn are independent random
variables with

Y |AP ∼ G(ν, λ = µ(AP )/ν). (10.21)
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Hence E(Y |AP ) = µ(AP ) and V (Y |AP ) = [µ(AP )]2/ν.The choices µ(AP ) =
AP , µ(AP ) = exp(AP ) and µ(AP ) = 1/AP are common. Since µ(AP ) > 0,
gamma GAMs that use the identity or reciprocal link run into problems if
µ(EAP ) is negative for some of the cases.

10.7.1 Response Plots

It is well known that the residual plot of ESP or EAP versus the residuals
(on the vertical axis) is useful for checking the model, but there are several
other plots using the ESP that can be generalized to a GAM by replacing
the ESP by the EAP . The response plots of Definition 10.12 are used to
visualize the 1D regression model or GAM in the background of the data.
For 1D regression, a response plot is the plot of the ESP versus the response
Y with the estimated model conditional mean function and a scatterplot
smoother often added as visual aids. Note that the response plot is used to
visualize Y |SP while for the additive model, a residual plot of the ESP versus
the residual is used to visualize e|SP . For a GAM, these two plots replace
the ESP by the EAP . Assume that the ESP or EAP takes on many values.

Suppose the zero mean constant variance errors e1, ..., en are iid from a
unimodal distribution that is not highly skewed. For models (10.14) and (5.1)
the estimated mean function is the identity line with unit slope and zero
intercept. If the sample size n is large, then the plotted points should scatter
about the identity line and the residual = 0 line in an evenly populated band
for the response and residual plots, with no other pattern. See Example 5.12
for an additive model example. To avoid overfitting, assume n > 5d where d
is the model degrees of freedom. Hence d = p for multiple linear regression.

If Zi = Yi/mi, then the conditional distribution Zi|xi of the binomial
GAM can be visualized with a response plot of the EAP versus Zi with

the estimated mean function of the Zi, Ê(Z|AP ) =
exp(EAP )

1 + exp(EAP )
, and a

scatterplot smoother added to the plot as a visual aids. Instead of adding a
lowess curve to the plot, consider the following alternative. Divide the EAP
into J slices with approximately the same number of cases in each slice. Then
compute ρ̂s =

∑
s Yi/

∑
s mi where the sum is over the cases in slice s. Then

plot the resulting step function. For binary data the step function is simply
the sample proportion in each slice. The response plot for the beta-binomial
GAM is similar.

The lowess curve and step function are simple nonparametric estimators
of the mean function ρ(AP ) or ρ(SP ). If the lowess curve or step function
tracks the logistic curve (the estimated conditional mean function) closely,
then the logistic conditional mean function is a reasonable approximation to
the data. For the GLM, this plot is a graphical approximation of the logistic



464 10 GLMs and GAMs

regression goodness of fit tests described in Hosmer and Lemeshow (2000, p.
147-151).

The Poisson GAM response plot is a plot of EAP versus Y with Ê(Y |AP )
= exp(EAP ) and lowess added as visual aids. For both the GAM and the
GLM response plots, the lowess curve should be close to the exponential
curve, except possibly for the largest values of the ESP or EAP in the upper
right corner of the plot. Here, lowess often underestimates the exponential
curve because lowess downweights the largest Y values too much. Similar
plots can be made for a negative binomial regression or GAM.

Following the discussion above Definition 10.9, the weighted forward re-
sponse plot is a plot of

√
ZiEAP versus

√
Zi log(Zi). The weighted residual

plot is a plot of
√
ZiEAP versus the “WLS” residuals rWi =

√
Zi log(Zi) −√

ZiEAP . These plots can also be used for the negative binomial GAM. If the
counts Yi are large and Ê(Y |AP ) = exp(EAP ) is a good approximation to
the conditional mean function E(Y |AP ) = exp(AP ), then the plotted points
in the weighted forward response plot and weighted residual plot should scat-
ter about the identity line and r = 0 lines in roughly evenly populated bands.
See Examples 10.4, 10.5 and 10.6.

10.7.2 The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted
without important loss of information. Olive and Hawkins (2005) make an
EE plot of ESP (I) versus ESP where ESP (I) is for a submodel I and ESP
is for the full model. This plot can also be used to complement the hypothesis
test that the reduced model I (which is selected before gathering data) can
be used instead of the full model. The obvious extension to GAMs is to make
the EE plot of EAP (I) versus EAP . If the fitted full model and submodel
I are good, then the plotted points should follow the identity line with high
correlation (use correlation ≥ 0.95 as a benchmark).

To justify this claim, assume that there exists a subset S of predictor
variables such that if xS is in the model, then none of the other predictors
is needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning x = (xT

S ,x
T
E)T . Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj)+
∑

k∈E

Sk(xk) = α+
∑

j∈S

Sj(xj). (10.22)

The extraneous terms that can be eliminated given that the subset S is in
the model have Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I.
Then
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AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj) = α+
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset
I that includes all relevant predictors, the correlation corr(AP,AP(I)) = 1.
Hence if the full model and submodel are reasonable and if EAP and EAP(I)
are good estimators of AP and AP(I), then the plotted points in the EE plot
of EAP(I) versus EAP will follow the identity line with high correlation.

10.7.3 An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding
GLM has the correct form of the predictors xj in the model. Suppose a GLM
and the corresponding GAM are both fit with the same link function where
at least one general Sj(xj) was used. Since the GLM is a special case of the
GAM, the plotted points in the EE plot of EAP versus ESP should follow
the identity line with very high correlation if the fitted GLM and GAM are
roughly equivalent. If the correlation is not very high and the GAM has some
nonlinear Ŝj(xj), update the GLM, and remake the EE plot. For example,
update the GLM by adding terms such as x2

j and possibly x3
j , or add log(xj)

if xj is highly skewed. Then remake the EAP versus ESP plot.

10.7.4 Examples

For the binary logistic GAM, the EAP will not be a consistent estimator
of the AP if the estimated probability ρ̂(AP ) = ρ(EAP ) is exactly zero or
one. The following example will show that GAM output and plots can still
be used for exploratory data analysis. The example also illustrates that EE
plots are useful for detecting cases with high leverage and clusters of cases.
Numerical diagnostics, such as analogs of Cook’s distances (Cook 1977), tend
to fail if there is a cluster of two or more influential cases.

Example 10.8. For the ICU data of Example 10.7, a binary generalized
additive model was fit with unspecified functions for AGE, SYS and HRA
and linear functions for the remaining 16 variables. Output suggested that
functions for SYS and HRA are linear but the function for AGE may be
slightly curved. Several cases had ρ̂(AP ) equal to zero or one, but the re-
sponse plot in Figure 10.20 suggests that the full model is useful for predict-
ing survival. Note that the ten slice step function closely tracks the logistic
curve. To visualize the model with the response plot, use Y |x ≈ binomial[1,
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ρ(EAP ) = eEAP /(1+eEAP )]. When x is such that EAP < −5, ρ(EAP ) ≈ 0.
If EAP > 5, ρ(EAP ) ≈ 1, and if EAP = 0, then ρ(EAP ) = 0.5. The logistic
curve gives ρ(EAP ) ≈ P (Y = 1|x) = ρ(AP ). The different estimated bi-
nomial distributions have ρ̂(AP ) = ρ(EAP ) that increases according to the
logistic curve as EAP increases. If the step function tracks the logistic curve
closely, the binary GAM gives useful smoothed estimates of ρ(AP ) provided
that the number of 0’s and 1’s are both much larger than the model degrees
of freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 10.21 shows the plot of
EAP versus ESP. The plot shows that the near zero and near one probabilities
are handled differently by the GAM and GLM, but the estimated success
probabilities for the two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ). Hence we
used the GLM and perform variable selection as in Example 10.7.

Example 10.9. For binary data, Kay and Little (1987) suggest examining
the two distributions x|Y = 0 and x|Y = 1. Use predictor x if the two
distributions are roughly symmetric with similar spread. Use x and x2 if the
distributions are roughly symmetric with different spread. Use x and log(x)
if one or both of the distributions are skewed. The log rule says add log(x)
to the model if min(x) > 0 and max(x)/min(x) > 10. The Gladstone (1905)
data is useful for illustrating these suggestions. The response was gender with
Y = 1 for male and Y = 0 for female. The predictors were age, height and
the head measurements circumference, length and size. When the GAM was
fit without log(age) or log(size), the Ŝj for age, height and circumference
were nonlinear. The log rule suggested adding log(age), and log(size) was
added because size is skewed. The GAM for this model had plots of Ŝj(xj)
that were fairly linear. The response plot is not shown but was similar to
Figure 10.6, and the step function tracked the logistic curve closely. When
EAP = 0, the estimated probability of Y = 1 (male) is 0.5. When EAP > 5
the estimated probability is near 1, but near 0 for EAP < −5. The response
plot for the binomial GLM, not shown, is similar. See Problem 10.14 for
another analysis of this data set.

Example 10.10. Wood (2006, p. 82-86) describes heart attack data where
the response Y is the number of heart attacks for mi patients suspected of
suffering a heart attack. The enzyme ck (creatine kinase) was measured for
the patients and it was determined whether the patient had a heart attack
or not. A binomial GLM with predictors x2 = ck, x3 = [ck]2 and x4 = [ck]3

was fit and had AIC = 33.66. The binomial GAM with predictor x2 was fit
in R, and Figure 10.22 shows that the EE plot for the GLM was not too
good. The log rule suggests using ck and log(ck), but ck was not significant.
Hence a GLM with the single predictor log(ck) was fit. Figure 10.23 shows
the EE plot, and Figure 10.24 shows the response plot where the Zi = Yi/mi

track the logistic curve closely. There was no evidence of overdispersion and
the model had AIC = 33.45. The GAM using log(ck) had a linear Ŝ, and



468 10 GLMs and GAMs

−2 0 2 4

−
4

−
2

0
2

4
6

8

EAP

E
S

P
p

Fig. 10.22 EE plot for cubic GLM for Heart Attack Data

−2 0 2 4

−
2

0
2

4

EAP

E
S

P
l

Fig. 10.23 EE plot with log(ck) in the GLM



10.8 Overdispersion 469

−2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ESPl

Z

Fig. 10.24 Response Plot for Heart Attack Data

the correlation of the plotted points in the EE plot, not shown, was one. See
Problem 10.22.

10.8 Overdispersion

Definition 10.17. Overdispersion occurs when the actual conditional vari-
ance function V (Y |x) is larger than the model conditional variance function
VM (Y |x).

Overdispersion can occur if the model is missing factors, if the response
variables are correlated, if the population follows a mixture distribution, or
if outliers are present. Typically it is assumed that the model is correct so
V (Y |x) = VM (Y |x). Hence the subscript M is usually suppressed. A GAM
has conditional mean and variance functions EM(Y |AP ) and VM (Y |AP )
where the subscript M indicates that the function depends on the model.
Then overdispersion occurs if V (Y |x) > VM (Y |AP ) where E(Y |x) and
V (Y |x) denote the actual conditional mean and variance functions. Then
the assumptions that E(Y |x) = EM(Y |x) ≡ m(AP ) and V (Y |x) =
VM (Y |AP ) ≡ v(AP ) need to be checked.

First check that the assumption E(Y |x) = m(SP ) is a reasonable approx-
imation to the data using the response plot with lowess and the estimated



470 10 GLMs and GAMs

conditional mean function ÊM(Y |x) = m̂(SP ) added as visual aids. Overdis-
persion can occur even if the model conditional mean function E(Y |SP )
is a good approximation to the data. For example, for many data sets
where E(Yi|xi) = miρ(SPi), the binomial regression model is inappropriate
since V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)). Similarly, for many data sets where
E(Y |x) = µ(x) = exp(SP ), the Poisson regression model is inappropriate
since V (Y |x) > exp(SP ). If the conditional mean function is adequate, then
we suggest checking for overdispersion using the OD plot.

Definition 10.18. For 1D regression, the OD plot is a plot of the estimated
model variance V̂M (Y |SP ) versus the squared residuals
V̂ = [Y − ÊM(Y |SP )]2. Replace SP by AP for a GAM.

The OD plot has been used by Winkelmann (2000, p. 110) for the Poisson
regression model where V̂M (Y |SP ) = ÊM(Y |SP ) = exp(ESP ). For binomial
and Poisson regression, the OD plot can be used to complement tests and
diagnostics for overdispersion such as those given in Cameron and Trivedi
(2013), Collett (1999, ch. 6), and Winkelmann (2000).

For Poisson regression, Winkelmann (2000, p. 110) suggested that the
plotted points in the OD plot should scatter about the identity line and
that the OLS line should be approximately equal to the identity line if the
Poisson regression model is appropriate. But in simulations, it was found that
the following two observations make the OD plot much easier to use.

First, recall that a normal approximation is good for the Poisson dis-
tribution if the count Y is not too small. Notice that if Y = E(Y |SP ) +
2
√
V (Y |SP ), then [Y − E(Y |SP )]2 = 4V (Y |SP ). Hence if the estimated

conditional mean and variance functions are both good approximations, the
plotted points in the OD plot for Poisson regression will scatter about a
wedge formed by the V̂ = 0 line and the line through the origin with slope 4:
V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should be above this
line. Similar remarks apply to negative binomial regression, and to binomial
regression if the counts are neither too big nor too small. OD plots can also
be made for quasi-binomial and quasi-Poisson regression models. Replace SP
by AP for the corresponding GAMs.

Second, the evidence of overdispersion increases from slight to high as the
scale of the vertical axis increases from 5 to 10 times that of the horizontal
axis. (The scale of the vertical axis tends to depend on the few cases with
the largest V̂ (Y |SP ), and P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be ap-
proximated with a normal approximation or Chebyshev’s inequality.) There
is considerable evidence of overdispersion if the scale of the vertical axis is
more than 10 times that of the horizontal, or if the percentage of points above
the slope 4 line through the origin is much larger than 5%.

Hence the identity line and slope 4 line are added to the OD plot as visual
aids, and one should check whether the scale of the vertical axis is more than
10 times that of the horizontal. It is easier to use the OD plot to check the
variance function than the response plot since judging the variance function
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with the straight lines of the OD plot is simpler than judging two curves.
Also outliers are often easier to spot with the OD plot.

Section 10.7 gives EM (Y |AP ) = m(AP ) and VM (Y |AP ) = v(AP ) for sev-
eral models. Often m̂(AP ) = m(EAP ) and v̂(AP ) = v(EAP ), but additional
parameters sometimes need to be estimated. Hence v̂(AP ) = miρ(EAPi)(1−
ρ(EAPi))[1 + (mi − 1)θ̂/(1 + θ̂)], v̂(AP ) = exp(EAP ) + τ̂ exp(2 EAP ), and
v̂(AP ) = [m(EAP )]2/ν̂ for the beta-binomial, negative binomial and gamma
GAMs, respectively. The beta-binomial regression model is often used if the
binomial regression is inadequate because of overdispersion, and the negative
binomial GAM is often used if the Poisson GAM is inadequate.

