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CHAPTER 1

INTRODUCTION

This section reviews multiple linear regression models. Consider a multiple linear regression

model with response variable Y and predictors x = (x1, ..., xp) where a constant x1 ≡ 1 is in the

model. Then there are n cases (Yi, xT
i )T , and the sufficient predictor S P = xTβ. For these regression

models, the conditioning and subscripts, such as i, will often be suppressed. Ordinary least squares

(OLS) is often used for the multiple linear regression (MLR) model.

Let the multiple linear regression model be

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (1.1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error. Assume that

the ei are independent and identically distributed (iid) with expected value E(ei) = 0 and variance

V(ei) = σ2. In matrix notation, these n equations become Y = Xβ+ e where Y is an n× 1 vector of

dependent variables, X is an n× p matrix of predictors, β is a p×1 vector of unknown coefficients,

and e is an n×1 vector of unknown errors. Also E(e) = 0 and the covariance matrix Cov(e) = σ2In

where In is the n × n identity matrix. The OLS estimator for β is β̂ = (XT X)−1XT Y, the vector of

fitted values is Ŷ = Xβ̂, the vector of residuals is r = Y − Ŷ, and σ̂2 = MS E =
∑n

i=1 r2
i /(n − p).

There are many multiple linear regression methods, and it is often convenient to use centered

or scaled data. See James et al. (2021). Suppose U has observed values U1, ...,Un. Let g be an

integer near 0. If the sample variance of the Ui is

σ̂2
g =

1
n − g

n∑
i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all the same, then σ̂g > 0.

Using g = 1 gives an unbiased estimator s2 of σ2, while g = 0 gives the method of moments

estimator.
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Next consider scaling the predictors. If Y = Xβ(X,Y) + e, the model with scaled predictors

is Y = Wβ(W,Y) + ϵ where β(X,Y) denotes the population coefficients from the OLS regression

of Y on X. Here W = X D̂n where the p × p matrix D̂n = diag(1, 1/s2, ..., 1/sp) where s j = σ̂ j

for the jth predictor x j, and j = 2, ..., p. Since OLS is affine equivariant and D̂n is nonsingular,

β̂(W,Y) = β̂(X D̂n,Y) = D̂−1
n β̂(X,Y). Then HW = W(WTW)−1WT = X(XT X)−1XT = HX, and

the residuals and fitted values are the same for both models. See, for example, Olive (2017, p.

413).

Now consider centered data Yi − Y = β∗1 + (xi,2 − x2)β2 + · · · + (xi,p − xp)βp + ϵi or Zi =

β∗1 + wi,2β2 + · · · + wi,pβp + ϵi. Do the OLS regression. Since the sample means of the centered

response and centered predictors are 0, β̂∗1 = 0. In terms of the original predictors, Ŷi = β̃1 +

xi,2β̃2 + · · · + xi,pβ̃p where β̃1 = Y − β̃2x2 − · · · − β̃pxp. Then β̃ = β̂ since OLS estimators minimize

the sum of squared residuals (if β̃ , β̂, then one of the estimators has a smaller sum of squared

residuals, contradicting the fact that both estimators are OLS estimators). Hence centering the

response and predictors gives an equivalent method for computing β̂, and the large sample theory

for the equivalent estimators is unchanged.

There are variants to scaling the predictor variables. Often the response variable is also scaled.

Often the response and predictors are centered and scaled by obtaining the Z-score of each variable

Zi = (wi − w)/S w where w and S w are the sample mean and sample standard deviation of the

predictor or response variable wi.

Suppose that multiple linear regression output for the scaled data (W,Y) is obtained from

OLS software such as R. a) It is known that confidence intervals for the βi are incorrect. See,

for example, Yuan and Chang (2011) and Jones and Waller (2015). b) It is also known that the

t-statistic for testing H0 : βi = 0 versus H1 : βi , 0 is the same for scaled and unscaled data. This

is the case since the standard error formulas for the scaled data are only correct when βi = 0. See,

for example, Schielzeth (2010), van Ginkel (2020), and Yuan and Chang (2011).

Yuan and Chang (2011) obtain the asymptotic distribution for the scaled data where the for-

mulas are simplified by assuming that the nontrivial predictors are iid from an elliptically con-
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toured distribution such as the multivariate normal distribution. Jones and Waller (2015) derive the

asymptotic distribution for a broader class of distributions and provide R software. The asymptotic

covariance matrix is difficult to estimate, and the sample size n needs to be large.

Chapter 2 shows that for multiple linear regression with standardized predictors, OLS soft-

ware tests of the form H0 : βO = 0 versus H1 : βO , 0 are valid large sample tests where

βO = (βi1 , ..., βik)
T . Note that such tests include H0 : βi = 0 versus H0 : βi , 0, and the Anova F

test: H0 : (β2, ..., βp)T = 0 versus H0 : (β2, ..., βp)T , 0.
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CHAPTER 2

LARGE SAMPLE THEORY

There are many large sample theory results for ordinary least squares. The following theorem

is important. See, for example, Sen and Singer (1993, p. 280). Let H = HX, and let hi be the ith

diagonal element of H. Theorem 1 acts if the xi are constant even if the xi are random vectors.

The literature says the xi can be constants, or condition on xi if the xi are random vectors. Let the

leverages hi = Hii be the diagonal elements of H.

Theorem 1. Consider the MLR model and assume that the zero mean errors are iid with

E(ei) = 0 and VAR(ei) = σ2. If the xi are random vectors, assume that the cases (xi,Yi) are

independent, and that the ei and xi are independent. Also assume that maxi(h1, ..., hn)→ 0 and

XT X
n
→ V−1

as n → ∞ where the convergence is in probability if the xi are random vectors (instead of non-

stochastic constant vectors). Then the OLS estimator β̂ satisfies

√
n(β̂ − β)

D
→ Np(0, σ2 V). (2.1)

Consider testing H0 : Lβ = c where L is a full rank k × p constant matrix and c is a k × 1

constant vector. If H0 is true, then by Theorem 1,
√

nL(β̂ − β) =
√

n(Lβ̂ − c)
D
→ Nk(0, σ2 LVLT ).

Hence
√

n(Lβ̂ − c)T (σ2 LVLT )−1√n(Lβ̂ − c)
D
→ χ2

k as n → ∞. Let σ̂2 = MS E
P
→ σ2 and

V̂ = n(XT X)−1 P
→ V as n → ∞ where convergence in probability indicates a consistent estimator.

Then
√

n(Lβ̂ − c)T (σ̂2 LV̂LT )−1√n(Lβ̂ − c) =

kF1 =
1

MS E
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c)

D
→ χ2

k (2.2)
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as n → ∞ if H0 is true. If H0 is true, then an F1−α,k,n−p cutoff can be used for F1 = kF1/k since

kFk,n−p
D
→ χ2

k as n→ ∞. See Seber and Lee (2003, p. 100).

If Y = Xβ(X,Y) + e, the model with scaled predictors is Y = Wβ(W,Y) + ϵ where β(X,Y)

denotes the population coefficients from the OLS regression of Y on X. Here W = X D̂n. As noted

in chapter 1, and the residuals and fitted values are the same for both models. Thus Ŷ =

β̂1 + β̂2x2 + · · · + β̂pxp = β̂1 + β̂2s2
x2

s2
+ · · · + β̂psp

xp

sp
= β̂1 + β̂2(W,Y)w2 + · · · + β̂p(W,Y)wp.

