
Math 584 Exam 3 is on Tuesday, April 27. You are allowed 20 sheets of notes and a
calculator. CHECK FORMULAS! The Final is Tuesday, May 4: 2:45-4:45 with 30 sheets
of notes.

85) If the MLR (multiple linear regression) model contains a constant, then SSTO =
SSE + SSR where the total sum of squares (corrected for the mean) SSTO =∑n

i=1(Yi−Y )2, the regression sum of squares SSR =
∑n

i=1(Ŷi−Y )2 and error (or residual)

sum of squares SSE =
∑n

i=1(Yi − Ŷi)
2 =

∑n
i=1 e

2
i .

86) If the MLR model contains a constant, then the coefficient of multiple determi-

nation R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO
.

87) MLR output for the Anova F test H0 : β1 = · · · = βp−1 = 0 has the form shown
below where under “Source,” “Model” often replaces “Regression” and “Error” often
replaces “Residual.” Here MS = SS/df.

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β1 = · · · = βp−1 = 0

88) If the MLR model has a constant β0, then

Fo =
MSR

MSE
=

R2

1 −R2

n− p

p− 1
.

89) R2 does not decrease and usually increases as predictors are added to the linear
model. Want n ≥ 10p.

90) If θ̂ ∼ ANp(θ,Σn), then aT θ̂ ∼ ANp(a
Tθ,aT Σna), and a large sample

100(1 − δ)% confidence interval (CI) for aTθ is aT θ̂ ± tdn,1−δSE(aT θ̂) =

aT θ̂ ± tdn,1−δ

√
aT Σ̂na where dn → ∞ as n→ ∞.

91) For the full rank OLS model, β̂ ∼ ANp(β,MSE(XTX)−1). So aT β̂ ∼
AN1(a

Tβ, MSE aT (XT X)−1a), and a large sample 100(1 − δ)% confidence interval

(CI) for aTβ is aT β̂ ± tn−p,1−δ

√
MSE aT (XT X)−1a where P (T ≤ tn−p,1−δ) = 1 − δ if

T ∼ tn−p.
92) A large sample 100(1 − δ)% CI for βi uses aT = (0, ..., 0, 1, 0, ..., 0) where the 1 is

in the (i+ 1)th position for i = 0, ..., p− 1. Then aT (XT X)−1a is the (i+ 1)th diagonal
element dii of (XT X)−1. So the CI is β̂i ± tn−p,1−δ

√
MSE dii = β̂i ± tn−p,1−δSE(β̂i).

93) Suppose there are k 100(1 − δS)% CIs where 1 − δS is the confidence for a single
confidence interval. Suppose we want the overall familywise confidence 1−δT (probability
before gathering the data and making the k CIs) that all k CIs contain their θi. Hence
δT = P(at least one of the k CIs does not contain its θi, before gathering data). Then δT

is called the familywise error rate. Can get procedures where 1 − δT ≥ 1 − δ.
94) Assume ε ∼ Nn(0, σ

2I). i) The Bonferroni t intervals use δS = δ/k. Then
1 − δT ≥ 1 − δ.

ii) Scheffe’s CIs for aT β have the form aT β̂ ±
√
pFp,n−p,1−δ

√
MSE

√
aT (XT X)−1a,

and have 1 − δT ≥ 1 − δ.
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95) Scheffe’s CIs are longer than the corresponding Bonferroni CIs. Scheffe’s CIs
allow data snooping: you can decide on the aT β to use after getting the data. Usually
need to decide on the aTβ to use before gathering data for valid inference.

96) If the normality in 94) does not hold, then the large sample familywise confidence
1 − δT,n → 1 − δT ≥ 1 − δ as n→ ∞ for a large class of 0 mean iid error distributions.

97) A large sample 100(1 − δ)% confidence region for θ is a set Cn such that
P (θ ∈ Cn) → 1− δ as n→ ∞. For the full rank OLS model, a large sample 100(1− δ)%
confidence region for β is Cn = {β : (β − β̂)T XTX(β − β̂) ≤ MSE p Fp,n−p,1−δ} =

{β : D2

β
(β̂, (XT X)−1) ≤MSE p Fp,n−p,1−δ}, a hyperellipsoid for β centered at β̂.

98) For the full rank OLS model Y = xTβ + ε, a large sample 100(1 − δ)% CI for

E(Y ) = E(Y |x) = xTβ is xT β̂ ± tn−p,1−δ

√
MSE

√
xT (XT X)−1x =

Ŷ ± tn−p,1−δ

√
MSE

√
hx. Want hx ≤ max(h1, ..., hn), where hi = xT

i (XT X)−1xi, to
avoid extrapolation.

99) Consider predicting future test value Yf given xf and training data (x1, Y1), ..., (xn, Yn)
where Yi = xiβ + εi and Yf = xfβ + εf . For the full rank OLS model, ε1, ..., εn, εf are iid

and Yf Y1, ..., Yn. Hence Yf Ŷf = xT
f β̂ since β̂ is computed using the training data.

Then E(Ŷf − Yf ) = 0 and V (Ŷf − Yf ) = σ2(1 + hf ) where hf = xf(X
T X)−1xf is the

leverage of xf . Want hf ≤ max(h1, ..., hn) to avoid extrapolation.

100) A large sample 100(1 − δ)% prediction interval (PI) has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn)
P→ 1 − δ as the sample size n → ∞. If the highest density region is

an interval, then a PI is asymptotically optimal if it has the shortest asymptotic length
that gives the desired asymptotic coverage.

101) The length of a large sample CI goes to 0 while the length of a good PI goes to
U − L as n→ ∞, where P (Yf ∈ [L,U ]|xf ) ≥ 1 − δ.

102) Know: Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order statistics,
and let c be a positive integer. Compute Z(c) −Z(1), Z(c+1) − Z(2), ..., Z(n) − Z(n−c+1). Let

shorth(c) = [Z(d),Z(d+c−1)] = [ξ̃δ1
, ξ̃1−δ2

] correspond to the interval with the smallest
distance.

103) Let kn = dn(1 − δ)e where dxe is the smallest integer ≥ x, e.g., d7.7e = 8.

Let an =
(
1 + 15

n

)√
n

n−p

√
(1 + hf ). Apply the shorth(c = kn) estimator to the residuals

e1, ..., en: shorth(c) = [e(d), e(d+c−1)] = [ξ̃δ1
, ξ̃1−δ2

]. Then a large sample 100 (1 − δ)% PI
for Yf is

[Ŷf + anξ̃δ1
, Ŷf + anξ̃1−δ2

].

For the full rank OLS model, this PI is asymptotically optimal if the xi are bounded in
probability and the iid εi come from a large class of zero mean unimodal distributions.

104) For the full rank OLS model, the 100 (1 − δ)% classical PI for Yf is

Ŷf ± tn−p,1−δ/2

√
MSE (1 + hf )

where P (T ≤ tn−p,δ) = δ if T has a t distribution with n − p degrees of freedom.
Asymptotically, this PI estimates [E(Yf |xf )−σZ1−δ/2, E(Yf |xf ) + σZ1−δ/2], the interval
between two quantiles of a N(E(Yf |xf), σ

2) distribution where P (Z ≤ Zα) = α if Z ∼
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N(0, 1). This PI may not perform well if the εi are not iid N(0, σ2) since the normal
quantiles are not the correct quantiles for other error distributions.

