
Math 480 Exam 2 is Wed. Oct. 28. You are allowed 11 sheets of notes and a
calculator. The exam emphasizes HW5-8, and Q5-8.

From the 1st exam:

The conditional probability of A given B is P (A|B) =
P (A ∩B)

P (B)
if P (B) > 0.

Complement rule. P (A) = 1 − P (A).
Know P(Y was at least k ) = P (Y ≥ k) and P(Y at most k) = P (Y ≤ k).

The variance of Y is V (Y ) = E[(Y −E(Y ))2] and the standard deviation of Y is

SD(Y) = σ =
√

V (Y ). Short cut formula for variance. V (Y ) = E(Y 2) − (E(Y ))2

If SY = {y1, y2, ..., yk} then E(Y ) =
k
∑

i=1

yip(yi) = y1p(y1) + y2p(y2) + · · · + ykp(yk)

and E[g(y)] =
k
∑

i=1

g(yi)p(yi) = g(y1)p(y1) + g(y2)p(y2) + · · · + g(yk)p(yk). Also V (Y ) =

k
∑

i=1

(yi − E(Y ))2p(yi) = (y1 − E(Y ))2p(y1) + (y2 − E(Y ))2p(y2) + · · · + (yk − E(Y ))2p(yk).

Often using V (Y ) = E(Y 2)−(E(Y ))2 is simpler whereE(Y 2) = y2
1p(y1) + y2

2p(y2) + · · · + y2
kp(yk).

E(c) = c, E(cg(Y )) = cE(g(Y )), and E[
∑k
i=1 gi(Y )] =

∑k
i=1 E[gi(Y )] where c is any

constant.
If Y has pdf f(y), then

∫∞
−∞ f(y)dy = 1, F (y) =

∫ y
−∞ f(t)dt and f(y) = F ′(y) except

at possibly countably many points, E[g(Y )] =
∫∞
−∞ g(y)f(y)dy, P (a < Y < b) =

F (b)− F (a) =
∫ b
a f(y)dy where < can be replaced by ≤.

F (y) = P (Y ≤ y). If Y has a pmf, P (a < Y ≤ b) = F (b)− F (a).
MATERIAL “NOT ON 1st EXAM”

22) Know how to use most of the RVs from the first page of the exam 1 review. (The
Poisson, Binomial, and Weibull are less likely.)

23) The support of RV Y is the set {y : f(y) > 0} or {y : p(y) > 0}. Formulas for
F (y), f(y), and p(y) are often given for the support or for the support plus the boundaries
of the support (often for (−∞, b], [a, b] or [a,∞)).

Suppose that Y is a RV and that E(Y ) = µ and standard deviation
√

V (Y ) =

SD(Y ) = σ exist. Then the z-score is Z =
Y − µ

σ
. Note that E(Z) = 0, and V (Z) = 1.

24) Know how to do a forwards calculation using the Z table where Z ∼ N(0, 1).
In the story problem you will be told that X is approximately normal with some mean
and SD(X) or V (X). You will be given one or two x∗ values and asked to find a
probability or proportion. Draw a line and mark down the mean and the x∗ values.
Standardize with z∗ = (x∗ − µ)/σ, and sketch a Z curve (N(0,1) pdf). Show how the
Z table is used. Then P (X ≤ x∗) = P (Z ≤ z∗), P (X > x∗) = 1 − P (Z ≤ z∗) and
P (x∗1 < X < x∗2) = P (Z ≤ z∗2) − P (Z ≤ z∗1). Note that < can be replaced by ≤. Given
a z∗, use the leftmost column and top row of the Z table. Intersect this row and column
to get a 4 digit decimal = P (Z ≤ z∗). Note that P (Z > 3.5) ≈ 0 ≈ P (Z < −3.5) and
P (Z < 3.5) ≈ 1 ≈ P (Z > −3.5). Also, P (Z > z) = P (Z < −z). The normal pdf is
symmetric about µ so the N(0,1) pdf is symmetric about 0 and bell shaped. See HW5
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and Q5.

25) Know how to do a backwards calculation using the Z table. Here you are
given a probability and asked to find one or two x∗ values, often a percentile xp
where P (X ≤ xp) = p if X ∼ N(µ, σ2). The Z table gives areas to the left of z∗. So if
you are asked to find the top 5%, that is the same as finding the bottom 95%. If you
are asked to find the bottom 25%, the Z table gives the correct value. If you are asked
to find the two values containing the middle 95%, then 5% of the area is outside of the
middle. Hence .025 area is to the left of x∗(lo) and .025 + .95 = .975 area is to the left
of x∗(hi). The area to the left of x∗, is also the area to the left of z∗. Find the largest 4
digit number smaller than the desired area and the smallest 4 digit number larger than
the desired area. These two numbers will be found in the middle of the Z table. Take
the number closest to the desired area, and to find the corresponding z∗, examine the
row and column containing the number. If there is a tie, average the two numbers to
get z∗. Go along the row to the entry in the leftmost column of the Z table and go
along the column to the top row of the Z table. For example, if your 4 digit number is
.9750, z∗ = 1.96. To get the corresponding x∗, use x∗ = µ + σz∗. The 5th percentile has
z∗ = −1.645 and the 95th percentile has z∗ = 1.645 because there is a tie. See HW5, Q5.

