
Exam 2 is Wed. Oct. 16. You are allowed 6 sheets of notes and a calculator.
The exam covers HW2E, HW3-6, back of Q2, and Q3-6. Numbers refer to types of
problems on exam.

From Exam 1 review, know pages 2-4. Will not have 1)-5) on Exam 2.
The output for an ARIMA(p,d,q) model is exactly like that on p. 4 of exam 1 review,

except the default is to not give the “intercept” line if d ≥ 1. If d = 0, let Xt = Yt. If
d = 1, then the first difference Xt = Wt = Yt − Yt−1 for t = 2, ..., n. If d = 2, then the
second difference Zt = Yt − 2Yt−1 + Yt−2 for t = 3, ..., n. For all 3 values of d, want Xt

to follow a stationary and invertible ARMA(p,q) = ARIMA(p,0,q) model. Rarely use
d = 2 and hardly ever use d ≥ 3.

11) Know for final: The 95% CI for φk or θk is (LCI, UCI) as in 9).
12) Know for final: The 4 step test of hypotheses for Ho: φk = 0 or Ho: θk = 0

is exactly the same as 10), except for the conclusion when testing AR parameters Ho:
φk = 0: if d = 1, replace Yt−k by Wt−k, while if d = 2, replace Yt−k by Zt−k. See HW4
Bd).

13) Know for final: Use the ACF and PACF to identify p and q exactly as in 8). If
d = 0, use the ACF and PACF of Yt to get an ARMA(p,q) = ARIMA(p,0,q) model. If
d = 1, use the ACF and PACF of Wt to get an ARIMA(p,1,q) model. If d = 2, use the
ACF and PACF of Zt to get an ARIMA(p,2,q) model. See exam 1 1), Q2 3), HW4 C)
and HW2 E).

14) Know for final: Let Xt = Yt if d = 0, Xt = Wt if d = 1, and Xt = Zt if d = 2.
The response plot of X̂t vs Xt should scatter about the identity line with unit slope and
zero intercept with no other pattern if the model is adequate. The vertical deviation of
Xt from the identity line is the residual Xt − X̂t = êt. A residual plot of X̂t vs êt or of t
vs êt should scatter about the êt = 0 line, with no other pattern if the model is adequate.
The evenly spaced t tends to make the residual plot of t vs êt to look “spikey.” Be able
to recognize and sketch response and residual plots. See exam 1 4).

15) Know for final: Let Xt be as in 14). Hence X̂t = Ŷt for d = 0, X̂t = Ŵt for
d = 1, and X̂t = Ẑt for d = 2. Given R output, Xt−1, ..., Xt−p, êt−1, ..., êt−q, be able to
find

X̂t = τ̂ + φ̂1Xt−1 + · · · + φ̂pXt−p + θ̂1êt−1 + · · · + θ̂1êt−1

for j ≤ t ≤ n+ 1 where often j = max(p, q)+ 1. For d = 0, the MA(q) = ARIMA(0,0,q)
model has τ̂ = µ̂Y given in the “intercept” line. For d = 0 with p ≥ 1, the “intercept”
line gives µ̂Y 6= τ̂ , and τ̂ needs to be given. For the ARIMA(p,d,q) model with d ≥ 1,
take τ̂ = 0 unless told otherwise. See HW4 Bg).

Different software produces different êt and X̂t for 1 ≤ t ≤ max(p, q). When q ≥ 1,
and there is often a “burn in” period before the êt and X̂t are similar from the different
programs.

16) For ARIMA(p,d,q) models, the ARMA(p,q) model for Xt is stationary if the
roots of the polynomial φ(B) = 0 each have modulus > 1 and so are all outside the
unit circle, and the ARMA(p,q) model for Xt is invertible if the roots of the polynomial
θ(B) = 0 each have modulus > 1 and so are all outside the unit circle. The polynomials
are φ(B) = 1−φ1B− · · · −φpB

p and θ(B) = 1− θ1B− · · · − θqB
q where R replaces −θj
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by θj. For an AR(2) model (change 0 to d for an ARI(p,d) = ARIMA(p,d,0) model),
output looks like

out <- arima(y,c(2,0,0)); p<-2

Mod(polyroot(c(1, -out$coef[-(p+1)])))

