by<br>Abdulaziz A. Alshammari<br>B.Sc., Northern Borders University, 2013<br>M.S., University of Massachusetts Lowell, 2017

A Dissertation<br>Submitted in Partial Fulfillment of the Requirements for the Doctor of Philosophy Degree

Department of Mathematics in the Graduate School
Southern Illinois University Carbondale
Aug 2024

## AN ABSTRACT OF THE DISSERTATION OF


#### Abstract

Abdulaziz A. Alshammari, for the Doctor of Philosophy degree in Statistics, presented on May 28, 2024, at Southern Illinois University Carbondale.


TITLE: TESTING WITH THE ONE COMPONENT PARTIAL LEAST SQUARES AND THE MARGINAL MAXIMUM LIKELIHOOD ESTIMATORS

MAJOR PROFESSOR: Dr. David Olive

We derive some large sample theory for the marginal maximum likelihood estimator for multiple linear regression. Then testing is considered for that estimator and the one component partial least squares estimator, including some high dimensional tests. Testing with these two estimators for the multiple linear regression model with heterogeneity and for the single index model is also considered.

KEY WORDS: Data splitting, dimension reduction, high dimensional data, lasso, single index model.

## ACKNOWLEDGMENTS

I would like to thank my advisor Dr. David Olive for his invaluable assistance and insights leading to the writing of this paper. He was always available to meet and discuss when I've questions. My sincere thanks also goes to professors of my committee for their proper suggestions. Last but not least, I would like to thank the faculty and staff of the School of Mathematical and Statistical Sciences. I've enjoyed studying and working with you.

## DEDICATION

I want to dedicate this work to my parents for always being there for me. They've been my biggest supporters and inspiration. To my amazing wife, thank you for your endless patience and belief in me. To my family, your encouragement has kept me going.

## Contents

Abstract ..... i
Acknowledgments ..... ii
Dedication ..... iii
1 INTRODUCTION ..... 1
2 LARGE SAMPLE THEORY AND TESTING ..... 6
2.1 OLS Theory ..... 6
2.2 OPLS and $\hat{\Sigma}_{x, Y}$ Theory ..... 11
2.3 HIGH DIMENTIONAL TESTS ..... 15
2.4 MULTIPLE LINEAR REGRESSION WITH HETEROGENEITY ..... 16
3 SOME LARGE SAMPLE THEORY FOR MMLE ..... 19
4 SINGLE INDEX MODELS ..... 23
5 OUTLIER DIAGNOSTICS ..... 25
6 EXAMPLES AND SIMULATIONS ..... 27
6.1 Simulation with Theorem 2.4c) ..... 47
7 CONCLUSIONS ..... 65

## List of Tables

$1 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=1, \mathrm{k}=1$ ..... 33
$2 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=2, \mathrm{k}=1$ ..... 34
$3 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=3, $\mathrm{k}=1$ ..... 35
$4 \operatorname{Cov}(x, Y)$, wtype=4, $k=1$ ..... 36
$5 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=5, k=1 ..... 37
$6 \operatorname{Cov}(x, Y)$, wtype $=6, k=1$ ..... 38
$7 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=7, k=1 ..... 39
$8 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=1, k=99 ..... 40
$9 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=2, k=99 ..... 41
$10 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=3, k=99 ..... 42
$11 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=4, k=99 ..... 43
$12 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=5, \mathrm{k}=99$ ..... 44
$13 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=6, k=99 ..... 45
$14 \operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=7, k=99 ..... 46
15 OPLS, wtype=1, k=1 ..... 51
16 OPLS, wtype=2, k=1 ..... 52
17 OPLS, wtype=3, k=1 ..... 53
18 OPLS, wtype=4, k=1 ..... 54
19 OPLS, wtype=5, k=1 ..... 55
20 OPLS, wtype $=6, \mathrm{k}=1$ ..... 56
21 OPLS, wtype=7, k=1 ..... 57
22 OPLS, wtype=1, k=99 ..... 58
23 OPLS, wtype=2, k=99 ..... 59
24 OPLS, wtype=3, k=99 ..... 60
25 OPLS, wtype=4, k=99 ..... 61
26 OPLS, wtype=5, k=99 ..... 62
27 OPLS, wtype=6, k=99 ..... 63
28 OPLS, wtype=7, k=99 ..... 64

## CHAPTER 1

## INTRODUCTION

This section reviews multiple linear regression models, including variable selection and data splitting. Consider a multiple linear regression model with response variable $Y$ and predictors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{p}\right)^{T}$. Then there are $n$ cases $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$, and the sufficient predictor $S P=\alpha+\boldsymbol{x}^{T} \boldsymbol{\beta}$. For these regression models, the conditioning and subscripts, such as $i$, will often be suppressed. Ordinary least squares (OLS) is often used for the multiple linear regression (MLR) model.

Let the first multiple linear regression model be

$$
\begin{equation*}
Y_{i}=\beta_{1}+x_{i, 2} \beta_{2}+\cdots+x_{i, p} \beta_{p}+e_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i} \tag{1}
\end{equation*}
$$

for $i=1, \ldots, n$. Here $n$ is the sample size and the random variable $e_{i}$ is the $i$ th error. Assume that the $e_{i}$ are independent and identically distributed (iid) with expected value $E\left(e_{i}\right)=0$ and variance $V\left(e_{i}\right)=\sigma^{2}$. In matrix notation, these $n$ equations become $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where $\boldsymbol{Y}$ is an $n \times 1$ vector of dependent variables, $\boldsymbol{X}$ is an $n \times p$ matrix of predictors, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown coefficients, and $e$ is an $n \times 1$ vector of unknown errors.

Let the second multiple linear regression model be $Y \mid \boldsymbol{x}^{T} \boldsymbol{\beta}=\alpha+\boldsymbol{x}^{T} \boldsymbol{\beta}+e$ or $Y_{i}=$ $\alpha+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i}$ or

$$
\begin{equation*}
Y_{i}=\alpha+x_{i, 1} \beta_{1}+\cdots+x_{i, p} \beta_{p}+e_{i}=\alpha+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i} \tag{2}
\end{equation*}
$$

for $i=1, \ldots, n$. Let the $e_{i}$ be as for model (1). In matrix form, this model is

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\phi}+\boldsymbol{e} \tag{3}
\end{equation*}
$$

where $\boldsymbol{Y}$ is an $n \times 1$ vector of dependent variables, $\boldsymbol{X}$ is an $n \times(p+1)$ matrix with $i$ th row $\left(1, \boldsymbol{x}_{i}^{T}\right), \boldsymbol{\phi}=\left(\alpha, \boldsymbol{\beta}^{T}\right)^{T}$ is a $(p+1) \times 1$ vector, and $\boldsymbol{e}$ is an $n \times 1$ vector of unknown errors. Also $E(\boldsymbol{e})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}_{n}$ where $\boldsymbol{I}_{n}$ is the $n \times n$ identity matrix. For a multiple linear regression model with heterogeneity, assume model (3) holds with $E(\boldsymbol{e})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{e})=\boldsymbol{\Sigma}_{\boldsymbol{e}}=\operatorname{diag}\left(\sigma_{i}^{2}\right)=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$ is an $n \times n$ positive definite matrix. When the $\sigma_{i}^{2}$ are known, weighted least squares (WLS) is often used.

Under regularity conditions, $\hat{\boldsymbol{\phi}}_{O L S}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}$ can be shown to be a consistent estimator of $\phi$ with $\operatorname{Cov}(\hat{\boldsymbol{\phi}})=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Sigma}_{\boldsymbol{e}} \boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$ and $E(\hat{\boldsymbol{\phi}})=\boldsymbol{\phi}$. See, for example, White (1980). Assume $n \operatorname{Cov}(\hat{\boldsymbol{\phi}}) \rightarrow \boldsymbol{V}$ as $n \rightarrow \infty$. If $\boldsymbol{X}^{T} \boldsymbol{X} / n \rightarrow \boldsymbol{W}^{-1}$ and $\boldsymbol{X}^{T} \boldsymbol{\Sigma}_{\boldsymbol{e}} \boldsymbol{X} / n \rightarrow \boldsymbol{U}$, then $\boldsymbol{V}=\boldsymbol{W} \boldsymbol{U} \boldsymbol{W}$. We assume that $\alpha$ is in the model so that the OLS residuals sum to 0 .

Some other models are a)

$$
Y_{i} \mid \boldsymbol{x}_{i}=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+e_{i}
$$

with $\left.V\left(e_{i}\right)=V\left(Y_{i} \mid \boldsymbol{x}_{i}\right)=\sigma_{i}^{2}=\sigma^{2}\left(\boldsymbol{x}_{i}\right), \mathrm{b}\right)$

$$
Y_{i} \mid\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+e_{i}
$$

with $V\left(e_{i}\right)=V\left(Y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)=\sigma_{i}^{2}=\sigma^{2}\left(\boldsymbol{x}_{i}\right)$, and c)

$$
Y_{i} \mid \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+e_{i}
$$

with $V\left(e_{i}\right)=V\left(Y_{i} \mid \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)=\tau_{i}^{2}=\tau^{2}\left(\boldsymbol{x}_{i}\right)$. See Rajapaksha and Olive (2024). Variants of these models use $e_{i}=\sigma\left(\boldsymbol{x}_{i}\right) \epsilon_{i}$ or $e_{i}=\tau\left(\boldsymbol{x}_{i}\right) \epsilon_{i}$ where the $\epsilon_{i}$ are iid with $E\left(\epsilon_{i}\right)=0$ and $V\left(\epsilon_{i}\right)=1$. Another variant uses iid cases $\left(\boldsymbol{x}_{i}, Y_{i}\right)$. Suppose the $\epsilon_{i}$ are iid and independent of the iid $\left(\boldsymbol{x}_{i}, Y_{i}\right)$. Then the $\left(\boldsymbol{x}_{i}, Y_{i}, \epsilon_{i}\right)$ are iid, and the above models can be formed, e.g., $Y_{i} \mid\left(\boldsymbol{x}_{i}, \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+\sigma\left(\boldsymbol{x}_{i}\right) \epsilon_{i}$.

For estimation with ordinary least squares, let the covariance matrix of $\boldsymbol{x}$ be $\operatorname{Cov}(\boldsymbol{x})=$ $\Sigma_{\boldsymbol{x}}=E\left[(\boldsymbol{x}-E(\boldsymbol{x}))(\boldsymbol{x}-E(\boldsymbol{x}))^{T}\right]=E\left(\boldsymbol{x} \boldsymbol{x}^{T}\right)-E(\boldsymbol{x}) E\left(\boldsymbol{x}^{T}\right)$ and $\boldsymbol{\eta}=\operatorname{Cov}(\boldsymbol{x}, Y)=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=$ $E[(\boldsymbol{x}-E(\boldsymbol{x})(Y-E(Y))]=E(\boldsymbol{x} Y)-E(\boldsymbol{x}) E(Y)=E[(\boldsymbol{x}-E(\boldsymbol{x})) Y]=E[\boldsymbol{x}(Y-E(Y))]$.

Let

$$
\hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\eta}}_{n}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\boldsymbol{S}_{\boldsymbol{x} Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right)
$$

and

$$
\tilde{\boldsymbol{\eta}}=\tilde{\boldsymbol{\eta}}_{n}=\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right) .
$$

Then the OLS estimators for model (3) are $\hat{\boldsymbol{\phi}}_{O L S}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}, \hat{\alpha}_{O L S}=\bar{Y}-\hat{\boldsymbol{\beta}}_{O L S}^{T} \overline{\boldsymbol{x}}$, and

$$
\hat{\boldsymbol{\beta}}_{O L S}=\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \hat{\boldsymbol{\eta}}
$$

For a multiple linear regression model with independent, identically distributed (iid) cases, $\hat{\boldsymbol{\beta}}_{O L S}$ is a consistent estimator of $\boldsymbol{\beta}_{O L S}=\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{X} Y}$ under mild regularity conditions, while $\hat{\alpha}_{O L S}$ is a consistent estimator of $E(Y)-\boldsymbol{\beta}_{O L S}^{T} E(\boldsymbol{x})$.

Cook, Helland, and Su (2013) showed that the one component partial least squares (OPLS) estimator $\hat{\boldsymbol{\beta}}_{O P L S}=\hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ estimates $\lambda \boldsymbol{\Sigma}_{\boldsymbol{x} Y}=\boldsymbol{\beta}_{O P L S}$ where

$$
\begin{equation*}
\lambda=\frac{\boldsymbol{\Sigma}_{\boldsymbol{X} Y}^{T} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}}{\boldsymbol{\Sigma}_{\boldsymbol{\boldsymbol { x } _ { Y }}}^{T} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}} \text { and } \hat{\lambda}=\frac{\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{\mathrm{T}} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}}{\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{\mathrm{T}} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}} \tag{4}
\end{equation*}
$$

for $\boldsymbol{\Sigma}_{\boldsymbol{x} Y} \neq \mathbf{0}$. If $\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=\mathbf{0}$, then $\boldsymbol{\beta}_{O P L S}=\mathbf{0}$. Also see Basa, Cook, Forzani, and Marcos (2022) and Wold (1975). Olive and Zhang (2024) derived the large sample theory for $\hat{\boldsymbol{\eta}}_{O P L S}=$ $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}$ and OPLS under milder regularity conditions than those in the previous literature, where $\boldsymbol{\eta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$. The OPLS estimator is computed from the OLS simple linear regression of $Y$ on $W=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{x}$, giving $\hat{Y}=\hat{\alpha}_{O P L S}+\hat{\lambda} W=\hat{\alpha}_{O P L S}+\hat{\boldsymbol{\beta}}_{O P L S}^{T} \boldsymbol{x}$.

As noted by Rajapaksha and Olive (2024), the nonparametric bootstrap $=$ pairs bootstrap samples the cases $\left(\boldsymbol{x}_{i}^{T}, Y_{i}\right)^{T}$ with replacement, and uses

$$
\begin{equation*}
\boldsymbol{Y}^{*}=\boldsymbol{X}^{*} \hat{\boldsymbol{\phi}}+\boldsymbol{r}^{*} \tag{5}
\end{equation*}
$$

where the $\left(\boldsymbol{x}_{i}^{T}, Y_{i}, r_{i}\right)^{T}$ are selected with replacement to form $\boldsymbol{Y}^{*}, \boldsymbol{X}^{*}$ and $\boldsymbol{r}^{*}$. Note that with respect to the bootstrap distribution, the $\left(\boldsymbol{x}_{i}^{* T}, Y_{i}^{*}, r_{i}\right)^{T}$ are iid. Hence Equation (5) is an iid regression model. Freedman (1981) showed that the nonparametric bootstrap with $\hat{\boldsymbol{\phi}}=\hat{\phi}_{O L S}$ can be useful for model (1) when the cases $\left(\boldsymbol{x}_{i}^{T}, Y_{i}\right)^{T}$ are iid. Since the residuals from $\hat{\boldsymbol{\beta}}_{O P L S}$ sum to zero, the nonparametric bootstrap may be useful for OPLS.

The nonparametric bootstrap for $\tilde{\eta}$ samples the cases with replacement and computes $\tilde{\boldsymbol{\eta}}^{*}$ from the resulting bootstrap data set. Then

$$
\sqrt{n}\left(\tilde{\boldsymbol{\eta}}^{*}-\tilde{\boldsymbol{\eta}}\right) \xrightarrow{D} N_{p}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\eta}\right) .
$$

Hence the tests from the nonparametric bootstrap and the much faster tests from Chapter 2 should be similar.

The marginal maximum likelihood estimator (MMLE or marginal least squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the marginal regression of $Y$ on $x_{i}$ resulting in the estimator $\left(\hat{\alpha}_{i, M}, \hat{\beta}_{i, M}\right)$ for $i=1, \ldots, p$. Then $\hat{\boldsymbol{\beta}}_{M M L E}=$ $\left(\hat{\beta}_{1, M}, \ldots, \hat{\beta}_{p, M}\right)^{T}$. For multiple linear regression, the marginal estimators are the simple linear regression (SLR) estimators, and $\left(\hat{\alpha}_{i, M}, \hat{\beta}_{i, M}\right)=\left(\hat{\alpha}_{i, S L R}, \hat{\beta}_{i, S L R}\right)$. Hence

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{M M L E}=\left[\operatorname{diag}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}\right)\right]^{-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y} . \tag{6}
\end{equation*}
$$

If the $\boldsymbol{t}_{i}$ are the predictors that are scaled or standardized to have unit sample variances, then

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{M M L E}=\hat{\boldsymbol{\beta}}_{M M L E}(\boldsymbol{t}, Y)=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}=\boldsymbol{I}^{-1} \hat{\Sigma}_{\boldsymbol{t}, Y}=\hat{\boldsymbol{\eta}}_{O P L S}(\boldsymbol{t}, Y) \tag{7}
\end{equation*}
$$

where $(\boldsymbol{t}, Y)$ denotes that $Y$ was regressed on $\boldsymbol{t}$, and $\boldsymbol{I}$ is the $p \times p$ identity matrix.
Variable selection estimators include forward selection or backward elimination when $n \geq$ $10 p$.Sparse regression methods can be used for variable selection even if $n / p$ is not large: the OLS submodel uses the predictors that had nonzero sparse regression estimated coefficients. These methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse regression by projection. See Efron et al. (2004, p. 421), Meinshausen (2007, p. 376), Qi et al. (2015), Tay, Narasimhan, and Hastie (2023), Rathnayake and Olive (2023), Tibshirani (1996), and Zou and Hastie (2005).

Data splitting divides the training data set of $n$ cases into two sets: $H$ and the validation set $V$ where $H$ has $n_{H}$ of the cases and $V$ has the remaining $n_{V}=n-n_{H}$ cases $i_{1}, \ldots, i_{n_{V}}$. An application of data splitting is to use a variable selection method, such as forward selection or lasso, on $H$ to get submodel $I_{\min }$ with $a$ predictors, then fit the selected model to the cases in the validation set $V$ using standard inference. See, for example, Rinaldo et al. (2019).

High dimensional regression has $n / p$ small. A fitted or population regression model is sparse if $a$ of the predictors are active (have nonzero $\hat{\beta}_{i}$ or $\beta_{i}$ ) where $n \geq J a$ with $J \geq$ 10. Otherwise the model is nonsparse. A high dimensional population regression model is abundant or dense if the regression information is spread out among the $p$ predictors (nearly all of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for multiple linear regression, gave theory for $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}$ and OPLS, gave theory for data splitting estimators, and gave some theory for the MMLE for multiple linear regression under the constant variance assumption.

