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CHAPTER 1

INTRODUCTION

This section reviews multiple linear regression models, including variable selection and

data splitting. Consider a multiple linear regression model with response variable Y and

predictors x = (x1, ..., xp)
T . Then there are n cases (Yi,xT

i )
T , and the sufficient predictor

SP = α + xTβ. For these regression models, the conditioning and subscripts, such as i,

will often be suppressed. Ordinary least squares (OLS) is often used for the multiple linear

regression (MLR) model.

Let the first multiple linear regression model be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error. Assume

that the ei are independent and identically distributed (iid) with expected value E(ei) = 0 and

variance V (ei) = σ2. In matrix notation, these n equations become Y = Xβ + e where Y is

an n× 1 vector of dependent variables, X is an n× p matrix of predictors, β is a p× 1 vector

of unknown coefficients, and e is an n× 1 vector of unknown errors.

Let the second multiple linear regression model be Y |xTβ = α + xTβ + e or Yi =

α + xT
i β + ei or

Yi = α + xi,1β1 + · · ·+ xi,pβp + ei = α + xT
i β + ei (2)

for i = 1, ..., n. Let the ei be as for model (1). In matrix form, this model is

Y = Xϕ+ e, (3)
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where Y is an n × 1 vector of dependent variables, X is an n × (p + 1) matrix with ith

row (1,xT
i ), ϕ = (α,βT )T is a (p + 1) × 1 vector , and e is an n × 1 vector of unknown

errors. Also E(e) = 0 and Cov(e) = σ2In where In is the n × n identity matrix. For a

multiple linear regression model with heterogeneity, assume model (3) holds with E(e) = 0

and Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n × n positive definite matrix. When

the σ2
i are known, weighted least squares (WLS) is often used.

Under regularity conditions, ϕ̂OLS = (XTX)−1XTY can be shown to be a consistent

estimator of ϕ with Cov(ϕ̂) = (XTX)−1XTΣeX(XTX)−1 and E(ϕ̂) = ϕ. See, for

example, White (1980). Assume nCov(ϕ̂) → V as n → ∞. If XTX/n → W−1 and

XTΣeX/n → U , then V = WUW . We assume that α is in the model so that the OLS

residuals sum to 0.

Some other models are a)

Yi|xi = α + βTx+ ei

with V (ei) = V (Yi|xi) = σ2
i = σ2(xi), b)

Yi|(xi,β
Txi) = α + βTx+ ei

with V (ei) = V (Yi|xi,β
Txi) = σ2

i = σ2(xi), and c)

Yi|βTxi = α + βTx+ ei

with V (ei) = V (Yi|βTxi) = τ 2i = τ 2(xi). See Rajapaksha and Olive (2024). Variants of

these models use ei = σ(xi)ϵi or ei = τ(xi)ϵi where the ϵi are iid with E(ϵi) = 0 and

V (ϵi) = 1. Another variant uses iid cases (xi, Yi). Suppose the ϵi are iid and independent

of the iid (xi, Yi). Then the (xi, Yi, ϵi) are iid, and the above models can be formed, e.g.,

Yi|(xi,β
Txi) = α + βTx+ σ(xi)ϵi.
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For estimation with ordinary least squares, let the covariance matrix of x be Cov(x) =

Σx = E[(x−E(x))(x−E(x))T ] = E(xxT )−E(x)E(xT ) and η = Cov(x, Y ) = ΣxY =

E[(x−E(x)(Y −E(Y ))] = E(xY )−E(x)E(Y ) = E[(x−E(x))Y ] = E[x(Y −E(Y ))].

Let

η̂ = η̂n = Σ̂xY = SxY =
1

n− 1

n∑
i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑
i=1

(xi − x)(Yi − Y ).

Then the OLS estimators for model (3) are ϕ̂OLS = (XTX)−1XTY , α̂OLS = Y −β̂
T

OLSx,

and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically distributed (iid) cases,

β̂OLS is a consistent estimator of βOLS = Σ−1
x ΣxY under mild regularity conditions, while

α̂OLS is a consistent estimator of E(Y )− βT
OLSE(x).

Cook, Helland, and Su (2013) showed that the one component partial least squares (OPLS)

estimator β̂OPLS = λ̂Σ̂xY estimates λΣxY = βOPLS where

λ =
ΣT
xYΣxY

ΣT
xYΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(4)

for ΣxY ̸= 0. If ΣxY = 0, then βOPLS = 0. Also see Basa, Cook, Forzani, and Marcos

(2022) and Wold (1975). Olive and Zhang (2024) derived the large sample theory for η̂OPLS =

Σ̂xY and OPLS under milder regularity conditions than those in the previous literature, where

ηOPLS = ΣxY . The OPLS estimator is computed from the OLS simple linear regression of Y

on W = Σ̂
T

xY x, giving Ŷ = α̂OPLS + λ̂W = α̂OPLS + β̂
T

OPLSx.
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As noted by Rajapaksha and Olive (2024), the nonparametric bootstrap = pairs bootstrap

samples the cases (xT
i , Yi)

T with replacement, and uses

Y ∗ = X∗ϕ̂+ r∗ (5)

where the (xT
i , Yi, ri)

T are selected with replacement to form Y ∗,X∗ and r∗. Note that with

respect to the bootstrap distribution, the (x∗T
i , Y ∗

i , ri)
T are iid. Hence Equation (5) is an iid

regression model. Freedman (1981) showed that the nonparametric bootstrap with ϕ̂ = ϕ̂OLS

can be useful for model (1) when the cases (xT
i , Yi)

T are iid. Since the residuals from β̂OPLS

sum to zero, the nonparametric bootstrap may be useful for OPLS.

The nonparametric bootstrap for η̃ samples the cases with replacement and computes η̃∗

from the resulting bootstrap data set. Then

√
n(η̃∗ − η̃)

D→ Np(0,Ση).

Hence the tests from the nonparametric bootstrap and the much faster tests from Chapter 2

should be similar.

The marginal maximum likelihood estimator (MMLE or marginal least squares estimator)

is due to Fan and Lv (2008) and Fan and Song (2010). This estimator computes the marginal

regression of Y on xi resulting in the estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE =

(β̂1,M , ..., β̂p,M)T . For multiple linear regression, the marginal estimators are the simple linear

regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]
−1Σ̂x,Y . (6)

If the ti are the predictors that are scaled or standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(t, Y ) = Σ̂t,Y = I−1Σ̂t,Y = η̂OPLS(t, Y ) (7)
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where (t, Y ) denotes that Y was regressed on t, and I is the p× p identity matrix.

Variable selection estimators include forward selection or backward elimination when n ≥

10p.Sparse regression methods can be used for variable selection even if n/p is not large: the

OLS submodel uses the predictors that had nonzero sparse regression estimated coefficients.

These methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse re-

gression by projection. See Efron et al. (2004, p. 421), Meinshausen (2007, p. 376), Qi et al.

(2015), Tay, Narasimhan, and Hastie (2023), Rathnayake and Olive (2023), Tibshirani (1996),

and Zou and Hastie (2005).

Data splitting divides the training data set of n cases into two sets: H and the validation set

V where H has nH of the cases and V has the remaining nV = n − nH cases i1, ..., inV
. An

application of data splitting is to use a variable selection method, such as forward selection or

lasso, on H to get submodel Imin with a predictors, then fit the selected model to the cases in

the validation set V using standard inference. See, for example, Rinaldo et al. (2019).

High dimensional regression has n/p small. A fitted or population regression model is

sparse if a of the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥

10. Otherwise the model is nonsparse. A high dimensional population regression model is

abundant or dense if the regression information is spread out among the p predictors (nearly all

of the predictors are active). Hence an abundant model is a nonsparse model.

Olive and Zhang (2024) proved that there are often many valid population models for multi-

ple linear regression, gave theory for Σ̂x,Y and OPLS, gave theory for data splitting estimators,

and gave some theory for the MMLE for multiple linear regression under the constant variance

assumption.

Chapter 2 gives some large sample theory, while section 2.3 considers tests of hypotheses.
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CHAPTER 2

LARGE SAMPLE THEORY AND TESTING

2.1 OLS Theory

Let the MLR model 1 be

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (8)

for i = 1, ..., n. Here n is the sample size and the random variable ei is the ith error. Assume

that the ei are iid with expected value E(ei) = 0 and variance V (ei) = σ2. In matrix notation,

these n equations become Y = Xβ + e where Y is an n × 1 vector of dependent variables,

X is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients, and e is an

n× 1 vector of unknown errors.

Let the MLR model 2 be

Yi = α + xi,1β1 + · · ·+ xi,pβp + ei = α + xT
i β + ei (9)

for i = 1, ..., n. For this model, we may use ϕ = (α,βT )T with Y = Xϕ+ e.

Ordinary least squares (OLS) large sample theory will be useful. Let X = (1 X1).

For model (8), the ith row of X is (1, xi,2, ..., xi,p) while for model (9), the ith row of X is

(1, xi,1, ..., xi,p), and Y = α1+X1β + e = Xϕ+ e.

Definition 2.1 Using the above notation for model (8), let xT
i = (xi1, ..., xip), let α be the

intercept, and let the slopes vector β = (β1, ..., βp)
T . Let the population covariance matrices

Cov(x) = E[(x− E(x))(x− E(x))T ] = Σx, and
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Cov(x, Y ) = E[(x− E(x))(Y − E(Y ))] = ΣxY .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx is nonsingular,

then the population coefficients from an OLS regression of Y on x (even if a linear model does

not hold) are

α = αOLS = E(Y )− βTE(x) and β = βOLS = Σ−1
x ΣxY.

Definition 2.2 Let the sample covariance matrices be

Σ̂x =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n− 1

n∑
i=1

(xi − x)(Yi − Y ).

Let the method of moments estimators be Σ̃x =
1

n

n∑
i=1

(xi − x)(xi − x)T and Σ̃xY =

1

n

n∑
i=1

(xi − x)(Yi − Y ) =
1

n

n∑
i=1

xiYi − x Y .

The method of moment estimators are often called the maximum likelihood estimators,

but are the MLE if the (Yi,x
T
i )

T are iid from a multivariate normal distribution, a very strong

assumption. In Theorem 2.1, note that D = XT
1X1 − nx xT = (n− 1)Σ̂

−1

x .

Theorem 2.1: Seber and Lee (2003, p. 106). Let X = (1 X1).

Then XTY =

 nY

XT
1Y

 =

 nY∑n
i=1 xiYi

 , XTX =

 n nxT

nx XT
1X1

 ,

and (XTX)−1 =

 1
n
+ xTD−1x −xTD−1

−D−1x D−1


where the p× p matrix D−1 = [(n− 1)Σ̂x]

−1 = Σ̂
−1

x /(n− 1).

Under model (9), ϕ̂ = ϕ̂OLS = (XTX)−1XTY .

Theorem 2.2: Second way to compute ϕ̂:

7



a) If Σ̂
−1

x exists, then α̂ = Y − β̂
T
x and

β̂ =
n

n− 1
Σ̂

−1

x Σ̃xY = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi,xT
i )

T are iid random vectors such that σ2
Y , Σ−1

x , and ΣxY exist. Then

α̂
P→ α and

β̂
P→ β as n → ∞

where α and β are given by Definition 2.1.

Proof. Note that

Y TX1 = (Y1 · · ·Yn)


xT
1

...

xT
n

 =
n∑

i=1

Yix
T
i

and

XT
1Y = [x1 · · ·xn]


Y1

...

Yn

 =
n∑

i=1

xiYi.