[1] 2.733461 2.733461

For an MA(2) =ARIMA(0,0,2) model (change 0 to d for an IMA(d,q) = ARIMA(0,d,q)
model), output looks like (no negative sign because in R, the θ̂i are −θ̂i from those of
the book)

out <- arima(y,c(0,0,2)); q<-2

Mod(polyroot(c(1, out$coef[-(q+1)])))

[1] 1.500266 4.255771

For an ARMA(2,2) = ARIMA(2,0,2) model (change 0 to d for an ARIMA(p,d,q)
model), output looks like

out <- arima(y,c(2,0,2)); p<-2; q<-2;

#AR phi(B) = 0

Mod(polyroot(c(1, -out$coef[1:p])))

[1] 1.134829 2.632953

#MA theta(B) = 0

Mod(polyroot(c(1, out$coef[(p+1):(p+q)])))

[1] 1.000004 6.469955

The output gives the moduli of the roots of the polynomials φ̂(B) = 0 and θ̂(B) = 0.
The models are “good” in that all of the moduli are greater than 1. Since these are
estimated roots, moduli near 1, (like 1.13 or 1.000004) may suggest that the ARMA(p,q)
model for the time series Xt is not stationary or not invertible. The model would be bad
if any of the moduli are less than 1. See HW4 A).

17) Let Xt = 5dYt be the differenced time series. The first difference is Xt = Wt =
5Yt = Yt − Yt−1. The second difference is Xt = Zt = 52Yt = 5(5Yt) = 5Wt =
Yt − 2Yt−1 + Yt−2. If Yt follows an ARIMA(p,d,q) model, want Xt to follow a stationary
and invertible ARMA(p,q) = ARIMA(p,0,q) model.

18) ARIMA(p,d,q) models have {Yt} nonstationary if d ≥ 1.
a) Often need d = 1 if the ACF and/or PACF of Yt do not decay to 0 fast: there is linear
decay or the sinusoidal decay does not damp out quickly.
b) Often need d = 1 if the plot of the time series Yt does not appear to have constant
mean, especially if there is a stochastic linear trend.
c) If the time series Yt is nonstationary, but different large segments of the series behave
much like the rest of the series after allowing for changes in level and/or slope, often need
d = 1.

19) If first differencing d = 1 works, then want Wt to be a stationary and invertible
ARMA(p,q) model. So the plot of Wt should oscillate about a constant mean and the
variability of long segments of the plot should be similar since stationary time series have
constant mean and constant variance. The ACF and PACF of Wt should both have spikes
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rk and φ̂kk that go to 0 rapidly in that roughly 95% of the spikes are within the ± 2 SE
bars after the first few lags. The residual ACF and PACF for the ARIMA(p,1,q) model
should resemble those of white noise, so roughly 95% of spikes for lags k ≥ 1 should be
within the ± 2 SE bars (horizontal lines).

20) Similar remarks to 19) apply with d = 2 and Zt instead of Wt.
21) Suppose Xt > 0 for all t (if X̃t = 0 is possible, use Xt = X̃t + 1). Use Yt =

log(Xt) = ln(Xt) and first differences d = 1 a) or b) hold.
a) Use Yt = log(Xt) if E(Xt) = µt and

√

V (Xt) = σµt, ie if the standard deviation of
Xt increases at the mean of Xt increases. Often the plot of t vs Xt will be linear with
positive slope and the variability of Xt increases with t.
b) Use Yt = log(Xt) if E(Xt) ≈ ea+bt so Yt ≈ linear.

22) Assume that all of the values of the Xt > 0. A power transformation has the
form Yt = Xλ

t for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ Λ = {0,±1/4,±1/3,±1/2,±1}.

The modified power transformation is

Yt = mλ(Xt) =
Xλ

t − 1

λ

for λ 6= 0 and Yt = mλ(Xt) = log(Xt) for λ = 0 where λ ∈ Λ.
23) In decreasing order of importance are λ = 1 (no transformation), λ = 0 (log

transformation), λ = 1/2 (square root transformation useful for Poisson count data),
λ = −1 and λ = −1/2.

24) Could plot mλ(Xt) for λ ∈ Λ and take Yt = mλ̂(Xt) where λ̂ ∈ λ gives the best
plot.

