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CHAPTER 1

INTRODUCTION

This section reviews regression models where the nonnegative integer count response variable

is Y that is independent of the p × 1 vector of predictors x = (x1, ..., xp)T given xTβ, written

Y x|xTβ. Then there are n cases (Yi, xT
i )T , and the sufficient predictor S P = α + xTβ. For the

regression models, the conditioning and subscripts, such as i, will often be suppressed. A useful

Poisson regression (PR) model is Y ∼ Poisson
(
eSP

)
. This model has E(Y |S P) = V(Y |S P) =

exp(S P).

Some notation is needed for the negative binomial regression model. If Y has a (generalized)

negative binomial distribution, Y ∼ NB(µ, κ) , then the probability mass function (pmf) of Y is

P(Y = y) =
Γ(y + κ)
Γ(κ)Γ(y + 1)

(
κ

µ + κ

)κ (
1 −

κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y) = µ and V(Y) = µ + µ2/κ.

The negative binomial regression model states that Y1, ...,Yn are independent random variables

with

Y |S P ∼ NB(exp(SP), κ).

This model has E(Y |S P) = exp(S P) and

V(Y |S P) = exp(S P)
(
1 +

exp(S P)
κ

)
= exp(S P) + τ exp(2 S P).

Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can be shown that the negative binomial

regression model converges to the Poisson regression model.

The quasi-Poisson regression model has E(Y |S P) = exp(S P) and V(Y |S P) = ϕ exp(S P)

where the dispersion parameter ϕ > 0. Note that this model and the Poisson regression model have

the same conditional mean function, and the conditional variance functions are the same if ϕ = 1.
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Next, some notation is needed for the zero truncated Poisson regression model. See Olive

(2017, pp. 430–431). Y has a zero truncated Poisson distribution, Y ∼ ZT P(µ), if the probability

mass function of Y is

f (y) =
e−µ µy

(1 − e−µ) y!

for y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distribution where y = 0

values are truncated, so not allowed. Now E(Y) = µ/(1 − e−µ), and

V(Y) =
µ2 + µ

1 − e−µ
−

(
µ

1 − e−µ

)2
.

The zero truncated Poisson regression model has Y |S P ∼ ZT P(exp(S P)). Hence the param-

eter µ(S P) = exp(S P),

E(Y |S P) =
exp(S P)

1 − exp(− exp(S P))
, and

V(Y |S P) =
[exp(S P)]2 + exp(S P)

1 − exp(− exp(S P))
−

(
exp(S P)

1 − exp(− exp(S P))

)2

.

Other alternatives include the zero truncated negative binomial regression model, the hur-

dle or zero inflated Poisson regression model, and the hurdle or zero inflated negative binomial

regression model. See Zuur et al. (2009), Simonoff (2003), and Hilbe (2011).

Variable selection estimators include forward selection or backward elimination when n ≥

10p. When n/p is not large, the Chen and Chen (2008) EBIC criterion with forward selection can

be useful. Sparse regression methods can also be used for variable selection even if n/p is not

large: the regression submodel, such as a Nelder and Wedderburn (1972) generalized linear model

(GLM), uses the predictors that had nonzero sparse regression estimated coefficients. For Poisson

regression, these methods include lasso and elastic net. See Friedman et al. (2007), Friedman,

Hastie, and Tibshirani (2010), Tibshirani (1996), and Zou and Hastie (2005).

Following Olive and Hawkins (2005), a model for variable selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (1.1)
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where x = (xT
S , x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS ) × 1 vector. Given that xS is in the

model, βE = 0 and E denotes the subset of terms that can be eliminated given that the subset S is

in the model. Let xI be the vector of a terms from a candidate subset indexed by I, and let xO be

the vector of the remaining predictors (out of the candidate submodel). Suppose that S is a subset

of I and that model (1.1) holds. Then

xTβ = xT
SβS = xT

I βI + xT
O0 = xT

I βI .

Thus βO = 0 if S ⊆ I. The model using xTβ is the full model.

To clarify notation, suppose p = 3, a constant α is always in the model, and β = (β1, 0, 0)T .

Then the J = 2p = 8 possible subsets of {1, 2, ..., p} are I1 = ∅, S = I2 = {1}, I3 = {2}, I4 = {3},

I5 = {1, 2}, I6 = {1, 3}, I7 = {2, 3}, and I8 = {1, 2, 3}. There are 2p−aS = 4 subsets I2, I5, I6, and I8

such that S ⊆ I j. Let β̂I7
= (β̂2, β̂3)T and xI7 = (x2, x3)T .

Let Imin correspond to the set of predictors selected by a variable selection method such as

forward selection or lasso variable selection. If β̂I is a × 1, use zero padding to form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. For example, if p = 4 and

β̂Imin
= (β̂1, β̂3)T , then the observed variable selection estimator β̂VS = β̂Imin,0 = (β̂1, 0, β̂3, 0)T . As a

statistic, β̂VS = β̂Ik ,0 with probabilities πkn = P(Imin = Ik) for k = 1, ..., J where there are J subsets,

e.g. J = 2p.