For generalized linear models, numerical summaries are also available. The
deviance G2 and Pearson goodness of fit statistic X2 are used to assess the
goodness of fit of the Poisson regression model much as R2 is used for multiple
linear regression. For Poisson regression (and binomial regression if the counts
are neither too small nor too large), both G2 and X2 are approximately chi-
square with n − p − 1 degrees of freedom. Since a χ2

d random variable has

mean d and standard deviation
√

2d, the 98th percentile of the χ2
d distribution

is approximately d + 3
√
d ≈ d + 2.121

√
2d. If G2 or X2 > (n − p − 1) +

3
√
n− p− 1, then overdispersion may be present.
Since the Poisson regression (PR) model is simpler than the negative bi-

nomial regression (NBR) model, and the binomial logistic regression (LR)
model is simpler beta-binomial regression (BBR) model, the graphical di-
agnostics for the goodness of fit of the PR and LR models are very useful.
Combining the response plot with the OD plot is a powerful method for as-
sessing the adequacy of the Poisson and logistic regression models. NBR and
BBR models should also be checked with response and OD plots. OD plots
are also discussed in Sections 10.3 and 10.4. See Examples 10.2–10.6.

Example 10.11. The species data is from Cook and Weisberg (1999a,
p. 285-286) and Johnson and Raven (1973). The response variable is the
total number of species recorded on each of 29 islands in the Galápagos
Archipelago. Predictors include area of island, areanear = the area of the
closest island, the distance to the closest island, the elevation, and endem =
the number of endemic species (those that were not introduced from else-
where). A scatterplot matrix of the predictors suggested that log transfor-
mations should be taken. Poisson regression suggested that log(endem) and
log(areanear) were the important predictors, but the deviance and Pear-
son X2 statistics suggested overdispersion was present since both statistics
were near 71.4 with 26 degrees of freedom. The residual plot also suggested
increasing variance with increasing fitted value. A negative binomial regres-
sion suggested that only log(endem) was needed in the model, and had a
deviance of 26.12 on 27 degrees of freedom. The residual plot for this model
was roughly ellipsoidal. The negative binomial GAM with log(endem) had
an Ŝ that was linear and the plotted points in the EE plot had correlation
near 1.



472 10 GLMs and GAMs

0 1 2 3 4 5 6

0
1

0
0

2
0

0
3

0
0

4
0

0

EAP

Y

Fig. 10.25 Response Plot for Negative Binomial GAM

0 1000 2000 3000 4000

0
1

0
0

0
3

0
0

0
5

0
0

0

ModVar

V
h

a
t

Fig. 10.26 OD Plot for Negative Binomial GAM
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The response plot with the exponential and lowess curves added as visual
aids is shown in Figure 10.25. The interpretation is that Y |x ≈ negative
binomial with E(Y |x) ≈ exp(EAP ). Hence if EAP = 0, E(Y |x) ≈ 1. The
negative binomial and Poisson GAM have the same conditional mean func-
tion. If the plot was for a Poisson GAM, the interpretation would be that
Y |x ≈ Poisson(exp(EAP )). Hence if EAP = 0, Y |x ≈ Poisson(1).

Figure 10.26 shows the OD plot for the negative binomial GAM with the
identity line and slope 4 line through the origin added as visual aids. The
plotted points fall within the “slope 4 wedge,” suggesting that the negative
binomial regression model has successfully dealt with overdispersion. Here
Ê(Y |AP ) = exp(EAP ) and V̂ (Y |AP ) = exp(EAP ) + τ̂ exp(2EAP ) where
τ̂ = 1/37.

10.9 Complements

GLMs were introduced by Nelder and Wedderburn (1972). Also see McCul-
lagh and Nelder (1989), Myers, Montgomery and Vining (2002), Olive (2010),
Andersen and Skovgaard (2010), Agresti (2012), and Cook and Weisberg
(1999a, ch. 21-23). Collett (1999) and Hosmer and Lemeshow (2000) are ex-
cellent texts on logistic regression while Cameron and Trivedi (2013) and
Winkelmann (2008) cover Poisson regression. Alternatives to Poisson regres-
sion mentioned in Section 10.7 are covered by Zuur, Ieno, Walker, Saveliev
and Smith (2009), Simonoff (2003) and Hilbe (2007).

Following Cook and Weisberg (1999a, p. 396), a residual plot is a plot of
a function of the predictors versus the residuals, while a model checking plot
is a plot of a function of the predictors versus the response. Hence response
plots are a special case of model checking plots. See Cook and Weisberg
(1997, 1999a, p. 397, 514, and 541). Cook and Weisberg (1999a, p. 515) add
a lowess curve to the response plot. The scatterplot smoother lowess is due
to Cleveland (1979).

In a 1D regression model, Y x|h(x) where the real valued function

h : Rp → R. Then a plot of ĥ(x) versus Y is a response plot. For this
model, Y |x can be replace by Y |h(x), and the response plot is also called
an estimated sufficient summary plot. Note that h(x) = SP or AP and

ĥ(x) = ESP or EAP for the GLM and the generalized additive model,
respectively. The response plot is essential for understanding the model and
for checking goodness and lack of fit if the estimated sufficient predictor

α̂+ β̂
T
x takes on many values. See Olive (2013b).

For Binomial regression and BBR, and for Poisson regression and NBR, the
OD plot can be used to complement tests and diagnostics for overdispersion
such as those given in Cameron and Trivedi (2013), Collett (1999, ch. 6),
Hilbe (2011), Winkelmann (2000) and Zuur, Ieno, Walker, Saveliev and Smith
(2009).
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Olive and Hawkins (2005) give a simple all subsets variable selection pro-
cedure that can be applied to logistic regression and Poisson regression using
readily available OLS software.

Variable selection using the AIC criterion is discussed in Burnham and
Anderson (2004) and Cook and Weisberg (1999a). Agresti (2012) incorporates
some of the ideas from Section 10.6.

The existence of the logistic regression MLE is discussed in Albert and
Andersen (1984) and Santer and Duffy (1986).

Results from Cameron and Trivedi (1998, p. 89) suggest that if a Poisson
regression model is fit using OLS software for MLR, then a rough approxi-
mation is β̂PR ≈ β̂OLS/Y . So a rough approximation is PR ESP ≈ (OLS
ESP)/Y . Results from Haggstrom (1983) suggest that if a binary regression
model is fit using OLS software for MLR, then a rough approximation is
β̂LR ≈ β̂OLS/MSE.

A possible method for resistant binary regression is to use trimmed views
but make the response plot for binary regression. This method would work
best if x came from an elliptically contoured distribution. Another possi-
bility is to substitute robust estimators for the classical estimators in the
discrimination estimator.

Useful references for generalized additive models include Hastie and Tib-
shirani (1990) and Zuur, Ieno, Walker, Saveliev and Smith (2009). Large sam-
ple theory for the GAM is given by Wang, Liu, Liang and Carroll (2011). Olive
(2013b) suggests plots for GAMS given in Sections 10.7 and 10.8. Section 5.2
of this book suggested a graphical method for response transformations.

Plots were made in R and Splus, see R Development Core Team (2011).
The Wood (2006) library mgcv was used for fitting a GAM, and the Venables
and Ripley (2010) library MASS was used for the negative binomial family.
The Lesnoff and Lancelot (2010) R package aod has function betabin for
beta binomial regression and is also useful for fitting negative binomial regres-
sion. SAS has proc genmod, proc gam and proc countreg which are
useful for fitting GLMs such as Poisson regression, GAMs such as the Pois-
son GAM, and overdispersed count regression models. The rpack R/Splus
functions include lrplot which makes response and OD plots for binomial
regression; lrplot2 which makes the response plot for binary regression;
prplot which makes the response, weighted forward response, weighted
residual and OD plots for Poisson regression; and prsim which makes the
last 4 plots for simulated Poisson or negative binomial regression models.

10.10 Problems

PROBLEMS WITH AN ASTERISK * ARE USEFUL.

Output for problem 10.1: Response = sex
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Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -18.3500 3.42582 -5.356 0.0000

circum 0.0345827 0.00633521 5.459 0.0000

10.1. Consider trying to estimate the proportion of males from a popula-
tion of males and females by measuring the circumference of the head. Use
the above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if x = 550.0.

b) Find a 95% CI for β.

c) Perform the 4 step Wald test for Ho : β = 0.

Output for Problem 10.2

Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -19.7762 3.73243 -5.298 0.0000

circum 0.0244688 0.0111243 2.200 0.0278

length 0.0371472 0.0340610 1.091 0.2754

10.2∗. Now the data is as in Problem 10.1, but try to estimate the pro-
portion of males by measuring the circumference and the length of the head.
Use the above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if circumference = x2 = 550.0 and length = x3 = 200.0.

b) Perform the 4 step Wald test for Ho : β2 = 0.

c) Perform the 4 step Wald test for Ho : β3 = 0.

Output for problem 10.3

Response = ape

Terms = (lower jaw, upper jaw, face length)

Trials = Ones

Sequential Analysis of Deviance

All fits include an intercept.

Total Change

Predictor df Deviance | df Deviance

Ones 59 62.7188 |

lower jaw 58 51.9017 | 1 10.8171

upper jaw 57 17.1855 | 1 34.7163

face length 56 13.5325 | 1 3.65299

10.3∗. A museum has 60 skulls of apes and humans. Lengths of the lower
jaw, upper jaw and face are the explanatory variables. The response variable
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is ape (= 1 if ape, 0 if human). Using the output above, perform the four step
deviance test for whether there is a LR relationship between the response
variable and the predictors.

Output for Problem 10.4.

Full Model

Response = ape

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 11.5092 5.46270 2.107 0.0351

lower jaw -0.360127 0.132925 -2.709 0.0067

upper jaw 0.779162 0.382219 2.039 0.0415

face length -0.374648 0.238406 -1.571 0.1161

Number of cases: 60

Degrees of freedom: 56

Pearson X2: 16.782

Deviance: 13.532

Reduced Model

Response = ape

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 8.71977 4.09466 2.130 0.0332

lower jaw -0.376256 0.115757 -3.250 0.0012

upper jaw 0.295507 0.0950855 3.108 0.0019

Number of cases: 60

Degrees of freedom: 57

Pearson X2: 28.049

Deviance: 17.185

10.4∗. Suppose the full model is as in Problem 10.3, but the reduced model
omits the predictor face length. Perform the 4 step change in deviance test
to examine whether the reduced model can be used.

The following three problems use the possums data from Cook and Weis-
berg (1999a).

Output for Problem 10.5

Data set = Possums, Response = possums

Terms = (Habitat Stags)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -0.652653 0.195148 -3.344 0.0008

Habitat 0.114756 0.0303273 3.784 0.0002

Stags 0.0327213 0.00935883 3.496 0.0005
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Number of cases: 151 Degrees of freedom: 148

Pearson X2: 110.187

Deviance: 138.685

10.5∗. Use the above output to perform inference on the number of pos-
sums in a given tract of land. The output is from a Poisson regression.

a) Predict µ̂(x) if habitat = x2 = 5.8 and stags = x3 = 8.2.

b) Perform the 4 step Wald test for Ho : β2 = 0.

c) Find a 95% confidence interval for β3.

Output for Problem 10.6

Response = possums Terms = (Habitat Stags)

Total Change

Predictor df Deviance | df Deviance

Ones 150 187.490 |

Habitat 149 149.861 | 1 37.6289

Stags 148 138.685 | 1 11.1759

10.6∗. Perform the 4 step deviance test for the same model as in Problem
10.5 using the output above.
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Output for Problem 10.7

Terms = (Acacia Bark Habitat Shrubs Stags Stumps)

Label Estimate Std. Error Est/SE p-value

Constant -1.04276 0.247944 -4.206 0.0000

Acacia 0.0165563 0.0102718 1.612 0.1070

Bark 0.0361153 0.0140043 2.579 0.0099

Habitat 0.0761735 0.0374931 2.032 0.0422

Shrubs 0.0145090 0.0205302 0.707 0.4797

Stags 0.0325441 0.0102957 3.161 0.0016

Stumps -0.390753 0.286565 -1.364 0.1727

Number of cases: 151

Degrees of freedom: 144

Deviance: 127.506

10.7∗. Let the reduced model be as in Problem 10.5 and use the output
for the full model be shown above. Perform a 4 step change in deviance test.

B1 B2 B3 B4

df 945 956 968 974
# of predictors 54 43 31 25

# with 0.01 ≤ Wald p-value ≤ 0.05 5 3 2 1
# with Wald p-value > 0.05 8 4 1 0

G2 892.96 902.14 929.81 956.92
AIC 1002.96 990.14 993.81 1008.912

corr(B1:ETA’U,Bi:ETA’U) 1.0 0.99 0.95 0.90
p-value for change in deviance test 1.0 0.605 0.034 0.0002

10.8∗. The above table gives summary statistics for 4 models considered as
final submodels after performing variable selection. (Several of the predictors
were factors, and a factor was considered to have a bad Wald p-value > 0.05
if all of the dummy variables corresponding to the factor had p-values > 0.05.
Similarly the factor was considered to have a borderline p-value with 0.01 ≤
p-value ≤ 0.05 if none of the dummy variables corresponding to the factor
had a p-value < 0.01 but at least one dummy variable had a p-value between
0.01 and 0.05.) The response was binary and logistic regression was used. The
response plot for the full model B1 was good. Model B2 was the minimum
AIC model found. There were 1000 cases: for the response, 300 were 0’s and
700 were 1’s.

a) For the change in deviance test, if the p-value ≥ 0.07, there is little
evidence that Ho should be rejected. If 0.01 ≤ p-value < 0.07 then there is
moderate evidence that Ho should be rejected. If p-value < 0.01 then there
is strong evidence that Ho should be rejected. For which models, if any, is
there strong evidence that “Ho: reduced model is good” should be rejected.

b) For which plot is “corr(B1:ETA’U,Bi:ETA’U)” (using notation from
Arc) relevant?
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c) Which model should be used as the final submodel? Explain briefly why
each of the other 3 submodels should not be used.

R Problems Some R code for homework problems is at
(http://parker.ad.siu.edu/Olive/robRhw.txt).

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. regbootsim3, will display the code for the function. Use
the args command, e.g. args(regbootsim3), to display the needed arguments
for the function.

10.9. Obtain the function lrdata from rpack.txt. Enter the com-
mands

out <- lrdata()

x <- out$x

y <- out$y

Obtain the function lressp from rpack.txt. Enter the commands
lressp(x,y) and include the resulting plot in Word.

10.10. Obtain the function prdata from rpack.txt. Enter the com-
mands

out <- prdata()

x <- out$x

y <- out$y

a) Obtain the function pressp from rpack.txt. Enter the commands
pressp(x,y) and include the resulting plot in Word.

b) Obtain the function prplot from rpack.txt. Enter the commands
prplot(x,y) and include the resulting plot in Word.

10.11. In a generalized additive model (GAM), Y x|AP where AP =
α+
∑p

i=2 Si(xi). In a generalized linear model (GLM), Y x|SP where SP =

α+ βT x. Note that a GLM is a special case of a GAM where Si(xi) = βixi.
A GAM is useful for showing that the predictors x1, ..., xk in a GLM have
the correct form, or if predictor transformations or additional terms such as
x2

i are needed. If the plot of Ŝi(xi) is linear, do not change xi in the GLM,

but if the plot is nonlinear, use the shape of Ŝi to suggest functions of xi

to add to the GLM, such as log(xi), x
2
i and x3

i . Refit the GAM to check the
linearity of the terms in the updated GLM. Wood (2006, p. 82-86) describes
heart attack data where the response Y is the number of heart attacks for
mi patients suspected of suffering a heart attack. The enzyme ck (creatine
kinase) was measured for the patients. A binomial logistic regression (GLM)
was fit with predictors x2 = ck, x3 = [ck]2 and x4 = [ck]3. Call this the Wood
model I2. The predictor ck is skewed suggesting log(ck) should be added to
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the model. Then output suggested that ck is not needed in the model. Let the
binomial logistic regression model that uses x = log(ck) as the only predictor
be model I1. a) The R code for this problem from the URL above Problem
10.19 makes 4 plots. Plot a) shows Ŝ for the binomial GAM using ck as a
predictor is nonlinear. Plot b) shows that Ŝ for the binomial GAM using
log(ck) as a predictor is linear. Plot c) shows the EE plot for the binomial
GAM using ck as the predictor and model I1. Plot d) shows the response
plot of ESP versus Zi = Yi/mi, the proportion of patients suffering a heart
attack for each value of xi = ck. The logistic curve = Ê(Zi|xi) is added as a
visual aid. Include these plots in Word.