Let Y1 and Y2 be discrete random variables. Then the joint probability mass
function p(y1, y2) = P (Y1 = y1, Y2 = y2) and is often given by a table.

The function p(y1, y2) is a joint pmf if p(y1, y2) ≥ 0, ∀y1, y2 and if
∑

(y1,y2):p(y1,y2)>0

p(y1, y2) = 1.

The joint cdf of any two random variables Y1 and Y2 is
F (y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2), ∀y1, y2.

Let Y1 and Y2 be continuous random variables. Then the joint probability density
function f(y1, y2) satisfies F (y1, y2) =

∫ y2
−∞

∫ y1
−∞ f(t1, t2)dt1dt2 ∀y1, y2.

The function f(y1, y2) is a joint pdf if f(y1, y2) ≥ 0, ∀y1, y2 and
∫∞
−∞

∫∞
−∞ f(y1, y2)dy1dy2 = 1.

P (a1 < Y1 < b1, a2 < Y2 < b2) =
∫ b2
a2

∫ b1
a1
f(y1, y2)dy1dy2

F (y1, ..., yn) = P (Y1 ≤ y1, ..., Yn ≤ yn). In the discrete case, the multivariate probabil-
ity function is p(y1, ..., yn) = P (Y1 = y1, ..., Yn = yn). In the continuous case, f(y1, ..., yn)
is a joint pdf if F (y1, ..., yn) =

∫ yn

−∞ ...
∫ y1
−∞ f(t1, ..., tn)dt1 · · · dtn.

26) Common Problem. If p(y1, y2) is given by a table, the marginal probability
functions are found from the row sums and column sums and the conditional probability
functions are found with the above formulas.

27) COMMON FINAL PROBLEM. Given the joint pdf f(y1, y2) = kg(y1, y2) on
its support, find k, find the marginal pdf’s fY1

(y1) and fY2
(y2) and find the conditional

pdf’s fY1|Y2=y2 (y1|y2) and fY2|Y1=y1(y2|y1).

Often using symmetry helps.

The support of the conditional pdf can depend on the 2nd variable. For example, the
support of fY1|Y2=y2 (y1|y2) could have the form 0 ≤ y1 ≤ y2.
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Double Integrals. If the region of integration Ω is bounded on top by the function
y2 = φT (y1), on the bottom by the function y2 = φB(y1) and to the left and right by the
lines y1 = a and y2 = b then

∫ ∫

Ω f(y1, y2)dy1dy2 =
∫ ∫

Ω f(y1, y2)dy2dy2 =

∫ b

a
[
∫ φT (y1)

φB(y1)
f(y1, y2)dy2]dy1.

Within the inner integral, treat y2 as the variable, anything else, including y1, is treated
as a constant.

If the region of integration Ω is bounded on the left by the function y1 = ψL(y2), on
the right by the function y1 = ψR(y2) and to the top and bottom by the lines y2 = c and
y2 = d then

∫ ∫

Ω f(y1, y2)dy1dy2 =
∫ ∫

Ω f(y1, y2)dy2dy2 =

∫ d

c
[
∫ ψR(y2)

ψL(y2)
f(y1, y2)dy1]dy2.

Within the inner integral, treat y1 as the variable, anything else, including y2, is treated
as a constant.

The support of continuous random variables Y1 and Y2 is where f(y1, y2) > 0. The
support (plus some points on the boundary of the support) is generally given by one to
three inequalities such as 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, and 0 ≤ y1 ≤ y2 ≤ 1. For each variable,
set the inequalities to equalities to get boundary lines. For example 0 ≤ y1 ≤ y2 ≤ 1
yields 5 lines: y1 = 0, y1 = 1, y2 = 0, y2 = 1, and y2 = y1. Generally y2 is on the vertical
axis and y1 is on the horizontal axis for pdf’s.

To determine the limits of integration, examine the dummy variable used in
the inner integral, say dy1. Then within the region of integration, draw a line parallel
to the same (y1) axis as the dummy variable. The limits of integration will be functions
of the other variable (y2), never of the dummy variable (dy1).