25) Assume Xt > 0 for all t. Divide {1, ..., n} into groups Gi of approximately the
same length ki ≈ k, ie k = 12 or k = 20. Compute the sample meanX i = 1

ki

∑

t∈GiXt and
sample range Ri = max(Xt) − min(Xt), t ∈ Gi. (Ri ≈ aSD(Xt) where a ∈ [2, 3].) Then
plot Xi vs Ri. If the plotted points scatter about a horizontal line, no transformation is
needed. If the plotted points scatter about a line with positive slope, use Yt = log(Xt).
If the plotted points scatter about a curve with roughly exponential growth (that is at
first slow then fast), use Yt = 1/Xt. If the plotted points scatter about logarithmic type
curve (fast growth the slow growth), use Yt =

√
Xt.

26) Let I be a time series model. The AIC(I) statistic is used as an to pick a model
from several ARIMA(p,d,q) models. The model Imin with the smallest AIC is always
of interest but often overfits: has too many unnecessary parameters. Imagine fitting
ARIMA(p,d,q) where d = 0, 1 or 2 is fixed and p and q run from 0 to j for small j. The
number of parameters in the model for fixed d is p+ q+2 where σ =

√
ρ0 =

√

V (Xt), τ ,
φ1, ..., φp, θ1, ..., θq are the parameters. AIC(I) tends to be large when the model does not
have enough terms, to drop as needed terms are added, and then to rise as unnecessary
terms are added. If ∆(I) = AIC(I)− AIC(Imin), then models with ∆(I) ≤ 2 are good,
models with 4 ≤ ∆(I) ≤ 7 are borderline. The initial model to look at is the model II

with the smallest number of predictors such that ∆(II) ≤ 2, and also examine submodels
I with fewer predictors than II with ∆(I) ≤ 7.
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27) The aicmatrix computes AIC(I)−AIC(Imin) for ARIMA(p,d,q) models where d
is fixed, and p and q run from 0 to j for small j = pmax such as pmax = 5. Here Imin is
the ARIMA(pm, d, qm) model with the smallest AIC(I). This model will have a 0.00 in
the aicmatrix. Look for model II with pI + qI ≤ pm + qm as small as possible such that
the aicmatrix entry ≤ 2. It is possible that II = Imin. Also look at models I with p+q ≤
pI+qI with aicmatrix entries≤ 7, especially models with entries≤ 4. AIC(I)−AIC(Imin)
is also shown for ARI(p,d) and IMA(d,q) models where 1 ≤ p, q ≤ 15. Negative entries
means the ARI(p,d) or IMA(d,q) model had AIC(I) < AIC(Imin) from the aicmatrix.
Check that the selected model I does not have fail to reject Ho for Ho: φp = 0 or Ho:
θq = 0. Make the usual checks of plotting the time series, ACF, PACF, response and
residual plots, ACF and PACF of the residuals, and tsdiag(outI). From the output
below, Imin is the ARIMA(5,1,4) model and II is the ARIMA(3,1,0) model. Interesting
models have p + q ≤ 3 with entries ≤ 7. So look at the ARIMA(2,1,1), ARIMA(1,1,2),
and ARIMA(1,1,1) models after examining the II = ARIMA (3,1,0) model.

These are rules of thumb: they do not always work but often lead to a good model.
If II is the ARIMA(1,0,1) model, might take an AR(3) or MA(3) model even though
these have 1 more parameter. If Imin is located at the bottom right corner, the ARIMA
(pmax,d,pmax) model, then pmax may not be large enough. If the aicmat function has
an error, decrease j = pmax by 1 until the function works. May also need to decrease k
from 15 for the function to work. Note that the aicmatrix entires are ∆(I).

aicmat(WWWusage,dd=1,pmax=5,k=15)

$aics

q

p 0 1 2 3 4 5

0 119.86 38.67 8.74 9.13 8.24 7.72 Find I_I by looking at models at

1 18.10 3.16 5.11 3.44 3.96 5.14 models on and above the diagonal

2 11.04 5.15 6.22 4.63 2.10 6.95 through (5,4) and (4,5) which have

3 0.85 2.80 4.48 3.27 3.62 5.29 p+q <= 9. Interesting models are on

4 2.79 1.74 5.04 7.94 4.26 6.99 or above the diagonal through (3,0),

5 4.72 6.50 2.40 10.50 0.00 1.63 (2,1), (1,2) and (0,3) since they

have p+q <= 3.

