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Inference after model selection is a very important problem. This paper derives the asymp-

totic distribution of some model selection estimators for autoregressive moving average (ARMA)

time series models. Under strong regularity conditions, the model selection estimators are asymp-

totically normal, but generally the asymptotic distribution is a nonnormal mixture distribution.

Hence bootstrap confidence regions that can handle this complicated distribution were used for

hypothesis testing. A bootstrap technique to eliminate selection bias is to fit the model selection

estimator β̂
∗

MS to a bootstrap sample to find a submodel, then draw another bootstrap sample and

fit the same submodel to get the bootstrap estimator β̂
∗

MIX. Prediction intervals for a wide variety

of time series models are given, including prediction intervals after model selection.
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CHAPTER 1

INTRODUCTION

A time series Y1, ...,Yn consists of observations Yt collected sequentially at times 1, ..., n.

Many time series models have the form

Yt = τ +
∑

i

ψiYt−iki +
∑

j

ν jet− jk j + et (1.1)

where the errors {et} are independent and identically distributed (iid) unobserved random variables.

Unless stated otherwise, assume the mean E(et) = 0 and the variance V(et) = σ2
e . For example,

the Box and Jenkins (1976) multiplicative seasonal ARIMA(p, d, q)× (P,D,Q)s time series models

have this form.

Next, several important time series models will be given. We will use the R software notation

and write a moving average parameter θ and seasonal moving average parameter Θ with a positive

sign. Some references and software will write the model with a negative sign for the moving

average parameters. The backshift operator or lag operator B satisfies BWt = Wt−1 and B jWt =

Wt− j.

A moving average MA(q) times series is

Yt = τ + θ1et−1 + θ2et−2 + · · · + θqet−q + et = τ + (1 + θ1B + · · · + θqBq)et = τ + θ(B)et

where θ(B) = 1 + θ1B+ θ2B2 + · · · + θqBq and θq , 0. Note that E(Yt) = µ = τ = θ0 for t ≥ 1. Since

the et are iid, the Yt are identically distributed, and Y j,Y j+q+1,Y j+2(q+1), ... are iid.

An autoregressive AR(p) times series is

Yt = τ + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p + et or (1 − ϕ1B − · · · − ϕpBp)Yt = τ + et,

or ϕ(B)Yt = τ + et where ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp and ϕp , 0. If E(Yt) = µ for t ≥ 1,
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write Yt − µ =
∑p

j=1 ϕ j(Yt− j − µ) + et to get τ = ϕ0 = µ(1 −
∑p

j=1 ϕ j).

An autoregressive moving average ARMA(p, q) times series is

Yt = τ + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p + θ1et−1 + θ2et−2 + · · · + θqet−q + et,

or ϕ(B)Yt = τ + θ(B)et where θq , 0 and ϕp , 0. The ARMA(0,q) model is the MA(q) model, and

the ARMA(p,0) model is the AR(p) model. Again τ = µ(1 −
∑p

j=1 ϕ j) if p ≥ 1, and τ = µ if p = 0.

The ARMA(0,0) model is Yt = µ + et, often called the location model.

To describe ARIMA models, let the difference operator ▽ = (1−B). Let Xt = ▽
dYt = (1−B)dYt

be the differenced time series. The first difference is Xt = ▽Yt = (1 − B)Yt = Yt − Yt−1. The second

difference is Xt = ▽
2Yt = ▽(▽Yt) = Yt − 2Yt−1 + Yt−2. If Yt follows an ARIMA(p, d, q) model, want

Xt to follow a weakly stationary, causal, and invertible ARMA(p, q) = ARIMA(p, 0, q) model.

Typically d = 0 or 1, but occasionally d = 2. Usually τ = 0 if d > 1. The ARIMA(p, d = 1, q)

model is Yt = τ+(1+ϕ1)Yt−1+(ϕ2−ϕ1)Yt−2+ · · ·+(ϕp−ϕp−1)Yt−p−ϕpYt−p−1+θ1et−1+ · · ·+θqet−q+et.

The ARIMA(p, d, q) model can be written compactly as ϕ(B) ▽d Yt = τ + θ(B)et.

The multiplicative seasonal ARIMA models also have backshift and difference notation. Let

Φ(B) = 1 − Φ1Bs − Φ2B2s − · · · − ΦPBPs. Let Θ(B) = 1 + Θ1Bs + Θ2B2s + · · · + ΘQBQs. Let s

be the seasonal period. Hence s = 4 for quarterly data and s = 12 for monthly date. Then the

multiplicative ARMA(p, q) × (P,Q)s model satisfies ϕ(B)Φ(B)Yt = τ + θ(B)Θ(B)et. This model is

an ARMA(p+Ps, q+Qs) model where the nonzero coefficients are determined only by p+P+q+Q

coefficients, the AR characteristic polynomial is ϕ(B)Φ(B) and the MA characteristic polynomial

is θ(B)Θ(B).

Let ▽sYt = (1 − Bs)Yt = Yt − Yt−s and ▽D
s Yt = (1 − Bs)DYt where usually d ≤ 1 and D ≤ 1,

d = 2 is rare and D = 2 is very rare. The differenced time series Xt = ▽
d ▽D

s Yt. Then Yt ∼

ARIMA(p, d, q)×(P,D,Q)s if Xt ∼ARMA(p, q)×(P,Q)s. Also, ϕ(B)Φ(B)▽d▽D
s Yt = τ+θ(B)Θ(B)et

where the default is τ = 0 if d > 0 or D > 0.

A stochastic process {Yt, t ∈ T} is a collection of random variables where often T = Z, the
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set of integers. The mean function µt = E(Yt) for t ∈ Z. The autocovariance function γt,s =

Cov(Yt,Ys) = E[(Yt − µt)(Ys − µs)] = E(YtYs) − µtµs for t, s ∈ Z. The autocorrelation function

ρt,s = Corr(Yt,Ys) =
Cov(Yt,Ys)

√
Var(Yt)Var(Ys)

=
γt,s
√
γt,tγs,s

for t, s ∈ Z.

A process {Yt} is weakly stationary if a) E(Yt) = µt ≡ µ is constant over time, and b)

γt,t−k = γ0,k for all times t and lags k. Hence the covariance function γt,s depends only on the

absolute difference |t − s|. For a weakly stationary process {Yt}, write the autocovariance function

as γk = Cov(Yt,Yt−k) and the autocorrelation function as ρk = corr(Yt,Yt−k) = γk/γ0. Note that the

mean function E(Yt) = µ and the variance function V(Yt) = Var(Yt) = γ0 are constant and do not

depend on t. The autocovariance and autocorrelation functions γk and ρk depend on the lag k but

not on the time t.

We usually want the ARMA(p, q) model to be weakly stationary, causal, and invertible. Let

Zt = Yt−µwhere µ = E(Yt) if {Yt} is weakly stationary and µ is some origin otherwise. Then causal

implies that Zt =
∑∞

j=1 ψ jet− j + et, which is an MA(∞) representation, where the ψ j → 0 rapidly as

j → ∞. Invertibility implies that Zt =
∑∞

j=1 π jZt− j + et, which is an AR(∞) representation, where

the π j → 0 rapidly as j → ∞. Thus if the ARMA(p, q) model is weakly stationary, causal, and

invertible, then Yt depends almost entirely on nearby lags of Yt and et, not on the distant past.

Consider θ(B) and ϕ(B) as polynomials in B. An ARMA(p, q) model is invertible if all of the

roots of the polynomial θ(B) = 0 have modulus > 1, and weakly stationary if all of the roots of the

polynomial ϕ(B) = 0 have modulus > 1. (Let the complex number W = W1 +W2 i have modulus

|W | = W2
1 +W2

2 .) Hence the roots of both polynomials lie outside the unit circle. An AR(p) model

is always invertible and an MA(q) model is always causal. For the AR(1) model, need |ϕ1| < 1.

For the MA(1) model, need |θ1| < 1. For the ARMA(1,1) model, need |ϕ1| < 1 and |θ1| < 1.

Let τi stand for θi or ϕi. Let k stand for q or p, and let ψ(B) = 1 − τ1B − τ2B2 − · · · − τkBk

stand for ϕ(B) or θ(B). A necessary but not sufficient condition for the roots of ψ(B) = 0 to all be

greater than 1 in modulus is τ1 + · · · + τk < 1 and |τk| < 1.

Vector valued time series y1, ..., yn are also common where yt is a k × 1 vector for t ≥ 1.
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CHAPTER 2

MODEL SELECTION

Let I be a time series model. The AIC(I) statistic is used to pick a model from several ARIMA

models. The model Imin with the smallest AIC is always of interest but often overfits: has too many

unnecessary parameters. Imagine fitting an ARIMA(p, d, q) model where d = 0, 1 or 2 is fixed

and p and q run from 0 to j for small j. The number of parameters in the model for fixed d is

p + q + 2 where σ =
√

V(Xt), τ, ϕ1, ..., ϕp, θ1, ..., θq are the parameters. AIC(I) tends to be large

when the model does not have enough terms, to drop as needed terms are added, and then to rise as

unnecessary terms are added. If ∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good,

models with 4 ≤ ∆(I) ≤ 7 are borderline. See Brockwell and Davis (1987, p. 269), Duong (1984),

and Burnham and Anderson (2004).

The initial model to look at is the model II with the smallest number of predictors such that

∆(II) ≤ 2, and also examine submodels I with fewer predictors than II with ∆(I) ≤ 7. Similar II

rules are used in Olive (2017a) and Olive and Hawkins (2005) for multiple linear regression and

generalized linear models.

The aicmatrix computes ∆(I) = AIC(I) − AIC(Imin) for ARIMA(p,d,q) models where d is

fixed or for ARIMA(p, d, q) × (P,D,Q)s models where d, P,D,Q and s are fixed, and p and q run

from 0 to j for small j = pmax = qmax such as j = 5. Here Imin is the ARIMA(pm, d, qm) model or

the ARIMA(pm, d, qm) × (P,D,Q)s model with the smallest AIC(I). This model will have a 0.00 in

the aicmatrix. Look for model II with pI +qI ≤ pm+qm as small as possible such that the aicmatrix

entry ≤ 2. It is possible that II = Imin. Also look at models I with p + q ≤ pI + qI with aicmatrix

entries ≤ 7, especially models with entries ≤ 4. Check that the selected model I does not fail to

reject H0 for H0 : ϕp = 0 or H0 : θq = 0. Make the usual model checks of plotting the time series,

ACF, PACF, response and residual plots, the ACF and PACF of the residuals, and the plot of the

Box–Ljung pvalues.

Another useful concept is that of a submodel. If d, P,D, and Q are fixed and model Ii has pi
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and qi for i = 1, 2, then I1 is a submodel of I2 if p1 ≤ p2 and q1 ≤ q2. If ∆(I1) ≤ ∆(I) + 2 where

I1 is a submodel of I, tentatively eliminate model I. Model I1 will be a submodel of all models I

with aicmatrix entries to the right and below the model I entry. Hence model I1 is at the upper left

corner of a block of models I such that I1 is a submodel for each model I in the block.

These are rules of thumb: they do not always work but often lead to a good model. If II is the

ARIMA(1,0,1) model, we might take an AR(3) or MA(3) model even though these have 1 more

parameter.

Example 2.1. Shown below is the aicmatrix of ∆(I) = AIC(I) − AIC(Imin) for the R WWW

usage time series, which gives the number of users connected to the Internet through a server

every minute where n = 100. First differences were used so d = 1. From this output, Imin is the

ARIMA(5,1,4) model and II is the ARIMA(3,1,0) model. Interesting models have p + q ≤ 3 with

entries ≤ 7. These are the ARIMA(2,1,1), ARIMA(1,1,2), and ARIMA(1,1,1) models. Since the

ARIMA(1,1,1) model is a submodel of the ARIMA(2,1,1) and ARIMA(1,1,2) models, look at the

ARIMA(3,1,0) model II first, and then at the ARIMA(1,1,1) model.

aicmat(WWWusage,dd=1,pmax=5)

$aics q

p 0 1 2 3 4 5 Find I_I by looking at models

0 119.86 38.67 8.74 9.13 8.24 7.72 on and above the diagonal

1 18.10 3.16 5.11 3.44 3.96 5.14 through (5,4) and (4,5) which have

2 11.04 5.15 6.22 4.63 2.10 6.95 p+q <= 9. Interesting models are on

3 0.85 2.80 4.48 3.27 3.62 5.29 or above the diagonal through (3,0),

4 2.79 1.74 5.04 7.94 4.26 6.99 (2,1), (1,2) and (0,3) since they

5 4.72 6.50 2.40 10.50 0.00 1.63 have p+q <= 3.

Suppose an ARMA(pmax, qmax) model is fit and then (model) variable selection is done where

the true (optimal) model is an ARMA(po, qo) model with po ≤ pmax and qo ≤ qmax. Let the selected

model I be an ARMA(pI , qI) model. Then the model underfits unless pI ≥ po and qI ≥ qo. Let

the weakly stationary and invertible AR(p) models have qmax = 0, and assume po ≤ pmax. The
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probability of underfitting goes to 0 if the Akaike (1973) AIC, Schwartz (1978) BIC, or Hurvich

and Tsai (1989) AICC criterion are used for variable selection. See Hannan and Quinn (1979) and

Shibata (1976).

For ARMA models, we may use pmax = qmax = 5. If (variable) model selection is restricted

to MA models, we may use qmax = 13. If model selection is restricted to AR models, Granger and

Newbold (1977, p. 178) suggest using pmax = 13 for nonseasonal time series, quarterly seasonal

time series, and short monthly seasonal time series. They recommend pmax = 25 for longer monthly

seasonal time series.

We want to bootstrap time series variable selection estimators. Consider regression models

where the response variable Y is independent of the p× 1 vector of predictors x given xTβ, written

Y x|xTβ. Many important regression models satisfy this condition, including multiple linear

regression and generalized linear models (GLMs).

Following Olive and Hawkins (2005), a model for variable selection can be described by

xTβ = xT
SβS + xT

EβE = xT
SβS (2.1)

where x = (xT
S , x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS ) × 1 vector. Given that xS is in the

model, βE = 0 and E denotes the subset of terms that can be eliminated given that the subset S is

in the model. Let xI be the vector of a terms from a candidate subset indexed by I, and let xO be

the vector of the remaining predictors (out of the candidate submodel). Suppose that S is a subset

of I and that model (2.1) holds. Then

xTβ = xT
SβS = xT

SβS + xT
I/SβI/S + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S . Since this is true regardless of the values of

the predictors, βO = 0 if S ⊆ I. The model using xTβ is the full model.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is always in the

model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible subsets of {1, 2, ..., p} that always

6



contain 1 are I1 = {1}, S = I2 = {1, 2}, I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4},

I7 = {1, 3, 4}, and I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that S ⊆ I j.

Also, β̂I7
= (β̂1, β̂3, β̂4)T is obtained by regressing Y on xI7 = (x1, x3, x4)T .

Let Imin correspond to the set of predictors selected by a variable selection method such as

forward selection or backward elimination. If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by

adding 0s corresponding to the omitted variables. Also use zero padding for the model Imin. For

example, if p = 4 and β̂Imin
= (β̂1, β̂3)T , then the observed variable selection estimator β̂VS =

β̂Imin,0 = (β̂1, 0, β̂3, 0)T . As a statistic, β̂VS = β̂Ik ,0 with probabilities πkn = P(Imin = Ik) for k = 1, ..., J

where there are J subsets. For example, if each subset contains at least one variable, then there are

J = 2p − 1 subsets.

Let β̂MIX be a random vector with a mixture distribution of the β̂Ik ,0 with probabilities equal

to πkn. Hence β̂MIX = β̂Ik ,0 with the same probabilities πkn of the variable selection estimator β̂VS ,

but the Ik are randomly selected. A random vector u has a mixture distribution of random vectors

u j with probabilities π j if u equals the randomly selected random vector u j with probability π j for

j = 1, ..., J. Let u and u j be p × 1 random vectors. Then the cumulative distribution function (cdf)

of u is

Fu(t) =
J∑

j=1

π jFu j(t)

where the probabilities π j satisfy 0 ≤ π j ≤ 1 and
∑J

j=1 π j = 1, J ≥ 2, and Fu j(t) is the cdf of u j.

Suppose E(h(u)) and the E(h(u j)) exist. Then

E(h(u)) =
J∑

j=1

π jE[h(u j)] and

Cov(u) =
J∑

j=1

π jCov(u j) +
J∑

j=1

π jE(u j)[E(u j)]T − E(u)[E(u)]T .
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If E(u j) = θ for j = 1, ..., J, then E(u) = θ and

Cov(u) =
J∑

j=1

π jCov(u j).

Variable selection = model selection for ARMA time series will use similar notation.

Note that S corresponds to the ARMA(po, qo) model. Let β be an m × 1 vector. Let

β = (ϕ1, ..., ϕp, θ1, ..., θq)T = (ϕT , θT )T with m = p + q. For an AR(p) model, let β =

(ϕ1, ..., ϕp)T with m = p, and for an MA(q) model, let β = (θ1, ..., θq)T with m = q. If

βI = (ϕ1, ..., ϕpI , θ1, ..., θqI )
T , then β̂I,0 = (ϕ̂1, ..., ϕ̂pI , 0, .., 0, θ̂1, ..., θ̂qI , 0, ..., 0)T . Sometimes we will

use β = (τ, ϕ1, ..., ϕp, θ1, ..., θq)T , β = (τ, ϕ1, ..., ϕp), or β = (τ, θ1, ..., θq)T . For time series the num-

ber of submodels J = (pmax + 1)(qmax + 1), J = pmax + 1, or J = qmax + 1, for ARMA, AR, or MA

model selection. See Example 2.1 where there are 36 submodels. Note that the full model, e.g. the

ARMA(pmax, qmax) model, is a submodel.
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CHAPTER 3

PREDICTION INTERVALS

For forecasting, predict the test data Yn+1, ...,Yn+L given the past training data Y1, ...,Yn. A

large sample 100(1 − δ)% prediction interval (PI) for Yn+h is [Ln,Un] where the coverage P(Ln ≤

Yn+h ≤ Un) = 1−αn is eventually bounded below by 1−δ as n→ ∞. Often we want 1−αn → 1−δ

as n → ∞. By construction, some of the prediction intervals will have training data coverage

≈ 1 − δn where 1 − δn ≥ 1 − δ, and 1 − δn → 1 − δ as n→ ∞.

The shorth estimator will be defined below and used to create large sample PIs that do not

require knowing the distribution of the errors et. If the data are Z1, ...,Zn, let Z(1) ≤ · · · ≤ Z(n) be

the order statistics. Let ⌈x⌉ denote the smallest integer greater than or equal to x (e.g., ⌈7.7⌉ = 8).

Consider intervals that contain c cases [Z(1),Z(c)], [Z(2),Z(c+1)], ..., [Z(n−c+1),Z(n)]. Compute Z(c) −

Z(1),Z(c+1) − Z(2), ...,Z(n) − Z(n−c+1). Then the estimator shorth(c) = [Z(s),Z(s+c−1)] is the interval with

the shortest length.

Example 3.1. Given below were votes for preseason 1A basketball poll from Nov. 22, 2011

WSIL News where the 778 was a typo: the actual value was 78. As shown below, finding shorth(3)

from the ordered data is simple. If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

Suppose the data Z1, ...,Zn are iid and a large sample 100(1 − δ)% PI is desired for a future

value Z f such that P(Z f ∈ [Ln,Un]) → 1 − δ as n → ∞. The shorth(c) interval is a large sample

100(1 − δ)% PI if c/n → 1 − δ as n → ∞, that often has the asymptotically shortest length. Frey

(2013) showed that for large nδ and iid data, the shorth(kn = ⌈n(1 − δ)⌉) prediction interval has
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maximum undercoverage ≈ 1.12
√
δ/n, and used the large sample 100(1 − δ)% PI shorth(c) =

[Z(s),Z(s+c−1)] with c = min(n, ⌈n[1 − δ + 1.12
√
δ/n ] ⌉). (3.1)

Some more notation is needed before deriving PIs for time series. Suppose the training data

set is Y1, ...,Yt. The h-step ahead forecast for a future value Yt+h is Ŷt(h) and the h step ahead

forecast residual is êt(h) = Yt+h − Ŷt(h). For example, a common choice for model (1.1) is

Ŷt(h) = τ̂ +
∑

i

ψ̂iY∗t+h−iki
+

∑
j

ν̂ jê∗t+h− jk j

where êt is the tth residual, Y∗t+h−iki
= Yt+h−iki if h − iki ≤ 0, Y∗t+h−iki

= Ŷt(h − iki) if h − iki > 0,

ê∗t+h− jk j
= êt+h− jk j if h− jk j ≤ 0, and ê∗t+h− jk j

= 0 if h− jk j > 0, and the forecasts Ŷt(1), Ŷt(2), ..., Ŷt(L)

are found recursively if there is data Y1, ...,Yt. Typically the residuals êt = êt−1(1) are the 1-

step ahead forecast residuals and the fitted or predicted values Ŷt = Ŷt−1(1) are the 1-step ahead

forecasts.

Example 3.2 is useful to illustrate the forecasts. The R software produces êt and Ŷt = Yt−êt for

t = m + 1, ...,m + n1 where there are n1 1-step ahead forecast residuals êt = êt−1(1) available, often

with m = 0 and n1 = n. In the examples, we get the formulas Ŷn(h), and then replace n by t so that

the test data formula is applied to the training data. Then the general formula for an ARMA(p, q)

model is Ŷt(h) = τ̂+ϕ̂1Ŷt(h−1)+ϕ̂2Ŷt(h−2)+· · ·+ϕ̂h−1Ŷt(1)+ϕ̂hYt+· · ·+ϕ̂pYt+h−p+θ̂hêt+· · ·+θ̂qêt+h−q

for 1 < h ≤ min(p, q). Assume there are nh forecast residuals êt(h) available from the training data.

Example 3.2. a) Consider a moving average MA(2) = ARMA(0,2) = ARIMA(0,0,2) =

ARIMA(0,0,2)×(0, 0, 0)1 model: Yt = τ + θ1et−1 + θ2et−2 + et. Suppose data Y1, ...,Yn from this

model is available. The R software produces êt and Ŷt = Yt − êt for t = 1, ..., n where Ŷt = Ŷt−1(1) =

τ̂ + θ̂1êt−1 + θ̂2êt−2 and êt(1) = Yt+1 − Ŷt(1) for t = 3, ..., n. Also, Ŷn(1) = τ̂ + θ̂1ên + θ̂2ên−1. Hence

there are n1 = n 1-step ahead forecast residuals êt = êt−1(1) available. Similarly, Ŷt(2) = τ̂ + θ̂2êt

for t = 1, ..., n. Hence the 2-step ahead forecast residuals are available for t = 3, ..., n − 2. Now

Ŷt(h) = τ̂ ≈ Y for h > 2. Hence there are n h-step ahead forecast residuals Yt − Y for h > 2 and
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t = 1, ..., n.

b) Consider an ARMA(1,1) model: Yt = τ+ ϕ1Yt−1 + θ1et−1 + et. For h = 1, Ŷt(1) = τ̂+ ϕ̂1Yt + θ̂1êt.

For h > 1, Ŷt(h) = τ̂ + ϕ̂1Ŷt(h − 1).

c) Consider an AR(1) model: Yt = τ + ϕ1Yt−1 + et. For h = 1, Ŷt(1) = τ̂ + ϕ̂1Yt. If Ŷt(0) = Yt, then

Ŷt(h) = τ̂ + ϕ̂1Ŷt(h − 1) = τ̂(1 + ϕ̂1 + · · · + ϕ̂
h−1
1 ) + ϕ̂h

1Yt =
1 − ϕ̂h

1

1 − ϕ̂1
τ̂ + ϕ̂h

1Yt. For a weakly stationary

AR(1) time series, a good estimation method will have |ϕ̂1| < 1.

When d > 0 for an ARIMA(p, d, q) model, often τ = 0.

d) Consider an ARIMA(1,1,1) model with τ = 0: Yt = (1 + ϕ1)Yt−1 − ϕ1Yt−2 + θ1et−1 + et. Then

Ŷt(1) = (1+ϕ̂1)Yt−ϕ̂1Yt−1+θ̂1êt, Ŷt(2) = (1+ϕ̂1)Ŷt(1)−ϕ̂1Yt, and Ŷt(h) = (1+ϕ̂1)Ŷt(h−1)−ϕ̂1Ŷt(h−2)

for h > 2.

e) Consider an ARIMA(0,1,1) model with τ = 0: Yt = Yt−1 + θ1et−1 + et. Then Ŷt(1) = Yt + θ̂1êt,

and Ŷt(h) = Ŷt(h − 1) = Ŷt(1) for h ≥ 2.

f) Consider an ARIMA(0,2,2) model with τ = 0: Yt = 2Yt−1 − Yt−2 + θ1et−1 + θ2et−2 + et. Then

Ŷt(1) = 2Yt − Yt−1 + θ̂1êt + θ̂2êt−1, Ŷt(2) = 2Ŷt(1) − Yt + θ̂2êt, and Ŷt(h) = 2Ŷt(h − 1) − Ŷt(h − 2) for

h ≥ 3.