Do the plotted proportions fall about the logistic curve closely?
b) The command for b) give AIC(outw) for model I2 and AIC(out) for

model I1. Include the two AIC values below the plots in a).
A model I1 with j fewer predictors than model I2 is “better” than model

I2 if AIC(I1) ≤ AIC(I2) + 2j. Is model I1 “better” than model I2?
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Appendix

11.1 Tips for Doing Research

As a student or new researcher, you will probably encounter researchers who
think that their method of doing research is the only correct way of doing
research, but there are dozens of methods that have proven effective.

Familiarity with the literature is important since your research should
be original. This text and Olive (2017ab,2020) present much of the author’s
applied research in the fields of regression and high breakdown robust statis-
tics from 1990–2020. Several other important contributions follow. Gnanade-
sikan and Kettenring (1972) suggested an algorithm similar to concentration.
Hampel (1975) introduced the least median of squares estimator. The LTA es-
timator was an interesting extension. Devlin, Gnanadesikan, and Kettenring
(1975, 1981) introduced the concentration technique. Siegel (1982) suggested
using elemental sets to find robust regression estimators. Rousseeuw (1984)
popularized LMS and extended the LTS/MCD location estimator to the LTS
regression estimator and the MCD estimator of multivariate location and dis-
persion. Ruppert (1992) used concentration for resistant regression. Cook and
Nachtsheim (1994) showed that robust Mahalanobis distances could be used
to reduce the bias of 1D regression estimators. Rousseeuw and Van Driessen
(1999) introduced the DD plot.

Beginners can have a hard time determining whether a robust algorithm
estimator is consistent or not. As a rule of thumb, assume that the approxima-
tions (including those for depth, LTA, LMS, LTS, MCD, MVE, S, projection
estimators and two stage estimators) are inconsistent unless the authors show
that they understand this text, Hawkins and Olive (2002), and Olive (2008,
2017b). In particular, the elemental or basic resampling algorithms, concen-
tration algorithms, and algorithms based on random projections should be
considered inconsistent until you can prove otherwise.

After finding a research topic, paper trailing is an important technique
for finding related literature. To use this technique, find a paper on the topic,

481
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go to the bibliography of the paper, find one or more related papers and
repeat. Often your university’s library will have useful internet resources for
finding literature. Often a research university will subscribe to either The
Web of Knowledge with a link to ISI Web of Science or to the Current Index
to Statistics. Both of these resources allow you to search for literature by
author, e.g. Olive, or by topic, e.g. robust statistics. Both of these methods
search for recent papers. With Web of Knowledge, find an article with Search,
click on the article and then click on the view related reference icon to get a
list of related articles. The Google search engine and “Google Scholar” are
also useful. When searching, enter a topic and the word robust or outliers.
For example, enter the keywords robust factor analysis or factor analysis
and outliers. Statistical journals often have websites that make abstracts and
preprints available.

Finally, a Ph.D. student needs an advisor or mentor and most researchers
will find collaboration valuable. Attending conferences and making your re-
search available over the internet can lead to contacts.

Some references on research, including technical writing and presenta-
tions, include American Society of Civil Engineers (1950), Becker and Keller-
McNulty (1996), Ehrenberg (1982), Freeman, Gonzalez, Hoaglin and Kilss
(1983), Hamada and Sitter (2004), Rubin (2004), and Smith (1997).

11.2 R

R is available from the CRAN website (https://cran.r-project.org/). As of
August 2020, the author’s personal computer has Version 3.3.1 (June 21,
2016) of R. The R software is similar to Splus, but is free. R is very versatile
since many people have contributed useful code, often as packages. A useful
R link is (www.r-project.org/#doc).

Many of the homework problems use R functions contained in the book’s
website (http://parker.ad.siu.edu/Olive/robbook.htm) under the file name
rpack.txt. The following two R commands can be copied and pasted into R
from near the top of the file (http://parker.ad.siu.edu/Olive/robRhw.txt).

Downloading the book’s R functions rpack.txt and R data sets rob-
data.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/rpack.txt")

source("http://parker.ad.siu.edu/Olive/robdata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 110 R functions from rpack should appear. In R, enter the command
q(). A window asking “Save workspace image?” will appear. Click on No
to remove the functions from the computer (clicking on Yes saves the func-
tions on R, but the functions and data are easily obtained with the source
commands).



11.2 R 483

For Windows, the functions can be saved on a flash drive G, say. Then use
the following command.

source("G:/rpack.txt")

This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2011), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression is done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simultane-
ously. Then select “paste” from the Word Edit menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

A data frame is a two-dimensional array in which the values of different
variables are stored in different named columns.
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Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.

Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Store a function as text file, modify the function in Notepad, and copy and
paste the function into R.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x), pairs(x) makes a scatterplot matrix of the columns of x, hist(y) makes
a histogram of y, boxplot(y) makes a boxplot of y, stem(y) makes a stem and
leaf plot of y, scan(), source(), and sink() can be useful. To type a simple
list, use y <− c(1,2,3.5). The commands mean(y), median(y), var(y) are self
explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2)),
identify(x,y),
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2ˆ10, 2ˆ(10) or 2ˆ{10}.



11.2 R 485

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Citing packages
We will use R packages often in this book. The following R command is

useful for citing the Venables and Ripley (2010) MASS package.

citation("MASS")

Other packages cited in this book include glmnet: Friedman et al. (2015),
leaps: Lumley (2009), and robustbase: Rousseeuw et al. (2016).

Getting information about a library in R
In R, a library is a built in package or add–on package of R code. The

command library() shows the available packages and libraries, and in-
formation about a specific library, such as MASS for robust estimators like
cov.mcd or ts for time series estimation, can be found, e.g., with the com-
mand library(help=MASS).

Downloading a library into R
Many researchers have contributed a library or package of R code that can

be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in rpack may no longer work
in new versions of R.
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11.3 Projects

Straightforward Projects
1) Run a rpack simulation function for a range of values of n, p, error distri-

butions, estimators, et cetera. Functions problem pairs include (rcisim, 2.37),
(cisim, 2.38), (pisim, 5.21), (rcovsim, 10.14), (ddsim, 11.2) and (corrsim,
11.3). Also see the rpack functions concsim, corrsim2, covesim,covsim2,
ddsim, ddsim3, drsim5, drsim6, drsim7, fysim, hbregsim, locsim, lpisim, mb-
sim, mldsim, mldsim6, pisim3, pisim4, pisim5, predsim and prsim. For exam-
ple, lpisim can be used to simulate the asymptotically optimal PI for the
location model, while Remark 3.3 estimates the percentage of outliers that
the FMCD algorithm can tolerate. Near the beginning of Section 3.8, data
is generated such that the FMCD estimator works well for p = 4 but fails
for p = 8. Generate similar data sets for p = 8, 9, 10, 12, 15, 20, 25, 30, 35, 40,
45, and 50. For each value of p find the smallest integer valued percentage
of outliers needed to cause the FMCD and FCH estimators to fail. Use the
rpack function concsim. If concsim is too slow for large p, use covsim2
which will only give counts for the fast FCH estimator. As a criterion, a count
≥ 16 is good. Compare these observed FMCD percentages with Remark 3.3
(use the gamper2 function). Do not forget the library(MASS) command if
you use R.

2) Run a mpack simulation function described in Olive (2017b).
3) Are robust estimators needed for multiple linear regression? Examine

whether using the OLS response plot is as effective as robust methods for
detecting outliers. See Park, Kim, and Kim (2012).

4) Find some benchmark multiple linear regression outlier data sets such
as those used by Park, Kim, and Kim (2012). Fit OLS, L1 and M-estimators
from R. Are any of the M-estimators as good as L1?

5) Find some large data sets or data sets with p > n and try to detect
outliers using Di(MED(W ), Ip) = ‖xi −MED(W )‖, the Euclidean distance
of xi from the coordinatewise median MED(W ).

6) DD plots: compare, for example, classical–RFCH vs classical–cov.mcd
DD plots on real and simulated data. Do problems 10.15, 11.2 and 11.3 but
with a wider variety of data sets, n, p and gamma.

7) Resistant regression: use tvreg to compare the OLS–covfch combi-
nation with the OLS–cov.mcd combination. (L1–cov.mcd and L1–covfch are
also interesting.) The tvreg and covfch functions are in rpack.txt.

8) Using ESP to Search for the Missing Link: Compare trimmed views

which uses OLS and FCH with another regression–MLD combo. There are
several possible projects: i) OLS–RFCH, ii) OLS-RMVN, iii) OLS-cov.mcd,
iv) OLS–Classical (use ctrviews), v) SIR–cov.mcd (sirviews), vi) SIR–
FCH, vii) SIR–classical, viii) lmsreg–cov.mcd (lmsviews), ix) lmsreg–FCH,
x) lmsreg–RFCH, xi) lmsreg–RMVN ,and xii) lmsreg–classical. Do Prob-
lem 12.7ac (but just copy and paste the best view instead of using the
essp(nx,ncuby,M=40) command) with both your estimator and the OLS-
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FCH trimmed views. Try to see what types of functions work for both
estimators, when OLS-FCH trimmed views is better and when the proce-
dure i)–xii) is better. If you can invent interesting 1D functions, do so. See
Problem 12.8.

9) Many 1D regression models where Yi is independent of xi given the suf-
ficient predictor xT

i β can be made resistant by making response plots of the

estimated sufficient predictor xT
i β̂ versus Yi for the 10 trimming proportions.

Since 1D regression is the study of the conditional distribution of Yi given
xT

i β, the response plot is used to visualize this distribution and needs to be
made anyway. See how well trimmed views work when outliers are present.

11.4 Some Useful Distributions

The distributions in this section are discussed in much greater detail in Olive
(2014, ch. 10). Also see Olive (1998). The two stage trimmed means of Chap-
ter 2 are asymptotically equivalent to a classical trimmed mean provided

that An = MED(n) − k1MAD(n)
D→ a, Bn = MED(n) + k2MAD(n)

D→ b
and if 100F (a−) and 100F (b) are not integers. This result will also hold
if k1 and k2 depend on n. For example take k1 = k2 = c1 + c2/n. Then

MED(n) ± k1MAD(n)
D→ MED(Y ) ± c1MAD(Y ). A trimming rule suggests

values for c1 and c2 and depends on the distribution of Y. Sometimes the
rule is obtained by transforming the random variable Y into another random
variable W (e.g. transform a lognormal into a normal) and then using the
rule for W . These rules may not be as resistant to outliers as rules that do
not use a transformation. For example, an observation which does not seem
to be an outlier on the log scale may appear as an outlier on the original
scale.

Several of the trimming rules in this section have been tailored so that
the probability is high that none of the observations are trimmed when the
sample size is moderate. Robust (but perhaps ad hoc) analogs of classical
procedures can be obtained by applying the classical procedure to the data
that remains after trimming.

Relationships between the distribution’s parameters and MED(Y ) and
MAD(Y ) are emphasized. Note that for location–scale families, highly out-
lier resistant estimates for the two parameters can be obtained by replacing
MED(Y ) by MED(n) and MAD(Y ) by MAD(n).

Definition 11.1. The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A
and 0, otherwise. Sometimes an indicator function such as I(0,∞)(y) will be
denoted by I(y > 0).
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11.4.1 The Binomial Distribution

If Y has a binomial distribution, Y ∼ BIN(k, ρ), then the probability mass
function (pmf) of Y is

P (Y = y) =

(
k

y

)
ρy(1 − ρ)k−y

for 0 < ρ < 1 and y = 0, 1, . . . , k.
The following normal approximation is often used.

Y ≈ N(kρ, kρ(1 − ρ))

when kρ(1 − ρ) > 9. Hence

P (Y ≤ y) ≈ Φ

(
y + 0.5− kρ√
kρ(1 − ρ)

)
.

This normal approximation suggests that MED(Y ) ≈ kρ, and MAD(Y ) ≈
0.6745

√
kρ(1 − ρ). Hamza (1995) states that |E(Y )−MED(Y )| ≤ max(ρ, 1−

ρ) and shows that
|E(Y ) − MED(Y )| ≤ log(2).

11.4.2 The Burr Type XII Distribution

If Y has a Burr Type XII distribution, Y ∼ BTXII(φ, λ), then the probability
density function (pdf) of Y is

f(y) =
1

λ

φyφ−1

(1 + yφ)
1
λ +1

where y, φ, and λ are all positive. The cumulative distribution function (cdf)
of Y is

F (y) = 1 − exp

[− log(1 + yφ)

λ

]
= 1 − (1 + yφ)−1/λ for y > 0.

MED(Y ) = [eλ log(2) − 1]1/φ. See Patel, Kapadia, and Owen (1976, p. 195).
Assume that φ is known. Since W = log(1 + Y φ) is EXP (λ),

λ̂ =
MED(W1, ...,Wn)

log(2)

is a robust estimator. If all the yi ≥ 0 then a trimming rule is keep yi if
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0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = log(1 + yφ
i ).

11.4.3 The Cauchy Distribution

If Y has a Cauchy distribution, Y ∼ C(µ, σ), then the pdf of Y is

f(y) =
σ

π

1

σ2 + (y − µ)2
=

1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0.
The cdf of Y is F (y) = 1

π [arctan(y−µ
σ ) + π/2]. See Ferguson (1967, p. 102).

This family is a location–scale family that is symmetric about µ. MED(Y ) =
µ, the upper quartile = µ+ σ, and the lower quartile = µ− σ.
MAD(Y ) = F−1(3/4) − MED(Y ) = σ. For a standard normal random vari-
able, 99% of the mass is between −2.58 and 2.58 while for a standard Cauchy
C(0, 1) random variable 99% of the mass is between −63.66 and 63.66. Hence
a rule which gives weight one to almost all of the observations of a Cauchy
sample will be more susceptible to outliers than rules which do a large amount
of trimming.

11.4.4 The Chi Distribution

If Y has a chi distribution, Y ∼ χp, then the pdf of Y is

f(y) =
yp−1e−y2/2

2
p
2−1Γ (p/2)

where y ≥ 0 and p is a positive integer.
MED(Y ) ≈

√
p− 2/3.

See Patel, Kapadia, and Owen (1976, p. 38). Since W = Y 2 is χ2
p, a trimming

rule is keep yi if wi = y2
i would be kept by the trimming rule for χ2

p.

11.4.5 The Chi–square Distribution

If Y has a chi–square distribution, Y ∼ χ2
p, then the pdf of Y is
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f(y) =
y

p
2−1e−

y
2

2
p
2Γ (p

2 )

where y ≥ 0 and p is a positive integer.
E(Y ) = p.
VAR(Y ) = 2p.