So  α̂

β̂

 =

 1
n
+ xTD−1x −xTD−1

−D−1x D−1


 1T

XT
1

Y =

 1
n
+ xTD−1x −xTD−1

−D−1x D−1


 nY

XT
1Y

 .
Thus β̂ = −nD−1x Y +D−1XT

1Y = D−1(XT
1Y − nx Y ) =

D−1

[
n∑

i=1

uiYi − nx Y

]
=

Σ̂
−1

x
n− 1

nΣ̂xY =
n

n− 1
Σ̂

−1

x Σ̂xY . Then

8



α̂ = Y + nxTD−1x Y −xTD−1XT
1Y = Y + [nY xTD−1 −Y TX1D

−1]x = Y − β̂
T
x. The

convergence in probability results hold since sample means and sample covariance matrices

are consistent estimators of the population means and population covariance matrices. □

It is important to note that the convergence in probability results are for iid (Yi,x
T
i )

T with

second moments and nonsingular Σx: a linear model Y = Xβ + e does not need to hold.

When the linear model does hold, the second method for computing β̂ is still valid even if X

is a constant matrix, and β̂
P→ β by Theorem 2.3 b). Note that for Theorem 2.2 b) with iid

cases and µx = E(x),

n(XTX)−1 P→ V =

 1 + µT
xΣ

−1
x µx −µT

xΣ
−1
x

−Σ−1
x µx Σ−1

x



There are many large sample theory results for ordinary least squares. The following theo-

rem is important. See, for example, Sen and Singer (1993, p. 280).

Theorem 2.3, OLS CLTs. Consider the MLR model and assume that the zero mean er-

rors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are random vectors, assume that

the cases (xi, Yi) are independent, and that the ei and xi are independent. Also assume that

maxi(h1, ..., hn) → 0 and

XTX

n
→ V −1

as n → ∞ where the convergence is in probability if the xi are random vectors (instead of

nonstochastic constant vectors).

a) For Equation (8), the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 V ). (10)
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b) For Equation (9), the OLS estimator ϕ̂ satisfies

√
n(ϕ̂− ϕ)

D→ Np+1(0, σ
2 V ). (11)

c) Suppose the cases (xi, Yi) are iid from some population and the Equation (9) MLR model

Yi = α + xT
i β + ei holds. Assume that Σ−1

x and Σx,Y exist. Then Equation (11) holds and

√
n(β̂ − β)

D→ Np(0, σ
2 Σ−1

x ) (12)

where β = βOLS = Σ−1
x Σx,Y .

Remark 2.1 Consider Theorem 2.3 For a) and b), the theory acts as if the xi are constant

even if the xi are random vectors. The literature says the xi can be constants, or condition on

xi if the xi are random vectors. The main assumptions for a) and b) are that the errors are iid

with second moments and the n(XTX)−1 is well behaved. The strong assumptions for c) are

much stronger than those for a) and b), but the assumption of iid cases is often reasonable if

the cases come from some population.

Remark 2.2 Consider MLR model (9). Let wi = Anxi for i = 1, ..., n where An is a full

rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ

∗
xA

T
n and Σ∗

wY = AnΣ
∗
xY .

b) If An is a constant matrix, then Σw = AnΣxA
T
n and

ΣwY = AnΣxY .

c) Let β̂(u, Y ) and β(u, Y ) be the estimator and parameter from the OLS regression of

Y on u. The constant parameter vector should not depend on n. Suppose the cases are

iid and A is a constant matrix that does not depend on n. By Theorem 2.2, β̂(w, Y ) =

Σ̂
−1

wΣ̂wY = [AnΣ̂xAn]
−1AnΣ̂xY = [AnΣ̂xAn]

−1AnΣ̂xβ̂(x, Y ). If An
P→ A, Σ̂x

P→

Σx, and β̂(x, Y )
P→ β(x, Y ), then β̂(w, Y )

P→ β(w, Y ) = [AΣxA]−1AΣxβ(x, Y ).

10



A problem with OLS, is that V generally can’t be estimated if p > n since typically

(XTX)−1 does not exist. If p > n, using ϕ̂ = (XTX)−XTY is a poor estimator that

interpolates the data, where A− is a generalized inverse of A. Often the software will not

compute ϕ̂ if p > n.

2.2 OPLS and Σ̂x,Y Theory

Olive and Zhang (2024) derived the large sample theory for η̂OPLS = Σ̂xY and OPLS, in-

cluding some high dimensional tests for low dimensional quantities such as HO : βi = 0 or

H0 : βi − βj = 0. These tests depended on iid cases, but not on linearity or the constant

variance assumption. Hence the tests are useful for multiple linear regression with heterogene-

ity. Data splitting uses model selection (variable selection is a special case) to reduce the high

dimensional problem to a low dimensional problem.

Remark 2.3 The following result is useful for several multiple linear regression estimators.

Let wi = Anxi for i = 1, ..., n where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ

∗
xA

T
n and Σ∗

wY = AnΣ
∗
xY .

b) If An is a constant matrix, then Σw = AnΣxA
T
n and ΣwY = AnΣxY .

The following Olive and Zhang (2024) theorem gives the large sample theory for η̂ =

Ĉov(x, Y ), but the proof in this dissertation is new. This theory needs η = ηOPLS = Σx,Y to

exist for η̂ = Σ̂x,Y to be a consistent estimator of η. Let xi = (xi1, ..., xip)
T and let wi and zi

be defined below where

Cov(wi) = Σw = E[(xi − µx)(xi − µx)
T (Yi − µY )

2)]−ΣxYΣ
T
xY .

Then the low order moments are needed for Σ̂z to be a consistent estimator of Σw.
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Theorem 2.4 Assume the cases (xT
i , Yi)

T are iid. Assume E(xkij Y
m
i ) exist for j = 1, ..., p

and k,m = 0, 1, 2. Let µx = E(x) and µY = E(Y ). Let wi = (xi − µx)(Yi − µY ) with

sample mean wn. Let η = Σx,Y . Then a)

√
n(wn − η)

D→ Np(0,Σw),
√
n(η̂n − η)

D→ Np(0,Σw), (13)

and
√
n(η̃n − η)

D→ Np(0,Σw).

b) Let zi = xi(Yi − Y n) and vi = (xi − xn)(Yi − Y n). Then Σ̂w = Σ̂z + OP (n
−1/2) =

Σ̂v +OP (n
−1/2). Hence Σ̃w = Σ̃z +OP (n

−1/2) = Σ̃v +OP (n
−1/2).

c) Let A be a k × p full rank constant matrix with k ≤ p, assume H0 : AβOPLS = 0 is true,

and assume λ̂ P→ λ ̸= 0. Then

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). (14)

Proof. Part a) is a special case of Theorem 2.5.

b) wi = (xi − x+ x− µx)(Yi − Y + Y − µY ) =

vi + (xi − x)(Y − µY ) + (x− µx)(Yi − Y ) + (x− µx)(Y − µY ).

Thus wi −w = vi − v + ai where

ai = (xi − x)(Y − µY ) + (x− µx)(Yi − Y ) = OP (n
−1/2).

Thus

Σ̃w =
1

n

n∑
i=1

(wi−w)(wi−w)T =
1

n

n∑
i=1

(vi−v)(vi−v)T +OP (n
−1/2) = Σ̃v+OP (n

−1/2).

c) If H0 is true, then Aη = 0. Hence

√
nA(η̂ − η) =

√
nAη̂

D→ Nk(0,AΣwAT ).

12



Then λAη = 0 under H0, and

√
nλ̂Aη̂ =

√
nA(λ̂η̂ − λη) =

√
nA(β̂OPLS − βOPLS)

D→ Nk(0, λ
2AΣwAT ). □

For the following theorem, consider a subset of k distinct elements from Σ̃ or from Σ̂.

Stack the elements into a vector, and let each vector have the same ordering. For example, the

largest subset of distinct elements corresponds to

vech(Σ̃) = (σ̃11, ..., σ̃1p, σ̃22, ..., σ̃2p, ..., σ̃p−1,p−1, σ̃p−1,p, σ̃pp)
T = [σ̃jk].

For random variables x1, ..., xp, use notation such as xj = the sample mean of the xj , µj =

E(xj), and σjk = Cov(xj, xk). Let

n vech(Σ̃) = [n σ̃jk] =
n∑

i=1

[(xij − xj)(xik − xk)].

For general vectors of elements, the ordering of the vectors will all be the same and be denoted

vectors such as c̃ = [σ̃jk], c = [σjk], zi = [(xij − xj)(xik − xk)], and

wi = [(xij − µj)(xik − µk)]. Let wn =
∑n

i=1wi/n be the sample mean of the wi. Assuming

that Cov(wi) = Σw exists, then E(wi) = E(wn) = c.

The following theorem proves that sample covariance matrices are asymptotically normal.

The theorem may be a special case of the Su and Cook (2012) theory for the multivariate linear

regression estimator when there are no predictors. When p = 1, the theory gives the large

sample theory for the sample variance. See Olive (2014, pp. 276-277) and Bickel and Doksum

(2007, p. 279). The Olive and Zhang (2024) large sample theory for Σ̂xY and Σ̃xY is also a

special case. We use Cov(wi) = Σd to avoid confusion with the Σw used in Theorems 2.4

and 3.1

13



Theorem 2.5 Assume the cases xi are iid and that Cov(wi) = Σd exists. Using the above

notation with c a k × 1 vector,

i)
√
n(c̃− c)

D→ Nk(0,Σd).

ii)
√
n(ĉ− c)

D→ Nk(0,Σd).

iii) Σ̂d = Σ̂z +OP (n
−1/2) and Σ̃d = Σ̃z +OP (n

−1/2).

Proof. Note that
√
n(wn − c)

D→ Nk(0,Σd) by the multivariate central limit theorem. i)

Then

n c̃ =
∑
i

[(xij − xj)(xik − xk)] =
∑
i

[(xij − µj + µj − xj)(xik − µk + µk − xk)] =

∑
i

[(xij − µj)(xik − µk)] +
∑
i

[(xij − µj)(µk − xk)]+∑
i

[µj − xj)(xik − µk] +
∑
i

[(µj − xj)(µk − xk)] =
∑
i

wi − an

where an = [n(xj − µj)(xk − µk)] = [
√
n(xj − µj)

√
n(xk − µk)] = OP(1).

By the multivariate Slutsky’s theorem,

√
n(c̃− c) =

√
n(wn − c) + an/

√
n

D→ Nk(0,Σd)

since an/
√
n = oP (1).

iii) wi = [(xij − µj)(xik − µk)] = [(xij − xj + xj − µj)(xik − xk + xk − µk)] =

[(xij − xj)(xik − xk)] + [(xij − xj)(xk − µk)] +[(xj − µj)(xik − xk)] + [(xj − µj)(xk − µk)].

Hence wi −w = zi − z + ai where

ai = [(xij − xj)(xk − µk)] + [(xj − µj)(xik − xk)] = OP (n
−1/2).

