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Consider testing H0 : µ = 0 versus HA : µ , 0 using a random sample x1, ..., xn where the

xi are p × 1 random vectors and p may be much larger than n. Several one sample tests use the

same test statistic Tn with different estimators of the variance V(Tn). Rather simple theory from

U-statistics is used to find V(Tn), resulting in an estimator that is quick to compute when H0 is true.

Some two sample tests for H0 : µ1 = µ2 are also considered.
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CHAPTER 1

INTRODUCTION

Consider testing H0 : µ = 0 versus HA : µ , 0 using independent and identically distributed

(iid) x1, ..., xn where the xi are p × 1 random vectors and p may be much larger than n. Assume

the expected value E(xi) = µ and nonsingular covariance matrix Cov(xi) = Σ. Replace xi by

wi = xi − µ0 to test H0 : µ = µ0 versus HA : µ , µ0. This chapter reviews some tests while the

following chapter gives simpler large sample theory for some of the tests, including a new test that

has very simple large sample theory.

Suppose p is fixed, and consider testing H0 : θ = θ0 versus H1 : θ , θ0 where a g × 1 statistic

Tn satisfies
√

n(Tn − θ)
D
→ u ∼ Ng(0,Σ). If Σ̂

−1 P
→ Σ−1 and H0 is true, then

D2
n = D2

θ0
(Tn, Σ̂/n) = n(Tn − θ0)T Σ̂

−1
(Tn − θ0)

D
→ uTΣ−1u ∼ χ2

g

as n → ∞. Then a Wald type test rejects H0 at significance level δ if D2
n > χ2

g,1−δ where P(X ≤

χ2
g,1−δ) = 1 − δ if X ∼ χ2

g, a chi-square distribution with g degrees of freedom.

It is common to implement a Wald type test using

D2
n = D2

θ0
(Tn,Cn/n) = n(Tn − θ0)T C−1

n (Tn − θ0)
D
→ uT C−1u

as n→ ∞ if H0 is true, where the g× g symmetric positive definite matrix Cn
P
→ C , Σ. Hence Cn

is the wrong dispersion matrix, and uT C−1u does not have a χ2
g distribution when H0 is true. Often

Cn is a regularized estimator of Σ, or C−1
n is a regularized estimator of the precision matrix Σ−1,

such as Cn = diag(Σ̂) or Cn = Ig, the g × g identity matrix.

Rajapaksha and Olive (2024) showed how to bootstrap Wald tests with the wrong dispersion

matrix. When Cn = Ig, the bootstrap tests often became conservative as g increased to n. For some

of these tests, the m out of n bootstrap, which draws a sample of size m without replacement from

the n, works better than the nonparametric bootstrap.

1



When n is much larger than p, the one sample Hotelling (1931) T 2 test is often used to test

H0 : µ = µ0 versus HA : µ , µ0. The sample mean

x =
1
n

n∑
i=1

xi,

and the sample covariance matrix

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T = (S i j).

That is, the i j entry of S is the sample covariance S i j. If the xi are iid with expected value E(xi) = µ

and nonsingular covariance matrix Cov(xi) = Σ, then by the multivariate central limit theorem

√
n(x − µ)

D
→ Np(0,Σ).

If H0 is true, then

T 2
H = n(x − µ0)T S−1(x − µ0)

D
→ χ2

p.

The one sample Hotelling’s T 2 test rejects H0 if T 2
H > D2

1−δ where D2
1−δ = χ

2
p,δ and P(Y ≤ χ2

p,δ) = δ

if Y ∼ χ2
p. Alternatively, use

D2
1−δ =

(n − 1)p
n − p

Fp,n−p,1−δ

where P(Y ≤ Fp,d,δ) = δ if Y ∼ Fp,d. The scaled F cutoff can be used since T 2
H

D
→ χ2

p if H0 holds,

and
(n − 1)p

n − p
Fp,n−p,1−δ → χ2

p,1−δ

as n→ ∞.

The next two high dimensional tests are described in Srivastava and Du (2008). Also see Hu

and Bai (2015). Let tr(A) be the trace of square matrix A. Let R be the sample correlation matrix.
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Consider testing H0 : µ = 0 versus HA : µ , 0. Let D = diag(S). Let

cp,n = 1 +
tr(R2)

p3/2 .

Let n = O(pδ) where 0.5 < δ ≤ n. Then under regularity conditions

Z1 =
nxT D−1x − (n−1)p

n−3√
2
(
tr(R2) − p2

n−1

)
cp,n

D
→ N(0, 1)

as n, p→ ∞. The next test is attributed to Bai and Saranadasa (1996). Under regularity conditions,

Z2 =
nxT x − tr(S)[

2(n−1)n
(n−2)(n+1)

(
tr(S2) − 1

n [tr(S)]2
)]1/2

D
→ N(0, 1)

as n, p→ ∞. Both of these test statistics used p/n→ c > 0 or p/n2 → 0.

Note that H0 : µ = 0 holds if and only if ∥µ∥2 = µTµ = 0. The Tn in Equation (1.1) below can

be viewed as a modification of ∥x∥2 = xT x that is a better estimator of µTµ in high dimensions.

Note that E(xT
i x j) = µTµ if xi and x j are iid with E(xi) = µ and i , j. Let V(Tn) be the variance of

Tn and let s2
n = V̂(Tn) be a consistent estimator of V(Tn).

The following test is due to Chen and Qin (2010). Also see Hu and Bai (2015). Let a =∑n
i=1 xi and let X = (xi j) be the data matrix with ith row = xT

i and i j element = xi j. Let vec(A) stack

the columns of matrix A so that c = vec(XT ) = [xT
1 , x

T
2 , ..., x

T
n ]T . Then

cT c =
n∑

i=1

xT
i xi =

n∑
i=1

∥xi∥
2 =

n∑
i=1

p∑
j=1

(xi j)2.

Let

Tn =
1

n(n − 1)
[aT a − cT c] =

1
n(n − 1)

∑∑
i, j

xT
i x j =

1
n(n − 1)

∑
i, j

xT
i x j. (1.1)

The terms in cT c =
∑n

i=1 xT
i xi are the terms that cause the restriction on p for asymptotic normality
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for the previous two tests. Under H0 : µ = 0 and additional regularity conditions,

Tn
√

V(Tn)
D
→ N(0, 1) and

Tn

sn

D
→ N(0, 1) (1.2)

where sn is rather hard to compute. Here

s2
n =

2
n(n − 1)

tr

∑
i, j

(xi − x(i, j))xT
i (x j − x(i, j))xT

j


is a consistent estimator of V(Tn) where x(i, j) is the sample mean computed without xi or x j:

x(i, j) =
1

n − 2

∑
k,i, j

xk.

As noted by Park and Ayyala (2013), nTn = nxT x − tr(S). This result holds since

Tn =
1

n(n − 1)

∑
i

∑
j

xT
i x j −

∑
i

xT
i xi

 = n2xT x −
∑

i xT
i xi

n(n − 1)
.

Now

S =
1

n − 1

∑
i

xixT
i − nx xT

 .
Thus

tr(S) =
1

n − 1

∑
i

tr(xixT
i ) − ntr(x xT )

 = 1
n − 1

∑
i

xT
i xi − nxT x

 .
Thus

nxT x − tr(S) = nxT x +
n

n − 1
xT x −

1
n − 1

∑
i

xT
i xi =

n2xT x −
∑

i xT
i xi

n − 1
.