MED(Y ) ≈ p − 2/3. See Pratt (1968, p. 1470) for more terms in the
expansion of MED(Y ). Empirically,

MAD(Y ) ≈
√

2p

1.483
(1 − 2

9p
)2 ≈ 0.9536

√
p.

Note that p ≈ MED(Y ) + 2/3, and VAR(Y ) ≈ 2MED(Y ) + 4/3. Let i be an
integer such that i ≤ w < i+ 1. Then define rnd(w) = i if i ≤ w ≤ i + 0.5
and rnd(w) = i+ 1 if i+ 0.5 < w < i + 1. Then p ≈ rnd(MED(Y ) + 2/3),
and the approximation can be replaced by equality for p = 1, . . . , 100.

Assume all yi > 0. Let p̂ = rnd(med(n) + 2/3). Then a trimming rule is
keep yi if

1

2
(−3.5 +

√
2p̂)2I(p̂ ≥ 15) ≤ yi ≤ p̂[(3.5 + 2.0/n)

√
2

9p̂
+ 1 − 2

9p̂
]3.

Another trimming rule would be to let

wi =

(
yi

p̂

)1/3

.

Then keep yi if the trimming rule for the normal distribution keeps the wi.

11.4.6 The Double Exponential Distribution

If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1

2λ
exp

(−|y − θ|
λ

)

where y is real and λ > 0. The cdf of Y is

F (y) = 0.5 exp

(
y − θ

λ

)
if y ≤ θ,

and

F (y) = 1 − 0.5 exp

(−(y − θ)

λ

)
if y ≥ θ.
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This family is a location–scale family which is symmetric about θ.
MAD(Y ) = log(2)λ ≈ 0.693λ.
Hence λ = MAD(Y )/ log(2) ≈ 1.443MAD(Y ).
To see that MAD(Y ) = λ log(2), note that F (θ+λ log(2)) = 1− 0.25 = 0.75.

A trimming rule is keep yi if

yi ∈ [med(n) ± 10.0(1 +
2.0

n
)mad(n)].

Note that F (θ+ λ log(1000)) = 0.9995 ≈ F (MED(Y ) + 10.0MAD(Y )).

11.4.7 The Exponential Distribution

If Y has an exponential distribution, Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1

λ
exp (

−y
λ

) I(y ≥ 0)

where λ > 0 and the indicator I(y ≥ 0) is one if y ≥ 0 and zero otherwise.
The cdf of Y is

F (y) = 1 − exp(−y/λ), y ≥ 0.

E(Y ) = λ,
and VAR(Y ) = λ2.

MED(Y ) = log(2)λ and
MAD(Y ) ≈ λ/2.0781 since it can be shown that

exp(MAD(Y )/λ) = 1 + exp(−MAD(Y )/λ).

Hence 2.0781 MAD(Y ) ≈ λ.

A robust estimator is λ̂ = MED(n)/ log(2).
If all the yi ≥ 0, then the trimming rule is keep yi if

0.0 ≤ yi ≤ 9.0(1 +
c2
n

)med(n)

where c2 = 2.0 seems to work well. Note that P (Y ≤ 9.0MED(Y )) ≈ 0.998.

11.4.8 The Two Parameter Exponential Distribution

If Y has a two parameter exponential distribution, Y ∼ EXP(θ, λ), then the
pdf of Y is
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f(y) =
1

λ
exp

(−(y − θ)

λ

)
I(y ≥ θ)

where λ > 0 and θ is real. The cdf of Y is

F (y) = 1 − exp[−(y − θ)/λ)], y ≥ θ.

This family is an asymmetric location-scale family.

MED(Y ) = θ + λ log(2)

and
MAD(Y ) ≈ λ/2.0781.

Hence θ ≈ MED(Y ) − 2.0781 log(2)MAD(Y ). See Rousseeuw and Croux
(1993) for similar results. Note that 2.0781 log(2) ≈ 1.44.

A trimming rule is keep yi if

med(n) − 1.44(1.0 +
c4
n

)mad(n) ≤ yi ≤

med(n) − 1.44mad(n) + 9.0(1 +
c2
n

)med(n)

where c2 = 2.0 and c4 = 2.0 may be good choices.
To see that 2.0781 MAD(Y ) ≈ λ, note that

0.5 =

∫ θ+λ log(2)+MAD

θ+λ log(2)−MAD

1

λ
exp(−(y − θ)/λ)dy

= 0.5[−e−MAD/λ + eMAD/λ]

assuming λ log(2) > MAD. Plug in MAD = λ/2.0781 to get the result.

11.4.9 The Gamma Distribution

If Y has a gamma distribution, Y ∼ G(ν, λ), then the pdf of Y is

f(y) =
yν−1e−y/λ

λνΓ (ν)

where ν, λ, and y are positive. E(Y ) = νλ.
VAR(Y ) = νλ2.
Chen and Rubin (1986) show that λ(ν − 1/3) < MED(Y ) < λν = E(Y ).
Empirically, for ν > 3/2,
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MED(Y ) ≈ λ(ν − 1/3),

and

MAD(Y ) ≈ λ
√
ν

1.483
.

This family is a scale family for fixed ν , so if Y is G(ν, λ) then cY is G(ν, cλ)
for c > 0. If W is EXP(λ) then W is G(1, λ). If W is χ2

p, then W is G(p/2, 2).
For some M–estimators, see Marazzi and Ruffieux (1996).

Next we give some trimming rules. Assume each yi > 0. Assume ν ≥ 0.5.
Rule 1. Assume λ is known. Let ν̂ = (med(n)/λ)+(1/3). Keep yi if yi ∈ [lo, hi]
where

lo = max(0, ν̂λ [−(3.5 + 2/n)

√
1

9ν̂
+ 1 − 1

9ν̂
]3),

and

hi = ν̂λ [(3.5 + 2/n)

√
1

9ν̂
+ 1 − 1

9ν̂
]3.

Rule 2. Assume ν is known. Let λ̂ = med(n)/(ν−(1/3)). Keep yi if yi ∈ [lo, hi]
where

lo = max(0, νλ̂ [−(3.5 + 2/n)

√
1

9ν
+ 1 − 1

9ν
]3),

and

hi = νλ̂

[
(3.5 + 2/n)

√
1

9ν
+ 1 − 1

9ν

]3

.

Rule 3. Let d = med(n) − c mad(n). Keep yi if

dI[d ≥ 0] ≤ yi ≤ med(n) + c mad(n)

where
c ∈ [9, 15].

11.4.10 The Half Cauchy Distribution

If Y has a half Cauchy distribution, Y ∼ HC(µ, σ), then the pdf of Y is

f(y) =
2

πσ[1 + (y−µ
σ )2]

where y ≥ µ, µ is a real number and σ > 0. The cdf of Y is

F (y) =
2

π
arctan(

y − µ

σ
)
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for y ≥ µ and is 0, otherwise. This distribution is a right skewed location-scale
family.

MED(Y ) = µ + σ.
MAD(Y ) = 0.73205σ.

11.4.11 The Half Logistic Distribution

If Y has a half logistic distribution, Y ∼ HL(µ, σ), then the pdf of Y is

f(y) =
2 exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0, y ≥ µ and µ are real. The cdf of Y is

F (y) =
exp[(y − µ)/σ] − 1

1 + exp[(y − µ)/σ)]

for y ≥ µ and 0 otherwise. This family is a right skewed location–scale family.
MED(Y ) = µ + log(3)σ.
MAD(Y ) = 0.67346σ.

11.4.12 The Half Normal Distribution

If Y has a half normal distribution, Y ∼ HN(µ, σ), then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y ≥ µ and µ is real. Let Φ(y) denote the standard normal
cdf. Then the cdf of Y is

F (y) = 2Φ(
y− µ

σ
) − 1

for y > µ and F (y) = 0, otherwise. This is an asymmetric location–scale
family that has the same distribution as µ + σ|Z| where Z ∼ N(0, 1). Note
that Z2 ∼ χ2

1. MED(Y ) = µ+ 0.6745σ.
MAD(Y ) = 0.3990916σ.
Thus µ̂ ≈ MED(n) − 1.6901MAD(n) and σ̂ ≈ 2.5057MAD(n).
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11.4.13 The Inverse Exponential Distribution

If Y has an inverse exponential distribution, Y ∼ IEXP(θ), then the pdf of
Y is

f(y) =
θ

y2
exp

(−θ
y

)

where y > 0 and θ > 0. The cdf F (y) = exp(−θ/y) for y > 0. E(Y ) and
V (Y ) do not exist. MED(Y ) = θ/ log(2). This distribution is a scale family
with scale parameter θ. W = 1/Y ∼ EXP (1/θ).

11.4.14 The Largest Extreme Value Distribution

If Y has a largest extreme value distribution (or extreme value distribution
for the max, or Gumbel distribution), Y ∼ LEV(θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(−(

y − θ

σ
)) exp[− exp(−(

y − θ

σ
))]

where y and θ are real and σ > 0. (Then −Y has the smallest extreme value
distribution or the log–Weibull distribution, see Section 11.4.26.) The cdf of
Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location–scale family with a mode at θ.

MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ

and
MAD(Y ) ≈ 0.767049σ.

W = exp(−(Y − θ)/σ) ∼ EXP(1).
A trimming rule is keep yi if

med(n) − 2.5mad(n) ≤ yi ≤ med(n) + 7mad(n).

11.4.15 The Logistic Distribution

If Y has a logistic distribution, Y ∼ L(µ, σ), then the pdf of Y is

f(y) =
exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0 and y and µ are real. The cdf of Y is
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F (y) =
1

1 + exp (−(y − µ)/σ)
=

exp ((y − µ)/σ)

1 + exp ((y − µ)/σ)
.

MED(Y ) = µ.
MAD(Y ) = log(3)σ ≈ 1.0986 σ.
Hence σ = MAD(Y )/ log(3).

A trimming rule is keep yi if

med(n) − 7.6(1 +
c2
n

)mad(n) ≤ yi ≤ med(n) + 7.6(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Note that if

q = FL(0,1)(c) =
ec

1 + ec
then c = log(

q

1 − q
).

Taking q = .9995 gives c = log(1999) ≈ 7.6. To see that MAD(Y ) = log(3)σ,
note that F (µ + log(3)σ) = 0.75, while F (µ − log(3)σ) = 0.25 and 0.75 =
exp (log(3))/(1 + exp(log(3))).

11.4.16 The Log-Cauchy Distribution

If Y has a log–Cauchy distribution, Y ∼ LC(µ, σ), then the pdf of Y is

f(y) =
1

πσy[1 + ( log(y)−µ
σ

)2]

where y > 0, σ > 0 and µ is a real number. This family is a scale family with
scale parameter τ = eµ if σ is known.
W = log(Y ) has a Cauchy(µ, σ) distribution.
Robust estimators are µ̂ = MED(W1, ...,Wn) and σ̂ = MAD(W1, ...,Wn).

11.4.17 The Log-Logistic Distribution

If Y has a log–logistic distribution, Y ∼ LL(φ, τ), then the pdf of Y is

f(y) =
φτ (φy)τ−1

[1 + (φy)τ ]2

where y > 0, φ > 0 and τ > 0. The cdf of Y is

F (y) = 1 − 1

1 + (φy)τ
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for y > 0. This family is a scale family with scale parameter φ−1 if τ is known.
MED(Y ) = 1/φ.
W = log(Y ) has a logistic(µ = − log(φ), σ = 1/τ ) distribution. Hence

φ = e−µ and τ = 1/σ.
Robust estimators are τ̂ = log(3)/MAD(W1, ...,Wn) and

φ̂ = 1/MED(Y1, ..., Yn) since MED(Y ) = 1/φ.

11.4.18 The Lognormal Distribution

If Y has a lognormal distribution, Y ∼ LN(µ, σ2), then the pdf of Y is

f(y) =
1

y
√

2πσ2
exp

(−(log(y) − µ)2

2σ2

)

where y > 0 and σ > 0 and µ is real. The cdf of Y is

F (y) = Φ

(
log(y) − µ

σ

)
for y > 0

where Φ(y) is the standard normal N(0,1) cdf. This family is a scale family
with scale parameter τ = eµ if σ2 is known.
MED(Y ) = exp(µ) and
exp(µ)[1 − exp(−0.6744σ)] ≤ MAD(Y ) ≤ exp(µ)[1 + exp(0.6744σ)].

Since W = log(Y ) ∼ N(µ, σ2), robust estimators are

µ̂ = MED(W1, ...,Wn) and σ̂ = 1.483MAD(W1, ...,Wn).

Assume all yi ≥ 0. Then a trimming rule is keep yi if

med(n) − 5.2(1 +
c2
n

)mad(n) ≤ wi ≤ med(n) + 5.2(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Here med(n) and mad(n) are applied to
w1, . . . , wn where wi = log(yi).

11.4.19 The Maxwell-Boltzmann Distribution

If Y has a Maxwell–Boltzmann distribution, Y ∼MB(µ, σ), then the pdf of
Y is

f(y) =

√
2(y − µ)2e

−1

2σ2 (y−µ)2

σ3
√
π

where µ is real, y ≥ µ and σ > 0. This is a location–scale family.
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MED(Y ) = µ + 1.5381722σ and MAD(Y ) = 0.460244σ.
Note that W = (Y − µ)2 ∼ G(3/2, 2σ2).

11.4.20 The Normal Distribution

If Y has a normal distribution (or Gaussian distribution), Y ∼ N(µ, σ2),
then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real. Let Φ(y) denote the standard normal cdf.
Then Φ(y) = 1 − Φ(−y). MED(Y ) = µ and

MAD(Y ) = Φ−1(0.75)σ ≈ 0.6745σ.

Hence σ = [Φ−1(0.75)]−1MAD(Y ) ≈ 1.483MAD(Y ).
This family is a location–scale family which is symmetric about µ.

A trimming rule is keep yi if

med(n) − 5.2(1 +
c2
n

)mad(n) ≤ yi ≤ med(n) + 5.2(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Using c2 = 4.0 seems to be a good choice.
Note that

P (µ− 3.5σ ≤ Y ≤ µ+ 3.5σ) = 0.9996.

To see that MAD(Y ) = Φ−1(0.75)σ, note that 3/4 = F (µ + MAD) since Y
is symmetric about µ. However,

F (y) = Φ

(
y − µ

σ

)

and
3

4
= Φ

(
µ+ Φ−1(3/4)σ − µ

σ

)
.

So µ+ MAD = µ+ Φ−1(3/4)σ. Cancel µ from both sides to get the result.

11.4.21 The One Sided Stable Distribution

If Y has a one sided stable distribution (with index 1/2, also called a Lévy
distribution), Y ∼ OSS(σ), then the pdf of Y is
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f(y) =
1√
2πy3

√
σ exp

(−σ
2

1

y

)

for y > 0 and σ > 0. The cdf

F (y) = 2

[
1 − Φ

(√
σ

y

)]

for y > 0 where Φ(x) is the cdf of a N(0, 1) random variable.

MED(Y ) =
σ

[Φ−1(3/4)]2
.

This distribution is a scale family with scale parameter σ. It can be shown
that W = 1/Y ∼ G(1/2, 2/σ). This distribution is even more outlier prone
than the Cauchy distribution. See Feller (1971, p. 52) and Lehmann (1999,
p. 76). For applications see Besbeas and Morgan (2004).