$ariaics

[1] 18.10 11.04 0.85 2.79 4.72 6.31 6.41 6.99 8.06 10.00 11.95 10.46

[13] 8.77 9.97 11.67

$imaaics

[1] 38.67 8.74 9.13 8.24 7.72 7.12 2.33 3.61 4.59 6.58 7.96 7.14

[13] 8.77 8.90 9.90

28) Know for final: Be able to find Imin, the initial model II to look at, and other
models to look at using 26) and 27) and output.

29) Know for Final: Fix d. An RR plot is a plot of residuals êt1 from model 1 vs
residuals êt2 from model 2. An FF plot is a plot of fitted values X̂t1 from model 1 vs
fitted values X̂t2 from model 2. If the plotted points in both plots look like the identity
line, the simpler model may be better.

4



30) Assuming τ = 0, the ARIMA(p,d=1,q) model is Wt = φ1Wt−1 + · · · + φpWt−p −
θ1et−1−· · ·−θqet−q +et or Yt−Yt−1 = φ1(Yt−1 −Yt−2)+ · · ·+φp(Yt−p−Yt−p−1)−θ1et−1−
· · ·− θqet−q + et. So Yt = (1+φ1)Yt−1 +(φ2−φ1)Yt−2 + · · ·+(φp −φp−1)Yt−p −φpYt−p−1 −
θ1et−1 − · · · − θqet−q + et.

31) The ARIMA(0,0,0) model is Yt = et where {et} is a white noise.
32) The ARIMA(0,d,q) model is the IMA(d,q) model, and the ARIMA(p,d,0) model

is the ARI(p,d) model.
33) The ARIMA(0,1,1) model = IMA(1,1) model is Wt = −θ1et−1 + et or

Yt = Yt−1 − θ1et−1 + et. Want |θ1| < 1 so that Wt follows a stationary and invertible
ARMA(0,1) = MA(1) model without an intercept.

34) The ARIMA(0,2,2) = IMA(2,2) model is Zt = −θ1et−1 − θ2et−2 + et or Yt =
2Yt−1 − Yt−2 − θ1et−1 − θ2et−2 + et. Want |θ2| < 1 and θ2 ± θ1 < 1 so that Zt follows a
stationary and invertible ARMA(0,2) = MA(2) model without an intercept.

35) The ARIMA(1,1,) = ARI(1,1) model is Wt = φ1Wt−1 + et or
Yt = (1 + φ1)Yt−1 − φ1Yt−2 + et. Want |φ1| < 1 so that Wt follows a stationary and
invertible ARMA(1,0) = AR(1) model without an intercept.

36) Suppose that τ 6= 0 in the ARIMA(p,d,q) model with d ≥ 0. Want Xt = 5dYt to
follow a stationary and invertible ARMA(p,q) model with intercept: Xt = τ + φ1Xt−1 +
· · ·+ φpXt−p − θ1et−1 − · · · − θqet−q + et or (Xt − µX) = φ1(Xt−1 − µX) + · · ·+ φp(Xt−p −
µX)−θ1et−1−· · ·−θqet−q+et where τ = µX(1−φ1−· · ·−φp) and µX =

τ

1 − φ1 − · · · − φp

.

If Xt is as above, then E(Xt) = µX 6= 0, and Yt = µt + Ỹt where µt is a deterministic
polynomial of t of degree d and Ỹt follows an ARIMA(p,d,q) model with E[Ỹt] = 0.