105) One of the best ways to check the linear model is to make a residual plot of Ŷ
versus e and a response plot of Ŷ versus Y with the identity line that has unit slope
and zero intercept added as a visual aid. For multiple linear regression (MLR), assume
the zero mean errors are iid from a unimodal distribution that is not highly skewed. If
the iid constant variance MLR model is useful, then i) the plotted points in the response
plot should scatter about the identity line with no other pattern, and ii) the plotted
points in the residual plot should scatter about the e = 0 line with no other pattern. If
either i) or ii) is violated, then the iid constant variance MLR model is not sustained. In
other words, if the plotted points in the residual plot show some type of dependency, eg
increasing variance or a curved pattern, then the MLR model may be inadequate.

106) Omitting important predictors, known as underfitting, can be a serious problem.
Then for the multiple linear regression model, β̂ tends to be a biased estimator of β,
and leaving out important predictors could destroy the linearity of the model and could
result in a model that has a nonconstant variance function. Let

x =

(
x1

xp−1

)
and β =

(
β1

βp−1

)
,

assume that Y = xT β + ε is a good OLS model. Hence E(Y |x) = βTx = βT
1 x1 +

βp−1xp−1 and V (Y |x) = σ2. If xp−1 is omitted from the model, then E(Y |x1) = βT
1 x1 +

βp−1E(xp−1|x1) and V (Y |x1) = σ2 + β2
p−1V (Y |x1). Note that linearity is destroyed if

E(xp−1|x1) is nonlinear and the model has a nonconstant variance function if V (Y |x1)
is not constant and so depends on x1. On the other hand, if E(xp−1|x1) = θTx1 and
V (xp−1|x1) = τ 2, then E(Y |x1) = ηT x1 is linear and V (Y |x1) = σ2 + β2

p−1τ
2 = γ2 is

constant, where η = β1 + βp−1θ.
107) Suppose x1 = 1 and (Y, x2, ..., xp−1)

T = (Y,wT )T ∼

Np

( (
µY

µw

)
,

(
σ2

Y ΣY,w
Σw,Y Σw

) )
.

Then Y |xi1, ..., xik follows a linear model with constant variance: Yi = β0k +β1kxi1 + · · ·+
βkkxik + εik where V (εik) = σ2

k. Models with lower σ2
k are better.

108) Can also get linear models with underfitting if the columns of X are orthogonal:
predictors can be omitted without changing the β̂i of the predictors that are in the model.

109) Having too many predictors, known as overfitting, is much less serious than

omitting important predictors. The β̂i for unneeded xi tend to have β̂i
P→ 0. Suppose

Y = X1β1+ε is the appropriate OLS model where X1 is an n×k matrix, X = (X1 X2)
is n× p, and

β =

(
β1

β2

)
=

(
β1

0

)

since β2 = 0. Consider overfitting by fitting the OLS model using X instead of X1.
Then large sample inference is correct using X, but not as precise as the model that
omits predictors with βi = 0 (the model that uses X1). For the overfitted model, R2 is
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too high, and CIs for βi are longer using X than using X1 for i = 1, ..., k. Also want
n ≥ 10p for the overfitted model and n ≥ 10k for the model using X1.

110) If Y = Xβ + ε with E(ε) = 0 but Cov(ε) = σ2V instead of σ2I , then under

regularity conditions β̂
P→ β, but typically i) Cov(β̂) 6= σ2(XT X)−1 and ii) E(MSE) 6=

σ2. GLS can be used if V is known. A sandwich estimator can also be used to get a
consistent estimator of Cov(β̂).

111) Outliers can often be found using the response and residual plots. The OLS
fitted values (so identity line) will often go right through a cluster of gross outliers. Look
for a gap separating the outliers from the bulk of the data. Fit OLS to the bulk of the
data producing OLS estimator b. Then make the response and residual plots for all of
the data using Ŷ = xT b. If the identity line still goes through the far away cluster,
then it may be a cluster of “good leverage cases,” otherwise the cases are likely outliers.
Robust estimators attempt to automatically fit the bulk of the data well.

112) For variable selection, the model Y = xTβ+ ε that uses all of the predictors is
called the full model. A model Y = xT

I βI + ε that only uses a subset xI of the predictors
is called a submodel. The full model is always a submodel.

113) Let Imin correspond to the submodel with the smallest Cp. Find the submodel
II with the fewest number of predictors such that Cp(II) ≤ Cp(Imin) + 1. Then II is the
initial submodel that should be examined. It is possible that II = Imin or that II is
the full model. Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin) + 4
are interesting and should also be examined. Models I with k predictors, including a
constant, and with fewer predictors than II such that Cp(Imin)+ 4 < Cp(I) ≤ min(2k, p)
should be checked. Be able to find model II from computer output.

114) Forward selection Step 1) k = 1: Start with a constant w1 = x1. Step 2) k = 2:
Compute Cp for all models with k = 2 containing a constant and a single predictor xi.
Keep the predictor w2 = xj, say, that minimizes Cp.
Step 3) k = 3: Fit all models with k = 3 that contain w1 and w2. Keep the predictor w3

that minimizes Cp. ...
Step j) k = j: Fit all models with k = j that contains w1, w2, ..., wj−1. Keep the predictor
wj that minimizes Cp. ...
Step p): Fit the full model.

Backward elimination: All models contain a constant = u1. Step 0) k = p: Start
with the full model that contains x1, ..., xp. We will also say that the full model contains
u1, ..., up where u1 = x1 but ui need not equal xi for i > 1.
Step 1) k = p − 1: Fit each model with k = p − 1 predictors including a constant.
Delete the predictor up, say, that corresponds to the model with the smallest Cp. Keep
u1, ..., up−1.
Step 2) k = p− 2: Fit each model with p− 2 predictors including a constant. Delete the
predictor up−1 corresponding to the smallest Cp. Keep u1, ..., up−2. ...
Step j) k = p− j: fit each model with p− j predictors including a constant. Delete the
predictor up−j+1 corresponding to the smallest Cp. Keep u1, ..., up−j. ...
Step p − 2) k = 2. The current model contains u1, u2 and u3. Fit the model u1, u2 and
the model u1, u3. Assume that model u1, u2 minimizes Cp. Then delete u3 and keep u1

and u2.
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115) Can do all subsets variable selection for up to about 30 predictors. Criterion

other than Cp, such as MSE(I) or R
2
(I) = 1 − [1− R2(I)] n

n−k
where model I contains k

predictors, including a constant (adjusted R2), can be used. Cp needs a good full model
with n ≥ 10p or 5p.

116) Collinearity occurs when at least one column of X = [v0,v1, ...,vp−1] is highly
correlated with a linear combination of the other columns. Regress vj on v0,v1, ...,vj−1,
vj+1, ...,vp−1. Let R2

j be the coefficient of determination (squared multiple correlation

coefficient) from the regression. The variance inflation factor V IFj =
1

1 − R2
j

. Let djj

be given in 92). Then

SE(β̂j) =
√
MSE djj =

√
MSE

√
V IFj

SD(vj)
√
n− 1

where SD(vj) is the sample standard deviation of the n elements of vj. Collinearity
does not affect prediction much, provided that the software does not fail because XT X

is nearly singular.

117) The ith residual ei = εi +Ni where Ni = xT
i (β − β̂) ∼ AN1(0,MSE hi)

P→ 0 if
max(h1, ..., hn) → 0 as n→ ∞.