11.4.22 The Pareto Distribution

If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then the pdf of Y is

f(y) =
1
λσ

1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. The cdf of Y is F (y) = 1 − (σ/y)1/λ for
y > σ. This family is a scale family when λ is fixed. MED(Y ) = σ2λ.
X = log(Y/σ) is EXP(λ) and W = log(Y ) is EXP(θ = log(σ), λ). Let

θ̂ = MED(W1, ...,Wn)− 1.440MAD(W1, ...,Wn). Then robust estimators are

σ̂ = eθ̂ and λ̂ = 2.0781MAD(W1, ...,Wn).

A trimming rule is keep yi if

med(n) − 1.44mad(n) ≤ wi ≤ 10med(n) − 1.44mad(n)

where med(n) and mad(n) are applied to w1, . . . , wn with wi = log(yi).

11.4.23 The Poisson Distribution

If Y has a Poisson distribution, Y ∼ POIS(θ), then the pmf of Y is
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P (Y = y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0.
E(Y ) = θ, and Chen and Rubin (1986) and Adell and Jodrá (2005) show
that −1 < MED(Y ) −E(Y ) < 1/3.
VAR(Y ) = θ.

11.4.24 The Power Distribution

If Y has a power distribution, Y ∼ POW(λ), then the pdf of Y is

f(y) =
1

λ
y

1
λ−1,

where λ > 0 and 0 < y ≤ 1. The cdf of Y is F (y) = y1/λ for 0 < y ≤ 1.
MED(Y ) = (1/2)λ. W = − log(Y ) is EXP(λ).

If all the yi ∈ [0, 1], then a cleaning rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = − log(yi). See Problem 11.5
for robust estimators.

11.4.25 The Rayleigh Distribution

If Y has a Rayleigh distribution, Y ∼ R(µ, σ), then the pdf of Y is

f(y) =
y − µ

σ2
exp

[
−1

2

(
y − µ

σ

)2
]

where σ > 0, µ is real, and y ≥ µ. See Cohen and Whitten (1988, Ch. 10).
This is an asymmetric location–scale family. The cdf of Y is

F (y) = 1 − exp

[
−1

2

(
y − µ

σ

)2
]

for y ≥ µ, and F (y) = 0, otherwise. MED(Y ) = µ+σ
√

log(4) ≈ µ+1.17741σ.
Hence µ ≈ MED(Y ) − 2.6255MAD(Y ) and σ ≈ 2.230MAD(Y ).
Let σD = MAD(Y ). If µ = 0, and σ = 1, then
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0.5 = exp[−0.5(
√

log(4) −D)2] − exp[−0.5(
√

log(4) +D)2].

Hence D ≈ 0.448453 and MAD(Y ) ≈ 0.448453σ.
It can be shown that W = (Y − µ)2 ∼ EXP(2σ2).

Other parameterizations for the Rayleigh distribution are possible. See
Problem 11.7.

11.4.26 The Smallest Extreme Value Distribution

If Y has a smallest extreme value distribution (or log-Weibull distribution),
Y ∼ SEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(

y − θ

σ
) exp[− exp(

y − θ

σ
)]

where y and θ are real and σ > 0. The cdf of Y is

F (y) = 1 − exp[− exp(
y − θ

σ
)].

This family is an asymmetric location-scale family with a longer left tail than
right.

MED(Y ) = θ − σ log(log(2)).
MAD(Y ) ≈ 0.767049σ.
If Y has a SEV(θ, σ) distribution, then W = −Y has an LEV(−θ, σ)

distribution.

11.4.27 The Student’s t Distribution

If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f(y) =
Γ (p+1

2 )

(pπ)1/2Γ (p/2)
(1 +

y2

p
)−( p+1

2 )

where p is a positive integer and y is real. This family is symmetric about
0. The t1 distribution is the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(W
p

)1/2

is tp.
E(Y ) = 0 for p ≥ 2.
MED(Y ) = 0.
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VAR(Y ) = p/(p− 2) for p ≥ 3, and
MAD(Y ) = tp,0.75 where P (tp ≤ tp,0.75) = 0.75.

A trimming rule for p ≥ 3 is keep yi if yi ∈ [±5.2(1 + 10/n)mad(n)].

11.4.28 The Topp-Leone Distribution

If Y has a Topp–Leone distribution, Y ∼ TL(ν), then pdf of Y is

f(y) = ν(2− 2y)(2y − y2)ν−1

for ν > 0 and 0 < y < 1. The cdf of Y is F (y) = (2y − y2)ν for 0 < y < 1.

MED(Y ) = 1 −
√

1 − (1/2)1/ν, and W = − log(2Y − Y 2) ∼ EXP (1/ν).

11.4.29 The Truncated Extreme Value Distribution

If Y has a truncated extreme value distribution, Y ∼ TEV(λ), then the pdf
of Y is

f(y) =
1

λ
exp

(
y − ey − 1

λ

)

where y > 0 and λ > 0. The cdf of Y is

F (y) = 1 − exp

[−(ey − 1)

λ

]

for y > 0.
MED(Y ) = log(1 + λ log(2)).
W = eY − 1 is EXP(λ).
If all the yi > 0, then a trimming rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = eyi − 1. See Problem 11.6
for robust estimators.

11.4.30 The Uniform Distribution

If Y has a uniform distribution, Y ∼ U(θ1, θ2), then the pdf of Y is

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).



11.5 Truncated Distributions 503

The cdf of Y is F (y) = (y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2.
This family is a location-scale family which is symmetric about (θ1 + θ2)/2.
MED(Y ) = (θ1 + θ2)/2.
MAD(Y ) = (θ2 − θ1)/4.
Note that θ1 = MED(Y ) − 2MAD(Y ) and θ2 = MED(Y ) + 2MAD(Y ).

A trimming rule is keep yi if

med(n) − 2.0(1 +
c2
n

)mad(n) ≤ yi ≤ med(n) + 2.0(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 5.0. Replacing 2.0 by 2.00001 yields a rule for
which the cleaned data will equal the actual data for large enough n (with
probability increasing to one).

11.4.31 The Weibull Distribution

If Y has a Weibull distribution, Y ∼W (φ, λ), then the pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. For fixed φ, this is a scale family in σ = λ1/φ.
The cdf of Y is F (y) = 1 − exp(−yφ/λ) for y > 0. MED(Y ) = (λ log(2))1/φ.
Note that

λ =
(MED(Y ))φ

log(2)
.

Since W = Y φ is EXP(λ), if all the yi > 0 and if φ is known, then a
cleaning rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = yφ
i .

W = log(Y ) has a smallest extreme value SEV(θ = log(λ1/φ), σ = 1/φ)
distribution.

See Olive (2006) and Problem 11.8c for robust estimators of φ and λ.

11.5 Truncated Distributions

Truncated distributions are useful for the location model and for comparing
multiple linear regression estimators. This section follow Olive (1998, 2017b:∮

1.7) closely. Theorem 2.2 shows that the (α, β) trimmed mean Tn is esti-
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mating a parameter µT with an asymptotic variance equal to σ2
W/(β − α)2.

Mixture distributions are often used as outlier models. The following two
definitions and proposition are useful for finding the mean and variance of
a mixture distribution. Parts a) and b) of Theorem 11.1 below show that
the definition of expectation given in Definition 11.3 is the same as the usual
definition for expectation if Y is a discrete or continuous random variable.
Section 11.7 has more on mixture distributions.

Definition 11.2. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =

k∑

i=1

αiFWi(y) (11.1)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi (y) is the cdf of a continuous
or discrete random variable Wi, i = 1, ..., k.

Definition 11.3. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y). (11.2)

Theorem 11.1. a) If Y is a discrete random variable that has a pmf f(y)
with support Y, then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∑

y∈Y
h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =∑k
i=1 αiFWi (y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

k∑

i=1

αiEWi [h(Wi)]

where EWi [h(Wi)] =
∫∞
−∞ h(y)dFWi (y).

Example 11.1. Theorem 11.1c implies that the pmf or pdf of Wi is used
to compute EWi [h(Wi)]. As an example, suppose the cdf of Y is F (y) =
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(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY, use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2 . Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε+ εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε+ εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

To generate a random variable Y with the above mixture distribution,
generate a uniform (0,1) random variableU which is independent of the Wi. If
U ≤ 1−ε, then generate W1 and take Y = W1. If U > 1−ε, then generate W2

and take Y = W2. Note that the cdf of Y is FY (y) = (1−ε)FW1 (y)+εFW2 (y).

Remark 11.1. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where W1 and W2 are independent random variables and 0 < ε < 1. Then
the random variable W is a linear combination of W1 and W2, and W can
be generated by generating two independent random variables W1 and W2.
Then take W = (1 − ε)W1 + εW2.

If W1 and W2 are as in the previous example then the random variable
W is a linear combination that has a normal distribution with mean EW =
(1 − ε)EW1 + εEW2 = 0 and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1),X2 ∼ N(10, 1), andX1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1(y) + 0.5FX2(y) = 0.5Φ(y) + 0.5Φ(y− 10),

then the pdf of Y is bimodal.

Truncated distributions can be used to simplify the asymptotic theory of
robust estimators of location and regression. Sections 11.5.1, 11.5.2, 11.5.3,
and 11.5.4 will be useful when the underlying distribution is exponential,
double exponential, normal, or Cauchy (see Section 11.4). Sections 2.13 and
2.14 examine how the sample median, trimmed means and two stage trimmed
means behave at these distributions.



506 11 Appendix

Definitions 2.27 and 2.28 defined the truncated random variable YT (a, b)
and the Winsorized random variable YW (a, b). Let Y have cdf F and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following theo-
rem illustrates the relationship between the means and variances of YT (a, b)
and YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point
masses at a and b. Let c = µT (a, b)− a and d = b− µT (a, b).

Theorem 11.2. Let a = µT (a, b) − c and b = µT (a, b) + d. Then
a) µW (a, b) = µT (a, b) − αc+ (1 − β)d, and
b) σ2

W (a, b) = (β−α)σ2
T (a, b)+(α−α2)c2+[(1−β)−(1−β)2]d2+2α(1−β)cd.

c) If α = 1− β then

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α− α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α− α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1− β and c = d, then µW (a, b) = µT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(µT − c)2 + (β − α)(σ2

T + µ2
T ) + (1 − β)(µT + d)2 − µ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α+ α+ 1 − β)µ2
T + 2[(1 − β)d − αc]µT

+αc2 + (1 − β)d2 − µ2
W .

From a),

µ2
W = µ2

T + 2[(1− β)d − αc]µT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,

and we find that

σ2
W = (β − α)σ2

T + (α− α2)c2 + [(1 − β) − (1 − β)2 ]d2 + 2α(1 − β)cd. �

11.5.1 The Truncated Exponential Distribution

Let Y be a (one sided) truncated exponential TEXP (λ, b) random variable.
Then the pdf of Y is
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fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ )

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =

∫ kλ

0

1

λ
e−y/λdy = 1 − e−k.

Next we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Theorem 11.3. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,

and

b) E(Y 2) = 2λ2

[
1 − 1

2 (k2 + 2k + 2)e−k

1 − e−k

]
.

See Problem 11.32 for a related result.

Proof. a) Note that

ckE(Y ) =

∫ kλ

0

y

λ
e−y/λdy = −ye−y/λ|kλ

0 +

∫ kλ

0

e−y/λdy

(use integration by parts). So

ckE(Y ) = −kλe−k + (−λe−y/λ)|kλ
0 = −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.

b) Note that

ckE(Y 2) =

∫ kλ

0

y2

λ
e−y/λdy.

Since

d

dy
[−(y2 + 2λy + 2λ2)e−y/λ] =

1

λ
e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1

λ
e−y/λ,

we have ckE(Y 2) = [−(y2 + 2λy + 2λ2)e−y/λ]kλ
0 =

− (k2λ2 + 2λ2k + 2λ2)e−k + 2λ2. So the result follows. �
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Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.
If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).

11.5.2 The Truncated Double Exponential Distribution

Suppose that X is a double exponential DE(µ, λ) random variable. Chapter
3 states that MED(X) = µ and MAD(X) = log(2)λ. Let c = k log(2), and let
the truncation points a = µ−kMAD(X) = µ− cλ and b = µ+kMAD(X) =
µ+cλ. Let XT (a, b) ≡ Y be the truncated double exponential TDE(µ, λ, a, b)
random variable. Then for a ≤ y ≤ b, the pdf of Y is

fY (y|µ, λ, a, b) =
1

2λ(1 − exp(−c)) exp(−|y − µ|/λ).

Theorem 11.4. a) E(Y ) = µ.

b) VAR(Y ) = 2λ2

[
1 − 1

2
(c2 + 2c+ 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Lemma 4.3 b) since
VAR(Y ) = E[(Y − µ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). �

As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and
VAR(Y ) ≈ 0.95(2λ2).

11.5.3 The Truncated Normal Distribution

Now ifX isN(µ, σ2) then let Y be a truncated normal TN(µ, σ2, a, b) random

variable. Then fY (y) =

1√
2πσ2

exp (−(y−µ)2

2σ2 )

Φ( b−µ
σ

) − Φ(a−µ
σ

)
I[a,b](y) where Φ is the standard

normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.

Theorem 11.5. E(Y ) = µ+

[
φ(a−µ

σ ) − φ( b−µ
σ )

Φ( b−µ
σ ) − Φ(a−µ

σ )

]
σ, and
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V (Y ) = σ2

[
1 +

(a−µ
σ

)φ(a−µ
σ

) − ( b−µ
σ

)φ( b−µ
σ

)

Φ( b−µ
σ ) − Φ(a−µ

σ )

]
− σ2

[
φ(a−µ

σ
) − φ( b−µ

σ
)

Φ( b−µ
σ ) − Φ(a−µ

σ )

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−µ
σ ) − Φ(a−µ

σ )
.

Then E(Y ) =
∫ b

a
yfY (y)dy. Hence

1

c
E(Y ) =

∫ b

a

y√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy +

µ

σ

1√
2π

∫ b

a

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy + µ

∫ b

a

1√
2πσ2

exp (
−(y − µ)2

2σ2
)dy.

Note that the integrand of the last integral is the pdf of a N(µ, σ2) distribu-
tion. Let z = (y − µ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−µ
σ

a−µ
σ

σ
z√
2π
e−z2/2dz +

µ

c
=

σ√
2π

(−e−z2/2)|
b−µ

σ
a−µ

σ

+
µ

c
.

Multiplying both sides by c gives the expectation result.

E(Y 2) =

∫ b

a

y2fY (y)dy.

Hence
1

c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y2

σ2
− 2µy

σ2
+
µ2

σ2
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy

+σ

∫ b

a

2yµ − µ2

σ2

1√
2π

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y − µ

σ
)2

1√
2π

exp (
−(y − µ)2

2σ2
)dy + 2

µ

c
E(Y ) − µ2

c
.

Let z = (y − µ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + µ. Hence

E(Y 2)

c
= 2

µ

c
E(Y ) − µ2

c
+ σ

∫ b−µ
σ

a−µ
σ

σ
z2

√
2π
e−z2/2dz.
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Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
µ

c
E(Y ) − µ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−µ

σ
a−µ

σ

+

∫ b−µ
σ

a−µ
σ

e−z2/2dz]

= 2
µ

c
E(Y ) − µ2

c
+ σ2

[
(
a− µ

σ
)φ(

a − µ

σ
) − (

b− µ

σ
)φ(

b− µ

σ
) +

1

c

]
.