Theory for the variable selection estimator β̂VS is complicated. See Pelawa Watagoda and

Olive (2023) for multiple linear regression, and Rathnayake and Olive (2023) for models such as

generalized linear models. For fixed p, these two papers showed that β̂VS is
√

n consistent with a

complicated nonnormal limiting distribution.

Let the log transformation Zi = log(Yi) if Yi > 0 and Zi = log(0.5) if Yi = 0. This transforma-

tion often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (1.2)
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where the ei are independent with expected value E(ei) = 0 and variance V(ei) = σ2
i . For Poisson

regression, the minimum chi-square estimator is the weighted least squares estimator from the

regression of Zi on xi with weights wi = eZi . See Agresti (2002, pp. 611–612) and Olive (2013,

2017: pp. 406–407).

Hence multiple linear regression models will be useful. Now let the response variable Y be

for multiple linear regression, so Y need not be a nonnegative integer. A useful multiple linear

regression model is Y |xTβ = α + xTβ + e or Yi = α + xT
i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (1.3)

for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with expected

value E(ei) = 0 and variance V(ei) = σ2. In matrix form, this model is

Y = Xϕ + e, (1.4)

where Y is an n × 1 vector of dependent variables, X is an n × (p + 1) matrix with ith row (1, xT
i ),

ϕ = (α,βT )T is a (p+ 1)× 1 vector , and e is an n× 1 vector of unknown errors. Also E(e) = 0 and

Cov(e) = σ2In where In is the n × n identity matrix.

For a multiple linear regression model with heterogeneity, assume model (1.4) holds with

E(e) = 0 and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n × n positive definite matrix.

When the σ2
i are known, weighted least squares (WLS) is often used. Under regularity conditions,

the ordinary least squares (OLS) estimator ϕ̂OLS = (XT X)−1XT Y can be shown to be a consistent

estimator of ϕ. See, for example, White (1980).

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) = Σx =

E[(x − E(x))(x − E(x))T ] = E(xxT ) − E(x)E(xT ) and η = Cov(x,Y) = ΣxY = E[(x − E(x)(Y −

E(Y))] = E(xY) − E(x)E(Y) = E[(x − E(x))Y] = E[x(Y − E(Y))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑
i=1

(xi − x)(Yi − Y)
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and

η̃ = η̃n = Σ̃xY =
1
n

n∑
i=1

(xi − x)(Yi − Y).

Then the OLS estimators for model (1.3) are ϕ̂OLS = (XT X)−1XT Y, α̂OLS = Y − β̂
T
OLS x, and

β̂OLS = Σ̃
−1
x Σ̃xY = Σ̂

−1
x Σ̂xY = Σ̂

−1
x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases, β̂OLS

is a consistent estimator of βOLS = Σ
−1
x ΣxY under mild regularity conditions, while α̂OLS is a

consistent estimator of E(Y) − βT
OLS E(x).

Cook, Helland, and Su (2013) showed that the one component partial least squares (OPLS)

estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xYΣxY

ΣT
xYΣxΣxY

and λ̂ =
Σ̂

T
xYΣ̂xY

Σ̂
T
xYΣ̂xΣ̂xY

(1.5)

for ΣxY , 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos (2024), Cook

and Forzani (2024), and Wold (1975). Olive and Zhang (2025) derived the large sample theory for

η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the previous literature,

where ηOPLS = ΣxY . Olive et al. (2025) showed that for iid cases (xi,Yi), these results still hold

for multiple linear regression models with heterogeneity. Thus the OPLS regression of Zi on xi is

useful to model (1.2).

The marginal maximum likelihood estimator (MMLE or marginal least squares estimator)

is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the marginal

regression of Y on xi, such as Poisson regression, resulting in the estimator (α̂i,M, β̂i,M) for i =

1, ..., p. Then β̂MMLE = (β̂1,M, ..., β̂p,M)T .

For multiple linear regression, the marginal estimators are the simple linear regression (SLR)
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estimators, and (α̂i,M, β̂i,M) = (α̂i,S LR, β̂i,S LR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (1.6)

If the ti are the predictors that are scaled or standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(t,Y) = Σ̂t ,Y = I−1Σ̂t ,Y = η̂OPLS (t,Y) (1.7)

where (t,Y) denotes that Y was regressed on t, and I is the p× p identity matrix. Olive et al. (2025)

derived large sample theory for the MMLE for the multiple linear regression models, including

models with heterogeneity.

If the regression model for Y depends on x only through α + βT x, and if the predictors

xi are independent and identically distributed (iid) from a large class of elliptically contoured

distributions, then Li and Duan (1989) and Chen and Li (1998) showed that, under regularity

conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if Σx = τ2Ip for some constant

τ2 > 0. If β = βOLS in this case, then βi = 0 implies that Cov(xi,Y) = 0. The constant c is typically

nonzero unless m has a lot of symmetry about the distribution of α+βT x. Chang and Olive (2010)

considered OLS tests for these models. Simulation with Σ̂xY can be difficult if the population

values of c and d are unknown. Results from Cameron and Trivedi (1998, p. 89) suggest that if

a Poisson regression model is fit using OLS software for multiple linear regression, then a rough

approximation is β̂PR ≈ β̂OLS /Y .