Chapter 2 gives some large sample theory, while section 2.3 considers tests of hypotheses.

## CHAPTER 2

## LARGE SAMPLE THEORY AND TESTING

### 2.1 OLS Theory

Let the MLR model 1 be

$$
\begin{equation*}
Y_{i}=\beta_{1}+x_{i, 2} \beta_{2}+\cdots+x_{i, p} \beta_{p}+e_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i} \tag{8}
\end{equation*}
$$

for $i=1, \ldots, n$. Here $n$ is the sample size and the random variable $e_{i}$ is the $i$ th error. Assume that the $e_{i}$ are iid with expected value $E\left(e_{i}\right)=0$ and variance $V\left(e_{i}\right)=\sigma^{2}$. In matrix notation, these $n$ equations become $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ where $\boldsymbol{Y}$ is an $n \times 1$ vector of dependent variables, $\boldsymbol{X}$ is an $n \times p$ matrix of predictors, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown coefficients, and $\boldsymbol{e}$ is an $n \times 1$ vector of unknown errors.

Let the MLR model 2 be

$$
\begin{equation*}
Y_{i}=\alpha+x_{i, 1} \beta_{1}+\cdots+x_{i, p} \beta_{p}+e_{i}=\alpha+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i} \tag{9}
\end{equation*}
$$

for $i=1, \ldots, n$. For this model, we may use $\boldsymbol{\phi}=\left(\alpha, \boldsymbol{\beta}^{T}\right)^{T}$ with $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\phi}+\boldsymbol{e}$.
Ordinary least squares (OLS) large sample theory will be useful. Let $\boldsymbol{X}=\left(\begin{array}{ll}\mathbf{1} & \boldsymbol{X}_{1}\end{array}\right)$. For model (8), the $i$ th row of $\boldsymbol{X}$ is $\left(1, x_{i, 2}, \ldots, x_{i, p}\right)$ while for model (9), the $i$ th row of $\boldsymbol{X}$ is $\left(1, x_{i, 1}, \ldots, x_{i, p}\right)$, and $\boldsymbol{Y}=\alpha \mathbf{1}+\boldsymbol{X}_{1} \boldsymbol{\beta}+\boldsymbol{e}=\boldsymbol{X} \boldsymbol{\phi}+\boldsymbol{e}$.

Definition 2.1 Using the above notation for model (8), let $\boldsymbol{x}_{i}^{T}=\left(x_{i 1}, \ldots, x_{i p}\right)$, let $\alpha$ be the intercept, and let the slopes vector $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$. Let the population covariance matrices

$$
\operatorname{Cov}(\boldsymbol{x})=E\left[(\boldsymbol{x}-E(\boldsymbol{x}))(\boldsymbol{x}-E(\boldsymbol{x}))^{T}\right]=\boldsymbol{\Sigma}_{\boldsymbol{x}}, \text { and }
$$

$$
\operatorname{Cov}(\boldsymbol{x}, Y)=E[(\boldsymbol{x}-E(\boldsymbol{x}))(Y-E(Y))]=\boldsymbol{\Sigma}_{\boldsymbol{x} Y} .
$$

If the cases $\left(\boldsymbol{x}_{i}, Y_{i}\right)$ are iid from some population where $\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$ exists and $\boldsymbol{\Sigma}_{\boldsymbol{x}}$ is nonsingular, then the population coefficients from an OLS regression of $Y$ on $\boldsymbol{x}$ (even if a linear model does not hold) are

$$
\alpha=\alpha_{O L S}=E(Y)-\boldsymbol{\beta}^{T} E(\boldsymbol{x}) \text { and } \boldsymbol{\beta}=\boldsymbol{\beta}_{\mathrm{OLS}}=\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x} \mathrm{Y}}
$$

Definition 2.2 Let the sample covariance matrices be

$$
\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \text { and } \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right)
$$

Let the method of moments estimators be $\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}$ and $\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right)=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} Y_{i}-\overline{\boldsymbol{x}} \bar{Y}$.

The method of moment estimators are often called the maximum likelihood estimators, but are the MLE if the $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid from a multivariate normal distribution, a very strong assumption. In Theorem 2.1, note that $D=\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}-n \overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}=(n-1) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\boldsymbol { x }}}$.

Theorem 2.1: Seber and Lee (2003, p. 106). Let $\boldsymbol{X}=\left(\begin{array}{ll}1 & X_{1}\end{array}\right)$.

$$
\begin{aligned}
& \text { Then } \boldsymbol{X}^{T} \boldsymbol{Y}=\binom{n \bar{Y}}{\boldsymbol{X}_{1}^{T} \boldsymbol{Y}}=\binom{n \bar{Y}}{\sum_{i=1}^{n} \boldsymbol{x}_{i} Y_{i}}, \boldsymbol{X}^{T} \boldsymbol{X}=\left(\begin{array}{cc}
n & n \overline{\boldsymbol{x}}^{T} \\
n \overline{\boldsymbol{x}} & \boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}
\end{array}\right) \\
& \text { and }\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{n}+\overline{\boldsymbol{x}}^{T} D^{-1} \overline{\boldsymbol{x}} & -\overline{\boldsymbol{x}}^{T} D^{-1} \\
-D^{-1} \overline{\boldsymbol{x}} & D^{-1}
\end{array}\right)
\end{aligned}
$$

where the $p \times p$ matrix $D^{-1}=\left[(n-1) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}\right]^{-1}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} /(n-1)$.
Under model (9), $\hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}}_{O L S}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}$.
Theorem 2.2: Second way to compute $\hat{\phi}$ :
a) If $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1}$ exists, then $\hat{\alpha}=\bar{Y}-\hat{\boldsymbol{\beta}}^{T} \overline{\boldsymbol{x}}$ and

$$
\hat{\boldsymbol{\beta}}=\frac{n}{n-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}
$$

b) Suppose that $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid random vectors such that $\sigma_{Y}^{2}, \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}$, and $\boldsymbol{\Sigma}_{\boldsymbol{x}_{Y}}$ exist. Then $\hat{\alpha} \xrightarrow{P} \alpha$ and

$$
\hat{\boldsymbol{\beta}} \xrightarrow{P} \boldsymbol{\beta} \text { as } \mathrm{n} \rightarrow \infty
$$

where $\alpha$ and $\boldsymbol{\beta}$ are given by Definition 2.1.

Proof. Note that

$$
\boldsymbol{Y}^{T} \boldsymbol{X}_{1}=\left(Y_{1} \cdots Y_{n}\right)\left[\begin{array}{c}
\boldsymbol{x}_{1}^{T} \\
\vdots \\
\boldsymbol{x}_{n}^{T}
\end{array}\right]=\sum_{i=1}^{n} Y_{i} \boldsymbol{x}_{i}^{T}
$$

and

$$
\boldsymbol{X}_{1}^{T} \boldsymbol{Y}=\left[\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{n}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]=\sum_{i=1}^{n} \boldsymbol{x}_{i} Y_{i}
$$

So

$$
\begin{gathered}
{\left[\begin{array}{c}
\hat{\alpha} \\
\hat{\boldsymbol{\beta}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{n}+\overline{\boldsymbol{x}}^{T} D^{-1} \overline{\boldsymbol{x}} & -\overline{\boldsymbol{x}}^{T} D^{-1} \\
-D^{-1} \overline{\boldsymbol{x}} & D^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{1}^{T} \\
\boldsymbol{X}_{1}^{T}
\end{array}\right] \boldsymbol{Y}=} \\
{\left[\begin{array}{cc}
\frac{1}{n}+\overline{\boldsymbol{x}}^{T} D^{-1} \overline{\boldsymbol{x}} & -\overline{\boldsymbol{x}}^{T} D^{-1} \\
-D^{-1} \overline{\boldsymbol{x}} & D^{-1}
\end{array}\right]\left[\begin{array}{c}
n \bar{Y} \\
\boldsymbol{X}_{1}^{T} \boldsymbol{Y}
\end{array}\right]}
\end{gathered}
$$

Thus $\hat{\boldsymbol{\beta}}=-n D^{-1} \overline{\boldsymbol{x}} \bar{Y}+D^{-1} \boldsymbol{X}_{1}^{T} \boldsymbol{Y}=D^{-1}\left(\boldsymbol{X}_{1}^{T} \boldsymbol{Y}-n \overline{\boldsymbol{x}} \bar{Y}\right)=$

$$
D^{-1}\left[\sum_{i=1}^{n} \boldsymbol{u}_{i} Y_{i}-n \overline{\boldsymbol{x}} \bar{Y}\right]=\frac{\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1}}{n-1} n \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\frac{n}{n-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}^{-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y} \text {. Then }
$$

$\hat{\alpha}=\bar{Y}+n \overline{\boldsymbol{x}}^{T} D^{-1} \overline{\boldsymbol{x}} \bar{Y}-\overline{\boldsymbol{x}}^{T} D^{-1} \boldsymbol{X}_{1}^{T} \boldsymbol{Y}=\bar{Y}+\left[n \bar{Y} \overline{\boldsymbol{x}}^{T} D^{-1}-\boldsymbol{Y}^{T} \boldsymbol{X}_{1} D^{-1}\right] \overline{\boldsymbol{x}}=\bar{Y}-\hat{\boldsymbol{\beta}}^{T} \overline{\boldsymbol{x}}$. The convergence in probability results hold since sample means and sample covariance matrices are consistent estimators of the population means and population covariance matrices.

It is important to note that the convergence in probability results are for iid $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ with second moments and nonsingular $\boldsymbol{\Sigma}_{\boldsymbol{x}}$ : a linear model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ does not need to hold. When the linear model does hold, the second method for computing $\hat{\boldsymbol{\beta}}$ is still valid even if $\boldsymbol{X}$ is a constant matrix, and $\hat{\boldsymbol{\beta}} \xrightarrow{P} \boldsymbol{\beta}$ by Theorem 2.3 b ). Note that for Theorem 2.2 b ) with iid cases and $\boldsymbol{\mu}_{\boldsymbol{x}}=E(\boldsymbol{x})$,

$$
n\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \xrightarrow{P} \boldsymbol{V}=\left[\begin{array}{cc}
1+\boldsymbol{\mu}_{\boldsymbol{x}}^{T} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\mu}_{\boldsymbol{x}} & -\boldsymbol{\mu}_{\boldsymbol{X}}^{T} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \\
-\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\mu}_{\boldsymbol{x}} & \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}
\end{array}\right]
$$

There are many large sample theory results for ordinary least squares. The following theorem is important. See, for example, Sen and Singer (1993, p. 280).

Theorem 2.3, OLS CLTs. Consider the MLR model and assume that the zero mean errors are iid with $E\left(e_{i}\right)=0$ and $\operatorname{VAR}\left(e_{i}\right)=\sigma^{2}$. If the $\boldsymbol{x}_{i}$ are random vectors, assume that the cases $\left(\boldsymbol{x}_{i}, Y_{i}\right)$ are independent, and that the $\boldsymbol{e}_{i}$ and $\boldsymbol{x}_{i}$ are independent. Also assume that $\max _{i}\left(h_{1}, \ldots, h_{n}\right) \rightarrow 0$ and

$$
\frac{\boldsymbol{X}^{T} \boldsymbol{X}}{n} \rightarrow \boldsymbol{V}^{-1}
$$

as $n \rightarrow \infty$ where the convergence is in probability if the $\boldsymbol{x}_{i}$ are random vectors (instead of nonstochastic constant vectors).
a) For Equation (8), the OLS estimator $\hat{\boldsymbol{\beta}}$ satisfies

$$
\begin{equation*}
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{D} N_{p}\left(\mathbf{0}, \sigma^{2} \boldsymbol{V}\right) . \tag{10}
\end{equation*}
$$

b) For Equation (9), the OLS estimator $\hat{\phi}$ satisfies

$$
\begin{equation*}
\sqrt{n}(\hat{\boldsymbol{\phi}}-\boldsymbol{\phi}) \xrightarrow{D} N_{p+1}\left(\mathbf{0}, \sigma^{2} \boldsymbol{V}\right) \tag{11}
\end{equation*}
$$

c) Suppose the cases $\left(\boldsymbol{x}_{i}, Y_{i}\right)$ are iid from some population and the Equation (9) MLR model $Y_{i}=\alpha+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i}$ holds. Assume that $\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}$ and $\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}$ exist. Then Equation (11) holds and

$$
\begin{equation*}
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{D} N_{p}\left(\mathbf{0}, \sigma^{2} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}\right) \tag{12}
\end{equation*}
$$

where $\boldsymbol{\beta}=\boldsymbol{\beta}_{O L S}=\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x}, Y}$.

Remark 2.1 Consider Theorem 2.3 For a) and b), the theory acts as if the $\boldsymbol{x}_{i}$ are constant even if the $\boldsymbol{x}_{i}$ are random vectors. The literature says the $\boldsymbol{x}_{i}$ can be constants, or condition on $\boldsymbol{x}_{i}$ if the $\boldsymbol{x}_{i}$ are random vectors. The main assumptions for a) and b ) are that the errors are iid with second moments and the $n\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$ is well behaved. The strong assumptions for c) are much stronger than those for a) and b), but the assumption of iid cases is often reasonable if the cases come from some population.

Remark 2.2 Consider MLR model (9). Let $\boldsymbol{w}_{i}=\boldsymbol{A}_{n} \boldsymbol{x}_{i}$ for $i=1, \ldots, n$ where $\boldsymbol{A}_{n}$ is a full rank $k \times p$ matrix with $1 \leq k \leq p$.
a) Let $\boldsymbol{\Sigma}^{*}$ be $\hat{\boldsymbol{\Sigma}}$ or $\tilde{\boldsymbol{\Sigma}}$. Then $\boldsymbol{\Sigma}_{\boldsymbol{w}}^{*}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{*} \boldsymbol{A}_{n}^{T}$ and $\boldsymbol{\Sigma}_{\boldsymbol{w} Y}^{*}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{X} Y}^{*}$.
b) If $\boldsymbol{A}_{n}$ is a constant matrix, then $\boldsymbol{\Sigma}_{\boldsymbol{w}}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{A}_{n}^{T}$ and
$\boldsymbol{\Sigma}_{\boldsymbol{w} Y}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}$.
c) Let $\hat{\boldsymbol{\beta}}(\boldsymbol{u}, Y)$ and $\boldsymbol{\beta}(\boldsymbol{u}, Y)$ be the estimator and parameter from the OLS regression of $Y$ on $\boldsymbol{u}$. The constant parameter vector should not depend on $n$. Suppose the cases are iid and $\boldsymbol{A}$ is a constant matrix that does not depend on $n$. By Theorem 2.2, $\hat{\boldsymbol{\beta}}(\boldsymbol{w}, Y)=$ $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}}^{-1} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w} Y}=\left[\boldsymbol{A}_{n} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \boldsymbol{A}_{n}\right]^{-1} \boldsymbol{A}_{n} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=\left[\boldsymbol{A}_{n} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \boldsymbol{A}_{n}\right]^{-1} \boldsymbol{A}_{n} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \hat{\boldsymbol{\beta}}(\boldsymbol{x}, Y)$. If $\boldsymbol{A}_{n} \xrightarrow{P} \boldsymbol{A}, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}} \xrightarrow{P}$ $\boldsymbol{\Sigma}_{\boldsymbol{x}}$, and $\hat{\boldsymbol{\beta}}(\boldsymbol{x}, Y) \xrightarrow{P} \boldsymbol{\beta}(\boldsymbol{x}, Y)$, then $\hat{\boldsymbol{\beta}}(\boldsymbol{w}, Y) \xrightarrow{P} \boldsymbol{\beta}(\boldsymbol{w}, Y)=\left[\boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{A}\right]^{-1} \boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta}(\boldsymbol{x}, Y)$.

A problem with OLS, is that $\boldsymbol{V}$ generally can't be estimated if $p>n$ since typically $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$ does not exist. If $p>n$, using $\hat{\boldsymbol{\phi}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{T} \boldsymbol{Y}$ is a poor estimator that interpolates the data, where $\boldsymbol{A}^{-}$is a generalized inverse of $\boldsymbol{A}$. Often the software will not compute $\hat{\phi}$ if $p>n$.

### 2.2 OPLS and $\hat{\Sigma}_{x, Y}$ Theory

Olive and Zhang (2024) derived the large sample theory for $\hat{\boldsymbol{\eta}}_{O P L S}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ and OPLS, including some high dimensional tests for low dimensional quantities such as $H_{O}: \beta_{i}=0$ or $H_{0}: \beta_{i}-\beta_{j}=0$. These tests depended on iid cases, but not on linearity or the constant variance assumption. Hence the tests are useful for multiple linear regression with heterogeneity. Data splitting uses model selection (variable selection is a special case) to reduce the high dimensional problem to a low dimensional problem.

Remark 2.3 The following result is useful for several multiple linear regression estimators.
Let $\boldsymbol{w}_{i}=\boldsymbol{A}_{n} \boldsymbol{x}_{i}$ for $i=1, \ldots, n$ where $\boldsymbol{A}_{n}$ is a full rank $k \times p$ matrix with $1 \leq k \leq p$.
a) Let $\boldsymbol{\Sigma}^{*}$ be $\hat{\boldsymbol{\Sigma}}$ or $\tilde{\boldsymbol{\Sigma}}$. Then $\boldsymbol{\Sigma}_{\boldsymbol{w}}^{*}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{*} \boldsymbol{A}_{n}^{T}$ and $\boldsymbol{\Sigma}_{\boldsymbol{w} Y}^{*}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{\boldsymbol { x }}}+$
b) If $\boldsymbol{A}_{n}$ is a constant matrix, then $\boldsymbol{\Sigma}_{\boldsymbol{w}}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{A}_{n}^{T}$ and $\boldsymbol{\Sigma}_{\boldsymbol{w} Y}=\boldsymbol{A}_{n} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}$.

The following Olive and Zhang (2024) theorem gives the large sample theory for $\hat{\boldsymbol{\eta}}=$ $\widehat{\operatorname{Cov}}(\boldsymbol{x}, Y)$, but the proof in this dissertation is new. This theory needs $\boldsymbol{\eta}=\boldsymbol{\eta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}$ to exist for $\hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}$ to be a consistent estimator of $\boldsymbol{\eta}$. Let $\boldsymbol{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{T}$ and let $\boldsymbol{w}_{i}$ and $\boldsymbol{z}_{i}$ be defined below where

$$
\left.\operatorname{Cov}\left(\boldsymbol{w}_{i}\right)=\boldsymbol{\Sigma} \boldsymbol{w}=E\left[\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)^{T}\left(Y_{i}-\boldsymbol{\mu}_{Y}\right)^{2}\right)\right]-\boldsymbol{\Sigma}_{\boldsymbol{x} Y} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}^{T} .
$$

Then the low order moments are needed for $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{z}}$ to be a consistent estimator of $\boldsymbol{\Sigma}_{\boldsymbol{w}}$.

