
Some Math 580 Statistical Inference qualifying exam problems, often with solutions.
Most solutions are from David Olive, but a few solutions were contributed by Bhaskar
Bhattacharya, Abdel Mugdadi, and Yaser Samadi.

2.68∗. (Aug. 2000 Qual): The number of defects per yard, Y of a certain fabric is
known to have a Poisson distribution with parameter λ. However, λ is a random variable
with pdf

f(λ) = e−λI(λ > 0).

a) Find E(Y).
b) Find Var(Y).

Solution. Note that the pdf for λ is the EXP(1) pdf, so λ ∼ EXP(1).
a) E(Y ) = E[E(Y |λ)] = E(λ) = 1.
b) V (Y ) = E[V (Y |λ)] + V [E(Y |λ)] = E(λ) + V (λ) = 1 + 12 = 2.

4.27. (Jan. 2003 Qual) Let X1 and X2 be iid Poisson (λ) random variables. Show
that T = X1 + 2X2 is not a sufficient statistic for λ. (Hint: the Factorization Theorem
uses the word iff. Alternatively, find a minimal sufficient statistic S and show that S is
not a function of T .)

See 4.38 solution.

4.28. (Aug. 2002 Qual): Suppose that X1, ..., Xn are iid N(σ, σ) where σ > 0.
a) Find a minimal sufficient statistic for σ.
b) Show that (X,S2) is a sufficient statistic but is not a complete sufficient statistic

for σ.

4.31. (Aug. 2004 Qual): Let X1, ..., Xn be iid beta(θ, θ). (Hence δ = ν = θ.)
a) Find a minimal sufficient statistic for θ.
b) Is the statistic found in a) complete? (prove or disprove)

Solution.

f(x) =
Γ(2θ)

Γ(θ)Γ(θ)
xθ−1(1 − x)θ−1 =

Γ(2θ)

Γ(θ)Γ(θ)
exp[(θ− 1)(log(x) + log(1 − x))],

for 0 < x < 1, a 1 parameter exponential family. Hence
∑n

i=1(log(Xi) + log(1 −Xi)) is
a complete minimal sufficient statistic.

4.32. (Sept. 2005 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables with probability mass function

f(x) = P (X = x) =
1

xνζ(ν)

where ν > 1 and x = 1, 2, 3, .... Here the zeta function

ζ(ν) =

∞∑

x=1

1

xν

for ν > 1.
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a) Find a minimal sufficient statistic for ν.

b) Is the statistic found in a) complete? (prove or disprove)

c) Give an example of a sufficient statistic that is strictly not minimal.

Solution. a) and b)

f(x) = I{1,2,...}(x)
1

ζ(ν)
exp[−ν log(x)]

is a 1 parameter regular exponential family with Ω = (−∞,−1). Hence
∑n

i=1 log(Xi) is
a complete minimal sufficient statistic.

c) By the Factorization Theorem, W = (X1, ..., Xn) is sufficient, but W is not mini-
mal since W is not a function of

∑n
i=1 log(Xi).

4.36. (Aug. 2009 Qual): Let X1, ..., Xn be iid uniform(θ, θ + 1) random variables
where θ is real.

a) Find a minimal sufficient statistic for θ.

b) Show whether the minimal sufficient statistic is complete or not.

Solution. Now
fX(x) = I(θ < x < θ + 1)

and
f(x)

f(y)
=
I(θ < x(1) ≤ x(n) < θ + 1)

I(θ < y(1) ≤ y(n) < θ + 1)

which is constant for all real θ iff (x(1), x(n)) = (y(1), y(n)). Hence T = (X(1), X(n)) is a
minimal sufficient statistic by the LSM theorem. To show that T is not complete, first
find E(T ). Now

FX(t) =

∫ t

θ

dx = t− θ

for θ < t < θ + 1. Hence

fX(n)
(t) = n[FX(t)]n−1fx(t) = n(t− θ)n−1

for θ < t < θ + 1 and

Eθ(X(n)) =

∫
tfX(n)

(t)dt =

∫ θ+1

θ

tn(t− θ)n−1dt.