If Y1 and Y2 are discrete RV’s with joint probability function p(y1, y2), then the
marginal pmf for Y1 is

pY1
(y1) =

∑

y2

p(y1, y2)

where y1 is held fixed. The marginal pmf for Y2 is

pY2
(y2) =

∑

y1

p(y1, y2)

where y2 is held fixed. The conditional pmf of Y1 given Y2 = y2 is

pY1|Y2=y2(y1|y2) =
p(y1, y2)

pY2
(y2)

.

The conditional pmf of Y2 given Y1 = y1 is

pY2|Y1=y1(y2|y1) =
p(y1, y2)

pY1
(y1)

.
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If Y1 and Y2 are continuous RV’s with joint pdf f(y1, y2), then the marginal prob-
ability density function for Y1 is

fY1
(y1) =

∫ ∞

−∞
f(y1, y2)dy2 =

∫ φT (y1)

φB(y1)
f(y1, y2)dy2

where y1 is held fixed (get the region of integration, draw a line parallel to the y2 axis
and use the functions y2 = φB(y1) and y2 = φT (y1) as the lower and upper limits of
integration). The marginal probability density function for Y2 is

fY2
(y2) =

∫ ∞

−∞
f(y1, y2)dy1 =

∫ ψR(y2)

ψL(y2)
f(y1, y2)dy1

where y2 is held fixed (get the region of integration, draw a line parallel to the y1 axis
and use the functions y1 = ψL(y2) and y1 = ψR(y2) as the lower and upper limits of
integration). The conditional probability density function of Y1 given Y2 = y2 is

fY1|Y2=y2(y1|y2) =
f(y1, y2)

fY2
(y2)

provided fY2
(y2) > 0. The conditional probability density function of Y2 given

Y1 = y1 is

fY2|Y1=y1(y2|y1) =
f(y1, y2)

fY1
(y1)

provided fY1
(y1) > 0.

Random variables Y1 and Y2 are independent if any one of the following conditions
holds.
i) F (y1, y2) = FY1

(y1)FY2
(y2) ∀y1, y2.

ii) p(y1, y2) = pY1
(y1)pY2

(y2) ∀y1, y2.
iii) f(y1, y2) = fY1

(y1)fY2
(y2) ∀y1, y2.

Otherwise, Y1 and Y2 are dependent.

If Y1, Y2, ..., Yn are independent if ∀y1, y2, ..., yn :
i) F (y1, y2, ..., yn) = FY1

(y1)FY2
(y2) · · ·FYn

(yn)
ii) p(y1, y2, ..., yn) = pY1

(y1)pY2
(y2) · · · pYn

(yn) or
iii) f(y1, y2, ..., yn) = fY1

(y1)fY2
(y2) · · · fYn

(yn). Otherwise, the Yi are dependent.

Two RV’s Y1 and Y2 are dependent if their support is not a cross product of
the support of Y1 with the support of Y2. (A rectangular support is an important special
case.) If the support is a cross product, another test must be used to determine whether
Y1 and Y2 are independent or dependent.

For continuous Y1 and Y2, then Y1 and Y2 are independent iff f(y1, y2) = g(y1)h(y2)
on cross product support where g is a positive function of y1 alone and h is a positive
function of y2 alone. Or use f(y1, y2) = g(y1)h(y2) for nonnegative h and g for all y1 and
y2 (not just the cross product support).

To check whether discrete Y1 and Y2 (with rectangular support) are independent given
a 2 by 2 table, find the row and column sums and check whether p(y1, y2) 6= pY1

(y1)pY2
(y2)
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for some entry (y1, y2). Then Y1 and Y2 are dependent. If p(y1, y2) = pY1
(y1)pY2

(y2) for
all table entries, then Y1 and Y2 are independent.

28) Common Problem. Determine whether Y1 and Y2 are independent or depen-
dent.

Suppose that (Y1, Y2) are jointly continuous with joint pdf f(y1, y2).
Then the expectation E[g(Y1, Y2)] =

∫

χ1

∫

χ2
g(y1, y2)f(y1, y2)dy2dy1 =

∫

χ2

∫

χ1
g(y1, y2)f(y1, y2)dy1dy2 where χi are the limits of integration for dyi.

In particular, E(Y1Y2) =
∫

χ1

∫

χ2
y1y2f(y1, y2)dy2dy1 =

∫

χ2

∫

χ1
y1y2f(y1, y2)dy1dy2

If g is a function of Yi but not of Yj , find the marginal for Yi : If g(Y1) is a function of
Y1 but not of Y2, then E[g(Y1)] =

∫

χ1

∫

χ2
g(y1)f(y1, y2)dy2dy1 =

∫

χ1
g(y1)fY1

(y1)dy1. (Usu-
ally finding the marginal is easier than doing the double integral.) Similarly,
E[g(Y2)] =

∫

χ2
g(y2)fY2

(y2)dy2.