We will also consider replacing xi by zi = ss(xi) where the spatial sign function ss(xi) = 0

if xi = 0, and ss(xi) = xi/∥xi∥ otherwise. This function projects the nonzero xi onto the unit

p-dimensional hypersphere centered at 0. Let Tn(w) denote the statistic Tn computed from an iid

sample w1, ...,wn. Since the zi are iid if the xi are iid, use Tn(z) to test H0 : µz = 0 versus

HA : µz , 0 where µz = E(zi). In general, µz , µ = µx = E(xi), but µz = µ = 0 can occur if the

4



xi have a lot of symmetry about 0. In particular, µz = µ = 0 if the xi are iid from an elliptically

contoured distribution with center µ = 0. The test based on the statistic Tn(z) can be useful if the

second moment of the xi does not exist, for example if the xi are iid from a multivariate Cauchy

distribution. These results may be useful for understanding papers such as Wang, Peng, and Li

(2015)

Chapter 2 considers two estimators s2
n of V(Tn) that are easier to compute when H0 is true,

and gives a new test with very simple large sample theory. Chapter 3 considers two sample tests.
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CHAPTER 2

ESTIMATING V(TN)

Some notation for the simple test is needed. Assume x1, ..., xn are iid, E(xi) = µ and the

variance V(xT
i x j) = σ2

W for i , j. Let m = floor(n/2) = ⌊n/2⌋ be the integer part of n/2. So

floor(100/2) = floor(101/2) = 50. Let the iid random variables Wi = xT
2i−1x2i for i = 1, ...,m. Hence

W1,W2, ...,Wm = xT
1 x2, xT

3 x4, ..., xT
2m−1x2m. Note that E(Wi) = µTµ and V(Wi) = σ2

W . Let S 2
W be the

sample variance of the Wi:

S 2
W =

1
m − 1

m∑
i=1

(Wi −W)2.

If σ2
W ∝ τ

2 p where p > n, then n may not be large enough for the normal approximation to hold.

The following theorem follows from the univariate central limit theorem.

Theorem 1. Assume x1, ..., xn are iid, E(xi) = µ, and the variance V(xT
i x j) = σ2

W for i , j.

Let W1, ...,Wm be defined as above. Then

a)
√

m(W − µTµ)
D
→ N(0, σ2

W).

b)
√

m(W − µTµ)
S W

D
→ N(0, 1)

as n→ ∞.

The following theorem derives V(Tn) under much simpler regularity conditions than those in

the literature, and the proof of the theorem is also simpler. For example, Li (2023) finds V(Tn)

when H0 is true, using much stronger regularity conditions than in Theorem 2. In the simulations,

we use a variant of the Li (2023) variance estimator σ̂2
W , and also use the estimator S 2

W that is much

easier to compute.

Theorem 2. Assume x1, ..., xn are iid, E(xi) = µ, and the variance V(xT
i x j) = σ2

W for i , j.

Let Wi j = xT
i x j for i , j. Let θ = Cov(Wi j,Wid) = µTΣµ where j , d, i < j, and i < d. Then

a) V(Tn) =
2σ2

W

n(n − 1)
+

4(n − 2)θ
n(n − 1)

.

6



b) If H0 : µ = 0 is true, then θ = 0 and

V0 = V(Tn) =
2σ2

W

n(n − 1)
.

Proof. a) To find the variance V(Tn) with Tn from Equation (1.1), let Wi j = xT
i x j = W ji, and

note that

Tn =
2

n(n − 1)
Hn where Hn =

∑
i <

∑
j

xT
i xj =

∑
i<j

xT
i xj.

Then V(Hn) = Cov(Hn,Hn) =

Cov

∑
i <

∑
j

Wi j,
∑
k <

∑
d

Wkd

 =∑
i <

∑
j

∑
k <

∑
d

Cov(Wi j,Wkd). (2.1)

Let V(Wi j) = σ2
W for i , j. The covariances are of 3 types. First, if (i j) = (kd) with i < j, then

Cov(Wi j,Wkd) = V(Wi j) = σ2
W . Second, if i, j, k, d are distinct with i < j and k < d, then Wi j

and Wkd are independent with Cov(Wi j,Wkd) = 0. Third, there are terms where exactly three of

the four subscripts are distinct, which have Cov(Wi j,Wid) = θ where j , d, i < j, and i < d or

Cov(Wi j,Wk j) = θ where i , k, i < j, and k < j. These covariance terms are all equal to the same

number θ since Wi j = W ji. The number of ways to get three distinct subscripts is

a − b − c =
(
n
2

)2

−

(
n
2

)(
n − 2

2

)
−

(
n
2

)
= n(n − 1)(n − 2)

since a is the number of terms on the right hand side of (2.1), b is the number of terms where

i, j, k, d are distinct with i < j and k < d, and c is the number of terms where (i j) = (kd) with i < j.

[Note that n(n − 1) terms have i and j distinct. Half of these terms have i < j and half have i > j.

Similarly, n(n − 1)(n − 2)(n − 3) terms have i jkd distinct, and half of the n(n − 1) terms have i < j,

while half of the (n − 2)(n − 3) terms have k < d.] Thus

V(Hn) = 0.5n(n − 1)σ2
W + n(n − 1)(n − 2)θ.

7



This calculation was adapted from Lehmann (1975, pp. 336-337). Thus

V(Tn) =
4

[n(n − 1)]2 V(Hn) =
2σ2

W

n(n − 1)
+

4(n − 2)θ
n(n − 1)

.

b) Now θ = Cov(xT
i x j, xT

i xk) where xi, x j, and xk are iid. Hence θ =

Cov(
∑

d

xid x jd,
∑

t

xitxkt) =
∑

d

∑
t

Cov(xid x jd, xitxkt) =

∑
d

∑
t

[E(xid x jd xitxkt) − E(xid x jd)E(xitxkt)] =

∑
d

∑
t

[E(xid xit)E(x jd)E(xkt) − E(xid)E(x jd)E(xit)E(xkt)] =

∑
d

∑
t

[E(x jd)E(xkt)(E(xid xit) − E(xid)E(xit))] =

∑
d

∑
t

[E(x jd)E(xkt) Cov(xid, xit)] = µTΣµ.

Under H0, µ = 0 and thus θ = 0. □

Srivastava and Du (2008), Bai and Saranadasa (1996), Chen and Qin (2010), and others use

Tn/
√

V̂(Tn)
D
→ N(0, 1), while Li (2023) uses Tn/

√
V̂0(Tn)

D
→ N(0, 1). Theorem 2 and the following

result show that the second statistic has more power. Adapting an argument from Lehmann (1999,

pp. 367-368), let Z(a) = E(aT x j) = aTµ. Then it can be shown that θ = V(Z(xi)) = V(xT
i µ) ≥ 0.

Also, by Theorem 2, θ = µTΣµ ≥ 0. Let s2
n = V̂ be a consistent estimator of V(Tn) and let

V̂0 =
2σ̂2

W

n(n − 1)
.

The test statistics

t1 =
Tn√
V̂0

D
→ N(0, 1) and t2 =

Tn√
V̂

D
→ N(0, 1)

8



if H0 : µ = 0 is true. However, when H0 is not true,

V̂ ≈ V̂0 +
4(n − 2)θ̂
n(n − 1)

where the second term is positive. If H0 is not true and n and p are such that the second term

dominates, then |t1| tends to be proportional to
√

n|t2|, greatly increasing the power of the test that

uses t1.

For power, we expect V0(Tn) → 0 if p/n2 → 0 as n → ∞. The high dimensional literature

often gives very strong regularity conditions where V(Tn) → 0 if p = pn = nγ where γ is often

much larger than 0.5 and µ = 0. Suppose µ = δ1 where the constant δ > 0 and 1 is the p×1 vector of

ones. Then µTµ = δ2 p, and the test using V̂0(Tn) may have good power for Tn/
√

V̂0(Tn) > 1.96 ≈ 2

or for
δ2 p√

2σ2
W

n(n−1)

> 2 or δ2 >
2
√

2 σW

n p
.

The above theory can also be applied to the zi = ss(xi) to test H0 : E(z) = 0. As noted near the end

of Chapter 1, for elliptically contoured distributions, E(z) = µz = 0 if E(x) = µ = µx = 0.

The nonparametric bootstrap draws a bootstrap data set x∗1, ..., x
∗
n with replacement from the

xi and computes T ∗1 by applying Tn on the bootstrap data set. This process is repeated B times to get

a bootstrap sample T ∗1 , ...,T
∗
B. For the statistic Tn, the nonparametric bootstrap fails in high dimen-

sions because terms like xT
j x j need to be avoided, and the nonparametric bootstrap has replicates:

the proportion of cases in the bootstrap sample that are not replicates is about 1− e1 ≈ 2/3 ≈ 7/11.