Thus

Σ̃d =
1

n

n∑
i=1

(wi−w)(wi−w)T =
1

n

n∑
i=1

(zi−z)(zi−z)T+OP (n
−1/2) = Σ̃z+OP (n

−1/2). □
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2.3 HIGH DIMENTIONAL TESTS

As noted by Olive and Zhang (2024), the following simple testing method reduces a possibly

high dimensional problem to a low dimensional problem. Testing H0 : AβOPLS = 0 versus

H1 : AβOPLS ̸= 0 is equivalent to testing H0 : Aη = 0 versus H1 : Aη ̸= 0 where A is a

k × p constant matrix. Let Cov(Σ̂xY ) = Cov(η̂) = Σw be the asymptotic covariance matrix

of η̂ = Σ̂xY . In high dimensions where n < 5p, we can’t get a good nonsingular estimator of

Cov(Σ̂xY ), but we can get good nonsingular estimators of Cov(Σ̂uY ) = Cov((η̂i1, ..., η̂ik)T )

with u = (xi1, ..., xik)
T where n ≥ Jk with J ≥ 10. (Values of J much larger than 10 may

be needed if some of the k predictors and/or Y are skewed.) Simply apply Theorem 2.4 to

the predictors u used in the hypothesis test, and thus use the sample covariance matrix of the

vectors ui(Yi − Y ). Hence we can test hypotheses like H0 : βi − βj = 0. In particular, testing

H0 : βi = 0 is equivalent to testing H0 : ηi = σxi,Y = 0 where σxi,Y = Cov(xi, Y ).

Note that the tests with η̂ using k distinct predictors xij do not depend on other predictors,

including important predictors that were left out of the model (underfitting). Hence the tests

can have considerable resistance to underfitting and overfitting. The OPLS tests also have some

resistance to measurement error: assume that (xT
i ,u

T
i , vi, Yi)

T are iid but wi = xi + ui and

Zi = Yi + vi are observed instead of (xi, Yi). Then β̂OLS(w, Z) estimates Σ−1
wΣwZ , while

Σ̂wZ estimates Cov(x, Y ) if Cov(x, v) + Cov(u, Y ) + Cov(u, v) = 0, which occurs, for

example, if x v, u Y , and u v.

The tests with β̂OPLS = λ̂η̂ and k predictor variables may not be as good as the tests with η̂

since λ̂ needs to be a good estimator of λ. Note that λ̂ can be a good estimator if η̂Tx is a good

estimator of ηTx. However, the test statistic for testing H0 : AβOPLS = 0 from Theorem
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2.4c) is the same as the test statistic for testing H0 : AΣxY = 0 from Theorem 2.4a) since

nλ̂Σ̂
T

xYA
T (λ̂2AΣ̂wAT )−1Aλ̂Σ̂xY = nΣ̂

T

xYA
T (AΣ̂wAT )−1AΣ̂xY

D→ χ2
k

if H0 is true.

Theorem 2.5 can be used to test H0 : Ac = 0, which can reduce a high dimensional

problem to a low dimensional problem. Suppose n > 10k, p > n, and Aβ = (βi1 , ..., βik)
T

with i1, i2, ..., ik distinct. Then Theorem 3.1a) in chapter 3 can be used since no inverse matrices

are required, but the asymptotic covariance matrices of Theorem 3.1b) and 3.1c) are much

easier to estimate.

Remark 2.4 Theorem 2.4 depends on the theory of both the sample covariance vector and

the sample covariance matrix under iid cases, not on any other model such as linearity. Suppose

the cases are iid, and the predictors have nonsingular covariance matrix Σx. Suppose a linear

model holds with Y |x = α + βTx+ e. If the iid errors e are independent of the predictors x,

then under mild conditions, linearity implies that β = βOLS and that the covariance structure

is Σx,Y = ΣxβOLS

2.4 MULTIPLE LINEAR REGRESSION WITH HETEROGENEITY

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (15)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i . In matrix form,

this model is

Y = Xβ + e,
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where Y is an n×1 vector of dependent variables, X is an n×pmatrix of predictors, β is a p×1

vector of unknown coefficients, and e is an n×1 vector of unknown errors. AlsoE(e) = 0 and

Cov(e) = Σe = diag(σ2
i ) = diag(σ2

1, ..., σ
2
n) is an n × n positive definite matrix. In Section

2.2, the constant variance assumption was used: σ2
i = σ2 for all i. Hence heterogeneity means

that the constant variance assumption does not hold. A common assumption is that the ei = σiϵi

where the ϵi are independent and identically distributed (iid) with V (ϵi) = 1. See, for example,

Zhou, Cook, and Zou (2023).

Weighted least squares (WLS) would be useful if the σ2
i were known. Since the σ2

i are not

known, ordinary least squares (OLS) is often used, but the large sample theory differs from that

given in Section 2.1. The OLS theory for MLR with heterogeneity often assume iid cases. For

the following theorem, see Romano and Wolf (2017), Freedman (1981), and White (1980).

Theorem 2.6. Assume Yi = xT
i β + ei for i = 1, ..., n where the cases (Yi,x

T
i )

T are

iid with “fourth moments,” Y = Xβ + e, the ei = ei(xi) are independent, E[ei|xi] = 0,

V −1 = E[xix
T
i ], E[e

2
i |xi] = v(xi) = σ2

i , Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω =

E[v(xi)xix
T
i ] = E[e2ixix

T
i ]. Then

√
n(β̂OLS − β)

D→ Np(0,V ΩV ). (16)

Remark 2.5. a) White (1980) showed that the iid cases assumption can be weakened.

Assume the cases are independent,

V n =
1

n

n∑
i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑
i=1

E[e2ixix
T
i ]

P→ Ω.
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Then

√
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 2.6,

1

n
XTX =

1

n

n∑
i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1, ..., σ

2
n) = Σe and D̂ = diag(r21, ..., r

2
n) where r2i is the ith residual

from OLS regression of Y on X . Then D̂ is not a consistent estimator of D. The following

theorem, due to White (1980), shows that D̂ can be used to get a consistent estimator of Ω.

This result leads to the sandwich estimators.

Theorem 2.7 Under strong regularity conditions,

1

n
(XTD̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence

n(XTX)−1(XTD̂X)(XTX)−1 P→ V ΩV .

Now write the linear model as Y = α + xTβ + e. Under iid cases, OPLS theory does not

depend on whether the error variance is constant or not. Hence Theorem 2.4 and the Section

2.3 theory still applies. If the cases are iid and linearity holds (with or without heterogeneity),

then under reasonable conditions, β = βOLS = Σ−1
x ΣxY . Hence

ΣxY = Σxβ, (17)

as noted by Olive and Zhang (2024) for when the iid errors ei had constant variance. This result

is useful for simulation.
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CHAPTER 3

SOME LARGE SAMPLE THEORY FOR MMLE

The MMLE is interesting since if each predictor satisfies a marginal model, then the marginal

model theory can be used to find a confidence interval for βi for i = 1, ..., p where βi is

the ith component of βMMLE . For high dimensional multiple linear regression, the above

regularity condition is weaker than the common assumption that the cases (Yi,x
T
i )

T are iid

from a multivariate normal distribution. For multiple linear regression, let V = diag(Σx) =

diag(σ2
1, ..., σ

2
p). For iid cases, βMMLE = V −1Σx,Y = V −1ΣxβOLS , and βMMLE = βOLS

if βOLS = 0, or if (V −1 − Σ−1
x )Σx,Y = 0, or if βOLS is an eigenvector of V −1Σx with

eigenvalue 1 where V = diag(σ2
1, ..., σ

2
p) = diag(Σx).

For standardized predictors, let sj and σj be the sample and population standard deviations

of xj . Let ti = D̂xi = diag(1/s1, ..., 1/sp)xi and ui = Dxi = diag(1/σ1, ..., 1/σp)xi. Note

that
√
n(Σ̂t,Y −Σu,Y ) =

√
n(Σ̂t,Y − Σ̂u,Y ) +

√
n(Σ̂u,Y −Σu,Y ) = OP (1) +

√
n(Σ̂u,Y −

Σu,Y ) under mild regularity conditions for iid cases. Hence Σ̂t,Y is a
√
n consistent estimator

of Σu,Y that is not asymptotically equivalent to Σ̂u,Y unless Σx,Y = 0. Note that V̂
−1

= D̂
2

and V −1 = D2. Olive and Zhang (2024) proved that Σ̂t,Y is a
√
n consistent estimator of

Σu,Y . For iid cases, βMMLE(t, Y ) = Σt,Y = ηOPLS(t, Y ).

By Theorems 2.4 and 2.5 with iid xi replaced by iid (xT
i , Yi)

T ,

√
n





s21

...

s2p

Σ̂xY


−



σ2
1

...

σ2
p

ΣxY




=

√
n(ĉ− c)

D→ N2p

0,

 Σv Σv,w

Σw,v Σw


 (18)
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Let

g(c) = βMMLE =


g1(c)

...

gp(c)

 =


σ1Y /σ

2
1

...

σpY /σ
2
p

 .

Let Dg = (D1,D2) where D1 = diag(−σ1Y /σ4
1,−σ2Y /σ4

2, ...,−σpY /σ4
p) and

D2 = diag(1/σ2
1, 1/σ

2
2, ..., 1/σ

2
p). Typically Σ̂xij

Y = OP (1), but if Σxij
Y = 0, then

Σ̂xij
Y = OP (n

−1/2).

Theorem 3.1 Let the cases (xT
i , Yi)

T be iid such that Equation (18) holds. Then a)

√
n(β̂MMLE − βMMLE)

D→ Np(0,ΣMMLE) ∼ Np

0,Dg

 Σv Σv,w

Σw,v Σw

DT
g

 .

Let A be a full rank k × p constant matrix such that Aβ = (βi1 , ..., βik)
T with i1, i2, ..., ik

distinct. Hence the jth row of A has a 1 in the ijth position and zeroes elsewhere. Assume

H0 : AβMMLE = 0. Then b)

√
nA(β̂MMLE − βMMLE)

D→ Nk(0,AD2ΣwD2AT ).

c) For standardized predictors, assume H0 : AβMMLE(t, Y ) = AΣt,Y = 0. Then

√
nA(β̂MMLE(t, Y )− βMMLE(t, Y )) =

√
nA(Σ̂t,Y −Σu,Y )

D→ Nk(0,ADΣwDAT ).

Proof. Theorem 3.1a) holds by the multivariate delta method.

b) Note that
√
nA(β̂MMLE − βMMLE) =

√
nA(D̂

2
Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
Σ̂xY −D2Σ̂xY +D2Σ̂xY −D2ΣxY ) =

√
nA(D̂

2
−D2)Σ̂xY +

√
nAD2(Σ̂xY −ΣxY )
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where by Theorem 2.4,

√
nAD2(Σ̂xY −ΣxY )

D→ Nk(0,AD2ΣwD2AT ).

Now
√
nA(D̂

2
−D2)Σ̂xY =

A


√
n
(

1
s21
− 1

σ2
1

)
Σ̂x1Y

...

√
n
(

1
s2p

− 1
σ2
p

)
Σ̂xpY

 =


√
n
(

1
s2i1

− 1
σ2
i1

)
Σ̂xi1

Y

...

√
n

(
1
s2ik

− 1
σ2
ik

)
Σ̂xik

Y

 = oP (1)

if (Σxi1
Y , ...,Σxik

Y )
T = 0. Hence the result follows if H0 is true.

c) Note that
√
nA(Σ̂t,Y −Σu,Y ) =

√
nA(Σ̂t,Y − Σ̂u,Y + Σ̂u,Y −Σu,Y ) =

√
nA(Σ̂t,Y − Σ̂u,Y ) +

√
nA(Σ̂u,Y −Σu,Y ) where by Theorem 2.4 and Remark 2.3,

√
nA(Σ̂u,Y −Σu,Y ) =

√
nAD(Σ̂x,Y −Σx,Y )

D→ Nk(0,ADΣwDAT ).

Now
√
nA(Σ̂t,Y − Σ̂u,Y ) =

√
nA(D̂Σ̂x,Y −DΣ̂x,Y ) =

√
nA(D̂ −D)Σ̂x,Y =

A


√
n
(

1
s1
− 1

σ1

)
Σ̂x1Y

...