Hence β̂(W,Y) = (β̂1, β̂2s2, ..., β̂psp)T = D̂−1
n β̂(X,Y) where β̂(X,Y) = (β̂1, β̂2, ..., β̂p)T .

For the scaled predictors, assume D̂n
P
→ D = diag(1, 1/σ2, ..., 1/σp) where each σi > 0. This

assumption often holds if the xi are iid from some population. Let β = β(X,Y). Then

√
n(β̂(W,Y) − D−1β) =

√
n(D̂−1

n β̂ − D̂−1
n β + D̂−1

n β − D−1β)

=
√

nD̂−1
n (β̂ − β) +

√
n(D̂−1

n − D−1)β = zn + bn

where zn =
√

nD̂−1
n (β̂ − β)

D
→ Np(0, σ2 D−1Vx D−1) if

√
n(β̂ − β)

D
→ Np(0, σ2Vx). Note that

D̂−1
n β̂

P
→ D−1β = β(W,Y). Now

bn =



0
√

n(σ̂2 − σ2)β2

...

√
n(σ̂p − σp)βp


=



0

b2,n

...

bp,n


= Op(1)

if
√

n(σ̂i −σi)
D
→ N(0, τ2

i ). Then bi,n
D
→ N(0, β2

i τ
2
i ) for i = 2, ..., p. Thus

√
n(β̂(W,Y)− D−1β) does

not converge in distribution to z ∼ Np(0, σ2 D−1Vx D−1) unless bn
P
→ 0.
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A <- matrix(1,ncol=5,nrow=5)

A [,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1 1

[2,] 1 1 1 1 1

[3,] 1 1 1 1 1

[4,] 1 1 1 1 1

[5,] 1 1 1 1 1

D <- diag(1:5)

D%*%A #premultiplying multiplies ith row of A by d_i

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1 1

[2,] 2 2 2 2 2

[3,] 3 3 3 3 3

[4,] 4 4 4 4 4

[5,] 5 5 5 5 5

A%*%D #postmultiplying multiplies jth col. of A by d_j

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 1 2 3 4 5

[3,] 1 2 3 4 5

[4,] 1 2 3 4 5

[5,] 1 2 3 4 5

D%*%A%*%D # ijth element of A gets multiplied by d_i d_j

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 4 6 8 10

[3,] 3 6 9 12 15

6



[4,] 4 8 12 16 20

[5,] 5 10 15 20 25

Using the scaled data (W,Y) in the OLS software gives an incorrect normal approximation

β̂(W,Y) ≈ Np(β(W,Y),MS E n (WTW)−1) =

Np(D−1β(X,Y),MS E n D̂−1
n (XT X)−1 D̂−1

n ).

Hence confidence intervals, confidence regions, and many tests of hypotheses will no longer be

valid. An important exception occurs for the partial F tests of the form H0 : LOβ = 0 with c = 0

and LO a full rank k × p matrix where LOβ = βO = (βi1 , ..., βik)
T and O = {i1, ..., ik}. For such a

test, we would like to leave the predictors LOx = xO = (xi1 , ..., xik)
T out of the regression model,

resulting in a reduced model. Note that the jth row of LO has a 1 in the i jth position, with all other

entries equal to 0.

Let the i jth element of a p × m matrix A be ai j. Then A = (ai j). Thus LO A = AO = (aia, j)

where the ath row of AO is the iath row of A for a = 1, ..., k. Similarly, if C = (ci j) is a p × p

matrix, then

LOCLT
O = COO =



ci1,i1 ci1,i2 ... ci1,ik

ci2,i1 ci2,i2 ... ci2,ik

...
... ...

...

cik ,i1 cik ,i2 ... cik ,ik


= (cia,ib).

Let Q = diag(d1, ..., dp) be a p × p diagonal matrix with diagonal elements d1, ..., dp. Let H =

QA = (hi j) = (diai j). Then LOQA = LOH = HO = (hia, j) = (diaaia, j) = QOO AOO. Let B = QCQ =

(bi j) = (did jci j). Then LOBLT
O = BOO = (bia,ib) = (diadibcia,ib) = QOOCOOQOO.

7



Theorem 2. For the test H0 : LOβ = 0, the partial F test statistics from the scaled data and

the unscaled data are the same.

Proof. The result holds if

(LOβ̂)T [LO(XT X)−1LT
O]−1(LOβ̂) = (LOβ̂(W,Y))T [LO(WTW)−1LT

O]−1(LOβ̂(W,Y)).

By the above remarks, LO D̂nLT
O = D̂OO = diag(1/si1 , ..., 1/sik) where we define s1 = 1. Let

Q = D−1
n and C = (XT X)−1.

Then LOβ̂(W,Y) = LO D̂−1
n β̂ = β̂O(W,Y) = D̂−1

OOβ̂O = D̂−1
OOLOβ̂, while

LO(WTW)−1LT
O = LO(D̂nXT X D̂n)−1LT

O = LO D̂−1
n (XT X)−1 D̂−1

n LT
O

= D̂−1
OO(XT X)−1

OO D̂−1
OO = D̂−1

OOLO(XT X)−1LT
O D̂−1

OO.

Thus (LOβ̂(W,Y))T [LO(WTW)−1LT
O]−1(LOβ̂(W,Y)) =

(D̂−1
OOLOβ̂)T [D̂−1

OOLO(XT X)−1LT
O D̂−1

OO]−1 D̂−1
OOLOβ̂ =

(LOβ̂)T [LO(XT X)−1LT
O]−1(LOβ̂),

proving the theorem. □

Let xT
i be the ith row of X, and let wT

i be the ith row of W. Let β̂i = β̂i(x,Y) be the ith OLS es-

timator of βi = βi(x,Y) where (x,Y) denotes that the Y were regressed on the x. Similarly, β̂i(w,Y)

is the estimator when the Y are regressed on the wi. Let [Lin,Uin] = β̂i± t1−α/2,n−pS E(β̂i) be the large

sample 100(1−α)% confidence interval CI for βi. Let σ2
i = Var(xi) for i = 2, ..., p. Then βi(w,Y) =

σiβi(x,Y) for i = 2, ..., p, and the “CI” for βi(w,Y) is [siLin, siUin]. (By “CI”, we mean the confi-

dence interval formula for the unstandardized data was applied to the data with standardized predic-

tors, which is not a valid confidence interval.) This result holds since (WTW)−1 = D̂−1
n (XT X)−1 D̂−1

n .

Scaling does not change the MSE, hence S E[β̂i(w,Y)] = siS E[β̂i(x,Y)] for i = 2, ..., p where s2
i

8



is the usual unbiased estimator of σ2
i . If βi(w,Y) = βi(x,Y) = 0, then βi = 0 is in the interval

[Lin,Uin] if and only if βi(w,Y) = σiβi(x,Y) = 0 is in the “CI” [siLin, siUin] since si > 0. Hence in

the simulation where βi = 0, the coverage of the CI for βi(x,Y) and the coverage of the “CI” for

βi(w,Y) will be exactly the same. When βi , 0, we expect that the coverages will differ, and that

the “CI” for βi(w,Y) will often have undercoverage. Here the coverage is the observed proportion

of intervals that contained the population parameter. Hence if 5000 CIs for βi were made, and 4750

of the CIs contained βi, then the (observed) coverage is 4750/5000 = 0.95.

