
Math 480 Exam 3 is Wednesday, Dec. 2. You are allowed 11 sheets of notes and

a calculator. The first page of exam 1 review is useful. The exam emphasizes HW8-11,
and Q9-11. The final is Friday, December 11, 2:45-4:45.

From Exam 2 review, know iterated expectations and the conditional variance
formula 48), 49), and the Stochastic Processes material 50-65).

Markov Chains ch. 4

66) A (finite or finite state) Markov chain {Xn : n = 0, 1, 2, ...} is a discrete stochastic
process for which time only takes on integer values. Xn will have J possible values 1,
..., J called states. If Xn = i ∈ {1, ..., J}, then the Markov chain is in state i at time n.
Suppose xk ∈ {1, ..., J} for k ≥ 0. The Markov property is

P (Xn+1 = j|Xn = i, Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1, X0 = x0) = P (Xn+1 = j|Xn = i)

for any n ≥ 1. Hence the conditional probability of Xn+1 given the past only depends
on the state the Markov chain is in at time Xn. Or, given Xn = i, then Xn+1 is
independent of the rest of the past (time periods 0, 1, ..., n − 1). If 0 ≤ d < n then
P (Xn+1 = j|Xn = i, Xn−1 = xn−1, ..., Xd = xd) = P (Xn+1 = j|Xn = i).

67) Know: The transition probability pij = P (Xn+1 = j|Xn = i). The transition

probability matrix

P =













p11 p12 . . . p1J

p21 p22 . . . p2J
...

...
. . .

...
pJ1 pJ2 . . . pJJ













.

68) The sum of the probabilities in any row of P is
J
∑

j=1

pij = 1 for row i = 1, ..., J.

69) For small J , a transition diagram list the J states with J arrows leaving each
state and J arrows entering each state. Then there are J2 arrows corresponding to the
pij that form P . An arrow labelled pij goes from state i to state j. An arrow labelled
pii goes from state i to state i. A variant on the transition diagram leaves out pii, which
can be found using 68), and leaves out any arrow corresponding to pij = 0 for i 6= j.

70) Know: P (Xn+m = j|Xm = i) = pn
ij where pn

ij is the ijth entry of P n = PP · · ·P
where there are n matrices P in the multiplication. This formula is for a homogeneous
Markov chain where the transition probability matrix does not depend on the time period
j, so P = P (j) for j = 0, 1, 2, ....

71) State j is accessible from state i if pn
ij > 0 for some n ≥ 0. Then, starting in state

i, it is possible that the process will enter state j in a finite number of steps.

72) Two states i and j that are accessible to each other communicate, written i ↔ j.

73) States that communicate with each other form an equivalence class. A Markov
chain is irreducible if there is only one class, so all states communicate.

74) For state i, let ri denote the probability, starting in state i, that the process will
ever reenter state i. State i is recurrent if ri = 1 and transient if ri < 1. State i is
absorbing if pii = 1 so that the other entries in the ith row are 0. Once in an absorbing
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state, such as death, the Markov chain stays in the absorbing state. An absorbing state
is recurrent. All of the states in an irreducible Markov chain are recurrent.

75) A recurrent state will be visited infinitely often. A transient state is not certain
to be revisited and will only be visited a finite number of times. Hence a Markov chain
must have at least on recurrent state to run indefinitely for n = 1, 2, .... Starting in a
transient state i, the number of time periods N the process will be in state i, including
the initial time, is geometric with finite mean E(N) = 1/(1 − ri). State i is recurrent if
E(N) = ∞ and is transient if E(N) < ∞.

76) If state i is recurrent and i ↔ j, then state j is recurrent. If state i is transient
and i ↔ j, then state j is transient.

77) Know: Let πn = (π1n, ..., πJn) denote the vector of probabilities of being in states
1 to J at time n. Let π0 = (π10, ..., πJ0) where πi0 = P (X0 = i) is the probability that
the process is in state i at the start, time 0. Then πn is the state vector at time n and

πn = π0P
n = π1P

n−1 = π2P
n−2 = · · · = πkP

n−k = · · · = πn−1P

and πn+1 = πnP . This formula is for a homogeneous Markov chain.

78) π0 is the initial distribution of the Markov chain. Either π0 is given or the
problem states that the Markov chain starts in state j. Then π0 = (0, ..., 0, 1, 0, ..., 0)
where the 1 is in position j.

79) For a homogeneous Markov chain, we could have P n → P∞ as n → ∞, or we
could have P n periodic: P n takes on K matrices as n → ∞ and does not converge. A
homogeneous irreducible Markov chain that is not periodic is aperiodic, and has P n →
P∞ and limn→∞ πn = π∞ = π = (π1 · · · πJ) where π is the stationary distribution of
the irreducible aperiodic Markov chain. Here πj = πj∞ is the long run proportion of time
the chain is in state j for j = 1, ..., J .