The basic idea for getting prediction intervals for the test data is now given. Find the formu-

las for the test data Yn+1, ...,Yn+L, apply the formulas to the training data Y1, ...,Yn to get forecast

residuals. Apply the shorth to the nh forecast residuals êt(h) to get [Ln(h),Un(h)]. Then the PI for

Yn+h is [Ŷn(h) + Ln(h), Ŷn(h) + Un(h)].

Often time series PIs assume normality and are similar to equation (3.2) below. The follow-

ing normal PI is often used, but typically does not work well unless the h-step ahead forecast is

normally distributed. For many time series models, a large sample normal 100(1 − δ)% PI for Yt+h

is

[Ln,Un] = Ŷt(h) ± t1−δ/2,n−p−qS E(Ŷt(h)). (3.2)

Suppose that as n → ∞, Ŷt(h) → E(Yt+h) = µt+h and S E(Ŷt(h)) → S D(Yt+h) = σt+h. These

quantities are conditional on the past, but the conditioning is suppressed. Then P(Yt+h ∈ [Ln,Un]) ≈

P(Yt+h ∈ [µt+h − z1−δ/2σt+h, µt+h + z1−δ/2σt+h]) =

11



P[|Yt+h − µt+h| < z1−δ/2σt+h] “ ≥ ” 1 − 1
z2

1−δ/2
assuming Chebyshev’s inequality holds to a good

approximation. Hence a 95% PI could have coverage as low as 75% and a 99.7% PI could have

coverage as low as 89%. If n is large, a 95% PI uses t1−δ/2,n−p−q ≈ 1.96 while using z1−δ/2 = 5 has

coverage that is eventually bounded below by 96% as n → ∞. The t cutoff tends to be too low

while the Chebyshev cutoff tends to be too high.

The next PI ignores the time series structure of the data. Let et = Yt − Y , and let shorth(c1 =

⌈n(1−δ)⌉) = [Ln(h),Un(h)] be computed from the et. Then the large sample shorth(c1) 100(1−δ)%

PI for Yt+h is

[Ln,Un] = [Y + bnLn(h),Y + bnUn(h)] (3.3)

where bn =

(
1 +

15
n

) √
n + 1
n − 1

. Note that this PI is the same for all h. For weakly stationary, causal,

and invertible ARMA(p, q) models, this PI is too long for h near 1, but should have short length

for large h and if h > q for an MA(q) model. This PI is the Olive (2013) PI suggested for Y f when

Y1, ...,Yt and Y f are iid.

The following PI is new and takes into account the time series structure of the data. A sim-

ilar idea in Masters (1995, p. 305) is to find the nh h-step ahead forecast residuals and use per-

centiles to make PIs for Yt+h for h = 1, ..., L. For ARIMA(p, d, q) models, let c2 = ⌈nh(1 − δn)⌉

and compute shorth(c2) = [Ln(h),Un(h)] of the h-step ahead forecast residuals êt(h). Let ah =(
1 +

15
nh

) √
nh

nh − p − q
. Then a large sample 100(1 − δ)% PI for Yt+h is

[Ln,Un] = [Ŷn(h) + ahLn(h), Ŷn(h) + ahUn(h)] (3.4)

where 1 − δn = min(1 − δ + 0.05, 1 − δ + (p + q)/nh) for δ > 0.1 and 1 − δn = min(1 − δ/2, 1 −

δ + 10(p + q)δ/nh) for δ ≤ 0.1. The correction factor helps compensate for undercoverage when

nh ≥ 20(p + q), and similar correction factors are used in Olive (2007, 2017b, 2018) and Pelawa

Watagoda and Olive (2021b) to create prediction intervals for regression models and prediction
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regions for multivariate regression models. Note that for h = 1, an estimator for σ2 = V(e) is

σ̂2 =
1

n1 − p − q

n1∑
i=1

ê2
i ≈

1
n1

n1∑
i=1

e2
i ,

suggesting that √
n1

n1 − p − q
êi ≈ ei.

Figure 3.1 shows a simulated MA(2) time series with n = 100, L = 7 and U(−1, 1) errors. The

horizontal lines correspond to the 95% PI (3.3). Two of the one hundred time series training data

observations Y1, ...Y100 lie outside of the two lines. All seven of the future test data observations

Y101, ...,Y107 lie within their large sample 95% PI (3.3).

Figure 3.1. PIs for an MA(2) Time Series with Uniform(−1, 1) Errors
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Table 3.1. Normal Errors

δ n PI h=1 h=2 h=3 h=4 h=5 h=6 h=7

0.05 100 N 0.9354 0.9428 0.9526 0.9456 0.9496 0.9410 0.9442

0.05 100 3.900 4.087 4.214 4.214 4.214 4.214 4.214

0.05 100 A 0.9520 0.9652 0.9586 0.9518 0.9576 0.9510 0.9530

0.05 100 4.329 4.746 4.480 4.480 4.480 4.480 4.480

0.05 400 N 0.9444 0.9444 0.9506 0.9466 0.9536 0.9522 0.9442

0.05 400 3.913 4.077 4.182 4.182 4.182 4.182 4.182

0.05 400 A 0.9444 0.9480 0.9468 0.9464 0.9512 0.9460 0.9478

0.05 400 3.980 4.192 4.209 4.209 4.209 4.209 4.209

0.5 100 N 0.4888 0.4968 0.5004 0.4856 0.4966 0.4914 0.4948

0.5 100 1.326 1.388 1.431 1.431 1.431 1.431 1.431

0.5 100 A 0.5100 0.5162 0.5004 0.4898 0.4998 0.4892 0.4926

0.5 100 1.459 1.533 1.496 1.496 1.496 1.496 1.496

0.5 400 N 0.4940 0.49304 0.5028 0.5100 0.4884 0.4858 0.4924

0.5 400 1.344 1.399 1.435 1.435 1.435 1.435 1.435

0.5 400 A 0.4906 0.4902 0.4894 0.5020 0.4816 0.4808 0.4800

0.5 400 1.356 1.413 1.432 1.432 1.432 1.432 1.432
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Table 3.2. t5 Errors

δ n PI h=1 h=2 h=3 h=4 h=5 h=6 h=7

0.05 100 N 0.9408 0.9492 0.9400 0.9412 0.9406 0.9390 0.9376

0.05 100 5.010 5.244 5.409 5.409 5.409 5.409 5.409

0.05 100 A 0.9542 0.9670 0.9484 0.9480 0.9466 0.9462 0.9472

0.05 100 5.665 6.320 5.753 5.753 5.753 5.753 5.753

0.05 400 N 0.9396 0.9494 0.9514 0.9502 0.9480 0.9482 0.9512

0.05 400 5.041 5.257 5.388 5.388 5.388 5.388 5.388

0.05 400 A 0.9448 0.9564 0.9488 0.9514 0.9476 0.9492 0.9494

0.05 400 5.192 5.484 5.456 5.456 5.456 5.456 5.456

0.5 100 N 0.5414 0.5452 0.5464 0.5508 0.5494 0.5606 0.5508

0.5 100 1.709 1.788 1.845 1.845 1.845 1.845 1.845

0.5 100 A 0.4988 0.5158 0.4888 0.4970 0.4978 0.5078 0.5008

0.5 100 1.603 1.710 1.679 1.679 1.679 1.679 1.679

0.5 400 N 0.5678 0.5690 0.5584 0.5650 0.5736 0.5518 0.5652

0.5 400 1.732 1.803 1.850 1.850 1.850 1.850 1.850

0.5 400 A 0.4884 0.5030 0.4956 0.4992 0.5026 0.4820 0.4930

0.5 400 1.468 1.561 1.597 1.597 1.597 1.597 1.597
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Table 3.3. Uniform Errors

δ n PI h=1 h=2 h=3 h=4 h=5 h=6 h=7

0.05 100 N 0.9902 0.9812 0.9822 0.9822 0.9850 0.9836 0.9816

0.05 100 2.256 2.361 2.435 2.435 2.435 2.435 2.435

0.05 100 A 0.9848 0.9848 0.9796 0.9708 0.9772 0.9726 0.9780

0.05 100 2.170 2.399 2.388 2.388 2.388 2.388 2.388

0.05 400 N 0.9994 0.9890 0.9816 0.9818 0.9812 0.9848 0.9864

0.05 400 2.263 2.357 2.416 2.416 2.416 2.416 2.416

0.05 400 A 0.9604 0.9590 0.9524 0.9504 0.9532 0.9546 0.9554

0.05 400 1.954 2.141 2.208 2.208 2.208 2.208 2.208

0.5 100 N 0.3752 0.3926 0.4078 0.4130 0.4214 0.4132 0.4128

0.5 100 0.769 0.806 0.831 0.831 0.831 0.831 0.831

0.5 100 A 0.4826 0.4876 0.4724 0.4692 0.4884 0.4780 0.4784

0.5 100 1.002 1.036 1.005 1.005 1.005 1.005 1.005

0.5 400 N 0.3908 0.3962 0.4158 0.4146 0.4216 0.4208 0.4064

0.5 400 0.777 0.809 0.830 0.830 0.830 0.830 0.830

0.5 400 A 0.4934 0.4796 0.4838 0.4840 0.4920 0.4890 0.4730

0.5 400 0.963 0.978 0.978 0.978 0.978 0.978 0.978
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Table 3.4. EXP(1) - 1 Errors

δ n PI h=1 h=2 h=3 h=4 h=5 h=6 h=7

0.05 100 N 0.9424 0.9516 0.9478 0.9458 0.9432 0.9422 0.9446

0.05 100 3.872 4.052 4.177 4.177 4.177 4.177 4.177

0.05 100 A 0.9590 0.9712 0.9562 0.9512 0.9492 0.9492 0.9550

0.05 100 3.726 4.389 4.047 4.047 4.047 4.047 4.047

0.05 400 N 0.9556 0.9442 0.9496 0.9446 0.9458 0.9414 0.9486

0.05 400 3.908 4.072 4.177 4.177 4.177 4.177 4.177

0.05 400 A 0.9598 0.9540 0.9496 0.9472 0.9462 0.9434 0.9504

0.05 400 3.224 3.689 3.8093 3.809 3.809 3.809 3.809

0.5 100 N 0.5250 0.5418 0.5528 0.5516 0.5620 0.5494 0.5546

0.5 100 1.323 1.382 1.425 1.425 1.425 1.425 1.425

0.5 100 A 0.5070 0.5068 0.5018 0.4920 0.4956 0.5012 0.5012

0.5 100 0.901 1.023 1.029 1.029 1.029 1.029 1.029

0.5 400 N 0.5358 0.5618 0.5620 0.5550 0.5604 0.5454 0.5568

0.5 400 1.342 1.397 1.432 1.432 1.432 1.432 1.432

0.5 400 A 0.5004 0.5042 0.4984 0.5028 0.4934 0.4842 0.4974

0.5 400 0.760 0.905 0.970 0.970 0.970 0.970 0.970
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The simulations used the MA(2) model where the distribution of the white noise {et} is N(0,1),

t5, U(−1, 1) or (EXP(1) - 1). All these distributions have mean 0, but the fourth distribution is not

symmetric. The simulation generates 5000 time series of length n + L and PIs are found for

Yn+1, ...,Yn+L. The simulations used L = 7 and 95% and 50% nominal PIs. The PIs used were the

normal PI (3.2) and the alternative PI which uses PI (3.3) for Yt+h where h > 2 and PI (3.4) for

h = 1, 2. These PIs are denoted by N and A respectively in the tables. The simulated coverages

and average lengths of the PI are shown.

With 5000 runs, coverages between 0.94 and 0.96 suggest that there is no reason to believe

that the nominal coverage is not 0.95, while coverages between 0.48 and 0.52 suggest that there is

no reason to believe that the nominal coverage is not 0.5.

From table 3.1 for normal errors, note that for n = 100, the coverages of PIs (3.3) and (3.4)

were very similar to the those of PI (3.2). PIs (3.3) and (3.4) were longer than the normal PI (3.2)

for n = 100 and normal errors. From table 3.2 for t5 errors, the 95% normal PI (3.2) worked well,

but the nominal 50% normal PI (3.2) had coverage that was too high and the average lengths were

too large. The alternative PIs had coverage near 50% with shorter average lengths. From table 3.3

for uniform errors, the normal PIs (3.2) were too long and the coverage was too high for 95% PIs.

The alternative PIs (3.3) and (3.4) had coverage closer to the nominal level with good coverage

for n = 100. From table 3.4 with EXP(1) - 1 errors, for 95% PIs the normal PIs (3.2) were longer

than the alternative PIs (3.3) and (3.4). For the 50% PIs, the normal PIs (3.2) were too long with

coverage that was too high. The alternative PIs (3.3) and (3.4) were shorter with good coverage.

Next we consider time series PIs after variable selection. Simulations used the 1-step ahead

PI with d = 1 for ease of programming. Let the full model be the ARMA(pmax, qmax) model. Let

Imin be the ARMA(pm, qm) model that minimized a criterion such as AIC, AICC, or BIC. Find Ŷn(h)

and the forecast residuals êt(h) for the selected model Imin. For d = 1 we will use the residuals êt.

Let k = pm + qm + 1 and ẽt(h) =
√

n
n − k

êt(h). Let qn = min(1 − δ + 0.05, 1 − δ + k/nh) for δ > 0.1

and

qn = min(1 − δ/2, 1 − δ + 10δk/nh), otherwise.
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If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the shorth(cmod) PI

[L̂n(h), Ûn(h)] from the nh scaled forecast residuals ẽt(h) with

cmod = min(nh, ⌈nh[qn + 1.12
√
δ/nh ] ⌉). (3.5)

Then the new large sample 100(1 − δ)% PI for Yn+h is

[Ln,Un] = [Ŷt(h) + L̂n(h), Ŷt(h) + Ûn(h)]. (3.6)

Similar correction factors were used by Olive, Rathnayake, and Haile (2021) for prediction inter-

vals for regression models, such as generalized linear models, after variable selection.

Why might PIs (3.3), (3.4), and (3.6) have good coverage? For both the test data and the

training data, Yt+h = Ŷt(h) + êt(h) = µt+h + et(h). First, consider the training data where J forecast

residuals êt(h) exist. Then the proportion of Yt+h ∈ [Ŷt(h) + Ln(h), Ŷt(h) + Un(h)] = the proportion

of the J forecast residuals êt(h) ∈ [Ln(h),Un(h)] ≈ 1 − δn ≥ 1 − δ by construction. Hence the

training data coverage is good. If the selected fitted model is good, and the test data behaves like

the training data, then we expect the test data coverage to be good. Hence we need consistent

estimators and large n.

Second, assume the time series follow a weakly stationary ARMA model, and suppose

Ŷt(h) is a consistent estimator of µt+h and êt(h) estimates et(h) in that êt(h) − et(h)
D
→ 0 as

n → ∞. Also assume that the percentiles of êt(h) estimate the percentiles of et(h) such that

P(et(h) ∈ [Ln(h),Un(h)]) → 1 − δ as n → ∞. Then P(Yn+h ∈ [Ŷn(h) + Ln(h), Ŷn(h) + Un(h)]) ≈

P(et(h) ∈ [Ln(h),Un(h)]) ≈ 1− δ. These assumptions are roughly the assumptions made when nor-

mality is assumed, which makes the time series strictly stationary. For h = 1, the {êt+1} = {êt(1)}

estimate the iid {et}, and these assumptions may be reasonable if consistent estimators are used and

n is large. For weakly stationary ARMA models, µt+h → µ, Ŷt(y)→ µ, and êt(h) estimates Yt+h − µ

as h → ∞. Lee and Scholtes (2014) discuss when the percentiles of forecast errors are consistent

for ARMA models. For the MA(q) model, et(h) = θ1et+h−1+θ2et+h−2+ · · ·+θh−1et+1+et+h for h ≤ q,
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et(h) = Yt+h − µ for h > q, the et(h) are identically distributed for fixed h, and the random variables

e j(h), e j+h(h), e j+2(h)(h), ... are iid for fixed h ≤ q. For h ≤ q, there are h iid sequences starting at

j = 1, 2, ..., h, respectively. For h > q there are q+1 iid sequences starting at j = 1, ..., (q+1). Since

the sample percentiles of the iid sequences converge in probability to the population percentiles

for fixed h, so do the sample percentiles of all of the data. Hence P(et(h) ∈ [Ln(h),Un(h)]) ≈ 1 − δ

as n → ∞ for the MA(q) model if consistent estimators are used. A weakly stationary, causal

ARMA(p, q) time series follows an MA(∞) model which is approximately an MA(K) time series

where K depends on the time series but not on n. Such time series tend to be ergodic: see White

(1984, p. 46). For ergodic data from a unimodal distribution, Chen and Shao (1999) proved the

sample shorth converges to the unique population shorth.

If the variable selection estimator is based on a consistent estimator and the probability that

the variable selection estimator underfits goes to 0 as n→ ∞, then the variable selection estimator

is consistent. For example, use the Yule Walker estimator and AIC for AR(p) variable selection.

We recommend using PI (3.3) if nh < 50. Tables 3.5 and 3.6 show simulation results, where PI 3.2

is the 95% normal PI, PI 3.3 is the 95% PI that ignores the time series structure of the data, PI 3.4

is the 95% PI that considers the time series structure of the data and a new large sample PI (PI 3.6)

for Yn+h. The coverages were high for uniform error types.

The following quote from Hyndman and Athanasopoulos (2018, last paragraph of
∮

8.8) is

important. “As with most prediction interval calculations, ARIMA-based intervals tend to be too

narrow. This occurs because only the variation in the errors has been accounted for. There is

also variation in the parameter estimates, and in the model order, that has not been included

in the calculation. In addition, the calculation assumes that the historical patterns that have

been modelled will continue into the forecast period.” Also see Bhansali (1981) for the effects of

estimating the order of the time series model.

There is a large literature on time series PIs, especially for AR(p) models. The bootstrap is

often used. See Alonso, Peńa, and Romo (2002, 2003), Brockwell and Davis (2016), Clements

and Kim (2007), deLuna (2000), Hyndman and Athanasopoulos (2018), Kabaila and He (2007),
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Masters (1995, p. 305), Pan and Politis (2016a), Pascual, Romo, and Ruiz (2001), Thombs and

Schucany (1990), Vidoni (2009), and Wolf and Wunderli (2015) for references.

Some papers on the shorth include Chen and Shao (1999), Grübel (1988), and Einmahl and

Mason (1992).

Table 3.5. one step PI after model selection, MA(2) is true

n dist PI 3.3 PI 3.6 PI F PI 3.2

100 N 0.9582 0.9592 0.9442 0.9476

100 4.4553 4.3214 3.8857 3.9341

100 t5 0.9504 0.9550 0.9412 0.9434

100 5.7340 5.6747 5.0015 5.06377

100 U 0.9728 0.9776 0.9842 0.9860

100 2.3876 2.1992 2.2538 2.2819

100 sExp 0.9536 0.9540 0.9406 0.9424

100 4.0179 3.7989 3.8504 3.8983

400 N 0.9458 0.9500 0.9470 0.9476

400 4.2054 3.9990 3.9119 3.9239

400 t5 0.9432 0.9444 0.9404 0.9412

400 5.4640 5.2364 5.0455 5.0609

400 U 0.9518 0.9576 0.9988 0.9992

400 2.2084 1.9644 2.2593 2.2662

400 sExp 0.9558 0.9578 0.9508 0.9518

400 3.8057 3.2935 3.9047 3.9166

800 N 0.9516 0.9526 0.9514 0.9520

800 4.1704 3.9445 3.9147 3.9206

800 t5 0.9458 0.9480 0.9452 0.9456

800 5.4334 5.1604 5.0491 5.0568

800 U 0.9500 0.9524 0.9994 0.9994

800 2.1838 1.9255 2.2605 2.2640

800 sExp 0.9438 0.9438 0.9410 0.9410

800 3.7821 3.1842 3.9147 3.9207
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Table 3.6. one step PI after model selection, AR(1) is true

n dist PI 3.3 PI 3.6 PI F PI 3.2

100 N 0.9548 0.9562 0.9412 0.9436

100 4.3870 4.2758 3.8770 3.9250

100 t5 0.9486 0.9502 0.9402 0.9434

100 5.6495 5.5786 4.9980 5.0597

100 U 0.9744 0.9828 0.9904 0.9916

100 2.3104 2.1587 2.2479 2.2758

100 sExp 0.9556 0.9620 0.9482 0.9492

100 3.8550 3.6475 3.8582 3.90609

400 N 0.9502 0.9506 0.9490 0.9494

400 4.1343 3.9811 3.9103 3.9222

400 t5 0.9442 0.9452 0.9432 0.9440

400 5.3588 5.1925 5.0425 5.0579

400 U 0.9614 0.9616 0.9990 0.9990

400 2.1382 1.9554 2.2603 2.2672

400 sExp 0.9518 0.9504 0.9452 0.9456

400 3.6109 3.2302 3.9048 3.9167

800 N 0.9504 0.9480 0.9490 0.9494

800 4.1063 3.9413 3.9203 3.9262

800 t5 0.9462 0.9512 0.9474 0.9478

800 5.3277 5.1354 5.0384 5.0461

800 U 0.9584 0.9616 0.9998 0.9998

800 2.1148 1.9218 2.2610 2.2645

800 sExp 0.9502 0.9552 0.9484 0.9484

800 3.5783 3.1373 3.9129 3.9189
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CHAPTER 4

PREDICTION INTERVALS AND REGIONS FOR THE RANDOM WALK

Now consider a random walk (with drift) Yt = Yt−1 + et where the et are iid. Suppose there is

a sample Y1, ...,Yn and we want a PI for Yn+ j. Then Yt = Yt−2 + et−1 + et = Yt− j + et− j+1 + · · · + et =

Y0 + e1 + · · · + et, or Yn+ j = Yn + en+1 + en+2 + · · · + en+ j = Yn + ϵn, j. Let e j = Y j − Y j−1 for

j = 2, ..., n. Divide e2, ..., en into blocks of length j and let ϵi be the sum of the ei in each block.

Hence ϵ1 = e2 + · · · + e j+1, ϵ2 = e j+2 + · · · + e2 j+1, and ϵi = e(i−1) j+2 + e(i−1) j+3 + · · · + e(i−1) j+ j+1 for

i = 1, ...,m = ⌊n/ j⌋. These ϵi are iid from the same distribution as ϵn, j. Assume n ≥ 50 j and let

[L,U] be the shorth(c) PI for a future value of ϵ f based on ϵ1, ..., ϵm with m ≥ 50. Then the large

sample 100(1 − δ)% PI for Yn+ j is [Yn + L,Yn + U]. Note that ϵ j = ϵn, j ≈ N( jµ, jσ2) for large j by

the central limit theorem if E(et) = µ and V(et) = σ2.

The random walk can be written as Yt = Y0 +
∑t

i=1 ei where Y0 = y0 is often a constant.

Pankratz (1983, p. 106) notes that the random walk model has been found to be a good model

for many stock price time series. A stochastic process {N(t) : t ≥ 0} is a counting process if N(t)

counts the total number of events that occurred in time interval (0, t]. Let en be the interarrival

time or waiting time between the (n − 1)th and nth events counted by the process, n ≥ 1. If the

nonnegative ei are iid, then {N(t), t ≥ 0} is a renewal process. Let Yn =
∑n

i=1 ei = the time of

occurrence of the nth event = waiting time until the nth event. Then Yn is a random walk with

Y0 = y0 = 0. Let E(ei) = µ > 0. Then E(Yn) = nµ and V(Yn) = nV(ei) if V(ei) exists. A Poisson

process with rate λ is a renewal process where the ei are iid EXP(λ) with E(ei) = 1/λ. See Ross

(2014) for the Poisson process and renewal process. Given Y1, ...,Yn, then n evnts have occurred,

and the 1-step ahead PI is for the time until the next event, the 2-step ahead PI is for the time until

the next 2 events, and the d-step ahead PI is for the time for the next d events.