Theorem 2.4 Assume the cases $\left(\boldsymbol{x}_{i}^{T}, Y_{i}\right)^{T}$ are iid. Assume $E\left(x_{i j}^{k} Y_{i}^{m}\right)$ exist for $j=1, \ldots, p$ and $k, m=0,1,2$. Let $\boldsymbol{\mu}_{\boldsymbol{x}}=E(\boldsymbol{x})$ and $\mu_{Y}=E(Y)$. Let $\boldsymbol{w}_{i}=\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(Y_{i}-\boldsymbol{\mu}_{Y}\right)$ with sample mean $\overline{\boldsymbol{w}}_{n}$. Let $\boldsymbol{\eta}=\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}$. Then a)

$$
\begin{gather*}
\sqrt{n}\left(\overline{\boldsymbol{w}}_{n}-\boldsymbol{\eta}\right) \xrightarrow{D} N_{p}(\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{w}), \sqrt{n}\left(\hat{\boldsymbol{\eta}}_{n}-\boldsymbol{\eta}\right) \xrightarrow{D} N_{p}(\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{w}),  \tag{13}\\
\text { and } \sqrt{\mathrm{n}}\left(\tilde{\boldsymbol{\eta}}_{\mathrm{n}}-\boldsymbol{\eta}\right) \xrightarrow{\mathrm{D}} \mathrm{~N}_{\mathrm{p}}(\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{w}) .
\end{gather*}
$$

b) Let $\boldsymbol{z}_{i}=\boldsymbol{x}_{i}\left(Y_{i}-\bar{Y}_{n}\right)$ and $\boldsymbol{v}_{i}=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)$. Then $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{z}}+O_{P}\left(n^{-1 / 2}\right)=$ $\hat{\boldsymbol{\Sigma}} \boldsymbol{v}+O_{P}\left(n^{-1 / 2}\right)$. Hence $\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{w}}=\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{z}}+O_{P}\left(n^{-1 / 2}\right)=\tilde{\boldsymbol{\Sigma}} \boldsymbol{v}+O_{P}\left(n^{-1 / 2}\right)$.
c) Let $\boldsymbol{A}$ be a $k \times p$ full rank constant matrix with $k \leq p$, assume $H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\mathbf{0}$ is true, and assume $\hat{\lambda} \xrightarrow{P} \lambda \neq 0$. Then

$$
\begin{equation*}
\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\beta}}_{O P L S}-\boldsymbol{\beta}_{O P L S}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \lambda^{2} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{A}^{T}\right) . \tag{14}
\end{equation*}
$$

Proof. Part a) is a special case of Theorem 2.5.
b) $\boldsymbol{w}_{i}=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}+\overline{\boldsymbol{x}}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}+\bar{Y}-\mu_{Y}\right)=$

$$
\boldsymbol{v}_{i}+\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\bar{Y}-\mu_{Y}\right)+\left(\overline{\boldsymbol{x}}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right)+\left(\overline{\boldsymbol{x}}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(\bar{Y}-\mu_{Y}\right)
$$

Thus $\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}=\boldsymbol{v}_{i}-\overline{\boldsymbol{v}}+\boldsymbol{a}_{i}$ where

$$
\boldsymbol{a}_{i}=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\bar{Y}-\mu_{Y}\right)+\left(\overline{\boldsymbol{x}}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(Y_{i}-\bar{Y}\right)=O_{P}\left(n^{-1 / 2}\right)
$$

Thus
$\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{w}}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}\right)\left(\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}\right)^{T}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}}\right)\left(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}}\right)^{T}+O_{P}\left(n^{-1 / 2}\right)=\tilde{\boldsymbol{\Sigma}} \boldsymbol{v}+O_{P}\left(n^{-1 / 2}\right)$.
c) If $H_{0}$ is true, then $\boldsymbol{A} \boldsymbol{\eta}=\boldsymbol{0}$. Hence

$$
\sqrt{n} \boldsymbol{A}(\hat{\boldsymbol{\eta}}-\boldsymbol{\eta})=\sqrt{n} \boldsymbol{A} \hat{\boldsymbol{\eta}} \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{A}^{T}\right)
$$

Then $\lambda \boldsymbol{A} \eta=\mathbf{0}$ under $H_{0}$, and

$$
\sqrt{n} \hat{\lambda} \boldsymbol{A} \hat{\boldsymbol{\eta}}=\sqrt{n} \boldsymbol{A}(\hat{\lambda} \hat{\boldsymbol{\eta}}-\lambda \boldsymbol{\eta})=\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\beta}}_{O P L S}-\boldsymbol{\beta}_{O P L S}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \lambda^{2} \boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right) .
$$

For the following theorem, consider a subset of $k$ distinct elements from $\tilde{\boldsymbol{\Sigma}}$ or from $\hat{\boldsymbol{\Sigma}}$. Stack the elements into a vector, and let each vector have the same ordering. For example, the largest subset of distinct elements corresponds to

$$
\operatorname{vech}(\tilde{\boldsymbol{\Sigma}})=\left(\tilde{\sigma}_{11}, \ldots, \tilde{\sigma}_{1 p}, \tilde{\sigma}_{22}, \ldots, \tilde{\sigma}_{2 p}, \ldots, \tilde{\sigma}_{p-1, p-1}, \tilde{\sigma}_{p-1, p}, \tilde{\sigma}_{p p}\right)^{T}=\left[\tilde{\sigma}_{j k}\right]
$$

For random variables $x_{1}, \ldots, x_{p}$, use notation such as $\bar{x}_{j}=$ the sample mean of the $x_{j}, \mu_{j}=$ $E\left(x_{j}\right)$, and $\sigma_{j k}=\operatorname{Cov}\left(x_{j}, x_{k}\right)$. Let

$$
n \operatorname{vech}(\tilde{\boldsymbol{\Sigma}})=\left[n \tilde{\sigma}_{j k}\right]=\sum_{i=1}^{n}\left[\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right] .
$$

For general vectors of elements, the ordering of the vectors will all be the same and be denoted vectors such as $\tilde{c}=\left[\tilde{\sigma}_{j k}\right], c=\left[\sigma_{j k}\right], \boldsymbol{z}_{i}=\left[\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right]$, and $\boldsymbol{w}_{i}=\left[\left(x_{i j}-\mu_{j}\right)\left(x_{i k}-\mu_{k}\right)\right]$. Let $\overline{\boldsymbol{w}}_{n}=\sum_{i=1}^{n} \boldsymbol{w}_{i} / n$ be the sample mean of the $\boldsymbol{w}_{i}$. Assuming that $\operatorname{Cov}\left(\boldsymbol{w}_{i}\right)=\boldsymbol{\Sigma} \boldsymbol{w}$ exists, then $E\left(\boldsymbol{w}_{i}\right)=E\left(\overline{\boldsymbol{w}}_{n}\right)=\boldsymbol{c}$.

The following theorem proves that sample covariance matrices are asymptotically normal. The theorem may be a special case of the Su and Cook (2012) theory for the multivariate linear regression estimator when there are no predictors. When $p=1$, the theory gives the large sample theory for the sample variance. See Olive (2014, pp. 276-277) and Bickel and Doksum (2007, p. 279). The Olive and Zhang (2024) large sample theory for $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ and $\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ is also a special case. We use $\operatorname{Cov}\left(\boldsymbol{w}_{i}\right)=\boldsymbol{\Sigma}_{d}$ to avoid confusion with the $\boldsymbol{\Sigma} \boldsymbol{w}$ used in Theorems 2.4 and 3.1

Theorem 2.5 Assume the cases $\boldsymbol{x}_{i}$ are iid and that $\operatorname{Cov}\left(\boldsymbol{w}_{i}\right)=\boldsymbol{\Sigma}_{d}$ exists. Using the above notation with $\boldsymbol{c}$ a $k \times 1$ vector,
i) $\sqrt{n}(\tilde{\boldsymbol{c}}-\boldsymbol{c}) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d}\right)$.
ii) $\sqrt{n}(\hat{\boldsymbol{c}}-\boldsymbol{c}) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d}\right)$.
iii) $\hat{\boldsymbol{\Sigma}}_{d}=\hat{\boldsymbol{\Sigma}}_{z}+O_{P}\left(n^{-1 / 2}\right)$ and $\tilde{\boldsymbol{\Sigma}}_{d}=\tilde{\boldsymbol{\Sigma}}_{z}+O_{P}\left(n^{-1 / 2}\right)$.

Proof. Note that $\sqrt{n}\left(\overline{\boldsymbol{w}}_{n}-\boldsymbol{c}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d}\right)$ by the multivariate central limit theorem. i) Then

$$
\begin{gathered}
n \tilde{\boldsymbol{c}}=\sum_{i}\left[\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right]=\sum_{i}\left[\left(x_{i j}-\mu_{j}+\mu_{j}-\bar{x}_{j}\right)\left(x_{i k}-\mu_{k}+\mu_{k}-\bar{x}_{k}\right)\right]= \\
\sum_{i}\left[\left(x_{i j}-\mu_{j}\right)\left(x_{i k}-\mu_{k}\right)\right]+\sum_{i}\left[\left(x_{i j}-\mu_{j}\right)\left(\mu_{k}-\bar{x}_{k}\right)\right]+ \\
\sum_{i}\left[\mu_{j}-\bar{x}_{j}\right)\left(x_{i k}-\mu_{k}\right]+\sum_{i}\left[\left(\mu_{j}-\bar{x}_{j}\right)\left(\mu_{k}-\bar{x}_{k}\right)\right]=\sum_{i} \boldsymbol{w}_{i}-\boldsymbol{a}_{n}
\end{gathered}
$$

where $\boldsymbol{a}_{\mathrm{n}}=\left[\mathrm{n}\left(\overline{\mathrm{x}}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\left(\overline{\mathrm{x}}_{\mathrm{k}}-\mu_{\mathrm{k}}\right)\right]=\left[\sqrt{\mathrm{n}}\left(\overline{\mathrm{x}}_{\mathrm{j}}-\mu_{\mathrm{j}}\right) \sqrt{\mathrm{n}}\left(\overline{\mathrm{x}}_{\mathrm{k}}-\mu_{\mathrm{k}}\right)\right]=\mathrm{O}_{\mathrm{P}}(1)$.

By the multivariate Slutsky's theorem,

$$
\sqrt{n}(\tilde{\boldsymbol{c}}-\boldsymbol{c})=\sqrt{n}\left(\overline{\boldsymbol{w}}_{n}-\boldsymbol{c}\right)+\boldsymbol{a}_{n} / \sqrt{n} \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d}\right)
$$

since $\boldsymbol{a}_{n} / \sqrt{n}=o_{P}(1)$.
iii) $\boldsymbol{w}_{i}=\left[\left(x_{i j}-\mu_{j}\right)\left(x_{i k}-\mu_{k}\right)\right]=\left[\left(x_{i j}-\bar{x}_{j}+\bar{x}_{j}-\mu_{j}\right)\left(x_{i k}-\bar{x}_{k}+\bar{x}_{k}-\mu_{k}\right)\right]=$
$\left[\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right]+\left[\left(x_{i j}-\bar{x}_{j}\right)\left(\bar{x}_{k}-\mu_{k}\right)\right]+\left[\left(\bar{x}_{j}-\mu_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right]+\left[\left(\bar{x}_{j}-\mu_{j}\right)\left(\bar{x}_{k}-\mu_{k}\right)\right]$.
Hence $\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}=\boldsymbol{z}_{i}-\overline{\boldsymbol{z}}+\boldsymbol{a}_{i}$ where

$$
\boldsymbol{a}_{i}=\left[\left(x_{i j}-\bar{x}_{j}\right)\left(\bar{x}_{k}-\mu_{k}\right)\right]+\left[\left(\bar{x}_{j}-\mu_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)\right]=O_{P}\left(n^{-1 / 2}\right) .
$$

Thus
$\tilde{\boldsymbol{\Sigma}}_{d}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}\right)\left(\boldsymbol{w}_{i}-\overline{\boldsymbol{w}}\right)^{T}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{z}_{i}-\overline{\boldsymbol{z}}\right)\left(\boldsymbol{z}_{i}-\overline{\boldsymbol{z}}\right)^{T}+O_{P}\left(n^{-1 / 2}\right)=\tilde{\boldsymbol{\Sigma}}_{\boldsymbol{z}}+O_{P}\left(n^{-1 / 2}\right)$.

### 2.3 HIGH DIMENTIONAL TESTS

As noted by Olive and Zhang (2024), the following simple testing method reduces a possibly high dimensional problem to a low dimensional problem. Testing $H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\mathbf{0}$ versus $H_{1}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S} \neq \mathbf{0}$ is equivalent to testing $H_{0}: \boldsymbol{A} \boldsymbol{\eta}=\mathbf{0}$ versus $H_{1}: \boldsymbol{A} \boldsymbol{\eta} \neq \mathbf{0}$ where $\boldsymbol{A}$ is a $k \times p$ constant matrix. Let $\operatorname{Cov}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\boldsymbol { x } _ { Y }}}\right)=\operatorname{Cov}(\hat{\boldsymbol{\eta}})=\boldsymbol{\Sigma} \boldsymbol{\boldsymbol { w }}$ be the asymptotic covariance matrix of $\hat{\boldsymbol{\eta}}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}$. In high dimensions where $n<5 p$, we can't get a good nonsingular estimator of $\operatorname{Cov}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}\right)$, but we can get good nonsingular estimators of $\operatorname{Cov}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}_{Y}}\right)=\operatorname{Cov}\left(\left(\hat{\eta}_{i 1}, \ldots, \hat{\eta}_{i k}\right)^{T}\right)$ with $\boldsymbol{u}=\left(x_{i 1}, \ldots, x_{i k}\right)^{T}$ where $n \geq J k$ with $J \geq 10$. (Values of $J$ much larger than 10 may be needed if some of the $k$ predictors and/or $Y$ are skewed.) Simply apply Theorem 2.4 to the predictors $\boldsymbol{u}$ used in the hypothesis test, and thus use the sample covariance matrix of the vectors $\boldsymbol{u}_{i}\left(Y_{i}-\bar{Y}\right)$. Hence we can test hypotheses like $H_{0}: \beta_{i}-\beta_{j}=0$. In particular, testing $H_{0}: \beta_{i}=0$ is equivalent to testing $H_{0}: \eta_{i}=\sigma_{x_{i}, Y}=0$ where $\sigma_{x_{i}, Y}=\operatorname{Cov}\left(x_{i}, Y\right)$.

Note that the tests with $\hat{\boldsymbol{\eta}}$ using $k$ distinct predictors $x_{i_{j}}$ do not depend on other predictors, including important predictors that were left out of the model (underfitting). Hence the tests can have considerable resistance to underfitting and overfitting. The OPLS tests also have some resistance to measurement error: assume that $\left(\boldsymbol{x}_{i}^{T}, \boldsymbol{u}_{i}^{T}, v_{i}, Y_{i}\right)^{T}$ are iid but $\boldsymbol{w}_{i}=\boldsymbol{x}_{i}+\boldsymbol{u}_{i}$ and $Z_{i}=Y_{i}+v_{i}$ are observed instead of $\left(\boldsymbol{x}_{i}, Y_{i}\right)$. Then $\hat{\boldsymbol{\beta}}_{O L S}(\boldsymbol{w}, Z)$ estimates $\boldsymbol{\Sigma}_{\boldsymbol{w}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{w} Z}$, while $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}}{ }_{Z}$ estimates $\operatorname{Cov}(\boldsymbol{x}, Y)$ if $\operatorname{Cov}(\boldsymbol{x}, v)+\operatorname{Cov}(\boldsymbol{u}, Y)+\operatorname{Cov}(\boldsymbol{u}, v)=\mathbf{0}$, which occurs, for example, if $\boldsymbol{x} \Perp v, \boldsymbol{u} \Perp Y$, and $\boldsymbol{u} \Perp v$.

The tests with $\hat{\boldsymbol{\beta}}_{O P L S}=\hat{\lambda} \hat{\boldsymbol{\eta}}$ and $k$ predictor variables may not be as good as the tests with $\hat{\boldsymbol{\eta}}$ since $\hat{\lambda}$ needs to be a good estimator of $\lambda$. Note that $\hat{\lambda}$ can be a good estimator if $\hat{\boldsymbol{\eta}}^{T} \boldsymbol{x}$ is a good estimator of $\boldsymbol{\eta}^{T} \boldsymbol{x}$. However, the test statistic for testing $H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\mathbf{0}$ from Theorem
2.4c) is the same as the test statistic for testing $H_{0}: \boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{Y} \boldsymbol{}=\mathbf{0}$ from Theorem 2.4a) since

$$
n \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\hat{\lambda}^{2} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=n \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y} \xrightarrow{D} \chi_{k}^{2}
$$

if $H_{0}$ is true.
Theorem 2.5 can be used to test $H_{0}: \boldsymbol{A} \boldsymbol{c}=\mathbf{0}$, which can reduce a high dimensional problem to a low dimensional problem. Suppose $n>10 k, p>n$, and $\boldsymbol{A} \boldsymbol{\beta}=\left(\beta_{i_{1}}, \ldots, \beta_{i_{k}}\right)^{T}$ with $i_{1}, i_{2}, \ldots, i_{k}$ distinct. Then Theorem 3.1a) in chapter 3 can be used since no inverse matrices are required, but the asymptotic covariance matrices of Theorem 3.1b) and 3.1c) are much easier to estimate.