Using

VAR(Y ) = c
1

c
E(Y 2) − (E(Y ))2

gives the result. �

Theorem 11.6. Let Y be TN(µ, σ2, a = µ − kσ, b = µ + kσ). Then

E(Y ) = µ and V (Y ) = σ2

[
1 − 2kφ(k)

2Φ(k)− 1

]
.

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and
Theorem 11.5 to get the result. �

Examining V (Y ) for several values of k shows that the TN(µ, σ2, a =
µ− kσ, b = µ+ kσ) distribution does not change much for k > 3.0. See Table
11.1.

Table 11.1 Variances for Several Truncated Normal Distributions

k V (Y )
2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

11.5.4 The Truncated Cauchy Distribution

IfX is a Cauchy C(µ, σ) random variable, then MED(X) = µ and MAD(X) =
σ. If Y is a truncated Cauchy TC(µ, σ, µ− aσ, µ+ bσ) random variable, then

fY (y) =
1

tan−1(b) + tan−1(a)

1

σ[1 + (y−µ
σ )2]

for µ− aσ < y < µ + bσ. Moreover,
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E(Y ) = µ+ σ

(
log(1 + b2) − log(1 + a2)

2[tan−1(b) + tan−1(a)]

)
, and

V (Y ) = σ2

[
b+ a − tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
−
(

log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]
.

Theorem 11.7. If a = b, then E(Y ) = µ, and V (Y ) = σ2

[
b− tan−1(b)

tan−1(b)

]
.

See Johnson and Kotz (1970a, p. 162) and Dahiya, Staneski, and Chaganty
(2001).

11.6 Large Sample Theory

This section follows Olive (2014: ch. 8, 2017b:
∮

3.4) closely. The first three
subsections will review large sample theory for the univariate case, then mul-
tivariate theory will be given.

11.6.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 11.8: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For distributions “close” to the



512 11 Appendix

normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000
is needed for moderately skewed distributions. A special case of the CLT is
proven after Theorem 11.21.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 11.4. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 11.2. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ)

D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since
√
n

(
Yn

n
− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
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c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 11.9: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ)
D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 11.3. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 11.4. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 11.2b gives the limiting distribution of
√
n(X

n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 11.5. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.
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Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 11.6. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

11.6.2 Modes of Convergence and Consistency

Definition 11.4. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.
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An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: Convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 11.7. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2 + 1

2 ,
−1
n ≤ x ≤ 1

n
1, x ≥ 1

n .

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →





0, x < 0
1
2
x = 0

1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 11.8. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.
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Definition 11.5. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 11.6. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 11.7. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 11.8. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0
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as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Theorem 11.10: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 11.11. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0
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for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 11.10 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 11.12. a) Let Xθ be a random variable with distribution de-
pending on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 11.9. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.
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Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 11.13. Let Yn be a sequence of iid random variables with
E(Yi) = µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. �

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 11.10. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 11.12. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that
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nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 11.14. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 11.15. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence
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P (A) ≡ P

(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 11.17 which
says that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −
β‖ = OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 11.16: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (11.3)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 11.17. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then
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‖T ∗
n − β‖ = OP (n−δ). (11.4)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 11.16,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

11.6.3 Slutsky’s Theorem and Related Results

Theorem 11.18: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 11.19. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 11.19. We are assuming that
the function τ does not depend on n.

Example 11.9. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorems 11.13 and 11.19), ii) the WLLN holds, and
iii) the CLT holds (use Theorem 11.12). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 11.11b. By the delta
method and Theorem 11.12b, Tn = g(Y n) is a consistent estimator of g(µ) if
g′(µ) 6= 0 for all µ ∈ Θ. By Theorem 1.19e, g(Y n) is a consistent estimator
of g(µ) if g is continuous at µ for all µ ∈ Θ.

Theorem 1.20. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the

function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).
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b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 11.2. For Theorem 11.19, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 11.20 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.

Example 11.10. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 11.11. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
11.19e.

Theorem 1.21: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that



524 11 Appendix

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(

n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)
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which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

11.6.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.

Definition 11.13. Let Xn be a sequence of random vectors with joint
cdfs Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 11.22 and 11.23 below are the multivariate extensions of the
limit theorems in subsection 11.6.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 11.22: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ) = g′(θ).
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Theorem 11.23: the Multivariate Delta Method. If g does not de-
pend on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

where the d× k Jacobian matrix of partial derivatives

Dg(θ) =




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)


 .

Here the mapping g : Rk → Rd needs to be differentiable in a neighborhood
of θ ∈ Rk.

Definition 11.14. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then

g(T n) is a consistent estimator of g(θ).

Theorem 11.24. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,

then g(T n)
P→ g(θ).

Theorem 11.25. If X1, ...,Xn are iid, E(‖X‖) < ∞, and E(X) = µ,
then

a) WLLN: Xn
P→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 11.26: Continuity Theorem. Let Xn be a sequence of k× 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ Rk.

Theorem 11.27: Cramér Wold Device. Let Xn be a sequence of k×1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ Rk.

Application: Proof of the MCLT Theorem 11.22. Note that for
fixed t, the tT X i are iid random variables with mean tT µ and variance
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tT Σt. Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand

side has distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold

Device,
√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 11.28. a) If Xn
P→ X, then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 11.15. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 11.29: Continuous Mapping Theorem. Let Xn ∈ Rk. If

Xn
D→ X and if the function g : Rk → Rj is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 11.30. Let Xn = (X1n, ..., Xkn)
T be a sequence of k × 1

random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→ XT C−1.

Theorem 11.31. Let Wn, Xn, Yn, and Zn be sequences of random vari-
ables such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).
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b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 11.32. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. If (T,C) is a consistent estimator of (µ, s Σ) where s > 0

is some constant, then D2
x(T,C) = (x− T )T C−1(x− T ) = s−1D2

x(µ,Σ) +
oP (1), so D2

x(T,C) is a consistent estimator of s−1D2
x(µ,Σ).

iii) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)T C−1(T − µ)
D→ χ2

p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 11.12. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→
[

x

y

]

by Theorem 11.26. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function

φzn(t) = φxn(t1)φyn
(t2) → φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 11.29.
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11.7 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Sections 2.3, 3.2, and 3.6. A random

vector u has a mixture distribution if u equals a random vector uj with
probability πj for j = 1, ..., J . See Definition 3.8 for the population mean and
population covariance matrix of a random vector. Definitions 11.2 and 11.3
and Theorem 11.1 were for a mixture distribution of random variables.

Definition 11.16. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =

J∑

j=1

πjFuj (t) (11.5)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj (t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 11.30. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J∑

j=1

πjE[h(uj)]. (11.6)

Hence

E(u) =

J∑

j=1

πjE[uj ], (11.7)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (11.8)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf
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fu(t) =

J∑

j=1

πjfuj (t), and E(h(u)) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=

J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj (t)dt =

J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (11.9)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =

∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

Remark 11.3. Suppose the random vector u is equal to random vectors
uj with probabilities πj. Let u = (u1, ..., ug)

T and P (u ≤ t) = P (u1 ≤
t1, ..., ug ≤ tg) = Fu(t). Let P (A|B) = 0 if P (B) = 0. Then

Fu(t) =
∑

j

P (u ≤ t|u = uj)πj =
∑

j

P (wj ≤ t)πj =
∑

j

Fwj
(t)πj

where wj is a random vector with a distribution equal to the conditional
distribution of u|u = uj . Hence u has a mixture distribution of the wj with
probabilities πk. The wj = uj if there is no selection bias, e.g. if the uj are
randomly selected with probabilities πj. Random selection can be done by
generating a uniform (0,1) random variable W where W is independent of
the uj. If 0 ≤ W ≤ π1, let u = u1. If π1 < W ≤ π1 + π2, let u = u2,
etc. Often selection bias is present which changes the distribution of uj to
wj . This happened for the variable selection estimator βV S . The estimator

β̂MIX used random selection.
As an analogy, consider generating X11, ..., X1n iid N(µ, σ2), but you see

randomly selected X1,j1 = Y1. Another sample is generated, and you see
Y2 = X2,j2, and the process is continued to generate Y1, ..., YB. If B is large,
the sample will look like it is from a N(X, S2) ≈ N(µ, σ2) distribution. If
random selection is replaced by using Wj = min(Xj1, ..., Xjn), the selection
bias is such that W1, ...,WB no longer come from a normal distribution.
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11.8 Complements

Many of the trimming rules and robust point estimators in this chapter are
due to Olive (1998, 2006). These robust estimators are usually inefficient,
but can be used as starting values for iterative procedures such as maximum
likelihood and as a quick check for outliers. These estimators can also be used
to create a robust fully efficient cross checking estimator.

If no outliers are present and the sample size is large, then the robust
and classical methods should give similar estimates. If the estimates differ,
then outliers may be present or the assumed distribution may be incorrect.
Although a plot is the best way to check for univariate outliers, many users
of statistics plug in data and then take the result from the computer without
checking assumptions. If the software would print the robust estimates besides
the classical estimates and warn that the assumptions might be invalid if the
robust and classical estimates disagree, more users of statistics would use
plots and other diagnostics to check model assumptions.

11.9 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

11.1. Verify the formula for the cdf F for the following distributions.
a) Cauchy (µ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (µ, σ).
e) Pareto (σ, λ).
f) Power (λ).
g) Uniform (θ1, θ2).
h) Weibull W (φ, λ).

11.2∗. Verify the formula for MED(Y ) for the following distributions.
a) Exponential (λ).
b) Lognormal (µ, σ2). (Hint: Φ(0) = 0.5.)
c) Pareto (σ, λ).
d) Power (λ).
e) Uniform (θ1, θ2).
f) Weibull (φ, λ).

11.3∗. Verify the formula for MAD(Y ) for the following distributions.
(Hint: Some of the formulas may need to be verified numerically. Find the
cdf in the appropriate section of Chapter 3. Then find the population median
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MED(Y ) = M . The following trick can be used except for part c). If the
distribution is symmetric, find U = y0.75. Then D = MAD(Y ) = U −M.)
a) Cauchy (µ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (µ, σ).
e) Normal (µ, σ2).
f) Uniform (θ1 , θ2).

11.4. Assume that Y is gamma (ν, λ). Let

α = P [Y ≤ Gα].

Using

Y 1/3 ≈ N((νλ)1/3(1 − 1

9ν
), (νλ)2/3 1

9ν
),

show that

Gα ≈ νλ[zα

√
1

9ν
+ 1− 1

9ν
]3

where zα is the standard normal percentile, α = Φ(zα).

11.5. Suppose that Y1, ..., Yn are iid from a power (λ) distribution. Suggest
a robust estimator for λ

a) based on Yi and

b) based on Wi = − log(Yi).

11.6. Suppose that Y1, ..., Yn are iid from a truncated extreme value
TEV(λ) distribution. Find a robust estimator for λ

a) based on Yi and

b) based on Wi = eYi − 1.

11.7. Other parameterizations for the Rayleigh distribution are possible.
For example, take µ = 0 and λ = 2σ2. Then W is Rayleigh RAY(λ), if the
pdf of W is

f(w) =
2w

λ
exp(−w2/λ)

where λ and w are both positive.
The cdf of W is F (w) = 1 − exp(−w2/λ) for w > 0.
E(W ) = λ1/2 Γ (1 + 1/2).
VAR(W ) = λΓ (2) − (E(W ))2 .

E(W r) = λr/2 Γ (1 +
r

2
) for r > −2.
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MED(W ) =
√
λ log(2).

W is RAY(λ) if W is Weibull W (λ, 2). Thus W 2 ∼ EXP(λ). If all wi > 0,
then a trimming rule is keep wi if 0 ≤ wi ≤ 3.0(1 + 2/n)MED(n).

a) Find the median MED(W ).

b) Suggest a robust estimator for λ.

11.8. Suppose Y has a smallest extreme value distribution, Y ∼ SEV (θ, σ).
See Section 11.4.26.

a) Find MED(Y ).

b) Find MAD(Y ).

c) If X has a Weibull distribution, X ∼ W (φ, λ), then Y = log(X) is
SEV(θ, σ) with parameters

θ = log(λ
1
φ ) and σ = 1/φ.

Use the results of a) and b) to suggest estimators for φ and λ.

11.9. Suppose that Y has a half normal distribution, Y ∼ HN(µ, σ).

a) Show that MED(Y ) = µ+ 0.6745σ.

b) Show that MAD(Y ) = 0.3990916σ numerically.

11.10. Suppose that Y has a half Cauchy distribution, Y ∼ HC(µ, σ). See
Section 11.4.10 for F (y).

a) Find MED(Y ).

b) Find MAD(Y ) numerically.

11.11. If Y has a log–Cauchy distribution, Y ∼ LC(µ, σ), then W =
log(Y ) has a Cauchy(µ, σ) distribution. Suggest robust estimators for µ and
σ based on an iid sample Y1, ..., Yn.

11.12. Suppose Y has a half logistic distribution, Y ∼ HL(µ, σ). See
Section 11.4.11 for F (y). Find MED(Y ).

11.13. Suppose Y has a log–logistic distribution, Y ∼ LL(φ, τ), then W =
log(Y ) has a logistic(µ = − log(φ), σ = 1/τ ) distribution. Hence φ = e−µ and
τ = 1/σ.

a) Using F (y) = 1 − 1

1 + (φy)τ
for y > 0, find MED(Y ).

b) Suggest robust estimators for τ and φ.

11.14. If Y has a geometric distribution, Y ∼ geom(p), then the pmf of
Y is P (Y = y) = p(1 − p)y for y = 0, 1, 2, ... and 0 ≤ p ≤ 1. The cdf for Y
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is F (y) = 1 − (1 − p)by+1c for y ≥ 0 and F (y) = 0 for y < 0. Use the cdf to
find an approximation for MED(Y ).

11.15. Suppose Y has a Maxwell–Boltzmann distribution, Y ∼MB(µ, σ).
Show that MED(Y ) = µ+ 1.5381722σ and MAD(Y ) = 0.460244σ.

11.16 If Y is Fréchet (µ, σ, φ), then the cdf of Y is

F (y) = exp

[
−
(
y − µ

σ

)−φ
]

for y ≥ µ and 0 otherwise where σ, φ > 0. Find MED(Y ).

11.17. If Y has an F distribution with degrees of freedom p and n − p,
then

Y
D
=

χ2
p/p

χ2
n−p/(n− p)

≈ χ2
p/p

if n is much larger than p (n >> p). Find an approximation for MED(Y ) if
n >> p.

11.18. If Y has a Topp–Leone distribution, Y ∼ TL(φ), then the cdf of Y
is F (y) = (2y − y2)φ for φ > 0 and 0 < y < 1. Find MED(Y ).

11.19. If Y has a one sided stable distribution (with index 1/2), then the
cdf

F (y) = 2

[
1 − Φ

(√
σ

y

)]

for y > 0 where Φ(x) is the cdf of a N(0, 1) random variable. Find MED(Y ).

11.20. If Y has a two parameter power distribution, then the pdf

f(y) =
1

τλ

( y
τ

) 1
λ−1

for 0 < y ≤ τ where λ > 0 and τ > 0. Suggest robust estimators for τ and λ
using W = − log(Y ) ∼ EXP (− log(τ ), λ).