The m out of n bootstrap draws a sample of size m without replacement from the n cases. For

B = 1, this is a data splitting estimator, and T ∗m ≈ N(0, s2
m) for large enough m and p. Sampling

without replacement is also known as subsampling and the delete d jackknife.

Theory for subsampling is given by Politis and Romano (1994) and Wu (1990). Subsampling

tends to work well for a large variety of statistics if m/n → 0 with m → ∞. A linear statistic has

9



the form
1
n

n∑
i=1

t(Ui)

where θ = E[t(Ui)] and the Ui are iid. For a linear statistic, subsampling tends to work well if

m/n → τ ∈ [0, 1) with m → ∞. For the Wi = Ui in Theorem 1, t(Ui) = Ui = xT
2i−1x2i. If different

blocks were taken such that the Wi are still iid, then subsampling would still work, but the statistics

from the different blocks are estimating the same quantiles. Hence subsampling from all of the

data may also work well. That is, subsampling may work well for a U-statistic that is the analog

of a linear statistic. Using m = f loor(2n/3) worked well in simulations.

Now let Wi be an indicator random variable with Wi = 1 if x∗i is in the sample and Wi = 0,

otherwise, for i = 1, ..., n. The Wi are binary and identically distributed, but not independent.

Hence P(Wi = 1) = m/n. Let Wi j = WiW j with i , j. Again, the Wi j are binary and identically

distributed. P(Wi j = 1) = P(ordered pair (xi, x j)) was selected in the sample. Hence P(Wi j = 1) =

m(m − 1)/[n(n − 1)] since m(m − 1) ordered pairs were selected out of n(n − 1) possible ordered

pairs. Then

T ∗m =
1

m(m − 1)

∑∑
k,d

xT
ik xid =

1
m(m − 1)

∑∑
i, j

WiW jxT
i x j

where the xi1 , ..., xim are the m vectors xi selected in the sample. The first double sum has m(m− 1)

terms while the second double sum has n(n − 1) terms. Hence

E(T ∗m) =
1

m(m − 1)

∑∑
i, j

E[WiW j]xT
i x j = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V(T ∗m) = E([T ∗m]2) − [Tn]2 =

Cov(T ∗m,T
∗
m).
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CHAPTER 3

TWO SAMPLE TESTS

If (x1i, x2i) come in correlated pairs, a high dimensional analog of the paired t test applies the

one sample test on zi = x1i − x2i.

Now suppose there are two independent random samples x1,1, ..., x1,n1 and x2,1, ..., x2,n2 from

two populations or groups, and that it is desired to test H0 : µ1 = µ2 versus H1 : µ1 , µ2 where

E(xi) = µi are p × 1 vectors. Let n = n1 + n2. Let Si be the sample covariance matrix of xi and let

Cov(xi) = Σi for i = 1, 2.

The classical two sample Hotelling’s T 2 test uses

T 2
C = (x1 − x2)T

[(
1
n1
+

1
n2

)
Σ̂pool

]−1

(x1 − x2)

where

Σ̂pool =
(n1 − 1)S1 + (n2 − 1)S2

n − 2
.

Then reject H0 if T 2
C > mFm,n−2,1−α.

The large sample test uses

T 2
L = (x1 − x2)T

(
S1

n1
+

S2

n2

)−1

(x1 − x2).

Let dn = min(n1 − p, n2 − p). Then reject H0 if T 2
L > mFm,dn,1−α.

Note that T 2
C ≈ T 2

L if n1 ≈ n2 ≥ 20p and the two tests are asymptotically equivalent if

ni/n → 0.5 as n1, n2 → ∞. If the ni/n are not close to 0.5, then the test based on T 2
C is useful if

Σ1 = Σ2, a very strong assumption. Rajapaksha and Olive (2024) show how to get a bootstrap test

based on T 2
C where the assumption Σ1 = Σ2 is not needed.
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There are test statistics Tn for testing H0 : µ1 = µ2 where p can be much larger than n with

Tn

sn

D
→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute. A simple test takes

m = min(n1, n2) and zi = x1i − x2i for i = 1, ...,m. Then apply the one sample test from Theorem

2 to the zi. This test might work well in high dimensions because of the superior power of the

Theorem 2 test, but in low dimensions, it is known that there are better tests.

Let x1 be the xi that has n1 ≤ n2. Then let

yi = x1i −

√
n1

n2
x2i +

1
√

n1n2

n1∑
j=1

x2 j − x2 = x1i −

√
n1

n2
x2i + an1,n2 − x2

for i = 1, ..., n1. Note that yi = zi = x1i − x2i if n1 = n2. Anderson (1984, pp. 177-178) proved

that y = x1 − x2, that yi and y j are uncorrelated for i , j, that E(yi) = µ1 − µ2, and that Cov(yi) =

Cov(x1) + (n1/n2)Cov(x2) for i = 1, ..., n1. Li (2023) showed that Tn(y)/
√

V̂0(y)
D
→ N(0, 1) where

the y denotes that the one sample test was computed using the yi.

Note that H0 : µ1 = µ2 holds if and only if ∥µ1 − µ2∥
2 = µT

1µ1 + µ
T
2µ2 − 2µT

1µ2. These terms

can be estimated by Tn = Tn(x, y) = T1 +T2 − 2T3 where T1 and T2 are the one sample test statistic

applied to samples 1 and 2 and n1n2T3 =
∑n1

i=1

∑n2
j=1 xT

1ix2 j. Let a =
∑n1

i=1 x1i and let X1 = (x1i j) be

the data matrix with ith row = xT
1i and i j element = x1i j. Let c = vec(XT

1 ) = [xT
11, x

T
12, ..., x

T
1n1

]T .

Then

cT c =
n1∑
i=1

xT
1ix1i =

n1∑
i=1

∥x1i∥
2 =

n1∑
i=1

p∑
j=1

(x1i j)2.

Let b =
∑n2

i=1 x2i and let X2 = (x2i j) be the data matrix with ith row = xT
2i and i j element = x2i j. Let

d = vec(XT
2 ) = [xT

21, x
T
22, ..., x

T
2n2

]T . Then

dT d =
n2∑
i=1

xT
2ix2i =

n2∑
i=1

∥x2i∥
2 =

n2∑
i=1

p∑
j=1

(x2i j)2.

12



Thus

Tn = T1 + T2 − 2T3 =
1

n1(n1 − 1)
[aT a − cT c] +

1
n2(n2 − 1)

[bT b − dT d] −
2aT b
n1n2

.

The terms in cT c and dT d are the terms that cause the restriction on p for asymptotic normal-

ity. Under H0 : µ1 = µ2 and additional regularity conditions,

Tn

sn

D
→ N(0, 1)

where sn is rather hard to compute. See Hu and Bai (2015) and Chen and Qin (2010).
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CHAPTER 4

V(TN) FOR TWO SAMPLE TESTS

Let n = n1 and m = n2. Let N = n + m and assume n/N → π1 ∈ (0, 1) while m/N →

π2 ∈ (0, 1). In Theorem 2, V0(Tn) ∝ 1/n2 while V(Tn) ∝ 1/n if µ , 0, resulting in a large

increase in power compared to tests that use V(Tn). For the Chen and Qin (2010) two sample test

with Tn = Tn(x, y), Conjecture 1 suggests that V0(Tn) ∝ 1/N2 and V(Tn) ∝ 1/N. However, our

programs do not simulate well. The Li (2023) test also has V0(Tn) ∝ 1/N2.