Remark 2.4 Theorem 2.4 depends on the theory of both the sample covariance vector and the sample covariance matrix under iid cases, not on any other model such as linearity. Suppose the cases are iid, and the predictors have nonsingular covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{x}}$. Suppose a linear model holds with $Y \mid \boldsymbol{x}=\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}+e$. If the iid errors $e$ are independent of the predictors $\boldsymbol{x}$, then under mild conditions, linearity implies that $\boldsymbol{\beta}=\boldsymbol{\beta}_{O L S}$ and that the covariance structure is $\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}=\boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta}_{O L S}$

### 2.4 MULTIPLE LINEAR REGRESSION WITH HETEROGENEITY

A multiple linear regression model with heterogeneity is

$$
\begin{equation*}
Y_{i}=\beta_{1}+x_{i, 2} \beta_{2}+\cdots+x_{i, p} \beta_{p}+e_{i} \tag{15}
\end{equation*}
$$

for $i=1, \ldots, n$ where the $e_{i}$ are independent with $E\left(e_{i}\right)=0$ and $V\left(e_{i}\right)=\sigma_{i}^{2}$. In matrix form, this model is

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}
$$

where $\boldsymbol{Y}$ is an $n \times 1$ vector of dependent variables, $\boldsymbol{X}$ is an $n \times p$ matrix of predictors, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown coefficients, and $\boldsymbol{e}$ is an $n \times 1$ vector of unknown errors. Also $E(\boldsymbol{e})=\mathbf{0}$ and $\operatorname{Cov}(\boldsymbol{e})=\boldsymbol{\Sigma}_{\boldsymbol{e}}=\operatorname{diag}\left(\sigma_{i}^{2}\right)=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$ is an $n \times n$ positive definite matrix. In Section 2.2, the constant variance assumption was used: $\sigma_{i}^{2}=\sigma^{2}$ for all $i$. Hence heterogeneity means that the constant variance assumption does not hold. A common assumption is that the $e_{i}=\sigma_{i} \epsilon_{i}$ where the $\epsilon_{i}$ are independent and identically distributed (iid) with $V\left(\epsilon_{i}\right)=1$. See, for example, Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the $\sigma_{i}^{2}$ were known. Since the $\sigma_{i}^{2}$ are not known, ordinary least squares (OLS) is often used, but the large sample theory differs from that given in Section 2.1. The OLS theory for MLR with heterogeneity often assume iid cases. For the following theorem, see Romano and Wolf (2017), Freedman (1981), and White (1980).

Theorem 2.6. Assume $Y_{i}=\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}+e_{i}$ for $i=1, \ldots, n$ where the cases $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid with "fourth moments," $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$, the $e_{i}=e_{i}\left(\boldsymbol{x}_{i}\right)$ are independent, $E\left[e_{i} \mid \boldsymbol{x}_{i}\right]=0$, $\boldsymbol{V}^{-1}=E\left[\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right], E\left[e_{i}^{2} \mid \boldsymbol{x}_{i}\right]=v\left(\boldsymbol{x}_{i}\right)=\sigma_{i}^{2}, \operatorname{Cov}[\boldsymbol{e} \mid \boldsymbol{X}]=\operatorname{diag}\left(v\left(\boldsymbol{x}_{1}\right), \ldots, v\left(\boldsymbol{x}_{n}\right)\right)$ and $\boldsymbol{\Omega}=$ $E\left[v\left(\boldsymbol{x}_{i}\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right]=E\left[e_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right]$. Then

$$
\begin{equation*}
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{O L S}-\boldsymbol{\beta}\right) \xrightarrow{D} N_{p}(\mathbf{0}, \boldsymbol{V} \boldsymbol{\Omega} \boldsymbol{V}) . \tag{16}
\end{equation*}
$$

Remark 2.5. a) White (1980) showed that the iid cases assumption can be weakened. Assume the cases are independent,

$$
\boldsymbol{V}_{n}=\frac{1}{n} \sum_{i=1}^{n} E\left[\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right] \xrightarrow{P} \boldsymbol{V}^{-1}
$$

and

$$
\boldsymbol{\Omega}_{n}=\frac{1}{n} \sum_{i=1}^{n} E\left[e_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right] \xrightarrow{P} \boldsymbol{\Omega}
$$

Then

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{O L S}-\boldsymbol{\beta}\right) \xrightarrow{D} N_{p}(\mathbf{0}, \boldsymbol{V} \boldsymbol{\Omega} \boldsymbol{V}) .
$$

b) Under the assumptions of Theorem 2.6,

$$
\frac{1}{n} \boldsymbol{X}^{T} \boldsymbol{X}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \xrightarrow{P} \boldsymbol{V}^{-1}
$$

Let $\boldsymbol{D}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)=\boldsymbol{\Sigma} \boldsymbol{e}$ and $\hat{\boldsymbol{D}}=\operatorname{diag}\left(r_{1}^{2}, \ldots, r_{n}^{2}\right)$ where $r_{i}^{2}$ is the $i$ th residual from OLS regression of $\boldsymbol{Y}$ on $\boldsymbol{X}$. Then $\hat{\boldsymbol{D}}$ is not a consistent estimator of $\boldsymbol{D}$. The following theorem, due to White (1980), shows that $\hat{\boldsymbol{D}}$ can be used to get a consistent estimator of $\Omega$. This result leads to the sandwich estimators.

Theorem 2.7 Under strong regularity conditions,

$$
\frac{1}{n}\left(\boldsymbol{X}^{T} \hat{\boldsymbol{D}} \boldsymbol{X}\right) \xrightarrow{P} \boldsymbol{\Omega} \text { and } \frac{1}{\mathrm{n}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{X}\right) \xrightarrow{\mathrm{P}} \boldsymbol{\Omega} .
$$

Hence

$$
n\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{T} \hat{\boldsymbol{D}} \boldsymbol{X}\right)\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \xrightarrow{P} \boldsymbol{V} \boldsymbol{\Omega} \boldsymbol{V} .
$$

Now write the linear model as $Y=\alpha+\boldsymbol{x}^{T} \boldsymbol{\beta}+e$. Under iid cases, OPLS theory does not depend on whether the error variance is constant or not. Hence Theorem 2.4 and the Section 2.3 theory still applies. If the cases are iid and linearity holds (with or without heterogeneity), then under reasonable conditions, $\boldsymbol{\beta}=\boldsymbol{\beta}_{O L S}=\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}$. Hence

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=\boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta} \tag{17}
\end{equation*}
$$

as noted by Olive and Zhang (2024) for when the iid errors $e_{i}$ had constant variance. This result is useful for simulation.

## CHAPTER 3

## SOME LARGE SAMPLE THEORY FOR MMLE

The MMLE is interesting since if each predictor satisfies a marginal model, then the marginal model theory can be used to find a confidence interval for $\beta_{i}$ for $i=1, \ldots, p$ where $\beta_{i}$ is the $i$ th component of $\boldsymbol{\beta}_{M M L E}$. For high dimensional multiple linear regression, the above regularity condition is weaker than the common assumption that the cases $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid from a multivariate normal distribution. For multiple linear regression, let $\boldsymbol{V}=\operatorname{diag}(\boldsymbol{\Sigma} \boldsymbol{x})=$ $\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)$. For iid cases, $\boldsymbol{\beta}_{M M L E}=\boldsymbol{V}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x}, Y}=\boldsymbol{V}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta}_{O L S}$, and $\boldsymbol{\beta}_{M M L E}=\boldsymbol{\beta}_{O L S}$ if $\boldsymbol{\beta}_{O L S}=\mathbf{0}$, or if $\left(\boldsymbol{V}^{-1}-\boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}\right) \boldsymbol{\Sigma}_{\boldsymbol{x}, Y}=\mathbf{0}$, or if $\boldsymbol{\beta}_{O L S}$ is an eigenvector of $\boldsymbol{V}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{x}}$ with eigenvalue 1 where $\boldsymbol{V}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)=\operatorname{diag}\left(\boldsymbol{\Sigma}_{x}\right)$.

For standardized predictors, let $s_{j}$ and $\sigma_{j}$ be the sample and population standard deviations of $x_{j}$. Let $\boldsymbol{t}_{i}=\hat{\boldsymbol{D}} \boldsymbol{x}_{i}=\operatorname{diag}\left(1 / s_{1}, \ldots, 1 / s_{p}\right) \boldsymbol{x}_{i}$ and $\boldsymbol{u}_{i}=\boldsymbol{D} \boldsymbol{x}_{i}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{p}\right) \boldsymbol{x}_{i}$. Note that $\sqrt{n}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)=\sqrt{n}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}\right)+\sqrt{n}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)=O_{P}(1)+\sqrt{n}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}-\right.$ $\left.\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)$ under mild regularity conditions for iid cases. Hence $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}$ is a $\sqrt{n}$ consistent estimator of $\boldsymbol{\Sigma} \boldsymbol{u}_{, Y}$ that is not asymptotically equivalent to $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}$ unless $\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}=\mathbf{0}$. Note that $\hat{\boldsymbol{V}}^{-1}=\hat{\boldsymbol{D}}^{2}$ and $\boldsymbol{V}^{-1}=\boldsymbol{D}^{2}$. Olive and Zhang (2024) proved that $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}$ is a $\sqrt{n}$ consistent estimator of $\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}$. For iid cases, $\boldsymbol{\beta}_{M M L E}(\boldsymbol{t}, Y)=\boldsymbol{\Sigma}_{\boldsymbol{t}, Y}=\boldsymbol{\eta}_{O P L S}(\boldsymbol{t}, Y)$.

By Theorems 2.4 and 2.5 with iid $\boldsymbol{x}_{i}$ replaced by iid $\left(\boldsymbol{x}_{i}^{T}, Y_{i}\right)^{T}$,

$$
\sqrt{n}\left[\left(\begin{array}{c}
s_{1}^{2}  \tag{18}\\
\vdots \\
s_{p}^{2} \\
\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}
\end{array}\right)-\left(\begin{array}{c}
\sigma_{1}^{2} \\
\vdots \\
\sigma_{p}^{2} \\
\boldsymbol{\Sigma}_{\boldsymbol{x} Y}
\end{array}\right)\right]=\sqrt{n}(\hat{\boldsymbol{c}}-\boldsymbol{c}) \xrightarrow{D} N_{2 p}\left(\mathbf{0},\left(\begin{array}{cc}
\boldsymbol{\Sigma} \boldsymbol{v} & \boldsymbol{\Sigma} \boldsymbol{v}, \boldsymbol{w} \\
\boldsymbol{\Sigma} \boldsymbol{w}, \boldsymbol{v} & \boldsymbol{\Sigma}_{\boldsymbol{w}}
\end{array}\right)\right)
$$

Let

$$
g(\boldsymbol{c})=\boldsymbol{\beta}_{M M L E}=\left(\begin{array}{c}
g_{1}(\boldsymbol{c}) \\
\vdots \\
g_{p}(\boldsymbol{c})
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1 Y} / \sigma_{1}^{2} \\
\vdots \\
\sigma_{p Y} / \sigma_{p}^{2}
\end{array}\right)
$$

Let $\boldsymbol{D} \boldsymbol{g}=\left(\boldsymbol{D}_{1}, \boldsymbol{D}_{2}\right)$ where $\boldsymbol{D}_{1}=\operatorname{diag}\left(-\sigma_{1 Y} / \sigma_{1}^{4},-\sigma_{2 Y} / \sigma_{2}^{4}, \ldots,-\sigma_{p Y} / \sigma_{p}^{4}\right)$ and
$\boldsymbol{D}_{2}=\operatorname{diag}\left(1 / \sigma_{1}^{2}, 1 / \sigma_{2}^{2}, \ldots, 1 / \sigma_{p}^{2}\right)$. Typically $\hat{\boldsymbol{\Sigma}}_{x_{i_{j}} Y}=O_{P}(1)$, but if $\boldsymbol{\Sigma}_{x_{i_{j}} Y}=0$, then $\hat{\boldsymbol{\Sigma}}_{x_{i_{j}} Y}=O_{P}\left(n^{-1 / 2}\right)$.

Theorem 3.1 Let the cases $\left(\boldsymbol{x}_{i}^{T}, Y_{i}\right)^{T}$ be iid such that Equation (18) holds. Then a)

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{M M L E}-\boldsymbol{\beta}_{M M L E}\right) \xrightarrow{D} N_{p}\left(\mathbf{0}, \boldsymbol{\Sigma}_{M M L E}\right) \sim N_{p}\left(\mathbf{0}, \boldsymbol{D}_{\boldsymbol{g}}\left(\begin{array}{cc}
\boldsymbol{\Sigma} \boldsymbol{v} & \boldsymbol{\Sigma}_{\boldsymbol{v}, \boldsymbol{w}} \\
\boldsymbol{\Sigma}_{\boldsymbol{w}, \boldsymbol{v}} & \boldsymbol{\Sigma}_{\boldsymbol{w}}
\end{array}\right) \boldsymbol{D}_{\boldsymbol{g}}^{T}\right) .
$$

Let $\boldsymbol{A}$ be a full rank $k \times p$ constant matrix such that $\boldsymbol{A} \boldsymbol{\beta}=\left(\beta_{i_{1}}, \ldots, \beta_{i_{k}}\right)^{T}$ with $i_{1}, i_{2}, \ldots, i_{k}$ distinct. Hence the $j$ th row of $\boldsymbol{A}$ has a 1 in the $i_{j}$ th position and zeroes elsewhere. Assume $H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{M M L E}=\mathbf{0}$. Then b)

$$
\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\beta}}_{M M L E}-\boldsymbol{\beta}_{M M L E}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{D}^{2} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{D}^{2} \boldsymbol{A}^{T}\right) .
$$

c) For standardized predictors, assume $H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{M M L E}(\boldsymbol{t}, Y)=\boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{t}, Y}=\mathbf{0}$. Then

$$
\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\beta}}_{M M L E}(\boldsymbol{t}, Y)-\boldsymbol{\beta}_{M M L E}(\boldsymbol{t}, Y)\right)=\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{D} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{D} \boldsymbol{A}^{T}\right)
$$

Proof. Theorem 3.1a) holds by the multivariate delta method.
b) Note that $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\beta}}_{M M L E}-\boldsymbol{\beta}_{M M L E}\right)=\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{D}}^{2} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}-\boldsymbol{D}^{2} \boldsymbol{\Sigma}_{\boldsymbol{X} Y}\right)=$ $\sqrt{n} A\left(\hat{\boldsymbol{D}}^{2} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\boldsymbol { x } _ { Y }}}-\boldsymbol{D}^{2} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\boldsymbol { x } _ { Y }}}+\boldsymbol{D}^{2} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}_{Y}}-\boldsymbol{D}^{2} \boldsymbol{\Sigma}_{\boldsymbol{x}_{Y}}\right)=$

$$
\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{D}}^{2}-\boldsymbol{D}^{2}\right) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}+\sqrt{n} \boldsymbol{A} \boldsymbol{D}^{2}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}-\boldsymbol{\Sigma}_{\boldsymbol{X} Y}\right)
$$

where by Theorem 2.4,

$$
\sqrt{n} \boldsymbol{A} \boldsymbol{D}^{2}\left(\hat { \boldsymbol { \Sigma } } _ { \boldsymbol { x } } ^ { Y } \left(\boldsymbol{\Sigma}_{\left.\boldsymbol{\boldsymbol { x } _ { Y }}\right)} \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{D}^{2} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{D}^{2} \boldsymbol{A}^{T}\right) .\right.\right.
$$

Now $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{D}}^{2}-\boldsymbol{D}^{2}\right) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=$

$$
\boldsymbol{A}\left(\begin{array}{c}
\sqrt{n}\left(\frac{1}{s_{1}^{2}}-\frac{1}{\sigma_{1}^{2}}\right) \hat{\boldsymbol{\Sigma}}_{x_{1} Y} \\
\vdots \\
\sqrt{n}\left(\frac{1}{s_{p}^{2}}-\frac{1}{\sigma_{p}^{2}}\right) \hat{\boldsymbol{\Sigma}}_{x_{p} Y}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{n}\left(\frac{1}{s_{i_{1}}^{2}}-\frac{1}{\sigma_{i_{1}}^{2}}\right) \hat{\boldsymbol{\Sigma}}_{x_{i_{1}} Y} \\
\vdots \\
\sqrt{n}\left(\frac{1}{s_{i_{k}}^{2}}-\frac{1}{\sigma_{i_{k}}^{2}}\right) \hat{\boldsymbol{\Sigma}}_{x_{i_{k}} Y}
\end{array}\right)=o_{P}(1)
$$

if $\left(\Sigma_{x_{i_{1}} Y}, \ldots, \Sigma_{x_{i_{k}} Y}\right)^{T}=\mathbf{0}$. Hence the result follows if $H_{0}$ is true.
c) Note that $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)=\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}+\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)=$ $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}\right)+\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)$ where by Theorem 2.4 and Remark 2.3,

$$
\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right)=\sqrt{n} \boldsymbol{A} \boldsymbol{D}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{x}, Y}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{D} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{D} \boldsymbol{A}^{T}\right)
$$

Now $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\hat{\boldsymbol{\Sigma}}_{\boldsymbol{u}, Y}\right)=\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{D}} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}-\boldsymbol{D} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}\right)=\sqrt{n} \boldsymbol{A}(\hat{\boldsymbol{D}}-\boldsymbol{D}) \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}, Y}=$

$$
\boldsymbol{A}\left(\begin{array}{c}
\sqrt{n}\left(\frac{1}{s_{1}}-\frac{1}{\sigma_{1}}\right) \hat{\boldsymbol{\Sigma}}_{x_{1} Y} \\
\vdots \\
\sqrt{n}\left(\frac{1}{s_{p}}-\frac{1}{\sigma_{p}}\right) \hat{\boldsymbol{\Sigma}}_{x_{p} Y}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{n}\left(\frac{1}{s_{i_{1}}}-\frac{1}{\sigma_{i_{1}}}\right) \hat{\boldsymbol{\Sigma}}_{x_{i_{1} Y}} \\
\vdots \\
\sqrt{n}\left(\frac{1}{s_{i_{k}}}-\frac{1}{\sigma_{i_{k}}}\right) \hat{\boldsymbol{\Sigma}}_{x_{i_{k}} Y}
\end{array}\right),
$$

and $\sqrt{n} \boldsymbol{A}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\hat{\boldsymbol{\Sigma}} \boldsymbol{u}, Y\right)=o_{p}(1)$ if $\left(\Sigma_{x_{i_{1}} Y}, \ldots, \Sigma_{x_{i_{k}} Y}\right)^{T}=\mathbf{0}$. Hence if $H_{0}$ is true, then

$$
\sqrt{n} A\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{t}, Y}-\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}\right) \xrightarrow{D} N_{k}\left(\mathbf{0}, \boldsymbol{A} \boldsymbol{D} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{D} \boldsymbol{A}^{T}\right)
$$

The following theorem is from Olive and Zhang (2024). Note that $\boldsymbol{\Sigma}_{\boldsymbol{u}}$ is the correlation matrix of $\boldsymbol{x}$.