118) In experimental design models or design of experiments (DOE), the entries of
X are coded, often as −1, 0 or 1. Often X is not a full rank matrix.

119) Some DOE models have one Yi per xi and lots of xi’s. Then the response and
residual plots are used like those for MLR.

120) Some DOE models have ni Yi’s per xi, and only a few distinct values of xi. Then
the response and residual plots no longer look like those for MLR.

121) A dot plot of Z1, ..., Zm consists of an axis and m points each corresponding to
the value of Zi.

122) Let fZ(z) be the pdf of Z. Then the family of pdfs fY (y) = fZ(y−µ) indexed by
the location parameter µ, −∞ < µ < ∞, is the location family for the random variable
Y = µ + Z with standard pdf fZ(y). A one way fixed effects ANOVA model has a
single qualitative predictor variable W with p categories a1, ..., ap. There are p different
distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come from the
same location family with different location parameter µi and the same variance σ2. The
one way fixed effects normal ANOVA model is the special case where Y |(W = ai) ∼
N(µi, σ

2).
123) The response plot is a plot of Ŷ versus Y . For the one way Anova model, the

response plot is a plot of Ŷij = µ̂i versus Yij. Often the identity line with unit slope
and zero intercept is added as a visual aid. Vertical deviations from the identity line are
the residuals eij = Yij − Ŷij = Yij − µ̂i. The plot will consist of p dot plots that scatter
about the identity line with similar shape and spread if the fixed effects one way ANOVA
model is appropriate. The ith dot plot is a dot plot of Yi,1, ..., Yi,ni

. Assume that each
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ni ≥ 10. If the response plot looks like the residual plot, then a horizontal line fits the
p dot plots about as well as the identity line, and there is not much difference in the µi.
If the identity line is clearly superior to any horizontal line, then at least some of the
means differ.

The residual plot is a plot of Ŷ versus e where the residual e = Y − Ŷ . The plot will
consist of p dot plots that scatter about the e = 0 line with similar shape and spread if
the fixed effects one way ANOVA model is appropriate. The ith dot plot is a dot plot of
ei,1, ..., ei,ni

. Assume that each ni ≥ 10. Under the assumption that the Yij are from the
same location scale family with different parameters µi, each of the p dot plots should
have roughly the same shape and spread. This assumption is easier to judge with the
residual plot than with the response plot.

124) Rule of thumb: Let Ri be the range of the ith dot plot = max(Yi1, ..., Yi,ni
) −

min(Yi1, ..., Yi,ni
). If the ni ≈ n/p and if max(R1, ..., Rp) ≤ 2min(R1, ..., Rp), then the

one way ANOVA F test results will be approximately correct if the response and residual
plots suggest that the remaining one way ANOVA model assumptions are reasonable.

125) Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij.

Hence the “dot notation” means sum over the subscript corresponding to the 0, eg j.
Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij. Be able to find µ̂i from data.

126) The cell means model for the fixed effects one way Anova is Yij = µi + εij
where Yij is the value of the response variable for the jth trial of the ith factor level
for i = 1, ..., p and j = 1, ..., ni. The µi are the unknown means and E(Yij) = µi. The
εij are iid from the location family with pdf fZ(z), zero mean and unknown variance
σ2 = V (Yij) = V (εij). For the normal cell means model, the εij are iid N(0, σ2). The

estimator µ̂i = Y i0 =
∑ni

j=1 Yij/ni = Ŷij. The ith residual is eij = Yij − Y i0, and Y 00 is
the sample mean of all of the Yij and n =

∑p
i=1 ni. The total sum of squares SSTO =∑p

i=1

∑ni

j=1(Yij − Y 00)
2, the treatment sum of squares SSTR =

∑p
i=1 ni(Y i0 − Y 00)

2, and

the error sum of squares SSE = RSS =
∑p

i=1

∑ni

j=1(Yij −Y i0)
2. The MSE is an estimator

of σ2. The Anova table is the same as that for multiple linear regression, except that
SSTR replaces the regression sum of squares and that SSTO, SSTR and SSE have n− 1,
p− 1 and n− p degrees of freedom.

Summary Analysis of Variance Table

Source df SS MS F p-value
Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

127) Shown is a one way ANOVA table given in symbols. Sometimes “Treatment” is
replaced by “Between treatments,” “Between Groups,” “Model,” “Factor” or “Groups.”
Sometimes “Error” is replaced by “Residual,” or “Within Groups.” Sometimes “p-value”
is replaced by “P”, “Pr(> F )” or “PR > F.” SSE is often replaced by RSS = residual
sum of squares.
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128) In matrix form, the cell means model is the linear model without an intercept
(although 1 ∈ C(X)), where µ = β = (µ1, ..., µp)

T , and Y = Xµ + ε =





Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np





=





1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1









µ1

µ2
...
µp



+





ε11
...

ε1,n1

ε21
...

ε2,n2

...
εp,1
...

εp,np





.

129) For the cell means model, XT X = diag(n1, ..., np), (XTX)−1 = diag(1/n1, ..., 1/np),

and XTY = (Y10, ..., Yp0)
T . So β̂ = µ̂ = (XT X)−1XTY = (Y 10, ..., Y p0)

T . Then

Ŷ = X(XT X)−1XT Y = Xµ̂, and Ŷij = Y i0. Hence the ijth residual eij = Yij − Ŷij =
Yij − Y i0 for i = 1, ..., p and j = 1, ..., ni.

130) In the response plot, the dot plot for the jth treatment crosses the identity line
at Y j0.

131) For the one way anova F test has hypotheses H0 : µ1 = · · · = µp and HA : notH0

(not all of the p population means are equal). The one way Anova table for this test is
given above 127). Let RSS = SSE. The test statistic

F =
MSTR

MSE
=

[RSS(H) − RSS]/(p− 1)

MSE
∼ Fp−1,n−p

if the εij are iid N(0, σ2). If H0 is true, then Yij = µ+ εij and µ̂ = Y 00. Hence RSS(H) =
SSTO =

∑p
i=1

∑ni

j=1(Yij − Y 00)
2. Since SSTO = SSE + SSTR, the quantity SSTR =

RSS(H) −RSS, and MSTR = SSTR/(p− 1).
132) The one way Anova F test is a large sample test if the εij are iid with mean

0 and variance σ2. Then the Yij come from the same location family with the same
variance σ2

i = σ2 and different mean µi for i = 1, ..., p. Thus the p treatments (groups,
populations) have the same variance σ2

i = σ2. The V (εij) ≡ σ2 assumption (which implies
that σ2

i = σ2 for i = 1, ..., p) is a much stronger assumption for the one way Anova model
than for MLR, but the test has some resistance to the assumption that σ2

i = σ2 by 124).
133) Other design matrices X can be used for the full model. One design matrix

adds a column of ones to the cell means design matrix. This model is no longer a full
rank model.

134) A full rank one way Anova model with an intercept adds a constant but deletes
the last column of the X for the cell means model. Then Y = Xβ+ε where Y and ε are
as in the cell means model. Then β = (β0, β1, ..., βp−1)

T = (µp, µ1−µp, µ2−µp, ..., µp−1−
µp)

T . So β0 = µp and βi = µi − µp for i = 1, ..., p− 1.
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It can be shown that the OLS estimators are β̂0 = Y p0 = µ̂p, and β̂i = Y i0 − Y p0 =

µ̂i − µ̂p for i = 1, ..., p− 1. (The cell means model has β̂i = µ̂i = Y i0.) In matrix form the
model is





Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np





=





1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0









β0

β1
...