80) An irreducible aperiodic Markov chain has limn P n
ij = πj as n → ∞ so

P n → P∞ =













π

π
...
π













.

Hence each row of P∞ = π. Note that πP∞ = π. It is also true that πP = π.
81) Know: For a nonhomogeneous Markov chain, the matrix of transition probabil-

ities P (k) depends on the kth step of the process. Then πn = state vector at time n
satisfies πn = π0P

(1)P (2) · · ·P (n).
Sometimes the following notation is used P (j) = P j = Q(j) = Qj.

82) Know: For hand calculations multiply the state vector times the matrix. Avoid
multiplying matrices. So π3 = (π0P

(1))P (2)P (3) = (π1P
(2))P (3) = π2P

(3) for a nonho-
mogeneous Markov chain, and π3 = (π0P )PP = (π1P )P = π2P for a homogeneous
Markov chain.
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ch. 10 Brownian Motion
83) A stochastic process {X(t), t ≥ 0} is a Brownian motion or Wiener process if

i) X(0) = 0, ii) the process has independent and stationary increments, iii) for every
t > 0, X(t) ∼ N(0, σ2t). Hence E[X(t)] = 0 and V [X(t)] = σ2t for all t ≥ 0. iv) X(t) is
continuous but nowhere differentiable in t.

See Exam 2 review 54) and 55) for independent and stationary increments.
84) Let 0 ≤ t1 < t2. Then X(t2) − X(t1) ∼ N [0, σ2(t2 − t1)]. Let t, s > 0. Then

X(t + s) − X(s) ∼ N(0, σ2t).
85) Know: When σ = 1, the process in 83) is called a standard Brownian motion

{Z(t), t ≥ 0}. For s, t > 0, Z(t) − Z(s) ∼ N(0, |t − s|).
86) W = Z(t + s)|Z(t) ∼ N [Z(t), s] with E(W ) = Z(t) and V (W ) = s. For a story

problem, t + s − t = s. Hence if W = Z(12)|Z(3) = 52, then t = 3 and s = 12 − 3 = 9.
Thus W ∼ N(52, 9).

Note that Z(t + s) = Z(t + s) − Z(t) + Z(t) and Z(t + s) − Z(t) ∼ N(0, s) Z(t).
Given Z(t), the value Z(t) acts as a constant.

87) Let s < t. Then W ∼ Z(s)|Z(t) = B ∼ N
[

sB

t
,
s

t
(t − s)

]

with E(W ) = sB/t

and V (W ) = s(t − s)/t.
88) A stochastic process {B(t), t ≥ 0} is a Brownian motion with drift coefficient

µ and variance parameter σ2 if B(t) = µt + σZ(t) where Z(t) is a standard Brownian
motion. Then i) B(0) = 0, ii) B(t) has stationary and independent increments, iii)
B(t) ∼ N(µt, σ2t). The volatility of the process is σ.

89) By 90), B(t) is an arithmetic Brownian motion with B(0) = 0. Hence
B(t + s) − B(t) ∼ N(µs, σ2s), and B(t + s)|B(t) ∼ N(B(t) + µs, σ2s) where s, t > 0.

90) A stochastic process {A(t), t ≥ 0} is an arithmetic Brownian motion with drift
coefficient µ and variance parameter σ2 if A(t) = A(0) + µt + σZ(t) where Z(t) is a
standard Brownian motion. Then A(t) ∼ N(A(0) + µt, σ2t), A(t) − A(0) ∼ N(µt, σ2t),
A(t + s) − A(t) ∼ N(µs, σ2s), and A(t + s)|A(t) ∼ N(A(t) + µs, σ2s) where s, t > 0.

91) A stochastic process {G(t), t ≥ 0} is a geometric Brownian motion if log(G(t)) =
A(t). See 90). Then G(t) ∼ lognormal(A(0)+µt, σ2t), and G(t)/G(0) ∼ lognormal(µt, σ2t).
By 92), E(G(t)) = exp(A(0) + µt, 0.5σ2t) and E[G(t)/G(0)] = exp(µt, 0.5σ2t).

92) If Y ∼ N(µ, σ2), then X = eY ∼ lognormal(µ, σ2). Then E(Xj) = E(ejY ) =
φY (j) where φY (t) = exp(µt + 0.5σ2t).

Ch. 11: Simulation

93) Here are some distributions with the pdf f(x), cdf F (x), and F−1(u). Recall that
you solve u = F (x) for x = F−1(u) where 0 < u < 1.

a) Exponential(λ)= Gamma(α = 1, λ): f(x) = λe−λx where x, λ > 0. F (x) =

1 − e−λx, F−1(u) = −
1

λ
log(1 − u).

b) (two parameter) Pareto(α, θ): f(x) =
αθα

(θ + x)α+1
where α, θ, and x are positive.