Conjecture 1. Assume x1, ..., xn and y1, ..., ym are two independent random samples from

two different populations or groups, E(xi) = µx and E(y j) = µy and the variances V(xT
i x j) = σ2

X

for i , j and V(yT
i y j) = σ2

Y for i , j and V(xT
i y j) = σ2

Z for i = 1, ..., n and j = 1, ...,m. Let

Xi j = xT
i x j for i , j, Yi j = yT

i y j for i , j and Zi j = xT
i y j for i = 1, ..., n and j = 1, ..., n. Let θ1 =

Cov(Xi j, Xit) = µT
xΣxµx where j , t, i < j, and i < t, θ2 = Cov(Yi j,Yit) = µT

yΣyµy where j , t,

i < j, and i < t, θ3 = Cov(Zi j,Zit) = µT
yΣxµy where j , t, θ4 = Cov(Zi j,Zk j) = µT

xΣyµx where

i , k, θ5 = Cov(Xi j,Zab) = µT
xΣxµy where a = i or a = j, and i < j, θ6 = Cov(Yi j,Zab) = µT

yΣyµx

where b = i or b = j, and i < j. Then

a) V(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
+

4(n − 2)θ1

n(n − 1)
+

4(m − 2)θ2

m(m − 1)
+

4(m − 1)θ3

nm

+
4(n − 1)θ4

nm
−

8θ5

n
−

8θ6

m
(4.1)

b) Assume H0 : µx = µy is true with m = n and V(Tn) = V0(Tn).

(i) If µx = µy = µ , 0, let γ = µT (Σx + Σy)µ. Then

V0(Tn) =
2(σ2

X + σ
2
Y)

n(n − 1)
+

4σ2
Z

n2 +
4(1 − 2n)γ
n2(n − 1)

.
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(ii) If µx = µy = 0, then γ = 0 and

V0(Tn) =
2(σ2

X + σ
2
Y)

n(n − 1)
+

4σ2
Z

n2 .

c) Assume H0 : µx = µy is true with m , n and V(Tn) = V0(Tn).

(i) If µx = µy = µ , 0, let τ1 =
1

(n−1)µ
TΣxµ and τ2 =

1
(m−1)µ

TΣyµ. Then

V0(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
−

4(N − 1)
nm

(τ1 + τ2)

(ii) If µx = µy = 0, then τ1 = τ2 = 0 and

V0(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
.

“Proof.” a) Note that Tn = T1 + T2 − 2T3, so:

V(Tn) = V(T1 + T2 − 2T3) = Cov(T1 + T2 − 2T3,T1 + T2 − 2T3)

Thus

V(Tn) = V(T1) + V(T2) + 4V(T3) − 4Cov(T1,T3) − 4Cov(T2,T3) (4.2)

To find the variance V(Tn), let Xi j = xT
i x j = X ji, Yi j = yT

i y j = Y ji , Zi j = xT
i y j = Z ji and note

that

T1 =
2

n(n − 1)
H1 where H1 =

n∑
i <

n∑
j

xT
i xj =

n∑
i<j

xT
i xj.

T2 =
2

m(m − 1)
H2 where H2 =

m∑
i <

m∑
j

yT
i yj =

m∑
i<j

yT
i yj.

T3 =
1

nm
H3 where H3 =

n∑
i=1

m∑
j=1

xT
i yj.
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Then from one sample test, we have

V(T1) =
2σ2

X

n(n − 1)
+

4(n − 2)θ1

n(n − 1)
(4.3)

V(T2) =
2σ2

Y

m(m − 1)
+

4(m − 2)θ2

m(m − 1)
. (4.4)

Now consider

V(T3) = Cov(T3,T3) = Cov(
1

nm
H3,

1
nm

H3) =
1

(nm)2 Cov(H3,H3)

=
1

(nm)2 Cov

 n∑
i=1

m∑
j=1

xT
i y j,

n∑
k=1

m∑
t=1

xT
k yt

 = 1
(nm)2

n∑
i=1

m∑
j=1

n∑
k=1

m∑
t=1

Cov(Zi j,Zkt).

Let V(Zi j) = σ2
Z. The covariances are of 4 types. First, if i = k and j = t, then Cov(Zi j,Zkt) =

Cov(Zi j,Zi j) = V(Zi j) = σ2
Z, there are nm terms. Second, if i = k and j , t, then Cov(Zi j,Zit) = θ3,

there are nm(m − 1) terms. Third, if i , k and j = t, then Cov(Zi j,Zk j) = θ4, there are mn(n − 1)

terms. Fourth, if all four subscripts i, j, k, t are distinct i.e. i , k and j , t , then Zi j and Zkt are

independent with Cov(Zi j,Zkt) = 0 there are nm(m − 1)(n − 1) terms. Thus

V(T3) =
1

nm
[σ2

Z + (m − 1)θ3 + (n − 1)θ4] (4.5)

and

Cov(T1,T3) = Cov
(

2
n(n − 1)

H1,
1

nm
H3

)
=

2
mn2(n − 1)

Cov

 n∑
i <

n∑
j

xT
i x j,

n∑
a=1

m∑
b=1

xT
a yb


=

2
mn2(n − 1)

n∑
i <

n∑
j

n∑
a=1

m∑
b=1

Cov
(
xT

i x j, xT
a yb

)
.

The covariances are of 2 types. First, if a = i or a = j, then Cov(Xi j,Zab) = θ5, there are mn(n − 1)

terms. Second, if a , i and a , j, then i, j, a are distinct and Cov(Xi j,Zab) = 0.
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Hence,

Cov(T1,T3) =
2
n
θ5. (4.6)

Similarly,

Cov(T2,T3) = Cov
(

2
m(m − 1)

H2,
1

nm
H3

)
=

2
nm2(m − 1)

Cov

 m∑
i <

m∑
j

yT
i y j,

n∑
a=1

m∑
b=1

xT
a yb


=

2
nm2(m − 1)

m∑
i <

m∑
j

n∑
a=1

m∑
b=1

Cov
(
yT

i y j, x
T
a yb

)
.

The covariances are of 2 types. First, if b = i or b = j, then Cov(Yi j,Zab) = θ6, there are nm(m − 1)

terms. Second, if b , i nor b , j, then i, j, b are distinct and Cov(Yi j,Zab) = 0.

Hence,

Cov(T2,T3) =
2
m
θ6. (4.7)

Therefore, from equations (4.2)-(4.7) we get:

V(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
+

4(n − 2)θ1

n(n − 1)
+

4(m − 2)θ2

m(m − 1)
+

4(m − 1)θ3

nm

+
4(n − 1)θ4

nm
−

8θ5

n
−

8θ6

m
.

□

b) From one sample test, we know that

θ1 = Cov(Xi j, Xit) = µT
xΣxµx
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and

θ2 = Cov(Yi j,Yit) = µT
yΣyµy.

Now θ3 = Cov(Zi j,Zit) = Cov(xT
i y j, xT

i yt) where xi, y j, and yt are independent. Hence θ3 =

Cov(
∑

a

xiay ja,
∑

b

xibytb) =
∑

a

∑
b

Cov(xiay ja, xibytb) =

∑
a

∑
b

[E(xiay jaxibytb) − E(xiay ja)E(xibytb)] =

∑
a

∑
b

[E(xiaxib)E(y ja)E(ytb) − E(xia)E(y ja)E(xib)E(ytb)] =

∑
a

∑
b

[E(y ja)E(ytb)(E(xiaxib) − E(xia)E(xib))] =

∑
a

∑
b

[E(y ja)E(ytb) Cov(xia, xib)] =

∑
a

∑
b

σabE(y ja)E(ytb) = µT
yΣxµy.