The simulations used L = LO where LOβ = c = βO = (βi1 , ..., βik)
T and O = {i1, ..., ik}.
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CHAPTER 3

SURVIVAL ANALYSIS

This section follows Olive (2025b) closely.

Definition 1. Let Y ≥ 0 be the time until an event occurs. Then Y is called the survival time

or time until event. The survival time is censored if the event of interest has not been observed.

Let Yi be the ith survival time. Let Zi be the time the ith observation (possibly an individual or

machine) leaves the study for any reason other than the event of interest. Then Zi is the time until

the ith observation is censored. Then the right censored survival time Ti of the ith observation is

Ti = min(Yi,Zi). Let δi = 0 if Ti is (right) censored (Ti = Zi) and let δi = 1 if Ti is not censored

(Ti = Yi). Then the univariate survival analysis data is (T1, δ1), (T2, δ2), ..., (Tn, δn). Alternatively,

the data is T1,T ∗2 ,T3, ...,T ∗n−1,Tn where the * means that the case was (right) censored. Sometimes

the asterisk * is replaced by a plus +, and Yi, yi or ti can replace Ti.

Definition 2. i) The cumulative distribution function (cdf) of Y is F(t) = P(Y ≤ t). Since

Y ≥ 0, F(0) = 0, F(∞) = 1, and F(t) is nondecreasing.

ii) The probability density function (pdf) of Y is f (t) = F′(t).

iii) The survival function of Y is S (t) = P(Y > t). S (0) = 1, S (∞) = 0 and S (t) is nonincreas-

ing.

iv) The hazard function of Y is h(t) =
f (t)

1 − F(t)
for t > 0 and F(t) < 1. Note that h(t) ≥ 0 if

F(t) < 1.

v) The cumulative hazard function of Y is H(t) =
∫ t

0
h(u)du for t > 0. It is true that H(0) =

0,H(∞) = ∞, and H(t) is nondecreasing.

Assume Y ≥ 0. Then F(0) = 0, S (0) = 1, and H(0) = 1. Note that S (∞) = 0 implies that

H(∞) = ∞ where limt→∞ H(t) = H(∞). Memorize that 0 ≤ F(t) ≤ 1, 0 ≤ S (t) ≤ 1, f (t) ≥ 0,

h(t) ≥ 0, and H(t) ≥ 0.

Given one of F(t), f (t), S (t), h(t) or H(t), the following theorem shows how to find the other

4 quantities for t > 0. Each of these five quanities completely determines the distribution of the
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random variable. In reliability analysis, the reliability function R(t) = S (t), and in economics,

Mill’s ratio = 1/h(t). In actuarial sciences, h(t) is the force of mortality.

Theorem 3.

A) F(t) =
∫ t

0
f (u)du = 1 − S (t) = 1 − exp[−H(t)] = 1 − exp[−

∫ t

0
h(u)du].

B) f (t) = F′(t) = −S ′(t) = h(t)[1 − F(t)] = h(t)S (t) = h(t) exp[−H(t)] = H′(t) exp[−H(t)].

C) S (t) = 1 − F(t) = 1 −
∫ t

0
f (u)du =

∫ ∞
t

f (u)du = exp[−H(t)] = exp[−
∫ t

0
h(u)du].

D)

h(t) =
f (t)

1 − F(t)
=

f (t)
S (t)
=

F′(t)
1 − F(t)

=
−S ′(t)
S (t)

= −
d
dt

log[S (t)] = H′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S (t)] = − log[1 − F(t)].

Example 1. Suppose Y ∼ EXP(λ) where λ > 0, then h(t) = λ for t > 0, f (t) = λe−λt for

t > 0, F(t) = 1 − e−λt for t > 0, S (t) = e−λt for t > 0, H(t) = λt for t > 0 and E(Y) = 1/λ. The

exponential distribution is the only distribution of a continuous random variable Y with a constant

hazard function since h(t) completely determines the distribution of the random variable Y . Derive

H(t), S (t), F(t), and f (t) from the constant hazard function h(t) = λ for t > 0 and some λ > 0.

Solution: H(t) =
∫ t

0
h(u)du =

∫ t

0
λdu = λt for t > 0.

S (t) = e−H(t) = e−λt, for t > 0.

F(t) = 1 − S (t) = 1 − e−λt for t > 0.

Finally, f (t) = h(t)S (t) = λe−λt = F′(t) for t > 0.

Example 2. If Y ∼ Weibull(γ, λ) where γ > 0 and λ > 0, then h(t) = λγtγ−1 for t > 0,

f (t) = λγtγ−1 exp(−λtγ) for t > 0, F(t) = 1 − exp(−λtγ) for t > 0, S (t) = exp(−λtγ) for t >

0, H(t) = λtγ for t > 0. The Weibull( λ, γ = 1) distribution is the EXP(λ) distribution. The

hazard function can be increasing, decreasing or constant. Hence the Weibull distribution often fits

reliability data well, and the Weibull distribution is an important distribution in reliability analysis.

Derive H(t), S (t), F(t), and f (t) if Y ∼Weibull(λ, γ).
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Solution:

H(t) =
∫ t

0
h(u)du =

∫ t

0
λγuγ−1du = λγ

uγ

γ

∣∣∣∣∣t
0
= λtγ for t > 0.

S (t) = exp[−H(t)] = exp[−λtγ], for t > 0.

F(t) = 1 − S (t) = 1 − exp[−λtγ] for t > 0.

Finally, f (t) = h(t)S (t) = λγtγ−1 exp[−λtγ] for t > 0.
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CHAPTER 4

WEIBULL AND EXPONENTIAL REGRESSION

In a 1D regression model, the response variable Y is conditionally independent of the p × 1

vector of predictors x given the sufficient predictor S P = h(x), written

Y x|S P or Y x|h(x), (4.1)

where the real valued function h : Rp → R. The estimated sufficient predictor ES P = ĥ(x). An

important special case is a model with a linear predictor h(x) = xTβ where ES P = xT β̂.

Definition 3. For parametric proportional hazards regression models, the baseline function

is parametric and the parameters are estimated via maximum likelihood. Then as a 1D regression

model, S P = βT
P x, and the hazard function

hY |S P(t) ≡ hx(t) = exp(βT
P x)h0,P(t) = exp(S P)h0,P(t)

where the parametric baseline function h0,P depends on k unknown parameters but does not depend

on the predictors x. The survival function is

S x(t) ≡ S Y |S P(t) = [S 0,P(t)]exp(βT
P x) = [S 0,P(t)]exp(S P), (4.2)

and

Ŝ x(t) = [Ŝ 0,P(t)]exp(β̂
T

P x) = [Ŝ 0,P(t)]exp(ES P). (4.3)

The following univariate results will be useful for Exponential and Weibull regression. If Y

has a Weibull distribution, Y ∼ W(γ, λ), then S Y(t) = exp(−λtγ) where t, λ and γ are positive. If

γ = 1, then Y has an Exponential distribution, Y ∼ EXP(λ) where E(Y) = 1/λ. Now V has a
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smallest extreme value distribution, V ∼ S EV(θ, σ), if

S V(t) = P(V > t) = exp
(
− exp

( t − θ
σ

))

where σ > 0 while t and θ are real. If Z ∼ S EV(0, 1), then V = θ + σZ ∼ S EV(θ, σ) since the

SEV distribution is a location scale family. Also, V = log(Y) ∼ S EV(θ = −σ log(λ), σ = 1/γ),

and Y = eV ∼ W(γ = 1/σ, λ = e−θ/σ).