In particular, E(Y1) =
∫

χ1
y1fY1

(y1)dy1, and E(Y2) =
∫

χ2
y2fY2

(y2)dy2.

Suppose that (Y1, Y2) are jointly discrete with joint probability function p(y1, y2). Then
the expectation E[g(Y1, Y2)] =

∑

y2

∑

y1 g(y1, y2)p(y1, y2) =
∑

y1

∑

y2 g(y1, y2)p(y1, y2).

In particular, E[Y1Y2] =
∑

y2

∑

y1 y1y2p(y1, y2).

If g is a function of Yi but not of Yj , find the marginal for Yi. If g(Y1) is a function
of Y1 but not of Y2, then E[g(Y1)] =

∑

y2

∑

y1 g(y1)p(y1, y2) =
∑

y1 g(y1)pY1
(y1). (Usually

finding the marginal is easier than doing the double summation.) Similarly,
E[g(Y2)] =

∑

y2
g(y2)pY2

(y2).

In particular, E(Y1) =
∑

y1
y1pY1

(y1) and E(Y2) =
∑

y2
y2pY2

(y2).

The covariance of Y1 and Y2 is Cov(Y1, Y2) = E[(Y1 − E(Y1))(Y2 − E(Y2))].

Short cut formula: Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2).

Let Y1 and Y2 be independent random variables. If g is a function of Y1 alone
and h is a function of Y2 alone, then g(Y1) and h(Y2) are independent random variables
and E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)] if the expectations exist.
In particular, E[Y1Y2] = E[Y1]E[Y2].

Know: Let Y1 and Y2 be independent random variables. Then Cov(Y1, Y2) = 0.

The converse is false: it is possible that Cov(Y1, Y2) = 0 but Y1 and Y2 are depen-
dent.

29) COMMON FINAL PROBLEM. If p(y1, y2) is given by a table, determine
whether Y1 and Y2 are independent or dependent, find the marginal probability functions
pY1

(y1) and pY2
(y2) and find the conditional probability function’s pY1|Y2=y2 (y1|y2) and

pY2|Y1=y1(y2|y1). Also find E(Y1), E(Y2), V (Y1), V (Y2), E(Y1Y2) and Cov(Y1, Y2).
30) COMMON FINAL PROBLEM. Given the joint pdf f(y1, y2) = kg(y1, y2) on

its support, find k, find the marginal pdf’s fY1
(y1) and fY2

(y2) and find the conditional
pdf’s fY1|Y2=y2(y1|y2) and fY2|Y1=y1(y2|y1). Also determine whether Y1 and Y2 are inde-
pendent or dependent, and find E(Y1), E(Y2), V (Y1), V (Y2), E(Y1Y2) and Cov(Y1, Y2). If
Cov(Y1, Y2) 6= 0, or if the support is not a cross product, then Y1 and Y2 are dependent.
If Cov(Y1, Y2) = 0 and if the support is a cross product, you cannot tell whether Y1 and
Y2 are dependent or not. In this case if you can show that f(y1, y2) = g(y1)h(y2) on its
cross product support or that f(y1, y2) = fY1

(y1)fY2
(y2), then Y1 and Y2 are independent,
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otherwise Y1 and Y2 are dependent.

Often using symmetry helps.

E(c) = c, E[g1(Y1, Y2) + · · · + gk(Y1, Y2)] = E[g1(Y1, Y2)] + · · · + E[gk(Y1, Y2)].
In particular, E[aY1 + bY2] = aE[Y1] + bE[Y2].

Know: Let a be any constant and let Y be a RV. Then E[aY ] = aE[Y ] and
V (aY ) = a2V (Y ).

Let Y1, ..., Yn, and X1, ..., Xm be random variables. Let U1 =
∑n
i=1 aiYi and

U2 =
∑m
i=1 biXi for constants a1, ..., an, b1, ..., bn. Then E(U1) =

n
∑

i=1

aiE(Yi),

V (U1) =
n
∑

i=1

a2
iV (Yi) + 2

∑∑

i<j

aiajCov(Yi, Yj) (so i goes from 1 to n−1 and j from i+1

to n) and Cov(U1, U2) =
n
∑

i=1

m
∑

j=1

aibjCov(Yi, Xj).

31) Common problem (Not in Text): Find the pmf of Y = t(X) and the sample
space Y given the pmf pX(x) of X in a table. Step 1) Find y = t(x) for each value of x.
Step 2) Collect x : t(x) = y, and sum the corresponding probabilities:
pY (y) =

∑

x:t(x)=y

pX(x), and table the result.