Similarly, θ4 = Cov(Zi j,Zk j) = Cov(xT
i y j, xT

k y j) where xi, xk, and y j are independent. So θ4 =

Cov(
∑

a

xiay ja,
∑

b

xkby jb) =
∑

a

∑
b

Cov(xiay ja, xkby jb) =

∑
a

∑
b

[E(xiay jaxkby jb) − E(xiay ja)E(xxby jb)] =

∑
a

∑
b

[E(xia)E(xkb)E(y jay jb) − E(xia)E(y ja)E(xkb)E(y jb)] =

∑
a

∑
b

[E(xia)E(xkb)(E(y jay jb) − E(y ja)E(y jb))] =

∑
a

∑
b

[E(xia)E(xkb) Cov(y ja, y jb)] =

∑
a

∑
b

σabE(xia)E(xkb) = µT
xΣyµx

and θ5 = Cov(Xi j,Zab) with either a = i or a = j. So, θ5 = Cov(xT
i x j, xT

i yb) where xi, x j, and yb are
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independent. Hence

θ5 = Cov(
∑

d

xid x jd,
∑

t

xitybt) =
∑

d

∑
t

Cov(xid x jd, xitybt) =

∑
d

∑
t

[E(xid x jd xitybt) − E(xid x jd)E(xitybt)] =

∑
d

∑
t

[E(xid xit)E(x jd)E(ybt) − E(xid)E(x jd)E(xit)E(ybt)] =

∑
d

∑
t

[E(x jd)E(ybt)(E(xid xit) − E(xid)E(xit))] =

∑
d

∑
t

[E(x jd)E(ybt) Cov(xid, xit)] =

∑
d

∑
t

σdtE(x jd)E(ybt) = µT
xΣxµy.

Likewise, θ6 = Cov(Yi j,Zab) with either b = i or b = j. So, θ6 = Cov(yT
i y j, xT

a yi) where yi, y j,

and xa are independent. Hence

θ6 = Cov(
∑

d

yidy jd,
∑

t

xatyit) =
∑

d

∑
t

Cov(yidy jd, xatyit) =

∑
d

∑
t

[E(yidy jd xatyit) − E(yidy jd)E(xatyit)] =

∑
d

∑
t

[E(yidyit)E(y jd)E(xat) − E(yid)E(y jd)E(yit)E(xat)] =

∑
d

∑
t

[E(y jd)E(xat)(E(yidyit) − E(yid)E(yit))] =

∑
d

∑
t

[E(y jd)E(xat) Cov(yid, yit)] =

∑
d

∑
t

σdtE(y jd)E(xat) = µT
yΣyµx.

Under H0, µx = µy, and assume m = n. Let µx = µy = µ , 0, then θ1 = θ3 = θ5 = µ
TΣxµ

and θ2 = θ4 = θ6 = µ
TΣyµ. Substituting these values into equation (4.1) gives
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V0(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

n(n − 1)
+

4σ2
Z

n2 +

[
4(n − 2)
n(n − 1)

+
4(n − 1)

n2 −
8
n

]
µTΣxµ

+

[
4(n − 2)
n(n − 1)

+
4(n − 1)

n2 −
8
n

]
µTΣyµ

=
2(σ2

X + σ
2
Y)

n(n − 1)
+

4σ2
Z

n2 +

[
4(n − 2)
n(n − 1)

+
4(n − 1)

n2 −
8
n

]
(µTΣxµ + µTΣyµ)

=
2(σ2

X + σ
2
Y)

n(n − 1)
+

4σ2
Z

n2 +
4(1 − 2n)
n2(n − 1)

µT (Σx + Σy)µ.

Let γ = µT (Σx + Σy)µ. Therefore

V0(Tn) =
2(σ2

X + σ
2
Y)

n(n − 1)
+

4σ2
Z

n2 +
4(1 − 2n)
n2(n − 1)

γ

which proves (i).

For (ii), let µ = 0 and thus γ = µT (Σx + Σy)µ = 0 then the result follows. □

c) For (i), let µx = µy = µ , 0 and assume m , n. Use θ1 = θ3 = θ5 = µ
TΣxµ and

θ2 = θ4 = θ6 = µ
TΣyµ. Substituting these values into equation (4.1) gives

V0(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
+

[
4(n − 2)
n(n − 1)

+
4(m − 1)

nm
−

8
n

]
µTΣxµ

+

[
4(m − 2)
m(m − 1)

+
4(n − 1)

nm
−

8
m

]
µTΣyµ

=
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
−

4(n + m − 1)
nm(n − 1)

µTΣxµ −
4(m + n − 1)
nm(m − 1)

µTΣyµ
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=
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
−

4(n + m − 1)
nm

[
1

(n − 1)
µTΣxµ +

1
(m − 1)

µTΣyµ].

Let 1
(n−1)µ

TΣxµ = τ1 and 1
(m−1)µ

TΣyµ = τ2 and replace n + m by N. Thus

V0(Tn) =
2σ2

X

n(n − 1)
+

2σ2
Y

m(m − 1)
+

4σ2
Z

nm
−

4(N − 1)
nm

(τ1 + τ2).

For (ii), let µx = µy = µ = 0 and thus τ1 = τ2 = 0 then the result follows. □
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CHAPTER 5

SIMULATIONS

5.0.1 One Sample Tests

In the simulations, we examined four one sample tests. The first “test” used the m out of n

bootstrap to compute T ∗1 , ...,T
∗
B with B = 100. We used the shorth bootstrap confidence interval

described in Olive (2025, chapter 2) and Pelawa Watagoda and Olive (2021). This “test” has not

been proven to have level α. The second test computed the usual t confidence interval

[W − t1−α/2,m−1S W/
√

m,W + t1−α/2,m−1S W/
√

m]

for µTµ based on the Wi from Theorem 1. The third and fourth tests used Theorem 2 b) and

Equation 1.2): Tn/sn
D
→ N(0, 1) if s2

n is a consistent estimator of V(Tn) when H0 is true. The third

test used

s2
n = σ̂

2
W =

1
n(n − 1)

∑∑
i, j

(xT
i x j − Tn)2 =

1
n(n − 1)

∑∑
i, j

(Wi j − Tn)2.

If the denominator n(n − 1) was replaced by n(n − 1) − 1, this statistic would be the usual sample

variance of the Wi j, which are not independent. This test is nearly the same as the Li (2023) test.

The fourth test used s2
n = S 2

W based on Theorem 1. These two tests computed intervals

[Tn − t1−α/2,m−1

√
2s2

n/[n(n − 1)],Tn + t1−α/2,m−1

√
2s2

n/[n(n − 1)]].

The third test computed the usual t confidence interval

[W − t1−α/2,m−1S W/
√

m,W + t1−α/2,m−1S W/
√

m]
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for µTµ based on the Wi from Theorem 1. The tests 2–4 use the same cutoff t1−α/2,m−1 so that the

average interval lengths are more comparable. The fifth test used the Theorem 2 test applied to the

spatial sign vectors with S 2
W .

The estimator σ̂2
W is easy to code in R. Let X be the n × p data matrix with ith row xT

i . Then

the sum of squares and cross products matrix is C = XXT = (ci j) with i jth element ci j = xT
i x j.

Let A = XXT − Tn11T = (ai j) where 11T is the n × n matrix of ones. Let matrix V = (vi j) where

vi j = a2
i j = (xT

i x j − Tn)2 is the i jth element of V. Thus n(n − 1)σ̂2
W =

∑n
i=1

∑n
j=1 vi j −

∑n
i=1 vii.

k <- n*(n-1)

a <- apply(x,2,sum) #a = n xbar and x is the data matrix

Thd <- (t(a)%*%a - sum(xˆ2))/k

Thd <- as.double(Thd) #Thd = Tn

sscp <- x%*%t(x)

ss <- sscp - Thd

ss <- ssˆ2

vw1 <- (sum(ss) - sum(diag(ss)))/k #\hat{\sigma}_Wˆ2

The simulation used four distribution types where x = Ay+ δ1 with E(x) = δ1 where 1 is the

p×1 vector of ones. Type 1 used y ∼ Np(0, I), type 2 used a mixture distribution y ∼ 0.6Np(0, I)+

0.4Np(0, 25I), type 3 for a multivariate t4 distribution, and type 4 for a multivariate lognormal

distribution where y = (y1, ..., yp) with wi = exp(Z) where Z ∼ N(0, 1) and yi = wi − E(wi) where

E(wi) = exp(0.5). The covariance matrix type depended on the matrix A. Type 1 used A = Ip,

type 2 used A = diag(
√

1, ...,
√

p), and type 3 used A = ψ11T + (1 − ψ)Ip giving cor(xi j, xik) = ρ

for j , k where ρ = 0 if ψ = 0, ρ → 1/(c + 1) as p → ∞ if ψ = 1/
√

cp where c > 0, and ρ → 1

as p→ ∞ if ψ ∈ (0, 1) is a constant. We used δ = 0 and δ > 0 chosen so at least one test had good

power. The simulation used 5000 runs, the 4 x distributions, and the 3 matrices A. For the third A,

we used ψ = 1/
√

p.