If Yi follows a Weibull regression model, then log(Yi) follows an accelerated failure time

(AFT) model: log(Yi) = α + βT
A xi + σei where the ei are iid S EV(0, 1), and log(Y)|x ∼ S EV(α +

βT
A x, σ).

Definition 4. The Weibull proportional hazards regression (WPH) model or Weibull regres-

sion model is a parametric proportional hazards model with Y |x ∼ W(γ = 1/σ, λx) where

λx = exp
[
−

(
α

σ
+
βT

A x
σ

)]
= λ0 exp(βT

P x)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P(Y > t|x) =

S x(t) = exp(−λxtγ) = exp(−λ0 exp(βT
P x)tγ) = [exp(−λ0tγ)]exp(βT

P x) =

[S 0,P(t)]exp(βT
P x).

As a 1D regression model, Y |S P ∼ W(γ, λ0 exp(S P)). Also,

hi(t) = hYi |xi(t) = h
Yi |β

T
P xi

(t) = exp(βT
P xi)h0(t)

where h0(t) = h0(t|θ) = λ0γtγ−1 is the Weibull baseline function. Exponential regression is the

special case of Weibull regression where σ = 1. Hence Y |x ∼ W(1, λx) ∼ EXP(λx).

14



CHAPTER 5

ACCELERATED FAILURE TIME MODELS

Definition 5. For a parametric accelerated failure time model,

Zi = log(Yi) = α + βT
A xi + σei (5.1)

where the ei are iid from a location scale family. Let S P = βT
A x. Then as a 1D regression model,

log(Y)|S P = α + S P + e. The parameters are again estimated by maximum likelihood and the

survival function is

S x(t) ≡ S Y |x(t) = S 0

(
t

exp(βT
A x)

)
,

and

Ŝ x(t) = Ŝ 0

 t

exp(β̂
T
A x)


where Ŝ 0(t) depends on α̂ and σ̂.

For the AFT model, hi(t) = hx(t) = e−S Ph0(t/eS P) and S i(t) = S x(t) = S 0(t/ exp(S P)) where

S P = βT
A x. If S x(tx(ρ)) = 1 − ρ for 0 < ρ < 1, then tx(ρ) is the ρth percentile. For the accelerated

failure time model,

tx(ρ) = t0(ρ) exp(βT
A x)

where t0(ρ) = exp(σei(ρ) + α) and S ei(ei(ρ)) = P(ei > ei(ρ)) = 1 − ρ. Note that the estimated

percentile ratio is free of ρ, σ̂ and α̂

t̂x1(ρ)
t̂x2(ρ)

= exp(β̂
T
A(x1 − x2)).

The acceleration factor = e−S P and t0,ρ = e−S Ptx,ρ. The median survival times are related by

t0,0.5 = e−S Ptx,0.5. If e−S P < 1, then the median survival time of x > the median survival time of

0, a result that is good if the event is death, but bad if the event is time until recovery. Note that
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Hx(t) = − log S x(t) = − log(S 0(t/eS P)) = H0(t/eS P).

Remark 1. Assume xi > 0. Then βi > 0 increases log(Yi) and Yi, while βi < 0 decreases

log(Yi) and Yi. For the Cox PH regression model, hx(t) = exp(βT x)h0(t). Hence βi > 0 increases

hazard and decreases Yi, while βi < 0 decreases hazard and increases Yi. In the WPH model,

βP = −βA/σ.

Definition 6. The Weibull AFT satisfies log(Y)|(α+βT
A x) ∼ S EV(α+βT

A x, σ). The Exponential

AFT is the special case with σ = 1.

Theorem 4. Weibull regression models, including Exponential regression models, are the only

models where Y follows a proportional hazards regression model and log(Y) follows an accelerated

failure time model.

If the Weibull PH regression model holds for Yi, then log(Yi) = α + βT
A xi + σei where ei ∼

S EV(0, 1). Thus log(Y)|x ∼ S EV(α + βT
A x, σ), and the log(Yi) follows a parametric accelerated

failure time model. Two other important AFTs are i) the lognormal AFT where log(Y)|x ∼ N(α +

βT
A x, σ2) where the Yi are lognormal and the ei ∼ N(0, 1) are normal, and ii) the loglogistic AFT

where log(Y)|x ∼ L(α + βT
A x, σ) where the Yi are loglogistic and the ei ∼ L(0, 1) are logistic. For

the loglogistic AFT, Y follows a proportional odds model. Y does not follow a proportional hazards

regression model for the loglogistic and lognormal AFTs.

A case consists of the measurements on a person or thing. Let (xT
i ,Yi)T be the ith case. For

example, people sick from a deadly disease who go to 3 hospitals, where Yi is the survival time.

As noted by Olive (2025b), if the cases are iid and the censoring is independent of the cases, then

the uncensored cases (xT
i ,Yi)T (where the Yi are uncensored) may not follow the multiple linear

regression model since the censoring causes the Yi to follow a truncated distribution. However,

OLS may be useful for testing H0 : Aβ = 0.
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CHAPTER 6

OPLS AND THE MMLE FOR MLR

For the AFT, the log transformation of the response results in a multiple linear regression

model. Hence multiple linear regression models will be useful. Now let the response variable Y

be for multiple linear regression, so Y need not be a nonnegative integer. A useful multiple linear

regression model is Y |xTβ = α + xTβ + e or Yi = α + xT
i β + ei or

Yi = α + xi,1β1 + · · · + xi,pβp + ei = α + xT
i β + ei (6.1)

for i = 1, ..., n. Assume that the ei are independent and identically distributed (iid) with expected

value E(ei) = 0 and variance V(ei) = σ2. In matrix form, this model is

Y = Xϕ + e, (6.2)

where Y is an n × 1 vector of dependent variables, X is an n × (p + 1) matrix with ith row (1, xT
i ),

ϕ = (α,βT )T is a (p+ 1)× 1 vector , and e is an n× 1 vector of unknown errors. Also E(e) = 0 and

Cov(e) = σ2In where In is the n × n identity matrix.

For a multiple linear regression model with heterogeneity, assume model (6.2) holds with

E(e) = 0 and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n × n positive definite matrix.

When the σ2
i are known, weighted least squares (WLS) is often used. Under regularity conditions,

the ordinary least squares (OLS) estimator ϕ̂OLS = (XT X)−1XT Y can be shown to be a consistent

estimator of ϕ. See, for example, White (1980).