√
n
(

1
sp

− 1
σp

)
Σ̂xpY

 =


√
n
(

1
si1

− 1
σi1

)
Σ̂xi1

Y

...

√
n
(

1
sik

− 1
σik

)
Σ̂xik

Y

 ,

and
√
nA(Σ̂t,Y − Σ̂u,Y ) = op(1) if (Σxi1

Y , ...,Σxik
Y )

T = 0. Hence if H0 is true, then

√
nA(Σ̂t,Y −Σu,Y )

D→ Nk(0,ADΣwDAT ). □

The following theorem is from Olive and Zhang (2024). Note that Σu is the correlation matrix

of x.

Theorem 3.2 Consider the MMLE for multiple linear regression. Suppose the cases (Yi,xT
i )

T

are iid from some distribution. Let wi be the standardized predictors and assume Σ̂w,Y
P→
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Σu,Y and Σ̂w
P→ Σu where the Σ̂w are nonsingular for large enough n and Σu is nonsin-

gular.

a)β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = η̂OPLS(w, Y )
P→ Σu,Y =

ηOPLS(u, Y ) = βMMLE = Σu[Σu]
−1Σu,Y = ΣuβOLS(u, Y ).

b) Let βOLS = βOLS(u, Y ). Then βMMLE = ΣuβOLS = βOLS if βOLS = 0 or if βOLS

is an eigenvector of Σu with eigenvalue = 1.

The oracle property for model selection, including variable selection, is P (Imin = S) → 1

as n→ ∞ for model (8). For this property to hold, S needs to be one of the subsets considered

by the model selection method with probability going to 1 as n → ∞. For fixed p and “fast”

estimators such as lasso and forward selection, the oracle property tends to hold if the predictors

are nearly orthogonal. See Wieczorek and Lei (2022) for references. The MMLE can be used

for variable selection with OLS by taking the k predictors with the largest |β̂j,MMLE|. The

oracle property for the MMLE tends not to hold for correlated predictors by Theorem 3.2.

MMLE variable selection often gives a useful submodel since predictors that satisfy a marginal

regression model with the response Y (such as SLR) will often satisfy a regression model with

the response Y (such as multiple linear regression).

If η = ηOPLS = ΣxY and the cases are iid, then inference for the single index model can

be done using Theorem 2.4 and Section 2.3.
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CHAPTER 4

SINGLE INDEX MODELS

The distribution of Y |ηTx follows a single index model

Y |ηTx = Y = m(ηTx) + e

where E(Y |ηTx) = m(ηTx), V (Y |ηTx) = v(ηTx), and e = Y − m(ηTx). Note that the

error variance may not be constant. The model is called a single index model since m depends

on a single linear combination ηTx. A multi-index model would use m(ηT
1 x, ...,η

T
kx) where

k > 1.

If η = ηOPLS = ΣxY and the cases are iid, then inference for the single index model can

be done using Theorem 2.4 and Section 2.3. When the cases are iid, the OPLS single index

model estimators can have considerable resistance to overfitting, underfitting, heterogeneity,

measurement error, highly correlated predictors, and the number of predictors.

If η̂OPLS = Σ̂xY is a good estimator of ΣxY , which can occur if n ≥ 10p, then the OPLS

single index model can be visualized with a response plot of Σ̂
T

xY x versus Y on the vertical

axis with a scatterplot smoother added as a visual aid. If the variability about the scatterplot

smoother is less than that about any horizontal line, then the model may be useful compared to

simply doing inference on the Y1, ..., Yn without any predictors.

If Y |x = m(α + βTx) + e and if the predictors xi are iid from a large class of elliptically

contoured distributions, then Li and Duan (1989) and Chen and Li (1998) showed that, under

regularity conditions, βOLS = cβ. Hence ΣxY = cΣxβ. Thus ΣxY = dβ if Σx = τ 2Ip for

some constant τ 2 > 0. If β = βOLS in this case, then βi = 0 implies that Cov(xi, Y ) = 0.
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The constant c is typically nonzero unless m has a lot of symmetry about the distribution of

α + βTx. Chang and Olive (2010) considered OLS tests for these models. Simulation with

Σ̂xY can be difficult if the population values of c and d are unknown.
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CHAPTER 5

OUTLIER DIAGNOSTICS

Assume the cases wi = (Yi,x
T
i )

T are iid. A simple method to get an outlier resistant

estimator Σ̂xY is to compute an outlier resistant dispersion or covariance estimator

Σ̂w =

 Σ̂Y Σ̂Yx

Σ̂xY Σ̂x

 .

The function rcovxy uses the Olive (2017) RMVN and covmb2 estimators for Σ̂w. The

RMVN estimator has much greater outlier resistance than the Olive (2004) MBA estimator.

Also see Zhang, Olive, and Ye (2012). The covmb2 estimator can be computed in both low

and high dimensions.

Another method to get an outlier resistant estimator Σ̂xY is to use the following identity.

If X and Y are random variables, then

Cov(X,Y) = [Var(X + Y)− Var(X− Y)]/4.

Then replace V ar(W ) by [σ̂(W )]2 where σ̂(W ) is a robust estimator of scale or standard

deviation and W = X + Y or W = X − Y . We used σ̂(W ) = 1.483MAD(W ) where

MAD(W ) =MAD(n) =MAD(W1, ...,Wn). Hence

Ĉov(X, Y ) = [[1.483MAD(X + Y )]2 − [1.483MAD(X − Y )]2]/4. (19)

This technique has been used to obtain robust dispersion matrices. See Maronna and Zamar

(2002) and Mehrota (1995).

Some notation is needed to defineMAD(n). If the data set Y1, ..., Yn is arranged in ascend-

ing order from smallest to largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order
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statistic and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5,

and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3 where the sample size

n = 5. The sample median

MED(n) = Y((n+1)/2) if n is odd, (20)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (21)

Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of the observations

are within a distance MAD(n) of MED(n) and at least half of the observations are a distance

of MAD(n) or more away from MED(n). Like the standard deviation, MAD(n) is a measure

of spread.

Example 1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5 and MAD(n) = 2 =

MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Then the outlier resistant estimator uses Equation (19) with

Σ̂xY =


Ĉov(X1, Y )

...

Ĉov(Xp, Y )

 .
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CHAPTER 6

EXAMPLES AND SIMULATIONS

Example. This example was used by Olive and Zhang (2024). The Hebbler (1847) data

was collected from n = 26 districts in Prussia in 1843. Let Y = the number of women married

to civilians in the district with a constant and predictors x1 = the population of the district in

1843, x2 = the number of married civilian men in the district, x3 = the number of married men

in the military in the district, and x4 = the number of women married to husbands in the military

in the district. Sometimes the person conducting the survey would not count a spouse if the

spouse was not at home. Hence Y and x2 are highly correlated but not equal. Similarly, x3

and x4 are highly correlated but not equal. Then β̂OLS = (0.00035, 0.9995,−0.2328, 0.1531)T ,

forward selection with OLS and the Cp criterion used β̂I,0 = (0, 1.0010, 0, 0)T , lasso had β̂L =

(0.0015, 0.9605, 0, 0)T , lasso variable selection β̂LV S = (0.00007, 1.006, 0, 0)T , β̂MMLE =

(0.1782, 1.0010, 48.5630, 51.5513)T , and β̂OPLS = (0.1727, 0.0311, 0.00018, 0.00018)T . The

fitted values from the MMLE estimator tend not to estimate Y . Let W = xT β̂
T

MMLE and

perform the simple linear regression of Y on W to get the reweighted or scaled estimators α̂R

and b. Then β̂R = bβ̂MMLE. Then the fitted values Ŷi = α̂R+xT
i β̂R can be used for prediction.

If the scaled predictors u have unit sample variances, then β̂OPLS(u, Y ) = β̂R(u, Y ).

Next, we describe a small WLS simulation study similar to that done by Rajapaksha and

Olive (2024). The simulation used ψ = 0, 0.5, 1/
√
p, and 0.9; and k = 1, p − 2, and p − 1

where k and ψ are defined in the following paragraph.

Let u = (1 xT )T where x is the (p − 1) × 1 vector of nontrivial predictors. In the sim-

ulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the m = p − 1 elements
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of the vector wi are independent and identically distributed (iid) N(0,1). Let the m × m

matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i ̸= j. Then the

vector xi = Awi so that Cov(xi) = Σx = AAT = (σij) where the diagonal entries

σii = [1 + (m − 1)ψ2] and the off diagonal entries σij = [2ψ + (m − 2)ψ2]. Hence the

correlations are cor(xi, xj) = ρ = (2ψ+ (m− 2)ψ2)/(1 + (m− 1)ψ2) for i ̸= j where xi and

xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p → ∞ where c > 0. As

ψ gets close to 1, the predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let

Yi = 1+ 1xi,1 + · · ·+ 1xi,k + ei for i = 1, ..., n. Hence α = 1 and ϕ = (1, .., 1, 0, ..., 0)T with

k + 1 ones and p− k − 1 zeros.

The zero mean iid errors ẽi = ϵi were iid from five distributions: i) N(0,1), ii) t3, iii)

EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is

not symmetric. Then wtype = 1 if ei = ϵi (the WLS model is the OLS model), 2 if ei =

|xT
i β − 5|ϵi, 3 if ei =

√
(1 + 0.5x2i2)ϵi, 4 if ei = exp[1 + log(|xi2|) + ... + log(|xip|)]ϵi, 5 if

ei = [1+ log(|xi2|)+ ...+ log(|xip|)]ϵi, 6 if ei = [exp([log(|xi2|)+ ...+ log(|xip|)]/(p− 1))]ϵi,

7 if ei = [[log(|xi2|)+ ...+log(|xip|)]/(p−1)]ϵi, The last four types were special cases of types

suggested by Romano and Wolf (2017). For type 6, the weighting function is the geometric

mean of |xi2|, ..., |xip|. For n = 100 and p = 100 with ψ ̸= 0, the CI lengths were too long for

wtype = 4.

When ψ = 0 and wtype = 1, the OLS confidence intervals for βi should have length near

2t96,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and the iid zero mean errors have

variance σ2.

The simulation computed ηOPLS = ΣxY = (η1, ..., ηp−1)
T = ΣxβOLS where Σx =

AAT is a (p − 1) × (p − 1) matrix. Storage problems can occur if p > 10000. Then the
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Theorem 2.4 large sample 100(1− δ) CI is η̂i ± tn−1,1−δ/2SE(η̂i) could be computed for each

ηi. If 0 is not in the confidence interval, then H0 : ηi = 0 and H0 : βiE = 0 are both rejected

for estimators E = OPLS and MMLE. In the simulations with n = 50, p = 4, and ψ > 0, the

maximum observed undercoverage was about 0.05 = 5%. Hence the program has the option

to replace the cutoff tn−1,1−δ/2 by tn−1,up where up = min(1− δ/2 + 0.05, 1− δ/2 + 2.5/n)

if δ/2 > 0.1,

up = min(1− δ/4, 1− δ/2 + 12.5δ/n)

if δ/2 ≤ 0.1. If up < 1 − δ/2 + 0.001, then use up = 1 − δ/2. This correction factor was

used in the simulations for the nominal 95% CIs, where the correction factor uses a cutoff that

is between tn−1,0.975 and the cutoff tn−1,0.9875 that would be used for a 97.5% CI. The nominal

coverage was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests coverage

is close to the nominal value. Pötscher and Preinerstorfer (2023) noted that WLS tests tend to

reject H0 too often (liberal tests with undercoverage).