Tables 5.1-5.9 summarize some simulation results. There are two lines for each simulation

scenario. The first line gives the simulated power = proportion of times H0 : µ = 0 was rejected.
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The second line gives the average length of the confidence interval where H0 is rejected if 0 is

not in the confidence interval. When δ = 0, observed coverage between 0.04 and 0.06 suggests

coverage = power = level is close to the nominal value 0.05. For larger δ, want the coverage near

1 for good power.

The bootstrap test corresponds to the boot column, the tests using (w, S W), (Tn, σ̂W), and

(Tn, S W) correspond to the next three columns. The last column corresponds to the spatial sign test.

This test tends to have much shorter lengths because of the transformation of the data. The test

using (w, S W) has simple large sample theory, but large confidence interval length and low power

compared to the other methods. The bootstrap test was sometimes conservative with observed

coverage < 0.04 when delta=0. For xtype=4 and delta=0, H0 was not true for the spatial test.

Hence the coverage for the spatial test was sometimes higher than 0.06 for this scenario. For

delta=0, the test with (Tn, σ̂W) sometimes had coverage less than 0.04, while the test with (Tn, S W)

sometimes had coverage greater than 0.06. In the simulations, the spatial test often performed

well, but typically E(zi) = µz , µx = E(xi), which makes the spatial test harder to use. For testing

H0 : µx = 0, the test with (Tn, σ̂W) appeared to perform better than the three competitors.

5.0.2 Two Sample Tests

In the simulations, we examined three sample tests. The first “test” used the m out of n

bootstrap where mi = 2ni/3 to bootstrap the Chen and Qin (2010) test that estimates ∥µ1 − µ2∥
2 =

µT
1µ1 +µ

T
2µ2 − 2µT

1µ2. The second test was the “paired test” with m = min(n1, n2) and zi = x1i − x2i

for i = 1, ...,m. Then apply the one sample test from Theorem 2 to the zi. The third test was the Li

(2023) test. Both of these tests used S 2
W applied to the zi or the yi.

The simulation used four distribution types where x1 = A1y1 + δ1 and x2 = A2y2 where y1

and y2 had the same distribution, with E(x1) = δ1 and E(x2) = 0. Type 1 used y ∼ Np(0, I), type 2

used a mixture distribution y ∼ 0.6Np(0, I)+0.4Np(0, 25I), type 3 for a multivariate t4 distribution,

and type 4 for a multivariate lognormal distribution where y = (y1, ..., yp) with wi = exp(Z) where

Z ∼ N(0, 1) and yi = wi − E(wi) where E(wi) = exp(0.5). The covariance matrix type depended on
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Table 5.1. One sample tests, covtyp=1, p=100

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 100 0 0 0.0230 0.0580 0.0400 0.0452 0.0444

len 1 0.6732 5.6520 0.5711 0.5681 0.0057
100 100 0 0.075 0.8160 0.0688 0.9216 0.9176 0.9166

len 1 0.8081 5.7018 0.5741 0.5731 0.0057
100 100 0 0 0.0236 0.0436 0.0466 0.0776 0.0478

len 2 7.0590 58.2593 6.0094 5.8553 0.0057
100 100 0 0.15 0.1938 0.0506 0.3128 0.349 0.9988

len 2 7.5830 58.1417 6.0204 5.8435 0.0057
100 100 0 0 0.0222 0.0466 0.045 0.068 0.0468

len 3 1.3031 10.6946 1.1140 1.0749 0.0057
100 100 0 0.1 0.7536 0.0544 0.872 0.8714 0.9956

len 3 1.5563 10.8976 1.1260 1.0953 0.0057
100 100 0 0 0.0206 0.0556 0.0372 0.0656 0.0906

len 4 3.1105 25.4558 2.6543 2.5584 0.0057
100 100 0 0.17 0.9024 0.0546 0.9622 0.9496 0.7668

len 4 3.7816 25.5420 2.6708 2.5671 0.0057

Table 5.2. One sample tests, covtyp=1, p=1000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 1000 0 0 0.0236 0.0482 0.0448 0.0506 0.0506

len 1 2.1403 17.8302 1.8059 1.7920 0.0018
100 1000 0 0.0415 0.872 0.068 0.9438 0.9398 0.9388

len 1 2.2771 17.9004 1.8089 1.7991 0.0018
100 1000 0 0 0.0236 0.0448 0.0458 0.0712 0.0558

len 2 22.4434 185.1105 19.0973 18.6043 0.0018
100 1000 0 0.075 0.142 0.048 0.2222 0.2616 0.9978

len 2 22.8203 182.6556 18.9772 18.3576 0.0018
100 1000 0 0 0.0214 0.0432 0.0436 0.065 0.045

len 3 4.1649 34.1708 3.5444 3.4343 0.0018
100 1000 0 0.05 0.6458 0.0558 0.7642 0.777 0.9908

len 3 4.3708 34.0483 3.5586 3.4220 0.0018
100 1000 0 0 0.0192 0.0544 0.0378 0.0518 0.0484

len 4 9.9417 82.3953 8.4267 8.2810 0.0018
100 1000 0 0.087 0.843 0.0576 0.9282 0.9242 0.8774

len 4 10.5664 82.8816 8.4523 8.3299 0.0018
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Table 5.3. One sample tests, covtyp=1, p=10000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 10000 0 0 0.024 0.0474 0.0446 0.0474 0.0462

len 1 6.7618 56.7383 5.7116 5.7024 0.0006
100 10000 0 0.023 0.8778 0.0652 0.9476 0.946 0.9466

len 1 6.8718 56.7593 5.7149 5.7045 0.0006
100 10000 0 0 0.021 0.04 0.0386 0.0764 0.0438

len 2 70.5972 581.8741 60.1418 58.4806 0.0006
100 10000 0 0.05 0.2624 0.0524 0.3738 0.4032 1

len 2 71.5393 582.2665 60.1618 58.5200 0.0006
100 10000 0 0 0.0224 0.0436 0.0472 0.0778 0.0554

len 3 13.2420 108.8067 11.2650 10.9355 0.0006
100 10000 0 0.03 0.7824 0.0588 0.8706 0.87 0.9992

len 3 13.3547 108.5636 11.1969 10.9111 0.0006
100 10000 0 0 0.0272 0.0504 0.0446 0.0516 0.0502

len 4 31.6188 263.0578 26.67685 26.4383 0.0006
100 10000 0 0.05 0.8958 0.054 0.9606 0.9618 0.953

len 4 32.3627 263.551 26.6933 26.4879 0.0006

Table 5.4. One sample tests, covtyp=2, p=100

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 100 0 0 0.0212 0.0498 0.038 0.043 0.0414

len 1 38.9543 329.1668 33.2225 33.0825 0.0065
100 100 0 0.6 0.8966 0.0758 0.956 0.9548 0.9556

len 1 46.3236 330.7589 33.3672 33.2425 0.0065
100 100 0 0 0.0214 0.0502 0.0398 0.0726 0.0506

len 2 410.1416 3394.75 350.1749 341.1852 0.0065
100 100 0 1.5 0.5062 0.0526 0.6492 0.662 1

len 2 455.0242 3396.337 350.6696 341.3447 0.0066
100 100 0 0 0.023 0.041 0.0454 0.0684 0.0474

len 3 76.2693 629.0579 65.2686 63.2227 0.0065
100 100 0 0.75 0.755 0.06 0.8558 0.8608 0.997

len 3 88.0646 634.0106 65.49 63.7205 0.0065
100 100 0 0 0.0222 0.0608 0.042 0.0738 0.1156