For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) = Σx =

E[(x − E(x))(x − E(x))T ] = E(xxT ) − E(x)E(xT ) and η = Cov(x,Y) = ΣxY = E[(x − E(x)(Y −

E(Y))] = E(xY) − E(x)E(Y) = E[(x − E(x))Y] = E[x(Y − E(Y))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑
i=1

(xi − x)(Yi − Y)
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and

η̃ = η̃n = Σ̃xY =
1
n

n∑
i=1

(xi − x)(Yi − Y).

Then the OLS estimators for model (6.2) are ϕ̂OLS = (XT X)−1XT Y, α̂OLS = Y − β̂
T
OLS x, and

β̂OLS = Σ̃
−1
x Σ̃xY = Σ̂

−1
x Σ̂xY = Σ̂

−1
x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases, β̂OLS

is a consistent estimator of βOLS = Σ
−1
x ΣxY under mild regularity conditions, while α̂OLS is a

consistent estimator of E(Y) − βT
OLS E(x).

Cook, Helland, and Su (2013) showed that the one component partial least squares (OPLS)

estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT

xYΣxY

ΣT
xYΣxΣxY

and λ̂ =
Σ̂

T
xYΣ̂xY

Σ̂
T
xYΣ̂xΣ̂xY

(6.3)

for ΣxY , 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos (2024), Cook

and Forzani (2024), and Wold (1975). Olive and Zhang (2025) derived the large sample theory for

η̂OPLS = Σ̂xY and OPLS under milder regularity conditions than those in the previous literature,

where ηOPLS = ΣxY . Olive et al. (2025) showed that for iid cases (xi,Yi), these results still hold for

multiple linear regression models with heterogeneity.

The marginal maximum likelihood estimator (MMLE or marginal least squares estimator)

is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the marginal

regression of Y on xi, such as Poisson regression, resulting in the estimator (α̂i,M, β̂i,M) for i =

1, ..., p. Then β̂MMLE = (β̂1,M, ..., β̂p,M)T .

For multiple linear regression, the marginal estimators are the simple linear regression (SLR)

estimators, and (α̂i,M, β̂i,M) = (α̂i,S LR, β̂i,S LR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y . (6.4)
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If the ti are the predictors that are scaled or standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(t,Y) = Σ̂t ,Y = I−1Σ̂t ,Y = η̂OPLS (t,Y) (6.5)

where (t,Y) denotes that Y was regressed on t, and I is the p× p identity matrix. Olive et al. (2025)

derived large sample theory for the MMLE for the multiple linear regression models, including

models with heterogeneity.

6.1 LARGE SAMPLE THEORY

This section reviews the Olive and Zhang (2025) large sample theory for η̂OPLS = Σ̂xY and

OPLS for the multiple linear regression model, including some high dimensional tests for low

dimensional quantities such as HO : βi = 0 or H0 : βi − β j = 0. These tests depended on iid cases,

but not on linearity or the constant variance assumption. Hence the tests are useful for multiple

linear regression with heterogeneity. Data splitting uses model selection (variable selection is a

special case) to reduce the high dimensional problem to a low dimensional problem. Also see the

large sample theory given in Olive et al. (2025).

Remark 2. The following result is useful for several multiple linear regression estimators. Let

wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗w = AnΣ
∗
x AT

n and Σ∗wY = AnΣ
∗
xY .

b) If An is a constant matrix, then Σw = AnΣx AT
n and ΣwY = AnΣxY .

The following Olive and Zhang (2025) theorem gives the large sample theory for η̂ =

Ĉov(x,Y). This theory needs η = ηOPLS = Σx,Y to exist for η̂ = Σ̂x,Y to be a consistent esti-

mator of η. Let xi = (xi1, ..., xip)T and let wi and zi be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)T (Yi − µY)2)] − ΣxYΣ
T
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.

Theorem 5. Assume the cases (xT
i ,Yi)T are iid. Assume E(xk

i j Ym
i ) exist for j = 1, ..., p and

19



k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y). Let wi = (xi − µx)(Yi − µY) with sample mean wn.

Let η = Σx,Y . Then a)

√
n(wn − η)

D
→ Np(0,Σw),

√
n(η̂n − η)

D
→ Np(0,Σw), (6.6)

and
√

n(η̃n − η)
D
→ Np(0,Σw).

b) Let zi = xi(Yi − Yn) and vi = (xi − xn)(Yi − Yn). Then Σ̂w = Σ̂z + OP(n−1/2) = Σ̂v + OP(n−1/2).

Hence Σ̃w = Σ̃z + OP(n−1/2) = Σ̃v + OP(n−1/2).

c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is true, and

assume λ̂
P
→ λ , 0. Then

√
nA(β̂OPLS − βOPLS )

D
→ Nk(0, λ2 AΣw AT ). (6.7)

6.2 TESTING

As noted by Olive and Zhang (2025), the following simple testing method reduces a possibly

high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0 versus H1 :

AβOPLS , 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη , 0 where A is a k × p constant

matrix. Let Cov(Σ̂xY) = Cov(η̂) = Σw be the asymptotic covariance matrix of η̂ = Σ̂xY . In high

dimensions where n < 5p, we can’t get a good nonsingular estimator of Cov(Σ̂xY), but we can

get good nonsingular estimators of Cov(Σ̂uY) = Cov((η̂i1, ..., η̂ik)T ) with u = (xi1, ..., xik)T where

n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may be needed if some of the k predictors

and/or Y are skewed.) Simply apply Theorem 5 to the predictors u used in the hypothesis test, and

thus use the sample covariance matrix of the vectors ui(Yi − Y). Hence we can test hypotheses like

H0 : βi − β j = 0. In particular, testing H0 : βi = 0 is equivalent to testing H0 : ηi = σxi,Y = 0 where

σxi,Y = Cov(xi,Y).

Note that the tests with η̂ using k distinct predictors xi j do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the tests can
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have considerable resistance to underfitting and overfitting. The OPLS tests also have some resis-

tance to measurement error: assume that (xT
i ,u

T
i , vi,Yi)T are iid but wi = xi +ui and Zi = Yi + vi are

observed instead of (xi,Yi). Then β̂OLS (w,Z) estimates Σ−1
wΣwZ, while Σ̂wZ estimates Cov(x,Y) if

Cov(x, v) + Cov(u,Y) + Cov(u, v) = 0, which occurs, for example, if x v, u Y , and u v.

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests with η̂

since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator if η̂T x is a good

estimator of ηT x.
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CHAPTER 7

ESTIMATING Σ̂xZ FOR SOME CENSORED SURVIVAL REGRESSION MODELS

For many survival regression data sets,

Z = log(Y) = αZ + β
T
Z x + e (7.1)

follows a multiple linear regression model. The AFT models are a special case where the model is

fit using the MLE. If the chosen model is incorrect, e.g. a Weibull AFT is fit when a lognormal AFT

should have been used, then a nonparametric method will often perform better than the incorrect

parametric model. The Buckley and James (1979) estimator is a nonparametric competitor for the

parametric AFTs. When there is no censoring, this estimator is equivalent to the ordinary least

squares (OLS) estimator for multiple linear regression.

Definition 7. The Buckley James estimator (α̂BJ, β̂BJ) is a nonparametric survival regression

method for models of the form (7.1).