11.21. If Y has an inverse exponential distribution, then the cdf

F (y) = exp

(−θ
y

)

for y > 0 and θ > 0. Find MED(Y ).
11.22. If Y has a Birnbaum Saunders distribution, Y ∼ BS(ν, θ), then

the cdf of Y is
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F (y) = Φ

[
1

ν

(√
y

θ
−
√
θ

y

)]

where Φ(x) is the N(0,1) cdf and y > 0. Find MED(Y ).
11.23. If Y has a Burr Type X distribution, Y ∼ BTX(τ ), then the pdf

of Y is
f(y) = I(y > 0) 2 τ y e−y2

(1 − e−y2

)τ−1 =

I(y > 0) 2y e−y2

τ exp[(1− τ )(− log(1 − e−y2

))]

where τ > 0. Then W = − log(1 − e−Y 2

) ∼ EXP (1/τ ) and MED(W ) =
log(2)/τ . Find a robust estimator of τ .

11.24∗. Suppose the random variable X has cdf FX(x) = 0.9 Φ(x− 10)+
0.1 FW (x) where Φ(x− 10) is the cdf of a normal N(10, 1) random variable
with mean 10 and variance 1 and FW (x) is the cdf of the random variable
W that satisfies P (W = 200) = 1.
a) Find E(W ).
b) Find E(X).

11.25. Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) +
0.1 FW (x) where FZ is the cdf of a gamma(ν = 10, λ = 1) random variable
with mean 10 and variance 10 and FW (x) is the cdf of the random variable
W that satisfies P (W = 400) = 1.
a) Find E(W ).
b) Find E(X).

11.26. a) Prove Theorem 11.2 a).
b) Prove Theorem 11.2 c).
c) Prove Theorem 11.2 d).
d) Prove Theorem 11.2 e).

11.27. Suppose that F is the cdf from a distribution that is symmetric
about 0. Suppose a = −b and α = F (a) = 1 − β = 1 − F (b). Show that

σ2
W (a, b)

(β − α)2
=
σ2

T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.

11.28. Recall that L(Mn) =
∑n

i=1 I[Yi < MED(n) − k MAD(n)] and
n−U(Mn) =

∑n
i=1 I[Yi > MED(n)+k MAD(n)] where the indicator variable

I(A) = 1 if event A occurs and is zero otherwise. Show that TS,n is a randomly
trimmed mean. (Hint: round

100 max[L(Mn), n− U(Mn)]/n

up to the nearest integer, say Jn. Then TS,n is the Jn% trimmed mean with
Ln = b(Jn/100) nc and Un = n− Ln.)
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11.29. Show that TA,n is a randomly trimmed mean. (Hint: To get Ln,
round 100L(Mn)/n up to the nearest integer Jn. Then Ln = b(Jn/100) nc.
Round 100[n− U(Mn)]/n up to the nearest integer Kn. Then Un = b(100 −
Kn)n/100c.)

11.30∗. Let F be theN(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 0.64.

11.31∗. Let F be the DE(0, 1) cdf. Show that the ARE of the sample
median MED(n) with respect to the sample mean Y n is ARE ≈ 2.0.

11.32. If Y is TEXP (λ, b = kλ) for k > 0, show that

a) E(Y ) = λ

[
1 − k

ek − 1

]
.

b) E(Y 2) = 2λ2

[
1 − (0.5k2 + k)

ek − 1

]
.

11.33. Suppose x1, ...,xn are iid p×1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

11.34. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

11.35. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

11.36. Suppose x1, ...,xn are iid 2×1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

R problems

Warning: Use a command like source(“G:/rpack.txt”) to download
the programs. See Preface or Section 11.2. Typing the name of the
rpack function, e.g. rcisim, will display the code for the function. Use the
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args command, e.g. args(rcisim), to display the needed arguments for the
function.

11.33. a) Download the R function nav that computes Equation (4.4)
from Theorem 2.14.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.

11.34. a) Download the R function deav that computes Equation (2.44)
from Theorem 2.15.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.

11.35. a) Download the R function cav that finds nAV for the Cauchy(0,1)
distribution.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.

11.10 Hints for Selected Problems

Chapter 1

1.1 ‖ri,1 − ri,2‖ = ‖Yi − xT
i β̂1 − (Yi − xT

i β̂2)‖ = ‖xT
i β̂2 − xT

i β̂1‖ =

‖Ŷ2,i − Ŷ1,i‖ = ‖Ŷ1,i − Ŷ2,i‖.

1.2 The plot should be similar to Figure 1.5, but since the data is simu-
lated, may not be as smooth.

1.3 c) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0, 1/n). Hence the histograms should all be roughly sym-
metric, but the scale on the horizontal axis should be from about −3/

√
n to

3/
√
n.

1.4 e) The plot should be strongly nonlinear, having a “V” shape.

1.5 You could save the data set from the text’s website on a flash drive,
and then open the data in Arc from the flash drive.
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c) Most students should delete cases 5, 47, 75, 95, 168, 181, and 199.

f) The response plot looks like a line while the residual plot looks like a
curve. A residual plot emphasizes lack of fit while the response plot empha-
sizes goodness of fit.

h) The quadratic model looks good.

Chapter 2

2.2. FW (w) = P (W ≤ w) = P (Y ≤ w − µ) = FY (w − µ). So fW (w) =
d

dw
FY (w − µ) = fY (w − µ).

2.3. FW (w) = P (W ≤ w) = P (Y ≤ w/σ) = FY (w/σ). So fW (w) =
d

dw
FY (w/σ) = fY (w/σ) 1

σ
.

2.4. FW (w) = P (W ≤ w) = P (σY ≤ w − µ) = FY (w−µ
σ ). So fW (w) =

d
dwFY (w−µ

σ ) = fY (w−µ
σ ) 1

σ .

2.5 N(0, σ2
M)

2.9 a) 8.25± 0.7007 = (6.020, 10.480)

b) 8.75 ± 1.1645 = (7.586, 9.914).

2.10 a) Y = 24/5 = 4.8.

b)

S2 =
138 − 5(4.8)2

4
= 5.7

so S =
√

5.7 = 2.3875.

c) The ordered data are 2,3,5,6,8 and MED(n) = 5.

d) The ordered |Yi − MED(n)| are 0,1,2,3,3 and MAD(n) = 2.

2.11 a) Y = 15.8/10 = 1.58.

b)

S2 =
38.58− 10(1.58)2

9
= 1.5129

so S =
√

1.5129 = 1.230.

c) The ordered data set is 0.0,0.8,1.0,1.2,1.3,1.3,1.4,1.8,2.4,4.6 and
MED(n) = 1.3.

d) The ordered |Yi − MED(n)| are 0,0,0.1,0.1,0.3,0.5,0.5,1.1,1.3,3.3 and
MAD(n) = 0.4.

e) 4.6 is unusually large.

2.12 a) S/
√
n = 3.2150.

b) n − 1 = 9.

c) 94.0
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d) Ln = bn/2c − d
√
n/4 e = b10/2c − d

√
10/4 e = 5 − 2 = 3.

e) Un = n− Ln = 10 − 3 = 7.

f) p = Un − Ln − 1 = 7 − 3 − 1 = 3.

g) SE(MED(n)) = (Y(Un) − Y(Ln+1))/2 = (95 − 90.0)/2 = 2.5.

2.13 a) Ln = bn/4c = b2.5c = 2.

b) Un = n− Ln = 10− 2 = 8.

c) p = Un − Ln − 1 = 8 − 2 − 1 = 5.

d) (89.7 + 90.0 + · · ·+ 95.3)/6 = 558/6 = 93.0.

e) 89.7 89.7 89.7 90.0 94.0 94.0 95.0 95.3 95.3 95.3

f) (
∑
di)/n = 928/10 = 92.8.

g) (
∑
d2

i −n(d)2)/(n− 1) = (86181.54− 10(92.8)2)/9 = 63.14/9 = 7.0156.

h)

VSW =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
=

7.0156

(8−2
10

)2
= 19.4877,

so
SE(Tn) =

√
VSW /n =

√
19.4877/10 = 1.3960.

2.14 a) Ln = bn/2c − d
√
n/4 e = b5/2c − d

√
5/4 e = 2 − 2 = 0.

Un = n− Ln = 5 − 0 = 5.

p = Un − Ln − 1 = 5 − 0 − 1 = 4.

SE(MED(n)) = (Y(Un) − Y(Ln+1))/2 = (8 − 2)/2 = 3.

b) Ln = bn/4c = b1c = 1.

Un = n− Ln = 5 − 1 = 4.

p = Un − Ln − 1 = 4 − 1 − 1 = 2.

Tn = (3 + 5 + 6)/3 = 4.6667.

The d′s are 3 3 5 6 6.

(
∑
di)/n = 4.6

(
∑
d2

i − n(d)2)/(n− 1) = (115− 5(4.6)2)/4 = 9.2/4 = 2.3.

VSW =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
=

2.3

(4−1
5 )2

= 6.3889,

so
SE(Tn) =

√
VSW /n =

√
6.3889/5 = 1.1304.

The R functions for Problems 2.26–2.35 are available from the text’s web-
site file rpack and should have been entered into the computer using a com-
mand like source(“G:/rpack.txt”), as described in the preface or Section 11.2.
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2.23 Simulated data: a) about 0.669 b) about 0.486.

2.24 Simulated data: a) about 0.0 b) Y ≈ 1.00 and Tn ≈ 0.74.

2.28 Simulated data gives about (1514,1684).

2.29 Simulated data gives about (1676,1715).

2.30 Simulated data gives about (1679,1712).

2.39b i) Coverages should be near 0.95. The lengths should be about 4.3
for n = 10, 4.0 for n = 50 and 3.96 for n = 100.

ii) Coverage should be near 0.78 for n = 10 and 0 for n = 50, 100. The
lengths should be about 187 for n = 10, 173 for n = 50 and 171 for n = 100.
(It can be shown that the expected length for large n is 169.786.)

Chapter 3

3.1 a) X2 ∼ N(100, 6).

b) (
X1

X3

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

c) X1 X4 and X3 X4.

d)

ρ(X1 , X2) =
Cov(X1 , X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

3.2 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) =

Σ11 −Σ12Σ
−1
22 Σ21 = 16− 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 −Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

3.4 The proof is identical to that given in Example 3.2.

3.6 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T.

b) The sample mean of (X1, X2, X3)
T is found by finding the sample mean

of each column. Hence x = (1232.8571, 168.00, 112.00)T .

3.11 ΣB = E[E(X|BT X)XT B)] = E(MBBT XXT B) = MBBT ΣB.
Hence MB = ΣB(BT ΣB)−1.

3.20 a)

N2

((
3
2

)
,

(
3 1
1 2

))
.

b) X2 X4 and X3 X4.
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c)
σ12√
σ11σ33

=
1√
2
√

3
= 1/

√
6 = 0.4082.

3.29 a) The 4 plots should look nearly identical with the five cases 61–65
appearing as outliers.

3.30 Not only should none of the outliers be highlighted, but the high-
lighted cases should be ellipsoidal.

3.31 Answers will vary since this is simulated data, but should get gam
near 0.4, 0.3, 0.2 and 0.1 as p increases from 2 to 20.

3.32 b) Ideally the answer to this problem and Problem 11.3b would be
nearly the same, but students seem to want correlations to be very high and
use n too high. Values of n around 20, 40 and 50 for p = 2, 3 and 4 should
be enough.

3.33 b) Values of n should be near 20, 40 and 50 for p = 2, 3 and 4.

3.34 This is simulated data, but for most plots the slope is near 2 to 2.5.

Chapter 5

5.3 c) Fo = 265.96, pvalue = 0.0, reject Ho, there is a MLR relationship
between the response variable height and the predictors sternal height and
finger to ground.

5.4 No, the relationship should be linear.

5.5 No, since 0 is in the CI. X2 could be a very useful predictor for Y , e.g.
if Y = X2

2 .

5.6 c) The plot should have log(Z) on the vertical axis.

e) Since randomly generated data is used, answers vary slightly, but
̂log(Y ) ≈ 4 +X1 +X2 +X3.

5.8 b) Masking since 3 outliers are good cases with respect to Cook’s
distances.

c) and d) usually the MBA residuals will be large in magnitude, but for
some students MBA, ALMS and ALTS will be highly correlated.

Chapter 6

6.3 Adding 1 to Y is equivalent to using u = (1, 0, ..., 0)T in Equation
(7.7), and the result follows.

Chapter 7
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7.4 b) The line should go through the left and right cluster but not through
the middle cluster of outliers.

c) The identity line should NOT PASS through the cluster of outliers with
Y near 0 and the residuals corresponding to these outliers should be large in
magnitude.

8.5 e) Usually the MBA esitmator based on the median squared residual
will pass through the outliers, while the MBA LATA estimator gives zero
weight to the outliers (so that the outliers are large in magnitude).

Chapter 8

8.1 Approximately 2 nδ f(0) cases have small errors.

8.35 b) The identity line should NOT PASS through the cluster of out-
liers with Y near 0. The amount of trimming seems to vary some with the
computer (which should not happen unless there is a bug in the tvreg2

function or if the computers are using different versions of cov.mcd), but
most students liked 70% or 80% trimming.

Chapter 9

9.1
a) êi = Yi − T (Y ).

b) êi = Yi − xT
i β̂.

c)

êi =
Yi

β̂1 exp[β̂2(xi − x̄)]
.

d) êi =
√
wi(Yi − xT

i β̂).

9.2
a) Since Y is a (random) scalar and E(w) = 0, Σx,Y = E[(x−E(x))(Y −

E(Y ))T ] = E[w(Y −E(Y ))] = E(wY ) − E(w)E(Y ) = E(wY ).

b) Using the definition of z and r, note that Y = m(z) + e and
w = r + (Σxβ)βT w. Hence E(wY ) = E[(r + (Σxβ)βT w)(m(z) + e)] =
E[(r +(Σxβ)βT w)m(z)] +E[r +(Σxβ)βT w]E(e) since e is independent of
x. Since E(e) = 0, the latter term drops out. Since m(z) and βT wm(z) are
(random) scalars, E(wY ) = E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using result b), Σ−1
x Σx,Y = Σ−1

x E[m(z)r] + Σ−1
x E[βT w m(z)]Σxβ

=
E[βT w m(z)]Σ−1

x Σxβ + Σ−1
x E[m(z)r] = E[βT w m(z)]β + Σ−1

x E[m(z)r]
and the result follows.

d) E(wz) = E[(x−E(x))xT β] = E[(x−E(x))(xT −E(xT ) +E(xT ))β]
= E[(x −E(x))(xT −E(xT ))]β +E[x −E(x)]E(xT )β = Σxβ.
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e) If m(z) = z, then c(x) = E(βT wz) = βTE(wz) = βTΣxβ = 1 by
result d).

f) Since z is a (random) scalar, E(zr) = E(rz) = E[(w − (Σxβ)βT w)z]
= E(wz)−(Σxβ)βTE(wz). Using result d), E(rz) = Σxβ−ΣxββTΣxβ =
Σxβ −Σxβ = 0.

g) Since z and r are linear combinations of x, the joint distribution of z and
r is multivariate normal. Since E(r) = 0, z and r are uncorrelated and thus
independent. Hence m(z) and r are independent and u(x) = Σ−1

x E[m(z)r] =
Σ−1

x E[m(z)]E(r) = 0.