βp−1



+





ε11
...

ε1,n1

ε21
...

ε2,n2

...
εp,1
...

εp,np





.

This model is interesting since the one way Anova F test of H0 : µ1 = · · · = µp versus
HA : not H0 corresponds to the MLR Anova F test of H0 : β1 = · · · = βp−1 = 0 versus
HA : not H0.

135) A contrast θ =
∑p

i=1 ciµi where
∑p

i=1 ci = 0. The estimated contrast is θ̂ =

∑p
i=1 ciY i0.Then SE(θ̂) =

√
MSE

√√√√
p∑

i=1

c2i
ni

and a 100(1−δ)% CI for θ is θ̂±tn−1,1−δ/2SE(θ̂).

CIs for one way Anova are less robust to the assumption that σ2
i ≡ σ2 than the one way

Anova F test.
136) Two important families of contrasts are the family of all possible contrasts and

the family of pairwise differences θij = µi −µj where i 6= j. The Scheffé multiple compar-
isons procedure has a δF for the family of all possible contrasts while the Tukey multiple
comparisons procedure has a δF for the family of all

(
p
2

)
pairwise contrasts.

Inference After Variable Selection
137) Let β = (β1, ..., βp)

T . A model for variable selection is xTβ = xT
SβS + xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector.

Let xI be the vector of a terms from a candidate subset indexed by I , and let xO be
the vector of the remaining predictors (out of the candidate submodel). If S ⊆ I , then
xTβ = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S denotes the predictors in
I that are not in S. Since this is true regardless of the values of the predictors, βO = 0 if
S ⊆ I . Note that βE = 0. Let kS = aS − 1 = the number of population active nontrivial
predictors. Then k = a− 1 is the number of active predictors in the candidate submodel
I .

138) A simple method for inference after variable selection is data splitting: let
the training set have nT ≤ n/2 cases and the validation set have nV = n − nT ≥ n/2
cases. Select the nT cases without replacement from the n cases. Assume the cases are
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independent and follow a statistical model, e.g. MLR. i) Build model I with the training
set, possibly using variable selection and the response to select predictors, predictor
transformations, and the response transformation. ii) Act as if model I with k predictors
is the full model for the validation set.

Want n ≥ 5k and preferably n ≥ 10k. We need I to be a good model for the data.
The efficiency is ≈ nV /n = 1−nT/n. Inefficient inference is much better than the invalid
inference that results when I is built using all n cases and then treated as the full model
on the same data set of n cases.

139) Let Z1, ...,Zn be iid random vectors from a distribution with cdf F , mean µ

and Cov(Z) = Σ. Let z1, ..., zn be the observed values of the Zi. The distribution
of the random vector w is the empirical distribution if w is a discrete random vector
with the following pmf. Then the sample mean and sample covariance matrix where

E(w) = z =
1

n

n∑

i=1

zi and Cov(w) =
1

n

n∑

i=1

(zi − z)(zi − z)T .

w z1 z2 · · · zn

P (w = z) 1/n 1/n · · · 1/n
140) The nonparametric bootstrap uses B bootstrap samples where a bootstrap

sample is a sample of size n drawn with replacement from x1, ..., xn (iid wrt the empirical
distribution). Let x∗i1, ..., x

∗

in denote the ith bootstrap sample. Let T ∗

i = g(x∗i1, ..., x
∗

in) be
the statistic computed from x∗i1, ..., x

∗

in for i = 1, ..., B. Be able to compute T ∗

i for simple
statistics such as the sample mean and sample median.

141) Let Tn be a g × 1 statistic, e.g, Tn = β̂. If you had an iid sample T1n, ..., TBn

you could figure out how the statistic behaves, but you only have Tn = T1n. Under

regularity conditions, if
√
n(Tn − θ)

D→ Ng(0,Σ), then
√
n(T ∗

i − Tn)
D→ Ng(0,Σ). So√

n(T ∗

1 − Tn), ...,
√
n(T ∗

B − Tn) is pseudodata for
√
n(T1n − θ), ...,

√
n(TBn − θ).

142)

Ij model x2 x3 x4 x5 β̂Ij ,0 if β̂ = β̂Ij

I2 1 * (β̂1, 0, β̂3, 0, 0)
T

I3 2 * * (β̂1, 0, β̂3, β̂4, 0)
T

I4 3 * * * (β̂1, β̂2, β̂3, β̂4, 0)
T

I5 4 * * * * (β̂1, β̂2, β̂3, β̂4, β̂4)
T = β̂OLS

143) In 142) sometimes TRUE = * and FALSE = blank. The xi may be replaced by
the variable name or letters like a b c d.

Ij model x2 x3 x4 x5

I2 1 FALSE TRUE FALSE FALSE
I3 2 FALSE TRUE TRUE FALSE
I4 3 TRUE TRUE TRUE FALSE
I5 4 TRUE TRUE TRUE TRUE

144) Typical bootstrap output for forward selection, lasso, and elastic net is shown
below. The SE column is usually omitted except possibly for forward selection. The
term “coef” might be replaced by “Estimate.” This column gives β̂I,0 where I = Imin for
forward selection, I = L for lasso, and I = EN for elastic net. Note that the SE entry
is omitted if β̂i = 0 so variable xi was omitted by the variable selection method. In the
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output below, β̂2 = β̂3 = 0. The SE column corresponds to the OLS SE obtained by
acting as if the OLS full model contains a constant and the variables not omitted by the
variable selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]

x3 0 [L̂3, Û3]

x4 0 [L̂4, Û4]
...

...
...

...

xp β̂p SE(β̂p) [L̂p, Ûp]

145) We will consider the nonparametric bootstrap, parametric bootstrap, and resid-
ual bootstrap. Let Tn be a statistic, e.g. Tn = Aβ̂Imin,0. Let T ∗

1 , ..., T
∗

B be the bootstrap

sample for Tn. Let T
∗

=
1

B

n∑

i=1

T ∗

i and S∗

T =
1

B − 1

B∑

i=1

(T ∗

i − T
∗

)(T ∗

i − T
∗

)T . be the

sample mean and sample covariance matrix of the bootstrap sample. For OLS, assume√
n(β̂ − β)

D→ Np(0, σ
2V ).