To summarize the p − 1, confidence intervals, the average length of the p − 1 confidence

intervals over 5000 runs was computed. Then the minimum, mean, and maximum of the

average lengths was computed. The proportion of times each confidence interval contained its

population parameter was computed. These proportions were the observed coverages of the

p− 1 confidence intervals. Then the minimum observed coverage was found. The percentage

of the observed coverages that were ≥ 0.9, 0.92, 0.93, 0.94, and 0.96 were also recorded. The

test H0 : (ηi, ηj)
T = (ηi0, ηj0)

T was also done where H0 was true. The coverage of the test was

recorded and a correction factor was not used.

For Table 1, the simulation used the function oplsssim with n, p, k, etype, and wtype as
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described above, and ψ = psi.

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(oplssim)

function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,

type = 1, psi = 0, cfac = "T", indices = c(1, 2), alph = 0.05)

oplswsim(n=100,p=4,k=1,nruns=5000,etype=1,wtype=1,psi=0)

$covxy #sample

[,1] [,2] [,3]

[1,] 0.9168954 0.09018221 0.2160901

$etaopls #population Cov(x,y)

[,1] [,2] [,3]

[1,] 1 0 0

$oplslen

[1] 0.7128272 0.5856759 0.5865421

$oplscov

[1] 0.9464 0.9628 0.9626

$lens #nin, mean, max

[1] 0.5856759 0.6283484 0.7128272

$covprop
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[1] 0.9464000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667

$testcov

[1] 0.92

$up

[1] 0.98125

oplswsim(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0)

$lens

[1] 0.5845339 0.5890543 0.7142725

$covprop

[1] 0.9468000 1.0000000 1.0000000 1.0000000 1.0000000 0.7373737

$testcov

[1] 0.919

$up

[1] 0.98125
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Two lines per run scenario are given in each table. For the first two lines in Table 1, the

simulation used n = 100, p = 100, k = 1, etype = 1, and ψ = psi = 0. One hundred confi-

dence intervals were made and one test. The first line summarizes the results. The minimum

coverage was 0.9468. Then the coverage proportions ≥ 0.9, 0.92, 0.93, and 0.94 all turned out

to be 1. The coverage proportion ≥ 0.96 was 0.7374. Hence for this simulation scenario, the

correction factor was a bit too large. For the test, the coverage was 0.9190, and a correction

factor would have helped. Tables 1-14 illustrate Theorem 2.4a). The proportion of times ηi

was in the confidence interval η̂i ± tn−1,upSE(η̂i) was recorded, and the test statistic

n(Σ̂xI
−ΣxI

)T (AΣ̂wAT )−1(Σ̂xI
−ΣxI

)T
D→ χ2

2

where A was a 2× p matrix with A11 = A22 = 1 and all other entries = 0.

Table 9 illustrates Theorem 2.4a), used wtype=2 and k=99, and had more variability than

most combinations of wtype and k. For the ten different error type and ψ combinations, the

minimum coverage of the 99 confidence intervals for ηi = Cov(Xi, Y ) ranged from 0.922 to

0.970. Most wtype and k combinations had a smaller range of coverages. The confidence in-

tervals used a correction factor and overcoverage wiith coverage near 0.965 was more common

than 3% undercoverage that occurs in Table 9. In line 1 of Table 9, the minimum coverage

of the 99 CIs was 0.9564. Hence the proportion of the 99 CIs that had observed coverage

≥ 0.9, 0.92, 0.93 and 0.94 was 1. The proportion of CIs that had coverage ≥ 0.96 was 0.8989

(89/99 CIs). The CI average lengths were much larger for ψ = 0.1 than for ψ = 0. The test

H0 : (ηi, ηj)
T = (ηi0, ηj0)

T did not use a correction factor, and coverage < 0.94 was rather

common. The test coverage in Table 9 was worse than that for most combinations of wtype

and k.
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Table 1: Cov(x,Y), wtype=1, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9468 1.0 1.0 1.0 1.0 0.7374 0.9190

len 1 0.5845 0.5891 0.7143

100 100 0.1 0.9426 1.0 1.0 1.0 1.0 0.0 0.9194

len 1 1.1108 1.1161 1.2891

100 100 0 0.9488 1.0 1.0 1.0 1.0 0.9596 0.9232

len 2 0.7951 0.8021 0.8961

100 100 0.1 0.9462 1.0 1.0 1.0 1.0 0.0101 0.9170

len 2 1.3471 1.3551 1.5051

100 100 0 0.9514 1.0 1.0 1.0 1.0 0.8586 0.9278

len 3 0.5835 0.5871 0.7124

100 100 0.1 0.9452 1.0 1.0 1.0 1.0 0.0 0.9162

len 3 1.1115 1.1167 1.2949

100 100 0 0.9400 1.0 1.0 1.0 1.0 0.7778 0.9094

len 4 0.4777 0.4810 0.6282

100 100 0.1 0.9410 1.0 1.0 1.0 1.0 0.0 0.9166

len 4 1.0067 1.0116 1.2038

100 100 0 0.9668 1.0 1.0 1.0 1.0 1.0 0.9526

len 5 1.3452 1.3573 1.4289

100 100 0.1 0.9588 1.0 1.0 1.0 1.0 0.9798 0.9454

len 5 2.0437 2.0618 2.1782
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Table 2: Cov(x,Y), wtype=2, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9540 1.0 1.0 1.0 1.0 0.7878 0.9324

len 1 1.7563 1.7642 1.8868

100 100 0.1 0.9516 1.0 1.0 1.0 1.0 0.4040 0.9338

len 1 2.7072 2.7218 2.9342

100 100 0 0.9578 1.0 1.0 1.0 1.0 0.9898 0.9384

len 2 2.8027 2.8309 2.9481

100 100 0.1 0.9574 1.0 1.0 1.0 1.0 0.9595 0.9406

len 2 4.1905 4.2234 4.4600

100 100 0 0.9570 1.0 1.0 1.0 1.0 0.9898 0.942

len 3 1.7261 1.7380 1.8682

100 100 0.1 0.9574 1.0 1.0 1.0 1.0 0.8585 0.9468

len 3 2.6824 2.6975 2.8966

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.6667 0.9332

len 4 1.0700 1.0751 1.1920

100 100 0.1 0.9496 1.0 1.0 1.0 1.0 0.0202 0.9242

len 4 1.7528 1.7606 1.9476

100 100 0 0.9696 1.0 1.0 1.0 1.0 1.0 0.9630

len 5 5.2304 5.2805 5.4419

100 4 0.1 0.9710 1.0 1.0 1.0 1.0 1.0 0.9670

len 5 7.6531 7.7255 7.9985
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Table 3: Cov(x,Y), wtype=3, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9410 1.0 1.0 1.0 1.0 0.8181 0.9128

len 1 0.7115 0.7195 1.0012

100 100 0.1 0.9398 1.0 1.0 1.0 0.9898 0.0 0.9012

len 1 1.5219 1.5328 1.8982

100 100 0 0.9524 1.0 1.0 1.0 1.0 0.9696 0.9324

len 2 1.0343 1.0478 1.4465

100 100 0.1 0.9474 1.0 1.0 1.0 1.0 0.0303 0.9230

len 2 2.1355 2.1565 2.6681

100 100 0 0.9502 1.0 1.0 1.0 1.0 0.9292 0.9188

len 3 0.7042 .7117 0.9828

100 100 0.1 0.9360 1.0 1.0 1.0 0.9898 0.0 0.9078

len 3 1.4980 1.5095 1.8627

100 100 0 0.9316 1.0 1.0 1.0 0.9898 0.7979 0.8960

len 4 0.5313 0.5358 0.7431

100 100 0.1 0.9336 1.0 1.0 1.0 0.7474 0.0 0.9008

len 4 1.1658 1.1732 1.4367

100 100 0 0.9696 1.0 1.0 1.0 1.0 1.0 0.9576

len 5 1.8131 1.8370 2.4581

100 100 0.1 0.9670 1.0 1.0 1.0 1.0 1.0 0.9528

len 5 3.6615 3.7218 4.6064
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Table 4: Cov(x,Y), wtype=4, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9476 1.0 1.0 1.0 1.0 0.7272 0.9142

len 1 0.4135 0.4168 0.5810

100 100 0 0.9456 1.0 1.0 1.0 1.0 0.7373 0.9126

len 2 0.4127 0.4162 0.5804

100 100 0 0.9442 1.0 1.0 1.0 1.0 0.7878 0.9114

len 3 0.4140 0.4171 0.5826

100 100 0 0.9446 1.0 1.0 1.0 1.0 0.7778 0.9332

len 4 0.4131 0.4170 0.5814

100 100 0 0.9492 1.0 1.0 1.0 1.0 0.8282 0.9216

len 5 0.4131 0.4175 0.5823
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Table 5: Cov(x,Y), wtype=5, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7676 0.9404

len 1 25.5793 25.6706 25.7814

100 100 0.1 0.9600 1.0 1.0 1.0 1.0 1.0 0.9504

len 1 31.6712 31.7842 31.9120

100 100 0 0.9596 1.0 1.0 1.0 1.0 0.9898 0.9516

len 2 41.4167 41.7714 42.0956

100 100 0.1 0.9626 1.0 1.0 1.0 1.0 1.0 0.9480

len 2 50.2093 50.9155 51.3319

100 100 0 0.9588 1.0 1.0 1.0 1.0 0.9090 0.9448

len 3 25.0352 25.2252 25.3880

100 100 0.1 0.9626 1.0 1.0 1.0 1.0 1.0 0.9508

len 3 30.7604 30.9600 31.1437

100 100 0 0.9524 1.0 1.0 1.0 1.0 0.6969 0.8960

len 4 14.8623 14.9086 14.9658

100 100 0.1 0.9584 1.0 1.0 1.0 1.0 0.9590 0.9480

len 4 18.4957 18.5544 18.6331

100 100 0 0.9704 1.0 1.0 1.0 1.0 1.0 0.9670

len 5 78.0315 79.0563 80.0812

100 100 0.1 0.9710 1.0 1.0 1.0 1.0 1.0 0.9682

len 5 93.3959 94.3886 95.3620

37



Table 6: Cov(x,Y), wtype=6, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9416 1.0 1.0 1.0 1.0 0.8080 0.9096

len 1 0.4699 0.4739 0.6227

100 100 0.1 0.9334 1.0 1.0 1.0 0.4747 0.0 0.9014

len 1 1.2369 1.2454 1.3987

100 100 0 0.9494 1.0 1.0 1.0 1.0 0.8888 0.9176

len 2 0.5554 0.5610 0.6942

100 100 0.1 0.9448 1.0 1.0 1.0 1.0 0.0 0.9218

len 2 1.6019 1.6122 1.7471

100 100 0 0.9440 1.0 1.0 1.0 1.0 0.6868 0.9086

len 3 0.4707 0.4739 0.6246

100 100 0.1 0.9378 1.0 1.0 1.0 0.8788 0.6464 0.9042

len 3 1.2358 1.2417 1.4033

100 100 0 0.9458 1.0 1.0 1.0 1.0 0.7878 0.9128

len 4 0.4340 0.4372 0.5977

100 100 0.1 0.9360 1.0 1.0 1.0 0.9393 0.0 0.9088

len 4 1.0581 1.0636 1.2480

100 100 0 0.9484 1.0 1.0 1.0 1.0 0.9898 0.9318

len 5 0.8097 0.8192 0.9165

100 100 0.1 0.9598 1.0 1.0 1.0 1.0 1.0 0.9370

len 5 2.5359 2.5600 2.6475
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Table 7: Cov(x,Y), wtype=7, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9430 1.0 1.0 1.0 1.0 0.7878 0.9134