Data splitting divides the training data set of n cases into two sets: H and the validation set V

where H has nH of the cases and V has the remaining nV = n − nH cases i1, ..., inV . An application

of data splitting is to use a variable selection method, such as forward selection or lasso, on H to

get submodel Imin with a predictors, then fit the selected model to the cases in the validation set V

using standard inference. See, for example, Olive and Zhang (2025) and Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is sparse

if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10. Otherwise the

6



model is nonsparse. A high dimensional population regression model is abundant or dense if the

regression information is spread out among the p predictors (nearly all of the predictors are active).

Hence an abundant model is a nonsparse model.

7



CHAPTER 2

LARGE SAMPLE THEORY

This section reviews the Olive and Zhang (2025) large sample theory for η̂OPLS = Σ̂xY and

OPLS for the multiple linear regression model, including some high dimensional tests for low

dimensional quantities such as HO : βi = 0 or H0 : βi − β j = 0. These tests depended on iid cases,

but not on linearity or the constant variance assumption. Hence the tests are useful for multiple

linear regression with heterogeneity. Data splitting uses model selection (variable selection is a

special case) to reduce the high dimensional problem to a low dimensional problem. Also see the

large sample theory given in Olive et al. (2025).

Remark 1. The following result is useful for several multiple linear regression estimators. Let

wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗w = AnΣ
∗
x AT

n and Σ∗wY = AnΣ
∗
xY .

b) If An is a constant matrix, then Σw = AnΣx AT
n and ΣwY = AnΣxY .

The following Olive and Zhang (2025) theorem gives the large sample theory for η̂ =

Ĉov(x,Y). This theory needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a consistent esti-

mator of η. Let xi = (xi1, ..., xip)T and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY)2] − ΣxYΣ
T
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 1. Assume the cases (xT
i ,Yi)T are iid. Assume E(xk

i j Ym
i ) exist for j = 1, ..., p and

k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y). Let wi = (xi − µx)(Yi − µY) with sample mean wn.

Let η = Σx,Y . Then a)

√
n(wn − η)

D
→ Np(0,Σw),

√
n(η̂n − η)

D
→ Np(0,Σw), (2.1)

and
√

n(η̃n − η)
D
→ Np(0,Σw).

8



b) Let zi = xi(Yi − Yn) and vi = (xi − xn)(Yi − Yn). Then Σ̂w = Σ̂z + OP(n−1/2) = Σ̂v + OP(n−1/2).

Hence Σ̃w = Σ̃z + OP(n−1/2) = Σ̃v + OP(n−1/2).

c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is true, and

assume λ̂
P
→ λ , 0. Then

√
nA(β̂OPLS − βOPLS )

D
→ Nk(0, λ2 AΣw AT ). (2.2)

2.1 TESTING

As noted by Olive and Zhang (2025), the following simple testing method reduces a possibly

high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0 versus H1 :

AβOPLS , 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη , 0 where A is a k × p constant

matrix. Let Cov(Σ̂xY) = Cov(η̂) = Σw be the asymptotic covariance matrix of η̂ = Σ̂xY . In high

dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(Σ̂xY), but we can

get good nonsingular estimators of Cov(Σ̂uY) = Cov((η̂i1, ..., η̂ik)T ) with u = (xi1, ..., xik)T where

n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed if some of the k predictors

and/or Y are skewed.) Simply apply Theorem 1 to the predictors u used in the hypothesis test, and

thus use the sample covariance matrix of the vectors ui(Yi − Y). Hence we can test hypotheses like

H0 : βi − β j = 0. In particular, testing H0 : βi = 0 is equivalent to testing H0 : ηi = σxi,Y = 0 where

σxi,Y = Cov(xi,Y).

Note that the tests with η̂ using k distinct predictors xi j do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the tests can

have considerable resistance to underfitting and overfitting. The OPLS tests also have some resis-

tance to measurement error: assume that (xT
i ,u

T
i , vi,Yi)T are iid but wi = xi +ui and Zi = Yi + vi are

observed instead of (xi,Yi). Then β̂OLS (w,Z) estimates Σ−1
wΣwZ, while Σ̂wZ estimates Cov(x,Y) if

Cov(x, v) + Cov(u,Y) + Cov(u, v) = 0, which occurs, for example, if x v, u Y , and u v.

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests with η̂

since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator if η̂T x is a good

9



estimator of ηT x.

Zhao et al. (2024) have an interesting result for the multiple linear regression model (1.3).

Assume that the cases (xT
i ,Yi)T are iid with E(Y) = µY , E(x) = µx and nonsingular Cov(x) = Σx.

Then testing H0 : β = β0 versus H1 : β , β0 is equivalent to testing H0 : µ = 0 versus H1 : µ , 0

with µ = E(zi) = Σx(β − β0) where zi = (xi − µx)(Yi − µY − (xi − µx)Tβ0), and a one sample test

can be applied to vi = (xi − x)(Yi − Y − (xi − x)Tβ0). Since β = βOLS = Σ
−1
x ΣxY , β = 0 if and

only if ΣxY = 0, using β0 = 0 gives tests for H0 : β = 0, H0 : ΣxY = 0, H0 : βOPLS = 0, and

H0 : βkPLS = 0, the k-component partial least squares estimator. Abid and Olive (2025) simplify

the theory for the one sample test used by Zhao et al. (2024), resulting in an estimator that is quick

to compute when H0 is true.
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CHAPTER 3

INCORPORATING INFORMATION FROM SEVERAL REGRESSION ESTIMATORS

The theory and tests from the previous section can be applied to model (1.2) with Z replacing

Y .