146) Suppose the data set has n cases z1, ..., zn, e.g, zi = (Yi,x
T
i )T and a statistic

Tn = Tn(z1, ..., zn). The nonparametric bootstrap (naive, empirical, rowwise, pair-
wise bootstrap) draws a sample of size n with replacement from the n cases (from the
empirical distribution of the cases). Let the ith bootstrap sample be z∗

i1, ..., z
∗

in. Then
T ∗

i = T (z∗

i1, ..., z
∗

in) for i = 1, ..., B. The nonparametric bootstrap often works well if
the cases are iid from some population. This assumption is very strong for MLR. For

MLR, let xi = (1,uT
i )T . The nonparametric bootstrap has

√
n(β̂

∗

i − β̂)
D→ Np(0, σ

2V )
if the (Yi,u

T
i )T are iid Np(µ,Σ). We can write Y ∗

j = X∗

jβ + ε∗j for j = 1, ..., B where
Y ∗

ij = x∗

ijβ + ε∗ij. Hence ε∗j consists of the unknown εi sampled with replacement from
ε1, ..., εn corresponding to the indices of the cases (Yi,x

T
i )T sampled with replacement for

the jth bootstrap sample.
147) The residual bootstrap samples with replacement from the full model OLS

residuals. Y ∗ = Xβ̂OLS + rW follows a standard linear model where the elements rW
i of

rW are iid from the empirical distribution of the OLS full model residuals ri. Hence

E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2
i =

n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Then β̂
∗

Ij
= (XT

Ij
XIj

)−1XT
Ij

Y ∗ = DjY
∗ with Cov(β̂

∗

Ij
) = σ2

n(XT
Ij
XIj

)−1 and E(β̂
∗

Ij
) =

(XT
Ij

XIj
)−1XT

Ij
E(Y ∗) = (XT

Ij
XIj

)−1XT
Ij
PY = β̂Ij

since PXIj
= XIj

. The expecta-

tions are with respect to the bootstrap distribution where Ŷ acts as a constant. It can

be shown that
√
n(β̂

∗

i − β̂)
D→ Np(0, σ

2V ).
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148) The parametric bootstrap for MLR has Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼ Nn(PY , σ̂2

nI)

where we are not assuming that the εi ∼ N(0, σ2), and σ̂2
n = MSE =

1

n− p

n∑

i=1

r2
i

where the residuals are from the full OLS model. Thus β̂
∗

I = (XT
I XI)

−1XT
I Y ∗ ∼

NaI
(β̂I , σ̂

2
n(X

T
I XI)

−1) since E(β̂
∗

I) = (XT
I XI)

−1XT
I PY = β̂I because PXI = XI ,

and Cov(β̂
∗

I) = σ̂2
n(X

T
I XI)

−1. Hence

√
n(β̂

∗

I − β̂I) ∼ NaI
(0, nσ̂2

n(X
T
I XI)

−1)
D→ NaI

(0, σ2V I)

as n,B → ∞ if S ⊆ I .
149) Note that for the residual bootstrap, σ̂2

n = (n − p)MSE/n while for the para-
metric bootstrap, σ̂2

n = MSE.
150) Refer to 145). Consider H0 : θ = θ0. The prediction region method large sample

100(1 − δ)% confidence region for θ is {w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} =

{w : D2
w(T

∗

,S∗

T ) ≤ D2
(UB)} (1)

where D2
(UB) is the 100qBth sample quantile (where qB ↓ 1 − δ) computed from D2

i =

(T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i = 1, ..., B. The corresponding test rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB).

The modified Bickel and Ren (2001) large sample 100(1 − δ)% confidence region is
{w : (w − Tn)

T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} =

{w : D2
w(Tn,S

∗

T ) ≤ D2
(UB,T )} (2)

where the cutoffD2
(UB,T ) is the 100qBth sample quantile of theD2

i = (T ∗

i −Tn)
T [S∗

T ]−1(T ∗

i −
Tn). The corresponding test rejects H0 if (Tn − θ0)

T [S∗

T ]−1(Tn − θ0) > D2
(UB ,T ).

The hybrid large sample 100(1 − δ)% confidence region: {w : (w − Tn)
T [S∗

T ]−1(w −
Tn) ≤ D2

(UB)} =

{w : D2
w(Tn,S

∗

T ) ≤ D2
(UB)}. (3)

The corresponding test rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UB).

Under reasonable conditions, i)
√
n(Tn −θ)

D→ u, ii)
√
n(T ∗

i −Tn)
D→ u, iii)

√
n(T

∗−
θ)

D→ u, iv)
√
n(T ∗

i − T
∗

)
D→ u. Suppose (nS∗

T )−1 is “not too ill conditioned.” Then

D2
1 = D2

T ∗

i
(T

∗

,S∗

T ) =
√
n(T ∗

i − T
∗

)T (nS∗

T )−1
√
n(T ∗

i − T
∗

),

D2
2 = D2

θ(Tn,S
∗

T ) =
√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗

,S∗

T ) =
√
n(T

∗ − θ)T (nS∗

T )−1
√
n(T

∗ − θ), and

D2
4 = D2

T ∗

i
(Tn,S

∗

T ) =
√
n(T ∗

i − Tn)
T (nS∗

T )−1
√
n(T ∗

i − Tn),

are well behaved. If (nS∗

T )−1 P→ Σ−1
A , then D2

j
D→ D2 = uTΣ−1

A u. If (nS∗

T )−1 is “not too
ill conditioned” then D2

j ≈ uT (nS∗

T )−1u for large n, and the confidence regions (1), (2),
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and (3) will have coverage near 1− δ. The regularity conditions for the prediction region
method are weaker when g = 1, since S∗

T does not need to be computed.
151) A random vector u has a mixture distribution of random vectors uj with

probabilities πj if u equals random vector uj with probability πj for j = 1, ..., J . Let u

and uj be p× 1 random vectors. Then the cumulative distribution function (cdf) of u is

Fu(t) =
J∑

j=1

πjFuj
(t)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is the

cdf of uj .
Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J∑

j=1

πjE[h(uj)] and E(u) =

J∑

j=1

πjE[uj].

Hence Cov(u) = E(uuT ) − E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ] − E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +
J∑

j=1

πjE(uj)[E(uj)]
T − E(u)[E(u)]T .

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =
J∑

j=1

πjCov(uj).

152) The variable selection estimator β̂V S = β̂Imin,0, and β̂V S = β̂Ik,0 with proba-

bilities πkn = P (Imin = Ik) for k = 1, ..., J where there are J subsets. Let β̂MIX be a
random vector with a mixture distribution of the β̂Ik,0 with probabilities equal to πkn.

Hence β̂MIX = β̂Ik,0 with same probabilities πkn of the variable selection estimator β̂V S,
but the Ik are randomly selected.

153) For the OLS model with S ⊆ Ij,
√
n(β̂Ij

−βIj
)

D→ Naj
(0,V j) where V j = σ2W j

and (XT
Ij

XIj
)/n

P→ W −1
j by the LS CLT. Then

ujn =
√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0,V j,0)

where V j,0 adds columns and rows of zeros corresponding to the xi not in Ij, and V j,0

is singular unless Ij corresponds to the full model.

Theorem 4.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX = β̂Ik,0 with
probabilities πkn where πkn → πk as n → ∞. Denote the positive πk by πj. Assume

ujn =
√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (4)
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where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution of the uj

with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with probabilities

πj.

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S or MIX.
Theorem 4.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1 as n→ ∞, and

let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as n → ∞. Denote the positive

πk by πj. Assume wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (6)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t). Thus w is a mixture distribution of the

wj with probabilities πj.
154) Geometric argument: Assume T1, ..., TB are iid with nonsingular covari-

ance matrix ΣTn. Then the large sample 100(1 − δ)% prediction region Rp = {w :
D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of the statistic Tf with prob-

ability 1 − δB → 1 − δ as B → ∞. Hence the region Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)}
centered at a randomly selected Tn contains T with probability 1 − δB, and RC is a
100(1 − δ)% confidence region for θas n,B → ∞ if T gets arbitrarily close to θ com-
pared to Tn as B → ∞. We also need (nST )−1 to be fairly well behaved (not too ill
conditioned) for each n ≥ 20g, say. If

√
n(Tn − θ) and

√
n(T ∗

i − Tn) both converge in
distribution to u ∼ Ng(0,ΣA), say, then the bootstrap sample data cloud of T ∗

1 , ..., T
∗

B is
like the data cloud of iid T1, ..., TB shifted to be centered at Tn. Then the hybrid region
(3) is a confidence region by the geometric argument, and (1) is a confidence region if√
n(T

∗ − Tn)
P→ 0.