Use u–substitution with u = t − θ, t = u + θ and dt = du. Hence t = θ implies u = 0,
and t = θ + 1 implies u = 1. Thus

Eθ(X(n)) =

∫ 1

0

n(u+ θ)un−1du =

∫ 1

0

nundu+

∫ 1

0

nθun−1du =

n
un+1

n+ 1

∣∣∣∣
1

0

+ θ n
un

n

∣∣∣∣
1

0

=
n

n+ 1
+
nθ

n
= θ +

n

n+ 1
.
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Now
fX(1)

(t) = n[1 − FX(t)]n−1fx(t) = n(1 − t+ θ)n−1

for θ < t < θ + 1 and thus

Eθ(X(1)) =

∫ θ+1

θ

tn(1 − t+ θ)n−1dt.

Use u–substitution with u = (1 − t + θ) and t = 1 − u + θ and du = −dt. Hence t = θ
implies u = 1, and t = θ + 1 implies u = 0. Thus

Eθ(X(1)) = −
∫ 0

1

n(1 − u+ θ)un−1du = n(1 + θ)

∫ 1

0

un−1du − n

∫ 1

0

undu =

n(1 + θ)
un

n

∣∣∣∣
1

0

− n
un+1

n+ 1

∣∣∣∣
1

0

= (θ + 1)
n

n
− n

n+ 1
= θ +

1

n + 1
.

To show that T is not complete try showing Eθ(aX(1) + bX(n) + c) = 0 for some
constants a, b and c. Note that a = −1, b = 1 and c = −n−1

n+1
works. Hence

Eθ(−X(1) +X(n) −
n − 1

n + 1
) = 0

for all real θ but

Pθ(g(T ) = 0) = Pθ(−X(1) +X(n) −
n− 1

n+ 1
= 0) = 0 < 1

for all real θ. Hence T is not complete.

4.37. (Sept. 2010 Qual): Let Y1, ..., Yn be iid from a distribution with pdf

f(y) = 2 τ y e−y2

(1 − e−y2

)τ−1

for y > 0 and f(y) = 0 for y ≤ 0 where τ > 0.
a) Find a minimal sufficient statistic for τ .
b) Is the statistic found in a) complete? Prove or disprove.
Solution. Note that

f(y) = I(y > 0) 2y e−y2

τ exp[(1 − τ )(− log(1 − e−y2

))]

is a 1 parameter exponential family with minimal and complete sufficient statistic
−∑n

i=1 log(1 − e−Y 2
i ).

4.38. (Aug. 2016 qual) a) Let X1, ..., Xn be independent identically distributed
gamma(α, β), and, independently, Y1, ..., Ym independent identically distributed gamma(α, kβ)
where k is known, and α, β > 0 are parameters. Find a two dimensional sufficient statistic
for (α, β).

b) Let X1, X2 be independent identically distributed Poisson(θ). Show
T = X1 + 2X2 is not sufficient for θ.
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Solution: a) f(x,y) =

(
1

Γ(α)βα

)n

(
n∏

i=1

xi)
α−1 exp[−

n∑

i=1

xi/β]

(
1

Γ(α)(kβ)α

)m

(
m∏

j=1

yj)
α−1 exp[−

m∑

j=1

yj/(kβ)]

=

(
1

Γ(α)βα

)n(
1

Γ(α)(kβ)α

)m
[
(

n∏

i=1

xi)(
m∏

j=1

yj)

]α−1

exp

[
−
(∑n

i=1 xi +
∑m

j=1 yj/k

β

)]
.

By Factorization, (
(

n∏

i=1

Xi)(

m∏

j=1

Yj),

n∑

i=1

Xi +

m∑

j=1

Yj/k

)
or

(
n∑

i=1

log(Xi) +
m∑

j=1

log(Yj),
n∑

i=1

Xi +
m∑

j=1

Yj/k

)

is sufficient.
b) The minimal sufficient statistic X1 + X2 is not a function of T , thus T is not

sufficient. Alternatively, the Factorization Theorem says T is sufficient iff f(x|θ) =
g(T (x)|θ)h(x) where h(x) does not depend on θ and g depends on x only through T (x).
No such factorization exists.

4.39. (Feb. 2023 qual): Let W1, ...,Wn be iid from a Weibull(φ, λ) distribution where
if W ∼ Weibull(φ, λ), then the pdf of W is

f(w) =
φ

λ
wφ−1e−

wφ

λ

where λ, w, and φ are all positive. So f(w) = 0 for w ≤ 0.
a) If φ is known, find a complete sufficient statistic for λ.
b) If both φ and λ are unknown, find a minimal sufficient statistic.