For example, if Y = X2 and pX (−1) = 1/3, pX (0) = 1/3, and pX(1) = 1/3, then
pY (0) = 1/3 and pY (1) = 2/3.

32) Common problem (Not in Text), the method of transformations: Find
the pdf of Y = t(X) and the sample space Y given the pdf of X where t is increasing or
decreasing:

fY (y) = fX(t−1(y))

∣

∣

∣

∣

∣

dt−1(y)

dy

∣

∣

∣

∣

∣

for y ∈ Y. To be useful, this formula should be simplified as much as possible. To find
the support Y of Y = t(X) if the support of X is X = [a, b], plug in t(x) and find the
minimum and maximum value on [a, b]. A graph can help. If t is an increasing function,
then Y = [t(a), t(b)]. If t is an decreasing function, then Y = [t(b), t(a)].

Tips: a) The pdf of Y will often be that of a gamma RV. In particular, the pdf of Y
is often the pdf of an exponential(λ) RV.
b) To find the inverse function x = t−1(y), solve the equation y = t(x) for x.
c) The log transformation is often used. Know how to sketch log(y) and ey for y > 0.
Recall that in this class, log(y) is the natural logarithm of y.

The method of distribution functions: Suppose that the distribution function
FX(x) is known, Y = t(X), and both X and Y have pdfs.
a) If t is an increasing function then, FY (y) = P (Y ≤ y) = P (t(X) ≤ y) =
P (X ≤ t−1(y)) = FX(t−1(y)) for y ∈ Y.
b) If t is a decreasing function then, FY (y) = P (Y ≤ y) = P (t(X) ≤ y) =
P (X ≥ t−1(y)) = 1 − P (X < t−1(y)) = 1 − FX(t−1(y)) for y ∈ Y.
c) The special case Y = X2 is important. If the support of X is positive, use a). If the
support of X is negative, use b). If the support of X is (−a, a) (where a = ∞ is allowed),
then FY (y) = P (Y ≤ y) =
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P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y) =
∫

√
y

−√
y
fX(x)dx = FX(

√
y) − FX(−√

y) for 0 ≤ y ≤ a2

and

fY (y) =
1

2
√
y
[fX(

√
y) + fX(−√

y)]

for 0 ≤ y ≤ a2.

33) Common Problem: Given two independent RV’s X and Y , written X Y find
E(aX ± bY ) = aE(X) ± bE(Y ) and V (aX ± bY ) = a2V (X) + b2V (Y ).

34) The moment generating function (mgf) of a random variable Y is m(t) =
φ(t) = E[etY ]. If Y is discrete, then φ(t) =

∑

y e
typ(y), and if Y is continuous, then

φ(t) =
∫∞
−∞ etyf(y)dy. The kth moment of Y is E[Y k]. Given the mgf φ(t) exists for

|t| < b for some constant b > 0, find the kth derivative φ(k)(t). Then E[Y k] = φ(k)(0). In
particular, E[Y ] = φ′(0) and E[Y 2] = φ′′(0).

Derivatives. The product rule is (f(y)g(y))′ = f ′(y)g(y) + f(y)g′(y). The quo-

tient rule is

(

n(y)

d(y)

)′
=
d(y)n′(y)− n(y)d′(y)

[d(y)]2
. Know how to find 2nd, 3rd, etc deriva-

tives. The chain rule is [f(g(y))]′ = [f ′(g(y))][g′(y)]. Know the derivative of ln y
= log(y) and ey and know the chain rule with these functions. Know the derivative of
yk.

35) The probability generating function (pgf) of a random variable X is PX(z) =
E[zX]. If X is discrete, then PX(z) =

∑

x z
xp(x), and if X is continuous, then PX(z) =

∫∞
−∞ zxf(x)dx. If the pgf PX (z) exists for z ∈ (1 − ε, 1 + ε) for some constant ε > 0, find

the kth derivative P
(k)
X (z). Then E[X(X−1) · · · (X−k+1)] = P

(k)
X (1) where the product

has k terms. In particular, E[X] = P ′
X(1) and E[X2 −X] = E(X2) − E(X) = P ′′

X(1).
36) φX(t) = PX(et) and PX (z) = φX(log(z)).
37) Let Sn =

∑n
i=1Xi where the Xi are independent with mgf φXi

(t) and pgf PXi
(z).

The mgf of Sn is φSn
(t) =

n
∏

i=1

φXi
(t) = φX1

(t)φX2
(t) · · ·φXn

(t). The pgf of Sn is PSn
(z) =

n
∏

i=1

PXi
(z) = PX1

(z)PX2
(z) · · ·PXn

(z).