Let the log transformation Zi = log(Yi) where Yi > 0 is the survival time. This transformation

often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (7.2)

where the ei are independent with expected value E(ei) = 0 and variance V(ei) = σ2
i . For the AFT

and the Buckley James estimator, the variance is constant: V(ei) = σ2 does not depend on i.

For more on estimators for model (7.2), see, for example, Heller and Simonoff (1990), Lai

and Ying (1991), Lin and Wei (1992), and Yu, Liu, and Chen (2024).

The Harrell (2015) rms library is useful for the Buckley James estimator. See the R code

below.

#download R version 4.4.4 2024
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install.packages("rms")

#lognormal AFT = OLS model without censoring if z=log(y)

p<- 5

k<-2

n<-100

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

z <- 1 + x %*% b + rnorm(n)

#beta = (1,1,0,0)

#z = log(y)

y <- exp(z) #lognormal so positive

status <- 0*1:n + 1 #uncensored

tdata <- as.data.frame(cbind(x,y,status))

names(tdata) #renamed y as V5,

#likely incorrectly uses V5 as a predictor

"V1" "V2" "V3" "V4" "V5" "status"

names(tdata) <- c("V1","V2","V3","V4","y","status")

library(rms)

#bj(Surv(y,status)˜.,data=tdata) gives an error

bj(Surv(y,status)˜V1+V2+V3+V4,data=tdata)

Buckley-James Censored Data Regression

bj(formula = Surv(y, status) ˜ V1 + V2 + V3 + V4, data = tdata)

Discrimination

Indexes
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Obs 100 Regression d.f.4 g 1.375

Events 100 sigma1.0172 gr 3.956

d.f. 95

Coef S.E. Wald Z Pr(>|Z|)

Intercept 0.9659 0.1039 9.30 <0.0001

V1 0.8462 0.1055 8.02 <0.0001

V2 0.8732 0.1053 8.30 <0.0001

V3 -0.1606 0.1022 -1.57 0.1159

V4 -0.1441 0.1138 -1.27 0.2053

lsfit(x,z)$coef

Intercept X1 X2 X3 X4

0.9659463 0.8461943 0.8731705 -0.1606320 -0.1441290

#same with uncensored data

Let ΣxZ = Cov(x,Z) = E[(x−E(x))(Z−E(Z))]. Let Σx = Cov(x) = E[(x−E(x))(x−E(x))T ]

be the covariance matrix of x. Suppose the cases (xi,Yi) are iid from some population. Let the

ordinary least squares (OLS) estimator be β̂OLS . Since model (7.2) is a multiple linear regression

(MLR) model, under mild regularity conditions, βZ = βOLS = Σ
−1
x ΣxZ. Thus ΣxZ = Cov(x)βZ =

ΣxβZ.When the response Yi is censored, several models give consistent estimators β̂Z of βZ. Hence

Σ̂xZ = Σ̂xβ̂Z. (7.3)

If a Weibull regression data set is generated with parameter vector βP, then the Weibull AFT

parameter vector β = βZ = βA = −σβP = −(1/γ)βp. Hence ΣxZ = −γCov(x)βP. The survpack

function BJcovxz generates a Weibull regression data set with right censored survival times using

a method similar to that of Zhou (2001). Then βA = −(1/γ, ..., 1/γ, 0, ..., 0)T with p − k zeroes and

βP = (1, ..., 1, 0, ..., 0)T with k ones and p − k zeroes. The population ΣxZ = ΣxβA is computed, as
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well as Σ̂xZ using the uncensored Zi that are known since the data was simulated. The estimators

Σ̂xZ(A) = Σ̂xβ̂A and Σ̂xZ(B) = Σ̂xβ̂BJ were also computed. The output below illustrates the

estimators.

library(rms)

library(survival)

source("http://parker.ad.siu.edu/Olive/survpack.txt")

BJcovxz(n=100,p=4,k=1,psi=0)

$k

[1] 1

$betaA

[1] -1 0 0 0

$bhatwaft #Weibull AFT

V1 V2 V3 V4

-1.08161987 -0.12461451 0.18940525 0.03343348

$bhatbj #Buckley James estimator

V1 V2 V3 V4

-1.04721364 -0.21876873 0.26093084 -0.09383167

$C pop cov(x,z) AFT est BJ est

[,1] [,2] [,3] [,4]

[1,] -1 -1.17851098 -1.177787472 -1.12324943

[2,] 0 -0.21657094 -0.163023329 -0.24175567

[3,] 0 0.05959813 0.005348028 0.09104925

[4,] 0 -0.01629190 0.098819495 -0.03343374

BJcovxz(n=100,p=4,k=1,psi=0.9)

$k

[1] 1
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$betaA

[1] -1 0 0 0

$bhatwaft #not too godd for psi > 0.8

V1 V2 V3 V4

1.0725896 -3.7225410 0.6832606 0.8570338

$bhatbj

V1 V2 V3 V4

2.190735 -3.996070 1.308376 -0.705631

$C pop cov(x,z) AFT est BJ est

[,1] [,2] [,3] [,4]

[1,] -1.0000000 -1.205574 -1.158267 -1.259813

[2,] -0.9970845 -1.229621 -1.183020 -1.289138

[3,] -0.9970845 -1.219214 -1.172632 -1.276607

[4,] -0.9970845 -1.220622 -1.168735 -1.277573

The last two estimators of Σ̂xZ are nonparametric, but require consistent estimators of βZ =

Σ−1
x ΣxZ, which occurs, for example, if the the cases (xi,Yi) are iid from some population with

covariance matrix Σx and covariance vector ΣxZ. The survival times Yi can be right censored, but

the predictor variables x1, ..., xp are not censored. Note that the predictor variables hat have the

highest absolute correlation with Z have the highest values of |Ĉov(xi,Z)|/
√

V̂(xi).

In the literature, there are several estimators for the correlation cor(X,Y) where X and Y are

survival times. These estimators usually use the MLE or multiple imputation assuming that (X,Y)

are iid from a bivariate normal distribution. See, for example, Barchard and Russell (2024), Li,

Gillespie, Shedden, and Gillespie (2018), and Lyles, Fan, and Chuachoowong (2001).

Let the log transformation Zi = log(Yi) where Yi > 0 is the survival time. This transformation
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often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (7.4)

where the ei are independent with expected value E(ei) = 0 and variance V(ei) = σ2
i . For the AFT,

the variance is constant: V(ei) = σ2 does not depend on i. The Buckley and James (1979) model

is another special case. Since model (7.1) is an MLR model, under mild regularity conditions,

βZ = βOLS = Σ
−1
x ΣxZ. Thus ΣxZ = ΣxβZ. When the response Yi is censored, several models give

consistent estimators β̂Z of βZ. Hence

Σ̂xZ = Σ̂xβ̂Z. (7.5)

Another application of the Buckley James estimator is to check AFTs. Make an EE plot of

ES PBJ = β̂
T
BJ x versus ES PA = β̂

T
AFT x. For the Weibull AFT, also plot ES PPH = σ̂β̂

T
PH x versus

the above two ESPs.