Solution. a) If φ is known, then

f(w) = wφ−1I(w ≥ 0)
φ

λ
exp

[−1

λ
wφ

]

is a one parameter regular exponential family in λ. Hence T (W ) =
∑n

i=1W
φ
i is complete.

b)
∏n

i=1 f(yi) =
∏n

i=1
φ
λ
yφ−1

i e−y
φ
i /λI(yi > 0) =

(
φ

λ

)n n∏

i=1

yφ−1
i exp

(
−1

λ

n∑

i=1

yφ
i

)
n∏

i=1

I(yi > 0).

Since φ is unknown, by the Factorization theorem, a permutation of the data is the
lowest dimensional sufficient statistic, including the order statistics. Let Zn = zn be
an arbitrary permuatation of the data Y n = yn. Let t1(zn) be a one to one and onto
function so that t−1

1 (t1(zn)) = zn. Let to(zn) = (y(1), ..., y(n)) be the observed order
statistics and to(Zn) = (Y(1), ..., Y(n)) be the order statistics. Then any observed sufficient
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statistic has the form (Rn(yn), t1(zn)) where the possible vector valued statistic Rn(yn)
is redundant and so not needed. Here Rn(yn) comes from

∏n
i=1 yi. Then the order

statistics to(zn) = t(Rn(yn), t1(zn)) = to(t
−1
1 (t1(zn)) are a function of any of the sufficient

statistics. Hence the order statistics are minimal sufficient.
(Using LSM is much harder for this distribution.

So Rx,y(φ, λ) =
f(x|φ, λ)
f(y|φ, λ) =

∏n
i=1 I(xi > 0)

∏n
i=1 x

φ−1
i∏n

i=1 I(yi > 0)
∏n

i=1 y
φ−1
i

exp

(
1

λ
(

n∑

i=1

xφ
i −

n∑

i=1

yφ
i )

)
=

∏n
i=1 I(xi > 0)∏n
i=1 I(yi > 0)

n∏

i=1

(
x(i)

y(i)

)φ−1

exp

(
1

λ
(

n∑

i=1

xφ
(i) −

n∑

i=1

yφ
(i))

)
= cx,y

∀φ > 0, λ > 0 iff
∑n

i=1 x
φ
(i) −

∑n
i=1 y

φ
(i) = 0 as λ varies and

n∏

i=1

(
x(i)

y(i)

)φ−1

is a constant as φ varies. When φ is unknown,
∑n

i=1 x
φ
(i) is not a statistic, but if the

order statistics are equal, then Rx,y(φ, λ) is constant. Now suppose the order statistics
are not equal. If n = 1, then Rx,y(φ, λ) will not be constant. Hence assume that for
n = k, Rx,y(φ, λ) is constant iff the order statistics are equal. Now let n = k + 1. Let
x′

k and y′
k correspond to the first k order statistics. Then x′k+1 = x(n) and y′k+1 = y(n).

Since x′
k and y′

k are in the support (each entry is positive), by the induction hypothesis,
x(1) = y(1), ..., x(k) = y(k) or Rx′

k,y′

k
is not constant. For Rx,y to be constant, need

a =
k∏

i=1

(
x(i)

y(i)

)φ−1 (x(n)

y(n)

)φ−1

= 1

as φ varies and b =
∑k

i=1 x
φ
(i) −

∑k
i=1 y

φ
(i) + xφ

(n) − yφ
(n) = 0. Thus

x(n)

y(n)

=
k∏

i=1

(
y(i)

x(i)

)

for a = 1. For b = 0, need

k∑

i=1

xφ
(i) −

k∑

i=1

yφ
(i) +

[
y(n)

k∏

i=1

(
y(i)

x(i)

)
− y(n)

]φ

=
k∑

i=1

xφ
(i) −

k∑

i=1

yφ
(i) + dφ = 0

as φ varies, which is impossible unless d = 0 or d = 1. The case d = 1 requires∑k
i=1 x

φ
(i)−

∑k
i=1 y

φ
(i) = −1 for all φ which is impossible. Then by the induction hypothesis,

k∑

i=1

xφ
(i) −

k∑

i=1

yφ
(i) = 0
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for b = 0. Thus x(i) = y(i) for i = 1, ..., n = k+1. Hence by induction the order statistics
need to be equal for Rx,y to be constant. Thus the order statistics are minimal sufficient
by LSM.)