Tips: a) in the product, anything that does not depend on the product index i is
treated as a constant. b) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural

logarithm. c)
n
∏

i=1

abθi = a
∑

n

i=1
bθi . In particular,

n
∏

i=1

exp(bθi) = exp(
n
∑

i=1

bθi). d)
∑n
i=1 b =

nb. e)
∏n
i=1 a = an.

X has a negative binomial distribution, X ∼ NB(k, p) if the pmf of X is

p(x) =

(

x− 1

k − 1

)

pk(1 − p)x−k for x = k, k + 1, k + 2, . . . where 0 < p < 1

and k is a positive integer. Take p(k) = pk. E(X) = k/p, V (X) = k(1 − p)/p2,

φ(t) =

[

pet

1 − (1 − p)et

]k

. If X ∼ NB(k = 1, p), then X ∼ geom(p).
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38) Assume the Xi are independent.
a) If Xi ∼ N(µi, σ

2
i ), with support (−∞,∞), then

∑n
i=1 Xi ∼ N(

∑n
i=1 µi,

∑n
i=1 σ

2
i ), and

∑n
i=1(ai+biXi) ∼ N(

∑n
i=1(ai+biµi),

∑n
i=1 b

2
iσ

2
i ). Here ai and bi are fixed constants. Thus

if X1, ..., Xn are iid N(µ, σ2), then X ∼ N(µ, σ2/n).
b) If Xi ∼ G(αi, λ), then

∑n
i=1 Xi ∼ G(

∑n
i=1 αi, λ). Note that the Xi have the same λ,

and if αi ≡ α, then
∑n
i=1 α = nα. G stands for Gamma.

c) If Xi ∼ EXP (λ) ∼ G(1, λ), then
∑n
i=1Xi ∼ G(n, θ).

d) If Xi ∼ χ2
ki
∼ G

(

ki
2
, 1/2

)

, then
n
∑

i=1

Xi ∼ χ2
∑

n

i=1
ki
. If ki ≡ k, then

∑n
i=1 k = nk.

e) If Xi ∼ Poisson(λi) then
∑n
i=1Xi ∼ Poisson(

∑n
i=1 λi). Note that if λi ≡ λ, then

∑n
i=1 λ = nλ.

f) If Xi ∼ bin(ki, p), then
∑n
i=1 Xi ∼ bin(

∑n
i=1 ki, p). Note that the Xi have the same p,

and if ki ≡ k, then
∑n
i=1 k = nk.

g) LetNB stand for negative binomial. IfXi ∼ NB(ki, p), then
∑n
i=1 Xi ∼ NB(

∑n
i=1 ki, p).

Note that the Xi have the same p, and if ki ≡ k, then
∑n
i=1 k = nk.

h) Let Xi ∼ geom(β) ∼ NB(1, p). Then
∑n
i=1 Xi ∼ NB(n, p).

39) i) Given φX(t) or PX (t), use 34) and 35) to find E(X), E(X2), or E(X2)−E(X).

Then find V (X) or SD(X) =
√

V (X).

ii) Given a table for the pmf pX(x), find the mgf φ(t) = φX(t) =
∑

x e
txpX(x), or the

pgf PX(z) =
∑

x z
xpX(x).

iii) Given φX or PX as in ii), find the pmf pX(x).
iv) Given a brand name φX find the parameters of the brand name RV X.
40) Markov’s inequality: If E(X) exists and X ≥ 0 in that the support of X ⊆ [0,∞),

then for any constant a > 0, P (X ≥ a) ≤ E(X)

a
.

41) Chebyshev’s inequality: If E(X) = µ and V (X) = σ2, then for any constant

k > 0, P (|X −µ| ≥ k) ≤ σ2

k2
. Also, P (|X − µ| ≥ kσ) ≤ 1

k2
so P (|X −µ| < kσ) ≥ 1− 1

k2
.

42) Strong Law of Large Numbers (SLLN): Let X1, X2, ... be iid with E(Xi) = µ.
Then X → µ as n→ ∞.

43) Central Limit Theorem (CLT): Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) =
σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi. Then

√
n(Y n − µ)

D→ N(0, σ2).

Hence

√
n

(

Y n − µ

σ

)

=
√
n

(

∑n
i=1 Yi − nµ

nσ

)

=

(

Y n − µ

σ/
√
n

)

=

(

∑n
i=1 Yi − nµ√

nσ

)

D→ N(0, 1).