len 1 0.4907 0.4941 0.6380

100 100 0.1 0.9380 1.0 1.0 1.0 0.9898 0.0 0.9092

len 1 0.9913 0.9972 1.1877

100 100 0 0.9434 1.0 1.0 1.0 1.0 0.9292 0.9184

len 2 0.5999 0.6052 0.7298

100 100 0.1 0.9422 1.0 1.0 1.0 1.0 0.0 0.9154

len 2 1.0775 1.0841 1.2653

100 100 0 0.9406 1.0 1.0 1.0 1.0 0.7676 0.9130

len 3 0.4901 0.4934 0.6395

100 100 0.1 0.9430 1.0 1.0 1.0 1.0 0.0 0.9114

len 3 0.9984 1.0040 1.1961

100 100 0 0.9454 1.0 1.0 1.0 1.0 0.8080 0.9186

len 4 0.4412 0.4447 0.6032

100 100 0.1 0.9416 1.0 1.0 1.0 1.0 0.0 0.9102

len 4 0.9632 0.9695 1.1692

100 100 0 0.9614 1.0 1.0 1.0 1.0 1.0 0.9446

len 5 0.9216 0.9292 1.0151

100 100 0.1 0.9542 1.0 1.0 1.0 1.0 0.4949 0.9284

len 5 1.3608 1.3701 1.5251
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Table 8: Cov(x,Y), wtype=1, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9524 1.0 1.0 1.0 1.0 0.7272 0.9470

len 1 4.1706 4.1835 4.1997

100 100 0.1 0.9382 1.0 1.0 1.0 0.9797 0.0 0.9194

len 1 78.8311 79.0693 79.2988

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7070 0.9382

len 2 4.2071 4.2216 4.2372

100 100 0.1 0.9394 1.0 1.0 1.0 0.9898 0.0 0.9130

len 2 78.6014 78.8947 79.1805

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.6565 0.9342

len 3 4.1505 4.1680 04.1848

100 100 0.1 0.9410 1.0 1.0 1.0 1.0 0.0 0.9128

len 3 78.4876 78.7667 79.0276

100 100 0 0.9528 1.0 1.0 1.0 1.0 0.7575 0.9454

len 4 4.1470 4.1621 4.1768

100 100 0.1 0.9362 1.0 1.0 1.0 0.9191 0.0 0.9114

len 4 78.3503 78.6564 78.9038

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.7676 0.9396

len 5 4.3468 4.3664 4.3937

100 100 0.1 0.9388 1.0 1.0 1.0 0.9797 0.0 0.9196

len 5 78.5803 78.9242 79.1622
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Table 9: Cov(x,Y), wtype=2, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9564 1.0 1.0 1.0 1.0 0.8989 0.9500

len 1 5.9909 6.0312 6.0628

100 100 0.1 0.9294 1.0 1.0 1.0 0.9294 0.0 0.8996

len 1 118.7273 119.1710 119.6229

100 100 0 0.9592 1.0 1.0 1.0 1.0 0.9696 0.9444

len 2 8.153728 8.2505 8.3430

100 100 0.1 0.9400 1.0 1.0 1.0 1.0 0.0 0.9122

len 2 162.7834 164.0093 165.4210

100 100 0 0.9566 1.0 1.0 1.0 1.0 0.8383 0.9488

len 3 5.9832 6.0169 6.0547

100 100 0.1 0.9336 1.0 1.0 1.0 0.6060 0.0 0.9058

len 3 116.9208 117.5406 118.1560

100 100 0 0.9566 1.0 1.0 1.0 1.0 0.8181 0.9406

len 4 4.8333 4.8636 4.8995

100 100 0.1 0.9224 1.0 1.0 0.7878 0.0 0.0 0.8940

len 4 93.5389 93.9788 94.40372

100 100 0 0.9702 1.0 1.0 1.0 1.0 1.0 0.9426

len 5 13.6393 13.8106 14.1451

100 100 0.1 0.9606 1.0 1.0 1.0 1.0 1.0 0.9426

len 5 270.4977 272.8313 275.7340
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Table 10: Cov(x,Y), wtype=3, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9540 1.0 1.0 1.0 1.0 0.6868 0.9408

len 1 4.1677 4.1883 4.2386

100 100 0.1 0.9402 1.0 1.0 1.0 1.0 0.0 0.9168

len 1 78.5653 78.8622 79.1832

100 100 0 0.9554 1.0 1.0 1.0 1.0 0.6868 0.9414

len 2 4.2571 4.2790 4.3870

100 100 0.1 0.9360 1.0 1.0 1.0 0.9797 0.0 0.9110

len 2 78.46492 78.8270 79.0445

100 100 0 0.9512 1.0 1.0 1.0 1.0 0.7575 0.9472

len 3 4.1801 4.1968 4.2446

100 100 0.1 0.9364 1.0 1.0 1.0 0.9494 0.0 0.9112

len 3 78.6214 78.9302 79.1963

100 100 0 0.9546 1.0 1.0 1.0 1.0 0.6363 0.9450

len 4 4.1486 4.1697 4.1959

100 100 0.1 0.9366 1.0 1.0 1.0 0.9292 0.0 0.9130

len 4 78.7364 78.9669 79.2669

100 100 0 0.9558 1.0 1.0 1.0 1.0 0.7575 0.9414

len 5 4.5517 4.5770 4.9071

100 100 0.1 0.9342 1.0 1.0 1.0 0.9595 0.0 0.9144

len 5 78.7625 78.9909 79.1899
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Table 11: Cov(x,Y), wtype=4, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.7676 0.9398

len 1 4.1466 4.1640 4.1790

100 100 0 0.9540 1.0 1.0 1.0 1.0 0.7070 0.9432

len 2 4.1328 4.1482 4.1704

100 100 0 0.9534 1.0 1.0 1.0 1.0 0.7070 0.9434

len 3 4.1328 4.1482 4.1704

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.6363 0.9418

len 4 4.1361 4.1537 4.1723

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6767 0.9430

len 5 4.1453 4.1647 4.1797
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Table 12: Cov(x,Y), wtype=5, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9544 1.0 1.0 1.0 1.0 0.7878 0.9446

len 1 25.9105 26.0309 26.1530

100 100 0.1 0.9370 1.0 1.0 1.0 0.8585 0.0 0.9142

len 1 84.0396 84.3577 84.6274

100 100 0 0.9594 1.0 1.0 1.0 1.0 0.9898 0.9532

len 2 41.7302 42.0439 42.3989

100 100 0.1 0.9378 1.0 1.0 1.0 0.9494 0.0 0.9120

len 2 93.6379 93.9699 94.3939

100 100 0 0.9592 1.0 1.0 1.0 1.0 0.9696 0.9448

len 3 25.4353 5.5958 25.7366

100 100 0.1 0.9372 1.0 1.0 1.0 0.8383 0.0 0.9100

len 3 83.9672 84.2346 84.5139

100 100 0 0.9526 1.0 1.0 1.0 1.0 0.7474 0.9486

len 4 15.4105 15.4812 15.52944

100 100 0.1 0.9380 1.0 1.0 1.0 0.9292 0.0 0.9116

len 4 80.3214 80.6125 80.8487

100 100 0 0.9690 1.0 1.0 1.0 1.0 1.0 0.9666

len 5 78.6979 79.5798 80.5326

100 100 0.1 0.9518 1.0 1.0 1.0 1.0 0.0909 0.9380

len 5 123.9543 124.7747 125.4251
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Table 13: Cov(x,Y), wtype=6, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6969 0.9408

len 1 4.1424 4.1564 4.1746

100 100 0.1 0.9368 1.0 1.0 1.0 0.9494 0.0 0.9082

len 1 78.2762 78.4933 78.7964

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6969 0.9406

len 2 4.1590 4.1761 4.1906

100 100 0.1 0.9392 1.0 1.0 1.0 0.9898 0.0 0.9104

len 2 78.5195 78.8016 79.1488

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6262 0.9340

len 3 4.1434 4.1608 4.1744

100 100 0.1 0.9348 1.0 1.0 1.0 0.6767 0.0 0.9086

len 3 78.2621 78.5305 78.8025

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.6767 0.9396

len 4 4.1383 4.1629 4.1805

100 100 0.1 0.9374 1.0 1.0 1.0 0.9696 0.0 0.9072

len 4 78.2358 78.5532 78.8016

100 100 0 0.9552 1.0 1.0 1.0 1.0 0.7272 0.9492

len 5 4.2113 4.2281 4.2495

100 100 0.1 0.9378 1.0 1.0 1.0 0.9696 0.0 0.9164

len 5 78.4399 78.6697 78.9044
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Table 14: Cov(x,Y), wtype=7, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.6868 0.9416

len 1 4.1431 4.1635 4.1784

100 100 0.1 0.9362 1.0 1.0 1.0 0.8889 0.0 0.9094

len 1 78.2762 78.4933 78.7964

100 100 0 0.9542 1.0 1.0 1.0 1.0 0.6464 0.9420

len 2 4.1596 4.1832 4.2023

100 100 0.1 0.9352 1.0 1.0 1.0 0.7575 0.0 0.9188

len 2 78.2773 78.5771 78.8371

100 100 0 0.9536 1.0 1.0 1.0 1.0 0.6667 0.9434

len 3 4.1404 4.1617 4.1850

100 100 0.1 0.9384 1.0 1.0 1.0 0.9696 0.0 0.9144

len 3 78.0388 78.3908 78.7165

100 100 0 0.9556 1.0 1.0 1.0 1.0 0.6667 0.9374

len 4 4.1301 4.1526 4.1695

100 100 0.1 0.9394 1.0 1.0 1.0 0.9898 0.0 0.9078

len 4 78.1104 78.4263 78.6769

100 100 0 0.9564 1.0 1.0 1.0 1.0 0.7070 0.9424

len 5 4.2321 4.2479 4.2647

100 100 0.1 0.9366 1.0 1.0 1.0 0.9797 0.0 0.9184

len 5 78.3324 78.6694 78.9753
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6.1 Simulation with Theorem 2.4c)

The simulation for Theorem 2.4c) is similar, but now H0 was often false, and using λ̂ to

estimate λ sometimes caused problems in high dimensions. Now the proportion of times

ληi = βi,OPLS was in the interval λ̂η̂i ± λ̂tn−1,upSE(η̂i) was recorded, but the interval is

not a confidence interval unless βi,OPLS = 0. The test statistic

nλ̂Σ̂
T

xYA
T (λ̂2AΣ̂wAT )−1Aλ̂Σ̂xY = nΣ̂

T

xYA
T (AΣ̂wAT )−1AΣ̂xY

D→ χ2
2

provided AβOPLS = AΣxY = 0. With k = 1 and ψ = 0, all of the βi,OPLS = 0 except

β1,OPLS . We also tested whether H0 : (β98, β99)
T = 0, and H0 was true with k = 1 and ψ = 0.