4.40. (Aug. 2024 Qual): Suppose X1, . . . , Xn is a random sample from a population
with pdf

f(x|θ) =
e−(x−θ)

(1 + e−(x−θ))2
,

where x, θ ∈ R. Find a minimal sufficient statistic for θ.

Solution:

f(x)

f(y)
=

e−
P

(xi−θ)

∏
[1 + e−(xi−θ)]2

∏
[1 + e−(yi−θ)]2

e−
P

(yi−θ)
=

∏
[1 + e−(y(i)−θ)]2∏
[1 + e−(x(i)−θ)]2

e−
P

xienθ

e−
P

yienθ

= ad ≡ c for all θ iff a =
n∏

i=1

[
1 + e−(y(i)−θ)

1 + e−(x(i)−θ)

]2

≡ c′

for all θ iff the order statistics are equal. So the order statistics X(1), ..., X(n) are minimal
sufficient by LSM.

5.2. (1989 Univ. of Minn. and Aug. 2000 SIU Qual): Let (X, Y ) have the bivariate
density

f(x, y) =
1

2π
exp(

−1

2
[(x− ρ cos θ)2 + (y − ρ sin θ)2]).

Suppose that there are n independent pairs of observations (Xi, Yi) from the above density
and that ρ is known. Assume that 0 ≤ θ ≤ 2π. Find a candidate for the maximum
likelihood estimator θ̂ by differentiating the log likelihood log(L(θ)). (Do not show that
the candidate is the MLE, it is difficult to tell whether the candidate, 0 or 2π is the MLE
without the actual data.)

Solution. The likelihood function L(θ) =

1

(2π)n
exp(

−1

2
[
∑

(xi − ρ cos θ)2 +
∑

(yi − ρ sin θ)2]) =

1

(2π)n
exp(

−1

2
[
∑

x2
i − 2ρ cos θ

∑
xi + ρ2 cos2 θ +

∑
y2

i − 2ρ sin θ
∑

yi + ρ2 sin2 θ])

=
1

(2π)n
exp(

−1

2
[
∑

x2
i +

∑
y2

i + ρ2]) exp(ρ cos θ
∑

xi + ρ sin θ
∑

yi).

Hence the log likelihood log L(θ)

= c+ ρ cos θ
∑

xi + ρ sin θ
∑

yi.

The derivative with respect to θ is

−ρ sin θ
∑

xi + ρ cos θ
∑

yi.
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Setting this derivative to zero gives

ρ
∑

yi cos θ = ρ
∑

xi sin θ

or ∑
yi∑
xi

= tan θ.

Thus

θ̂ = tan−1(

∑
yi∑
xi

).

Now the boundary points are θ = 0 and θ = 2π. Hence θ̂MLE equals 0, 2π, or θ̂ depending
on which value maximizes the likelihood.

5.23. (Jan. 2001 Qual): Let X1, ..., Xn be a random sample from a normal distribu-
tion with known mean µ and unknown variance τ.

a) Find the maximum likelihood estimator of the variance τ.

b) Find the maximum likelihood estimator of the standard deviation
√
τ . Explain

how the MLE was obtained.

Solution. a) The log likelihood is logL(τ ) = −n
2

log(2πτ ) − 1
2τ

∑n
i=1(Xi − µ)2. The

derivative of the log likelihood is equal to − n
2τ

+ 1
2τ2

∑n
i=1(Xi−µ)2. Setting the derivative

equal to 0 and solving for τ gives the MLE τ̂ =
Pn

i=1(Xi−µ)2

n
. Now the likelihood is only

defined for τ > 0. As τ goes to 0 or ∞, logL(τ ) tends to −∞. Since there is only one
critical point, τ̂ is the MLE.

b) By the invariance principle, the MLE is
√Pn

i=1(Xi−µ)2

n
.

5.28. (Aug. 2002 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables from a half normal HN(µ, σ2) distribution with pdf

f(x) =
2√

2π σ
exp (

−(x− µ)2

2σ2
)

where σ > 0 and x > µ and µ is real. Assume that µ is known.

a) Find the maximum likelihood estimator of σ2.

b) What is the maximum likelihood estimator of σ? Explain.