F (x) = 1 −

(

θ

x + θ

)α

, F−1(u) = θ[(1 − u)−1/α − 1].

c) If X ∼ single parameter Pareto(α, θ): f(x) =
αθα

xα+1
I(x > θ) where α > 0 and θ is
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real. Note the support is x > θ. F (x) = 1 −

(

θ

x

)α

for x > θ. F−1(u) = θ[(1 − u)−1/α].

d) Weibull(θ, τ ): f(x) =
τ (x/θ)τe−(x/θ)τ

x
where θ > 0 and τ > 0.

F (x) = 1 − e−(x/θ)τ

, F−1(u) = θ[− log(1 − u)]1/τ .
If X ∼ EXP (λ), then X ∼ Weibull(θ = 1/λ, τ = 1).

e) Inverse Weibull(θ, τ ): f(x) =
τ (θ/x)τe−(θ/x)τ

x
.

Here θ, τ > 0 and the Inverse Weibull(θ, τ = 1) RV is the Inverse Exponential(θ) RV.
F−1(u) = θ[− log(u)]−1/τ .

f) If X ∼ N(µ, σ2), then the cdf FX(x) = Φ
(

x − µ

σ

)

, Z ∼ N(0, 1). F−1(u) = µ+σzu

where σ > 0, µ is real, and P (Z ≤ zu) = u with Z ∼ N(0, 1).

g) If X ∼ lognormal(µ, σ2): F (x) = Φ

(

log(x)− µ

σ

)

, If X ∼ LN(µ, σ), then log(X) ∼

N(µ, σ2). Here σ > 0 and µ is real. F−1(u) = exp(µ + zuσ).
94) Inversion Method for a pdf Xi = F−1(Ui): Let X be from a distribution

with increasing cdf F (x). Let u1, ..., un be pseudo U(0,1) random numbers. Then x1 =
F−1(u1), ..., xn = F−1(un) are pseudo random numbers from the distribution of X. So
xi = F−1(ui) where F−1(u) is given for several brand name distributions in 93). If F−1(u)
is not given, solve u = F (x) for x = F−1(u) and use xi = F−1(ui). Sometimes need to
get the cdf F (X) =

∫ x
0 f(t)dt where f(t) is the pdf of a RV X with support x > 0.

95) Normal approximation to the binomial. Let Y count the number of successes in n
trials where the probability of a success in p then Y is binomial(n = 50, p = 0.3). Let X

be a normal RV with mean µ = np and SD σ =
√

np(1 − p). Then P (Y ≥ 18) = P (X ≥

17.5) and P (Y ≤ 18) = P (X ≤ 18.5). Ideally, this approximation should not be used
unless n > 9p/(1 − p) and n > 9(1 − p)/p. In general, replace integer 18 by integer i.

96) Normal approximation to the Poisson. Let Y ∼ Poisson(λ) where λ ≥ 9. Let Y
be a normal RV with mean µ = λ and variance σ2 = λ. Then P (Y ≥ 18) = P (X ≥ 17.5)
and P (Y ≤ 18) = P (X ≤ 18.5). In general, replace integer 18 by integer i.

97) If the data X1, ..., Xn is arranged in ascending order from smallest to largest and
written as X(1) ≤ X(2) ≤ · · · ≤ X(n), then X(i) is the ith order statistic and the X(i)’s are
called the order statistics. Let the Xi be iid with cdf F . Let xα be the 100 αth percentile
(quantile) of X: F−1(α) = xα and F (xα) = α where 0 < α < 1. Let the greatest integer
function bxc = the greatest integer ≤ x, i.e. b7.7c = 7. Let j = b(n + 1)αc. The sample
percentile x̂α = (1−h)X(j) +hX(j+1) for some h where 0 ≤ h ≤ 1. For hand calculations,
take h = 1 so x̂α = X(j+1) (take x̂α = X(n) if j = n).

98) Consider intervals that contain c cases [X(1), X(c)], [X(2), X(c+1)], ..., [X(n−c+1), X(n)].
Compute X(c) − X(1), X(c+1) − X(2), ..., X(n) − X(n−c+1). Then the estimator shorth(c)
= [X(s), X(s+c−1)] is the interval with the shortest length. A large sample 100(1 − δ)%
prediction interval (PI) (Ln, Un) is P (Xf ∈ (Ln, Un)) → τ ≥ 1 − δ as n → ∞. The
shorth(c) interval is a large sample 100(1 − δ)% PI if c/n → 1 − δ as n → ∞ that often
has the asymptotically shortest length.