The notation X ∼ Y means that the random variables X and Y have the same
distribution. The notation Yn

D→ X means that for large n we can approximate the cdf
of Yn by the cdf of X. The distribution of X is the limiting distribution or asymptotic
distribution of Yn, and the limiting distribution does not depend on n. For the CLT,
notice that

Zn =
√
n

(

Y n − µ

σ

)

=

(

Y n − µ

σ/
√
n

)
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is the z–score of Y and

Zn =

(

∑n
i=1 Yi − nµ√

nσ

)

is the z–score of
∑n
i=1 Yi. If Zn

D→ N(0, 1), then the notation Zn ≈ N(0, 1), also written as
Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard normal cdf. Similarly,
the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as if Y n ∼
N(µ, σ2/n). Note that U = Un =

n
∑

i=1

Yi ≈ N(nµ, nσ2) if the Yi are iid. Note that

the approximate distribution, unlike the limiting distribution, does depend on n. Use
the limiting distribution or approximate distribution to find probabilities and percentiles.

44) Common Problem. Perform a forwards calculation for Y using the normal
table. In the story problem you will be told that Y1, ..., Yn are iid with some mean µ and
standard deviation σ (or variance σ2). You will be told that “the CLT holds” or that
the Yi are “approximately normal”. You will be asked to find the probability that the
sample mean is greater than a or less than b or between a and b. That is, find P (Y > a)
P (Y < b) or P (a < Y < b) (the strict inequalities (<,>) may be replaced with nonstrict
inequalities (≤,≥)). Call a and b “ybar values.”
Step 0) Find µY = µ and σY = σ/

√
n.

Step 1) Draw the Y picture with µ and the “ybar values” labeled.

Step 2) Find the z-score for each “ybar value”, eg z =
a− µ

σ/
√
n
.

Step 3) Draw a z-picture (sketch a N(0,1) curve and shade the appropriate area).
Step 4) Use the standard normal table to find the appropriate probability.

The CLT is what allows one to perform forwards calculations with Y . How
large should n be to use the CLT? i) n ≥ 1 for Yi iid normal. ii) n ≥ 5 for Yi iid
approximately normal. iii) If the Yi are iid from a highly skewed distribution, do not
use the normal approximation (forwards calculation) if n ≤ 29. iv) If n > 100, usually
the CLT will hold in this class.

45) Common Problem (Not in Text). You are told that the Yi are iid from a
highly skewed distribution and that the sample size n ≤ 29. You are asked to perform a
forwards calculation such as P (Y > a) if possible. Solution: not possible n is too small
for the CLT to apply.

46) Common Problem. Perform a forwards calculation for
∑n
i=1 Yi using the

normal table if the Yi are iid. Step 0) Find µ∑ Yi
= nµ and σ∑Yi

=
√
nσ.

Step 1) Draw the
∑n
i=1 Yi picture with nµ and the “sum values” labeled.

Step 2) Find the z-score for each “sum value”, eg z =
a− nµ√

nσ
.

Step 3) Draw a z-picture (sketch a N(0,1) curve and shade the appropriate area).
Step 4) Use the standard normal table to find the appropriate probability.

47) Think of W ∼ X|Y = y. Then X|Y is a family of random variables. If E(X|Y =
y) = m(y), then the random variable E(X|Y ) = m(Y ). Similarly if V (X|Y = y) = v(y),
then the random variable V (X|Y ) = v(Y ) = E(X2|Y ) − [E(X|Y )]2.
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48) Assume all relevant expectations exist. Then iterated expectations or the condi-
tional mean formula is E(X) = E[E(X|Y )] = EY [EX |Y (X|Y )]. The conditional variance
formula is V (X) = E[V (X|Y )] + V [E(X|Y )].

49) Let N be a counting RV with support ⊆ {0, 1, 2, ...}. Let N Xi where the Xi

are independent, E(Xi) = E(X) and V (Xi) = V (X). Let SN = X1 +X2 + · · · + XN =
∑N
i=1Xi. Then E(SN ) = E(N)E(X) and V (SN) = V (X)E(N)+[E(X)]2V (N). IfN = 0,

then SN = 0. S = SN is a compound RV and the distribution of N is the compounding
distribution.

End probability, start stochastic processes.
50) A stochastic process {X(t) : t ∈ τ} is a collection of random variables where the

set τ is often [0,∞). Often t is time and the random variable X(t) is the state of the
process at time t.

51) A stochastic process {X(t) : t ∈ {1, 2, ...}} is a white noise if X1, ..., Xt, ... are iid
with E(Xi) = 0 and V (Xi) = σ2.

52) A stochastic process {Y (t) : t ∈ {1, 2, ...}} is a random walk if Y (t) = Yt = Yt−1+et
where the et are iid and Y0 = y0 is a constant. Then Yt = Yt−2 + et−1 + et = Yt−j +
et−j+1 + · · · + et = y0 + e1 + e2 + · · · + et = y0 +

∑t
i=1 ei where

∑t
i=1 ei is known as a

cumulative sum. If E(e) = δ and V (e) = σ2, then E(Yt) = yo + tδ and V (Yt) = tσ2.
Poisson Processes
53) A stochastic process {N(t) : t ≥ 0} is a counting process if N(t) counts the total

number of events that occurred in time interval (0, t]. If 0 < t1 < t2, then the random
variable N(t2) −N(t1) counts the number of events that occurred in interval (t1, t2].