37) Let ρk = corr(Yt, Yt−k), and let rk = ρ̂k be what is plotted in the ACF. For a
stationary and invertible ARMA(p,q) model where {et} is a white noise, then for any
fixed m,

√
n







r1 − ρ1

...
rm − ρm







D→ Nm(0,Σ)

where Σ = (σij). Hence rk is a
√
n consistent asymptotically normal estimator of ρk, and

if ρk → 0 rapidly as k increases, so should the rk if n > max(100, 4k, 10(p + q)).
38) For a white noise, V (rk) ≈ 1/n and corr(rk, rj) ≈ 0 for k 6= j.
39) For a stationary and invertible ARMA(p,q) model, V (rk) ≈ σ2

kk/n and corr(rk, rj) ≈
σij/

√
σiiσjj ≈ constant 6= 0 for large n. These correlations can make the sample ACF

have ripples and trends that are not present in the theoretical ACF.
40) Similar results hold for the sample PACF, but V (φ̂kk) ≈ 1/n for k > p if {Yt}

follows a stationary AR(p) model. Also, V (φ̂kk) ≈ 1/n for a white noise.
41) Suppose Xt = 5dYt is a stationary and invertible time series, Xt ∼ ARMA(p,q)

if Yt ∼ ARIMA(p,d,q). Then estimate φi and θj using Xt and techniques for ARMA(p,q)
models. Usually use an intercept if d = 0, but do not use an intercept if d ≥ 1.

42) Know that the Yule-Walker equations give the method of moments estimators for
AR(p) models (and ARIMA(p,d,0) models).

43) Let x = (X1, ..., Xp)
T . Let ρx = (corr(Xi, Xj)) be the pop. correlation matrix of

x. Let Σx = (Cov(Xi, Xj)) = E[(x− E(x))(x − E(x))T ] be the population covariance
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matrix of x. Let w = (xT , Y )T . Let Σx,Y = Cov(x, Y ) =
E[(x−E(x))(Y −E(Y ))] = (Cov(X1, Y ), ..., Cov(Xp, Y ))T . Let ΣY = V (Y ) and ρY = 1.
Let ρx,Y = (corr(X1 , Y ), ..., corr(Xp, Y ))T . Let the pop. covariance matrix and correla-
tion matrix of w be

Σw =

(

Σx Σx,Y

ΣY,x ΣY

)

and ρw =

(

ρx ρx,Y

ρY,x ρY

)

.

44) The Yule Walker equations can be written in two equivalent forms using ρk =
γk/γ0. Let φ = (φ1, ..., φp)

T . Let x = (Yt−1, Yt−2, ..., Yt−p)
T and Y = Yt. The Yule Walker

equations are
ρ1 = φ1 + φ2ρ1 + φ3ρ2 + · · · + φpρp−1 or γ1 = φ1γ0 + φ2γ1 + φ3γ2 + · · · + φpγp−1

ρ2 = φ1ρ1 + φ2 + φ3ρ1 + · · · + φpρp−2 or γ2 = φ1γ1 + φ2 + φ3γ1 + · · · + φpγp−2

...
ρp = φ1ρp−1 +φ2ρp−2 +φ3ρp−3 + · · ·+φp or γp = φ1γp−1 +φ2γp−2 +φ3γp−3 + · · ·+φpγ0.
In matrix form











ρ1

ρ2

...
ρp











=











1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

...
. . .

...
ρp−1 ρp−2 ρp−3 . . . 1





















φ1

φ2

...
φp











or ρx,Y = ρxφ

or










γ1

γ2

...
γp











=











γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

...
...

...
. . .

...
γp−1 γp−2 γp−3 . . . γ0





















φ1

φ2

...
φp











or Σx,Y = Σxφ.

Hence φY W = Σ−1

x Σx,Y = ρ−1

x ρx,Y . Then φ̂Y W = Σ̃
−1

x Σ̃x,Y = ρ̃−1

x ρ̃x,Y . Here the
estimators are found by replacing ρk by rk = ρ̂k and by replacing γk by γ̂k. Note
that ρx, ρx,Y , Σx and Σx,Y have the desired form since x = (Yt−1, ..., Yt−p)

T and
Y = Yt. Hence cov(Xi, Y ) = cov(Yt−i, Yt) = γi, cov(Xi, Xj) = cov(Yt−i, Yt−j) = γ|i−j|,
corr(Xi, Xj) = corr(Yt−i, Yt−j) = ρ|i−j|, and corr(Xi, Y ) = corr(Yt−i, Yt) = ρi.

45) Suppose equations Yt = (1,xT
t )β+et can be put in matrix form Y = Xβ+e where

X is of full rank with more rows than columns p+1 and β = (φ0,φ
T )T = (φ0, φ1, ..., φp)

T .