Solution. This problem is nearly the same as finding the MLE of σ2 when the data
are iid N(µ, σ2) when µ is known. See Problem 5.23 and Section 10.23. The MLE in a)
is
∑n

i=1(Xi − µ)2/n. For b) use the invariance principle and take the square root of the
answer in a).

5.29. (Jan. 2003 Qual): LetX1, ..., Xn be independent identically distributed random
variables from a lognormal (µ, σ2) distribution with pdf

f(x) =
1

x
√

2πσ2
exp (

−(log(x)− µ)2

2σ2
)
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where σ > 0 and x > 0 and µ is real. Assume that σ is known.

a) Find the maximum likelihood estimator of µ.

b) What is the maximum likelihood estimator of µ3? Explain.

Solution. a)

µ̂ =

∑
log(Xi)

n

To see this note that

L(µ) = (
∏ 1

xi

√
2πσ2

) exp(
−∑(log(xi) − µ)2

2σ2
.

So

log(L(µ)) = log(c) −
∑

(log(xi) − µ)2

2σ2

and the derivative of the log likelihood wrt µ is

∑
2(log(xi) − µ)

2σ2
.

Setting this quantity equal to 0 gives nµ =
∑

log(xi) and the solution µ̂ is unique. The
second derivative is −n/σ2 < 0, so µ̂ is indeed the global maximum.

b) (∑
log(Xi)

n

)3

by invariance.
5.30. (Aug. 2004 Qual): Let X be a single observation from a normal distribution

with mean θ and with variance θ2, where θ > 0. Find the maximum likelihood estimator
of θ2.

Solution.

L(θ) =
1

θ
√

2π
e−(x−θ)2/2θ2

ln(L(θ)) = −ln(θ) − ln(
√

2π) − (x− θ)2/2θ2

dln(L(θ))

dθ
=

−1

θ
+
x− θ

θ2
+

(x− θ)2

θ3

=
x2

θ3
− x

θ2
− 1

θ
set
= 0

by solving for θ,

θ =
x

2
∗ (−1 +

√
5),

and
θ =

x

2
∗ (−1 −

√
5).
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But, θ > 0. Thus, θ̂ = x
2
∗ (−1 +

√
5), when x > 0, and θ̂ = x

2
∗ (−1 −

√
5), when x < 0.

To check with the second derivative

d2ln(L(θ))

dθ2
= −2θ + x

θ3
+

3(θ2 + θx− x2)

θ4

=
θ2 + 2θx− 3x2

θ4

but the sign of the θ4 is always positive, thus the sign of the second derivative depends
on the sign of the numerator. Substitute θ̂ in the numerator and simplify, you get
x2

2
(−5 ±

√
5), which is always negative. Hence by the invariance principle, the MLE of

θ2 is θ̂2.

5.31. (Sept. 2005 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables with probability density function

f(x) =
σ1/λ

λ
exp

[
−(1 +

1

λ
) log(x)

]
I [x ≥ σ]

where x ≥ σ, σ > 0, and λ > 0. The indicator function I [x ≥ σ] = 1 if x ≥ σ and
0, otherwise. Find the maximum likelihood estimator (MLE) (σ̂, λ̂) of (σ, λ) with the
following steps.

a) Explain why σ̂ = X(1) = min(X1, ..., Xn) is the MLE of σ regardless of the value
of λ > 0.

b) Find the MLE λ̂ of λ if σ = σ̂ (that is, act as if σ = σ̂ is known).

Solution. a) For any λ > 0, the likelihood function

L(σ, λ) = σn/λ I [x(1) ≥ σ]
1

λn
exp

[
−(1 +

1

λ
)

n∑

i=1

log(xi)

]

is maximized by making σ as large as possible. Hence σ̂ = X(1).

b)

L(σ̂, λ) = σ̂n/λ I [x(1) ≥ σ̂]
1

λn
exp

[
−(1 +

1

λ
)

n∑

i=1

log(xi)

]
.

Hence logL(σ̂, λ) =

n

λ
log(σ̂) − n log(λ) − (1 +

1

λ
)

n∑

i=1

log(xi).