In Table 15, the first two lines had k = 1 and ψ = 0. Then β̂1,OPLS = 1 was never in its interval

λ̂η̂1± λ̂tn−1,upSE(η̂1) because λ = 1 but λ̂ < 0.5 was common. Hence the minimum coverage

was 0.0. The other 98 intervals and the test satisfied Theorem 2.4c), and the coverages were

good. With ψ = 0.1, λ̂ was often a good estimator of λ, but (β98,β99) = (1, 1) ̸= (0, 0), so

testcov was near 0.

source("http://parker.ad.siu.edu/Olive/slpack.txt")

args(oplssim2)

function (n = 100, p = 4, k = 1, nruns = 100, eps = 0.1, shift = 9,

etype = 1, wtype = 1, psi = 0, cfac = "T", indices = c(1,

2), alph = 0.05)

oplssim2(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0,indices=c(98,99))

$lens

[1] 0.2539468 0.2560456 0.3097610
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$covprop

[1] 0.0000000 0.9898990 0.9898990 0.9898990 0.9898990 0.8484848

$testcov

[1] 0.947

$up

[1] 0.98125

$lambda

[1] 1

$lamhat

0.4956325

oplssim2(n=100,p=100,k=1,nruns=5000,etype=1,wtype=1,psi=0.1,

indices=c(98,99))

$lens

[1] 0.009694085 0.009740023 0.011268022

$covprop

[1] 0.9696 1.0000 1.0000 1.0000 1.0000 1.0000

$testcov

[1] 4e-04

$up

[1] 0.98125

$lambda

[1] 0.008613624
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$lamhat

0.008469176

Tables 17 and 28 are used to illustrate Theorem 2.4c), and to show that λ̂ can be a poor

estimator of λ in high dimensions. Now the proportion of times ληi = βi,OPLS was in the

interval λ̂η̂i±λ̂tn−1,upSE(η̂i) = [λ̂Lin, λ̂Uin] was recorded, where [Lin, Uin] is the large sample

95% CI for ηi. If ηi ̸= 0, then the coverage of this interval tends to be low if λ̂ underestimates

λ, and high if λ̂ overestimates λ. If ηi = 0 = βi,OPLS and λ̂ > 0, then the interval gives a large

sample test for H0 : βi,OPLS = 0 since 0 ∈ [Lin, Uin] if and only if 0 ∈ [λ̂Lin, λ̂Uin]. Hence

Theorem 2.4c) can be used to test H0 : βi,OPLS = 0 in low or high dimensions even if λ̂ > 0 is

not a good estimator of λ.

For testing H0 : AβOPLS = (β98,OPLS, β99,OPLS)
T = 0, the test statistic

nλ̂Σ̂
T

xYA
T (λ̂2AΣ̂wAT )−1Aλ̂Σ̂xY = nΣ̂

T

xYA
T (AΣ̂wAT )−1AΣ̂xY

D→ χ2
2

provided H0 : AβOPLS = AΣxY = 0 is true. In the simulation, H0 is true if k = 1 and

ψ = 0.

In the simulation if the model is linear, βOLS = (1, 0, ..., 0)T for k = 1, and βOLS = 1 for

k = 99. If ψ = 0 and the model is linear, then Σx = Ip, λ = 1, and βOLS = βOPLS = ΣxY .

Then λ̂ was often less than 0.5 for n = 100 and p = 100. If ψ = 0.1, k = 99, and the model

is linear, then λ = 1/116.64 = 0.008573, βOLS = βOPLS = 1, and ΣxY = 116.64 1. Now

λ̂ tended to be close to λ. The models appeared to be linear except for wtype=4 with ψ = 0.1.

(This model appeared to generate massive outliers with entries of Σ̂xY often larger than 1050

for n = 100 and p = 100.)

Table 17 used k = 1, and the minimum coverage corresponding to β1,OPLS tended to be
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much smaller than 0.95 for ψ = 0 since λ̂ underestimated λ. When ψ = 0.1 the coverages for

βi,OPLS tended to be a bit high since λ̂ tended to be near or greater than λ. When ψ = 0.1,

H0 : (β98,OPLS, β99,OPLS)
T = (0, 0)T is false. Then low testcov indicates good power for the

test. Sometimes n much larger than 100 was needed to make testcov near 0.

Table 28 used k = 99. For ψ = 0 the coverage for β1,OPLS tended to be low since λ̂

underestimated λ. The other coverages, including testcov, tended to be low. When ψ = 0.1

the coverages for βi,OPLS tended to be a bit high since λ̂ tended to be near or greater than λ.

When ψ = 0.1, H0 : (β98,OPLS, β99,OPLS)
T = (0, 0)T is false. Then low testcov indicates good

power for the test. Sometimes n much larger than 100 was needed to make testcov near 0.
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Table 15: OPLS, wtype=1, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.8485 0.9470

len 1 0.2539 0.2560 0.3097

100 100 0.1 0.9696 1.0 1.0 1.0 1.0 1.0 0.0004

len 1 0.0097 0.0097 0.0113

100 100 0 0.0128 0.9899 0.9899 0.9899 0.9899 0.9494 0.9492

len 2 0.3642 0.3676 0.4110

100 100 0.1 0.9670 1.0 1.0 1.0 1.0 1.0 0.0254

len 2 0.0121 0.0123 0.0136

100 100 0 0.0002 0.9899 0.9899 0.9899 0.9899 0.8383 0.9468

len 3 0.2531 0.2549 0.3077

100 100 0.1 0.9660 1.0 1.0 1.0 1.0 1.0 0.0006

len 3 0.0096 0.0097 0.0112

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7272 0.9424

len 4 0.1991 0.2006 0.2615

100 100 0.1 0.9662 1.0 1.0 1.0 1.0 1.0 0

len 4 0.0086 0.0087 0.0103

100 100 0 0.2016 0.9899 0.9899 0.9899 0.9899 0.9899 0.9620

len 5 0.6583 0.6646 0.6984

100 100 0.1 0.9758 1.0 1.0 1.0 1.0 1.0 0.2682

len 5 0.0248 0.0256 0.0265
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Table 16: OPLS, wtype=2, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.4008 0.9899 0.9899 0.9899 0.9899 0.8383 0.9472

len 1 0.8663 0.8707 0.9288

100 100 0.1 0.9806 1.0 1.0 1.0 1.0 1.0 0.5688

len 1 0.0376 0.0381 0.0410

100 100 0 0.6730 0.9899 0.9899 0.9899 0.9899 0.9696 0.9518

len 2 1.3925 1.4100 1.4842

100 100 0.1 0.9750 1.0 1.0 1.0 1.0 1.0 0.7628

len 2 0.1400 0.1439 0.1520

100 100 0 0.3930 0.9899 0.9899 0.9899 0.9899 0.9292 0.9470

len 3 0.8471 0.8558 0.9175

100 100 0.1 0.9706 1.0 1.0 1.0 1.0 1.0 0.4848

len 3 0.0513 0.0526 0.0577

100 100 0 0.0722 0.9899 0.9899 0.9899 0.9899 0.7676 0.9376

len 4 0.5104 0.5130 0.5657

100 100 0.1 0.9722 1.0 1.0 1.0 1.0 1.0 0.1600

len 4 0.0159 0.0160 0.0177

100 100 0 0.8374 0.9899 0.9899 0.9899 0.9899 0.9899 0.9688

len 5 2.6211 2.6501 2.7297

100 100 0.1 0.9654 1.0 1.0 1.0 1.0 1.0 0.8654

len 5 0.4329 0.4425 0.4626
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Table 17: OPLS, wtype=3, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.0182 0.9899 0.9899 0.9899 0.9899 0.9191 0.9486

len 1 0.3209 0.3239 0.4486

100 100 0.1 0.9664 1.0 1.0 1.0 1.0 1.0 0.0528

len 1 0.0133 0.0134 0.0166

100 100 0 0.1768 0.9899 0.9899 0.9899 0.9899 0.9797 0.9474

len 2 0.4889 0.4956 0.6865

100 100 0.1 0.9804 1.0 1.0 1.0 1.0 1.0 0.3084

len 2 0.0255 0.0267 0.0338

100 100 0 0.0260 0.9899 0.9899 0.9899 0.9899 0.9797 0.9486

len 3 0.3185 0.3220 0.4445

100 100 0.1 0.9672 1.0 1.0 1.0 1.0 1.0 0.0538

len 3 0.0132 0.0133 0.0165

100 100 0 0.0002 0.9899 0.9899 0.9899 0.9899 0.8181 0.9424

len 4 0.2262 0.2282 0.3158

100 100 0.1 0.9524 1.0 1.0 1.0 1.0 0.9899 0

len 4 0.0101 0.0102 0.0125

100 100 0 0.4982 0.9899 0.9899 0.9899 0.9899 0.9899 0.9664

len 5 0.9030 0.9180 1.2506

100 100 0.1 0.9852 1.0 1.0 1.0 1.0 1.0 0.6048

len 5 0.1023 0.1052 0.1345
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Table 18: OPLS, wtype=4, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7171 0.9450

len 1 0.1672 0.1687 0.2346

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7474 0.9532

len 2 0.1672 0.1686 0.2349

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7575 0.9424

len 3 0.3185 0.3220 0.4445

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7373 0.9400

len 4 0.1672 0.1686 0.2343

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.8080 0.9426

len 5 0.1675 0.2356 0.2356
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Table 19: OPLS, wtype=5, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.9532 1.0 1.0 1.0 1.0 0.8282 0.9416

len 1 13.2162 13.2678 13.3680

100 100 0.1 0.9602 1.0 1.0 1.0 1.0 1.0 0.0528

len 1 2.2759 2.3004 2.3219

100 100 0 0.9594 1.0 1.0 1.0 1.0 0.9797 0.9580

len 2 21.3396 21.5434 21.7143

100 100 0.1 0.9648 1.0 1.0 1.0 1.0 1.0 0.9522

len 2 3.6175 3.7116 3.7654

100 100 0 0.9588 1.0 1.0 1.0 1.0 0.9494 0.9526

len 3 12.9127 13.0112 13.1067

100 100 0.1 0.9630 1.0 1.0 1.0 1.0 1.0 0.9510

len 3 2.1969 2.2246 2.2432

100 100 0 0.9540 1.0 1.0 1.0 1.0 0.6667 0.9450

len 4 7.6307 7.6528 7.6855

100 100 0.1 0.9524 1.0 1.0 1.0 1.0 1.0 0.9418

len 4 1.3193 1.3297 1.3400

100 100 0 0.9706 1.0 1.0 1.0 1.0 1.0 0.9634

len 5 40.4202 40.8316 41.2634

100 100 0.1 0.9710 1.0 1.0 1.0 1.0 1.0 0.9722

len 5 7.0543 7.1787 7.3326
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Table 20: OPLS, wtype=6, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7778 0.9428

len 1 0.11955 0.1968 0.2582

100 100 0.1 0.9592 1.0 1.0 1.0 1.0 0.9899 0.0528

len 1 0.0107 0.0108 0.0122

100 100 0 0.0008 0.9899 0.9899 0.9899 0.9899 0.8484 0.9442

len 2 0.2397 0.2423 0.2977

100 100 0.1 0.9668 1.0 1.0 1.0 1.0 1.0 0.1018

len 2 0.0153 0.0157 0.0167

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7979 0.9440

len 3 0.1959 0.1968 0.2584

100 100 0.1 0.9642 1.0 1.0 1.0 1.0 1.0 0.0098

len 3 0.0107 0.0108 0.0122

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.8686 0.9498

len 4 0.1775 0.1790 0.2437

100 100 0.1 0.9628 1.0 1.0 1.0 1.0 1.0 0

len 4 0.0091 0.0092 0.0108

100 100 0 0.0174 0.9899 0.9899 0.9899 0.9899 0.9899 0.9552

len 5 0.3732 0.3769 0.4206

100 100 0.1 0.9842 1.0 1.0 1.0 1.0 1.0 0.3590

len 5 0.0429 0.0444 0.0458
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Table 21: OPLS, wtype=7, k=1