155) By 153), the Geometric argument holds for iid T1, ..., TB where Tn = Aβ̂Imin,0.
For the bootstrap, suppose that T ∗

i is equal to T ∗

ij with probability ρjn for j = 1, ..., J
where

∑
j ρjn = 1, and ρjn → ρj as n→ ∞. Let Bjn count the number of times T ∗

i = T ∗

ij

in the bootstrap sample. Then the bootstrap sample T ∗

1 , ..., T
∗

B can be written as

T ∗

1,1, ..., T
∗

B1n,1, ..., T
∗

1,J, ..., T
∗

BJn,J .

Denote T ∗

1j, ..., T
∗

Bjn,j as the jth bootstrap component of the bootstrap sample with sample

mean T
∗

j and sample covariance matrix S∗

T,j. Similarly, we can define the jth component

of the iid sample T1, ..., TB to have sample mean T j and sample covariance matrix ST,j.
156) For the residual, parametric and nonparametric bootstrap with Cp, the jth

component of an iid sample T1, ..., TB and the jth component of the bootstrap sample
T ∗

1 , ..., T
∗

B have the same variability asymptotically. Since E(Tjn) = θ, each component of
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the iid sample is centered at θ. Since E(T ∗

jn) = Tjn = Aβ̂Ij ,0, the bootstrap components
are centered at Tjn. Geometrically, separating the component clouds so that they are no
longer centered at one value makes the overall data cloud larger. Thus the variability of
T ∗

n is larger than that of Tn for variable selection, asymptotically. Hence the prediction
region applied to the bootstrap sample is slightly larger than the prediction region applied
to the iid sample, asymptotically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives

coverage close to or higher than the nominal coverage for confidence regions (1) and (3),
using the geometric argument. The deviation T ∗

i − Tn tends to be larger in magnitude
than the deviations T

∗−θ, Tn−θ, and T ∗

i −T
∗

. Hence the cutoff D̂2
2,1−δ = D2

(UB,T ) tends

to be larger than D2
(UB), and region (2) tends to have higher coverage than region (3) for

a mixture distribution.
Lasso, Lasso Variable Selection, Ridge Regression, Elastic Net
157) Let xT

i = (1 uT
i ). It is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n × (p− 1) matrix of standardized nontrivial predictors W =
(Wij). For j = 1, ..., p − 1, let Wij denote the (j + 1)th variable standardized so that∑n

i=1Wij = 0 and
∑n

i=1 W
2
ij = n. Then the sample correlation matrix of the nontrivial

predictors ui is

Ru =
W TW

n
.

Then regression through the origin is used for the model Z = W η+ε where the vector of
fitted values Ŷ = Y + Ẑ. Thus the centered response Zi = Yi−Y and Ŷi = Ẑi +Y . Then
η̂ does not depend on the units of measurement of the predictors. Linear combinations
of the ui can be written as linear combinations of the xi, hence β̂ can be found from η̂.

158) Consider choosing η̂ to minimize the criterion

Q(η) = (Z − Wη)T (Z − Wη) + λ1,n

p−1∑

i=1

|ηi|j (7)

where λ1,n ≥ 0, and j > 0 are known constants. Then j = 2 corresponds to ridge
regression, and j = 1 corresponds to lasso. In the literature, Q(η)/c is often used, where
c = 2, n, or 2n are common. The residual sum of squares RSS(η) = (Z − Wη)T (Z −
Wη), and λ1,n = 0 corresponds to the OLS estimator η̂OLS = (W T W )−1W TZ.

Lasso and ridge regression use a maximum value λM of λ and a grid of M λ values
0 ≤ λ1 < λ2 < · · · < λM−1 < λM . For lasso, λM is the smallest value of λ such that
η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (8)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.

159) Assume that the sample correlation matrix Ru = W
T
W

n

P→ V −1 where V −1 =
ρu, the population correlation matrix of the nontrivial predictors ui, if the ui are a
random sample from a population. If λ1,n/n→ 0 then

W TW + λ1,nIp−1

n

P→ V −1, and n(W TW + λ1,nIp−1)
−1 P→ V .
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Let H = W (W T W )−1W T = (hij). By the OLS CLT,
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

160) For ridge regression, η̂R =

(W T W + λ1,nIp−1)
−1W T Z = (W TW + λ1,nIp−1)

−1W TW (W T W )−1W TZ

= (W T W + λ1,nIp−1)
−1W T Wη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W
T W + λ1,nIp−1)

−1]η̂OLS = Bnη̂OLS =

η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS

since An − Bn = 0.
For the lasso estimator η̂L:

−1

n
W T (Z − Wη̂L) +

λ1,n

2n
sn = 0 or −W T(Z − W η̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Note that sn = sn,η̂

L
depends on η̂L. Thus η̂L

= (W TW )−1W T Z − λ1,n

2n
n(W TW )−1 sn = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

By standard Karush-Kuhn-Tucker (KKT) conditions for convex optimality for the
elastic net, η̂EN is optimal if

2W T Wη̂EN − 2W TZ + 2λ1η̂EN + λ2sn = 0, or

(W TW + λ1Ip−1)η̂EN = W T Z − λ2

2
sn, or

η̂EN = η̂R − n(W T W + λ1Ip−1)
−1 λ2

2n
sn. (9)

Hence

η̂EN = η̂OLS − λ1

n
n(W T W + λ1Ip−1)

−1 η̂OLS − λ2

2n
n(W T W + λ1Ip−1)

−1 sn

= η̂OLS − n(W TW + λ1Ip−1)
−1 [

λ1

n
η̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1 − ψ)τ and λ̂2/
√
n

P→ 2ψτ.
Under these conditions,

√
n(η̂EN − η) =

√
n(η̂OLS − η) − n(W T W + λ̂1Ip−1)

−1 [
λ̂1√
n

η̂OLS +
λ̂2

2
√
n

sn].

161) The following theorem shows the elastic net, lasso, and ridge regression are

asymptotically equivalent to the OLS full model if λ̂1,n/
√
n

P→ 0. Let η̂A be η̂EN , η̂L, or

η̂R. Note that c) follows from b) if ψ = 0, and d) follows from b) (using 2λ̂1,n/
√
n

P→ 2τ )
if ψ = 1. Recall that we are assuming that p is fixed.
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RR CLT, Lasso CLT, EN CLT: Assume that the conditions of the OLS CLT hold

for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1 − ψ)τη + ψτs], σ2V

)
.

c) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

d) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

162) Usually λ̂1,n is selected using a criterion such as k–fold CV or GCV. It is not

clear whether λ̂1,n = o(n). For the elastic net and lasso, λM/n does not go to zero as
n → ∞ since η̂ = 0 is not a consistent estimator. Hence λM is likely proportional to n,
and using λi = iλM/M for i = 1, ...,M will not produce a consistent estimator.