Theorem 3.2 Consider the MMLE for multiple linear regression. Suppose the cases $\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid from some distribution. Let $\boldsymbol{w}_{i}$ be the standardized predictors and assume $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}, Y} \xrightarrow{P}$
$\boldsymbol{\Sigma}_{\boldsymbol{u}, Y}$ and $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \xrightarrow{P} \boldsymbol{\Sigma}_{\boldsymbol{u}}$ where the $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}}$ are nonsingular for large enough $n$ and $\boldsymbol{\Sigma}_{\boldsymbol{u}}$ is nonsingular.

$$
\begin{aligned}
& \text { a) } \hat{\boldsymbol{\beta}}_{M M L E}=\hat{\boldsymbol{\beta}}_{M M L E}(\boldsymbol{w}, Y)=\hat{\boldsymbol{\Sigma}} \boldsymbol{w}_{\boldsymbol{w}, Y}=\hat{\boldsymbol{\eta}}_{O P L S}(\boldsymbol{w}, Y) \xrightarrow{P} \boldsymbol{\Sigma}_{\boldsymbol{u}, Y}= \\
& \boldsymbol{\eta}_{O P L S}(\boldsymbol{u}, Y)=\boldsymbol{\beta}_{M M L E}=\boldsymbol{\Sigma} \boldsymbol{u}\left[\boldsymbol{\Sigma}_{\boldsymbol{u}}\right]^{-1} \boldsymbol{\Sigma} \boldsymbol{u}, Y=\boldsymbol{\Sigma} \boldsymbol{u} \boldsymbol{\beta}_{O L S}(\boldsymbol{u}, Y) .
\end{aligned}
$$

b) Let $\boldsymbol{\beta}_{O L S}=\boldsymbol{\beta}_{O L S}(\boldsymbol{u}, Y)$. Then $\boldsymbol{\beta}_{M M L E}=\boldsymbol{\Sigma} \boldsymbol{u} \boldsymbol{\beta}_{O L S}=\boldsymbol{\beta}_{O L S}$ if $\boldsymbol{\beta}_{O L S}=\mathbf{0}$ or if $\boldsymbol{\beta}_{O L S}$ is an eigenvector of $\boldsymbol{\Sigma} \boldsymbol{u}$ with eigenvalue $=1$.

The oracle property for model selection, including variable selection, is $P\left(I_{\min }=S\right) \rightarrow 1$ as $n \rightarrow \infty$ for model (8). For this property to hold, $S$ needs to be one of the subsets considered by the model selection method with probability going to 1 as $n \rightarrow \infty$. For fixed $p$ and "fast" estimators such as lasso and forward selection, the oracle property tends to hold if the predictors are nearly orthogonal. See Wieczorek and Lei (2022) for references. The MMLE can be used for variable selection with OLS by taking the $k$ predictors with the largest $\left|\hat{\beta}_{j, M M L E}\right|$. The oracle property for the MMLE tends not to hold for correlated predictors by Theorem 3.2. MMLE variable selection often gives a useful submodel since predictors that satisfy a marginal regression model with the response $Y$ (such as SLR) will often satisfy a regression model with the response $Y$ (such as multiple linear regression).

If $\boldsymbol{\eta}=\boldsymbol{\eta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$ and the cases are iid, then inference for the single index model can be done using Theorem 2.4 and Section 2.3.

## CHAPTER 4

## SINGLE INDEX MODELS

The distribution of $Y \mid \boldsymbol{\eta}^{T} \boldsymbol{x}$ follows a single index model

$$
Y \mid \boldsymbol{\eta}^{T} \boldsymbol{x}=Y=m\left(\boldsymbol{\eta}^{T} \boldsymbol{x}\right)+e
$$

where $E\left(Y \mid \boldsymbol{\eta}^{T} \boldsymbol{x}\right)=m\left(\boldsymbol{\eta}^{T} \boldsymbol{x}\right), V\left(Y \mid \boldsymbol{\eta}^{T} \boldsymbol{x}\right)=v\left(\boldsymbol{\eta}^{T} \boldsymbol{x}\right)$, and $e=Y-m\left(\boldsymbol{\eta}^{T} \boldsymbol{x}\right)$. Note that the error variance may not be constant. The model is called a single index model since $m$ depends on a single linear combination $\boldsymbol{\eta}^{T} \boldsymbol{x}$. A multi-index model would use $m\left(\boldsymbol{\eta}_{1}^{T} \boldsymbol{x}, \ldots, \boldsymbol{\eta}_{k}^{T} \boldsymbol{x}\right)$ where $k>1$.

If $\boldsymbol{\eta}=\boldsymbol{\eta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$ and the cases are iid, then inference for the single index model can be done using Theorem 2.4 and Section 2.3. When the cases are iid, the OPLS single index model estimators can have considerable resistance to overfitting, underfitting, heterogeneity, measurement error, highly correlated predictors, and the number of predictors.

If $\hat{\boldsymbol{\eta}}_{O P L S}=\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ is a good estimator of $\boldsymbol{\Sigma}_{\boldsymbol{x} Y}$, which can occur if $n \geq 10 p$, then the OPLS single index model can be visualized with a response plot of $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{x}$ versus $Y$ on the vertical axis with a scatterplot smoother added as a visual aid. If the variability about the scatterplot smoother is less than that about any horizontal line, then the model may be useful compared to simply doing inference on the $Y_{1}, \ldots, Y_{n}$ without any predictors.

If $Y \mid \boldsymbol{x}=m\left(\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}\right)+e$ and if the predictors $\boldsymbol{x}_{i}$ are iid from a large class of elliptically contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that, under regularity conditions, $\boldsymbol{\beta}_{O L S}=c \boldsymbol{\beta}$. Hence $\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=c \boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta}$. Thus $\boldsymbol{\Sigma}_{\boldsymbol{X} Y}=d \boldsymbol{\beta}$ if $\boldsymbol{\Sigma}_{\boldsymbol{x}}=\tau^{2} \boldsymbol{I}_{p}$ for some constant $\tau^{2}>0$. If $\boldsymbol{\beta}=\boldsymbol{\beta}_{O L S}$ in this case, then $\beta_{i}=0$ implies that $\operatorname{Cov}\left(x_{i}, Y\right)=0$.

The constant $c$ is typically nonzero unless $m$ has a lot of symmetry about the distribution of $\alpha+\boldsymbol{\beta}^{T} \boldsymbol{x}$. Chang and Olive (2010) considered OLS tests for these models. Simulation with $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}$ can be difficult if the population values of $c$ and $d$ are unknown.

## CHAPTER 5

## OUTLIER DIAGNOSTICS

Assume the cases $\boldsymbol{w}_{i}=\left(Y_{i}, \boldsymbol{x}_{i}^{T}\right)^{T}$ are iid. A simple method to get an outlier resistant estimator $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}$ is to compute an outlier resistant dispersion or covariance estimator

$$
\hat{\Sigma}_{\boldsymbol{w}}=\left(\begin{array}{cc}
\hat{\Sigma}_{Y} & \hat{\boldsymbol{\Sigma}}_{Y \boldsymbol{x}} \\
\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y} & \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}}
\end{array}\right)
$$

The function rcovxy uses the Olive (2017) RMVN and covmb2 estimators for $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}}$. The RMVN estimator has much greater outlier resistance than the Olive (2004) MBA estimator. Also see Zhang, Olive, and Ye (2012). The covmb2 estimator can be computed in both low and high dimensions.

Another method to get an outlier resistant estimator $\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}$ is to use the following identity. If $X$ and $Y$ are random variables, then

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=[\operatorname{Var}(\mathrm{X}+\mathrm{Y})-\operatorname{Var}(\mathrm{X}-\mathrm{Y})] / 4
$$

Then replace $\operatorname{Var}(W)$ by $[\hat{\sigma}(W)]^{2}$ where $\hat{\sigma}(W)$ is a robust estimator of scale or standard deviation and $W=X+Y$ or $W=X-Y$. We used $\hat{\sigma}(W)=1.483 M A D(W)$ where $M A D(W)=M A D(n)=M A D\left(W_{1}, \ldots, W_{n}\right)$. Hence

$$
\begin{equation*}
\widehat{\operatorname{Cov}}(X, Y)=\left[[1.483 M A D(X+Y)]^{2}-[1.483 M A D(X-Y)]^{2}\right] / 4 \tag{19}
\end{equation*}
$$

This technique has been used to obtain robust dispersion matrices. See Maronna and Zamar (2002) and Mehrota (1995).

Some notation is needed to define $M A D(n)$. If the data set $Y_{1}, \ldots, Y_{n}$ is arranged in ascending order from smallest to largest and written as $Y_{(1)} \leq \cdots \leq Y_{(n)}$, then $Y_{(i)}$ is the $i$ th order
statistic and the $Y_{(i)}$ 's are called the order statistics. If the data $Y_{1}=1, Y_{2}=4, Y_{3}=2, Y_{4}=5$, and $Y_{5}=3$, then $\bar{Y}=3, Y_{(i)}=i$ for $i=1, \ldots, 5$ and $\operatorname{MED}(n)=3$ where the sample size $n=5$. The sample median

$$
\begin{gather*}
\operatorname{MED}(n)=Y_{((n+1) / 2)} \text { if } \mathrm{n} \text { is odd, }  \tag{20}\\
\operatorname{MED}(n)=\frac{Y_{(n / 2)}+Y_{((n / 2)+1)}}{2} \text { if } \mathrm{n} \text { is even. }
\end{gather*}
$$

The notation $\operatorname{MED}(n)=\operatorname{MED}\left(n, Y_{i}\right)=\operatorname{MED}\left(Y_{1}, \ldots, Y_{n}\right)$ will also be used.
The sample median absolute deviation is

$$
\begin{equation*}
\operatorname{MAD}(n)=\operatorname{MED}\left(\left|Y_{i}-\operatorname{MED}(n)\right|, i=1, \ldots, n\right) \tag{21}
\end{equation*}
$$

Since $\operatorname{MAD}(n)=\operatorname{MAD}\left(n, Y_{i}\right)$ is the median of $n$ distances, at least half of the observations are within a distance $\operatorname{MAD}(n)$ of $\operatorname{MED}(n)$ and at least half of the observations are a distance of $\operatorname{MAD}(n)$ or more away from $\operatorname{MED}(n)$. Like the standard deviation, $\operatorname{MAD}(n)$ is a measure of spread.

Example 1. Let the data be $1,2,3,4,5,6,7,8,9$. Then $\operatorname{MED}(n)=5$ and $\operatorname{MAD}(n)=2=$ $\operatorname{MED}\{0,1,1,2,2,3,3,4,4\}$.

Then the outlier resistant estimator uses Equation (19) with

$$
\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X} Y}=\left(\begin{array}{c}
\widehat{\operatorname{Cov}}\left(X_{1}, Y\right) \\
\vdots \\
\widehat{\operatorname{Cov}}\left(X_{p}, Y\right)
\end{array}\right) .
$$

## CHAPTER 6

## EXAMPLES AND SIMULATIONS

Example. This example was used by Olive and Zhang (2024). The Hebbler (1847) data was collected from $n=26$ districts in Prussia in 1843. Let $Y=$ the number of women married to civilians in the district with a constant and predictors $x_{1}=$ the population of the district in 1843, $x_{2}=$ the number of married civilian men in the district, $x_{3}=$ the number of married men in the military in the district, and $x_{4}=$ the number of women married to husbands in the military in the district. Sometimes the person conducting the survey would not count a spouse if the spouse was not at home. Hence $Y$ and $x_{2}$ are highly correlated but not equal. Similarly, $x_{3}$ and $x_{4}$ are highly correlated but not equal. Then $\hat{\boldsymbol{\beta}}_{O L S}=(0.00035,0.9995,-0.2328,0.1531)^{T}$, forward selection with OLS and the $C_{p}$ criterion used $\hat{\boldsymbol{\beta}}_{I, 0}=(0,1.0010,0,0)^{T}$, lasso had $\hat{\boldsymbol{\beta}}_{L}=$ $(0.0015,0.9605,0,0)^{T}$, lasso variable selection $\hat{\boldsymbol{\beta}}_{L V S}=(0.00007,1.006,0,0)^{T}, \hat{\boldsymbol{\beta}}_{M M L E}=$ $(0.1782,1.0010,48.5630,51.5513)^{T}$, and $\hat{\boldsymbol{\beta}}_{O P L S}=(0.1727,0.0311,0.00018,0.00018)^{T}$. The fitted values from the MMLE estimator tend not to estimate $Y$. Let $W=\boldsymbol{x}^{T} \hat{\boldsymbol{\beta}}_{M M L E}^{T}$ and perform the simple linear regression of $Y$ on $W$ to get the reweighted or scaled estimators $\hat{\alpha}_{R}$ and $b$. Then $\hat{\boldsymbol{\beta}}_{R}=b \hat{\boldsymbol{\beta}}_{M M L E}$. Then the fitted values $\hat{Y}_{i}=\hat{\alpha}_{R}+\boldsymbol{x}_{i}^{T} \hat{\boldsymbol{\beta}}_{R}$ can be used for prediction. If the scaled predictors $\boldsymbol{u}$ have unit sample variances, then $\hat{\boldsymbol{\beta}}_{O P L S}(\boldsymbol{u}, Y)=\hat{\boldsymbol{\beta}}_{R}(\boldsymbol{u}, Y)$.

Next, we describe a small WLS simulation study similar to that done by Rajapaksha and Olive (2024). The simulation used $\psi=0,0.5,1 / \sqrt{p}$, and 0.9 ; and $k=1, p-2$, and $p-1$ where $k$ and $\psi$ are defined in the following paragraph.

Let $\boldsymbol{u}=\left(1 \boldsymbol{x}^{T}\right)^{T}$ where $\boldsymbol{x}$ is the $(p-1) \times 1$ vector of nontrivial predictors. In the simulations, for $i=1, \ldots, n$, we generated $\boldsymbol{w}_{i} \sim N_{p-1}(\mathbf{0}, \boldsymbol{I})$ where the $m=p-1$ elements
of the vector $\boldsymbol{w}_{i}$ are independent and identically distributed (iid) $\mathrm{N}(0,1)$. Let the $m \times m$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$ with $a_{i i}=1$ and $a_{i j}=\psi$ where $0 \leq \psi<1$ for $i \neq j$. Then the vector $\boldsymbol{x}_{i}=\boldsymbol{A} \boldsymbol{w}_{i}$ so that $\operatorname{Cov}\left(\boldsymbol{x}_{i}\right)=\boldsymbol{\Sigma}_{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{A}^{T}=\left(\sigma_{i j}\right)$ where the diagonal entries $\sigma_{i i}=\left[1+(m-1) \psi^{2}\right]$ and the off diagonal entries $\sigma_{i j}=\left[2 \psi+(m-2) \psi^{2}\right]$. Hence the correlations are $\operatorname{cor}\left(x_{i}, x_{j}\right)=\rho=\left(2 \psi+(m-2) \psi^{2}\right) /\left(1+(m-1) \psi^{2}\right)$ for $i \neq j$ where $x_{i}$ and $x_{j}$ are nontrivial predictors. If $\psi=1 / \sqrt{c p}$, then $\rho \rightarrow 1 /(c+1)$ as $p \rightarrow \infty$ where $c>0$. As $\psi$ gets close to 1 , the predictor vectors cluster about the line in the direction of $(1, \ldots, 1)^{T}$. Let $Y_{i}=1+1 x_{i, 1}+\cdots+1 x_{i, k}+e_{i}$ for $i=1, \ldots, n$. Hence $\alpha=1$ and $\phi=(1, . ., 1,0, \ldots, 0)^{T}$ with $k+1$ ones and $p-k-1$ zeros.

The zero mean iid errors $\tilde{e}_{i}=\epsilon_{i}$ were iid from five distributions: i) $\mathrm{N}(0,1)$, ii) $t_{3}$, iii) $\operatorname{EXP}(1)-1$, iv) uniform $(-1,1)$, and v) $0.9 \mathrm{~N}(0,1)+0.1 \mathrm{~N}(0,100)$. Only distribution iii) is not symmetric. Then wtype $=1$ if $e_{i}=\epsilon_{i}$ (the WLS model is the OLS model), 2 if $e_{i}=$
 $e_{i}=\left[1+\log \left(\left|x_{i 2}\right|\right)+\ldots+\log \left(\left|x_{i p}\right|\right)\right] \epsilon_{i}, 6$ if $e_{i}=\left[\exp \left(\left[\log \left(\left|x_{i 2}\right|\right)+\ldots+\log \left(\left|x_{i p}\right|\right)\right] /(p-1)\right)\right] \epsilon_{i}$, 7 if $e_{i}=\left[\left[\log \left(\left|x_{i 2}\right|\right)+\ldots+\log \left(\left|x_{i p}\right|\right)\right] /(p-1)\right] \epsilon_{i}$, The last four types were special cases of types suggested by Romano and Wolf (2017). For type 6, the weighting function is the geometric mean of $\left|x_{i 2}\right|, \ldots,\left|x_{i p}\right|$. For $n=100$ and $p=100$ with $\psi \neq 0$, the CI lengths were too long for wtype $=4$.

When $\psi=0$ and wtype $=1$, the OLS confidence intervals for $\beta_{i}$ should have length near $2 t_{96,0.975} \sigma / \sqrt{n} \approx 2(1.96) \sigma / 10=0.392 \sigma$ when $n=100$ and the iid zero mean errors have variance $\sigma^{2}$.