9.4 The submodel I that uses a constant and A, C, E, F, H looks best
since it is the minimum Cp(I) model and I has the smallest value of k such
that Cp(I) ≤ 2k.

9.6 a) No strong nonlinearities for MVN data but there should be some
nonlinearities present for the non–EC data.

b) The plot should look like a cubic function.

c) The plot should use 0% trimming and resemble the plot in b), but may
not be as smooth.

d) The plot should be linear and for many students some of the trimmed
views should be better than the OLS view.

e) The response plot should look like a cubic with trimming greater than
0%.

f) The plot should be linear.

9.7 b) and c) It is possible that none of the trimmed views look much like
the sinc(ESP) = sin(ESP)/ESP function.

d) Now at least one of the trimmed views should be good.

e) More lmsreg trimmed views should be good than the views from the
other 2 methods, but since simulated data is used, one of the plots from b)
or c) could be as good or even better than the plot in d).

Chapter 10

10.2 a) ESP = 1.11108, exp(ESP ) = 3.0376 and ρ̂ = exp(ESP )/(1 +
exp(ESP )) = 3.0376/(1 + 3.0376) = 0.7523.

10.3 G2(O|F ) = 62.7188 − 13.5325 = 49.1863, df = 3, p–value = 0.00,
reject Ho, there is a LR relationship between ape and the predictors lower
jaw, upper jaw and face length.

10.4 G2(R|F ) = 17.1855− 13.5325 = 3.653, df = 1, 0.05 < p–value < 0.1,
fail to reject Ho, the reduced model is good.
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10.5a ESP = 0.2812465 and µ̂ = exp(ESP ) = 1.3248.

10.6 G2(O|F ) = 187.490−138.685 = 48.805, df = 2, p–value = 0.00, reject
Ho, there is a PR relationship between possums and the predictors habitat
and stags.

10.8 a) B4

b) EE plot
c) B3 is best. B3 has 12 fewer predictors than B2 but the AIC increased

by less than 3. B1 has too many predictors with large Wald p–values, B2 =
II still has too many predictors (want ≤ 300/10 = 30 predictors) while B4
has too small of a p–value for the change in deviance test.

10.12 a) A good submodel uses a constant, Bark, Habitat and Stags as
predictors.

d) The response and EE plots are good as are the Wald p–values. Also
AIC(full) = 141.506 while AIC(sub) = 139.644.

10.14 b) Use the log rule: (max age)/(min age) = 1400 > 10.

e) The slice means track the logistic curve very well if 8 slices are used.

i) The EE plot is linear.

j) The slice means track the logistic curve very well if 8 slices are used.

10.15 c) Should have 200 cases, df = 178 and deviance = 112.168.

d) The response plot with 12 slices suggests that the full model is good.

e) The submodel I1 that uses a constant, AGE, CAN, SYS, TYP and
FLOC and the submodel I2 that is the same as I1 but also uses FRACE seem
to be competitive. If the factor FRACE is not used, then the response plot
follows 3 lines, one for each race. The Wald p–values suggest that FRACE is
not needed, but FRACE is needed since the EE plot is inadequate for model
II .

10.16 b) The response plot (e.g. with 4 slices) is bad, so the LR model is
bad.

d) Now the response plot (e.g. with 12 slices) is good in that slice smooth
and the logistic curve are close where there is data (also the LR model is
good at classifying 0’s and 1’s).

f) For this problem, G2(O|F ) = 62.7188− 0.00419862 = 62.7146, df = 1,
p–value = 0.00, so reject Ho and conclude that there is an LR relationship
between ape and the predictor x3.

g) The MLE does not exist since there is perfect classification (and the
logistic curve can get close to but never equal a discontinuous step function).
Hence Wald p–values tend to have little meaning; however, the change in
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deviance test tends to correctly suggest that there is an LR relationship
when there is perfect classification.

10.18 k) The deleted point is certainly influential. Without this case,
there does not seem to be a PR relationship between the predictors and the
response.

m) The weighted residual plot suggests that something is wrong with the
model since the plotted points scatter about a line with positive slope rather
than a line with 0 slope. The deviance residual plot does not suggest that
anything is wrong with the model.

10.19 The response plot should look ok, but the function uses a default
number of slices rather than allowing the user to select the number of slices
using a “slider bar” (a useful feature of Arc).

10.20 a) Since this is simulated PR data, the response plot should look
ok, but the function uses a default lowess smoothing parameter rather than
allowing the user to select smoothing parameter using a “slider bar” (a useful
feature of Arc).

b) The data should the identity line in the weighted fit response plots. In
about 1 in 20 plots there will be a very large count that looks like an outlier.
The weighted residual plot based on the MLE usually looks better than the
plot based on the minimum chi-square estimator (the MLE plot tends to have
less of a “left opening megaphone shape”).

10.22 b) Model I1 is better since it has fewer predictors and lower AIC
than model I2.

10.23 a)

Number in Model Rsquare C(p) Variables in model

6 0.2316 7.0947 X3 X4 X6 X7 X9 X10

c) The slice means follow the logistic curve fairly well with 8 slices.

e) The EE plot is linear.

f) The slice means follow the logistic curve fairly well with 8 slices.

Chapter 11

11.2 a) F (y) = 1 − exp(−y/λ) for y ≥ 0. Let M = MED(Y ) = log(2)λ.
Then F (M) = 1−exp(− log(2)λ/λ) = 1−exp(− log(2)) = 1−exp(log(1/2)) =
1− 1/2 = 1/2.

b) F (y) = Φ([log(y) −µ]/σ) for y > 0. Let M = MED(Y ) = exp(µ). Then
F (M) = Φ([log(exp(µ)) − µ]/σ) = Φ(0) = 1/2.

11.3 a) M = µ by symmetry. Since F (U) = 3/4 and F (y) = 1/2 +
(1/π)arctan([y − µ]/σ), want arctan([U − µ]/σ) = π/4 or (U − µ)/σ = 1.
Hence U = µ+ σ and MAD(Y ) = D = U −M = µ+ σ − µ = σ.
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b) M = θ by symmetry. Since F (U) = 3/4 and F (y) = 1 − 0.5 exp(−[y −
θ]/λ) for y ≥ θ, want 0.5 exp(−[U−θ]/λ) = 0.25 or exp(−[U−θ]/λ) = 1/2. So
−(U−θ)/λ = log(1/2) or U = θ−λ log(1/2) = θ−λ(− log(2)) = θ+λ log(2).
Hence MAD(Y ) = D = U −M = U − θ = λ log(2).

11.7 a) MED(W ) =
√
λ log(2).

11.8 a) MED(W ) = θ − σ log(log(2)).

b) MAD(W ) ≈ 0.767049σ.

c) Let Wi = log(Xi) for i = 1, ..., n. Then

σ̂ = MAD(W1, ...,Wn)/0.767049 and θ̂ = MED(W1, ...,Wn) − σ̂ log(log(2)).

So take φ̂ = 1/σ̂ and λ̂ = exp(θ̂/σ̂).

11.10 a) MED(Y ) = µ+ σ.

b) MAD(Y ) = 0.73205σ.

11.11 Let µ̂ = MED(W1, ...,Wn) and σ̂ = MAD(W1, ...,Wn).

11.12 µ+ log(3)σ

11.13 a) MED(Y ) = 1/φ

b) τ̂ = log(3)/MAD(W1, ...,Wn) and φ̂ = 1/MED(Y1, ..., Yn).

11.17 MED(Y ) ≈ (p− 2/3)/p ≈ 1 if p is large.

11.19.
MED(Y ) =

σ

[Φ−1(3/4)]2
.

11.20. Let MED(n) and MAD(n) be computed using W1, ...,Wn. Use

− log(τ̂ ) = MED(n)−1.440MAD(n) ≡ A, so τ̂ = e−A. Also λ̂ = 2.0781MAD(n).

11.21. MED(Y ) = θ/ log(2).
11.22. θ

11.23. Given data Y1, ..., Yn, a robust estimator of τ is τ̂ = log(2)/MED(n)

where MED(n) is the sample median of W1, ...,Wn andWi = − log(1−e−Y 2
i ).

11.24 a) 200

b) 0.9(10) + 0.1(200) = 29

11.25 a) 400(1) = 400

b) 0.9(10) + 0.1(400) = 49
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11.11 Tables

Tabled values are F(0.95,k,d) where P (F < F (0.95, k, d)) = 0.95.
00 stands for ∞. Entries produced with the qf(.95,k,d) command in R.
The numerator degrees of freedom are k while the denominator degrees of
freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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Basel, Switzerland, 145-157.

Gather, U., Hilker, T., and Becker, C. (2002), “A Note on Outlier Sensi-
tivity of Sliced Inverse Regression,” Statistics, 36, 271-281.

Gill, R.D. (1989), “Non- and Semi-Parametric Maximum Likelihood Esti-
mators and the von Mises Method, Part 1,” Scandinavian Journal of Statis-
tics, 16, 97-128.
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Hall, P., and Welsh, A.H. (1985), “Limit Theorems for the Median Devi-
ation,” Annals of the Institute of Statistical Mathematics, Part A, 37, 27-36.

Haile, M.G. (2022), “Inference for Time Series after Variable Selection,”
Ph.D. Thesis, Southern Illinois University. See (http://parker.ad.siu.edu/Olive/shaile.pdf).

Haile, M.G., and Olive, D.J. (2024), “Bootstrapping ARMA Time Series
Models after Model Selection,” Communications in Statistics: Theory and
Methods, 53, 8255-8270.

Haile, M.G., Zhang, L., and Olive, D.J. (2024), “Predicting Random Walks
and a Data Splitting Prediction Region,” Stats, 7(1), 23-33.

Hall, P. (1988), “Theoretical Comparisons of Bootstrap Confidence Inter-
vals,” (with discussion), The Annals of Statistics, 16, 927-985.

Hamada, M., and Sitter, R. (2004), “Statistical Research: Some Advice for
Beginners,” The American Statistician, 58, 93-101.

Hamilton, J.D. (1994), Time Series Analysis, Princeton University Press,
Princeton, NJ.

Hampel, F.R. (1975), “Beyond Location Parameters: Robust Concepts and
Methods,” Bulletin of the International Statistical Institute, 46, 375-382.

Hampel, F.R. (1985), “The Breakdown Points of the Mean Combined with
Some Rejection Rules,” Technometrics, 27, 95-107.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (1986),
Robust Statistics, Wiley, New York, NY.

Hamza, K. (1995), “The Smallest Uniform Upper Bound on the Distance
Between the Mean and the Median of the Binomial and Poisson Distribu-
tions,” Statistics & Probability Letters, 23, 21-25.

Hannan, E.J. (1973), “The Asymptotic Theory of Linear Time-Series Mod-
els,” Journal of Applied Probability, 10, 130-145.

Hannan, E.J. (1980), “The Estimation of the Order of an ARMA Process,”
The Annals of Statistics, 8, 1071-1081.

Hannan, E.J., and Rissanen, J. (1982), “Recursive Estimation of Mixed
Autoregressive-Moving Average Order,” Biometrika, 69, 81-94.

Harrison, D., and Rubinfeld, D.L. (1978), “Hedonic Prices and the Demand
for Clean Air,” Journal of Environmental Economics and Management, 5, 81-
102.



REFERENCES 561

Hastie, T.J., and Tibshirani, R.J. (1990), Generalized Additive Models,
Chapman & Hall, London, UK.

Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer,
New York, NY.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015), Statistical Learning
with Sparsity: the Lasso and Generalizations, CRC Press Taylor & Francis,
Boca Raton, FL.

Hawkins, D.M., Bradu, D., and Kass, G.V. (1984), “Location of Several
Outliers in Multiple Regression Data Using Elemental Sets,” Technometrics,
26, 197-208.

Hawkins, D.M., and Olive, D.J. (1999a), “Improved Feasible Solution Al-
gorithms for High Breakdown Estimation,” Computational Statistics & Data
Analysis, 30, 1-11.

Hawkins, D.M., and Olive, D. (1999b), “Applications and Algorithms
for Least Trimmed Sum of Absolute Deviations Regression,” Computational
Statistics & Data Analysis, 32, 119-134.

Hawkins, D.M., and Olive, D.J. (2002), “Inconsistency of Resampling Al-
gorithms for High Breakdown Regression Estimators and a New Algorithm,”
(with discussion), Journal of the American Statistical Association, 97, 136-
159.

He, X., and Fung, W.K. (1999), “Method of Medians for Lifetime Data
with Weibull Models,” Statistics in Medicine, 18, 1993-2009.

He, X., and Portnoy, S. (1992), “Reweighted LS Estimators Converge at
the Same Rate as the Initial Estimator,” The Annals of Statistics, 20, 2161-
2167.

He, X., and Wang, G. (1996), “Cross-Checking Using the Minimum Vol-
ume Ellipsoid Estimator,” Statistica Sinica, 6, 367-374.

He, X., and Wang, G. (1997), “Qualitative Robustness of S*- Estimators of
Multivariate Location and Dispersion,” Statistica Neerlandica, 51, 257-268.

Hebbler, B. (1847), “Statistics of Prussia,” Journal of the Royal Statistical
Society, A, 10, 154-186.

Heng-Hui, L. (2001), “A Study of Sensitivity Analysis on the Method of
Principal Hessian Directions,” Computational Statistics, 16, 109-130.

Hesterberg, T., (2014), “What Teachers Should Know about the Boot-
strap: Resampling in the Undergraduate Statistics Curriculum,” available
from (http://arxiv.org/pdf/1411.5279v1.pdf). (An abbreviated version was
published (2015), The American Statistician, 69, 371-386.)

Hettmansperger, T.P., and McKean, J.W. (2010), Robust Nonparametric
Statistical Methods, 2nd ed., Chapman & Hall/CRC, Boca Rotan, FL.

Hettmansperger, T.P., and Sheather, S.J. (1992), “A Cautionary Note on
the Method of Least Median Squares,” The American Statistician, 46, 79-83.

Hilbe, J.M. (2011), Negative Binomial Regression, Cambridge University
Press, 2nd ed., Cambridge, UK.



562 REFERENCES

Hinich, M.J., and Talwar, P.P. (1975), “A Simple Method for Robust Re-
gression,” Journal of the American Statistical Association, 70, 113-119.

Hjort, G., and Claeskens, N.L. (2003), “The Focused Information Crite-
rion,” Journal of the American Statistical Association, 98, 900-945.

Hoaglin, D.C., and Welsh, R. (1978), “The Hat Matrix in Regression and
ANOVA,” The American Statistician, 32, 17-22.

Hoffman, I., Serneels, S., Filzmoser, P., and Croux, C. (2015), “Sparse
Partial Robust M Regression,” Chemometrics and Intelligent Laboratory Sys-
tems, 149, Part A, 50-59.

Hofmann, M., Gatu, C., and Kontoghiorghes, E.J. (2010), “An Exact Least
Trimmed Squares Algorithm for a Range of Coverage Values,” Journal of
Computational and Graphical Statistics, 19, 191-204.

Hosmer, D.W., and Lemeshow, S. (2000), Applied Logistic Regression, 2nd
ed., Wiley, New York, NY.

Hong, L., Kuffner, T.A., and Martin, R. (2018), “On Overfitting and Post-
Selection Uncertainty Assessments,” Biometrika, 105, 221-224.
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Härdle, 414
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