Then the least squares estimator β̂LS = (XTX)−1XT Y , φ̂0,LS = Y − β̂
T

LSx, and

φ̂LS = Σ̂
−1

x Σ̂x,Y . The population parameters are φ0 = E(Y ) − βTE(x) and φLS =
Σ−1

x Σx,Y . The stationary AR(p) model can be put in this form, with xt = (Yt−1, ..., Yt−p)
T

Y = Yt, and φLS = φY W . Here Σ̂x and Σ̂x,Y are the usual estimated covariance matrices
used when wi = (xi, Yi)

T are iid from some population. Write the AR(p) equations
Yt = φ0 + φ1Yt−1 + · · · + φpYt−p + et in matrix form Y = Xβ + e or











Yp+1

Yp+2

...
Yn











=











1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...
1 Yn−1 Yn−2 . . . Yn−p





















φ0

φ1

...
φp











+











ep+1

ep+2

...
en











.
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46) For the AR(p) model, assume a normal white noise. Then the maximum likelihood
estimator is approximately the least squares estimator.

47) For the AR(p) model, the method of moments (Yule-Walker or Durbin Levinson),
least squares, and maximum likelihood estimator of 46) are asymptotically equivalent.
Under mild conditions on the white noise with zero mean and variance σ2

e (normality

is not needed),
√
n(φ̂ − φ)

D→ Np(0, σ
2
eΣ

−1

x ), and
√
n(β̂ − β)

D→ Np+1(0, σ
2
eC) where

lim
n→∞

XT X

n
→ C−1. Hence β̂ ≈ Np+1(β, σ̂

2
e(X

TX)−1). So tests from ordinary multiple

linear regression can be applied to AR(p) time series, and SE(β̂i) =
√

σ̂2
e(X

T X)−1

ii .

48) The results for AR(p) models also apply to ARIMA(p,d,0) models for known d
where the AR(p) estimator is applied to Xt = 5dYt.

49) For ARIMA(p,d,q) models, assume Xt = 5dYt is a stationary and invertible
ARMA(p,q) model. If q ≥ 1, then the method of moments estimator applied to Xt

is inefficient. The least squares and maximum likelihood estimators are asymptotically
equivalent and asymptotically normal under mild conditions on the white noise. For d =
0, these estimators try to minimize

∑

(Yt−τ−φ1Yt−1−· · ·−φpYt−p+θ1et−1+· · ·+θqet−q)
2

which is a nonlinear least squares equation since the et−j are unknown. Hence the large
sample confidence intervals and tests for φi and θj have coverage → 1 − α = 0.95 and
type I error → α = 0.05 if α = 0.05.

50) Model I1 is a submodel of model I2 if p1 ≤ p2, q1 ≤ q2 and d1 = d2.
51) In the RR and FF plots of 29), suppose that I1 is a submodel of I2 or that I2 = II

of 27) where I1 has no more parameters than II. Assume n ≥ 10(p2 + q2). If both the RR
and FF plots resemble the identity line (with correlation ≥ 0.97, say), the two models
are about the same, with respect to residuals and fitted values. Then the plots suggest
that I1 is better than I2 if I1 is a submodel of I2. If I2 = II , consider using I1 if I1
has fewer parameters than II or if I1 has nearly the same number of parameters but is
simpler or makes more sense to subject matter experts (eg I1 is an AR(3) model and II

is an ARMA(1,1) model, and the PACF suggests an AR(3) model). Of course you need
to check that the chosen model is good.

52) If in 51) there is not high correlation in both plots, may need to use model I2,
assuming n ≥ 10(p2+q2). However, high correlation in the FF plot (≥ 0.97, say), suggests
that predictions from the 2 models are about the same.