99) Inversion Method for a pmf: Suppose the pmf has support 0, 1, ..., d, ..., J
where J = ∞ is possible. Let u(n) be the largest U(0,1) pseudo number where F (d−1) <
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u(n) ≤ F (d). Given u1, ..., un, set xi = j if F (j − 1) ≤ ui < F (j) where F (−1) = 0, so
set xi = 0 if 0 ≤ ui < F (0). See the table below.

k pk = P (X = k) F (k) range of u resulting xi

0 p0 p0 = F (0) 0 ≤ u < F (0) 0
1 p1 p1 + F (0) = F (1) F (0) ≤ u < F (1) 1
...

...
...

...
...

j pj pj + F (j − 1) = F (j) F (j − 1) ≤ u < F (j) j
...

...
...

...
...

d pd pd + F (d − 1) = F (d) F (d − 1) ≤ u < F (d) d

100) One way to generate U(0,1) pseudo RVs is to use xn+1 = (a ∗ xn + c) %% m
for n ≥ 0 where x0 = d is a seed. Then take ui = xi/m for i = 1, ..., k. The R modulo
function %% computes the remainder: e1 %% e2 = e1 − (be1/e2c)e2.) For example, use
xn+1 = (69069 ∗ xn + 1) %% (232) and take ui = xi/2

32 for i = 1, ..., k where the seed
x0 = d, e.g. d = 12345. The R program runif is better.

ch. 7: Renewal Theory:

101) Let {N(t), t ≥ 0} be a counting process, and let Xn be the interarrival time or
waiting time between the (n− 1)th and nth events counted by the process, n ≥ 1. If the
nonnegative Xi are iid, then {N(t), t ≥ 0} is a renewal process.

102) A Poisson process with rate λ is a renewal process where the Xi are iid EXP(λ).
103) As with the Poisson process, let Sn =

∑n
i=1 Xi = the time of occurrence of the

nth event = waiting time until the nth event. Note that Sn = Sn−1 + Xn is a random
walk with Sn = Yn, Y0 = y0 = 0 and ei = Xi. Let E(Xi) = µ > 0. Then E(Sn) = nµ
and V (Sn) = nV (Xi) if V (Xi) exists.

104) If E(Xi) = µ = ∞, take 1/µ = 0. Then
N(t)

t
→

1

E(Xi)
=

1

µ
as t → ∞. When

an event occurs we say a renewal has taken place. Then 1/µ is the rate of the renewal
process. Since the average time between renewals is µ, the average rate of renewal is 1
every µ time units.

105) If the Xi are the iid waiting times of a renewal process, then

E[X1 + · · · + XN(t)+1] = E[
N(t)+1
∑

i=1

Xi] = E(X)E[N(t) + 1].

106) Let m(t) = E[N(t)] be the renewal function = mean value function. Elementary

Renewal Theorem:
m(t)

t
=

E[(N(t)]

t
→

1

E(Xi)
=

1

µ
as t → ∞.

107) Normal approximation (CLT for a renewal process): Let E(Xi) = µ and V (Xi) =
σ2. Then

N(t) − t
µ

√

tσ2

µ3

D
→ N(0, 1)

as t → ∞. Thus

N(t) ≈ N

(

t

µ
,
tσ2

µ3

)

.
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108) Let W1, W2, ... be iid Bernoulli(p) ∼ bin(1, p) random variables. Let the Bernoulli
process N(t) count the number of 1’s = number of “successes.” Then the waiting times

Xi are iid geom(p), and Sn ∼ NB(n, p). Then N(t) =
btc
∑

i=1

Wi ∼ bin(btc, p) for t ≥ 1, and

N(t) = 0 for 0 ≤ t < 1.
109) If Y has a hypergeometric distribution, Y ∼ HG(C, N − C, n), then the data set

contains N objects of two types. There are C objects of the first type (that you wish to
count or “success”) and N − C objects of the second type. Suppose that n objects are
selected at random without replacement from the N objects. Then Y counts the number
of the n selected objects that were of the first type. The pmf of Y is

p(y) = P (Y = y) =

(

C
y

)(

N−C
n−y

)

(

N
n

)

where the integer y satisfies max(0, n−N + C) ≤ y ≤ min(n, C). The right inequality is
true since if n objects are selected, then the number of objects y of the first type must
be less than or equal to both n and C . The first inequality holds since n − y counts the
number of objects of second type. Hence n − y ≤ N − C .

Let p = C/N. Then

E(Y ) =
nC

N
= np

and

V (Y ) =
nC(N − C)

N2

N − n

N − 1
= np(1 − p)

N − n

N − 1
.

If n is small compared to both C and N − C then Y ≈ bin(n, p). If n is large but n
is small compared to both C and N −C then Y ≈ N(np, np(1 − p)).
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