The ovarian cancer data is from Collett (2003, p. 187-190) and Edmunson et al. (1979). The

response variable is the survival time of n = 26 ovarian cancer patients in days with predictors

age in years and treat (1 for cyclophosphamide alone and 2 for cyclophosphamide combined with

adriamycin). See Figure 7.1 for the three EE plots for the ovarian cancer data, where ESPW=ESPA.

The Weibull AFT appears to be appropriate for this data set.
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#models for the ovarian cancer data

library(survival)

library(rms)

source("http://parker.ad.siu.edu/Olive/survdata.txt")

z <- survreg(Surv(ovar[,1],ovar[,2])˜ovar[,3]+ovar[,4],

dist="weibull")

zc <- coxph(Surv(ovar[,1],ovar[,2])˜ovar[,3]+ovar[,4])

sighat<-z$scale

zx <- cbind(ovar[,3],ovar[,4])

ESPPH <- -sighat*zx%*%zc$coef

ESPW <- zx%*%z$coef[-1]

ovardatf <- as.data.frame(ovar)

names(ovardatf)

#[1] "time" "status" "treat" "age"

outbj <- bj(formula = Surv(time, status) ˜ treat + age,

data = ovardatf)

ESPBJ <- zx%*%outbj$coef[-1]

par(mfrow = c(3, 1))

plot(ESPPH,ESPW)

abline(0,1)

plot(ESPBJ,ESPW)

abline(0,1)

plot(ESPBJ,ESPPH)

28



abline(0,1)

par(mfrow=c(1,1))

Figure 7.1. Three EE Plots for the Ovarian Cancer Data
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CHAPTER 8

EXAMPLE AND SIMULATIONS

Example 1. The Hebbler (1847) data was collected from n = 26 districts in Prussia in

1843. Let Y = the number of women married to civilians in the district with a constant x1

and predictors x2 = the population of the district in 1843, x3 = the number of married civil-

ian men in the district, x4 = the number of married men in the military in the district, and

x5 = the number of women married to husbands in the military in the district. Sometimes

the person conducting the survey would not count a spouse if the spouse was not at home.

Hence Y and x3 are highly correlated but not equal. Similarly, x4 and x5 are highly correlated

but not equal. Then β̂OLS = (242.3910, 0.00035, 0.9995,−0.2328, 0.1531)T , and forward se-

lection with OLS and the Cp criterion used β̂I,0 = (β̂1, 0, 1.0010, 0, 0)T . With the scaled data,

β̂OLS (w,Y) = (242.3910, 81.0283, 40877.4086,−104.8576, 66.2739)T .

Next, we describe a small OLS simulation study. The simulation used ψ = 0 and 0.5; and

k = 1 and p − 1 where k and ψ are defined in the following paragraph.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors. Let Y = α+ϕT u+ e

with β = (α,ϕT )T . In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the

m = p − 1 elements of the vector wi are independent and identically distributed (iid) N(0,1). Let

the m × m matrix A = (ai j) with aii = 1 and ai j = ψ where 0 ≤ ψ < 1 for i , j. Then the vector

ui = Awi so that Cov(ui) = Σu = AAT = (σi j) where the diagonal entries σii = [1 + (m − 1)ψ2]

and the off diagonal entries σi j = [2ψ + (m − 2)ψ2]. Hence the correlations are cor(xi, x j) = ρ =

(2ψ+ (m− 2)ψ2)/(1+ (m− 1)ψ2) for i , j where xi and x j are nontrivial predictors. If ψ = 1/
√

cp,

then ρ→ 1/(c+ 1) as p→ ∞ where c > 0. As ψ gets close to 1, the predictor vectors cluster about

the line in the direction of (1, ..., 1)T . Let Yi = 1 + 1xi,2 + · · · + 1xi,k+1 + ei for i = 1, ..., n. Hence

α = 1 and β = (1, .., 1, 0, ..., 0)T with k ones and p − k − 1 zeros.

The zero mean iid errors ẽi = ϵi were iid from five distributions: i) N(0,1), ii) t3, iii) EXP(1) -

1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.
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When ψ = 0, the OLS confidence intervals for βi should have length near 2t96,0.975σ/
√

n.

Hence the scaled CI length =
√

n CI length ≈ 2(1.96)σ = 3.92σ when the iid zero mean errors

have variance σ2. The simulation gave the average scaled CI lengths.

For the unscaled predictors, the simulation computed the large sample 95% CIs [Lin,Uin] for

βi and i = 1, ...p. The test for H0 : (βi1 , βi2)
T = (βi1,0, βi2,0)T was also performed using equation

(2.2) with {i1, i2} = {p − 1, p}. 5000 CIs were generated for each βi, and the coverage was the

proportion of times βi was in its CI. Hence if β1 was in its interval 4750/5000 = 0.95, then the

observed coverage was 0.95.

For the scaled predictors, the simulation computed the “95% CIs” [siLin, siUin] for σiβi and

i = 1, ...p with {i1, i2} = {p − 1, p}. The coverage was the proportion of times σiβi was in its “CI.”

The “test” for H0 : (βi1(w,Y), βi2(w,Y))T = (σi1βi1,0, σi2βi2,0)T was also performed using equation

(2.2) on the scaled data W. The “test” is a valid large sample test if (βi1 , βi2)
T = (0, 0)T . When

k = 1, the test is valid and the “95% CI” can be used as a large sample test for H0 : σiβi = 0 except

for β2 since β3 = · · · = βp = 0. When k = p−1 the “test” and “95% CIs” are not valid large sample

tests and CIs (except for β1). The undercoverage can be rather large when the test is not valid.

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(mlrsim)

function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,

type = 1, psi = 0, indices = c(1, 2), alph = 0.05)

mlrsim(n=100,p=5,k=1,nruns=5000,type=1,psi=0,indices=c(4,5))

$cicov

[1] 0.9488 0.9452 0.9536 0.9482 0.9540

$avelen

[1] 4.038598 4.067681 4.065098 4.063435 4.070485

$testcov

[1] 0.9526
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$beta

[1] 1 1 0 0 0

$cicovs

[1] 0.9488 0.8874 0.9536 0.9482 0.9540

$avelens

[1] 4.038598 4.038187 4.039593 4.039284 4.037956

$testcovs

[1] 0.9526

$betas

[1] 1 1 0 0 0

mlrsim(n=100,p=5,k=1,nruns=5000,type=1,psi=0.5,indices=c(4,5))

$cicov

[1] 0.9484 0.9530 0.9484 0.9510 0.9514

$avelen

[1] 4.041254 7.101501 7.107276 7.090973 7.104132

$testcov

[1] 0.9504

$beta

[1] 1 1 0 0 0

$cicovs

[1] 0.9484 0.9332 0.9484 0.9510 0.9514

$avelens

[1] 4.041254 9.373663 9.380725 9.365281 9.379010

$testcovs

[1] 0.9504

$betas

[1] 1.000000 1.322876 0.000000 0.000000 0.000000
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##repeat with types 2,3,4,5

Table 8.1. n=100,p=5,indices=(4,5), k=1

psi etype β1 β2 β3 β4 β5 testcov
0, cov 1 0.9488 0.9452 0.9536 0.9482 0.9540 0.9526
u, len 4.0386 4.0676 4.0651 4.0634 4.0705
0, cov 1 0.9488 0.8874 0.9536 0.9482 0.9540 0.9526
s, len 4.0386 4.0382 4.0396 4.0393 4.0380

0.5, cov 1 0.9484 0.9530 0.9484 0.9510 0.9514 0.9504
u, len 4.0413 7.1015 7.1073 7.0910 7.1041

0.5, cov 1 0.9484 0.9332 0.9484 0.9510 0.9514 0.9504
s, len 4.0413 9.3737 9.3807 9.3653 9.3790

Each table has 4 lines for each type. The first line gives the coverages for the βi while the

second line gives the scaled CI lengths. There is a length for testcov since the test corresponds to a

confidence region instead of a confidence interval. The third and fourth lines are for the scaled data

where cov is the proportion of times σiβi was in its interval. With 5000 runs, coverage between

0.94 and 0.96 suggests that the actual coverage is near the nominal large sample coverage of 0.95.