There are several ways to compute k-component partial least squares (PLS) estimators for

multiple linear regression. A simple way is to do the OLS regression on W1, ...,Wk where W j = η̂
T
j x

and η̂ j = Σ̂
j−1
x Σ̂xY , and k ≤ min(n − 2, p). Then the one component PLS estimator is OPLS while

the 3-component PLS estimator regresses Y on W1 = η̂
T
1 x = Σ̂T

xY x, W2 = η̂
T
2 x = [Σ̂xΣ̂xY]T x, and

W3 = η̂
T
3 x = [Σ̂

2
xΣ̂xY]T x. See Helland (1990).

This result suggests computing Wi = η̂
T
i x for i = 1, ..., J and fit the OLS model that regresses

Z on the Wi or, for example, the Poisson regression model that regresses Y on the Wi. Some

interesting choices are η̂1 = Σ̂xZ, η̂2 = Σ̂xΣ̂xZ, η̂3 = Σ̂
2
xΣ̂xZ, η̂4 = β̂L(x,Z)= the lasso estimator

from regressing Z on x, η̂5 = β̂RR(x,Z)= the ridge regression estimator from regressing Z on x,

η̂6 = β̂LPR(x,Y)= the lasso Poisson regression estimator from regressing Y on x. Let xI denote the

set of variables selected using η̂4. Then η̂7 = Σ̂xIZ, η̂8 = Σ̂xI Σ̂xIZ, η̂9 = Σ̂
2
xI
Σ̂xIZ, η̂10 = β̂RR(xI ,Z)=

the ridge regression estimator from regressing Z on xI . Other good choices can easily be obtained.

For example, let xG denote the set of variables selected using η̂6.
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CHAPTER 4

PLS FOR MULTIPLE LINEAR REGRESSION

This section gives more information about the k-component partial least squares estimators

for multiple linear regression Yi = α + xT
i β + ei where the xi are p × 1 vectors of predictors for

i = 1, ..., n. As mentioned in the previous section, the k-component partial least squares estimator

β̂kPLS can be found from the OLS regression on a constant and W1, ...,Wk where W j = η̂
T
j x and

η̂ j = Σ̂
j−1
x Σ̂xY , and k ≤ min(n − 2, p). Note that β̂OPLS = β̂1PLS with k = 1 and β̂OLS = β̂pPLS with

k = p if n > p+1. Let Xc be the matrix of centered predictors (subtract the sample mean from each

predictor) so that D = XT
c Xx = (n − 1)Σ̂x and let y be the vector of centered response variables.

Let d = XT
c y = (n−1)ΣxY . The model selection PLS estimator is β̂MS PLS , and selects k∗ with some

criterion, such as 10-fold cross validation.

An equivalent way to compute the k-component PLS estimator is to find unit vectors η̂1, ..., η̂k

and perform the OLS regression of Y on a constant and the Ui = η̂
T
i x for i = 1, ..., k. Following

Brown (1993, pp. 71-72), first maximize (cT d)2 subject to the constraint cT c = ∥c∥2 = 1. The

maximum occurs at c1 = η̂1 = d/∥d∥ = Σ̂xY/∥Σ̂xY∥ = η̂OPLS /∥η̂OPLS ∥. Then c2 = η̂2 is found by

maximizing (cT d)2 subject to both ∥c∥ = 1 and cT Dc1 = 0 (called D-norm orthogonalization) to

get c2 = η̂2. Continue in this way to get the remaining vectors c3, ..., ck.

Let Y = α+ xTβkPLS + ϵ be a working model. Let X = (1 X1). An equivalent way to formulate

PLS is to form b j iteratively where bk = arg maxb{[corr(Y, X1b)]2V(X1b)} subject to bT b = 1 and

bTΣxb j = 0 for j = 1, ..., k − 1. Let the b̂ j be the estimates of b j, and perform the OLS regression

of Y on X1Ĉk,n and a constant where Ĉk,n = [b̂1, ..., b̂k] to find γ̂k. Then β̂kPLS = Ĉk,nγ̂k.

Again let Y = α + xTβkPLS + ϵ be a working model. From Naik and Tsai (2000), Helland and

Almøy (1994), and Helland (1990), let

ÂT
k,n = [Σ̂xY , Σ̂xΣ̂xY , Σ̂

2
xΣ̂xY , ..., Σ̂

k−1
x Σ̂xY].
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Let w = Âk,nx with Y = α + wTγk + ϵ the working model so β̂kPLS = ÂT
k,nγ̂k. Then

β̂kPLS = ÂT
k,n[Âk,nΣ̂x ÂT

k,n]−1 Âk,nΣ̂xY = ÂT
k,n[Âk,nΣ̂x ÂT

k,n]−1 Âk,nΣ̂xβ̂OLS (x,Y).

The Mevik et al. (2015) pls library is useful for computing PLS.