163) Lasso and elastic net can be regarded as methods for variable selection: often
some of the β̂i = 0. Let the active set be the set of xi that have nonzero β̂i. The
relaxed lasso estimator is OLS applied to the lasso active set while the relaxed elastic
net estimator is OLS applied to the elastic net active set. If λ̂1n/

√
n→ τ > 0, then lasso

tends to have at least one β̂j = 0 for large n. Lasso may not be
√
n consistent if lasso

selects S with high probability, but then relaxed lasso tends to be
√
n consistent.

Let Imin be the lasso or elastic net active set. Expect relaxed lasso and relaxed elastic
net perform better than lasso and elastic net unless (XT

Imin
XImin

)−1 is ill conditioned.
If P (S ⊆ I) → 1 as n → ∞, then relaxed lasso and relaxed elastic net have a CLT

given by 153).
MREG
164) The multivariate linear regression model

yi = BT xi + εi

for i = 1, ..., n hasm ≥ 2 response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp

where x1 ≡ 1 is the trivial predictor. The ith case is (xT
i ,y

T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim)

where the 1 could be omitted. The model is written in matrix form as Z = XB+E where
the matrices are defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij)
for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m where In

is the n× n identity matrix and ei is defined below. Then the p×m coefficient matrix
B =

[
β1 β2 . . . βm

]
and the m × m covariance matrix Σε are to be estimated,
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and E(Z) = XB while E(Yij) = xT
i βj . The εi are assumed to be iid. The data matrix

W = [X Y ] except usually the first column 1 of X is omitted. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m
...

...
. . .

...
Yn,1 Yn,2 . . . Yn,m




=
[

Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

The n × p design matrix of predictor variables is

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]
=




xT

1
...

xT
n





where v1 = 1. The p×m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m
...

...
. . .

...
βp,1 βp,2 . . . βp,m



 =
[

β1 β2 . . . βm

]
.

The n ×m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m




=
[

e1 e2 . . . em

]
=




εT

1
...

εT
n



 .

Considering the ith row of Z,X and E shows that yT
i = xT

i B + εT
i .

165) We have changed notation for multiple linear regression, using e and ε for errors
and ε̂, r, and ε̂ij for residuals. For the multiple linear regression model, m = 1 and

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (10)

for i = 1, . . . , n. In matrix notation, these n equations become Y = Xβ + e, where Y

is an n× 1 vector of response variables, X is an n× p matrix of predictors, β is a p× 1
vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

166) Each response variable in a multivariate linear regression model follows a mul-
tiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corresponding to the jth response
are uncorrelated with variance σ2

j = σjj . Notice that the same design matrix X of
predictors is used for each of the m models, but the jth response variable vector Y j,
coefficient vector βj and error vector ej change and thus depend on j.
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Now consider the ith case (xT
i ,y

T
i ) which corresponds to the ith row of Z and the

ith row of X. Then




Yi1 = β11xi1 + · · · + βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βpmxip + εim = xT

i βm + εim





or, suppressing the condition yi|xi, we have yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BTxi =





xT
i β1

xT
i β2
...

xT
i βm



 .

167) The least squares estimators are

B̂ = (XT X)−1XTZ =
[

β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values

Ẑ = XB̂ =
[

Ŷ 1 Ŷ 2 . . . Ŷ m

]
.

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n




=
[

r1 r2 . . . rm

]
=





ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m




.

These quantities can be found from the m multiple linear regressions of Yj on the pre-

dictors: β̂j = (XTX)−1XTY j, Ŷ j = Xβ̂j and rj = Y j − Ŷ j for j = 1, ..., m. Hence

ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n− d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the sample
covariance matrix of the residual vectors ε̂i, since the sample mean of the ε̂i is 0. Let
Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I −X(XTX)−1X]Z,

and
Ê = [I − X(XTX)−1X]Z.
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168)Theorem: Suppose X has full rank p < n and the covariance structure of 164)
holds. Then E(B̂) = B so E(β̂j) = βj, Cov(β̂j, β̂k) = σjk(X

TX)−1 for j, k = 1, ..., p.

Also Ê and B̂ are uncorrelated, E(Ê) = 0 and

E(Σ̂ε) = E

(
Ê

T
Ê

n− p

)
= Σε.

Also, Σ̂ε is a
√
n consistent estimator of Σε under mild regularity conditions.

169) A response plot for the jth response variable is a plot of the fitted values Ŷij

versus the response Yij. The identity line with slope one and zero intercept is added to
the plot as a visual aid. A residual plot corresponding to the jth response variable is a
plot of Ŷij versus rij where i = 1, ..., n. Make the m response and residual plots for any
multivariate linear regression. For each response variable Yij, the response and residual
plots behave just as they do for MLR.

170) Let the observed multivariate data wi for i = 1, ..., n be collected in an n ×
p matrix W with n rows wT

1 , ...,w
T
n . Let the p × 1 column vector T = T (W ) be a

multivariate location estimator, and let the p × p symmetric positive definite matrix
C = C(W ) be a dispersion estimator such as the sample covariance matrix. The ith
squared Mahalanobis distance is

D2
i = D2

i (T,C) = D2
wi

(T,C) = (wi − T )TC−1(wi − T )

for each point wi.
171) The classical Mahalanobis distance corresponds to the sample mean and sample

covariance matrix

T = W =
1

n

n∑

i=1

wi, and C = S =
1

n − 1

n∑

i=1

(wi −W )(wi −W )T

and will be denoted by MDi. When T and C are estimators other than the sample mean
and covariance, Di =

√
D2

i will sometimes be denoted by RDi. Then the DD plot is
a plot of the classical Mahalanobis distances MDi versus robust Mahalanobis distances
RDi. The identity line is added as a visual aid. If n is large and the wi are iid Np(µ,Σ),
then the data will cluster tightly about the identity line. Tight clustering about a line
through the origin that is not the identity line suggests that the wi are iid from an
elliptically contoured distribution that is not multivariate normal.

172) A large sample (1−δ)100% prediction region is a set An such that P (yf ∈ An) →
1 − δ as n → ∞, and is asymptotically optimal if the volume of the region converges in
probability to the volume of the population minimum volume covering region.

173) For multivariate linear regression, the classical large sample 100(1− δ)% predic-
tion region for a future value yf given xf and past data (x1,yi), ..., (xn,yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ} and does not work well unless the εi are iid Nm(0,Σε).
174) Let qn = min(1 − δ + 0.05, 1 − δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise.
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If qn < 1 − δ + 0.001, set qn = 1 − δ. Let ẑi = ŷf + ε̂i for i = 1, ..., n. The large sample
nonparametric prediction region that works for a large class of error vector distributions
is {y : D2

y(ŷf ,Sr) ≤ D2
(Un)} where D(Un) is the qnth sample quantile of the Di =

Dẑi
(ŷf ,Sr) = Dε̂i

(0,Sr). In the DD plot, the cases to the left of the vertical line
MD = D(Un) correspond to yi that are in their nonparametric prediction region when
xf = xi. Hence 100qn% of the training data are in their prediction region, and 100qn% →
100(1 − δ)% as n→ ∞.

175) Consider testing a linear hypothesis H0 : LB = 0 versus

H1 : LB 6= 0 where L is a full rank r×p matrix. Let H = B̂
T
LT [L(XTX)−1LT ]−1LB̂.

The error or residual sum of squares and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZT XB̂ = ZT [In − X(XTX)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

176) Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H . Then there are

four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.