For Table 8.1, H0 is true except for the scaled data with σ2β2. With error type 1 and psi =

ψ = 0, the average scaled CI lengths were near 4.07 which is not too far from 3.92 considering that

n = 100 and p = 5. In the third line under β2, the coverage is 0.8874. With ψ = 0.5, the sixth line

under β2 has coverage 0.9333. Increasing ψ often decreased the undercoverage.

mlrsim(n=100,p=5,k=4,nruns=5000,type=1,psi=0,indices=c(4,5))

$cicov

[1] 0.9448 0.9448 0.9536 0.9492 0.9500

$avelen

[1] 4.041916 4.073015 4.079712 4.069030 4.068888

$testcov

[1] 0.9528
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$beta

[1] 1 1 1 1 1

$cicovs

[1] 0.9448 0.8976 0.8984 0.8882 0.8902

$avelens

[1] 4.041916 4.042054 4.041657 4.042183 4.042372

$testcovs

[1] 0.8654

$betas

[1] 1 1 1 1 1

mlrsim(n=100,p=5,k=4,nruns=5000,type=1,psi=0.5,indices=c(4,5))

$cicov

[1] 0.9548 0.9582 0.9486 0.9530 0.9472

$avelen

[1] 4.043087 7.095204 7.106610 7.115100 7.110030

$testcov

[1] 0.9506

$beta

[1] 1 1 1 1 1

$cicovs

[1] 0.9548 0.9360 0.9354 0.9338 0.9310

$avelens

[1] 4.043087 9.355476 9.367924 9.372169 9.364274

$testcovs

[1] 0.913

$betas

[1] 1.000000 1.322876 1.322876 1.322876 1.322876

34



##repeat with types 2,3,4,5

Table 8.2. n=100,p=5,indices=(4,5), k=5

psi etype β1 β2 β3 β4 β5 testcov
0, cov 1 0.9448 0.9448 0.9536 0.9492 0.9500 0.9528
u, len 4.0419 4.0730 4.0797 4.0690 4.0689
0, cov 1 0.9448 0.8976 0.8984 0.8882 0.8902 0.8654
s, len 4.0419 4.0421 4.0417 4.0422 4.0424

0.5, cov 1 0.9548 0.9582 0.9486 0.9530 0.9472 0.9506
u, len 4.0431 7.0952 7.1066 7.1151 7.1100

0.5, cov 1 0.9548 0.9360 0.9354 0.9338 0.9310 0.9130
s, len 4.0431 9.3555 9.3679 9.3722 9.3643

For Table 8.2 with the scaled data, H0 is only true for β1. For the scaled data, the “CI”

undercoverage was more severe for ψ = 0 than for ψ = 0.5, and the testcov was worse than that for

the CIs. With the unscaled data, H0 was always true.

8.1 Σ̂xZ SIMULATION

library(survival)

library(rms)

source("http://parker.ad.siu.edu/Olive/survdata.txt")

args(BJcovxzsim)

function (n = 100, p = 4, nruns = 100, k = 1, psi = 0, a = 1,

gam = 1, clam = 0.1)

BJcovxzsim(n=100,p=4,nruns=5000,k=1,psi=0,a=1,gam=1,clam=0.1)

$k

[1] 1

$betaA

[1] -1 0 0 0

$bhatwaft
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V1 V2 V3 V4

-1.20494486 -0.13980676 -0.10482867 0.09373143

$bhatbj

V1 V2 V3 V4

-1.2251305 -0.1713720 -0.1115955 0.1222867

$covxz

[,1] [,2] [,3] [,4]

[1,] -1 0 0 0

$covxzhatmn

[1] -0.999312340 -0.002244755 -0.002427508 -0.001046906

$covxzhatsd

[1] 0.1935163 0.1619503 0.1622831 0.1629504

$covxzwaftmn

[1] -1.002959e+00 -1.391445e-03 -1.447495e-03 -3.198343e-05

$covxzwaftsd

[1] 0.1855422 0.1491370 0.1496335 0.1505240

$covxzBJmn

[1] -1.0019151047 -0.0023403747 -0.0015671645 -0.0009214999

$covxzBJsd

[1] 0.2024268 0.1687888 0.1689074 0.1693748

The function BJcovxzsim simulates estimators of ΣxZ. The value of ΣxZ is given. Then

5000 runs are used to get the estimators. The means and standard deviations of the estimators are

given. In the simulation, the uncensored values of Z are known. Hence the first estimator is the

usual sample covariance vector Σ̂xZ. For real data, only censored values of Z are known, so Σ̂xZ

can not be computed. The second estimator is Σ̂xZ(A) = Σ̂xβ̂A from the Weibull AFT. The third

estimator is Σ̂xZ(BJ) = Σ̂xβ̂BJ using the Buckley James estimator. Let ΣxZ = (σ1Z, ..., σpZ)T .

Table 8.3 gives 2 lines per simulation scenario. The first line gives the means while the second line
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gives the standard deviations. A value of 0+ means the absolute value was less that 0.00005.

Table 8.3. ΣxZ = (−1, 0, 0, 0)T

(n, p, ψ, k) est σ1Z σ2Z σ3Z σ4Z

(100,4,0,1) samp -0.9993 -0.0022 -0.0024 -0.0010
SD 0.1935 0.1620 0.1623 0.1630

(100,4,0,1) AFT -1.0030 -0.0014 -0.0014 0+
SD 0.1855 0.1491 0.1496 0.1505

(100,4,0,1) BJ -1.0019 -0.0023 -0.0016 -0.0009
SD 0.2024 0.1688 0.1689 0.1694
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CHAPTER 9

CONCLUSIONS

For multiple linear regression with standardized predictors, OLS software tests of the form

H0 : βO = 0 are valid large sample tests where βO = (βi1 , ..., βik)
T . However, OLS software does

not give correct confidence intervals for βi(w,Y) = σiβi for i = 2, ..., p unless βi = 0. Note that the

unstandardized data can be used for inference such as testing, confidence intervals, and confidence

regions.

Software

The R software was used in the simulations. See R Core Team (2024). Programs are in the

Olive (2025a) collections of R functions slpack.txt, available from (http://parker.ad.siu.

edu/Olive/slpack.txt). The function mlrsim was used to make the tables.
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