len 4 178.6321 1470.551 153.3266 147.7959 0.0064
100 100 0 1.2 0.8532 .0492 0.932 0.9214 0.741

len 4 207.835 1459.873 154.4866 146.7227 0.0063
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Table 5.5. One sample tests, covtyp=2, p=1000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 1000 0 0 0.0286 0.0476 0.0438 0.0482 0.049

len 1 1231.498 10344.15 1043.615 1039.626 0.0021
100 1000 0 0.975 0.8472 0.0648 0.9282 0.9204 0.9208

len 1 1300.17 10379.01 1045.303 1043.129 0.0021
100 1000 0 0 0.0266 0.0386 0.047 0.0784 0.0536

len 2 12929.72 106330.2 11004.27 10686.59 0.0021
100 1000 0 1.5 0.078 0.0388 0.1286 0.162 0.9474

len 2 13095.03 106960.8 11016.42 10749.97 0.0021
100 1000 0 0 0.0222 0.0456 0.0446 0.0738 0.0454

len 3 2387.572 19676.47 2033.522 1977.559 0.0021
100 1000 0 1.25 0.7222 0.0616 0.8276 0.8346 0.9986

len 3 2514.451 19835.06 2051.272 1993.498 0.0021
100 1000 0 0 0.0268 0.0522 0.0462 0.063 0.0546

len 4 5747.818 47479.65 4864.88 4771.884 0.0020
100 1000 0 2.15 0.8958 0.054 0.9544 0.9466 0.9198

len 4 6064.615 47527.19 4876.035 4776.662 0.0021

Table 5.6. One sample tests, covtyp=2, p=10000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 10000 0 0 0.0272 0.0536 0.045 0.0502 0.0496

len 1 39006.52 326271.5 32976.41 32791.52 0.0007
100 10000 0 1.69 0.8482 0.0582 0.93 0.9294 0.9286

len 1 39690.34 327648.8 32994.63 32929.94 0.0007
100 10000 0 0 0.0244 0.0442 0.0486 0.0876 0.0526

len 2 408860 3330506 347476 334728.5 0.0007
100 10000 0 3 0.1126 0.0488 0.1778 0.2148 0.9952

len 2 411196.1 3349674 347862.6 336654.9 0.0007
100 10000 0 0 0.0206 0.044 0.0436 0.0632 0.051

len 3 75976.41 624134.1 64858.9 62727.84 0.0007
100 10000 0 2.5 0.8918 0.0608 0.9462 0.9454 1

len 3 77389.1 625801.9 64740.62 62895.46 0.0007
100 10000 0 0 0.0236 0.0534 0.038 0.0444 0.0454

len 4 181871.7 1517807 154052.2 152545.3 0.0007
100 10000 0 3.80 0.8952 0.0578 0.9558 0.9522 0.948

len 4 185192.4 1518189 154094.1 152583.7 0.0007
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Table 5.7. One sample tests, covtyp=3, p=100

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 100 0 0 0.0236 0.0526 0.0406 0.048 0.0448

len 1 0.6739 5.6555 0.5711 0.5684 0.0057
100 100 0.1 0 0.0058 0.0456 0.0476 0.0492 0.0466

len 1 6.6184 66.6393 6.7521 6.6975 0.0235
100 100 0 0.075 0.8146 0.0684 0.9172 0.9154 0.9132

len 1 0.8074 5.6934 0.5744 0.5722 0.0057
100 100 0.1 0.40 0.796 0.1252 0.9572 0.9582 0.9344

len 1 25.9220 74.8734 7.5906 7.5251 0.0245
100 100 0 0 0.0208 0.0396 0.0432 0.072 0.0496

len 2 7.0581 58.6427 6.0136 5.8938 0.0057
100 100 0.1 0 0.0068 0.0322 0.0508 0.0688 0.0534

len 2 70.7733 659.5251 70.1401 66.2847 0.0235
100 100 0 0.15 0.2032 0.051 0.3288 0.3624 0.999

len 2 7.6090 58.3959 6.0258 5.8690 0.0057
100 100 0.1 0.7 0.228 0.0504 0.5074 0.5228 0.9742

len 2 146.1211 694.7141 73.0017 69.8214 0.0254
100 100 0 0 0.0232 0.0458 0.0448 0.0712 0.0492

len 3 1.3148 10.8342 1.1249 1.0889 0.0057
100 100 0.1 0 0.0078 0.0396 0.0576 0.067 0.054

len 3 13.1361 124.6081 12.9959 12.5236 0.0234
100 100 0 0.1 0.7454 0.0654 0.8616 0.865 0.9962

len 3 1.5587 10.9085 1.1336 1.0964 0.0057
100 100 0.1 0.5 0.6912 0.109 0.9016 0.9074 0.9808

len 3 44.5694 137.9813 14.3748 13.8677 0.0250
100 100 0 0 0.0228 0.061 0.0458 0.0778 0.093

len 4 3.1119 25.5519 2.6567 2.5681 0.0057
100 100 0.1 0 0.0082 0.0468 0.0494 0.049 0.2442

len 4 30.7926 307.8728 31.3771 30.9424 0.0246
100 100 0 0.17 0.9042 0.048 0.9654 0.957 0.7574

len 4 3.7701 25.3263 2.6645 2.5454 0.0056
100 100 0.1 0.85 0.7948 0.0976 0.9584 0.9584 0.642

len 4 115.7032 343.3036 34.9664 34.5033 0.0247
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Table 5.8. One sample tests, covtyp=3, p=1000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 1000 0 0 0.0282 0.049 0.0516 0.056 0.0558

len 1 2.1401 17.8831 1.8065 1.7973 0.0018
100 1000 0.0316 0 0.0066 0.0426 0.0512 0.0532 0.05

len 1 58.4898 591.9678 60.0672 59.495 0.0207
100 1000 0 0.04 0.8196 0.061 0.9152 0.9124 0.9128

len 1 2.2646 17.9067 1.8088 1.7997 0.0018
100 1000 0.0316 0.4 0.8342 0.1524 0.9732 0.974 0.9572

len 1 241.2136 672.2661 68.1736 67.5653 0.0218
100 1000 0 0 0.0272 0.0438 0.0484 0.082 0.0522

len 2 22.3855 182.4873 19.0115 18.3407 0.0018
100 1000 0.0316 0 0.0072 0.0306 0.0524 0.0636 0.0502

len 2 617.6974 5850.04 625.8249 587.9512 0.0208
100 1000 0 0.1 0.3982 0.046 0.533 0.5552 1

len 2 23.2021 184.5163 19.0359 18.5446 0.0018
100 1000 0.0316 0.7 0.2628 0.0522 0.557 0.5734 0.99

len 2 1373.899 6128.062 652.5555 615.8934 0.0228
100 1000 0 0 0.0276 0.0464 0.0484 0.0742 0.0536

len 3 4.1547 34.0314 3.5458 3.4203 0.0018
100 1000 0.0316 0 0.0082 0.043 0.0504 0.061 0.0482

len 3 114.0482 1097.655 115.6618 110.3185 0.0207
100 1000 0 0.05 0.6502 0.0638 0.7662 0.7722 0.9924

len 3 4.3608 34.1752 3.5518 3.4347 0.0018
100 1000 0.0316 0.5 0.7432 0.1282 0.9284 0.9294 0.988

len 3 419.3617 1241.326 129.0976 124.7579 0.0224
100 1000 0 0 0.0252 0.0486 0.0432 0.0568 0.0548

len 4 9.9698 82.6130 8.4362 8.3029 0.0018
100 1000 0.0316 0 0.0068 0.0448 0.05 0.0512 0.08

len 4 272.2052 2776.522 281.1257 279.051 0.0210
100 1000 0 0.09 0.8848 0.0614 0.9534 0.9484 0.9128

len 4 10.5916 82.9419 8.4411 8.3360 0.0018
100 1000 0.0316 0.75 0.7026 0.0962 0.9192 0.9214 0.79

len 4 978.2186 3071.672 310.7018 308.7147 0.0216
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Table 5.9. One sample tests, covtyp=3, p=10000