The R code below gives the h-step ahead 95% PI for the time until the next h events for

h = 1, 2, 3 and 4 if the ei are iid EXP(1) with n = 1000000, which corresponds to a Poisson

process with λ = 1. The 1-step ahead large sample 96% PI is [0.000,3.003] with length 3.003.
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source("http://parker.ad.siu.edu/Olive/tspack.txt")

times<-rexp(1000000)

renewalpi(times)

$onepi

[1] 9.639189e-08 3.002906

$twopi

[1] 0.04208788 4.77489907

$threepi

[1] 0.3227718 6.4326904

$fourpi

[1] 0.6858191 7.9398378

Some sample output for 100 runs is shown below. The coverage and average length of the

h-step ahead 95% PIs is computed for h = 1, 2, 3 and 4.

rwpisim(n=10000,nruns=100,type=2,tdf=1)

$onepimnlen #C(1,1)

[1] 26.62644 #25.41

$onecov

[1] 0.94

$twopimnlen #C(2,2)

[1] 54.35798 #50.82

$twocov

[1] 0.93

$threepimnlen #C(3,3)

[1] 82.4097 #76.24

$threecov

[1] 0.94

$fourpimnlen #C(4,4)
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[1] 111.4 #101.65

$fourcov

[1] 0.95

Table 4.1. Random walk PI, nruns=5000,δ=0.05

n dist h=1 h=2 h=3 h=4

100 N 0.9554 0.9618 0.9432 0.9208

100 4.1675 6.32058 7.2125 7.7710

100 C 0.9594 0.9602 0.9394 0.9204

100 47.2301 570.4022 578.6495 562.9710

100 EXP 0.9602 0.9588 0.9466 0.9238

100 3.6581 6.2683 7.1028 7.6876

100 U 0.9496 0.9610 0.9436 0.9232

100 1.9027 3.2920 3.9957 4.3782

400 N 0.9576 0.9562 0.9590 0.9578

400 4.0667 5.7800 7.2466 8.3284

400 C 0.9562 0.9556 0.9648 0.9580

400 32.8266 72.3425 133.9639 189.4935

400 EXP 0.9632 0.9576 0.9604 0.9578

400 3.3091 5.1449 6.7579 7.9262

400 U 0.9532 0.9480 0.9554 0.9548

400 1.9035 3.1644 4.0582 4.7017

800 N 0.9466 0.9528 0.9532 0.9568

800 4.0192 5.7505 7.0041 8.1543

800 C 0.9536 0.9576 0.9522 0.9536

800 29.7084 65.2802 98.3195 142.1259

800 EXP 0.9592 0.9594 0.9570 0.9540

800 3.1997 5.0468 6.4145 7.6673

800 U 0.9498 0.9506 0.9546 0.9572

800 1.9013 3.1659 3.9642 4.6309

A small random walk simulation was done for the large sample 95% PIs using 5000 runs with

Y0 = 1. So an observed coverage in [0.94, 0.96] gives no reason to doubt that the PI has the nominal
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coverage of 0.95. The errors ei were iid from four distributions: i) N(1,1), ii) t1 ∼ Cauchy(1, 1),

iii) EXP(1), and iv) uniform(0, 2). Only distribution iii) is not symmetric. We computed the d-step

ahead 95% PIs for d = 1, 2, 3, 4 = J. We want n ≥ 50J, but simulatations may use smaller n such

as n = 25J. The asymptotic optimal lengths are i) 3.92, 5.54, 6.79, 7.84, ii) 25.41, 50.82, 76.24,

101.65, iii) 3.00, 4.72, 6.11, 7.22, iv) 1.90, 3.11, 3.87, 4.48. The tspack function rwpisim was

used for the simulation.

Let the population forecast error be e(h). For type 1, the asymptotic optimal lengths of the

large sample 95% PIs are 3.92
√

h where e(h) ∼ N(h, σ2 = h). For type 2, e(h) ∼ C(h, σ = h):

a Cauchy distribution. For type 3, e(h) ∼ G(h, 1): a Gamma distribution. For type 4, e(2) ∼

triangular(0,4). The distribution of the sum of n iid U(0,1) random variables is known as the Irwin-

Hall distribution. See Gray and Odell (1966), Marengo, Farnsworth, and Stefanic (2017), and

Roach (1963).

If Yt = Yt−1 + et, use the same idea but apply the Olive (2017b) prediction regions. To

describe these prediction regions, Mahalanobis distances will be useful. Let the g × 1 column

vector T be a multivariate location estimator, and let the g × g symmetric positive definite matrix

C be a dispersion estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = D2
wi

(T,C) = (wi − T )T C−1(wi − T ) (4.1)

for each observation wi, where i = 1, ..., n. Notice that the Euclidean distance of wi from the

estimate of center T is Di(T, Ig) where Ig is the g × g identity matrix. The classical Mahalanobis

distance Di uses (T,C) = (w,S), the sample mean and sample covariance matrix where

w =
1
n

n∑
i=1

wi and S =
1

n − 1

n∑
i=1

(wi − w)(wi − w)T. (4.2)

Consider predicting a future test value w f , given past training data w1, ...,wn with J = n where

w1, ...,wn, z f are iid. Prediction intervals are a special case of prediction regions with g = 1 so the

wi are random variables.
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Definition 4.1. A large sample 100(1 − δ)% prediction region is a set An such that P(w f ∈

An) ≥ 1 − δ asymptotically. A prediction region is asymptotically optimal if its volume converges

in probability to the volume of the minimum volume covering region or the highest density region

of the distribution of w f .

Like prediction intervals, prediction regions need correction factors. For iid data from a

distribution with a g × g nonsingular covariance matrix, it was found that the simulated maximum

undercoverage of prediction region (4.4) without the correction factor was about 0.05 when n =

20g. Hence the correction factor (4.3) is used to give better coverage for small n. Let qn =

min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (4.3)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let D(Un) be the 100qnth sample quantile

of the Di where i = 1, ..., n.

Definition 4.2. The large sample 100(1 − δ)% nonparametric prediction region for a future

value w f given iid data w1, ...,wn is

{z : D2
z(w,S) ≤ D2

(Un)}, (4.4)

while the large sample 100(1 − δ)% classical prediction region is

{z : D2
z(w,S) ≤ χ2

g,1−δ}. (4.5)

For the classical prediction region, see Chew (1966) and Johnson and Wichern (1988, pp.

134, 151). The nonparametric prediction region is due to Olive (2013). Also see Olive (2017b:

pp. 151-153, 2018). The classical prediction region is a large sample prediction region if the iid

wi are iid Ng(µ,Σ) where Σ is nonsingular. The nonparametric prediction region is a large sample

prediction region if the iid wi have a nonsingular covariance matrix, and is asymptotically optimal
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for a large class of elliptically contoured distribution, including multivariate normal distributions

with nonsingular covariance matrices. Regions with smaller asymptotic volumes can exist if the

distribution is not elliptically contoured. From Olive (2018, p. 161), simulated coverage was often

near the nominal for n ≥ 20g, but simulated volumes behaved better for n ≥ 50g. Figure 5.1 shows

population 10%, 30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Y f for

two multivariate normal distributions.

Some prediction intervals for stochastic processes include Pan and Politis (2016b), Vidoni

(2004), and Vit (1973). Mykland (2003) describes how to convert prediction regions into invest-

ment strategies. Tables 4.2-4.7 show simulation results for the random walk prediction region.

Prediction regions do not have lengths, where as prediction intervals should have lengths as well

as coverages.The coverages were good for h = 1 and 2, and became good for h = 3 and 4 as the

sample size n increased.
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Table 4.2. Random walk PR, nruns=5000, p=2

n ψ type h=1 h=2 h=3 h=4

100 0 1 0.9434 0.9314 0.9208 0.9014

100 0 2 0.9412 0.9370 0.9296 0.9100

100 0 3 0.9478 0.9446 0.9378 0.9196

100 0 4 0.9394 0.9258 0.9202 0.8964

100 0.707 1 0.9470 0.9436 0.9302 0.9096

100 0.707 2 0.9430 0.9372 0.9282 0.9122

100 0.707 3 0.9476 0.9480 0.9388 0.9176

100 0.707 4 0.9450 0.9308 0.9208 0.9016

100 0.9 1 0.9420 0.9386 0.9258 0.9106

100 0.9 2 0.9432 0.9388 0.9242 0.9116

100 0.9 3 0.9458 0.9474 0.9388 0.9182

100 0.9 4 0.9396 0.9356 0.9206 0.8996

200 0 1 0.9458 0.9420 0.9416 0.9412

200 0 2 0.9546 0.9468 0.9408 0.9416

200 0 3 0.9568 0.9444 0.9424 0.9412

200 0 4 0.9450 0.9410 0.9316 0.9324

200 0.707 1 0.9444 0.9372 0.9346 0.9350

200 0.707 2 0.9472 0.9458 0.9410 0.9388

200 0.707 3 0.9482 0.9482 0.9488 0.9472

200 0.707 4 0.9404 0.9386 0.9340 0.9374

200 0.9 1 0.9478 0.9436 0.9378 0.9352

200 0.9 2 0.9498 0.9486 0.9450 0.9450

200 0.9 3 0.9506 0.9514 0.9482 0.9460

200 0.9 4 0.9416 0.9358 0.9374 0.9344
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Table 4.3. Random walk PR, nruns=5000, p=2

n ψ type h=1 h=2 h=3 h=4

400 0 1 0.9440 0.9464 0.9428 0.9456

400 0 2 0.9490 0.9442 0.9408 0.9374

400 0 3 0.9546 0.9516 0.9472 0.9458

400 0 4 0.9474 0.9438 0.9396 0.9382

400 0.707 1 0.9476 0.9460 0.9486 0.9482

400 0.707 2 0.9508 0.9468 0.9450 0.9492

400 0.707 3 0.9472 0.9512 0.9490 0.9482

400 0.707 4 0.9464 0.9442 0.9426 0.9456

400 0.9 1 0.9482 0.9518 0.9486 0.9426

400 0.9 2 0.9464 0.9472 0.9496 0.9420

400 0.9 3 0.9512 0.9500 0.9500 0.9450

400 0.9 4 0.9510 0.9426 0.9418 0.9412

30



Table 4.4. Random walk PR, nruns=5000, p=4

n ψ type h=1 h=2 h=3 h=4

200 0 1 0.9464 0.9460 0.9342 0.9172

200 0 2 0.9498 0.9454 0.9378 0.9216

200 0 3 0.9440 0.9414 0.9384 0.9220

200 0 4 0.9444 0.9384 0.9304 0.9116

200 0.5 1 0.9448 0.9424 0.9294 0.9124

200 0.5 2 0.9450 0.9500 0.9408 0.9192

200 0.5 3 0.9452 0.9478 0.9436 0.9304

200 0.5 4 0.9422 0.9474 0.9308 0.9084

200 0.9 1 0.9554 0.9476 0.9380 0.9186

200 0.9 2 0.9510 0.9476 0.9430 0.9190

200 0.9 3 0.9480 0.9494 0.9436 0.9294

200 0.9 4 0.9442 0.9350 0.9294 0.9098

400 0 1 0.9532 0.9516 0.9508 0.9496

400 0 2 0.9492 0.9492 0.9468 0.9442

400 0 3 0.9500 0.9438 0.9494 0.9500

400 0 4 0.9452 0.9420 0.9378 0.9412

400 0.5 1 0.9476 0.9468 0.9480 0.9376

400 0.5 2 0.9458 0.9490 0.9454 0.9454

400 0.5 3 0.9494 0.9450 0.9456 0.9466

400 0.5 4 0.9444 0.9490 0.9438 0.9352

400 0.9 1 0.9534 0.9498 0.9516 0.9496

400 0.9 2 0.9514 0.9488 0.9494 0.9458

400 0.9 3 0.9566 0.9554 0.9534 0.9520

400 0.9 4 0.9438 0.9418 0.9378 0.9418
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Table 4.5. nruns=5000, p=4

n ψ type h=1 h=2 h=3 h=4

400 0.9 4 0.9438 0.9418 0.9378 0.9418

800 0 1 0.9522 0.9486 0.9462 0.9434

800 0 2 0.9450 0.9452 0.9464 0.9472

800 0 3 0.9524 0.9540 0.9526 0.9524

800 0 4 0.9478 0.9456 0.9490 0.9498

800 0.5 1 0.9468 0.9452 0.9478 0.9482

800 0.5 2 0.9450 0.9478 0.9560 0.9514

800 0.5 3 0.9500 0.9482 0.9480 0.9420

800 0.5 4 0.9472 0.9502 0.9502 0.9464

800 0.9 1 0.9426 0.9480 0.9504 0.9514

800 0.9 2 0.9460 0.9474 0.9458 0.9432

800 0.9 3 0.9488 0.9510 0.9490 0.9472

800 0.9 4 0.9490 0.9480 0.9448 0.9480
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Table 4.6. Random walk PR, nruns=5000, p=8

n ψ type h=1 h=2 h=3 h=4

400 0 1 0.9426 0.9438 0.9370 0.9214

400 0 2 0.9490 0.9502 0.9444 0.9270

400 0 3 0.9466 0.9530 0.9476 0.9392

400 0 4 0.9416 0.9446 0.9388 0.9216

400 0.354 1 0.9514 0.9446 0.9456 0.9186

400 0.354 2 0.9450 0.9572 0.9460 0.9290

400 0.354 3 0.9556 0.9546 0.9496 0.9314

400 0.354 4 0.9416 0.9412 0.9340 0.9182

400 0.9 1 0.9484 0.9462 0.9424 0.9198

400 0.9 2 0.9524 0.9502 0.9480 0.9310

400 0.9 3 0.9482 0.9576 0.9546 0.9392

400 0.9 4 0.9458 0.9376 0.9346 0.9228

800 0 1 0.9458 0.9450 0.9460 0.9484

800 0 2 0.9516 0.9554 0.9514 0.9506

800 0 3 0.9494 0.9508 0.9480 0.9544

800 0 4 0.9432 0.9408 0.9438 0.9418

800 0.354 1 0.9456 0.9464 0.9478 0.9450

800 0.354 2 0.9474 0.9550 0.9540 0.9488

800 0.354 3 0.9534 0.9516 0.9532 0.9536

800 0.354 4 0.9494 0.9466 0.9480 0.9518

800 0.9 1 0.9436 0.9482 0.9478 0.9450

800 0.9 2 0.9500 0.9494 0.9512 0.9514

800 0.9 3 0.9552 0.9520 0.9514 0.9484

800 0.9 4 0.9474 0.9450 0.9494 0.9464
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Table 4.7. Random walk PR, nruns=5000, p=8

n ψ type h=1 h=2 h=3 h=4

1600 0 1 0.9506 0.9516 0.9476 0.9464

1600 0 2 0.9522 0.9534 0.9532 0.9514

1600 0 3 0.9496 0.9530 0.9524 0.9522

1600 0 4 0.9418 0.9428 0.9414 0.9430

1600 0.354 1 0.9506 0.9472 0.9504 0.9502

1600 0.354 2 0.9440 0.9520 0.9488 0.9502

1600 0.354 3 0.9506 0.9572 0.9574 0.9570

1600 0.354 4 0.9488 0.9418 0.9444 0.9462

1600 0.9 1 0.9510 0.9496 0.9476 0.9458

1600 0.9 2 0.9492 0.9500 0.9532 0.9474

1600 0.9 3 0.9524 0.9558 0.9548 0.9540

1600 0.9 4 0.9450 0.9508 0.9452 0.9500
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CHAPTER 5

THE BOOTSTRAP

This chapter follows Olive (2022, ch. 2) closely, and argues that, under regularity conditions,

applying the nonparametric prediction region of chapter 4 to a bootstrap sample results in a confi-

dence region. The volume of a confidence region→ 0 as n → 0, while the volume of a prediction

region goes to that of a population region that would contain a new w f with probability 1 − δ.

The nominal coverage is 100(1 − δ). If the actual coverage 100(1 − αn) > 100(1 − δ), then the

region is conservative. If 100(1 − αn) < 100(1 − δ), then the region is liberal. A region that is 5%

conservative is considered “much better” than a region that is 5% liberal.

When teaching confidence intervals, it is often noted that by the central limit theorem, the

probability that Yn is within two standard deviations (2S D(Yn) = 2σ/
√

n) of θ = µ is about 95%.

Hence the probability that θ is within two standard deviations of Yn is about 95%. Thus the interval

[θ − 1.96S/
√

n, θ + 1.96S/
√

n] is a large sample 95% prediction interval for a future value of the

sample mean Yn, f if θ is known, while [Yn − 1.96S/
√

n,Yn + 1.96S/
√

n] is a large sample 95%

confidence interval for the population mean θ. Note that the lengths of the two intervals are the

same. Where the interval is centered, at the parameter θ or the statistic Yn, determines whether the

interval is a prediction or a confidence interval. See Theorem 5.2 for a similar relationship between

confidence regions and prediction regions. We often want P(θ ∈ An)→ 1 − δ as n→ ∞.

Definition 5.1. A large sample 100(1− δ)% confidence region for a vector of parameters θ is

a setAn such that P(θ ∈ An) is eventually bounded below by 1 − δ as n→ ∞.

There are several methods for obtaining a bootstrap sample T ∗1 , ....,T
∗
B where the sample size n

is suppressed: T ∗i = T ∗in. The parametric bootstrap, nonparametric bootstrap, and residual bootstrap

will be discussed in this Section.

When g = 1, a confidence interval is a special case of a confidence region. Again we often

want the probability to converge to 1 − δ if the confidence interval is based on a statistic with an

asymptotic distribution that has a probability density function.
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Definition 5.2. The interval [Ln,Un] is a large sample 100(1 − δ)% confidence interval for θ

if P(Ln ≤ θ ≤ Un) is eventually bounded below by 1 − δ as n→ ∞.

Using the notation from Section 3 for the shorth PI, let k1 = ⌈nδ/2⌉ and k2 = ⌈n(1 − δ/2)⌉.

Then a common nonparametric large sample 100(1 − δ)% PI for Z f is

[Z(k1),Z(k2)] (5.1)

where 0 < δ < 1. See Frey (2013) for references.

Next we discuss bootstrap confidence intervals (5.2) and (5.3) that are obtained by applying

prediction intervals (5.1) and (3.1) to the bootstrap sample with B used instead of n. Some addi-

tional bootstrap CIs are obtained from bootstrap confidence regions from Section 5.2 when g = 1.

See Efron (1982) and Chen (2016) for the percentile method CI. Let Tn be an estimator of a pa-

rameter θ such as Tn = Z =
∑n

i=1 Zi/n with θ = E(Z1). Let T ∗1 , ...,T
∗
B be a bootstrap sample for Tn.

Let T ∗(1), ...,T
∗
(B) be the order statistics of the the bootstrap sample.

Definition 5.3. The bootstrap percentile method large sample 100(1−δ)% confidence interval

for θ is an interval [T ∗(kL),T
∗
(KU )] containing ≈ ⌈B(1 − δ)⌉ of the T ∗i . Let k1 = ⌈Bδ/2⌉ and k2 =

⌈B(1 − δ/2)⌉. A common choice is

[T ∗(k1),T
∗
(k2)]. (5.2)

Definition 5.4. The large sample 100(1 − δ)% shorth(c) CI

[T ∗(s),T
∗
(s+c−1)] (5.3)

uses the interval [T ∗(1),T
∗
(c)], [T

∗
(2),T

∗
(c+1)], ..., [T

∗
(B−c+1),T

∗
(B)] of shortest length. Here

c = min(B, ⌈B[1 − δ + 1.12
√
δ/B ] ⌉). (5.4)
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The shorth CI can be regarded as the shortest percentile method confidence interval, asymp-

totically. Hence the shorth confidence interval is a practical implementation of the Hall (1988)

shortest bootstrap interval based on all possible bootstrap samples. See Remark 5.1 for some

theory for bootstrap CIs such as (5.2) and (5.3). Olive (2014: p. 238, 2017b: p. 168, 2018)

recommended using the shorth CI for the percentile CI.

5.1 THE NONPARAMETRIC BOOTSTRAP

This section illustrates the nonparametric bootstrap with some examples. Suppose a statistic

Tn is computed from a data set of n cases. The nonparametric bootstrap draws n cases with re-

placement from that data set. Then T ∗1 is the statistic Tn computed from the sample. This process

is repeated B times to produce the bootstrap sample T ∗1 , ...,T
∗
B. Sampling cases with replacement

uses the empirical distribution.

Definition 5.5. Suppose that data x1, ..., xn has been collected and observed. Often the data

is a random sample (iid) from a distribution with cdf F. The empirical distribution is a discrete

distribution where the xi are the possible values, and each value is equally likely. If w is a random

variable having the empirical distribution, then pi = P(w = xi) = 1/n for i = 1, ..., n. The cdf of the

empirical distribution is denoted by Fn.

Example 5.1. Let w be a random variable having the empirical distribution given by Defini-

tion 5.5. Show that E(w) = x ≡ xn and Cov(w) =
n − 1

n
S ≡

n − 1
n

Sn.

Solution: Recall that for a discrete random vector, the population expected value E(w) =∑
xi pi where xi are the values that w takes with positive probability pi. Similarly, the population

covariance matrix

Cov(w) = E[(w − E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi − E(w))T pi.

Hence

E(w) =
n∑

i=1

xi
1
n
= x,
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and

Cov(w) =
n∑

i=1

(xi − x)(xi − x)T 1
n
=

n − 1
n

S. □

Example 5.2. If W1, ...,Wn are iid from a distribution with cdf FW , then the empirical cdf Fn

corresponding to FW is given by

Fn(y) =
1
n

n∑
i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y. Fix n and y. Then

nFn(y) ∼ binomial (n, FW(y)). Thus E[Fn(y)] = FW(y) and V[Fn(y)] = FW(y)[1− FW(y)]/n. By the

central limit theorem,

√
n(Fn(y) − FW(y))

D
→ N(0, FW(y)[1 − FW(y)]).

Thus Fn(y) − FW(y) = OP(n−1/2), and Fn is a reasonable estimator of FW if the sample size n is

large.

Suppose there is data w1, ...,wn collected into an n × p matrix W. Let the statistic Tn =

t(W) = T (Fn) be computed from the data. Suppose the statistic estimates µ = T (F), and let

t(W∗) = t(F∗n) = T ∗n indicate that t was computed from an iid sample from the empirical distribution

Fn: a sample w∗1, ...,w
∗
n of size n was drawn with replacement from the observed sample w1, ...,wn.

This notation is used for von Mises differentiable statistical functions in large sample theory. See

Serfling (1980, ch. 6). The empirical distribution is also important for the influence function

(widely used in robust statistics). The nonparametric bootstrap draws B samples of size n from

the rows of W, e.g. from the empirical distribution of w1, ...,wn. Then T ∗jn is computed from the

jth bootstrap sample for j = 1, ..., B.

Example 5.3. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample median Tn is

4. Using R, we drew B = 2 bootstrap samples (samples of size n drawn with replacement from the

original data) and computed the sample median T ∗1,n = 3 and T ∗2,n = 4.
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b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance matrix of the statis-

tic Cov(Tn), for testing hypotheses, and for obtaining confidence regions (often confidence inter-

vals). An iid sample T1n, ...,TBn of size B of the statistic would be very useful for inference, but

typically we only have one sample of data and one value Tn = T1n of the statistic, where n is

often suppressed. Often Tn = t(w1, ...,wn), and the bootstrap sample T ∗1n, ...,T
∗
Bn is formed where

T ∗jn = t(w∗j1, ...,w
∗
jn). Results summarized in Remark 5.2 imply that T ∗1n − Tn, ...,T ∗Bn − Tn is pseu-

dodata for T1n − θ, ...,TBn − θ when n is large in that
√

n(Tn − θ)
D
→ u and

√
n(T ∗ − Tn)

D
→ u.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗
=

1
B

B∑
i=1

T ∗i and S∗T =
1

B − 1

B∑
i=1

(T ∗i − T
∗
)(T ∗i − T

∗
)T (5.5)

be the sample mean and sample covariance matrix of the bootstrap sample T ∗1 , ...,T
∗
B where T ∗i =

T ∗i,n. Fix n, and let E(T ∗i,n) = θn and Cov(T ∗i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√

n(Tn − θ)
D
→ Ng(0,ΣA) where ΣA > 0

is positive definite and nonsingular. Often nΣ̂T
P
→ ΣA. For example, using least squares and the

residual bootstrap for the multiple linear regression model, Σn =
n − p

n
MS E(XT X)−1, Tn = θn = β̂,
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θ = β, Σ̂T = MS E(XT X)−1 and ΣA = σ
2 limn→∞(XT X/n)−1. See Example 7.1.

5.2 BOOTSTRAP CONFIDENCE REGIONS FOR HYPOTHESIS TESTING

When the bootstrap is used, a large sample 100(1−δ)% confidence region for a g×1 parameter

vector θ is a setAn = An,B such that P(θ ∈ An,B) is eventually bounded below by 1−δ as n, B→ ∞.

The B is often suppressed. Consider testing H0 : θ = θ0 versus H1 : θ , θ0 where θ0 is a known

g × 1 vector. Then reject H0 if θ0 is not in the confidence regionAn.

For a confidence region, let the g×1 vector Tn be an estimator of the g×1 parameter vector θ.

Let T ∗1 , ...,T
∗
B be the bootstrap sample for Tn. Let A be a full rank g×p constant matrix. For variable

selection, consider testing H0 : Aβ = θ0 versus H1 : Aβ , θ0 with θ = Aβ where often θ0 = 0.

Then let Tn = Aβ̂S EL and let T ∗i = Aβ̂
∗

S EL for i = 1, ..., B and S EL is VS or MIX. See chapter 6.

Let T
∗

and S∗T be the sample mean and sample covariance matrix of the bootstrap sample T ∗1 , ...,T
∗
B.

See Equation (5.5). A useful fact for the F and chi-square distributions is dnFg,dn,1−δ → χ2
g,1−δ as

dn → ∞. Here P(X ≤ χ2
g,1−δ) = 1 − δ if X ∼ χ2

g, and P(X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn . Let

kB = ⌈B(1 − δ)⌉. Confidence region (5.6) needs
√

n(Tn − θ)
D
→ Ng(0,ΣA) and nS∗T

P
→ ΣA > 0 as

n, B→ ∞. See Machado and Parente (2005) for regularity conditions for this assumption.