Much of the PLS literature claims that if the cases are iid, then under mild conditions, β̂OPLS ,

β̂kPLS , and β̂MS OPLS estimate β = βOLS . See for example, Basa et al. (2024) and Cook and Forzani

(2024). However, they use a very strong regularity condition:

Y |x = αOPLS + β
T
OPLS x + e. (4.1)

When Y |x = α + βT x + e, then under mild regularity conditions, β = βOLS . Hence regularity con-

dition (4.1) and iid cases forces βOLS = Σ
−1
x ΣxY = λΣxY = βOPLS . Thus regularity condition (4.1)

forces ΣxY and βOLS = λΣxY to be eigenvectors of Σx if λ , 0. Hence βT
OLS x is equivalent (up to

a positive constant multiplier) to the population principal component regression (PCR) component

ηT
j x that is most correlated with Y , where η j is one of the eigenvectors of Σx.

Olive and Zhang (2025) noted that under iid cases and Y |x = α + βT x + e, then under mild

regularity conditions, β = βOLS and ΣxY = Σxβ, and typically β̂kPLS estimates βkPLS , βOLS if

k < p. In particular, typically βOPLS , βOLS .

To see some problems with the claim that βOPLS = βOLS , this paragraph and the following

two paragraphs are taken from Olive and Zhang (2025). Consider multiple linear regression with

Cov(x) = diag(1, 2, ..., p). First consider OPLS with βOLS = βOPLS . Then at most one element of

Cov(x,Y) = Σx,Y is nonzero since Σx,Y is an eigenvector of Cov(x). Hence at most one predictor

is correlated with Y , regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y |x = αOLS + β
T
OLS x + e and

Y |βT
OPLS x = αOPLS +β

T
OPLS x+e are both linear models by Olive and Zhang (2025) where e depends

on the model. Since βOPLS = βOLS forces βOLS to be an eigenvector of Σx, if βOLS , 0 is not an

eigenvector of Σx, then βOPLS , βOLS . For a computational example, let x ∼ Np(0, diag(1, 2, 3, 4))

13



with Σx = diag(1, 2, 3, 4), and let the population generating model be Yi = xi1 + xi2 + ei for

i = 1, ..., n where the ei are iid N(0, 1) and independent of the xi. Then α = 0 and β = (1, 1, 0, 0)T .

Hence βOLS = β = (1, 1, 0, 0)T , Σx,Y = ΣxβOLS = (1, 2, 0, 0)T , and

λ =
ΣT

x,YΣx,Y
ΣT

x,YΣxΣx,Y
= 5/9.

Thus βOPLS = λΣx,Y = λΣxβOLS = (5/9, 10/9, 0, 0)T , βOLS . Thus OLS and OPLS usually give

different valid population multiple linear regression models with βOPLS , βOLS . However, model

Y |βT
OPLS x = αOPLS + β

T
OPLS x + e is often a useful multiple linear regression model with large

sample theory given in Section 2. Thus the claims in the OPLS literature that βOLS = βOPLS = an

eigenvector of Σx under mild regularity conditions are incorrect.

In the OLS literature, βOLS can be any vector in Rp. If βOLS , Σx,Y , and βOPLS were restricted

to be eigenvectors of Σx, then the OLS and OPLS estimators would often not fit the data well.

In the PCR literature, several principal components usually need to be used: there is rarely

one principal component that is highly correlated with Y .

In PLS talks for multiple linear regression, empirically the model selection estimator that

used k∗ = 3 tends to work better than k∗ = 1. If βOPLS = βOLS , then the other PLS components η̂T
i x

would be nuisance variables that would degrade the fit rather than improve the fit.
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CHAPTER 5

EXAMPLE AND SIMULATIONS

Next, we describe a small simulation study. Let x ∼ Np−1(0, I) be the (p − 1) × 1 vector of

nontrivial predictors. Let ES Pi = α+β
T xi = 1+ 1xi,1 + · · ·+ 1xi,k for i = 1, ..., n. Hence α = 1 and

ϕ = (α,βT )T = (1, .., 1, 0, ..., 0)T with k+1 ones and p−k−1 zeros. Here β is the Poisson regression

parameter vector βPR or the negative binomial regression parameter vector βNBR. Let Zi = log(Yi)

if Yi > 0 and Zi = log(0.5) if Yi = 0. Then a multiple linear regression model with heterogeneity

is Zi = αZ + xT
i βZ + ei where the ei are independent with expected value E(ei) = 0 and variance

V(ei) = σ2
i . Since the cases (xi,Yi) are iid, the OLS estimator βOLS = coβ = Σ

−1
x ΣxZ = ΣxZ because

Σx = Ip−1. Thus ΣxZ = (co, .., co, 0, ..., 0)T with the first k values equal to co and p − k − 1 zeros.