The simulation computed $\boldsymbol{\eta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=\left(\eta_{1}, \ldots, \eta_{p-1}\right)^{T}=\boldsymbol{\Sigma}_{\boldsymbol{x}} \boldsymbol{\beta}_{O L S}$ where $\boldsymbol{\Sigma}_{\boldsymbol{x}}=$ $\boldsymbol{A} \boldsymbol{A}^{T}$ is a $(p-1) \times(p-1)$ matrix. Storage problems can occur if $p>10000$. Then the

Theorem 2.4 large sample $100(1-\delta) \mathrm{CI}$ is $\hat{\eta}_{i} \pm t_{n-1,1-\delta / 2} S E\left(\hat{\eta}_{i}\right)$ could be computed for each $\eta_{i}$. If 0 is not in the confidence interval, then $H_{0}: \eta_{i}=0$ and $H_{0}: \beta_{i E}=0$ are both rejected for estimators $E=$ OPLS and MMLE. In the simulations with $n=50, p=4$, and $\psi>0$, the maximum observed undercoverage was about $0.05=5 \%$. Hence the program has the option to replace the cutoff $t_{n-1,1-\delta / 2}$ by $t_{n-1, u p}$ where $u p=\min (1-\delta / 2+0.05,1-\delta / 2+2.5 / n)$ if $\delta / 2>0.1$,

$$
u p=\min (1-\delta / 4,1-\delta / 2+12.5 \delta / n)
$$

if $\delta / 2 \leq 0.1$. If $u p<1-\delta / 2+0.001$, then use $u p=1-\delta / 2$. This correction factor was used in the simulations for the nominal $95 \%$ CIs, where the correction factor uses a cutoff that is between $t_{n-1,0.975}$ and the cutoff $t_{n-1,0.9875}$ that would be used for a $97.5 \% \mathrm{CI}$. The nominal coverage was 0.95 with $\delta=0.05$. Observed coverage between 0.94 and 0.96 suggests coverage is close to the nominal value. Pötscher and Preinerstorfer (2023) noted that WLS tests tend to reject $H_{0}$ too often (liberal tests with undercoverage).

To summarize the $p-1$, confidence intervals, the average length of the $p-1$ confidence intervals over 5000 runs was computed. Then the minimum, mean, and maximum of the average lengths was computed. The proportion of times each confidence interval contained its population parameter was computed. These proportions were the observed coverages of the $p-1$ confidence intervals. Then the minimum observed coverage was found. The percentage of the observed coverages that were $\geq 0.9,0.92,0.93,0.94$, and 0.96 were also recorded. The test $H_{0}:\left(\eta_{i}, \eta_{j}\right)^{T}=\left(\eta_{i 0}, \eta_{j 0}\right)^{T}$ was also done where $H_{0}$ was true. The coverage of the test was recorded and a correction factor was not used.

For Table 1, the simulation used the function oplsssim with $n, p, k$, etype, and wtype as
described above, and $\psi=p s i$.

```
source("http://parker.ad.siu.edu/Olive/slpack.txt")
    args(oplssim)
function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,
    type = 1, psi = 0, cfac = "T", indices = c(1, 2), alph = 0.05)
```

```
oplswsim(n=100,p=4,k=1,nruns=5000,etype=1,wtype=1,psi=0)
$covxy #sample
```

    \([, 1] \quad[, 2] \quad[, 3]\)
    [1,] 0.91689540 .090182210 .2160901
\$etaopls \#population Cov(x,y)
[,1] [,2] [,3]
$[1] \quad 1 \quad 0 \quad$,
\$oplslen
[1] 0.71282720 .58567590 .5865421
\$oplscov
[1] 0.94640 .96280 .9626
\$lens \#nin, mean, max
[1] 0.58567590 .62834840 .7128272
\$covprop
[1] 0.94640001 .00000001 .00000001 .00000001 .00000000 .6666667 \$testcov
[1] 0.92
\$up
[1] 0.98125
oplswsim( $n=100, p=100, k=1$, nruns=5000, etype=1, wtype=1,psi=0)
\$lens
[1] 0.58453390 .58905430 .7142725
\$covprop
[1] 0.94680001 .00000001 .00000001 .00000001 .00000000 .7373737
\$testcov
[1] 0.919
\$up
[1] 0.98125

Two lines per run scenario are given in each table. For the first two lines in Table 1, the simulation used $n=100, p=100, k=1$, etype $=1$, and $\psi=p s i=0$. One hundred confidence intervals were made and one test. The first line summarizes the results. The minimum coverage was 0.9468 . Then the coverage proportions $\geq 0.9,0.92,0.93$, and 0.94 all turned out to be 1 . The coverage proportion $\geq 0.96$ was 0.7374 . Hence for this simulation scenario, the correction factor was a bit too large. For the test, the coverage was 0.9190 , and a correction factor would have helped. Tables 1-14 illustrate Theorem 2.4a). The proportion of times $\eta_{i}$ was in the confidence interval $\hat{\eta}_{i} \pm t_{n-1, u p} S E\left(\hat{\eta}_{i}\right)$ was recorded, and the test statistic

$$
n\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}_{I}}-\boldsymbol{\Sigma}_{\boldsymbol{x}_{I}}\right)^{T}\left(\boldsymbol{A} \hat{\boldsymbol{\Sigma}} \boldsymbol{w} \boldsymbol{A}^{T}\right)^{-1}\left(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}_{I}}-\boldsymbol{\Sigma}_{\boldsymbol{x}_{I}}\right)^{T} \xrightarrow{D} \chi_{2}^{2}
$$

where $\boldsymbol{A}$ was a $2 \times p$ matrix with $A_{11}=A_{22}=1$ and all other entries $=0$.
Table 9 illustrates Theorem 2.4a), used wtype $=2$ and $k=99$, and had more variability than most combinations of wtype and $k$. For the ten different error type and $\psi$ combinations, the minimum coverage of the 99 confidence intervals for $\eta_{i}=\operatorname{Cov}\left(X_{i}, Y\right)$ ranged from 0.922 to 0.970. Most wtype and k combinations had a smaller range of coverages. The confidence intervals used a correction factor and overcoverage wiith coverage near 0.965 was more common than $3 \%$ undercoverage that occurs in Table 9. In line 1 of Table 9, the minimum coverage of the 99 CIs was 0.9564 . Hence the proportion of the 99 CIs that had observed coverage $\geq 0.9,0.92,0.93$ and 0.94 was 1 . The proportion of CIs that had coverage $\geq 0.96$ was 0.8989 (89/99 CIs). The CI average lengths were much larger for $\psi=0.1$ than for $\psi=0$. The test $H_{0}:\left(\eta_{i}, \eta_{j}\right)^{T}=\left(\eta_{i 0}, \eta_{j 0}\right)^{T}$ did not use a correction factor, and coverage $<0.94$ was rather common. The test coverage in Table 9 was worse than that for most combinations of wtype and $k$.

Table 1: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=1, $\mathrm{k}=1$


Table 2: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=2, \mathrm{k}=1$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | $\operatorname{cov} 92$ | $\operatorname{cov} 93$ | $\operatorname{cov} 94$ | cov96 | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9540 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7878 | 0.9324 |
|  | len | 1 | 1.7563 | 1.7642 | 1.8868 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9516 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4040 | 0.9338 |
|  | len | 1 | 2.7072 | 2.7218 | 2.9342 |  |  |  |  |
| 100 | 100 | 0 | 0.9578 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.9384 |
|  | len | 2 | 2.8027 | 2.8309 | 2.9481 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9574 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9595 | 0.9406 |
|  | len | 2 | 4.1905 | 4.2234 | 4.4600 |  |  |  |  |
| 100 | 100 | 0 | 0.9570 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.942 |
|  | len | 3 | 1.7261 | 1.7380 | 1.8682 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9574 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8585 | 0.9468 |
|  | len | 3 | 2.6824 | 2.6975 | 2.8966 |  |  |  |  |
| 100 | 100 | 0 | 0.9558 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.9332 |
| 100 | 100 | 0.1 | 0.9496 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0202 | 0.9242 |
| 100 | 4 | 0 | 0.9696 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9630 |
|  | len | 4 | 1.0700 | 1.0751 | 1.1920 |  |  |  |  |

Table 3: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=3, \mathrm{k}=1$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | $\operatorname{cov} 92$ | $\operatorname{cov} 93$ | $\operatorname{cov} 94$ | $\operatorname{cov} 96$ | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9410 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8181 | 0.9128 |
|  | len | 1 | 0.7115 | 0.7195 | 1.0012 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9398 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9012 |
|  | len | 1 | 1.5219 | 1.5328 | 1.8982 |  |  |  |  |
| 100 | 100 | 0 | 0.9524 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.9324 |
|  | len | 2 | 1.0343 | 1.0478 | 1.4465 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9474 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0303 | 0.9230 |
|  | len | 2 | 2.1355 | 2.1565 | 2.6681 |  |  |  |  |
| 100 | 100 | 0 | 0.9502 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9292 | 0.9188 |
|  | len | 3 | 0.7042 | .7117 | 0.9828 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9360 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9078 |
|  | len | 3 | 1.4980 | 1.5095 | 1.8627 |  |  |  |  |
| 100 | 100 | 0 | 0.9316 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.7979 | 0.8960 |
| 100 | 100 | 0 | 0.9696 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9576 |
| 100 | 100 | 0.1 | 0.9670 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9528 |
|  | len | 5 | 3.6615 | 3.7218 | 4.6064 |  |  |  |  |

Table 4: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=4, \mathrm{k}=1$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | $\operatorname{cov} 92$ | $\operatorname{cov} 93$ | $\operatorname{cov} 94$ | $\operatorname{cov} 96$ | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9476 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7272 | 0.9142 |
|  | len | 1 | 0.4135 | 0.4168 | 0.5810 |  |  |  |  |
| 100 | 100 | 0 | 0.9456 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7373 | 0.9126 |
|  | len | 2 | 0.4127 | 0.4162 | 0.5804 |  |  |  |  |
| 100 | 100 | 0 | 0.9442 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7878 | 0.9114 |
|  | len | 3 | 0.4140 | 0.4171 | 0.5826 |  |  |  |  |
| 100 | 100 | 0 | 0.9446 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7778 | 0.9332 |
|  | len | 4 | 0.4131 | 0.4170 | 0.5814 |  |  |  |  |
| 100 | 100 | 0 | 0.9492 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8282 | 0.9216 |
|  | len | 5 | 0.4131 | 0.4175 | 0.5823 |  |  |  |  |

Table 5: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=5, \mathrm{k}=1$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9558 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7676 | 0.9404 |
|  | len | 1 | 25.5793 | 25.6706 | 25.7814 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9600 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9504 |
|  | len | 1 | 31.6712 | 31.7842 | 31.9120 |  |  |  |  |
| 100 | 100 | 0 | 0.9596 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.9516 |
|  | len | 2 | 41.4167 | 41.7714 | 42.0956 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9626 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9480 |
|  | len | 2 | 50.2093 | 50.9155 | 51.3319 |  |  |  |  |
| 100 | 100 | 0 | 0.9588 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9090 | 0.9448 |
|  | len | 3 | 25.0352 | 25.2252 | 25.3880 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9626 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9508 |
|  | len | 3 | 30.7604 | 30.9600 | 31.1437 |  |  |  |  |
| 100 | 100 | 0 | 0.9524 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6969 | 0.8960 |
|  | len | 4 | 14.8623 | 14.9086 | 14.9658 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9584 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9590 | 0.9480 |
|  | len | 4 | 18.4957 | 18.5544 | 18.6331 |  |  |  |  |
| 100 | 100 | 0 | 0.9704 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9670 |
|  | len | 5 | 78.0315 | 79.0563 | 80.0812 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9710 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9682 |
|  | len | 5 | 93.3959 | 94.3886 | 95.3620 |  |  |  |  |

Table 6: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=6, \mathrm{k}=1$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9416 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8080 | 0.9096 |
|  | len | 1 | 0.4699 | 0.4739 | 0.6227 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9334 | 1.0 | 1.0 | 1.0 | 0.4747 | 0.0 | 0.9014 |
|  | len | 1 | 1.2369 | 1.2454 | 1.3987 |  |  |  |  |
| 100 | 100 | 0 | 0.9494 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8888 | 0.9176 |
|  | len | 2 | 0.5554 | 0.5610 | 0.6942 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9448 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9218 |
|  | len | 2 | 1.6019 | 1.6122 | 1.7471 |  |  |  |  |
| 100 | 100 | 0 | 0.9440 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6868 | 0.9086 |
|  | len | 3 | 0.4707 | 0.4739 | 0.6246 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9378 | 1.0 | 1.0 | 1.0 | 0.8788 | 0.6464 | 0.9042 |
|  | len | 3 | 1.2358 | 1.2417 | 1.4033 |  |  |  |  |
| 100 | 100 | 0 | 0.9458 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7878 | 0.9128 |
| 100 | 100 | 0 | 0.9484 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.9318 |
| 100 | 100 | 0.1 | 0.9598 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9370 |
|  | len | 4 | 0.4340 | 0.4372 | 0.5977 |  |  |  |  |
|  | 0.1 | 0.9360 | 1.0 | 1.0 | 1.0 | 0.9393 | 0.0 | 0.9088 |  |
|  | len | 4 | 1.0581 | 1.0636 | 1.2480 |  |  |  |  |

Table 7: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=7, $\mathrm{k}=1$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9430 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7878 | 0.9134 |
|  | len | 1 | 0.4907 | 0.4941 | 0.6380 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9380 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9092 |
|  | len | 1 | 0.9913 | 0.9972 | 1.1877 |  |  |  |  |
| 100 | 100 | 0 | 0.9434 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9292 | 0.9184 |
|  | len | 2 | 0.5999 | 0.6052 | 0.7298 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9422 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9154 |
|  | len | 2 | 1.0775 | 1.0841 | 1.2653 |  |  |  |  |
| 100 | 100 | 0 | 0.9406 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7676 | 0.9130 |
|  | len | 3 | 0.4901 | 0.4934 | 0.6395 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9430 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9114 |
|  | len | 3 | 0.9984 | 1.0040 | 1.1961 |  |  |  |  |
| 100 | 100 | 0 | 0.9454 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8080 | 0.9186 |
|  | len | 4 | 0.4412 | 0.4447 | 0.6032 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9416 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9102 |
|  | len | 4 | 0.9632 | 0.9695 | 1.1692 |  |  |  |  |
| 100 | 100 | 0 | 0.9614 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9446 |
|  | len | 5 | 0.9216 | 0.9292 | 1.0151 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9542 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4949 | 0.9284 |
|  | len | 5 | 1.3608 | 1.3701 | 1.5251 |  |  |  |  |

Table 8: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=1, \mathrm{k}=99$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9524 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7272 | 0.9470 |
|  | len | 1 | 4.1706 | 4.1835 | 4.1997 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9382 | 1.0 | 1.0 | 1.0 | 0.9797 | 0.0 | 0.9194 |
|  | len | 1 | 78.8311 | 79.0693 | 79.2988 |  |  |  |  |
| 100 | 100 | 0 | 0.9558 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7070 | 0.9382 |
|  | len | 2 | 4.2071 | 4.2216 | 4.2372 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9394 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9130 |
|  | len | 2 | 78.6014 | 78.8947 | 79.1805 |  |  |  |  |
| 100 | 100 | 0 | 0.9532 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6565 | 0.9342 |
|  | len | 3 | 4.1505 | 4.1680 | 04.1848 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9410 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9128 |
|  | len | 3 | 78.4876 | 78.7667 | 79.0276 |  |  |  |  |
| 100 | 100 | 0 | 0.9528 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7575 | 0.9454 |
|  | len | 4 | 4.1470 | 4.1621 | 4.1768 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9362 | 1.0 | 1.0 | 1.0 | 0.9191 | 0.0 | 0.9114 |
|  | len | 4 | 78.3503 | 78.6564 | 78.9038 |  |  |  |  |
| 100 | 100 | 0 | 0.9548 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7676 | 0.9396 |
|  | len | 5 | 4.3468 | 4.3664 | 4.3937 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9388 | 1.0 | 1.0 | 1.0 | 0.9797 | 0.0 | 0.9196 |
|  | len | 5 | 78.5803 | 78.9242 | 79.1622 |  |  |  |  |

Table 9: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype $=2, \mathrm{k}=99$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9564 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8989 | 0.9500 |
|  | len | 1 | 5.9909 | 6.0312 | 6.0628 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9294 | 1.0 | 1.0 | 1.0 | 0.9294 | 0.0 | 0.8996 |
|  | len | 1 | 118.7273 | 119.1710 | 119.6229 |  |  |  |  |
| 100 | 100 | 0 | 0.9592 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.9444 |
|  | len | 2 | 8.153728 | 8.2505 | 8.3430 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9400 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9122 |
|  | len | 2 | 162.7834 | 164.0093 | 165.4210 |  |  |  |  |
| 100 | 100 | 0 | 0.9566 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8383 | 0.9488 |
|  | len | 3 | 5.9832 | 6.0169 | 6.0547 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9336 | 1.0 | 1.0 | 1.0 | 0.6060 | 0.0 | 0.9058 |
|  | len | 3 | 116.9208 | 117.5406 | 118.1560 |  |  |  |  |
| 100 | 100 | 0 | 0.9566 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8181 | 0.9406 |
|  | len | 4 | 4.8333 | 4.8636 | 4.8995 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9224 | 1.0 | 1.0 | 0.7878 | 0.0 | 0.0 | 0.8940 |
|  | len | 4 | 93.5389 | 93.9788 | 94.40372 |  |  |  |  |
| 100 | 100 | 0 | 0.9702 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9426 |
|  | len | 5 | 13.6393 | 13.8106 | 14.1451 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9606 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9426 |
|  | len | 5 | 270.4977 | 272.8313 | 275.7340 |  |  |  |  |

Table 10: $\operatorname{Cov}(x, Y)$, wtype $=3, k=99$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9540 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6868 | 0.9408 |
|  | len | 1 | 4.1677 | 4.1883 | 4.2386 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9402 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.9168 |
|  | len | 1 | 78.5653 | 78.8622 | 79.1832 |  |  |  |  |
| 100 | 100 | 0 | 0.9554 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6868 | 0.9414 |
|  | len | 2 | 4.2571 | 4.2790 | 4.3870 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9360 | 1.0 | 1.0 | 1.0 | 0.9797 | 0.0 | 0.9110 |
|  | len | 2 | 78.46492 | 78.8270 | 79.0445 |  |  |  |  |
| 100 | 100 | 0 | 0.9512 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7575 | 0.9472 |
|  | len | 3 | 4.1801 | 4.1968 | 4.2446 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9364 | 1.0 | 1.0 | 1.0 | 0.9494 | 0.0 | 0.9112 |
|  | len | 3 | 78.6214 | 78.9302 | 79.1963 |  |  |  |  |
| 100 | 100 | 0 | 0.9546 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6363 | 0.9450 |
|  | len | 4 | 4.1486 | 4.1697 | 4.1959 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9366 | 1.0 | 1.0 | 1.0 | 0.9292 | 0.0 | 0.9130 |
|  | len | 4 | 78.7364 | 78.9669 | 79.2669 |  |  |  |  |
| 100 | 100 | 0 | 0.9558 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7575 | 0.9414 |
|  | len | 5 | 4.5517 | 4.5770 | 4.9071 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9342 | 1.0 | 1.0 | 1.0 | 0.9595 | 0.0 | 0.9144 |
|  | len | 5 | 78.7625 | 78.9909 | 79.1899 |  |  |  |  |