Definition 5.6. a) The standard bootstrap large sample 100(1 − δ)% confidence region for θ

is {w : (w − Tn)T [S∗T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S∗T ) ≤ D2

1−δ} (5.6)

where D2
1−δ = χ

2
g,1−δ or D2

1−δ = dnFg,dn,1−δ where dn → ∞ as n→ ∞. b) The Bickel and Ren (2001)

large sample 100(1 − δ)% confidence region for θ is {w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kB,T )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kB,T )} (5.7)

where the cutoff D2
(kB,T ) is the 100kBth sample quantile of the

D2
i = (T ∗i − Tn)T [Σ̂A/n]−1(T ∗i − Tn) = n(T ∗i − Tn)T [Σ̂A]−1(T ∗i − Tn).
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The following three confidence regions will be used for inference after variable selection.

The Olive (2017ab, 2018) prediction region method applies prediction region (4.4) to the bootstrap

sample. Olive (2017ab, 2018) also gave the modified Bickel and Ren confidence region that uses

Σ̂A = nS∗T . The hybrid confidence region is due to Pelawa Watagoda and Olive (2021a). For

prediction region (4.4), the correction factor (4.3) was used to give better coverage for small n.

When applied to a bootstrap sample of size B, the correction factor (5.8) gives better coverage

when B ≥ 50g. This result is useful because the bootstrap confidence regions can be slow to

simulate. Hence we want to use small values of B ≥ 50g. Let qB = min(1 − δ + 0.05, 1 − δ + g/B)

for δ > 0.1 and

qB = min(1 − δ/2, 1 − δ + 10δg/B), otherwise. (5.8)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the 100qBth sample quantile

of the Di. If B is large enough, D(UB) is the 100(1 − δ)th quantile.

Definition 5.7. a) The prediction region method large sample 100(1− δ)% confidence region

for θ is {w : (w − T
∗
)T [S∗T ]−1(w − T

∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗T ) ≤ D2

(UB)} (5.9)

where D2
(UB) is computed from D2

i = (T ∗i − T
∗
)T [S∗T ]−1(T ∗i − T

∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = θ0 rejects H0 if (T
∗
−θ0)T [S∗T ]−1(T

∗
−θ0) > D2

(UB). (This procedure is

basically the one sample Hotelling’s T 2 test applied to the T ∗i using S∗T as the estimated covariance

matrix and replacing the χ2
g,1−δ cutoff by D2

(UB).) b) The modified Bickel and Ren (2001) large

sample 100(1 − δ)% confidence region is {w : (w − Tn)T [S∗T ]−1(w − Tn) ≤ D2
(UB,T )} =

{w : D2
w(Tn,S∗T ) ≤ D2

(UB,T )} (5.10)

where the cutoff D2
(UB,T ) is the 100qBth sample quantile of the D2

i = (T ∗i −Tn)T [S∗T ]−1(T ∗i −Tn). Note

that the corresponding test for H0 : θ = θ0 rejects H0 if
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(Tn − θ0)T [S∗T ]−1(Tn − θ0) > D2
(UB,T ).

c) Shift region (5.9) to have center Tn, or equivalently, change the cutoff of region (5.10) to D2
(UB) to

get the hybrid large sample 100(1−δ)% confidence region: {w : (w−Tn)T [S∗T ]−1(w−Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S∗T ) ≤ D2

(UB)}. (5.11)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if

(Tn − θ0)T [S∗T ]−1(Tn − θ0) > D2
(UB).

Hyperellipsoids (5.9) and (5.11) have the same volume since they are the same region shifted

to have a different center. The ratio of the volumes of regions (5.9) and (5.10) is

|S∗T |1/2

|S∗T |1/2

(
D(UB)

D(UB,T )

)g

=

(
D(UB)

D(UB,T )

)g

. (5.12)

The volume of confidence region (5.10) tends to be greater than that of (5.9) since the T ∗i are closer

to T
∗

than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are special cases of

confidence regions. Suppose the parameter of interest is θ, and there is a bootstrap sample T ∗1 , ...,T
∗
B

where the statistic Tn is an estimator of θ based on a sample of size n. The percentile method uses an

interval that contains UB ≈ kB = ⌈B(1−δ)⌉ of the T ∗i . Let ai = |T ∗i −T
∗
|. Let T

∗
and S 2∗

T be the sample

mean and variance of the T ∗i . Then the squared Mahalanobis distance D2
θ = (θ − T

∗
)2/S ∗2T ≤ D2

(UB)

is equivalent to θ ∈ [T
∗
− S ∗T D(UB),T

∗
+ S ∗T D(UB)] = [T

∗
− a(UB),T

∗
+ a(UB)], which is an interval

centered at T
∗

just long enough to cover UB of the T ∗i . Hence the prediction region method is a

special case of the percentile method if g = 1. See Definition 5.3. Efron (2014) used a similar

large sample 100(1 − δ)% confidence interval assuming that T
∗

is asymptotically normal. The CI

[Tn − a(UB,T ),Tn + a(UB,T )] corresponding to (5.10) is defined similarly, and [Tn − a(UB),Tn + a(UB)]

is the CI for (24). Note that the three CIs corresponding to (5.9)–(5.11) can be computed without

finding S ∗T or D(UB) even if S ∗T = 0. The shorth(c) CI (5.3) computed from the T ∗i can be much

shorter than the Efron (2014) or prediction region method confidence intervals.
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Remark 5.1. Under regularity conditions, Olive (2017b, 2018) proved that (5.9) is a large

sample confidence region. See Bickel and Ren (2001) for (5.10), while Pelawa Watagoda and

Olive (2021a) gave simpler proofs, and proved that the shorth(c) interval applied to a bootstrap

sample of a random variable gives a large sample confidence interval. If g = 1, if
√

n(Tn−θ)
D
→ U,

and if
√

n(T ∗i − Tn)
D
→ U where U has a unimodal probability density function symmetric about

zero, then the confidence intervals from the three confidence regions (5.9)–(5.11), the shorth confi-

dence interval (5.3), and the “usual” percentile method confidence interval (5.2) are asymptotically

equivalent (use the central proportion of the bootstrap sample, asymptotically).

Remark 5.2. Note that if (5.10) is a large sample confidence regions, then so are (5.9) and

(5.11) if
√

n(T
∗
− Tn)

P
→ 0 as n → ∞. Pelawa Watagoda and Olive (2021a) showed that this

condition holds if
√

n(Tn − θ)
D
→ u and

√
n(T ∗i − Tn)

D
→ u where E(u) = 0 and Cov(u) = Σu , 0.

Thus
√

n(T
∗
−θ)

D
→ u and

√
n(T ∗i −T

∗
)

D
→ u. In addition, assume nS∗T

P
→ C where C is nonsingular.

Let

D2
1 = D2

T ∗i
(T
∗
,S∗T ) =

√
n(T ∗i − T

∗
)T (nS∗T )−1√n(T ∗i − T

∗
),

D2
2 = D2

θ(Tn,S∗T ) =
√

n(Tn − θ)T (nS∗T )−1√n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗T ) =

√
n(T

∗
− θ)T (nS∗T )−1√n(T

∗
− θ), and

D2
4 = D2

T ∗i
(Tn,S∗T ) =

√
n(T ∗i − Tn)T (nS∗T )−1√n(T ∗i − Tn).

Then D2
j ≈ uT (nS∗T )−1u ≈ uT C−1u, and the percentiles of D2

1 and D2
4 can be used as cutoffs. If n

and B are large enough and (nS∗T )−1 is “not too ill conditioned,” then the confidence regions (5.9),

(5.10), and (5.11) should still have coverage near 1 − δ. The regularity conditions for (5.9)–(5.11)

are weaker when g = 1, since S∗T does not need to be computed.

Remark 5.3. For bootstrapping the m × 1 vector β̂VS = β̂Imin,0, we will often want n ≥ 20m

and B ≥ max(100, n, 50m). If Tn is g × 1, we might replace m by g or replace m by d f if d f is the

model degrees of freedom. Sometimes much larger n is needed to avoid undercoverage. We want

B ≥ 50g so that S∗T is a good estimator of Cov(T ∗n). Prediction region theory uses correction factors

43



like (3.1) and (4.3) to compensate for finite n. The bootstrap confidence regions (5.9)–(5.11) and

the shorth CI use the correction factors (5.8) and (5.4) to compensate for finite B ≥ 50g. Note that

the correction factors make the volume of the confidence region larger as B decreases. Hence a test

with larger B will have more power.

5.3 LARGE SAMPLE THEORY FOR VARIABLE SELECTION ESTIMATORS

This section gives the large sample theory for β̂VS and β̂MIX, and follows Rathnayake and

Olive (2020) closely. Pelawa Watagoda and Olive (2021ab) gave theory for β̂MIX and β̂VS for the

multiple linear regression model, and Rathnayke and Olive (2021) extended the theory to many

other models, including GLMs, some time series models, and some survival regression models.

Assume that if S ⊆ I j where the dimension of I j is a j, then
√

n(β̂I j
− βI j

)
D
→ Na j(0,V j) where

V j is the covariance matrix of the asymptotic multivariate normal distribution. Then

√
n(β̂I j,0 − β)

D
→ Np(0,V j,0) (5.13)

where V j,0 adds columns and rows of zeros corresponding to the xi not in I j, and V j,0 is singular

unless I j corresponds to the full model.

Theorem 5.1 for β̂MIX, due to Rathnayake and Olive (2021), generalizes the Pelawa Watagoda

and Olive (2021b) theorem for multiple linear regression, and is useful for understanding Theo-

rem 5.3 for β̂VS . The first assumption in Theorem 5.1 is P(S ⊆ Imin) → 1 as n → ∞. Then the

variable selection estimator corresponding to Imin underfits with probability going to zero, and the

assumption holds under regularity conditions for GLMs if BIC or AIC is used. See Charkhi and

Claeskens (2018) and Claeskens and Hjort (2008, pp. 70, 101, 102, 114, 232). For multiple linear

regression with Mallows (1973) Cp or AIC, see Li (1987), Nishii (1984), and Shao (1993). For

AR(p) variable selection with AIC, AICC, and BIC, see Hannan and Quinn (1979) and Shibata

(1976). For MA(q) and ARMA(p, q) variable selection, the assumption has perhaps not yet been

proved. However, the condition is necessary for the variable selection estimator β̂VS to be a con-

sistent estimator of β. See Rathnayake and Olive (2021). The assumption on u jn in Theorem 5.1
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is reasonable by (5.13) since S ⊆ I j for each π j, and since β̂MIX uses random selection.

Theorem 5.1. Assume P(S ⊆ Imin) → 1 as n → ∞, and let β̂MIX = β̂Ik ,0 with probabilities

πkn where πkn → πk as n → ∞. Denote the positive πk by π j. Assume u jn =
√

n(β̂I j,0 − β)
D
→ u j ∼

Np(0,V j,0). a) Then

un =
√

n(β̂MIX − β)
D
→ u (5.14)

where the cdf of u is Fu(t) =
∑

j π jFu j(t). Thus u is a mixture distribution of the u j with probabil-

ities π j, E(u) = 0, and Cov(u) = Σu =
∑

j π jV j,0.

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√

n(Aβ̂MIX − Aβ)
D
→ Au = v (5.15)

where v has a mixture distribution of the v j = Au j ∼ Ng(0, AV j,0 AT ) with probabilities π j.

c) The estimator β̂VS is a
√

n consistent estimator of β. Hence
√

n(β̂VS − β) = OP(1).

d) If πa = 1, then
√

n(β̂S EL − β)
D
→ u ∼ Np(0,Va,0) where S EL is VS or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities πkn, the cdf of un is

Fun(t) =
∑

k πknFukn(t)→ Fu(t) =
∑

j π jFu j(z) at continuity points of the Fu j(t) as n→ ∞.

b) Since un
D
→ u, then Aun

D
→ Au.

c) The result follows since selecting from a finite number J of
√

n consistent estimators (even on a

set that goes to one in probability) results in a
√

n consistent estimator by Pratt (1959).

d) If πa = 1, there is no selection bias, asymptotically. The result also follows by Pötscher (1991,

Lemma 1). □

The following subscript notation is useful. Subscripts before the MIX are used for subsets

of β̂MIX = (β̂1, ..., β̂p)T . Let β̂i,MIX = β̂i. Similarly, if I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T .

Subscripts after MIX denote the ith vector from a sample β̂MIX,1, ..., β̂MIX,B. Similar notation is

used for other estimators such as β̂VS . The subscript 0 is still used for zero padding. We may use

FULL to denote the full model β̂ = β̂FULL.

Theorem 5.1 has several other applications. First, the theory gives the asymptotic distribution
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of β̂MIX corresponding to many variable selection estimators. Second, the theory is useful for

explaining why β̂Imin
should not be used, but β̂VS = β̂Imin,0 is a good estimator. For a random

quantity to be a k × 1 random vector, the dimension of the random quantity needs to be k (with

probability one). Since the dimension of β̂Imin
is a random variable, the random quantity β̂Imin

is

neither a random vector nor a statistic. Then β̂Imin
is not a consistent estimator for any parameter

vector βI j
, and

√
n(β̂Imin

− βI j
) can not be used as an asymptotic pivot even if Imin = I j is observed.

Compare Leeb and Pötscher (2006). A third application is bootstrap inference for hypothesis

testing. Fourth, the theory can be used to justify prediction intervals after variable selection. See

chapter 8, Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake, and Haile (2021).

The following Pelawa Watagoda and Olive (2021a) theorem is useful for bootstrapping vari-

able selection estimators. Let (T ,ST ) be the sample mean and sample covariance matrix computed

from T1, ...,TB which have the same distribution as Tn. Let D2
(UB) be the cutoff computed from the

D2
i (T ,ST ) for i = 1, ..., B. Note that Ti = Tin. The hyperellipsoid corresponding to the squared Ma-

halanobis distance D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to D2(T ,C)

is centered at T . Note that D2
T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem 5.2, since Rp contains T f with prob-

ability 1 − δB, the region Rc contains T with probability 1 − δB. Since Tn depends on the sample

size n, we need (nST )−1 to be fairly well behaved (“not too ill conditioned”) for each n ≥ 20g, say.

This condition is weaker than the stated assumption (nST )−1 P
→ Σ−1

A where ΣA is some nonsingular

matrix. Often ΣA = limn→∞ nΣTn .

Theorem 5.2: Geometric Argument. Suppose
√

n(Tn−θ)
D
→ u with E(u) = 0 and Cov(u) =

Σu , 0. Assume T1, ...,TB are iid with nonsingular covariance matrix ΣTn where (nST )−1 P
→ Σ−1

A .

Then the large sample 100(1 − δ)% prediction region Rp = {w : D2
w(T ,ST ) ≤ D2

(UB)} centered at

T contains a future value of the statistic T f with probability 1 − δB which is eventually bounded

below by 1 − δ as B → ∞. Hence the region Rc = {w : D2
w(Tn,ST ) ≤ D2

(UB)} is a large sample

100(1 − δ)% confidence region for θ where Tn is a randomly selected Ti.

Proof. The region Rc centered at a randomly selected Tn contains T with probability 1 − δB
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which is eventually bounded below by 1 − δ as B→ ∞. Since the
√

n(Ti − θ) are iid,



√
n(T1 − θ)

...

√
n(TB − θ)


D
→



v1

...

vB


where the vi are iid with the same distribution as u. For fixed B, the average of these random

vectors is
√

n(T − θ)
D
→

1
B

B∑
i=1

vi ∼ ANg

(
0,
Σu
B

)
where ANg denotes an approximate multivariate normal distribution. Hence (T−θ) = OP((nB)−1/2),

and T gets arbitrarily close to θ compared to Tn as B→ ∞. Thus Rc is a large sample 100(1 − δ)%

confidence region for θ as n, B→ ∞. □

Examining the iid data cloud T1, ...,TB and the bootstrap sample data cloud T ∗1 , ...,T
∗
B is often

useful for understanding the bootstrap. If
√

n(Tn−θ) and
√

n(T ∗i −Tn) both converge in distribution

to u ∼ Ng(0,ΣA), say, then the bootstrap sample data cloud of T ∗1 , ...,T
∗
B is like the data cloud of

iid T1, ...,TB shifted to be centered at Tn. Then the hybrid region (5.11) is a confidence region

by the geometric argument (as is region (5.10) which tends to use a larger cutoff), and (5.9) is a

confidence region if
√

n(T
∗
− Tn)

P
→ 0.

Let the random selection estimator Tn = Aβ̂MIX with θ = Aβ. Here A is a known full

rank g × p matrix with 1 ≤ g ≤ p. We have
√

n(Tn − θ)
D
→ v by (5.15) where E(v) = 0, and

Σv =
∑

j π j AV j,0 AT . Hence the above geometric argument holds: if we had iid data T1, ...,TB,

then Rc would be a large sample confidence region for θ. If
√

n(T ∗n − Tn)
D
→ v, then we could

use the bootstrap sample and confidence regions (5.9) to (5.11). This condition holds only under

strong regularity conditions such as πa = 1. Chapter 7 will explain why the bootstrap confidence

regions are still useful.

Pötscher (1991) used the conditional distribution of β̂VS |(β̂VS = β̂Ik ,0) to find the distribution
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of wn =
√

n(β̂VS−β). Let W = WVS = k if β̂VS = β̂Ik ,0 where P(WVS = k) = πkn for k = 1, ..., J. Then

(β̂VS :n,WVS :n) = (β̂VS ,WVS ) has a joint distribution where the sample size n is usually suppressed.

Note that β̂VS = β̂IW ,0. Define P(A|Bk)P(Bk) = 0 if P(Bk) = 0. Let β̂
C
Ik ,0 be a random vector from

the conditional distribution β̂Ik ,0|(WVS = k). Let wkn =
√

n(β̂Ik ,0 − β)|(WVS = k) ∼
√

n(β̂
C
Ik ,0 − β).

Denote Fz(t) = P(z1 ≤ t1, ..., zp ≤ tp) by P(z ≤ t). Then

Fwn(t) = P[n1/2(β̂VS − β) ≤ t] =

J∑
k=1

P[n1/2(β̂VS − β) ≤ t|(β̂VS = β̂Ik ,0)]P(β̂VS = β̂Ik ,0) =

J∑
k=1

P[n1/2(β̂Ik ,0 − β) ≤ t|(β̂VS = β̂Ik ,0)]πkn

=

J∑
k=1

P[n1/2(β̂
C
Ik ,0 − β) ≤ t]πkn =

J∑
k=1

Fwkn(t)πkn.

Hence β̂VS has a mixture distribution of the β̂
C
Ik ,0 with probabilities πkn, and wn has a mixture

distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that w jn =
√

n(β̂
C
I j,0 − β)

D
→ w j if S ⊆ I j for the

MLE with AIC, and gave a forward selection example. Here w j is a multivariate truncated normal

distribution (where no truncation is possible) that is symmetric about 0. Hence E(w j) = 0, and

Cov(w j) = Σ j exits. Note that both
√

n(β̂MIX − β) and
√

n(β̂VS − β) are selecting from the ukn =

√
n(β̂Ik ,0 − β) and asymptotically from the u j. The random selection for β̂MIX does not change

the distribution of u jn, but selection bias does change the distribution of the selected u jn to that

of w jn. Similarly, selection bias does change the distribution of the selected u j to that of w j. Let

W = WVS ,∞ where P(W = k) = πk. In Theorem 5.1, the assumption u jn =
√

n(β̂I j,0 − β)
D
→ u j is a

mild assumption that is made for large sample tests for whether a reduced model I j is good. The

reasonable Theorem 5.3 assumption that w jn
D
→ w j may not be mild. Regularity conditions for the

w j to have E(w j) = 0 may be strong. The proof for Equation (5.16) is the same as that for (5.14).

Theorem 5.3 is due to Rathnayake and Olive (2021), and Pelawa Watagoda and Olive (2021b) have

48



a similar theorem for multiple linear regression.

Theorem 5.3. Assume P(S ⊆ Imin) → 1 as n → ∞, and let β̂VS = β̂Ik ,0 with probabilities πkn

where πkn → πk as n→ ∞. Denote the positive πk by π j. Assume w jn =
√

n(β̂
C
I j,0 − β)

D
→ w j. Then

wn =
√

n(β̂VS − β)
D
→ w (5.16)

where the cdf of w is Fw(t) =
∑

j π jFw j(t). Thus w is a mixture distribution of the w j with

probabilities π j.

The estimator β̂MIX is the random vector with selection probabilities P(WMIX = k) = πkn =

P(WVS = k) where WMIX is independent of the β̂Ik ,0. Simulating β̂MIX and β̂VS is informative.

We consider X = Xn fixed or condition on Xn. The probabilities πkn depend on Xn, n, p, the

variable selection estimator, and the population model that generates Y. Consider the experiment

of generating Y from the model. (For example, i) for a parametric regression model, generate

Yi ∼ D(xT
i β,γ) for i = 1, ..., n to form Y, and ii) for multiple linear regression, generate e from

the population of e, and form Y = Xnβ + e.) Then regress Y on Xn with variable selection to

generate (β̂VS ,WVS ). Generate another Y from the model, and generate (β̂MIX,WVS ). Then β̂MIX =

β̂Ik ,0whenever β̂VS = β̂
C
Ik ,0, but Ik was chosen for β̂MIX before generating the new Y, so there is no

selection bias. Repeat to get the sample (β̂
C
Ik1 ,0

, β̂Ik1 ,0
), ..., (β̂

C
IkB ,0

, β̂IkB ,0
).

The hyperellipsoid corresponding to the squared Mahalanobis distance D2(Tn,C) is centered

at Tn, while the hyperellipsoid corresponding to the squared Mahalanobis distance D2(T ,C) is

centered at T . Note that D2
T
(Tn,C) = (T − Tn)T C−1(T − Tn) = (Tn − T )T C−1(Tn − T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather small. If the ellipses

are centered at Tn or T
∗
, Figure 5.1 shows confidence regions if the plotted points are T ∗1 , ...,T

∗
B

where the T ∗i are approximately multivariate normal. If the ellipses are centered at T , Figure 5.1

shows 10%, 30%, 50%, 70%, 90%, and 98% prediction regions for a future value of T f for two

multivariate normal statistics. Then the plotted points are iid T1, ...,TB. If nCov(T )
P
→ ΣA, and the
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Figure 5.1. Confidence Regions for 2 Statistics with MVN Distributions

a)

b) 
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T ∗i are iid from the bootstrap distribution, then Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 5.2,

if T
∗

is in the 90% prediction region with probability near 90%, then the confidence region should

give simulated coverage near 90% and the volume of the confidence region should be near that of

the 90% prediction region. If B = 100, then T
∗

falls in a covering region of the same shape as

the prediction region, but centered near Tn and the lengths of the axes are divided by
√

B. Hence

if B = 100, then the axes lengths of this covering region are about one tenth of those in Figure

2. Hence when Tn falls within the 70% prediction region, the probability that T
∗

falls in the 90%

prediction region is near one. If Tn is just within or just without the boundary of the 90% prediction

region, T
∗

tends to be just within or just without of the 90% prediction region. Hence the coverage

and volume of prediction region confidence region is near that of the nominal coverage 90% and

near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough so that S ∗T ≈

Cov(T ∗) ≈ ΣA/n. However, we need B→ ∞ for the coverage to go to 1−δ. There is undercoverage

for finite B. Using (5.8) increases the training data coverage and hence reduces undercoverage.

The price to pay is that the prediction region method confidence region is inflated to have better

coverage, so the power of the hypothesis test is decreased if moderate B is used instead of larger

B. If n is large, the sample covariance matrix starts to be a good estimator of the population

covariance matrix when B ≥ Jg where J = 20 or 50. For small g, using B = 1000 often led to

good simulations for GLMs and multiple linear regression, but B = max(50g, 100) may work well.
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CHAPTER 6

SOME LARGE SAMPLE THEORY FOR TIME SERIES

In the this chapter and chapter 8, assume that the AR(p), MA(q), and ARMA(p, q) models are

weakly stationary, causal, and invertible. Let the ARIMA(p, d, q) models have known d and apply

the results to the weakly stationary, causal, and invertible ARMA model from the differenced time

series. Such a time series has both an AR(∞) and MA(∞) representation where the magnitude of

the parameters decreases to zero rapidly. We will use different formulas for β as in chapter 2.

Large sample theory is useful for the bootstrap. The estimator in Theorem 6.1 is sometimes

used to estimate σ2
e . See Granger and Newbold (1977, p. 85) and Pankratz (1983, p. 206).

Remark 6.1. We often use the phrase “under regularity conditions” if we have not found a

clear statement of the regularity conditions. In the theorem below, we can replace n− p−q by n−c

where, for example, c = 0 or p + q + 1.

Theorem 6.1. Let Y1, ...,Yn be an ARMA time series with V(Et) = σ2
e , and let the ri be the

(one step ahead) residuals. Under regularity conditions,

σ̃2 =

∑
r2

i

n − p − q
(6.1)

is a consistent estimator of σ2
e .

Let Y1, ...,Yn be an AR(p) time series with γk = Cov(Yt,Yt−k). Let

Γp =



γ0 γ1 . . . γp−1

γ1 γ0 . . . γp−2

...
...

. . .
...

γp−1 γp−2 . . . γ0


.