Let ηOPLS = ΣxZ = (η1, ..., ηp−1)T . Then the Theorem 1 large sample 100(1 − δ) CI is η̂i ±

tn−1,1−δ/2S E(η̂i) could be computed for each ηi. If 0 is not in the confidence interval, then H0 : ηi = 0

and H0 : βiE = 0 are both rejected for estimators E = OPLS and MMLE for the multiple linear

regression model with Z. In the simulations with n = 50, p = 4, and ψ > 0, the maximum

observed undercoverage was about 0.05 = 5%. Hence the program has the option to replace the

cutoff tn−1,1−δ/2 by tn−1,up where up = min(1 − δ/2 + 0.05, 1 − δ/2 + 2.5/n) if δ/2 > 0.1,

up = min(1 − δ/4, 1 − δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor was used in

the simulations for the nominal 95% CIs, where the correction factor uses a cutoff that is between

tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5% CI. The nominal coverage was

0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests coverage is close to the

nominal value. Pötscher and Preinerstorfer (2023) noted that WLS tests tend to reject H0 too often

(liberal tests with undercoverage).

To summarize the p − 1 confidence intervals, the average length of the p − 1 confidence in-

tervals over 5000 runs was computed. Then the minimum, mean, and maximum of the average
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lengths was computed. The proportion of times each confidence interval contained zero was com-

puted. These proportions were the observed coverages of the p − 1 confidence intervals. Then

the minimum observed coverage was found. The percentage of the observed coverages that were

≥ 0.9, 0.92, 0.93, 0.94, and 0.96 were also recorded. The test H0 : (ηi, η j)T = (0, 0)T was also

done where H0 was true. The coverage of the test was recorded and a correction factor was not

used. Negative binomial regression and Poisson regression were used, where κ = ∞ indicates that

Poisson regression was used.

Table 5.1. Cov(x, Z), n=100, p=100, k=1, κ = 0.5,1,10,100,1000,10000

κ mincov cov90 cov92 cov93 cov94 cov96 testcov
∞ 0.0000 0.9899 0.9899 0.9899 0.9899 0.7071 0.9454

len 0.4159 0.4184 0.4865
0.5 0.0038 0.9899 0.9899 0.9899 0.9899 0.6970 0.9416
len 0.5060 0.5081 0.5687

1 0.0000 0.9899 0.9899 0.9899 0.9899 0.6667 0.9398
len 0.4807 0.4833 0.5431
10 0.0000 0.9899 0.9899 0.9899 0.9899 0.6667 0.9370
len 0.4253 0.4281 0.4942

100 0.0000 0.9899 0.9899 0.9899 0.9899 0.7172 0.9452
len 0.4178 0.4197 0.4904

1000 0.0000 0.9899 0.9899 0.9899 0.9899 0.6465 0.9350
len 0.4164 0.4181 0.4865

10000 0.0000 0.9899 0.9899 0.9899 0.9899 0.7071 0.9406
len 0.4162 0.4186 0.4872

Table 5.1 illustrates Theorem 1a) with Z replacing Y and k = 1. Confidence intervals were

made for ηi = Cov(xi,Z) for i = 1, ..., 99 and the coverage was the percentage of the 5000 CIs that

contained 0. Here η1 , 0, but ηi = 0 for i = 2, ..., 99. The first two lines of Table 5.1 correspond to

Poisson regression. The confidence interval for η1 never contained 0, hence the minimum coverage

was 0 with observed power = 1−0 = 1. The proportion of CIs that had coverage ≥ 0.94 was 0.9899

(98/99 CIs). Hence this was also the proportion of CIs with coverage ≥ 0.90, 0.92 and 0.93. The

proportion of CIs that had coverage ≥ 0.96 was 0.7071 (70/99 CIs). The typical coverage was near

0.965, hence the correction factor was slightly too large. The test H0 : (η98, η99)T = (0, 0)T did not
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use a correction factor, and coverage was 0.9454. The minimum average CI length was 0.4159, the

sample mean of the average CI lengths was 0.4184, and the maximum average length was 0.4865,

corresponding to η1. The second two lines and below for Table 5.1 were for the negative binomial

regression with kappa = κ = 0.5, 1, 10, 100, 1000, 10000.

Table 5.2. Cov(x,Y), n=100, p=100, k=1, κ = 0.5,1,10,100,1000,10000

κ mincov cov90 cov92 cov93 cov94 cov96 testcov
∞ 0.0160 0.9899 0.9899 0.9899 0.9899 0.9899 0.9540

len 2.0406 2.0776 4.0484
0.5 0.1668 0.9899 0.9899 0.9899 0.9899 0.9899 0.9588
len 3.6015 3.6879 6.7636

1 0.0804 0.9899 0.9899 0.9899 0.9899 0.9899 0.9548
len 2.9737 3.0525 5.6898
10 0.0200 0.9899 0.9899 0.9899 0.9899 0.9899 0.9486
len 2.1610 2.2139 4.3127

100 0.0172 0.9899 0.9899 0.9899 0.9899 0.9899 0.9586
len 2.0786 2.1165 4.2023

1000 0.0122 0.9899 0.9899 0.9899 0.9899 0.9899 0.9482
len 2.0429 2.0781 4.0509

10000 0.0108 0.9899 0.9899 0.9899 0.9899 0.9899 0.9542
len 2.0441 2.0811 4.0519

Table 5.2 illustrates Theorem 1a) without Z replacing Y (Y stays the same) and k = 1. Confi-

dence intervals were made for ηi = Cov(xi,Y) for i = 1, ..., 99 and the coverage was the percentage

of the 5000 CIs that contained 0. Here η1 , 0, but ηi = 0 for i = 2, ..., 99. The first two lines

of Table 5.2 correspond to Poisson regression. The confidence interval for η1 never contained