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7171 0.9418

len 1 0.2058 0.2072 0.2664

100 100 0.1 0.9648 1.0 1.0 1.0 1.0 1.0 0

len 1 0.0086 0.0087 0.0103

100 100 0 0.0022 0.9899 0.9899 0.9899 0.9899 0.8080 0.9406

len 2 0.2628 0.2651 0.3180

100 100 0.1 0.9666 1.0 1.0 1.0 1.0 1.0 0.0014

len 2 0.0094 0.0095 0.0111

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7676 0.9478

len 3 0.2056 0.2070 0.2675

100 100 0.1 0.9630 1.0 1.0 1.0 1.0 1.0 0

len 3 0.0086 0.0087 0.0103

100 100 0 0 0.9899 0.9899 0.9899 0.9899 0.7778 0.9438

len 4 0.1809 0.1824 0.2471

100 100 0.1 0.9624 1.0 1.0 1.0 1.0 1.0 0

len 4 0.0083 0.0084 0.0101

100 100 0 0.0468 0.9899 0.9899 0.9899 0.9899 0.9899 0.9544

len 5 0.4336 0.4383 0.4765

100 100 0.1 0.9712 1.0 1.0 1.0 1.0 1.0 0.0478

len 5 0.0122 0.0123 0.0136
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Table 22: OPLS, wtype=1, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6918 0 0 0 0 0 0.7796

len 1 1.6817 1.6878 1.6941

100 100 0.1 0.9980 1.0 1.0 1.0 1.0 1.0 0

len 1 0.6693 0.6717 0.6742

100 100 0 0.6992 0 0 0 0 0 0.7784

len 2 1.7040 1.7109 0.7192

100 100 0.1 0.9978 1.0 1.0 1.0 1.0 1.0 0

len 2 0.6697 0.6721 0.6739

100 100 0 0.6900 0 0 0 0 0 0.7672

len 3 1.6838 1.6916 1.6994

100 100 0.1 0.9978 1.0 1.0 1.0 1.0 1.0 0

len 3 0.6709 0.6735 0.6755

100 100 0 0.6796 0 0 0 0 0 0.7682

len 4 1.6798 1.6864 1.6953

100 100 0.1 0.9976 1.0 1.0 1.0 1.0 1.0 0

len 4 0.6691 0.6719 0.6741

100 100 0 0.7184 0 0 0 0 0 0.7822

len 5 1.7849 1.7919 1.7996

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 5 0.6692 0.6719 0.6741
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Table 23: OPLS, wtype=2, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.8326 0 0 0 0 0 0.8724

len 1 2.6356 2.6496 2.6663

100 100 0.1 0.9674 1.0 1.0 1.0 1.0 1.0 0.0028

len 1 1.0184 1.0227 1.0300

100 100 0 0.8920 0.7171 0 0 0 0 0.9160

len 2 3.7425 3.7873 3.8356

100 100 0.1 0.9756 1.0 1.0 1.0 1.0 1.0 0.1158

len 2 1.6167 1.6725 1.7505

100 100 0 0.8348 0 0 0 0 0 0.8744

len 3 2.6217 2.6367 2.6540

100 100 0.1 0.9722 1.0 1.0 1.0 1.0 1.0 0.0120

len 3 1.0065 1.0121 1.0173

100 100 0 0.7584 0 0 0 0 0 0.8312

len 4 2.0203 2.0349 2.0478

100 100 0.1 0.9784 1.0 1.0 1.0 1.0 1.0 0

len 4 0.8021 0.8051 0.8091

100 100 0 0.9370 1.0 1.0 1.0 0.9797 0 0.9380

len 5 6.6060 6.7327 6.8192

100 100 0.1 0.9890 1.0 1.0 1.0 1.0 1.0 0.3752

len 5 5.6795 5.8686 6.0980
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Table 24: OPLS, wtype=3, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6928 0 0 0 0 0 0.7818

len 1 1.6933 1.7005 1.7151

100 100 0.1 0.9978 1.0 1.0 1.0 1.0 1.0 0

len 1 0.6703 0.6727 0.6754

100 100 0 0.7034 0 0 0 0 0 0.7840

len 2 1.7298 1.7376 1.7800

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 2 0.6701 0.6725 0.6746

100 100 0 0.6952 0 0 0 0 0 0.7838

len 3 1.6939 1.7007 1.7114

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 3 0.6705 0.6724 1.6752

100 100 0 0.6849 0 0 0 0 0 0.7714

len 4 1.6807 1.6891 1.6954

100 100 0.1 0.9976 1.0 1.0 1.0 1.0 1.0 0

len 4 0.6705 0.6725 0.6744

100 100 0 0.7400 0 0 0 0 0 0.8004

len 5 1.8828 1.8929 2.0324

100 100 0.1 0.9980 1.0 1.0 1.0 1.0 1.0 0

len 5 0.6702 0.6724 0.6743
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Table 25: OPLS, wtype=4, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6852 0 0 0 0 0 0.7722

len 1 1.6733 1.6805 1.6888

100 100 0 0.6866 0 0 0 0 0 0.7756

len 2 1.6734 1.6818 1.6910

100 100 0 0.6874 0 0 0 0 0 0.7802

len 3 1.6749 1.6820 1.6899

100 100 0 0.6888 0 0 0 0 0 0.7654

len 4 1.6791 1.6841 1.6935

100 100 0 0.6890 0 0 0 0 0 0.7728

len 5 1.6703 1.6794 2.6870
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Table 26: OPLS, wtype=5, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6928 1.0 1.0 1.0 1.0 0.3030 0.7818

len 1 13.2205 13.2783 13.3739

100 100 0.1 0.9932 1.0 1.0 1.0 1.0 1.0 0

len 1 0.7185 0.7212 0.7241

100 100 0 0.9574 1.0 1.1.0 1.0 1.0 0.9595 0.9458

len 2 21.5202 21.7361 21.9323

100 100 0.1 0.9894 1.0 1.0 1.0 1.0 1.0 0.0022

len 2 0.8109 0.8158 0.8210

100 100 0 0.9548 1.0 1.0 1.0 1.0 0.6363 0.9380

len 3 12.8699 12.9893 13.0901

100 100 0.1 0.9936 1.0 1.0 1.0 1.0 1.0 0

len 3 0.7196 0.7229 0.7261

100 100 0 0.9432 1.0 1.0 1.0 1.0 0.0202 0.9290

len 4 7.6732 7.6951 7.7268

100 100 0.1 0.9970 1.0 1.0 1.0 1.0 1.0 0

len 4 0.6868 0.6896 0.6921

100 100 0 0.9694 1.0 1.0 1.0 1.0 1.0 0.9656

len 5 40.2310 40.6674 40.0584

100 100 0.1 0.9014 1.0 1.0 1.0 1.0 1.0 0.0316

len 5 1.1897 1.2413 1.3311
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Table 27: OPLS, wtype=6, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6904 0 0 0 0 0 0.7702

len 1 1.6783 1.6868 1.6930

100 100 0.1 0.6690 1.0 1.0 1.0 1.0 1.0 0

len 1 0.6690 0.6715 0.6741

100 100 0 0.6912 0 0 0 0 0 0.7874

len 2 1.6825 1.6903 1.6980

100 100 0.1 0.6695 1.0 1.0 1.0 1.0 1.0 0

len 2 0.6695 0.6720 0.6740

100 100 0 0.6840 0 0 0 0 0 0.7708

len 3 1.6771 1.6850 1.6907

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 3 0.6685 0.6703 0.6729

100 100 0 0.6918 0 0 0 0 0 0.7712

len 4 1.6756 1.6819 1.6877

100 100 0.1 0.9978 1.0 1.0 1.0 1.0 1.0 0

len 4 0.6695 0.6719 0.6752

100 100 0 0.6958 0 0 0 0 0 0.7720

len 5 1.7047 1.7129 1.7209

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 5 0.6724 0.6743 0.6777
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Table 28: OPLS, wtype=7, k=99

n p psi/etype mincov cov90 cov92 cov93 cov94 cov96 testcov

100 100 0 0.6882 0 0 0 0 0 0.7738

len 1 1.6805 1.6866 1.6933

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 1 0.6691 0.6718 0.6743

100 100 0 0.6896 0 0 0 0 0 0.7702

len 2 1.6866 1.6929 1.7019

100 100 0.1 0.9974 1.0 1.0 1.0 1.0 1.0 0

len 2 0.6701 0.6721 0.6743

100 100 0 0.6880 0 0 0 0 0 0.7746

len 3 1.6814 1.6873 1.6955

100 100 0.1 0.9976 1.0 1.0 1.0 1.0 1.0 0

len 3 0.6701 0.6701 0.6748

100 100 0 0.6888 0 0 0 0 0 0.7692

len 4 1.6782 1.6868 1.6948

100 100 0.1 0.9968 1.0 1.0 1.0 1.0 1.0 0

len 4 0.6701 0.6722 0.6743

100 100 0 0.7024 0 0 0 0 0 0.7834

len 5 1.7181 1.7266 1.7361

100 100 0.1 0.9970 1.0 1.0 1.0 1.0 1.0 0

len 5 0.6686 0.6709 0.6731
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CHAPTER 7

CONCLUSIONS

There is a large literature for multiple linear regression models with heterogeneity. See,

for example, Buja et al. (2019), Eicker (1963, 1967), Flachaire (2005), Hinkley (1977), Huber

(1967), Long and Ervin (2000), MacKinnon and White (1985), Rajapaksha and Olive (2024),

Romano and Wolf (2017), and White (1980). The response plot of ϕ̂OPLS versus Y and the

EE plot of ϕ̂
T

OPLSx versus ϕ̂
T

OLSx can be used to check whether OPLS is useful for WLS. See

Olive (2013) for more on these two plots.

Tests for high dimensional covariance matrices include Chen, Zhang, and Zhong (2010),

and Himeno and Yamada (2014).

Software The R software was used in the simulations. See R Core Team (2020). Pro-

grams are available from the Olive (2023) collections of R functions slpack.txt, available

from (http://parker.ad.siu.edu/Olive/slpack.txt). The function OPLSplot make the response

plot and residual plot for multiple linear regression based on one component partial least

squares. The function OPLSEEplot plots the OPLS fitted values versus the OLS fitted val-

ues. Let up ≈ 1− α/2 be the correction factor used for the confidence intervals. The function

covxycis obtains the large sample 100(1− α)% confidence intervals ≈ η̂j ± tn−1,upSE(η̂j)

for ηj = Cov(xj, Y ) for j = 1, ..., p. The function oplscis obtains the large sample

100(1−α)% confidence intervals ≈ β̂j± tn−1,upSE(β̂j) for βj = λCov(xj, Y ) for j = 1, ..., p.

If [Lj, Uj] is the confidence interval for ηj , then [λ̂Lj, λ̂Uj] is the confidence interval for βj . The

function oplswls generates a weighted least squares data set of types used by the simulation,

the OPLS response plot, the OLS response plot, and the plot of the OPLS fitted values versus
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the OLS fitted values. In the literature, simulated WLS data set often contain outliers and are

often not very linear. The response plot can be used to check for these two problems. The func-

tion oplswsim was used for Table 9. The function rcovxy makes the classical and three

robust estimators of η, and makes a scatterplot matrix of the four estimated sufficient predic-

tors η̂Tx and Y . Only two robust estimators are made if n ≤ 2.5p. The function oplssim2

was used for Tables 17 and 28.
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