To describe the least squares model Y = Xβ + e for an AR(p) time series let ϕ0 = τ and
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let Yt = ϕ0 + ϕ1Yt−1 + · · · + ϕpYt−p + et. Let β = (ϕ0, ..., ϕp)T . Write the AR(p) equations Yt =

ϕ0 + ϕ1Yt−1 + · · · + ϕpYt−p + et in matrix form Y = Xβ + e or



Yp+1

Yp+2

...

Yn


=



1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...

1 Yn−1 Yn−2 . . . Yn−p





ϕ0

ϕ1

...

ϕp


+



ep+1

ep+2

...

en


where X is of full rank with more rows than columns p + 1. Then the least squares estimator

β̂OLS = (XT X)−1XT Y. By Theorem 6.2 a), β̂ ≈ Np+1(β, σ̂2
e(XT X)−1). So tests from ordinary

multiple linear regression can be applied to AR(p) time series, and S E(β̂i) =
√
σ̂2

e(XT X)−1
ii .

The least squares estimator can be computed by plugging in sample covariance matrices. Let

xT
i = (1,uT

i ), and let βT = (β0,β
T
2 ) where β0 is the intercept and the slopes vector β2 = βYW =

(β1, ..., βp)T . Let the population covariance matrices

Cov(u) = E[(u − E(u))(u − E(u))T ] = Σu, and

Cov(u,Y) = E[(u − E(u))(Y − E(Y))] = ΣuY .

Then the population coefficients from an OLS regression of Y on x (even if a linear model does

not hold) are

β1 = E(Y) − βT
2 E(u) and β2 = Σ

−1
u ΣuY.

Let the sample covariance matrices be

Σ̂u =
1

n − 1

n∑
i=1

(ui − u)(ui − u)T and Σ̂uY =
1

n − 1

n∑
i=1

(ui − u)(Yi − Y).

Let the method of moments or maximum likelihood estimators be Σ̃u =
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1
n

n∑
i=1

(ui − u)(ui − u)T and Σ̃uY =
1
n

n∑
i=1

(ui − u)(Yi − Y) =
1
n

n∑
i=1

uiYi − u Y . Then it can be shown

that β̂ = (XT X)−1XT Y satisfies β̂1 = Y − β̂
T
S u and

β̂2 =
n

n − 1
Σ̂
−1
u Σ̃uY = Σ̃

−1
u Σ̃uY = Σ̂

−1
u Σ̂uY .

The Yule Walker (Durbin Levinson) equations can be written in two equivalent forms using

ρk = γk/γ0. Let β = ϕ = (ϕ1, ..., ϕp)T . Let x = (Yt−1,Yt−2, ...,Yt−p)T and Y = Yt. (Note that x is u

and β = β2 in the above paragraph.) The Yule Walker equations are

ρ1 = ϕ1 + ϕ2ρ1 + ϕ3ρ2 + · · · + ϕpρp−1 or γ1 = ϕ1γ0 + ϕ2γ1 + ϕ3γ2 + · · · + ϕpγp−1

ρ2 = ϕ1ρ1 + ϕ2 + ϕ3ρ1 + · · · + ϕpρp−2 or γ2 = ϕ1γ1 + ϕ2 + ϕ3γ1 + · · · + ϕpγp−2

...

ρp = ϕ1ρp−1 + ϕ2ρp−2 + ϕ3ρp−3 + · · · + ϕp or γp = ϕ1γp−1 + ϕ2γp−2 + ϕ3γp−3 + · · · + ϕpγ0.

In matrix form



ρ1

ρ2

...

ρp


=



1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

...
. . .

...

ρp−1 ρp−2 ρp−3 . . . 1





ϕ1

ϕ2

...

ϕp


or ρx,Y = ρxϕ

or 

γ1

γ2

...

γp


=



γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

...
...

...
. . .

...

γp−1 γp−2 γp−3 . . . γ0





ϕ1

ϕ2

...

ϕp


or Σx,Y = Σxϕ.

Hence β = ϕYW = Σ
−1
x Σx,Y = ρ−1

x ρx,Y . Then ϕ̂YW = Σ̃
−1
x Σ̃x,Y = ρ̃−1

x ρ̃x,Y . Here the estimators are

found by replacing ρk by rk = ρ̂k and by replacing γk by γ̂k. Plugging in estimators of Σ−1
x and
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Σx,Y is like a method of moments estimator. Note that ρx, ρx,Y , Σx and Σx,Y have the desired

form since x = (Yt−1, ...,Yt−p)T and Y = Yt. Hence Cov(Xi,Y) = Cov(Yt−i,Yt) = γi, Cov(Xi, X j) =

Cov(Yt−i,Yt− j) = γ|i− j|, corr(Xi, X j) = corr(Yt−i,Yt− j) = ρ|i− j|, and corr(Xi,Y) = corr(Yt−i,Yt) = ρi.

Note that β = (ϕ1, ..., ϕp)T = βOLS = βYW , but β̂OLS and β̂YW use different plug in estimators

of β = Σ−1
x Σx,Y . If an AR(pmax) model is fit but the true model is AR(po) with po ≤ pmax, then

β = (ϕ1, ..., ϕpo , 0, ..., 0)T . From Theorem 6.2 a), the asymptotic covariance matrix corresponding

to β̂ is σ2
eγ
−1
pmax

while the asymptotically efficient covariance matrix corresponding to β̂po
is σ2

eγ
−1
po
.

The following large sample theorem for the AR(p) model is due to Mann and Wald (1943).

Also see McElroy and Politis (2020, p. 333) and Anderson (1971, pp. 210-217). For large sample

theory for MA and ARMA models, see Hannan (1973), Kreiss (1985), and Yao and Brockwell

(2006).

Theorem 6.2. Let the iid zero mean ei have variance σ2, and let the time series have mean

E(Yt) = µ.

a) Let Y1, ...,Yn be a weakly stationary and invertible AR(p) time series, and let β =

(ϕ1, ..., ϕp). Let β̂ be the Yule Walker estimator of β. Then

√
n(β̂ − β)

D
→ Np(0,V) (6.2)

where V = V(β) = σ2Γ−1
p . Equation (6.2) also holds under mild regularity conditions for the least

squares estimator, and the GMLE of β.

b) Let Y1, ...,Yn be a weakly stationary, causal, and invertible MA(q) time series, and let

β = (θ1, ..., θq). Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D
→ Nq(0,V). (6.3)

where V = V(β) = σ2Γ−1
q .

c) Let Y1, ...,Yn be a weakly stationary, causal, and invertible ARMA(p, q) time series, and let
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β = (ϕ1, ..., ϕp, θ1, ..., θq) with g = p + q. Let β̂ be the GMLE. Under regularity conditions,

√
n(β̂ − β)

D
→ Ng(0,V). (6.4)

The main point of Theorem 6.2 is that the theory can hold even if the et are not iid N(0, σ2).

The basic idea for the GMLE is that {Yt} satisfies an AR(∞) model which is approximately an

AR(py) model, and the large sample theory for the AR(py) model depends on the zero mean error

distribution through σ2 by Theorem 6.2a). See Anderson (1971: ch. 5, 1977), Durbin (1959),

Hamilton (1994, pp. 117, 429), Hannan and Rissanen (1982, p. 85), and Whittle (1953). When the

et are iid N(0, σ2
e), V = V(β) = I−1

1 (β), the inverse information matrix. Then for the AR(p) model,

V(ϕ) = σ2Γ−1
p (ϕ) = I−1

1 (ϕ), while for the MA(q) model, V(θ) = σ2Γ−1
q (θ) = I−1

1 (θ). See Box and

Jenkins (1976, p. 241) and McElroy and Politis (2020, pp. 340-344).

There is a strong regularity condition for the GMLE for the ARMA model. Assume the

ARMA(pS , qS ) model is the true model. If both p > pS and q > qS , then the GMLE is not a

consistent estimator. See Chan, Ling, and Yau (2020) and Hannan (1980). Pötscher (1990) shows

how to estimate max(pS , qS ) consistently.

Next we extend the Pelawa Watagoda and Olive (2021ab) and Rathnayake and Olive (2021)

theory for variable selection estimators to time series model selection estimators. Suppose the full

model is as in Section 1 and that if S ⊆ I j where the dimension of I j is a j, then
√

n(β̂I j
− βI j

)
D
→

Na j(0,V j) where V j is the covariance matrix of the asymptotic multivariate normal distribution.

Then
√

n(β̂I j,0 − β)
D
→ Nb(0,V j,0) (6.5)

where V j,0 adds columns and rows of zeros corresponding to the βi not indexed by I j, and V j,0 is

singular unless I j corresponds to the full model.

The first assumption in Theorem 6.3 is P(S ⊆ Imin)→ 1 as n→ ∞. Then the model selection

estimator corresponding to Imin underfits with probability going to zero. For AR model selection,

the probability of underfitting goes to 0 if the AIC, BIC, or AICC criterion are used, at least if the
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et are iid N(0, σ2). Also see Claeskens and Hjort (2008, pp. 39, 40, 45, 46), Hannan and Quinn

(1979), and Shibata (1976). Charkhi and Claeskens (2018) show that AIC can be used for a wide

variety of error distributions for multiple linear regression variable selection, and it may be possible

to extend these results to AR model selection. For MA(q) and ARMA(p, q) model selection, the

assumption has perhaps not yet been proved. However, the condition is necessary for the model

selection estimator β̂MS to be a consistent estimator of β. See Rathnayake and Olive (2021). The

assumption on u jn in Theorem 6.3 is reasonable by (6.5) since S ⊆ I j for each π j, and since β̂MIX

uses random selection. The proofs of Theorems 6.3 and 6.4 are exactly as in Rathnayake and Olive

(2021).

Theorem 6.3. Assume P(S ⊆ Imin) → 1 as n → ∞, and let β̂MIX = β̂Ik ,0 with probabilities

πkn where πkn → πk as n → ∞. Denote the positive πk by π j. Assume u jn =
√

n(β̂I j,0 − β)
D
→ u j ∼

Nb(0,V j,0). a) Then

un =
√

n(β̂MIX − β)
D
→ u (6.6)

where the cdf of u is Fu(t) =
∑

j π jFu j(t). Thus u is a mixture distribution of the u j with proba-

bilities π j, E(u) = 0, and Cov(u) = Σu =
∑

j π jV j,0.

b) Let A be a g × b full rank matrix with 1 ≤ g ≤ b. Then

vn = Aun =
√

n(Aβ̂MIX − Aβ)
D
→ Au = v (6.7)

where v has a mixture distribution of the v j = Au j ∼ Ng(0, AV j,0 AT ) with probabilities π j.

c) The estimator β̂MS is a
√

n consistent estimator of β. Hence
√

n(β̂MS − β) = OP(1).

d) If πa = 1, then
√

n(β̂S EL − β)
D
→ u ∼ Nb(0,Va,0) where S EL is MS or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities πkn, the cdf of un is

Fun(t) =
∑

k πknFukn(t)→ Fu(t) =
∑

j π jFu j(z) at continuity points of the Fu j(t) as n→ ∞.

b) Since un
D
→ u, then Aun

D
→ Au.

c) The result follows since selecting from a finite number K of
√

n consistent estimators (even on
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a set that goes to one in probability) results in a
√

n consistent estimator by Pratt (1959).

d) If πa = 1, there is no selection bias, asymptotically. The result also follows by Pötscher (1991,

Lemma 1). □

Theorem 6.3 can be used to justify prediction intervals after model selection. Typically the

mixture distribution is not asymptotically normal unless a πa = 1 (e.g. if S is the full model).

Theorem 6.3d) is useful for variable selection consistency where πa = πS = 1 if P(Imin = S ) → 1

as n→ ∞. See Claeskens and Hjort (2008) for references.

Theorem 6.4. Assume P(S ⊆ Imin) → 1 as n → ∞, and let β̂MS = β̂Ik ,0 with probabilities πkn

where πkn → πk as n→ ∞. Denote the positive πk by π j. Assume w jn =
√

n(β̂
C
I j,0 − β)

D
→ w j. Then

wn =
√

n(β̂MS − β)
D
→ w (6.8)

where the cdf of w is Fw(t) =
∑

j π jFw j(t). Thus w is a mixture distribution of the w j with

probabilities π j.

58



CHAPTER 7

BOOTSTRAPPING VARIABLE SELECTION ESTIMATORS

This chapter follows Rathnayake and Olive (2021) closely. Obtaining the bootstrap samples

for β̂VS and β̂MIX is simple. Generate Y∗ and X∗ that would be used to produce β̂
∗

if the full

model estimator β̂ was being bootstrapped. (The nonparametric bootstrap, parametric bootstrap,

and residual bootstrap using the residuals from the full OLS MLR model are discussed below. See

chapter 8 for time series results.) Often X∗ = Xn. Instead of generating β̂
∗
, compute the variable

selection estimator β̂
∗

VS ,1 = β̂
∗C
Ik1 ,0

. Then generate another Y∗ and X∗ and compute β̂
∗

MIX,1 = β̂
∗

Ik1 ,0

(using the same subset Ik1). This process is repeated B times to get the two bootstrap samples

for i = 1, ..., B. Note that the ϵ∗i = β̂
∗

VS ,i − β̂
∗

MIX,i are iid with respect to the bootstrap distribution

for i = 1, .., B. Let T = Tn = β̂. Then
√

n(T
∗

VS − T
∗

MIX) =
√

n
∑B

i=1 ϵ
∗
i /B, and the two bagging

estimators may be asymptotically equivalent. Let the selection probabilities for the bootstrap vari-

able selection estimator be ρkn. Then this bootstrap procedure bootstraps both β̂VS and β̂MIX with

πkn = ρkn.

The key idea is to show that the bootstrap data cloud is slightly more variable than the iid data

cloud, so confidence region (5.9) applied to the bootstrap data cloud has coverage bounded below

by (1 − δ) for large enough n and B. Let B jn count the number of times T ∗i = T ∗i j in the bootstrap

sample. Then the bootstrap sample T ∗1 , ...,T
∗
B can be written as

T ∗1,1, ...,T
∗
B1n,1, ...,T

∗
1,J, ...,T

∗
BJn,J.

Denote T ∗1 j, ...,T
∗
B jn, j as the jth bootstrap component of the bootstrap sample with sample mean T

∗

j

and sample covariance matrix S∗T, j. Similarly, we can define the jth component of the iid sample

T1, ...,TB to have sample mean T j and sample covariance matrix ST, j.

Let Tn = β̂MIX and Ti j = β̂I j,0. If S ⊆ I j, assume
√

n(β̂I j
− βI j

)
D
→ Na j(0,V j) and

√
n(β̂

∗

I j
−
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β̂I j
)

D
→ Na j(0,V j). Then by Equation (6.2),

√
n(β̂I j,0 − β)

D
→ Np(0,V j,0) and

√
n(β̂

∗

Ij,0 − β̂Ij,0)
D
→ Np(0,Vj,0). (7.1)

This result means that the component clouds have the same variability asymptotically. The iid data

component clouds are all centered at β. If the bootstrap data component clouds were all centered

at the same value β̃, then the bootstrap cloud would be like an iid data cloud shifted to be centered

at β̃, and (5.10) would be a confidence region for θ = β. Instead, the bootstrap data component

clouds are shifted slightly from a common center, and are each centered at a β̂I j,0. Geometrically,

the shifting of the bootstrap component data clouds makes the bootstrap data cloud similar but more

variable than the iid data cloud asymptotically (we want n ≥ 20p), and centering the bootstrap data

cloud at Tn results in the confidence region (5.10) having slightly higher asymptotic coverage than

applying (5.11) to the iid data cloud. Also, (5.10) tends to have higher coverage than (5.11) since

the cutoff for (5.10) tends to be larger than the cutoff for (5.11). Region (5.9) has the same volume

as region (5.11), but tends to have higher coverage since empirically, the bagging estimator T
∗

tends to estimate θ at least as well as Tn for a mixture distribution. See Breiman (1996) and Yang

(2003). A similar argument holds if Tn = Aβ̂MIX, Ti j = Aβ̂I j,0, and θ = Aβ.

In the simulations of Rathnayake and Olive (2021) for H0 : Aβ = BβS = θ0 with n ≥ 20p,

the coverage tended to get close to 1 − δ for B ≥ max(200, 50p) so that S∗T is a good estimator of

Cov(T ∗). In the simulations where S is not the full model, inference with backward elimination

with Imin using AIC was often more precise than inference with the full model if n ≥ 20p and

B ≥ 50p. Pelawa Watagoda and Olive (2021b) had similar results for multiple linear regression

using forward selection with Cp.

The matrix S∗T can be singular due to one or more columns of zeros in the bootstrap sample

for β1, ..., βb. The β j corresponding to these columns are likely not needed in the model given that

the other predictors are in the model. A simple remedy is to add k bootstrap samples of the full

model estimator β̂
∗
= β̂

∗

FULL to the bootstrap sample. For example, take k = ⌈cB⌉ with c = 0.01.
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A confidence interval [Ln,Un] can be computed without S∗T for (5.9), (5.10), and (5.11). Using the

confidence interval [max(Ln,T ∗(1)),min(Un,T ∗(B))] can give a shorter covering region.

Undercoverage can occur if bootstrap sample data cloud is less variable than the iid data

cloud, e.g., if (n − b)/n is not close to one. Coverage can be higher than the nominal coverage for

two reasons: i) the bootstrap data cloud is more variable than the iid data cloud of T1, ...,TB, and

ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where βO = (βi1 , ...., βig)
T and

O ⊆ E in (5.4) so that H0 is true. Suppose a nominal 95% confidence region is used and UB is the

96th percentile. Hence the confidence region (5.9) or (5.10) covers at least 96% of the bootstrap

sample. If β̂
∗

O, j = 0 for more than 4% of the β̂
∗

O,1, ..., β̂
∗

O,B, then 0 is in the confidence region and

the bootstrap test fails to reject H0. If this occurs for each run in the simulation, then the observed

coverage will be 100%.

Now suppose β̂
∗

O, j = 0 for j = 1, ..., B. Then S∗T is singular, but the singleton set {0} is the large

sample 100(1 − δ)% confidence region (5.9), (5.10), or (5.11) for βO and δ ∈ (0, 1), and the pvalue

for H0 : βO = 0 is one. (This result holds since {0} contains 100% of the β̂
∗

O, j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population pvalue. Let I denote

the other predictors in the model so β = (βT
I ,β

T
O)T . For the Imin model from variable selection, there

may be strong evidence that xO is not needed in the model given xI is in the model if the “100%”

confidence region is {0}, n ≥ 20p, and B ≥ 50p. (Since the pvalue is one, this technique may

be useful for data snooping: applying regression model theory to submodel I may have negligible

selection bias.)

Assume P(S ⊆ Imin) → 1 as n → ∞, and that S ⊆ I j. We want to examine when Equation

(7.1) holds or when

Cov(β̂
∗

I ) − Cov(β̂I)→ 0 (7.2)

as n, B → ∞. Then the component clouds of the iid data for β̂MIX and the bootstrap data clouds

for β̂
∗

MIX have the same asymptotic variability, and the bootstrap confidence regions may give good

results.
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For multiple linear regression with the residual bootstrap Y∗ = Xβ̂ + r that uses residuals

from the full OLS model, Pelawa Watagoda and Olive (2021b) showed that Equation (7.2) holds

for OLS variable selection. The nonparametric bootstrap (also called the empirical bootstrap,

naive bootstrap, and the pairs bootstrap) draws a sample n cases (Y∗i , x
∗
i ) with replacement from

the n cases (Yi, xi), and regresses the Y∗i on the x∗i to get β̂
∗

VS ,1, and then draw another sample to get

β̂
∗

MIX,1. This process is repeated B times to get the two bootstrap samples for i = 1, ..., B. Under

regularity conditions, Equation (7.1) holds. See, for example, Freedman (1981). Assumptions

for the nonparametric bootstrap tend to be rather strong: often one assumption is that the n cases

(Yi, xT
i )T are iid from some population.

Next, consider the parametric regression model Yi|xi ∼ D(xT
i β,γ), and the parametric boot-

strap. Suppose
√

n(β̂ − β)
D
→ Np(0,V(β)), and that V(β̂)

P
→ V(β) as n → ∞. These assumptions

tend to be mild for a parametric regression model where the maximum likelihood estimator (MLE)

β̂ is used. Then V(β) = I−1(β), the inverse Fisher information matrix. If In(β) is the Fisher infor-

mation matrix based on a sample of size n, then In(β)/n
P
→ I(β). For GLMs, see, for example, Sen

and Singer (1993, p. 309). For the parametric regression model, we regress Y on X to obtain (β̂, γ̂)

where the n × 1 vector Y = (Yi) and the ith row of the n × p design matrix X is xT
i .

Remark 7.1. For bootstrap theory, we will use the following result several times. Suppose the

estimator has theory
√

n(β̂n − β)
D
→ Nk(0,V(β)) under regularity conditions where V(β̂)

P
→ V(β)

if β̂n
P
→ β as n → ∞. Assume the bootstrap model satisfies the theory for fixed n such that

√
m(β̂

∗
− β̂n)

D
→ Nk(0,V(β̂n)) as m → ∞. Then

√
n(β̂

∗
− β̂n)

D
→ Nk(0,V(β)) as n → ∞. (Think of

using a triangular array.)

The parametric bootstrap uses Y∗j = (Y∗i ) where Y∗i |xi ∼ D(xT
i β̂, γ̂) for i = 1, ...., n where

D(θ,γ) is a parametric distribution. Regress Y∗j on X to get β̂
∗

j for j = 1, ..., B. The large sample

theory for β̂
∗

is simple by Remark 7.1. Note that if Y∗i |xi ∼ D(xT
i b, γ̂) where b does not depend on n,

then (Y∗, X) follows the parametric regression model with parameters (b, γ̂). Hence
√

n(β̂
∗
− b)

D
→

Np(0,V(b)). Now fix large integer n0, and let b = β̂no
. Then

√
n(β̂

∗
− β̂no

)
D
→ Np(0,V(β̂no

)). Since
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Np(0,V(β̂))
D
→ Np(0,V(β)), we have

√
n(β̂

∗
− β̂)

D
→ Np(0,V(β)) (7.3)

as n→ ∞.

Now suppose S ⊆ I. Without loss of generality, let β = (βT
I ,β

T
O)T and β̂ = (β̂(I)T , β̂(O)T )T .

Then (Y, XI) follows the parametric regression model with parameters (βI ,γ). Hence
√

n(β̂I −

βI)
D
→ NaI (0,V(βI)). Now (Y∗, XI) only follows the parametric regression model asymptotically,

since β̂(O) , 0. However, under regularity conditions, E(β̂
∗

I ) ≈ β̂I and Cov(β̂
∗

I )− Cov(β̂I) → 0 as

n, B→ ∞. See the following example.

Example 7.1. Consider the multiple linear regression model: Yi = β0+xi,1β1+· · ·+xi,pβp+ei =

xT
i β + ei for i = 1, ..., n where the random variables ei are iid with variance V(ei) = σ2

e . In matrix

notation, these n equations become Y = Xβ + e. Let H = X(XT X)−1XT . Assume the maximum

leverage maxi=1,...,n xT
iI(XT

I XI)−1xiI → 0 in probability as n→ ∞ for each I with S ⊆ I. For the OLS

model with S ⊆ I,
√

n(β̂I −βI)
D
→ NaI (0,VI) where VI = σ

2
eW I and (XT

I XI)/n
P
→W−1

I by Theorem

6.2. Assume a constant β0 is in each submodel. Under mild conditions for a) and c),
√

n(β̂
∗

I −β̂I)
D
→

NaI (0,VI) if S ⊆ I. For MLR, this example shows that the residual bootstrap, parametric bootstrap,

and nonparametric booststrap for OLS are robust to the unknown error distribution of the iid ei.

a) Consider the (MLR) parametric bootstrap for the above model with

Y∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼ Nn(HY, σ̂2

nI) where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MS E =

1
n − p − 1

n∑
i=1

r2
i

where the residuals are from the full OLS model. Then MS E is a
√

n consistent estimator of σ2
e

under mild conditions by Su and Cook (2012). Thus β̂
∗

I = (XT
I XI)−1XT

I Y∗ ∼ NaI (β̂I , σ̂
2
n(XT

I XI)−1)

since E(β̂
∗

I ) = (XT
I XI)−1XT

I HY = β̂I because HXI = XI , and Cov(β̂
∗

I ) = σ̂
2
n(XT

I XI)−1. Hence

√
n(β̂

∗

I − β̂I) ∼ NaI (0, nσ̂
2
n(XT

I XI)−1)
D
→ NaI (0,VI)
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as n, B → ∞ if S ⊆ I. Note that Y∗ = Xβ̂n + e∗ where the e∗i = e∗i,n are iid with E(e∗i ) = 0 and

V(e∗i ) = σ̂2
n.

b) For the (MLR) residual bootstrap using residuals from the full OLS model, Y∗ = Xβ̂n + e∗

where the e∗i = e∗i,n are sampled with replacement from the residuals. With respect to the bootstrap

distribution, the e∗i are iid with E(e∗i ) = r = 0 since a constant is in the model, and V(e∗i ) =
n − p − 1

n
σ̂2

n. Pelawa Watagoda and Olive (2021a) showed that E(β̂
∗

I ) = β̂I and Cov(β̂
∗

I ) = [(n −

p − 1)/n]σ̂2
n(XT

I XI)−1 P
→ VI for S ⊆ I.

c) For the (MLR) nonparametric bootstrap, the cases (Yi, xi) are drawn with replacement from

the n cases. For the full model, Y∗ = X∗β̂n + e∗ where the (Yi, xi, ri) are sampled with replacement.