Table 11: $\operatorname{Cov}(x, Y)$, wtype $=4, k=99$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | $\operatorname{cov} 92$ | $\operatorname{cov} 93$ | $\operatorname{cov} 94$ | $\operatorname{cov} 96$ | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9532 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7676 | 0.9398 |
|  | len | 1 | 4.1466 | 4.1640 | 4.1790 |  |  |  |  |
| 100 | 100 | 0 | 0.9540 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7070 | 0.9432 |
|  | len | 2 | 4.1328 | 4.1482 | 4.1704 |  |  |  |  |
| 100 | 100 | 0 | 0.9534 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7070 | 0.9434 |
|  | len | 3 | 4.1328 | 4.1482 | 4.1704 |  |  |  |  |
| 100 | 100 | 0 | 0.9552 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6363 | 0.9418 |
|  | len | 4 | 4.1361 | 4.1537 | 4.1723 |  |  |  |  |
| 100 | 100 | 0 | 0.9556 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6767 | 0.9430 |
|  | len | 5 | 4.1453 | 4.1647 | 4.1797 |  |  |  |  |

Table 12: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=5, $\mathrm{k}=99$

| n | p | psi/etype | mincov | $\operatorname{cov} 90$ | $\operatorname{cov} 92$ | $\operatorname{cov} 93$ | $\operatorname{cov} 94$ | $\operatorname{cov} 96$ | testcov |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 100 | 100 | 0 | 0.9544 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7878 | 0.9446 |
|  | len | 1 | 25.9105 | 26.0309 | 26.1530 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9370 | 1.0 | 1.0 | 1.0 | 0.8585 | 0.0 | 0.9142 |
|  | len | 1 | 84.0396 | 84.3577 | 84.6274 |  |  |  |  |
| 100 | 100 | 0 | 0.9594 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.9532 |
|  | len | 2 | 41.7302 | 42.0439 | 42.3989 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9378 | 1.0 | 1.0 | 1.0 | 0.9494 | 0.0 | 0.9120 |
|  | len | 2 | 93.6379 | 93.9699 | 94.3939 |  |  |  |  |
| 100 | 100 | 0 | 0.9592 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.9448 |
|  | len | 3 | 25.4353 | 5.5958 | 25.7366 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9372 | 1.0 | 1.0 | 1.0 | 0.8383 | 0.0 | 0.9100 |
|  | len | 3 | 83.9672 | 84.2346 | 84.5139 |  |  |  |  |
| 100 | 100 | 0 | 0.9526 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7474 | 0.9486 |
| 100 | 100 | 0 | 0.9690 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9666 |
| 100 | 100 | 0.1 | 0.9380 | 1.0 | 1.0 | 1.0 | 0.9292 | 0.0 | 0.9116 |
|  | len | 4 | 15.4105 | 15.4812 | 15.52944 |  |  |  |  |

Table 13: $\operatorname{Cov}(x, Y)$, wtype $=6, k=99$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9556 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6969 | 0.9408 |
|  | len | 1 | 4.1424 | 4.1564 | 4.1746 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9368 | 1.0 | 1.0 | 1.0 | 0.9494 | 0.0 | 0.9082 |
|  | len | 1 | 78.2762 | 78.4933 | 78.7964 |  |  |  |  |
| 100 | 100 | 0 | 0.9556 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6969 | 0.9406 |
|  | len | 2 | 4.1590 | 4.1761 | 4.1906 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9392 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9104 |
|  | len | 2 | 78.5195 | 78.8016 | 79.1488 |  |  |  |  |
| 100 | 100 | 0 | 0.9542 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6262 | 0.9340 |
|  | len | 3 | 4.1434 | 4.1608 | 4.1744 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9348 | 1.0 | 1.0 | 1.0 | 0.6767 | 0.0 | 0.9086 |
|  | len | 3 | 78.2621 | 78.5305 | 78.8025 |  |  |  |  |
| 100 | 100 | 0 | 0.9548 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6767 | 0.9396 |
|  | len | 4 | 4.1383 | 4.1629 | 4.1805 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9374 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.0 | 0.9072 |
|  | len | 4 | 78.2358 | 78.5532 | 78.8016 |  |  |  |  |
| 100 | 100 | 0 | 0.9552 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7272 | 0.9492 |
|  | len | 5 | 4.2113 | 4.2281 | 4.2495 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9378 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.0 | 0.9164 |
|  | len | 5 | 78.4399 | 78.6697 | 78.9044 |  |  |  |  |

Table 14: $\operatorname{Cov}(\mathrm{x}, \mathrm{Y})$, wtype=7, $\mathrm{k}=99$

| n | p | psi/etype | mincov | cov90 | cov92 | cov93 | cov94 | cov96 | testcov |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 0.9548 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6868 | 0.9416 |
|  | len | 1 | 4.1431 | 4.1635 | 4.1784 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9362 | 1.0 | 1.0 | 1.0 | 0.8889 | 0.0 | 0.9094 |
|  | len | 1 | 78.2762 | 78.4933 | 78.7964 |  |  |  |  |
| 100 | 100 | 0 | 0.9542 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6464 | 0.9420 |
|  | len | 2 | 4.1596 | 4.1832 | 4.2023 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9352 | 1.0 | 1.0 | 1.0 | 0.7575 | 0.0 | 0.9188 |
|  | len | 2 | 78.2773 | 78.5771 | 78.8371 |  |  |  |  |
| 100 | 100 | 0 | 0.9536 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.9434 |
|  | len | 3 | 4.1404 | 4.1617 | 4.1850 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9384 | 1.0 | 1.0 | 1.0 | 0.9696 | 0.0 | 0.9144 |
|  | len | 3 | 78.0388 | 78.3908 | 78.7165 |  |  |  |  |
| 100 | 100 | 0 | 0.9556 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.9374 |
|  | len | 4 | 4.1301 | 4.1526 | 4.1695 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9394 | 1.0 | 1.0 | 1.0 | 0.9898 | 0.0 | 0.9078 |
|  | len | 4 | 78.1104 | 78.4263 | 78.6769 |  |  |  |  |
| 100 | 100 | 0 | 0.9564 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7070 | 0.9424 |
|  | len | 5 | 4.2321 | 4.2479 | 4.2647 |  |  |  |  |
| 100 | 100 | 0.1 | 0.9366 | 1.0 | 1.0 | 1.0 | 0.9797 | 0.0 | 0.9184 |
|  | len | 5 | 78.3324 | 78.6694 | 78.9753 |  |  |  |  |

### 6.1 Simulation with Theorem 2.4c)

The simulation for Theorem 2.4c) is similar, but now $H_{0}$ was often false, and using $\hat{\lambda}$ to estimate $\lambda$ sometimes caused problems in high dimensions. Now the proportion of times $\lambda \eta_{i}=\beta_{i, O P L S}$ was in the interval $\hat{\lambda} \hat{\eta}_{i} \pm \hat{\lambda} t_{n-1, u p} S E\left(\hat{\eta}_{i}\right)$ was recorded, but the interval is not a confidence interval unless $\beta_{i, O P L S}=0$. The test statistic

$$
n \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\hat{\lambda}^{2} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=n \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y} \xrightarrow{D} \chi_{2}^{2}
$$