The Wilks’ Λ statistic is Λ(L) = |(H +W e)
−1W e| = |W−1

e H +I|−1 =
m∏

i=1

(1+λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

177) Let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns of
A on top of one another so

vec(A) =





a1

a2
...

ap



 .

Let A = (aij) be an m×n matrix and B a p×q matrix. Then the Kronecker product
of A and B is the mp× nq matrix

A ⊗ B =





a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · · ...
am1B am2B · · · amnB




.

An important fact is that if A and B are nonsingular square matrices, then [A⊗B]−1 =
A−1 ⊗B−1. The following assumption is important.

178) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].
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179) Assumption D1: Let hi be the ith diagonal element of X(XTX)−1XT . As-
sume max(h1, ..., hn) → 0 as n → ∞, assume that the zero mean iid error vectors have

finite fourth moments, and assume that
1

n
XTX

P→ W−1.

180) Multivariate Least Squares Central Limit Theorem (MLS CLT): For
the least squares estimator, if assumption D1 holds, then Σ̂ε is

√
n consistent and√

n vec(B̂ − B)
D→ Npm(0,Σε ⊗ W ).

181) Theorem: If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.
182) Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where

L is a full rank r × p matrix. Assume the error distribution is multivariate normal
Nm(0,Σε). Then under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and
T = [vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (11)

The above equation also holds if the εi are iid for a large class of distributions. A large
sample level α test will reject H0 if pval < α where

pval = P (
T

rm
< Frm,n−mp). (12)

183) Theorems 178) and 181) are useful for relating multivariate tests with the partial
FR test for multiple linear regression that tests whether a reduced model that omits some
of the predictors can be used instead of the full model that uses all p predictors.

FR =
[Lβ̂]T (L(XTX)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note that for multiple

linear regression with m = 1, FR = (n − p)U(L)/r since Σ̂
−1

ε = 1/σ̂2. Hence the scaled
Hotelling Lawley test statistic is the partial F test statistic extended to m > 1 predictor
variables by Theorem 178).

184) By Theorem 181), for example, rFR
D→ χ2

r for a large class of nonnormal error

distribution. If Zn ∼ Fk,dn, then Zn
D→ χ2

k/k as dn → ∞. Hence using the Fr,n−p

approximation gives a large sample test with correct asymptotic level, and the partial F
test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics gives large
sample tests with correct asymptotic level and similar power for large n. The large
sample test will have correct asymptotic level as long as the denominator degrees of
freedom dn → ∞ as n→ ∞, and dn = n− pm reduces to the partial F test if m = 1 and
U(L) is used. Then the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L).
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it can be shown that
V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test will have the
least power.

185) Under regularity conditions, −[n − p + 1 − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm,

(n− p)V (L)
D→ χ2

rm, and (n− p)U(L)
D→ χ2

rm.
These statistics are robust against nonnormality.
For the Wilks’ Lambda test,

pval = P

(−[n− p + 1 − 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n− p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n− p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → α as n→ ∞,
under regularity conditions.

186) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1]:
i) State the hypotheses H0: the nontrivial predictors are not needed in the mreg model
H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. If H0 is rejected, conclude that
there is a mreg relationship between the response variables Y1, ..., Ym and the predictors
X2, ..., Xp. If you fail to reject H0, conclude that there is a not a mreg relationship
between Y1, ..., Ym and the predictors X2, ..., Xp. (Get the variable names from the story
problem.)

187) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1 is in the
jth position. Let bT

j be the jth row of B. The hypotheses are equivalent to H0 : bT
j = 0

H1 : bT
j 6= 0. This test is a test for whether xj is needed in the model.

i) State the hypotheses
H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. Give a nontechnical sentence
restating your conclusion in terms of the story problem. If H0 is rejected, then conclude
that Xj is needed in the mreg model for Y1, ..., Ym. If you fail to reject H0, then conclude
that Xj is not needed in the mreg model for Y1, ..., Ym given that the other predictors are
in the model.

The statistic

Fj =
1

dj
B̂

T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε





β̂j1

β̂j2
...

β̂jm
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where B̂
T

j is the jth row of B̂ and dj = (XT X)−1
jj , the jth diagonal entry of (XTX)−1.

The statistic Fj could be used for forward selection and backward elimination in variable
selection.

188) The 4 step MANOVA partial F test of hypotheses has a full model using all
of the variables and a reduced model where r of the variables are deleted. The ith row of
L has a 1 in the position corresponding to the ith variable to be deleted. Omitting the
jth variable corresponds to the Fj test while omitting variables X2, ..., Xp corresponds to
the MANOVA F test.
i) State the hypotheses H0: the reduced model is good
H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval < α, reject H0 and conclude that the full model should be used.
If pval ≥ α, fail to reject H0 and conclude that the reduced model is good.

189) The 4 step MANOVA F test should reject H0 if the response and residual
plots look good, n is large enough and at least one response plot does not look like the
corresponding residual plot. A response plot for Yj will look like a residual plot if the

identity line appears almost horizontal, hence the range of Ŷj is small.

190) Recall the population OLS coefficients and second way to compute β̂ from 74)
and 75). Similar results will hold for multivariate linear regression. Let y = (Y1, ..., Ym)T ,

let w = (x2, ..., xp)
T , let β̂j = (α̂j , η̂

T
j )T where α̂j = Y j − η̂T

j w and η̂j = Σ̂
−1

wΣ̂wYj
. Let

Σ̂wy = 1
n−1

∑n
i=1(wi −w)(yi − y)T which has jth column Σ̂wYj

for j = 1, ..., m. Let

u =

(
y

w

)
, E(u) = µu =

(
E(y)
E(w)

)
=

(
µy
µw

)
, and Cov(u) = Σu =

(
Σyy Σyw
Σwy Σww

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope vectors BS =[
η1 η2 . . . ηm

]
. Then the population least squares coefficient matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµw and BS = Σ−1

wΣwy where Σw = Σww.
If the ui are iid with nonsingular covariance matrix Cov(u), the least squares esti-

mator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Sw and B̂S = Σ̂
−1

wΣ̂wy. The least squares multivariate linear regres-

sion estimator can be calculated by computing the classical estimator (u,Su) = (u, Σ̂u)
of multivariate location and dispersion on the ui, and then plug in the results into the
formulas for α̂ and B̂S .
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191) Multiple Linear Regression Multivariate Linear Regression
Y = Xβ + e Z = XB + E

1) E(Y ) = Xβ E[Z] = XB

2) Yi = xT
i β + ei yi = BT xi + εi

3) E(e) = 0 E[E] = 0

4) H = P = X(XTX)−1XT H = P = X(XT X)−1XT

5) β̂ = (XTX)−1XTY B̂ = (XT X)−1XT Z

6) Ŷ = PY Ẑ = PZ

7) r = ê = (I − P )Y Ê = (I − P )Z

8) E[β̂] = β E[B̂] = B

9) E(Ŷ ) = E(Y ) = Xβ E[Ẑ] = XB

10) σ̂2 = rTr
n−p

Σ̂ε =
Ê

T
Ê

n− p

11) V (ei) = σ2 Cov(εi) = Σε

12) E(Yi) = βT xi E[yi] = BT xi

H0 : Lβ = 0 H0 : LB = 0

13) rFR
D→ χ2

r (n− p)U(L)
D→ χ2

rm

14) LS CLT MLS CLT
√
n(β̂ − β)

D→ Np(0, σ
2W )

√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗ W ).
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