With respect to the bootstrap distribution, the e∗i are iid with E(e∗i ) = 0 and V(e∗i ) =
n − p − 1

n
σ̂2

n.

The e∗i depend on x∗i since e∗i = r j if x∗i = x j. For a submodel I with S ⊆ I, Y∗ = X∗I β̂I,n + e∗I

where the (Yi, xi,I , ri,I) are sampled with replacement. Freedman (1981) showed that under mild

conditions, n(X∗TI X∗I )−1 P
→W I when n(XT

I XI)−1 P
→W I , and under stronger regularity conditions,

√
n(β̂

∗

I − β̂I)
D
→ NaI (0,VI)

as n, B→ ∞ if S ⊆ I. Remark 7.1 does not hold since we can not fix n and let m→ ∞.

The bootstrap component clouds for β̂
∗

VS are again separated compared to the iid clouds for

β̂VS , which are centered about β. Heuristically, most of the selection bias is due to predictors in

E, not to the predictors in S . Hence β̂
∗

S ,VS is roughly randomly selected and similar to β̂
∗

S ,MIX.

Typically the distributions of β̂
∗

E,VS and β̂
∗

E,MIX are not similar, but use the same zero padding.

These two results make β̂
∗

VS simulate well.

One problem with the bootstrap methods is that S∗T can be singular due to one or more

columns of zeros in the bootstrap sample for β1, ..., βp. The variables corresponding to these

columns are likely not needed in the model given that the other predictors are in the model. A

simple remedy is to add k bootstrap samples of the full model estimator β̂
∗
= β̂

∗

FULL to the boot-

strap sample. For example, take k = ⌈cB⌉ with c = 0.01. Let S∗A be the covariance matrix from
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the augmented bootstrap sample. Then apply the confidence regions to the augmented bootstrap

sample or plug in S∗A for S∗T for the confidence regions from the unaugmented bootstrap sample.

Augmentation changes the probabilities ρkn to ρkn/1.01 except the full model selection probability

changes from ρ f n to 0.01 + ρ f n/1.01. A confidence interval [Ln,Un] can be computed without S∗T

for (5.9), (5.10), and (5.11). Using the confidence interval [max(Ln,T ∗(1)),min(Un,T ∗(B))] can give a

shorter covering region.

One of the best methods for inference after variable or model selection is “data splitting.”

Data splitting uses a training set to find a model, e.g. Imin = I j. Then I j is used as the full model

for the validation set, avoiding selection bias so valid inference can be done. See, for example,

Rinaldo et al. (2019). For time series, the training set might be the first J cases and the validation

set the last n − J cases.
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CHAPTER 8

BOOTSTRAPPING TIME SERIES

For the bootstrap, we will ignore τ and build the bootstrap time series data set {Y∗t } sequen-

tially. Fit the full model to get the ϕ̂k and θ̂ j. Let

Y∗t =
pmax∑
k=1

ϕ̂kY∗t−k + e∗t ,

Y∗t =
qmax∑
k=1

θ̂ke∗t−k + e∗t ,

or

Y∗t =
pmax∑
k=1

ϕ̂kY∗t−k +

qmax∑
k=1

θ̂ke∗t−k + e∗t

for t = 1, ..., n. The ARMA and AR bootstrap use a block of initial values (Y∗
−p+1, ...,Y

∗
0)T =

(Y j+1,Y j+2, ...,Y j+p)T randomly selected from Y1, ...,Yn. For the parametric bootstrap, the e∗t are iid

N(0, σ̂2) where σ̂2 is the estimate from fitting the full model with (pmax, qmax). For the residual

bootstrap, assume the full model produces m residuals r1, ..., rm. Often m = n or m = n − pmax.

Refer to Equation (6.1) with (p, q) replaced by (pmax, qmax) and b = pmax + qmax. Let

ê j =

√
m

m − b − c
(r j − r)

for j = 1, ...,m. Let the e∗t be obtained by sampling with replacement from the ê j. With respect to

this bootstrap distribution, the e∗t are iid with E(e∗t ) = 0 and V(e∗t ) ≈ σ̃2. Instead of computing the

full model, use model selection and zero padding to compute Ik and β̂
∗

MS ,1. Draw another bootstrap

data set and fit model Ik to get β̂
∗

MIX,1. Repeat B times to get the bootstrap samples β̂
∗

MS ,1, ..., β̂
∗

MS ,B

and β̂
∗

MIX,1, ..., β̂
∗

MIX,B. Let the selection probabilities for the bootstrap model selection estimator be

ρkn. Then this bootstrap procedure bootstraps both β̂MS and β̂MIX with πkn = ρkn.

Following McElroy and Politis (2020, pp. 438-439), consider a weakly stationary and invert-
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ible time series Y1, ...,Yn where the et are iid with mean 0 and variance σ2. A companion process

uses ϵt that are iid with mean 0 and variance σ̂2. Both the residual bootstrap and nonparamet-

ric bootstrap produce companion processes {Y∗t }. The residual bootstrap for an AR(pmax) model

is closely related to the sieve bootstrap for AR(p) and AR(∞) models. See McElroy and Politis

(2020, pp. 430, 434).

It is important to note that for the parametric bootstrap, we are not assuming that the et are

iid N(0, σ2). The following theorem is for bootstrapping the full model.

Theorem 8.1. Assume the time series is such that Theorem 6.2 holds. Then
√

n(β̂
∗
− β̂)

D
→

Nb(0,V(β)) if the GMLE is used with the parametric bootstrap. This result also holds for the AR(p)

model if the Yule Walker or least squares estimator is used with the parametric bootstrap or the

residual bootstrap.

Proof. On a set A of probability going to one as n → ∞, Y∗1 , ...,Y
∗
n with β̂ = β̂n satisfies

Theorem 6.2. Hence if n is fixed and the time series Y∗1 , ...,Y
∗
m is generated with β̂n, then on the set

A the estimator β̂
∗

satisfies
√

m(β̂
∗
− β̂n)

D
→ Nb(0,V(β̂n)) as m→ ∞. Since V(β̂)

P
→ V(β) if β̂n

P
→ β

as n→ ∞, it follows that
√

n(β̂
∗
− β̂n)

D
→ Nb(0,V(β)) as n→ ∞. □

The basic idea is that for the parametric bootstrap, Y∗1 , ...,Y
∗
n satisfies the Gaussian time series

model with β̂n as the parameter vector and β̂n is a
√

n consistent estimator of β. Hence the Gaussian

time series Y∗1 , ...,Y
∗
n with β̂n will be weakly stationary, causal, and invertible on a set A going to

one in probability. Since β̂n depends on n, convergence along a triangular array needs to be used.

Bootstrap results such as Theorem 8.1 are rather rare in the time series literature. Bühlmann (1994)

has such a result for the AR(p) model.

If Equation (7.1.) holds so
√

n(β̂I j,0 −β)
D
→ Nb(0,V j,0), we would like to show that

√
n(β̂

∗

I j,0 −

β̂I j,0)
D
→ Nb(0,V j,0) if I j was selected with random selection. This result holds for the full model

by Theorem 8.1. Suppose S ⊆ I j. Then the bootstrap data set {Y∗t } satisfies

Y∗t =
pI j∑
k=1

ϕ̂kY∗t−k + e∗t + e∗t (I j),
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Y∗t =
qI j∑
k=1

θ̂ke∗t−k + e∗t + e∗t (I j),

or

Y∗t =
pI j∑
k=1

ϕ̂kY∗t−k +

qI j∑
k=1

θ̂ke∗t−k + e∗t + e∗t (I j)

where e∗t (I j) =
∑pmax

k=pI j+1 ϕ̂kY∗t−k for the AR(pmax) model, e∗t (I j) =
∑qmax

k=qI j+1 θ̂ke∗t−k for the MA(qmax)

model, and e∗t (I j) =
∑pmax

k=pI j+1 ϕ̂kY∗t−k+
∑qmax

k=qI j+1 θ̂ke∗t−k for the ARMA(pmax, qmax) model. When S ⊆ I j,

the e∗t (I j)
P
→ 0 rapidly as n → ∞. For the MA model with the parametric bootstrap, e∗t (I j) ∼

N(0, σ̂2 ∑qmax
k=qI j+1 θ̂

2
k) which has a variance proportional to 1/n if S ⊆ I j. We could also modify β̂

∗

MIX

to omit the e∗t (I j) resulting in a new bootstrap estimator β̂
∗

MX.

Remark 8.1. The above result also holds if the least squares estimator or normal MLE

estimator is used since these estimators are consistent. Hence the convergence in the proof holds

on a set of probability converging to one.

The AR(p) least squares model Y = Xβ + e can be bootstrapped as in Example 7.1, except

the models selected are I j corresponding to the AR( j− 1) model and to the first j columns of X for

j = 1, ..., p = pmax. With respect to the bootstrap distribution, X is a constant matrix, so Y∗ follows

an MLR model, not an AR(p) model. However, the large sample theory
√

n(β̂I j
−βI j

)
D
→ Na j(0,VI j)

and
√

n(β̂
∗

I j
− β̂I j

)
D
→ Na j(0,VI j) from Example 7.1 a) is the same as that given by Theorem 6.2

b). Hence the resulting bootstrap confidence regions should be useful, and may give more precise

inference that using to full AR(pmax) model.

There is a large literature for bootstrapping time series. Often the bootstrap is used for pre-

diction intervals: find Y∗( j)
n+1, ...,Y

∗( j)
n+L for j = 1, ..., B. Then use percentiles of the Y∗( j)

n+k to make the

prediction interval. We do not recommend using the parametric bootstrap for prediction intervals

since typically the iid et do not follow a N(0, σ2
e) distribution. Also bootstrap prediction intervals

are computationally expensive compared to the new prediction intervals described in this disserta-

tion.

For bootstrapping time series, see, for example, Bühlmann (1997, 2002), Härdle, Horowitz,

and Kreiss (2003), Kreiss and Lahiri (2012), Kreiss, Paparoditis, and Politis (2011), Lahiri (2003),
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Politis (2003).

8.1 SIMULATION

We simulated AR model selection with the Yule Walker estimators and AIC. For MA and

ARMA model selection, the GMLE with AICC was used. Let b = pmax + qmax. We recommend

n ≥ 10b and B ≥ 20b. We used 5000 runs. Often pmax and qmax were rather small to make

the simulation time shorter. For time series, let the full model be the AR(pmax), MA(qmax), or

ARMA(pmax, qmax) model. Let k = pmax + qmax. Let β = (ϕ1, ..., ϕpmax)
T , β = (θ1, ..., θqmax)

T , or β =

(ϕ1, ..., ϕpmax , θ1, ..., θqmax)
T . Hence β = (β1, ..., βpmax , βpmax+1, ..., βpmax+qmax)

T . Let S = {1, ..., pS , pmax +

1, ..., pmax + qS } index the true ARMA(pS , qS ) model. If S = ∅ is the empty set, then the time

series is a white noise. Let I = {1, ..., pI , pmax + 1, ..., pmax + qI} index the ARMA(pI , qI) model.

Then βI = (ϕ1, ..., ϕpI , θ1, ..., θqI )
T and βI,0 = (ϕ1, ..., ϕpI , 0, ..., 0, θ1, ..., θqI , 0, ..., 0)T . Let the model

selection estimator β̂VS = β̂I,0 with probabilities πI,n where pI runs from 0 to pmax and qI runs

from 0 to qmax for a total of (1 + pmax)(1 + qmax) possible models. If I = ∅, then βI does not

exist, but β̂I,0 = 0, the k × 1 vector of zeroes. For example, if pmax = qmax = 5, S = {1, 6, 7}

corresponds to the ARMA(1,2) model, and I = {1, 6, 7, 8} corresponds to the ARMA(1,3) model,

then β̂S = (ϕ̂1, θ̂1, θ̂2)T , β̂S ,0 = (ϕ̂1, 0, 0, 0, 0, θ̂1, θ̂2, 0, 0, 0)T , and β̂I,0 = (ϕ̂1, 0, 0, 0, 0, θ̂1, θ̂2, θ̂3, 0, 0)T .

The tspack function msarsim simulates AR model selection with AIC. Let k = pmax. We

recommend n ≥ 10k and B ≥ 20k. The true model was an AR(1) model with pS = 1 and ϕ1 = 0.5,

or an AR(2) model with pS = 2 and ϕ = (0.5, 0.33) corresponding to tstype = 1 or 2. Error types

were N(0,1), t5, uniform(-1,1), and e ∼ W − 1 where W ∼ exponential(1), corrsponding to etype =

1, 2, 3 or 4. The parametric bootstrap and residual bootstrap were used, corresponding to btype =1

or 2. Nominal 95% confidence regions and intervals were used with B ≈ 1.01BB where there was

1% augmentation from the bootstrapped full model. The simulations bootstrapped the full model

β̂ = ϕ̂, the model selection estimator β̂VS , and β̂MIX.

The tables give two rows for each of the three estimators giving the observed CI coverage

and average CI length. The term “full” is for the AR(pmax) full model, the term “VS” is for
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model selection, and the term “MIX” for random selection. The terms pr, hyb and br are for the

prediction region method, hybrid region, and Bickel and Ren region. The 0 indicates that the test

was H0 : βE = 0 where βE = (βpS+1, ..., βk)T . The 1 indicates the test H0 : βS = (ϕ1, ..., ϕS )T . Note

that H0 is true for both tests.

There was a convergence problem when trying to get the simulation for the mixed ARMA

models. Simulation results in the last table are an average of five 1000 runs
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Table 8.1. AR(p) Model Selection, n=100, tstype=1, BB=100, pmax=5, btype=1
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9486 0.9536 0.9662 0.9724 0.9588 0.9610 0.9724 0.9344 0.9480 0.9578
len 0.4274 0.4611 0.4443 0.3965 3.1913 3.1913 3.8924 1.9595 1.9595 2.0673

N,VS 0.9434 0.9982 0.9998 1.0000 0.9976 0.9960 0.9980 0.9590 0.9660 0.9728
len 0.4327 0.4410 0.3661 0.2718 4.1515 4.1515 4.4179 1.9633 1.9633 2.0642

N,MIX 0.9426 0.9984 0.9998 1.0000 0.9992 0.9980 0.9988 0.9576 0.9660 0.9760
len 0.4251 0.3885 0.2853 0.1842 4.6250 4.6250 4.8664 1.9650 1.9650 2.0758

t,full 0.9438 0.9568 0.9632 0.9710 0.9556 0.9558 0.9690 0.9358 0.9484 0.9558
len 0.4267 0.4611 0.4426 0.3974 3.1926 3.1926 3.8849 1.9587 1.9587 2.0634

t,VS 0.9446 0.9960 0.9996 1.0000 0.9964 0.9938 0.9966 0.9582 0.9642 0.9702
len 0.4322 0.4413 0.3634 0.2724 4.1520 4.1520 4.4218 1.9636 1.9636 2.0635

t,MIX 0.9442 0.9966 0.9996 1.0000 0.9986 0.9960 0.9984 0.9610 0.9648 0.9750
len 0.4246 0.3894 0.2845 0.1835 4.6370 4.6370 4.8772 1.9640 1.9640 2.0736

U,full 0.9472 0.9566 0.9652 0.9684 0.9542 0.9548 0.9740 0.9370 0.9514 0.9564
len 0.4279 0.4615 0.4419 0.3974 3.1915 3.1915 3.8985 1.9620 1.9620 2.0680

U,VS 0.9478 0.9958 1.0000 1.0000 0.9968 0.9950 0.9980 0.9610 0.9682 0.9744
len 0.4330 0.4412 0.3660 0.2734 4.1333 4.1333 4.4082 1.9667 1.9667 2.0676

U,MIX 0.9452 0.9962 1.0000 1.0000 0.9998 0.9978 0.9996 0.9602 0.9678 0.9776
len 0.4243 0.3893 0.2853 0.1870 4.6210 4.6210 4.8647 1.9647 1.9647 2.0750

E,full 0.9460 0.9598 0.9738 0.9742 0.9688 0.9652 0.9776 0.9350 0.9488 0.9568
len 0.4266 0.4606 0.4425 0.3982 3.1876 3.1876 3.8922 1.9576 1.9576 2.0647

E,VS 0.9438 0.9986 1.0000 1.0000 0.9990 0.9970 0.9996 0.9584 0.9654 0.9726
len 0.4324 0.4394 0.3648 0.2717 4.1751 4.1751 4.4426 1.9630 1.9630 2.0645

E,MIX 0.9414 0.9984 1.0000 1.0000 0.9998 0.9986 0.9998 0.9574 0.9630 0.9762
len 0.4252 0.3857 0.2806 0.1824 4.6552 4.6552 4.9004 1.9670 1.9670 2.0755
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Table 8.2. AR(p) Model Selection,n=100,tstype=1,BB=100, pmax=5,btype=2
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9532 0.9218 0.9768 0.9814 0.9716 0.9500 0.9656 0.9168 0.9004 0.9346
len 0.4356 0.4657 0.4393 0.3861 2.8605 2.8605 3.4370 2.4902 2.4902 2.7112

N,VS 0.9554 0.9172 0.9998 1.0000 0.9994 0.9958 0.9994 0.9074 0.9056 0.9314
len 0.4591 0.4643 0.3620 0.2620 3.7975 3.7975 4.0539 2.5027 2.5027 2.7535

N,MIX 0.9458 0.8660 0.9998 1.0000 0.9996 0.9964 0.9996 0.8412 0.9006 0.9144
len 0.4547 0.4492 0.2787 0.1750 4.1940 4.1940 4.4183 2.5094 2.5094 2.8405

t,full 0.9552 0.9284 0.9778 0.9814 0.9690 0.9476 0.9664 0.9162 0.9044 0.9350
len 0.4368 0.4667 0.4387 0.3854 2.8586 2.8586 3.4250 2.4862 2.4862 2.7113

t,VS 0.9558 0.9276 1.0000 1.0000 1.0000 0.9966 1.0000 0.9024 0.9088 0.9322
len 0.4612 0.4660 0.3611 0.2604 3.7991 3.7991 4.0556 2.4975 2.4975 2.7548

t,MIX 0.9484 0.8746 1.0000 1.0000 1.0000 0.9978 1.0000 0.8450 0.9070 0.9250
len 0.4560 0.4511 0.2787 0.1729 4.2042 4.2042 4.4271 2.5022 2.5022 2.8450

U,full 0.9518 0.9190 0.9778 0.9812 0.9722 0.9552 0.9716 0.9192 0.8970 0.9294
len 0.4342 0.4663 0.4412 0.3856 2.8605 2.8605 3.4326 2.4854 2.4854 2.7174

U,VS 0.9534 0.9172 0.9998 1.0000 0.9990 0.9960 0.9988 0.8954 0.9012 0.9272
len 0.4574 0.4620 0.3623 0.2592 3.8220 3.8220 4.0751 2.4940 2.4940 2.7529

U,MIX 0.9364 0.8612 1.0000 1.0000 0.9996 0.9974 0.9992 0.8310 0.8926 0.9130
len 0.4526 0.4480 0.2761 0.1719 4.2084 4.2084 4.4331 2.5076 2.5076 2.8487

E,full 0.9574 0.9336 0.9812 0.9810 0.9794 0.9584 0.9748 0.9306 0.9084 0.9432
len 0.4379 0.4657 0.4397 0.3848 2.8620 2.8620 3.4305 2.4905 2.4905 2.7205

E,VS 0.9584 0.9342 1.0000 1.0000 0.9994 0.9980 0.9994 0.9124 0.9112 0.9372
len 0.4612 0.4637 0.3604 0.2587 3.8329 3.8329 4.0841 2.5044 2.5044 2.7616

E,MIX 0.9488 0.8782 1.0000 1.0000 0.9998 0.9976 0.9996 0.8508 0.9088 0.9256
len 0.4558 0.4498 0.2754 0.1695 4.2269 4.2269 4.4536 2.5082 2.5082 2.8458
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Table 8.3. AR(p) Model Selection,n=100,tstype=2,BB=100, pmax=5, btype=1
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9372 0.9524 0.9666 0.9748 0.9518 0.9534 0.9684 0.9266 0.9432 0.9508
len 0.4275 0.4616 0.4436 0.3980 3.1853 3.1853 3.8961 1.9603 1.9603 2.0631

N,VS 0.9376 0.9974 1.0000 1.0000 0.9980 0.9950 0.9986 0.9530 0.9622 0.9696
len 0.4335 0.4414 0.3668 0.2726 4.1296 4.1296 4.4040 1.9659 1.9659 2.0641

N,MIX 0.9312 0.9978 1.0000 1.0000 0.9994 0.9976 0.9992 0.9508 0.9620 0.9736
len 0.4255 0.3896 0.2839 0.1855 4.6164 4.6164 4.8599 1.9650 1.9650 2.0734

t,full 0.9484 0.9524 0.9704 0.9698 0.9554 0.9562 0.9696 0.9326 0.9466 0.9534
len 0.4258 0.4586 0.4397 0.3942 3.2030 3.2030 3.9050 1.9633 1.9633 2.0682

t,VS 0.9434 0.9980 1.0000 1.0000 0.9980 0.9958 0.9988 0.9562 0.9612 0.9706
len 0.4310 0.4377 0.3608 0.2679 4.1741 4.1741 4.4407 1.9684 1.9684 2.0705

t,MIX 0.9372 0.9974 1.0000 1.0000 0.9996 0.9980 0.9994 0.9542 0.9600 0.9716
len 0.4229 0.3854 0.2789 0.1818 4.6629 4.6629 4.8987 1.9680 1.9680 2.0792

U,full 0.9438 0.9640 0.9634 0.9730 0.9588 0.9602 0.9728 0.9318 0.9460 0.9544
len 0.4283 0.4627 0.4434 0.3980 3.1906 3.1906 3.8899 1.9617 1.9617 2.0671

U,VS 0.9418 0.9974 1.0000 1.0000 0.9980 0.9960 0.9986 0.9604 0.9690 0.9734
len 0.4338 0.4427 0.3676 0.2724 4.1388 4.1388 4.4092 1.9677 1.9677 2.0669

U,MIX 0.9358 0.9974 1.0000 1.0000 0.9990 0.9980 0.9988 0.9544 0.9642 0.9752
len 0.4271 0.3911 0.2850 0.1862 4.6103 4.6103 4.8529 1.9656 1.9656 2.0762

E,full 0.9596 0.9632 0.9690 0.9720 0.9620 0.9620 0.9712 0.9426 0.9572 0.9610
len 0.4246 0.4644 0.4387 0.3935 3.2164 3.2164 3.9035 1.9630 1.9630 2.0574

E,VS 0.9600 0.9986 1.0000 1.0000 0.9980 0.9956 0.9972 0.9676 0.9720 0.9788
len 0.4291 0.4421 0.3577 0.2620 4.2165 4.2165 4.4794 1.9664 1.9664 2.0547

E,MIX 0.9556 0.9986 1.0000 1.0000 0.9990 0.9974 0.9986 0.9624 0.9682 0.9790
len 0.4143 0.3837 0.2753 0.1766 4.6755 4.6755 4.9142 1.9616 1.9616 2.0560
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Table 8.4. AR(p) Model Selection, n=100,tstype=2,BB=100, pmax=5, btype=2
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9498 0.9232 0.9740 0.9822 0.9688 0.9462 0.9660 0.9188 0.8996 0.9364
len 0.4375 0.4648 0.4396 0.3852 2.8633 2.8633 3.4299 2.4891 2.4891 2.7115

N,VS 0.9548 0.9204 1.0000 1.0000 1.0000 0.9954 1.0000 0.9008 0.9048 0.9302
len 0.4611 0.4647 0.3612 0.2594 3.8157 3.8157 4.0681 2.5046 2.5046 2.7600

N,MIX 0.9450 0.8684 1.0000 1.0000 1.0000 0.9972 1.0000 0.8340 0.8966 0.9166
len 0.4564 0.4504 0.2777 0.1710 4.2037 4.2037 4.4889 2.5104 2.5104 2.8443

t,full 0.9516 0.9266 0.9736 0.9822 0.9738 0.9536 0.9710 0.9136 0.9062 0.9354
len 0.4376 0.4651 0.4366 0.3833 2.8722 2.8722 3.4386 2.4963 2.4963 2.7155

t,VS 0.9552 0.9252 1.0000 1.0000 0.9998 0.9956 0.9998 0.9018 0.9128 0.9352
len 0.4617 0.4621 0.3569 0.2582 3.8377 3.8377 4.0902 2.5045 2.5045 2.7566

t,MIX 0.9472 0.8702 1.0000 1.0000 1.0000 0.9974 0.9996 0.8394 0.9056 0.9218
len 0.4557 0.4481 0.2728 0.1689 4.2207 4.2207 4.4470 2.5067 2.5067 2.8434

U,full 0.9460 0.9198 0.9794 0.9820 0.9762 0.9542 0.9706 0.9192 0.8948 0.9300
len 0.4375 0.4691 0.4417 0.3849 2.8610 2.8610 3.4277 2.4861 2.4861 2.7164