Thus
d

dλ
logL(σ̂, λ) =

−n
λ2

log(σ̂) − n

λ
+

1

λ2

n∑

i=1

log(xi)
set
= 0,

or −n log(σ̂) +
∑n

i=1 log(xi) = nλ. So

λ̂ = − log(σ̂) +

∑n
i=1 log(xi)

n
=

∑n
i=1 log(xi/σ̂)

n
.
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Now
d2

dλ2
logL(σ̂, λ) =

2n

λ3
log(σ̂) +

n

λ2
− 2

λ3

n∑

i=1

log(xi)

∣∣∣∣∣
λ=λ̂

=
n

λ̂2
− 2

λ̂3

n∑

i=1

log(xi/σ̂) =
−n
λ̂2

< 0.

Hence (σ̂, λ̂) is the MLE of (σ, λ).

5.32. (Aug. 2003 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables with pdf

f(x) =
1

λ
exp

[
−(1 +

1

λ
) log(x)

]

where λ > 0 and x ≥ 1.

a) Find the maximum likelihood estimator of λ.

b) What is the maximum likelihood estimator of λ8 ? Explain.

Solution. a) the likelihood

L(λ) =
1

λn
exp

[
−(1 +

1

λ
)
∑

log(xi)

]
,

and the log likelihood

log(L(λ)) = −n log(λ) − (1 +
1

λ
)
∑

log(xi).

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

∑
log(xi)

set
= 0,

or
∑

log(xi) = nλ or

λ̂ =

∑
log(Xi)

n
.

Notice that
d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑
log(xi)

λ3

∣∣∣∣
λ=λ̂

=

n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence λ̂ is the MLE of λ.

b) By invariance, λ̂8 is the MLE of λ8.

5.33. (Jan. 2004 Qual): LetX1, ..., Xn be independent identically distributed random
variables with probability mass function

f(x) = e−2θ 1

x!
exp[log(2θ)x],
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for x = 0, 1, . . . , where θ > 0. Assume that at least one Xi > 0.

a) Find the maximum likelihood estimator of θ.

b) What is the maximum likelihood estimator of (θ)4 ? Explain.

Solution. a) The likelihood

L(θ) = c e−n2θ exp[log(2θ)
∑

xi],

and the log likelihood

log(L(θ)) = d− n2θ + log(2θ)
∑

xi.

Hence
d

dθ
log(L(θ)) = −2n+

2

2θ

∑
xi

set
= 0,

or
∑
xi = 2nθ, or

θ̂ = X/2.

Notice that
d2

dθ2
log(L(θ)) =

−
∑
xi

θ2
< 0

unless
∑
xi = 0.

b) (θ̂)4 = (X/2)4 by invariance.

5.34. (Jan. 2006 Qual): Let X1, ..., Xn be iid with one of two probability density
functions. If θ = 0, then

f(x|θ) =

{
1, 0 ≤ x ≤ 1
0, otherwise.

If θ = 1, then

f(x|θ) =

{
1

2
√

x
, 0 ≤ x ≤ 1

0, otherwise.

Find the maximum likelihood estimator of θ.

Solution. L(0|x) = 1 for 0 < xi < 1, and L(1|x) =
∏n

i=1
1

2
√

xi
for 0 < xi < 1. Thus

the MLE is 0 if 1 ≥
∏n

i=1
1

2
√

xi
and the MLE is 1 if 1 <

∏n
i=1

1
2
√

xi
.

Warning: Variants of the following question often appear on qualifying exams.

5.35. (Aug. 2006 Qual): Let Y1, ..., Yn denote a random sample from a N(aθ, θ)
population.

a) Find the MLE of θ when a = 1.

b) Find the MLE of θ when a is known but arbitrary.
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Solution. a) Notice that θ > 0 and

f(y) =
1√
2π

1√
θ

exp

(−(y − θ)2

2θ

)
.

Hence the likelihood

L(θ) = c
1

θn/2
exp

[−1

2θ

∑
(yi − θ)2

]

and the log likelihood

log(L(θ)) = d − n

2
log(θ) − 1

2θ

∑
(yi − θ)2 =

d − n

2
log(θ) − 1

2

n∑

i=1

(
y2

i

θ
− 2yiθ

θ
+

θ2

θ

)

= d − n

2
log(θ) − 1

2

∑n
i=1 y

2
i

θ
+

n∑

i=1

yi − 1

2
nθ.