n p psi/xtype delta boot (w, S W) (Tn, σ̂W) (Tn, S W) spatial
100 10000 0 0 0.0264 0.0466 0.0472 0.05 0.0504

len 1 6.7701 56.6313 5.7115 5.6917 0.0006
100 10000 0 0.0233 0.8962 0.0682 0.9552 0.954 0.9542

len 1 6.8971 56.6364 5.7153 5.6922 0.0006
100 10000 0.01 0 0.0056 0.046 0.0512 0.0528 0.0564

len 1 564.4415 5680.653 576.1765 570.9271 0.020
100 10000 0.01 0.35 0.7202 0.1126 0.9248 0.9242 0.9026

len 1 2053.81 6331.873 639.567 636.3772 0.0209
100 10000 0 0 0.024 0.0424 0.0428 0.0756 0.0434

len 2 70.5595 586.6235 60.1390 58.9579 0.0006
100 10000 0 0.07 0.7832 0.063 0.8812 0.8688 1

len 2 71.8118 579.2654 60.1122 58.2184 0.0006
100 10000 0.01 0 0.0098 0.0278 0.0536 0.0652 0.0542

len 2 6023.129 56229.19 5976.323 5651.246 0.020
100 10000 0.01 0.05 0.008 0.0288 0.0538 0.0648 0.0624

len 2 5909.249 56185.34 5990.066 5646.839 0.0200
100 10000 0 0 0.0228 0.044 0.0468 0.0718 0.0474

len 3 13.1846 108.8429 11.2381 10.9391 0.0006
100 10000 0 0.031 0.821 0.061 0.9064 0.9024 0.9998

len 3 13.4349 108.6346 11.2509 10.9182 0.0006
100 10000 0.01 0 0.0094 0.0412 0.051 0.061 0.0514

len 3 1107.379 10715.91 1117.261 1076.99 0.020
100 10000 0.01 0.5 0.7578 0.1378 0.937 0.9374 0.9936

len 3 4116.296 12003.91 1244.21 1206.438 0.0217
100 10000 0 0 0.0224 0.0528 0.0406 0.0498 0.048

len 4 31.5140 262.9498 26.6745 26.4274 0.0006
100 10000 0 0.049 0.8658 0.0562 0.937 0.9342 0.9266

len 4 32.2037 264.4047 26.6915 26.5737 0.0006
100 10000 0.01 0 0.0054 0.047 0.0476 0.0484 0.0516

len 4 2596.682 26497.84 2691.244 2663.133 0.020
100 10000 0.01 0.75 0.7112 0.1052 0.9262 0.9268 0.873

len 4 9507.08 29481.95 2986.855 2963.047 0.0208
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Table 5.10. Two sample tests, covtyp=1, p=100

(n1, n2, σ, p) xtype covtype delta boot pair Li
(100,100,1,100) 1 1 0 0.0246 0.0494 0.0494

len 1 1 0 1.3426 1.1389 1.1389
(100,100,1,100) 1 1 0.1 0.7224 0.8586 0.8586

len 1 1 0.1 1.5789 1.1417 1.1417
(100,200,1,100) 1 1 0 0.0256 0.0456 0.0462

len 1 1 0 1.0019 1.1360 0.8535
(100,200,1,100) 1 1 0.1 0.9166 0.8602 0.9612

len 1 1 0.1 1.2396 1.1432 0.8609

the matrix A.

For the covariance types, Cov(x1) = I,Cov(x2) = σ2Cov(x1) for covtyp=1. Cov(x1) =

diag(1, 2, ..., p),Cov(x2) = σ2Cov(x1) for covtyp=2. Cov(x1) = I,Cov(x2) = σ2diag(1, 2,

..., p) for covtyp=3. Table 5.10 shows some results. Two lines were used for each simulation

scenario, with coverages on the first line and lengths on the second line. When n1 = n2, the paired

test and Li test gave the same results. When n1/n2 was not near 1, the Li test had better power

and shorter length. Increasing δ could greatly increase the length for the bootstrap test, but the

coverage would be 1.
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CHAPTER 6

CONCLUSIONS

The one sample test statistic Tn estimates µTµ and V(Tn) is easy to estimate when H0 : µ = 0

is true. Under regularity conditions when H0 is true, Li (2023) proved that Tn/
√

V(Tn)
D
→ tk as

p→ ∞ for fixed n ≥ 3 where k = 0.5 ∗ n(n − 1) − 1.

Zhao, Li, Li and Zhang (2024) have an interesting result for the multiple linear regression

model

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (6.1)

for i = 1, ..., n. Assume that the cases (xT
i ,Yi)T are iid with E(Y) = µY , E(x) = µx and nonsingular

Cov(x) = Σx. Let Cov(x,Y) = ΣxY . Then testing H0 : β = β0 versus H1 : β , β0 is equivalent to

testing H0 : µ = 0 versus H1 : µ , 0 with µ = E(zi) = Σx(β−β0) where zi = (xi−µx)(Yi−µY−(xi−

µx)Tβ0), and the one sample test from Theorem 2 can be applied to wi = (xi−x)(Yi−Y−(xi−x)Tβ0).

Since β = Σ−1
x ΣxY , using β0 = 0 gives both a test for H0 : β = 0 and H0 : ΣxY = 0. See Olive and

Quaye (2025) for applications.

For classification with two groups, let Σ be the pooled covariance matrix. Then β = Σ−1(µ1 −

µ2) = 0 iff µ1 − µ2 = 0, which can be tested with a two sample test. For the importance of β in

discriminant analysis, see, for example, Wang, Wu, and Wang (2025).

Let the “fail to reject region” be the compliment of the rejection region. Often the fail to reject

region is a confidence region for the parameter or parameter vector of interest, where a confidence

interval is a special case of a confidence region. For the one sample test, the fail to reject region

using V0 has much more power than using a confidence interval for µTµ. The two sample test

statistic TN(x, y) could be used to get a confidence interval for ∥µ1 − µ2∥
2.

The literature for high dimensional one and two sample tests is rather large. Hu, Tong, and

Genton (2024) have many references. Some high dimensional one sample tests include Chen et al.

(2011), Feng and Sun (2016), Hyodo and Nishiyama (2017), Park and Ayyala (2013), Srivastava

and Du (2008), Wang, Peng, and Li (2015), and Zhao (2017). Hu and Bai (2015) also describes
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some tests. Chakraborty and Chaudhuri (2017) suggest a method for obtaining a k-sample test of

µ1 = · · · = µk from a one sample test statistic.

Some high dimensional two sample tests include Ahmad (2014), Chen, Li, and Zhong (2019),

Feng and Sun (2015), Gregory et al. (2015), Jiang et al. (2022), Xue and Yao (2020), and Zhang

et al. (2020). For more on the use of U-statistics for high dimensional methods, see, for example,

Xu, Zhu, and Shao (2024).

Several high dimensional two sample tests use the extremely strong assumption that Σ1 = Σ2.

This assumption is typically stronger than assuming that µ1 = µ2. See, for example, Huang et al.

(2022), Hu and Bai (2015), and Yang, Zheng, and Li (2024).

Simulations were done in R. See R Core Team (2024). The collection of Olive (2025) R func-

tions slpack, available from (http://parker.ad.siu.edu/Olive/slpack.txt), has some useful functions

for the inference. The function hdhot1sim was used to simulate the four tests, while the function

hdhot1sim2 simulates the first test, which is rather fast. The function hdhot1sim3 added the test

based on sample signs using the fast test. The function hdhot2sim simulates the two sample test

which applies the fast one sample test on the zi = xi1 − xi2 for i = 1, ...,m, the Li (2023) test, and

the two sample test based on subsampling with mi = f loor(2ni/3) for i=1,2.

The spatial sign vectors have a some outlier resistance. If the predictor variables are all

continuous, the covmb2 and ddplot5 functions are useful for detecting outliers in high dimensions.

See Olive (2025,
∮

1.4.3) and Olive (2017, pp. 120-123).
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