U,VS 0.9488 0.9186 1.0000 1.0000 0.9998 0.9966 0.9998 0.8984 0.8984 0.9254
len 0.4610 0.4638 0.3618 0.2587 3.8402 3.8402 4.0911 2.4953 2.4953 2.7541

U,MIX 0.9314 0.8590 1.0000 1.0000 1.0000 0.9968 1.0000 0.8326 0.8920 0.9100
len 0.4552 0.4480 0.2758 0.1699 4.2255 4.2255 4.4478 2.5061 2.5061 2.8469

E,full 0.9528 0.9330 0.9802 0.9814 0.9756 0.9542 0.9694 0.9254 0.9038 0.9364
len 0.4347 0.4704 0.4370 0.3817 2.8764 2.8764 3.4385 2.5096 2.5096 2.7249

E,VS 0.9542 0.9302 1.0000 1.0000 1.0000 0.9962 0.9998 0.9054 0.9122 0.9328
len 0.4580 0.4651 0.3563 0.2527 3.8609 3.8609 4.1087 2.5191 2.5191 2.7688

E,MIX 0.9412 0.8674 1.0000 1.0000 1.0000 0.9976 0.9998 0.8284 0.9098 0.9228
len 0.4518 0.4501 0.2716 0.1654 4.2470 4.2470 4.4644 2.5121 2.5121 2.8558
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Table 8.5. AR(p) Model Selection, n=400,ϕ = 0.5,BB=100, pmax=5, btype=1
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9522 0.9508 0.9574 0.9642 0.9438 0.9596 0.9720 0.9442 0.9502 0.9574
len 0.2104 0.2329 0.2304 0.2066 3.1743 3.1743 3.9237 1.9582 1.9582 2.0517

N,VS 0.9562 0.9976 0.9998 1.0000 0.9954 0.9938 0.9966 0.9486 0.9526 0.9580
len 0.2102 0.2248 0.1957 0.1496 4.0079 4.0079 4.2904 1.9592 1.9592 2.0364

N,MIX 0.9578 0.9974 0.9998 1.0000 0.9984 0.9972 0.9988 0.9494 0.9494 0.9538
len 0.2043 0.2015 0.1551 0.1067 4.5015 4.5015 4.7525 1.9574 1.9574 2.0193

t,full 0.9544 0.9558 0.9578 0.9598 0.9478 0.9624 0.9718 0.94352 0.9554 0.9624
len 0.2100 0.2328 0.2308 0.2066 3.1733 3.1733 3.9342 1.9572 1.9572 2.0534

t,VS 0.9596 0.9972 0.9996 0.9998 0.9966 0.9938 0.9976 0.9510 0.9576 0.9622
len 0.2096 0.2247 0.1969 0.1501 4.0100 4.0100 4.2937 1.9551 1.9551 2.0337

t,MIX 0.9622 0.9980 0.9996 0.9998 0.9984 0.9966 0.9986 0.9516 0.9534 0.9596
len 0.2041 0.2012 0.1556 0.1071 4.5124 4.5124 4.7637 1.9587 1.9587 2.0245

U,full 0.9482 0.9528 0.9578 0.9548 0.9470 9602 0.9712 0.9338 0.9504 0.9572
len 0.2102 0.2333 0.2317 0.2066 3.1737 3.1737 3.9198 1.9558 1.9558 2.0538

U,VS 0.9524 0.9960 1.0000 1.0000 0.9970 0.9952 0.9976 0.9406 0.9530 0.9596
len 0.2101 0.2252 0.1973 0.1491 4.0063 4.0063 4.2884 1.9566 1.9566 2.0369

U,MIX 0.9526 0.9964 1.0000 1.0000 0.9980 0.9966 0.9984 0.9436 0.9490 0.9544
len 0.2043 0.2012 0.1558 0.1059 4.5100 4.5100 4.7564 1.9605 1.9605 2.0200

E,full 0.9544 0.9510 0.9632 0.9630 0.9480 0.9616 0.9720 0.9446 0.9536 0.9574
len 0.2104 0.2331 0.2311 0.2064 3.1723 3.1723 3.9228 1.9579 1.9579 2.0511

E,VS 0.9574 0.9958 0.9994 1.0000 0.9960 0.9930 0.9964 0.9502 0.9556 0.9602
len 0.2101 0.2250 0.1964 0.1492 4.0136 4.0136 4.2979 1.9573 1.9573 2.0359

E,MIX 0.9556 0.9960 0.9998 1.0000 0.9988 0.9960 0.9980 0.9520 0.9476 0.95522
len 0.2040 0.2013 0.1551 0.1058 4.5080 4.5080 4.7575 1.9611 1.9611 2.0232

75



Table 8.6. AR(p) Model Selection, n=400,ϕ = 0.5,BB=200, pmax=5, btype=2
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9552 0.9464 0.9606 0.9662 0.9554 0.9554 0.9674 0.9380 0.9532 0.9630
len 0.2152 0.2343 0.2299 0.2036 2.8531 2.8531 3.4531 2.4793 2.4793 2.6524

N,VS 0.9610 0.9528 0.9996 0.9998 0.9966 0.9892 0.9974 0.9492 0.9592 0.9652
len 0.2152 0.2333 0.2009 0.1506 3.5670 3.5670 3.8436 2.4932 2.4932 2.6497

N,MIX 0.9578 0.9480 0.9996 0.9998 0.9984 0.9948 0.9976 0.9460 0.9518 0.9636
len 0.2124 0.2233 0.1604 0.1076 3.9967 3.9967 4.2330 2.5055 2.5055 2.6487

t,full 0.96222 0.9496 0.9558 0.9660 0.9492 0.9486 0.9628 0.9410 0.9558 0.9634
len 0.2160 0.2346 0.2293 0.2045 2.8560 2.8560 3.4481 2.4763 2.4763 2.6536

t,VS 0.9650 0.9550 0.9994 1.0000 0.9968 0.9906 0.9968 0.9548 0.9628 0.9690
len 0.2159 0.2332 0.2008 0.1520 3.5573 3.5573 3.8353 2.4951 2.4951 2.6495

t,MIX 0.9676 0.9496 0.9996 1.0000 0.9984 0.9938 0.9978 0.9530 0.9586 0.9686
len 0.2129 0.2233 0.1612 0.1089 3.9789 3.9789 4.2201 2.5098 2.5098 2.6502

U,full 0.9522 0.9452 0.9594 0.9618 0.9520 0.9516 0.9632 0.9392 0.9504 0.9636
len 0.2147 0.2346 0.2307 0.2044 2.8577 2.8577 3.4605 2.4769 2.4769 2.6483

U,VS 0.9560 0.9496 0.9996 1.0000 0.9974 0.9930 0.9972 0.9516 0.9584 0.9684
len 0.2149 0.2334 0.2023 0.1529 3.5394 3.5394 3.8185 2.4935 2.4935 2.6474

U,MIX 0.9576 0.9488 0.9996 1.0000 0.9990 0.9954 0.9988 0.9500 0.9544 0.9660
len 0.2124 0.2240 0.1621 0.1108 3.9636 3.9636 4.2020 2.5105 2.5105 2.6526

E,full 0.9558 0.9494 0.9650 0.9622 0.9556 0.9550 0.9634 0.9444 0.9578 0.9670
len 0.2158 0.2346 0.2293 0.2037 2.8552 2.8552 3.4555 2.4769 2.4769 2.6482

E,VS 0.9584 0.9552 0.9996 1.0000 0.9962 0.9934 0.9964 0.9554 0.9638 0.9728
len 0.2158 0.2332 0.2005 0.1511 3.5638 3.5638 3.8415 2.4952 2.4952 2.6462

E,MIX 0.9598 0.9506 0.9994 1.0000 0.9980 0.9948 0.9974 0.9536 0.9622 0.9710
len 0.2132 0.2238 0.1602 0.1083 3.9920 3.9920 4.2298 2.5099 2.5099 2.6502
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Table 8.7. AR(p) Model Selection, n=400,ϕ = (0.5, 0.33),BB=200, pmax=5, btype=1
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9516 0.9528 0.9584 0.9656 0.9478 0.9600 0.9714 0.9388 0.9490 0.9560
len 0.2106 0.2330 0.2306 0.2068 3.1742 3.1742 3.9235 1.9584 1.9584 2.0527

N,VS 0.9522 0.9970 1.0000 1.0000 0.9968 0.9952 0.9978 0.9442 0.9520 0.9568
len 0.2103 0.2249 0.1953 0.1496 4.0195 4.0195 4.3052 1.9607 1.9607 2.0393

N,MIX 0.9552 0.9970 1.0000 1.0000 0.9984 0.9978 0.9986 0.9470 0.9478 0.9552
len 0.2042 0.2005 0.1551 0.1055 4.5174 4.5174 4.7682 1.9609 1.9609 2.0242

t,full 0.9534 0.9504 0.9602 0.9644 0.9480 0.9612 0.9704 0.9436 0.9550 0.9584
len 0.2098 0.2325 0.2303 0.2066 3.1835 3.1835 3.9338 1.9592 1.9592 2.0522

t,VS 0.9566 0.9960 0.9998 1.0000 0.9956 0.9936 0.9960 0.9460 0.9564 0.9582
len 0.2094 0.2236 0.1951 0.1486 4.0387 4.0387 4.3175 1.9599 1.9599 2.0369

t,MIX 0.9544 0.9970 0.9996 1.0000 0.9980 0.9958 0.9982 0.9478 0.9522 0.9544
len 0.2031 0.1996 0.1533 0.1044 4.5395 4.5395 4.7851 1.9604 1.9604 2.0210

U,full 0.9560 0.9632 0.9576 0.9638 0.9488 0.9622 0.9718 0.9474 0.9590 0.9642
len 0.2102 0.2329 0.2311 0.2068 3.1749 3.1749 3.9185 1.9614 1.9614 2.0564

U,VS 0.9600 0.9980 1.0000 0.9998 0.9970 0.9952 0.9978 0.9530 0.9604 0.9646
len 0.2097 0.2240 0.1955 0.1495 4.0204 4.0204 4.3047 1.9606 1.9606 2.0396

U,MIX 0.9594 0.9986 1.0000 0.9998 0.9992 0.9978 0.9992 0.9506 0.9552 0.9600
len 0.2038 0.2008 0.1544 0.1054 4.5302 4.5302 4.7798 1.9605 1.9605 2.0213

E,full 0.9610 0.9536 0.9622 0.9618 0.9504 0.9620 0.9712 0.9488 0.9602 0.9646
len 0.2088 0.2333 0.2302 0.2054 3.1872 3.1872 3.9355 1.9545 1.9545 2.0486

E,VS 0.9648 0.9960 0.9998 1.0000 0.9980 0.9974 0.9984 0.9548 0.9616 0.9654
len 0.2088 0.2246 0.1944 0.1473 4.0401 4.0401 4.3196 1.9567 1.9567 2.0329

E,MIX 0.9668 0.9968 0.9998 1.0000 0.9990 0.9976 0.9992 0.9548 0.9554 0.9618
len 0.2019 0.1994 0.1527 0.1038 4.5330 4.5330 4.7819 1.9585 1.9585 2.0170
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Table 8.8. AR(p) Model Selection, n=400,ϕ = (0.5, 0.33),BB=200, pmax=5, btype=2
e ϕ1 ϕ2 ϕpmax−1 ϕpmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9586 0.9498 0.9638 0.9624 0.9550 0.9546 0.9658 0.9404 0.9530 0.9648
len 0.2145 0.2342 0.2297 0.2039 2.8507 2.8507 3.4645 2.4748 2.4748 2.6479

N,VS 0.9588 0.9548 0.9998 0.9998 0.9982 0.9942 0.9988 0.9538 0.9618 0.9684
len 0.2145 0.2332 0.2014 0.1516 3.5445 3.5445 3.8268 2.4930 2.4930 2.6475

N,MIX 0.9620 0.9474 1.0000 0.9998 0.9986 0.9966 0.9990 0.9536 0.9590 0.9696
len 0.2129 0.2238 0.1614 0.1106 3.9697 3.9697 4.2116 2.5086 2.5086 2.6551

t,full 0.9500 0.9482 0.9586 0.9682 0.9568 0.9534 0.9656 0.9434 0.9578 0.9676
len 0.2154 0.2343 0.2288 0.2038 2.8566 2.8566 3.4629 2.4791 2.4791 2.6574

t,VS 0.9546 0.9524 0.9994 1.0000 0.9974 0.9922 0.9978 0.9552 0.9634 0.9726
len 0.2153 0.2330 0.2005 0.1516 3.5599 3.5599 3.8371 2.4988 2.4988 2.6560

t,MIX 0.9548 0.9462 0.9994 1.0000 0.9984 0.9958 0.9982 0.9542 0.9610 0.9690
len 0.2133 0.2234 0.1599 0.1082 3.9920 3.9920 4.2306 2.5106 2.5106 2.6526

U,full 0.9524 0.9492 0.9618 0.9634 0.9496 0.9522 0.9632 0.9374 0.9536 0.9626
len 0.2148 0.2354 0.2304 0.2040 2.8542 2.8542 3.4598 2.4766 2.4766 2.6409

U,VS 0.9558 0.9512 0.9996 1.0000 0.9966 0.9912 0.9970 0.9526 0.9594 0.9664
len 0.2149 0.2345 0.2019 0.1516 3.5394 3.5394 3.8197 2.4950 2.4950 2.6114

U,MIX 0.9590 0.9434 0.9998 1.0000 0.9986 0.9948 0.9978 0.9520 0.9578 0.9670
len 0.2130 0.2240 0.1619 0.1107 3.9678 3.9678 4.20801 2.5077 2.5077 2.6497

E,full 0.9558 0.9542 0.9582 0.9616 0.9530 0.9530 0.9652 0.9436 0.9540 0.9660
len 0.2152 0.2360 0.2289 0.2033 2.8653 2.8653 3.4664 2.4847 2.4847 2.6608

E,VS 0.9610 0.9572 0.9996 0.9998 0.9976 0.9930 0.9980 0.9542 0.9614 0.9730
len 0.2154 0.2350 0.2006 0.1500 3.5634 3.5634 3.8412 2.5013 2.5013 2.6534

E,MIX 0.9558 0.9504 0.9996 0.9998 0.9988 0.9962 0.9992 0.9510 0.9592 0.9678
len 0.2131 0.2247 0.1604 0.1073 3.9840 3.9840 4.2199 2.5187 2.5187 2.6633
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Table 8.9. MA(q) Model Selection, n=100, tstype=1,BB=100, qmax=5, btype=1
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9340 0.9484 0.9422 0.9304 0.8630 0.9920 0.9976 0.9180 0.9610 0.9736
len 0.4790 0.5454 0.5978 0.5690 3.3725 3.3725 4.5228 1.9611 1.96111 2.2120

N,VS 0.9784 0.9998 1.0000 1.0000 0.9998 0.9998 1.0000 0.9802 0.9870 0.9894
len 0.5689 0.4942 0.2545 0.1897 5.4980 5.4980 5.6905 1.9926 1.99263 2.1369

N,MIX 0.9772 0.9996 1.0000 1.0000 1.0000 0.9998 1.0000 0.9766 0.9868 0.9880
len 0.5922 0.4291 0.2278 0.1794 5.8106 5.8106 5.9888 1.9974 1.9974 2.1292

t,full 0.9286 0.9468 0.9472 0.9340 0.8716 0.9918 0.9978 0.9110 0.9532 0.9714
len 0.4787 0.5447 0.5990 0.5687 3.3681 3.3681 4.4906 1.9657 1.9657 2.2122

t,VS 0.9732 0.9998 1.0000 1.0000 0.9998 0.9994 0.9998 0.9730 0.9822 0.9850
len 0.5658 0.4926 0.2526 0.1902 5.5154 5.5154 5.7063 1.9869 1.9869 2.1263

t,MIX 0.9748 0.9998 1.0000 1.0000 1.0000 0.9992 1.0000 0.9742 0.9846 0.9858
len 0.5898 0.4303 0.2251 0.1797 5.8076 5.8076 5.9857 1.9919 1.9919 2.1198

U,full 0.9282 0.9418 0.9402 0.9294 0.8640 0.9908 0.9960 0.9152 0.9534 0.9676
len 0.4800 0.5444 0.5994 0.5698 3.3696 3.3696 4.5138 1.9629 1.9629 2.2137

U,VS 0.9752 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9712 0.9814 0.9828
len 0.5657 0.4933 0.2571 0.1936 5.4919 5.4919 5.6861 1.9865 1.9865 2.1314

U,MIX 0.9746 0.9996 1.0000 1.0000 1.0000 0.9998 1.0000 0.9724 0.9822 0.9840
len 0.5889 0.4313 0.2296 0.1822 5.7952 5.7952 5.9739 1.9922 1.9922 2.1212

E,full 0.9338 0.9508 0.9462 0.9358 0.8700 0.9930 0.9976 0.9224 0.9612 0.9728
len 0.4798 0.5452 0.5970 0.5686 3.3718 3.3718 4.4758 1.9626 1.9626 2.2022

E,VS 0.9756 0.9992 1.0000 1.0000 1.0000 0.9998 1.0000 0.9760 0.9832 0.9854
len 0.5661 0.4920 0.2528 0.1898 5.5171 5.5171 5.7071 1.9910 1.9910 2.1312

E,MIX 0.9734 0.9990 1.0000 1.0000 1.0000 0.9998 1.0000 0.9722 0.9852 0.9852
len 0.5901 0.4291 0.2260 0.1789 5.8349 5.8349 6.0110 1.9962 1.9962 2.1234

79



Table 8.10. MA(q) Model Selection, n=100,tstype=1,BB=100, qmax=5,btype=2
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9390 0.9478 0.9366 0.9296 0.8594 0.9934 0.9968 0.9216 0.9618 0.9742
len 0.4808 0.5462 0.5988 0.5695 3.3739 3.3739 4.5373 1.9632 1.9632 2.2130

N,VS 0.9786 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 0.9798 0.9868 0.9900
len 0.5728 0.4956 0.2567 0.1936 5.4872 5.4872 5.6805 1.9979 1.9979 2.1401

N,MIX 0.9768 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9772 0.9872 0.9896
len 0.5970 0.4321 0.2311 0.1820 5.7890 5.7890 5.9680 2.0104 2.0104 2.1378

t,full 0.9244 0.9510 0.9424 0.9380 0.9694 0.9914 0.9978 0.9076 0.9522 0.9662
len 0.4786 0.5454 0.5959 0.5670 3.3845 3.3845 4.5081 1.9671 1.9671 2.2166

t,VS 0.9750 0.9996 1.0000 1.0000 0.9996 0.9996 1.0000 0.9748 0.9830 0.9850
len 0.5681 0.4926 0.2509 0.1896 5.5024 5.5024 5.6934 1.9898 1.9898 2.1292

t,MIX 0.9758 0.9996 1.0000 1.0000 0.9996 0.9998 1.0000 0.9740 0.9844 0.9846
len 0.5920 0.4271 0.2246 0.1792 5.8234 5.8234 5.9993 1.9989 1.9989 2.1246

U,full 0.9346 0.9492 0.9344 0.9306 0.8484 0.9916 0.9968 0.9168 0.9614 0.9772
len 0.4795 0.5470 0.6002 0.5710 3.3731 3.3731 4.5339 1.9588 1.9588 2.2159

U,VS 0.9774 0.9998 1.0000 1.0000 0.9998 0.9994 0.9998 0.9760 0.9852 0.9890
len 0.5686 0.4987 0.2582 0.1944 5.4833 5.4833 5.6744 1.9962 1.9962 2.1439

U,MIX 0.9778 0.9998 1.0000 1.0000 0.9998 0.9994 1.0000 0.9770 0.9864 0.9896
len 0.5938 0.4344 0.2331 0.1839 5.8019 .8019 5.9800 2.0031 2.0031 2.1341

E,full 0.9386 0.9508 0.9404 0.9360 0.8714 0.9946 0.9978 0.9180 0.9606 0.9720
len 0.4764 0.5392 0.5925 0.5635 3.3942 3.3942 4.5112 1.9714 1.9714 2.1984

E,VS 0.9770 0.9996 1.0000 1.0000 1.0000 0.9996 1.0000 0.9770 0.9832 0.9864
len 0.5595 0.4865 0.2478 0.1888 5.5183 5.5183 5.7084 1.9954 1.9954 2.1238

E,MIX 0.9734 0.9998 1.0000 1.0000 1.0000 0.9998 1.0000 0.9744 0.9848 0.9870
len 0.5867 0.4209 0.2208 0.1782 5.8227 5.8227 6.0027 2.0093 2.0093 2.1230
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Table 8.11. MA(q) Model Selection, n=100, tstype=2,BB=100, qmax=5, btype=1
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9302 0.9458 0.9402 0.9300 0.8916 0.9818 0.9898 0.9190 0.9682 0.9798
len 0.4696 0.5559 0.5991 0.5762 3.0437 3.0437 3.9726 2.5169 2.5169 2.8582

N,VS 0.9576 0.9802 1.0000 1.0000 0.9998 0.9994 1.0000 0.9726 0.9806 0.9858
len 0.4835 0.6004 0.3660 0.2454 4.2819 4.2819 4.5142 2.5671 2.5671 2.7344

N,MIX 0.9618 0.9756 1.0000 1.0000 1.0000 0.9996 1.0000 0.9708 0.9836 0.9884
len 0.4774 0.5974 0.3147 0.2210 4.5326 4.5326 4.7355 2.5766 2.5766 2.7250

t,full 0.9410 0.9450 0.9446 0.9320 0.9066 0.9864 0.9926 0.9168 0.9696 0.9808
len 0.4701 0.5568 0.5997 0.5754 3.0376 3.0376 3.9507 2.5189 2.5189 2.8530

t,VS 0.9644 0.9756 1.0000 1.0000 1.0000 0.9998 1.0000 0.9742 0.9800 0.9864
len 0.4826 0.5984 0.3604 0.2410 4.2793 4.2793 4.5116 2.5609 2.5609 2.7280

t,MIX 0.9662 0.9736 1.0000 1.0000 1.0000 1.0000 1.0000 0.9666 0.9820 0.9868
len 0.4759 0.5975 0.3115 0.2172 4.5435 4.5435 4.7450 2.5732 2.5732 2.7232

U,full 0.9326 0.9418 0.9424 0.9292 0.8990 0.9844 0.9922 0.9130 0.9624 0.9780
len 0.4709 0.5556 0.5991 0.5776 3.0371 3.0371 3.9621 2.5144 2.5144 2.8532

U,VS 0.9598 0.9740 1.0000 1.0000 0.9994 0.9994 0.9996 0.9686 0.9782 0.9850
len 0.4850 0.6011 0.3629 0.2464 4.2798 4.2798 4.5134 2.5601 2.5601 2.7321

U,MIX 0.9606 0.9744 1.0000 1.0000 0.9994 0.9994 0.9998 0.9640 0.9792 0.9832
len 0.4778 0.5987 0.3128 0.2206 4.5352 4.5352 4.7403 2.5740 2.5740 2.7245

E,full 0.9454 0.9512 0.9394 0.9364 0.9112 0.9878 0.9938 0.9286 0.9700 0.9806
len 0.4704 0.5567 0.5989 0.5765 3.0441 3.0441 3.9451 2.5177 2.5177 2.8371

E,VS 0.9638 0.9784 1.0000 1.0000 1.0000 0.9998 1.0000 0.9776 0.9846 0.9872
len 0.4815 0.5976 0.3588 0.2425 4.2862 4.2862 4.5192 2.5609 2.5609 2.7253

E,MIX 0.9688 0.9748 1.0000 1.0000 1.0000 0.9998 1.0000 0.9726 0.9844 0.98800
len 0.4743 0.5950 0.3101 0.2177 4.5533 4.5533 4.7529 2.5732 2.5732 2.7223
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Table 8.12. MA(q) Model Selection, n=100, tstype=2,BB=100, qmax=5, btype=2
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9380 0.9464 0.9382 0.9298 0.8912 0.9818 0.9906 0.9154 0.9664 0.9808
len 0.4701 0.5561 0.6006 0.5754 3.0421 3.0421 3.9717 2.5199 2.5199 2.8599

N,VS 0.9660 0.9766 1.0000 1.0000 1.0000 0.9996 1.0000 0.9728 0.9824 0.9906
len 0.4838 0.6026 0.3657 0.2446 4.2746 4.2746 4.5122 2.5617 2.5617 2.7340

N,MIX 0.9630 0.9784 1.0000 1.0000 1.0000 0.9996 1.0000 0.9696 0.9820 0.9878
len 0.4778 0.6004 0.3164 0.2210 4.5293 4.5293 4.7343 2.5745 2.5745 2.7302

t,full 0.9350 0.9494 0.9454 0.9316 0.9086 0.9862 0.9920 0.9174 0.9630 0.9782
len 0.4689 0.5530 0.5974 0.5745 3.0517 3.0517 3.9582 2.5251 2.5251 2.8581

t,VS 0.9606 0.9780 1.0000 1.0000 1.0000 0.9998 1.0000 0.9700 0.9798 0.9844
len 0.4802 0.5926 0.3562 0.2381 4.3025 4.3025 4.5315 2.5665 2.5665 2.7273

t,MIX 0.9596 0.9730 1.0000 1.0000 1.0000 0.9998 1.0000 0.9668 0.9804 0.9836
len 0.4738 0.5916 0.3068 0.2135 4.5619 4.5619 4.7606 2.5806 2.5806 2.7214