53) Getting a good ARIMA(p,d,q) model: Assume that there is a good
ARIMA(p,d,q) model and that n is large enough to find the model. So n ≥ 10(pI + qI).

i) Plot the time series. If it is clearly nonstationary, eg linear with increasing vari-
ability, take log transformations if necessary, first differences Wt, and plot Wt.

ii) If the time series plot is not clearly nonstationary, make the ACF and PACF. If
the ACF and PACF suggest nonstationarity, take first differences Wt and repeat i) and
ii). Sometimes need second differences Zt. Sometimes need to compare models for Yt

and Wt or models for Wt and Zt.
iii) Get the AICs, find II and other models, if any, to look at.
iv) For model II , check that you reject Ho : φp = 0 and Ho : θq = 0. Want the model

to be stationary and invertible. Watch out for |φp| and |θq| near 1. Want good response
and residual plots. Want the ACF and PACF of the residuals to resemble those of a
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white noise. Want the pvalues of the Ljung-Box statistic to all be above the horizontal
line at 0.05. Want the correlation matrix of the predictors to have absolute off diagonal
entries < 0.9.

v) Fit the ARIMA(pI, d, qI) model, the ARIMA(pI, d, qI+1) model and the ARIMA(pI+
1, d, qI) model. Want φ̂1, ..., φ̂pI

, θ̂1, ..., θ̂qI
to be similar for all three models. Want to fail

to reject Ho : φpI+1 = 0 and Ho : θqI+1 = 0.
vi) To check model I vs II , want p + q ≤ pI + qI and ∆(I) ≤ 7 with preferably

∆(I) ≤ 4. Want iv) and v) to hold with p and q replacing pI and qI. Want good RR and
FF plots as in 51).

vii) Make the usual checks on the selected model I : want ∆(I) ≤ 4 with no more
parameters than Imin, want good response and residual plots, want the model to be
reasonable given the ACF and PACF, want the ACF and PACF of the residuals to
resemble those of a white noise. Want all of the Ljung-Box pvalues to lie above the
horizontal line at 0.05. The fitted model should be stationary and invertible. Want zero
or very few coefficients where you fail to reject Ho : ψ = 0 where ψ is a φi or θj. The
RR and FF plots using I and II should look good.

54) When looking at AICs, you can often eliminate model I2 if there is a model I1
with fewer parameters and a smaller ∆(I). In 27), the ARIMA(1,1,1) model I1 with
∆(I1) = 3.16 is more interesting than the ARIMA(2,1,1) model I2 with ∆(I2) = 5.15,
and more interesting than the ARIMA(1,1,2) model I3 with ∆(I3) = 5.11.

55) Want the ACF and PACF of the residuals to resemble those of a white noise, but
residuals are not a white noise. Benchmarks for concern are |Zk| > 1.25 for k = 1, 2, 3,
and |Zk| > 1.6 for k ≥ 4. The ±2/

√
n lines correspond to |Zk| = 2. These benchmarks

result in more than 5% errors when {êt} is a good approximation to a white noise.
56) The QQ plot of the residuals is used to check normality of residuals. Normality

is reasonable if a straight line fits the plotted points well. Small deviations at the end of
the line are ok. Flattening at both ends suggests nonnormality due to too many cases
in both tails. Cases above the “best fitting” line at the upper right of the plot suggest
positive skew: there are too many cases in the upper right tail for normality.

57) The Ljung-Box test tests whether there is residual autocorrelation. Want all of
the plotted points above the pvalue = 0.05 horizontal line. Want no autocorrelation since
êt ≈ et and {et} is a white noise for a good model.

58) Suppose an ARIMA(p,d,q) model appears to give a good fit. Then fit i) an
ARIMA(p+ 1, d, q) model and ii) an ARIMA(p, d, q + 1) model. If n > 10(p + q), want
φ̂1, ..., φ̂p, θ̂1, ..., θ̂q to be similar in all 3 models. For model i), want to fail to reject
Ho : φp+1 = 0 and for model ii) want to fail to reject Ho : θq+1 = 0.

59) If the true model is an ARIMA(p,d,q) model, you can fit an ARIMA(p+ i, d, q)
model or an ARIMA(p, d, q+j) model with little change in the true parameter estimates.
For an ARIMA(p+ i, d, q+j) model with i, j ≥ 1, the parameters in the overfitted model
are not unique, and the estimated parameters can change greatly. (The RR and FF plots
should still look good if n > 10(p + q + i+ j).)

60) For forecasting, predict Yt+1, ..., Yt+L given the past Y1, ..., Yt (and êj, ..., êt where
often j = 1 or j = max(p, q) + 1).

61) A large sample 100(1−α)% prediction interval (PI) for Yt+j is (Ln, Un) where the
coverage P (Ln ≤ Yt+j ≤ Un) = 1 − δn → 1 − α as n→ ∞.
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