provided $\boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{x} Y}=\mathbf{0}$. With $k=1$ and $\psi=0$, all of the $\beta_{i, O P L S}=0$ except $\beta_{1, O P L S}$. We also tested whether $H_{0}:\left(\beta_{98}, \beta_{99}\right)^{T}=\mathbf{0}$, and $H_{0}$ was true with $k=1$ and $\psi=0$. In Table 15, the first two lines had $k=1$ and $\psi=0$. Then $\hat{\boldsymbol{\beta}}_{1, O P L S}=1$ was never in its interval $\hat{\lambda} \hat{\eta}_{1} \pm \hat{\lambda} t_{n-1, u p} S E\left(\hat{\eta}_{1}\right)$ because $\lambda=1$ but $\hat{\lambda}<0.5$ was common. Hence the minimum coverage was 0.0 . The other 98 intervals and the test satisfied Theorem 2.4c), and the coverages were good. With $\psi=0.1, \hat{\lambda}$ was often a good estimator of $\lambda$, but $\left(\beta_{98}, \boldsymbol{\beta}_{99}\right)=(1,1) \neq(0,0)$, so testcov was near 0 .

```
source("http://parker.ad.siu.edu/Olive/slpack.txt")
args(oplssim2)
function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,
    etype = 1, wtype = 1, psi = 0, cfac = "T", indices = c(1,
        2), alph = 0.05)
oplssim2(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0,indices=c (98,99))
$lens
\$covprop
[1] 0.00000000 .98989900 .98989900 .98989900 .98989900 .8484848
\$testcov
[1] 0.947
\$up
[1] 0.98125
\$lambda
[1] 1
\$lamhat
0.4956325
oplssim2(n=100, \(p=100, k=1\), nruns=5000, etype=1,wtype=1,psi=0.1, indices=c \((98,99)\) )
\$lens
[1] 0.0096940850 .0097400230 .011268022
\$covprop
[1] 0.96961 .00001 .00001 .00001 .00001 .0000
\$testcov
[1] 4e-04
\$up
[1] 0.98125
\$lambda
[1] 0.008613624

Tables 17 and 28 are used to illustrate Theorem 2.4c), and to show that \(\hat{\lambda}\) can be a poor estimator of \(\lambda\) in high dimensions. Now the proportion of times \(\lambda \eta_{i}=\beta_{i, O P L S}\) was in the interval \(\hat{\lambda} \hat{\eta}_{i} \pm \hat{\lambda} t_{n-1, u p} S E\left(\hat{\eta}_{i}\right)=\left[\hat{\lambda} L_{i n}, \hat{\lambda} U_{i n}\right]\) was recorded, where \(\left[L_{i n}, U_{i n}\right]\) is the large sample \(95 \% \mathrm{CI}\) for \(\eta_{i}\). If \(\eta_{i} \neq 0\), then the coverage of this interval tends to be low if \(\hat{\lambda}\) underestimates \(\lambda\), and high if \(\hat{\lambda}\) overestimates \(\lambda\). If \(\eta_{i}=0=\beta_{i, O P L S}\) and \(\hat{\lambda}>0\), then the interval gives a large sample test for \(H_{0}: \beta_{i, O P L S}=0\) since \(0 \in\left[L_{i n}, U_{i n}\right]\) if and only if \(0 \in\left[\hat{\lambda} L_{i n}, \hat{\lambda} U_{i n}\right]\). Hence Theorem 2.4c) can be used to test \(H_{0}: \beta_{i, O P L S}=0\) in low or high dimensions even if \(\hat{\lambda}>0\) is not a good estimator of \(\lambda\).

For testing \(H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\left(\beta_{98, O P L S}, \beta_{99, O P L S}\right)^{T}=\mathbf{0}\), the test statistic
\[
n \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\hat{\lambda}^{2} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\lambda} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}=n \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y}^{T} \boldsymbol{A}^{T}\left(\boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{w}} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \hat{\boldsymbol{\Sigma}}_{\boldsymbol{x} Y} \xrightarrow{D} \chi_{2}^{2}
\]
provided \(H_{0}: \boldsymbol{A} \boldsymbol{\beta}_{O P L S}=\boldsymbol{A} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{Y}\) \(=\mathbf{0}\) is true. In the simulation, \(H_{0}\) is true if \(k=1\) and \(\psi=0\).

In the simulation if the model is linear, \(\boldsymbol{\beta}_{O L S}=(1,0, \ldots, 0)^{T}\) for \(k=1\), and \(\boldsymbol{\beta}_{O L S}=\mathbf{1}\) for \(k=99\). If \(\psi=0\) and the model is linear, then \(\boldsymbol{\Sigma}_{\boldsymbol{x}}=\boldsymbol{I}_{p}, \lambda=1\), and \(\boldsymbol{\beta}_{O L S}=\boldsymbol{\beta}_{O P L S}=\boldsymbol{\Sigma}_{\boldsymbol{x} Y}\). Then \(\hat{\lambda}\) was often less than 0.5 for \(n=100\) and \(p=100\). If \(\psi=0.1, k=99\), and the model is linear, then \(\lambda=1 / 116.64=0.008573, \boldsymbol{\beta}_{O L S}=\boldsymbol{\beta}_{O P L S}=\mathbf{1}\), and \(\boldsymbol{\Sigma}_{\boldsymbol{x} Y}=116.64 \mathbf{1}\). Now \(\hat{\lambda}\) tended to be close to \(\lambda\). The models appeared to be linear except for wtype=4 with \(\psi=0.1\). (This model appeared to generate massive outliers with entries of \(\hat{\boldsymbol{\Sigma}}_{\boldsymbol{x}_{Y}}\) often larger than \(10^{50}\) for \(n=100\) and \(p=100\).)

Table 17 used \(k=1\), and the minimum coverage corresponding to \(\beta_{1, O P L S}\) tended to be
much smaller than 0.95 for \(\psi=0\) since \(\hat{\lambda}\) underestimated \(\lambda\). When \(\psi=0.1\) the coverages for \(\beta_{i, O P L S}\) tended to be a bit high since \(\hat{\lambda}\) tended to be near or greater than \(\lambda\). When \(\psi=0.1\), \(H_{0}:\left(\beta_{98, O P L S}, \beta_{99, O P L S}\right)^{T}=(0,0)^{T}\) is false. Then low testcov indicates good power for the test. Sometimes \(n\) much larger than 100 was needed to make testcov near 0 .

Table 28 used \(k=99\). For \(\psi=0\) the coverage for \(\beta_{1, O P L S}\) tended to be low since \(\hat{\lambda}\) underestimated \(\lambda\). The other coverages, including testcov, tended to be low. When \(\psi=0.1\) the coverages for \(\beta_{i, O P L S}\) tended to be a bit high since \(\hat{\lambda}\) tended to be near or greater than \(\lambda\). When \(\psi=0.1, H_{0}:\left(\beta_{98, O P L S}, \beta_{99, O P L S}\right)^{T}=(0,0)^{T}\) is false. Then low testcov indicates good power for the test. Sometimes \(n\) much larger than 100 was needed to make testcov near 0 .

Table 15: OPLS, wtype=1, \(\mathrm{k}=1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & cov92 & cov93 & cov94 & cov96 & testcov \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8485 & 0.9470 \\
\hline & len & 1 & 0.2539 & 0.2560 & 0.3097 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9696 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0004 \\
\hline & len & 1 & 0.0097 & 0.0097 & 0.0113 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0128 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9494 & 0.9492 \\
\hline & len & 2 & 0.3642 & 0.3676 & 0.4110 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9670 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0254 \\
\hline & len & 2 & 0.0121 & 0.0123 & 0.0136 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0002 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8383 & 0.9468 \\
\hline & len & 3 & 0.2531 & 0.2549 & 0.3077 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9660 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0006 \\
\hline & len & 3 & 0.0096 & 0.0097 & 0.0112 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7272 & 0.9424 \\
\hline & len & 4 & 0.1991 & 0.2006 & 0.2615 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9662 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 4 & 0.0086 & 0.0087 & 0.0103 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.2016 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9620 \\
\hline & len & 5 & 0.6583 & 0.6646 & 0.6984 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9758 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.2682 \\
\hline & len & 5 & 0.0248 & 0.0256 & 0.0265 & & & & \\
\hline
\end{tabular}

Table 16: OPLS, wtype=2, \(\mathrm{k}=1\)
\begin{tabular}{rrrrrrrrrr}
n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & \(\operatorname{cov} 92\) & \(\operatorname{cov} 93\) & \(\operatorname{cov} 94\) & \(\operatorname{cov} 96\) & testcov \\
\hline 100 & 100 & 0 & 0.4008 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8383 & 0.9472 \\
& len & 1 & 0.8663 & 0.8707 & 0.9288 & & & & \\
100 & 100 & 0.1 & 0.9806 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.5688 \\
& len & 1 & 0.0376 & 0.0381 & 0.0410 & & & & \\
100 & 100 & 0 & 0.6730 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9696 & 0.9518 \\
& len & 2 & 1.3925 & 1.4100 & 1.4842 & & & & \\
100 & 100 & 0.1 & 0.9750 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.7628 \\
& len & 2 & 0.1400 & 0.1439 & 0.1520 & & & & \\
100 & 100 & 0 & 0.3930 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9292 & 0.9470 \\
& len & 3 & 0.8471 & 0.8558 & 0.9175 & & & & \\
100 & 100 & 0.1 & 0.9706 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.4848 \\
& len & 3 & 0.0513 & 0.0526 & 0.0577 & & & & \\
100 & 100 & 0 & 0.0722 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7676 & 0.9376 \\
100 & 100 & 0.1 & 0.9654 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.8654 \\
& len & 5 & 0.4329 & 0.4425 & 0.4626 & & & & \\
\hline
\end{tabular}

Table 17: OPLS, wtype=3, \(k=1\)
\begin{tabular}{rrrrrrrrrr}
n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & \(\operatorname{cov} 92\) & \(\operatorname{cov} 93\) & \(\operatorname{cov} 94\) & \(\operatorname{cov} 96\) & testcov \\
\hline 100 & 100 & 0 & 0.0182 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9191 & 0.9486 \\
& len & 1 & 0.3209 & 0.3239 & 0.4486 & & & & \\
100 & 100 & 0.1 & 0.9664 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0528 \\
& len & 1 & 0.0133 & 0.0134 & 0.0166 & & & & \\
100 & 100 & 0 & 0.1768 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9797 & 0.9474 \\
& len & 2 & 0.4889 & 0.4956 & 0.6865 & & & & \\
100 & 100 & 0.1 & 0.9804 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.3084 \\
& len & 2 & 0.0255 & 0.0267 & 0.0338 & & & & \\
100 & 100 & 0 & 0.0260 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9797 & 0.9486 \\
& len & 3 & 0.3185 & 0.3220 & 0.4445 & & & & \\
100 & 100 & 0.1 & 0.9672 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0538 \\
& len & 3 & 0.0132 & 0.0133 & 0.0165 & & & & \\
100 & 100 & 0 & 0.0002 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8181 & 0.9424 \\
100 & 100 & 0.1 & 0.9852 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.6048 \\
100 & 0.1 & 0.9524 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9899 & \\
\hline & len & 0 & 0.0101 & 0.0102 & 0.0125 & & & & \\
\hline
\end{tabular}

Table 18: OPLS, wtype=4, k=1
\begin{tabular}{rrrrrrrrrr}
n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & \(\operatorname{cov} 92\) & \(\operatorname{cov} 93\) & \(\operatorname{cov} 94\) & \(\operatorname{cov} 96\) & testcov \\
\hline 100 & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7171 & 0.9450 \\
& len & 1 & 0.1672 & 0.1687 & 0.2346 & & & & \\
100 & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7474 & 0.9532 \\
& len & 2 & 0.1672 & 0.1686 & 0.2349 & & & & \\
100 & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7575 & 0.9424 \\
& len & 3 & 0.3185 & 0.3220 & 0.4445 & & & & \\
100 & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7373 & 0.9400 \\
& len & 4 & 0.1672 & 0.1686 & 0.2343 & & & & \\
100 & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8080 & 0.9426 \\
& len & 5 & 0.1675 & 0.2356 & 0.2356 & & & & \\
\end{tabular}

Table 19: OPLS, wtype \(=5, \mathrm{k}=1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & p & psi/etype & mincov & cov90 & cov92 & cov93 & cov94 & cov96 & testcov \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9532 & 1.0 & 1.0 & 1.0 & 1.0 & 0.8282 & 0.9416 \\
\hline & len & 1 & 13.2162 & 13.2678 & 13.3680 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9602 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0528 \\
\hline & len & 1 & 2.2759 & 2.3004 & 2.3219 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9594 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9797 & 0.9580 \\
\hline & len & 2 & 21.3396 & 21.5434 & 21.7143 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9648 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9522 \\
\hline & len & 2 & 3.6175 & 3.7116 & 3.7654 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9588 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9494 & 0.9526 \\
\hline & len & 3 & 12.9127 & 13.0112 & 13.1067 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9630 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9510 \\
\hline & len & 3 & 2.1969 & 2.2246 & 2.2432 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9540 & 1.0 & 1.0 & 1.0 & 1.0 & 0.6667 & 0.9450 \\
\hline & len & 4 & 7.6307 & 7.6528 & 7.6855 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9524 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9418 \\
\hline & len & 4 & 1.3193 & 1.3297 & 1.3400 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9706 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9634 \\
\hline & len & 5 & 40.4202 & 40.8316 & 41.2634 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9710 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9722 \\
\hline & len & 5 & 7.0543 & 7.1787 & 7.3326 & & & & \\
\hline
\end{tabular}

Table 20: OPLS, wtype=6, k=1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & p & psi/etype & mincov & cov90 & cov92 & cov93 & cov94 & cov96 & testcov \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7778 & 0.9428 \\
\hline & len & 1 & 0.11955 & 0.1968 & 0.2582 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9592 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9899 & 0.0528 \\
\hline & len & 1 & 0.0107 & 0.0108 & 0.0122 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0008 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8484 & 0.9442 \\
\hline & len & 2 & 0.2397 & 0.2423 & 0.2977 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9668 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.1018 \\
\hline & len & 2 & 0.0153 & 0.0157 & 0.0167 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7979 & 0.9440 \\
\hline & len & 3 & 0.1959 & 0.1968 & 0.2584 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9642 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0098 \\
\hline & len & 3 & 0.0107 & 0.0108 & 0.0122 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8686 & 0.9498 \\
\hline & len & 4 & 0.1775 & 0.1790 & 0.2437 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9628 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 4 & 0.0091 & 0.0092 & 0.0108 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0174 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9552 \\
\hline & len & 5 & 0.3732 & 0.3769 & 0.4206 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9842 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.3590 \\
\hline & len & 5 & 0.0429 & 0.0444 & 0.0458 & & & & \\
\hline
\end{tabular}

Table 21: OPLS, wtype=7, k=1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & cov92 & cov93 & cov94 & cov96 & testcov \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7171 & 0.9418 \\
\hline & len & 1 & 0.2058 & 0.2072 & 0.2664 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9648 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 1 & 0.0086 & 0.0087 & 0.0103 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0022 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.8080 & 0.9406 \\
\hline & len & 2 & 0.2628 & 0.2651 & 0.3180 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9666 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0014 \\
\hline & len & 2 & 0.0094 & 0.0095 & 0.0111 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7676 & 0.9478 \\
\hline & len & 3 & 0.2056 & 0.2070 & 0.2675 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9630 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 3 & 0.0086 & 0.0087 & 0.0103 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.7778 & 0.9438 \\
\hline & len & 4 & 0.1809 & 0.1824 & 0.2471 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9624 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 4 & 0.0083 & 0.0084 & 0.0101 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.0468 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9899 & 0.9544 \\
\hline & len & 5 & 0.4336 & 0.4383 & 0.4765 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9712 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0478 \\
\hline & len & 5 & 0.0122 & 0.0123 & 0.0136 & & & & \\
\hline
\end{tabular}

Table 22: OPLS, wtype=1, \(\mathrm{k}=99\)


Table 23: OPLS, wtype=2, k=99


Table 24: OPLS, wtype=3, k=99


Table 25: OPLS, wtype=4, k=99
\begin{tabular}{rrrrrrrrrr}
n & p & psi/etype & mincov & \(\operatorname{cov} 90\) & \(\operatorname{cov} 92\) & \(\operatorname{cov} 93\) & \(\operatorname{cov} 94\) & \(\operatorname{cov} 96\) & testcov \\
\hline 100 & 100 & 0 & 0.6852 & 0 & 0 & 0 & 0 & 0 & 0.7722 \\
& len & 1 & 1.6733 & 1.6805 & 1.6888 & & & & \\
100 & 100 & 0 & 0.6866 & 0 & 0 & 0 & 0 & 0 & 0.7756 \\
& len & 2 & 1.6734 & 1.6818 & 1.6910 & & & & \\
100 & 100 & 0 & 0.6874 & 0 & 0 & 0 & 0 & 0 & 0.7802 \\
& len & 3 & 1.6749 & 1.6820 & 1.6899 & & & & \\
100 & 100 & 0 & 0.6888 & 0 & 0 & 0 & 0 & 0 & 0.7654 \\
& len & 4 & 1.6791 & 1.6841 & 1.6935 & & & & \\
100 & 100 & 0 & 0.6890 & 0 & 0 & 0 & 0 & 0 & 0.7728 \\
& len & 5 & 1.6703 & 1.6794 & 2.6870 & & & & \\
\hline
\end{tabular}

Table 26: OPLS, wtype=5, \(\mathrm{k}=99\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & p & psi/etype & mincov & cov90 & cov92 & cov93 & cov94 & cov96 & testcov \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.6928 & 1.0 & 1.0 & 1.0 & 1.0 & 0.3030 & 0.7818 \\
\hline & len & 1 & 13.2205 & 13.2783 & 13.3739 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9932 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 1 & 0.7185 & 0.7212 & 0.7241 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9574 & 1.0 & 1.1.0 & 1.0 & 1.0 & 0.9595 & 0.9458 \\
\hline & len & 2 & 21.5202 & 21.7361 & 21.9323 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9894 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0022 \\
\hline & len & 2 & 0.8109 & 0.8158 & 0.8210 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9548 & 1.0 & 1.0 & 1.0 & 1.0 & 0.6363 & 0.9380 \\
\hline & len & 3 & 12.8699 & 12.9893 & 13.0901 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9936 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 3 & 0.7196 & 0.7229 & 0.7261 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9432 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0202 & 0.9290 \\
\hline & len & 4 & 7.6732 & 7.6951 & 7.7268 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9970 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0 \\
\hline & len & 4 & 0.6868 & 0.6896 & 0.6921 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0 & 0.9694 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9656 \\
\hline & len & 5 & 40.2310 & 40.6674 & 40.0584 & & & & \\
\hline \multirow[t]{2}{*}{100} & 100 & 0.1 & 0.9014 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0316 \\
\hline & len & 5 & 1.1897 & 1.2413 & 1.3311 & & & & \\
\hline
\end{tabular}

Table 27: OPLS, wtype=6, k=99


Table 28: OPLS, wtype=7, k=99


\section*{CHAPTER 7}

\section*{CONCLUSIONS}

There is a large literature for multiple linear regression models with heterogeneity. See, for example, Buja et al. (2019), Eicker (1963, 1967), Flachaire (2005), Hinkley (1977), Huber (1967), Long and Ervin (2000), MacKinnon and White (1985), Rajapaksha and Olive (2024), Romano and Wolf (2017), and White (1980). The response plot of \(\hat{\boldsymbol{\phi}}_{O P L S}\) versus \(Y\) and the EE plot of \(\hat{\boldsymbol{\phi}}_{O P L S}^{T} \boldsymbol{x}\) versus \(\hat{\boldsymbol{\phi}}_{O L S}^{T} \boldsymbol{x}\) can be used to check whether OPLS is useful for WLS. See Olive (2013) for more on these two plots.

Tests for high dimensional covariance matrices include Chen, Zhang, and Zhong (2010), and Himeno and Yamada (2014).

Software The \(R\) software was used in the simulations. See R Core Team (2020). Programs are available from the Olive (2023) collections of \(R\) functions slpack.txt, available from (http://parker.ad.siu.edu/Olive/slpack.txt). The function OPLSplot make the response plot and residual plot for multiple linear regression based on one component partial least squares. The function OPLSEEplot plots the OPLS fitted values versus the OLS fitted values. Let \(u p \approx 1-\alpha / 2\) be the correction factor used for the confidence intervals. The function covxycis obtains the large sample \(100(1-\alpha) \%\) confidence intervals \(\approx \hat{\eta}_{j} \pm t_{n-1, u p} S E\left(\hat{\eta}_{j}\right)\) for \(\eta_{j}=\operatorname{Cov}\left(x_{j}, Y\right)\) for \(j=1, \ldots, p\). The function oplscis obtains the large sample \(100(1-\alpha) \%\) confidence intervals \(\approx \hat{\beta}_{j} \pm t_{n-1, u p} S E\left(\hat{\beta}_{j}\right)\) for \(\beta_{j}=\lambda \operatorname{Cov}\left(x_{j}, Y\right)\) for \(j=1, \ldots, p\). If \(\left[L_{j}, U_{j}\right]\) is the confidence interval for \(\eta_{j}\), then \(\left[\hat{\lambda} L_{j}, \hat{\lambda} U_{j}\right]\) is the confidence interval for \(\beta_{j}\). The function oplswls generates a weighted least squares data set of types used by the simulation, the OPLS response plot, the OLS response plot, and the plot of the OPLS fitted values versus
the OLS fitted values. In the literature, simulated WLS data set often contain outliers and are often not very linear. The response plot can be used to check for these two problems. The function oplswsim was used for Table 9. The function rcovxy makes the classical and three robust estimators of \(\boldsymbol{\eta}\), and makes a scatterplot matrix of the four estimated sufficient predictors \(\hat{\boldsymbol{\eta}}^{T} \boldsymbol{x}\) and \(Y\). Only two robust estimators are made if \(n \leq 2.5 p\). The function oplssim 2 was used for Tables 17 and 28.

\section*{References}

Basa, J., Cook, R.D., Forzani, L., and Marcos, M. (2022), "Asymptotic Distribution of OneComponent Partial Least Squares Regression Estimators in High Dimensions," The Canadian Journal of Statistics, to appear.

Bickel, P.J., and Doksum, K.A. (2007), Mathematical Statistics: Basic Ideas and Selected Topics, Vol. 1., 2nd ed., Updated Printing, Pearson Prentice Hall, Upper Saddle River, NJ.

Buja, A., Brown, L., Berk, R., George, E., Pitkin, E., Traskin, M., Zhang, K., and Zhao, L. (2019), "Models as Approximations I: Consequences Illustrated with Linear Regression," Statistical Science, 34, 523-544.

Chang, J., and Olive, D.J. (2010), "OLS for 1D Regression Models," Communications in Statistics: Theory and Methods, 39, 1869-1882.

Chen, S.X., Zhang, L.X. and Zhong, P.S. (2010), "Tests for High-Dimensional Covariance Matrices, Journal of the American Statistical Association, 105(490):810-819.

Chen, C.H., and Li, K.C. (1998), "Can SIR be as Popular as Multiple Linear Regression?," Statistica Sinica, 8, 289-316.

Cook, R.D., Helland, I.S., and Su, Z. (2013), "Envelopes and Partial Least Squares Regression," Journal of the Royal Statistical Society, B, 75, 851-877. Efron, B., Hastie, T., Johnstone,
I., and Tibshirani, R. (2004), "Least Angle Regression," (with discussion), The Annals of Statistics, 32, 407-451.

Eicker, F. (1963), "Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions," Annals of Mathematical Statistics, 34, 447-456.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), "Least Angle Regression," (with discussion), The Annals of Statistics, 32, 407-451.

Fan, J., and Lv, J. (2008), "Sure Independence Screening for Ultrahigh Dimensional Feature Space," Journal of the Royal Statistical Society, B, 70, 849-911.

Fan, J., and Song, R. (2010), "Sure Independence Screening in Generalized Linear Models with np-Dimensionality," The Annals of Statistics, 38, 3217-3841.

Flachaire, E. (2005), "Bootstrapping Heteroskedastic Regression Models: Wild Bootstrap vs. Pairs Bootstrap, Computational Statistics \& Data Analysis, 49, 361-376.

Freedman, D.A. (1981), "Bootstrapping Regression Models," The Annals of Statistics, 9, 1218-1228.

Hebbler, B. (1847), "Statistics of Prussia," Journal of the Royal Statistical Society, A, 10, 154-186.

Himeno, T., and Yamada, T. (2014), "Estimations for Some Functions of Covariance Matrix in High Dimension under Non-Normality and Its Applications," Journal of Multivariate Analysis, 130, 27-44.

Hinkley, D.V. (1977), "Jackknifing in Unbalanced Situations," Technometrics, 19, 285-292.
Huber, P.J. (1967), "The Behavior of Maximum Likelihood Estimation Under Nonstandard Conditions," in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, eds. LeCam, L.M., and Neyman, J., University of California Press, Berkeley,

CA, 221-223.
Long, J.S., and Ervin, L.H. (2000), "Using Heteroscedasticity Consistent Standard Errors in the Linear Model," The American Statistician, 54, 217-224.

MacKinnon, J.G., and White, H. (1985), "Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties," Journal of Econometrics, 29, 305325.

Maronna, R.A., and Zamar, R.H. (2002), "Robust Estimates of Location and Dispersion for High-Dimensional Datasets," Technometrics, 44, 307-317.

Mehrotra, D.V. (1995), "Robust Elementwise Estimation of a Dispersion Matrix," Biometrics, 51, 1344-1351.

Meinshausen, N. (2007), "Relaxed Lasso," Computational Statistics \& Data Analysis, 52, 374-393.

Olive, D.J. (2004), "A Resistant Estimator of Multivariate Location and Dispersion," Computational Statistics \& Data Analysis, 46, 99-102.

Olive, D.J. (2013), "Plots for Generalized Additive Models," Communications in Statistics: Theory and Methods, 42, 2610-2628.

Olive, D.J. (2014), Statistical Theory and Inference, Springer, New York, NY.

Olive, D.J. (2017), Robust Multivariate Analysis, Springer, New York, NY.
Olive, D.J. (2023), Prediction and Statistical Learning, online course notes, see (http:// parker.ad.siu.edu/Olive/slearnbk.htm).

Olive, D.J., and Zhang, L. (2024), "One Component Partial Least Squares, High Dimensional Regression, Data Splitting, and the Multitude of Models," Communications in Statistics: Theory and Methods, to appear.

Pötscher, B.M., and Preinerstorfer, D. (2023), "How Reliable are Bootstrap-Based Heteroskedasticity Robust Tests?" Econometric Theory, 39, 789-847.

Qi, X., Luo, R., Carroll, R.J., and Zhao, H. (2015), "Sparse Regression by Projection and Sparse Discriminant Analysis," Journal of Computational and Graphical Statistics, 24, 416438.

R Core Team (2020), "R: a Language and Environment for Statistical Computing," R Foundation for Statistical Computing, Vienna, Austria, (www.R-project.org).

Rajapaksha, K.W.G.D.H., and Olive, D.J. (2024), "Wald Type Tests with the Wrong Dispersion Matrix," Communications in Statistics: Theory and Methods, 53, 2236-2251.

Rathnayake, R.C., and Olive, D.J. (2023), "Bootstrapping Some GLMs and Survival Regression Models after Variable Selection," Communications in Statistics: Theory and Methods, 52, 2625-2645.

Rinaldo, A., Wasserman, L., and G’Sell, M. (2019), "Bootstrapping and Sample Splitting for High-Dimensional, Assumption-Lean Inference," The Annals of Statistics, 47, 3438-3469.

Romano, J.P., and Wolf, M. (2017), "Resurrecting Weighted Least Squares," Journal of Econometrics, 197, 1-19.

Seber, G.A.F., and Lee, A.J. (2003), Linear Regression Analysis, 2nd ed., Wiley, New York, NY.

Sen, P.K., and Singer, J.M. (1993), Large Sample Methods in Statistics: an Introduction with Applications, Chapman \& Hall, New York, NY.

Su, Z., and Cook, R.D. (2012), "Inner Envelopes: Efficient Estimation in Multivariate Linear Regression," Biometrika, 99, 687-702.

Tay, J.K., Narasimhan, B. and Hastie, T. (2023), "Elastic Net Regularization Paths for All

Generalized Linear Models," Journal of Statistical Software, 106, 1-31.
Tibshirani, R. (1996), "Regression Shrinkage and Selection via the Lasso," Journal of the Royal Statistical Society, B, 58, 267-288.

White, H. (1980), "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, 48, 817-838.

Wieczorek, J., and Lei, J. (2022), "Model-Selection Properties of Forward Selection and Sequential Cross-Validation for High-Dimensional Regression," Canadian Journal of Statistics, 50, 454-470.

Wold, H. (1975), "Soft Modelling by Latent Variables: the Non-Linear Partial Least Squares (NIPALS) Approach," Journal of Applied Probability, 12, 117-142.

Zhang, J., Olive, D.J., and Ye, P. (2012), "Robust Covariance Matrix Estimation with Canonical Correlation Analysis," International Journal of Statistics and Probability, 1, 119136.

Zhou, L., Cook, R.D., and Zou, H. (2023), "Enveloped Huber Regression," Journal of the American Statistical Association, to appear.

Zou, H., and Hastie, T. (2005), "Regularization and Variable Selection via the Elastic Net," Journal of the Royal Statistical Society Series, B, 67, 301-320.```