U,full 0.9318 0.9438 0.9404 0.9246 0.8922 0.9860 0.9936 0.9096 0.9630 0.9766
len 0.4726 0.5579 0.6053 0.5777 3.0393 3.0393 3.9862 2.5178 2.5178 2.8646

U,VS 0.9612 0.9784 1.0000 1.0000 0.9996 0.9990 0.9996 0.9704 0.9818 0.9858
len 0.4864 0.6016 0.3668 0.2477 4.2745 4.2745 4.5087 2.5628 2.5628 2.7302

U,MIX 0.9620 0.9780 1.0000 1.0000 1.0000 0.9996 1.0000 0.9674 0.9808 0.9852
len 0.4803 0.6006 0.3184 0.2240 4.5218 4.5218 4.7282 2.5756 2.5756 2.7261

E,full 0.9430 0.9506 0.9428 0.9356 0.9046 0.9868 0.9926 0.9258 0.9660 0.9806
len 0.4661 0.5486 0.5919 0.5689 3.0476 3.0476 3.9639 2.5296 2.5296 2.8509

E,VS 0.9640 0.9794 1.0000 1.0000 1.0000 0.9998 1.0000 0.9772 0.9832 0.9874
len 0.4794 0.5870 0.3538 0.2380 4.2892 4.2892 4.5236 2.5642 2.5642 2.7267

E,MIX 0.9666 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000 0.9730 0.9820 0.9880
len 0.4732 0.5842 0.3072 0.2145 4.5534 4.5534 4.7543 2.5735 2.5735 2.7165

82



Table 8.13. MA(q) Model Selection, n=400,tstype=1,BB=100, qmax=5,btype=1
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9530 0.9536 0.9516 0.9522 0.9320 0.9896 0.99420 0.9380 0.9542 0.9628
len 0.2155 0.2414 0.2470 0.2230 3.2005 3.2005 4.1791 1.9568 1.9568 2.0809

N,VS 0.9572 0.9990 1.0000 1.0000 0.9998 0.9998 1.0000 0.9470 0.9546 0.9614
len 0.2156 0.2139 0.1110 0.0795 5.5321 5.5321 5.7162 1.9595 1.9595 2.0456

N,MIX 0.9518 0.9990 1.0000 1.0000 0.9998 0.9998 1.0000 0.9432 0.9452 0.9502
len 0.2060 0.1787 0.0967 0.0727 5.8620 5.8620 6.0320 1.9605 1.9605 2.0303

t,full 0.9498 0.9532 0.9558 0.9506 0.9338 0.9934 0.9972 0.9398 0.9528 0.9626
len 0.2154 0.2421 0.2471 0.2238 3.2020 3.2020 4.1682 1.9540 1.9540 2.0796

t,VS 0.9586 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 0.9472 0.9558 0.9638
len 0.2157 0.2140 0.1117 0.0797 5.5106 5.5106 5.6947 1.9588 1.9588 2.0446

t,MIX 0.9534 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 0.9412 0.9492 0.9560
len 0.2064 0.1786 0.0968 0.0731 5.8309 5.8309 6.0033 1.9623 1.9623 2.0277

U,full 0.9500 0.9528 0.9518 0.9516 0.9276 9902 0.9964 0.9404 0.9552 0.9628
len 0.2155 0.2418 0.2471 0.2237 3.1975 3.1975 4.1800 1.9596 1.9596 2.0781

U,VS 0.9570 0.9990 1.0000 1.0000 0.9998 0.9998 0.9998 0.9508 0.9582 0.9636
len 0.2157 0.2142 0.1118 0.0799 5.5266 5.5266 5.7095 1.9611 1.9611 2.0435

U,MIX 0.9544 0.9994 1.0000 1.0000 0.9998 1.0000 0.9998 0.9422 0.9482 0.9558
len 0.2059 0.1784 0.0975 0.0731 5.8406 5.8406 6.0096 1.9605 1.9605 2.0251

E,full 0.9568 0.9552 0.9490 0.9524 0.9298 0.9894 0.9962 0.9394 0.9578 0.9640
len 0.2155 0.2419 0.2466 0.2227 3.2002 3.2002 4.1789 1.9589 1.9589 2.0807

E,VS 0.9660 0.9994 1.0000 1.0000 0.9998 0.9998 1.0000 0.9550 0.9604 0.9668
len 0.2154 0.2136 0.1115 0.0807 5.5234 5.5234 5.7042 1.9606 1.9606 2.0425

E,MIX 0.9598 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9482 0.9502 0.9564
len 0.2052 0.1774 0.0973 0.0739 5.8561 5.8561 6.0250 1.9583 1.9583 2.0257
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Table 8.14. MA(q) Model Selection, n=400,tstype=1,BB=100, qmax=5, btype=2
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9514 0.9538 0.9536 0.9470 0.9292 0.9926 0.9968 0.9408 0.9582 0.9654
len 0.2153 0.2417 0.2463 0.2227 3.2006 3.2006 4.1834 1.9581 1.9581 2.0805

N,VS 0.9620 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 0.9558 0.9598 0.9656
len 0.2154 0.2136 0.1107 0.0803 5.5342 5.5342 5.7191 1.9600 1.9600 2.0464

N,MIX 0.9550 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 0.9450 0.9530 0.9558
len 0.2061 0.1780 0.0958 0.0736 5.8565 5.8565 6.0277 1.9624 1.9624 2.0307

t,full 0.9558 0.9570 0.9516 0.9532 0.9346 0.9912 0.9952 0.9420 0.9596 0.9636
len 0.2148 0.2416 0.2459 0.2225 3.2086 3.2086 4.1666 1.9597 1.9597 2.0813

t,VS 0.9630 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 0.9528 0.9622 0.9650
len 0.2147 0.2138 0.1104 0.0787 5.5490 5.5490 5.7289 1.9623 1.9623 2.0472

t,MIX 0.9592 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9468 0.9540 0.9602
len 0.2052 0.1768 0.0962 0.0722 5.8743 5.8743 6.0424 1.9586 1.9586 2.0262

U,full 0.9536 0.9546 0.9580 0.9524 0.9336 0.9904 0.9950 0.9398 0.9558 0.9648
len 0.2157 0.2425 0.2473 0.2237 3.1997 3.1997 4.1545 1.9560 1.9560 2.0769

U,VS 0.9614 0.9992 1.0000 1.0000 0.9998 0.9998 1.0000 0.9534 0.9604 0.9648
len 0.2160 0.2148 0.1115 0.0807 5.5294 5.5294 5.7105 1.9598 1.9598 2.0440

U,MIX 0.9604 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9486 0.9522 0.9572
len 0.2063 0.1781 0.0966 0.0734 5.8550 5.8550 6.0222 1.9600 1.9600 2.0263

E,full 0.9492 0.9550 0.9546 0.9596 0.9342 0.9910 0.9952 0.9370 0.9510 0.9592
len 0.2138 0.2400 0.2451 0.2222 3.2139 3.2139 4.1663 1.9565 1.9565 2.0707

E,VS 0.9582 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 0.9494 0.9548 0.9630
len 0.2142 0.2122 0.1095 0.0782 5.5507 5.5507 5.7303 1.9594 1.9594 2.0400

E,MIX 0.9588 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 0.9472 0.9480 0.9530
len 0.2053 0.1764 0.0951 0.0718 5.8724 5.8724 6.0403 1.9669 1.9669 2.0257
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Table 8.15. MA(q) Model Selection, n=400,tstype=2,BB=100, qmax=5, btype=1
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9526 0.9548 0.9550 0.9536 0.9388 0.9862 0.9928 0.9418 0.9672 0.9764
len 0.2151 0.2419 0.2463 0.2232 2.8727 2.8727 3.6766 2.4795 2.4795 2.7066

N,VS 0.9622 0.9680 1.0000 1.0000 0.9994 0.9992 0.9998 0.9624 0.9672 0.9756
len 0.2146 0.2309 0.1550 0.1029 4.3233 4.3233 4.5433 2.4985 2.4985 2.6085

N,MIX 0.9570 0.9660 1.0000 1.0000 0.9998 0.9994 0.9998 0.9538 0.9558 0.9616
len 0.2045 0.2174 0.1283 0.0877 4.6013 4.6013 4.7932 2.4978 2.4978 2.5728

t,full 0.9548 0.9608 0.9560 0.9602 0.9454 0.9862 0.9926 0.9448 0.9722 0.9790
len 0.2147 0.2427 0.2466 0.2234 2.8750 2.8750 3.6609 2.4757 2.4757 2.7010

t,VS 0.9612 0.9690 1.0000 1.0000 0.9988 0.9988 0.9994 0.9646 0.9708 0.9750
len 0.2138 0.2312 0.1538 0.1018 4.3133 4.3133 4.5338 2.4952 2.4952 2.6009

t,MIX 0.9622 0.9658 1.0000 1.0000 0.9992 0.9992 0.9998 0.9614 0.9620 0.9670
len 0.2038 0.2170 0.1270 0.0867 4.5911 4.5911 4.7824 2.4969 2.4969 2.5735

U,full 0.9484 0.9536 0.9548 0.9550 0.9232 0.9818 0.9898 0.9350 0.9612 0.9728
len 0.2143 0.2424 0.2465 0.2232 2.8778 2.8778 3.6696 2.4766 2.4766 2.7053

U,VS 0.9540 0.9684 1.0000 1.0000 0.9988 0.9988 0.9992 0.9536 0.9604 0.9684
len 0.2138 0.2318 0.1561 0.1041 4.2986 4.2986 4.5203 2.4946 2.4946 2.6027

U,MIX 0.9550 0.9650 1.0000 1.0000 0.9996 0.9994 0.9996 0.9524 0.9500 0.9588
len 0.2039 0.2179 0.1300 0.0886 4.5785 4.5785 4.7709 2.4969 2.4969 2.5748

E,full 0.9536 0.9550 0.9510 0.9548 0.9416 0.9892 0.9922 0.9444 0.9694 0.9792
len 0.2148 0.2423 0.2462 0.2232 2.8717 2.8717 3.6732 2.4759 2.4759 2.7095

E,VS 0.9638 0.9706 1.0000 1.0000 0.9994 0.9994 0.9996 0.9640 0.9664 0.9730
len 0.2143 0.2311 0.1549 0.1026 4.3259 4.3259 4.5460 2.4954 2.4954 2.6045

E,MIX 0.9600 0.9666 1.0000 1.0000 1.0000 0.9996 1.0000 0.9606 0.9590 0.9666
len 0.2038 0.2168 0.1281 0.0881 4.6094 4.6094 4.8001 2.4942 2.4942 2.5688
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Table 8.16. MA(q) Model Selection, n=400,tstype=2,BB=100, qmax=5, btype=2
e θ1 θ2 θqmax−1 θqmax pr0 hyb0 br0 pr1 hyb1 br1

N,full 0.9488 0.9534 0.9518 0.9518 0.9310 0.9822 0.9898 0.9318 0.9604 0.9726
len 0.2149 0.2421 0.2460 0.2226 2.8762 2.8762 3.6775 2.4779 2.4779 2.7089

N,VS 0.9550 0.9614 1.0000 1.0000 0.9988 0.9984 0.9992 0.9504 0.9566 0.9664
len 0.2146 0.2307 0.1549 0.1030 4.3214 4.3214 4.5400 2.4989 2.4989 2.6063

N,MIX 0.9524 0.9614 1.0000 1.0000 0.9994 0.9992 0.9998 0.9476 0.9500 0.9588
len 0.2040 0.2172 0.1287 0.0877 4.5978 4.5978 4.7907 2.4964 2.4964 2.5722

t,full 0.9518 0.9556 0.9580 0.9558 0.9392 0.9866 0.9922 0.9402 0.9624 0.9732
len 0.2144 0.2416 0.2459 0.2224 2.8808 2.8808 3.6508 2.4824 2.4824 2.7037

t,VS 0.9598 0.9660 1.0000 1.0000 0.9990 0.9990 0.9996 0.9560 0.9640 0.9700
len 0.2137 0.2301 0.1535 0.1020 4.3284 4.3284 4.5457 2.5020 2.5020 2.6072

t,MIX 0.9574 0.9606 1.0000 1.0000 0.9998 0.9994 1.0000 0.9542 0.9544 0.9618
len 0.2030 0.2160 0.1271 0.0869 4.6006 4.6006 4.7908 2.4954 2.4954 2.5711

U,full 0.9508 0.9570 0.9534 0.9424 0.9378 0.9868 0.9924 0.9434 0.9666 0.9776
len 0.2149 0.2425 0.2463 0.2230 2.8735 2.8735 3.6806 2.4793 2.4793 2.7110

U,VS 0.9558 0.9712 1.0000 1.0000 0.9996 0.9994 0.9998 0.9608 0.9672 0.9724
len 0.2147 0.2318 0.1554 0.1042 4.3270 4.3270 4.5486 2.5037 2.5037 2.6110

U,MIX 0.9578 0.9648 1.0000 1.0000 0.9998 0.9996 0.9998 0.9566 0.9546 0.9620
len 0.2042 0.2172 0.1288 0.0887 4.5980 4.5980 4.7890 2.4950 2.4950 2.5705

E,full 0.9592 0.9524 0.9568 0.9544 0.9354 0.9852 0.9926 0.9402 0.9642 0.9748
len 0.2128 0.2411 0.2453 0.2217 2.8778 2.8778 3.6727 2.4790 2.4790 2.7010

E,VS 0.9674 0.9636 1.0000 1.0000 0.9996 0.9996 0.9998 0.9566 0.9624 0.9690
len 0.2129 0.22940 0.1529 0.1019 4.3291 4.3291 4.5502 2.4972 2.4972 2.6035

E,MIX 0.9620 0.9600 1.0000 1.0000 1.0000 0.9998 1.0000 0.9492 0.9554 0.9620
len 0.2039 0.2153 0.1261 0.0870 4.5984 4.5984 4.7908 2.4964 2.4964 2.5685
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Table 8.17. ARMA(p,q) Model Selection, n=100,tstype=1,BB=100, pmax=3,qmax=3
e ϕ1 ϕ2 θ1 θ2 pr0 hyb0 br0 pr1 hyb1 br1

N,full 1.0000 0.9960 0.9987 0.9710 0.9446 0.9380 0.9690 0.9750 0.8930 0.9850
len 1.7815 1.7972 1.8944 1.5646 2.6425 2.6425 3.0200 3.6293 3.6293 4.1632

N,VS 0.9984 0.9880 0.9990 0.9996 0.9940 0.9370 0.9970 0.9700 0.9360 0.9740
len 1.7041 1.5181 1.8711 1.2561 2.9957 2.9957 3.3141 3.5298 3.5298 3.9126

N,MIX 1.0000 0.9954 1.0000 1.0000 0.9996 0.9400 0.9980 0.9640 0.9230 0.9684
len 1.670 1.3870 1.8374 1.2145 3.0949 3.0949 3.4249 3.5820 3.5820 4.0066

t,full 0.9990 0.9970 0.9980 0.9720 0.9470 0.9370 0.9690 0.9780 0.9030 0.9880
len 1.7409 1.7680 1.8459 1.4605 2.6431 2.6431 2.9968 3.6073 3.6073 4.1112

t,VS 1.0000 0.9910 0.9990 0.9990 0.9920 0.9500 0.9800 0.9750 0.9440 0.9790
len 1.6468 1.5045 1.7933 1.2020 3.0119 3.0119 3.3208 3.5367 3.5367 3.8934

t,MIX 1.0000 0.9960 1.0000 0.9990 0.9940 0.9530 0.9950 0.9710 0.9340 0.9710
len 1.6167 1.3712 1.7657 1.1535 3.1006 3.1006 3.4084 3.5951 3.5951 3.9902

U,full 1.0000 0.9970 0.9990 0.9720 0.9390 0.9300 0.9690 0.9720 0.8834 0.9820
len 1.7525 1.7836 1.8674 1.5279 2.6469 2.6469 3.0434 3.6338 3.6338 4.1503

U,VS 0.9990 0.9890 0.9980 0.9990 0.9920 0.9370 0.9920 0.9640 0.9302 0.9664
len 1.6953 1.5371 1.8588 1.2459 2.9955 2.9955 3.3181 3.5468 3.5468 3.9228

U,MIX 1.0000 0.9960 0.9990 1.0000 0.9950 0.9410 0.9960 0.9630 0.9200 0.9640
len 1.6517 1.3937 1.8284 1.2077 3.0910 3.0910 3.4208 3.6057 3.6057 4.0249

E,full 0.9990 0.9980 0.9980 0.9770 0.9530 0.9414 0.9720 0.9764 0.9004 0.9840
len 1.7786 1.8009 1.8947 1.5615 2.6464 2.6464 3.0157 3.6401 3.6401 4.1597

E,VS 0.9990 0.9910 0.9980 1.0000 0.9960 0.9450 0.9960 0.9760 0.9410 0.9750
len 1.7005 1.5247 1.8655 1.2601 3.0076 3.0076 3.3226 3.5313 3.5313 3.9129

E,MIX 0.9990 0.9980 0.9990 0.9990 0.9980 0.9510 0.9980 0.9700 0.9330 0.9700
len 1.6757 1.3942 1.8468 1.2200 3.1133 3.1133 3.4248 3.5935 3.5935 4.0066
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CHAPTER 9

REAL DATA EXAMPLES

Common examples of random walk are stock prices. Consider the daily closing prices of ma-

jor European stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC, and UK FTSE.

The data are sampled in business time, i.e., weekends and holidays are omitted. The EuStock-

Markets dataset is a multivariate time series with 1860 observations on 4 variables. If we consider

DAX the second indice of EuStockMarkets, the random walk looks good up to 1450. Since we

want our errors to be scattered around y=0 need to consider the DAX data upto 1450 only, see

below for the plot of the errors. The prediction interval for 1451st from the past 1 to 1450 is also

given below.

Figure 9.1. plot of the errors for the rw dataset
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Figure 9.2. PI plot of rw dataset

The presidents and LakeHuron datasets in R can be used for Prediction Interval Illustrations.

After careful analysis of model fitting: model specification, parameter estimation and model diag-

nostics for both data sets, it can be shown that presidents can be best fitted with AR(1) model and

LakeHuron dataset can be best fitted with AR(2)model, below are ACF and PACF plots for these

two datasets. The prediction interval obtained using locpi ignores the time series structure of the

datasets, these are given by parallel lines. These intervals are wider than the ones produced using

locpi2 which considers the time series structure of the datasets. To get the shorth of the residuals,

missing values were omitted for the presidents dataset. In both cases the prediction intervals pro-

duced using locpi2 were shorter than the ones produced using locpi. Both datasets were divided

into training data and test data, for presidents dataset I took the first 119 observations(1 left out) as

my training data and for the LakeHuron the first 96 observations(2 left out).
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Figure 9.3. ACF plot of presidents dataset

Figure 9.4. PACF plot of presidents dataset
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Figure 9.5. ACF plot of LakeHuron dataset

Figure 9.6. PACF plot of LakeHuron dataset
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The function predict in R gives Ŷ and se where the Chebychev Prediction Interval is given by

[Ŷ − 1.96se, Ŷ + 1.96se] for the 1 step ahead. Below are R outputs obtained using predict function

for the two datasets.

For LakeHuron dataset

> predict(arima(dat, order = c(2,0,0)), n.ahead = 1)

#dat is the training data for the LakeHuron dataset

$pred

Time Series:

Start = 97

End = 97

Frequency = 1

[1] 579.1357

$se

Time Series:

Start = 97

End = 97

Frequency = 1

[1] 0.6948871

For presidents dataset

> predict(arima(Tdata, order = c(1,0,0)), n.ahead = 1)

$pred

Time Series:

Start = 120

End = 120

Frequency = 1
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[1] 29.92367

$se

Time Series:

Start = 120

End = 120

Frequency = 1

[1] 9.272505

The following two plots show the prediction intervals produced using locpi and locpi2 for

both datasets. The function Points in R is used to plot the prediction interval for the one that

considers the time series structure and the function abline is used to plot the parallel lines.

Figure 9.7. PIs for LakeHuron dataset
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Figure 9.8. PIs for presidents dataset

R output for getting both prediction intervals for the LakeHuron dataset is given below, the

codes for the presidents dataset are similar to this one.

> dat=LakeHuron[1:96]

> outAR2t=arima(dat,c(2,0,0))

> outAR2t

Call:

arima(x = dat, order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept

1.0477 -0.2570 579.0051

s.e. 0.0992 0.1017 0.3310
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$sigmaˆ2 estimated as 0.4829: log likelihood = -101.94, aic = 211.87

> locpi2(outAR2t$resid,k=2)

$LPI

[1] -1.227476

$UPI

[1] 1.65287

> tauhat=579.0051*(1-1.0477+0.2570)

> tauhat

[1] 121.1858

> yhat=121.1858+(1.0477*LakeHuron[96])-(0.2570*LakeHuron[95])

> yhat

[1] 579.1357

> locpi(dat)

$LPI

[1] 576.3737

$UPI

[1] 581.8533

> lnL=yhat-1.227476

> lnL

[1] 577.9082

> unL=yhat+1.65287

> unL
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[1] 580.7886

> LakeHuron[97]

[1] 579.89

> plot.ts(LakeHuron)

> abline(576.3737,0)

> abline( 581.8533,0)

> points(1972,577.9082)

> points(1972,580.7886)

It should be noted that the Ŷ obtained using the predict function in R is more or less the same

as the one obtained after fitting our data and substituting the estimates for the parameters in the

general model as shown above.
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CHAPTER 10

DISCUSSION

Although there is a massive literature for variable selection and model selection, this paper

may give the first large sample theory for ARMA time series model selection estimators. More

theory is needed for the assumption P(S ⊆ Imin) → 1 as n → ∞ and for the regularity conditions

for the asymptotic normality of the GMLE for MA and ARMA time series. More bootstrap theory

for Equation (7.1) is also needed.

A competitor for model selection is data splitting. Perform model selection on Y1, ...,Ynh

to obtain model I. Then fit model I on the remaining cases Ynh+1, ...,Yn and perform inference.

Inference is correct provided S ⊆ I. See Hurvich and Tsai (1989).

Bhansali (1981) discusses the effects of estimating the time series order, and there is a large

literature for bootstrapping time series. See, for example, Bühlmann (1994, 1997, 2002), Härdle,

Horowitz, and Kreiss (2003), Kreiss and Lahiri (2012), Kreiss, Paparoditis, and Politis (2011), and

Lahiri (2003).

The correction factors for the prediction intervals of this paper compensate for estimation of

the model parameters and model selection for moderate n. Hyndman and Athanasopoulos (2018,

last paragraph of
∮

8.8) note that ARIMA-based prediction intervals tend to be too narrow, so actual

coverage is less than the nominal coverage. See Bhansali (1981) for the effects of estimating the

order of the time series model.

There is a large literature on time series PIs, especially for AR(p) models, and the bootstrap

is often used. See Alonso, Peńa, and Romo (2002, 2003), Brockwell and Davis (2016), Clements

and Kim (2007), deLuna (2000), Hyndman and Athanasopoulos (2018), Kabaila and He (2007),

Lu and Wang (2020), Pan and Politis (2016a), Pascual, Romo, and Ruiz (2001), Thombs and

Schucany (1990), Vidoni (2009), and Wolf and Wunderli (2015) for references. Some papers on

the shorth include Chen and Shao (1999), Grübel (1988), and Einmahl and Mason (1992). See

Hong, Kuffner, and Martin (2018) for why classical PIs after AIC variable selection do not work.
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Some prediction intervals for stochastic processes include Pan and Politis (2016b), Vidoni

(2004), and Vit (1973). Mykland (2003) described how to convert prediction regions into invest-

ment strategies. Pankratz (1983, p. 106) notes that the random walk model has been found to be a

good model for many stock price time series.

Simulations were done in R. See R Core Team (2020). The collection of R functions tspack,

available from (http://parker.ad.siu.edu/Olive/tspack.txt), has some useful functions for the infer-

ence. The tspack function msarsim simulates AR model selection using the Yule Walker equations

with AIC and the R function ar.yw. The tspack function msmasim simulates MA model selection

using the GMLE with AICC using the R function auto.arima from the Hyndman and Khandakar

(2008) forecast package. Also see Hyndman and Athanasopoulos (2018).

The aicmatrix is also somewhat useful for GARCH models. The aicmatrix is made in one of

the R time series help files. Using II and submodels helps to quickly find a small number of good

models to examine. The function aicmat makes the aicmatrix for ARIMA(p, d, q) models with d

fixed while the function saics makes the aicmatrix for ARIMA(p, d, q) × (P,D,Q)s models with

d, P,D,Q and s fixed. The function pimasim was used to simulate the prediction intervals. The

tspack function pitsvssim simulates PI (3.6) after model selection using the GMLE with AICC

using the R function auto.arima from the Hyndman and Khandakar (2008) forecast package.

Also see Hyndman and Athanasopoulos (2018). The tspack function rwpisim was used for the

random walk simulation.
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