0, hence the minimum coverage was 0.0108 with observed power = 1 − 0.0108 = 0.9892. The

proportion of CIs that had coverage ≥ 0.94 was 0.9899 (98/99 CIs). Hence this was also the

proportion of CIs with coverage ≥ 0.90, 0.92 and 0.93. The proportion of CIs that had coverage

≥ 0.96 was 0.9899 (98/99 CIs). The typical coverage was near 0.965, hence the correction factor

was slightly too large. The test H0 : (η98, η99)T = (0, 0)T did not use a correction factor, and cov-

erage was 0.954. The minimum average CI length was 2.0406 , the sample mean of the average

CI lengths was 2.0776, and the maximum average length was 4.0484, corresponding to η1. The
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second two lines and below for Table 5.2 were for the negative binomial regression with kappa

= κ = 0.5, 1, 10, 100, 1000, 10000. Upon comparing Table 5.1 and Table 5.2, it is evident that

the average lengths for Cov(xi,Z) and Cov(xi,Y) differ. This difference is quite understandable,

considering that Z represents a logarithmic transformation of Y .
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CHAPTER 6

REAL DATA EXAMPLES

From Chapter 5, we aim to apply Poisson regression to real data examples and visualize the

OD plots for overdispersion. One such example is Figure 6.1 from Cook and Weisberg (1999, pp.

285-286), which involves species data with a sample size of n = 29 and utilizes 7 variables based

on the following: Y representing the number of species, endem denoting the number of endemic

species, area indicating the island size, elev for the island elevation, distnear as the distance to

the nearest island, distsc representing the distance to Santa Cruz, and areanear for the area of the

nearest island. The data was sourced from source(”http : //parker.ad.siu.edu/Olive/sldata.txt”).

Although the dataset is quite small, the plots still provide fairly good results.

Figure 6.1. Plot for species data

19



Figure 6.1 presents 4 plots. In the response plot of Figure 6.1a, the lowess curve appears

jagged to differentiate it from the estimated mean function. The horizontal line corresponds to the

sample mean Y . The OD plot in Figure 6.1b indicates the presence of overdispersion, as the vertical

scale is ten times that of the horizontal scale, and few points are notably large and positioned

above the slope 4 line. We observe that the Poisson mean can be approximately estimated by

identifying the value of the exponential curve in Figure 6.1a. For instance, at when ESP = 5.5,

Y ≈ Poisson(250). We also examined the MLR response plot, which appears roughly linear but

not ideal. Figure 6.2 displays the MLR plot, which demonstrates roughly linear relationship.

Figure 6.2. MLR plot for species data

In Figure 6.2, we applied some transformations to the predictors to enhance the fit shown in

the MLR plot in Figure 6.4. Figure 6.3 presents 4 plots. In the response plot of Figure 6.3a, the

lowess curve appears jagged to differentiate it from the estimated mean function. The horizontal

line corresponds to the sample mean Y . The OD plot in Figure 6.3b indicates that there is a little

presence of overdispersion, as the vertical scale is less than ten times that of the horizontal scale,
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and few points are notably large and positioned above the slope 4 line. We observe that the Poisson

mean can be approximately estimated by identifying the value of the exponential curve in Figure

6.3a. For instance, at when ESP = 5.5, Y ≈ Poisson(250).

Figure 6.3. Plot for the transformed species data
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We also examined the MLR response plot, which appears approximately linear and therefore,

transforming the predictors is necessary to improve the fit. Figure 6.4 displays the MLR plot,

which demonstrates a more clearly linear relationship.

Figure 6.4. MLR plot for the transformed species data

Another example is data from Cook and Weisberg (1999, pp. 351, 433, 447) consisting of

mussels data from an ecological study of horse mussels (Mussels’ Muscles) in the Marlborough

Sounds, located off the coast of New Zealand. The dataset includes a sample size of n = 79 and

incorporates 4 predictors: shell height, shell width, shell length (each measured in millimeters),

and shell mass (measured in grams). The response variable Y represents the mussels’ muscle mass

in grams. Here Y is not a count data, but log Y follows a multiple linear regression model. The

data was sourced from source(”http : //parker.ad.siu.edu/Olive/sldata.txt”).

Figure 6.5 presents 4 plots. In the response plot of Figure 6.5a, the lowess curve appears

jagged to differentiate it from the estimated mean function. The horizontal line corresponds to the
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Figure 6.5. Plot for mussels’ muscles data
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sample mean Y . The OD plot in Figure 6.5b indicates that there is a little presence of overdis-

persion, as the vertical scale is less than ten times that of the horizontal scale, and few points are

notably large and positioned above the slope 4 line. We observe that the mean can be approxi-

mately estimated by identifying the value of the exponential curve in Figure 6.5a. For instance, at

when ESP = 4, E(Y) ≈ 35. We also examined the MLR response plot, which appears roughly linear

but not ideal. Figure 6.6 displays the MLR plot, which demonstrates roughly linear relationship.