54) N(t) is said to possess independent increments if the number of events that occur
in disjoint time intervals are independent. Hence if 0 < t1 < t2 < t3 < · · · < tk, then the
RVs N(t1) −N(0), N(t2) −N(t1), ..., N(tk) −N(tk−1) are independent.

55) N(t) is said to possess stationary increments if the distribution of events that
occur in any time interval depends only on the length of the time interval.

56) A counting process {N(t) : t ≥ 0} is a Poisson process with rate λ for λ > 0 if i)
N(0) = 0, ii) the process has independent increments, iii) the number of events in any
interval of length t has a Poisson (λt) distribution with mean λt.

57) Hence the Poisson process N(t) has stationary increments, the number of events
in (s, s+ t] = the number of events in (s, s+ t), and for all t, s ≥ 0, the RV
D(t) = N(t+ s) −N(s) ∼ Poisson (λt). In particular, N(t) ∼ Poisson (λt). So

P (D(t) = n) = P (N(t + s) − N(s) = n) = P (N(t) = n) =
e−λt(λt)n

n!
for n = 0, 1, 2, ....

Also E[D(t)] = V [D(t)] = E[N(t)] = V [N(t)] = λt.

58) Let X1 be the waiting time until the 1st event, X2 the waiting time from the
1st event until the 2nd event, ..., Xj the waiting time from the j − 1th event until the
jth event and so on. The Xi are called the waiting times or interarrival times. Let
Sn =

∑n
i=1Xi the time of occurrence of the nth event = waiting time until the nth event.

For a Poisson process with rate λ, the Xi are iid EXP(λ) with E(Xi) = 1/λ, and
Sn ∼ Gamma (n, λ) with E(Sn) = n/λ and V (Sn) = n/λ2. Note that Sn = Sn−1 +Xn is
a random walk with Sn = Yn, Y0 = y0 = 0 and the ei = Xi ∼ EXP (λ).

59) If the waiting times = interarrival times are iid EXP(λ), then N(t) is a Poisson
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process with rate λ.

60) Suppose N(t) is a Poisson process with rate λ that counts events of k distinct types
where pi = P ( type i event). If Ni(t) counts type i events, then Ni(t) is a Poisson process
with rate λi = λpi, and the Ni(t) are independent for i = 1, ..., k. Then N(t) =

∑k
i=1Ni(t)

and λ =
∑k
i=1 λi where

∑k
i=1 pi = 1.

61) A counting process {N(t) : t ≥ 0} is a nonhomogeneous Poisson process with
intensity function or rate function λ(t), also called a nonstationary Poisson process, and
has the following properties. i) N(0) = 0. ii) The process has independent increments.

iii) N(t) is a Poisson m(t) RV where m(t) =
∫ t

0
λ(r)dr, and N(t) counts the number

of events that occurred in (0, t] (or (0, t)).
iv) Let 0 < t1 < t2. The RV N(t2) − N(t1) ∼ Poisson (m(t2) − m(t1)) where

m(t2)−m(t1) =
∫ t2

t1

λ(r)dr and N(t2)−N(t1) counts the number of events that occurred

in (t1, t2] or (t1, t2).

62) If N(t) is a Poisson process with rate λ and there are k distinct events where the
probability pi(s) of the ith event at time s depends s, let Ni(t) count type i events. Then

Ni(t) is a nonhomogeneous Poisson process with λi(t) = λ
∫ t

0
pi(s)ds. Here

∑k
i=1 pi(s) = 1

and the Ni(t) are independent for i = 1, ..., k.

63) A stochastic process {X(t) : t ≥ 0} is a compound Poisson process if X(t) =
N(t)
∑

i=1

Yi

where {N(t) : t ≥ 0} is a Poisson process with rate λ and {Yn : n ≥ 0} is a family of
iid random variables independent of N(t). The parameters of the compound process are
λ and FY (y) where E(Y1) and E(Y 2

1 ) are important. Then E[X(t)] = λtE(Y1) and
V [X(t)] = λtE(Y 2

1 ).

64) The compound Poisson process has independent and stationary increments. Fix
r, t > 0. Then tXr = X(r + t) −X(r) has the same distribution as the RV X(t). Hence
E(tXr) = λtE(Y1) and V (tXr) = λtE(Y 2

1 ).

65) Let MY (t) be the moment generating function (mgf) of Y1. Then the mgf of the
RV X(t) is

MX(t)(r) = exp(λt[MY (r) − 1]).
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