Figure 6.6. MLR plot for mussels’ muscles data

In Figure 6.6, we applied some transformations to the predictors to enhance the fit shown in

the MLR plot in Figure 6.8. Figure 6.7 presents 4 plots. In the response plot of Figure 6.7a, the

lowess curve appears jagged to differentiate it from the estimated mean function. The horizontal

line corresponds to the sample mean Y . The OD plot in Figure 6.7b indicates that there is a little

presence of overdispersion, as the vertical scale is less than ten times that of the horizontal scale,

and few points are notably large and positioned above the slope 4 line. We observe that the mean
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can be approximately estimated by identifying the value of the exponential curve in Figure 6.7a.

For instance, at when ESP = 4, E(Y) ≈ 35.

Figure 6.7. Plot for the transformed mussels’ muscles data
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We also examined the MLR response plot, which appears approximately linear and therefore,

transforming the predictors is necessary to improve the fit. Figure 6.8 displays the MLR plot,

which demonstrates a more clearly linear relationship.

Figure 6.8. MLR plot for the transformed mussels’ muscles data

An additional example is drawn from the Ceriodaphnia data presented by Myers, Mont-

gomery, and Vining (2002, pp. 136-139). The response variable, Y , represents the number of

Ceriodaphnia organisms counted in a container. The sample size n = 70 observations, with

7 different concentrations of jet fuel x1 and an indicator variable for two strains of the or-

ganism x2 serving as predictors. Since jet fuel was suspected to hinder reproduction, higher

concentrations were expected to result in lower organism counts. The data was sourced from

source(”http : //parker.ad.siu.edu/Olive/sldata.txt”).

Figure 6.9 presents 4 plots. In the response plot of Figure 6.9a, the lowess curve appears

jagged to differentiate it from the estimated mean function. The horizontal line corresponds to the
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Figure 6.9. Plot for Ceriodaphnia data

27



sample mean Y . The OD plot in Figure 6.9b indicates that there is a little presence of overdisper-

sion, as the vertical scale is less than ten times that of the horizontal scale, and all but one of the

plotted points are close to the wedge formed by the horizontal axis and slope 4 line. We observe

that the Poisson mean can be approximately estimated by identifying the value of the exponential

curve in Figure 6.9a.The plotted points scatter about the identity line in Figure 6.9c and there are no

unusual points in Figure 6.9d. For instance, at when ESP = 4, Y ≈ Poisson(40). We also evaluated

the MLR response plot, which looks roughly linear but is not ideal, similar to what occurs during

the transformation process. Figure 6.10 displays the MLR plot, which demonstrates roughly linear

relationship.

Figure 6.10. MLR plot for Ceriodaphnia data

Finally, we consider the Crab example from Agresti (2002, pp. 126-131), which applies

Poisson regression to model the response variable Y , representing the number of satellites (male

crabs) surrounding a female crab. The sample size is n = 173, and the predictor variables include
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color (with categories: 2 for light medium, 3 for medium, 4 for dark medium, and 5 for dark),

spine condition (1 for both spines intact, 2 for one worn or broken, and 3 for both worn or broken),

carapace width measured in centimeters, and the female crab’s weight in grams. The data was

sourced from source(”http : //parker.ad.siu.edu/Olive/sldata.txt”).

Figure 6.11. Plot for Crab data

The model that generated Figure 6.11 treated the ordinal variables color and spine condition

using their original coded values. An alternative approach would be to treat spine condition as a

categorical factor. Figure 6.11a indicates the presence of a single case with an unusually high ESP

value. Additionally, the lowess curve does not closely follow the exponential curve in this figure.

Figure 6.11b indicates the presence of overdispersion, as the vertical scale is approximately ten

times larger than the horizontal scale, and numerous plotted points are both large and positioned

above the slope 4 line. The lack of fit is more evident in Figure 6.11c, where the plotted points do

not align with the identity line. However, the exponential mean function provides a better fit to the

lowess curve than the straight line Y = Y does. Alternative models proposed by Agresti (2002)
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might provide a better fit for the data. We also assessed the MLR response plot, which does not

appear linear or ideal, reflecting the behavior seen during the transformation process. Figure 6.12

presents the MLR plot, illustrating a nonlinear relationship.

Figure 6.12. MLR plot for Crab data
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CHAPTER 7

CONCLUSIONS

The response plot of the estimated sufficient predictor α̂+xT β̂ versus Y is useful for checking

many regression models. See Olive (2013) for more on plots for such models, including a plot to

detect overdispersion.

software

Plots and simulations were done in R. See R Core Team (2025). Programs are

from the Olive (2025) collections of R functions slpack.txt, available from source(”http :

//parker.ad.siu.edu/Olive/slpack.txt”). The function MLRplot generates response and resid-

ual plots for multiple linear regression using one component partial least squares. Similarly,

prplot makes the plots for Poisson regression based on one component partial least squares. Let

up = 1 − δ/2 be the correction factor used for the confidence intervals. The function covxycis

obtains large sample 100(1−δ) CI is η̂i± tn−1, up S E(η̂i) for both ηi = Cov(xi,Y) and ηi = Cov(xi,Z)

where i = 1, . . . , p.

For Table 5.1 and 5.2, the function nbinroplssimzz was used to create negative binomial

regression data sets for finite κ, while the function proplssimzz was used to create the Poisson

regression data sets corresponding to κ = ∞.
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