Thus
d

dθ
log(L(θ)) =

−n
2

1

θ
+

1

2

n∑

i=1

y2
i

1

θ2
− n

2
set
= 0,

or
−n
2
θ2 − n

2
θ +

1

2

n∑

i=1

y2
i = 0,

or

nθ2 + nθ −
n∑

i=1

y2
i = 0. (1)

Now the quadratic formula states that for a 6= 0, the quadratic equation ay2 + by+ c = 0
has roots

−b±
√
b2 − 4ac

2a
.

Applying the quadratic formula to (1) gives

θ =
−n±

√
n2 + 4n

∑n
i=1 y

2
i

2n
.

Since θ > 0, a candidate for the MLE is

θ̂ =
−n+

√
n2 + 4n

∑n
i=1 Y

2
i

2n
=

−1 +
√

1 + 4 1
n

∑n
i=1 Y

2
i

2
.

Since θ̂ satisfies (1),

nθ̂ −
n∑

i=1

y2
i = −nθ̂2. (2)

12



Note that

d2

dθ2
log(L(θ)) =

n

2θ2
−
∑n

i=1 y
2
i

θ3
=

1

2θ3
[nθ− 2

n∑

i=1

y2
i ]

∣∣∣∣∣
θ=θ̂

=

1

2θ̂3
[nθ̂−

n∑

i=1

y2
i −

n∑

i=1

y2
i ] =

1

2θ̂3
[−nθ̂2 −

n∑

i=1

y2
i ] < 0

by (2). Since L(θ) is continuous with a unique root on θ > 0, θ̂ is the MLE.

5.37. (Aug. 2006 Qual): Let X1, ..., Xn be independent identically distributed (iid)
random variables with probability density function

f(x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ2

)

where x > 0 and λ > 0.
a) Find the maximum likelihood estimator (MLE) λ̂ of λ.

b) What is the MLE of λ2? Explain.

Solution. a) L(λ) = c 1
λn exp

( −1
2λ2

∑n
i=1(e

xi − 1)2
)
.

Thus

log(L(λ)) = d − n log(λ) − 1

2λ2

n∑

i=1

(exi − 1)2.

Hence
d log(L(λ))

dλ
=

−n
λ

+
1

λ3

∑
(exi − 1)2 set

= 0,

or nλ2 =
∑

(exi − 1)2, or

λ̂ =

√∑
(eXi − 1)2

n
.

Now
d2 log(L(λ))

dλ2
=

n

λ2
− 3

λ4

∑
(exi − 1)2

∣∣∣∣
λ=λ̂

=
n

λ̂2
− 3n

λ̂4
λ̂2 =

n

λ̂2
[1 − 3] < 0.

So λ̂ is the MLE.

5.38. (Jan. 2007 Qual): LetX1, ..., Xn be independent identically distributed random
variables from a distribution with pdf

f(x) =
2

λ
√

2π

1

x
exp

[−(log(x))2

2λ2

]

where λ > 0 where and 0 ≤ x ≤ 1.

a) Find the maximum likelihood estimator (MLE) of λ.
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b) Find the MLE of λ2.

Solution. a) The likelihood

L(λ) =
∏

f(xi) = c

(∏ 1

xi

)
1

λn
exp

[∑−(log xi)
2

2λ2

]
,

and the log likelihood

log(L(λ)) = d −
∑

log(xi) − n log(λ) −
∑

(log xi)
2

2λ2
.

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑
(log xi)

2

λ3

set
= 0,

or
∑

(log xi)
2 = nλ2, or

λ̂ =

√∑
(log xi)2

n
.

This solution is unique.
Notice that

d2

dλ2
log(L(λ)) =

n

λ2
− 3

∑
(log xi)

2

λ4

∣∣∣∣
λ=λ̂

=
n

λ̂2
− 3nλ̂2

λ̂4
=

−2n

λ̂2
< 0.

Hence

λ̂ =

√∑
(logXi)2

n

is the MLE of λ.
b)

λ̂2 =

∑
(logXi)

2

n

is the MLE of λ2 by invariance.

5.41. (Jan. 2009 Qual): Suppose that X has probability density function

fX(x) =
θ

x1+θ
, x ≥ 1

where θ > 0.
a) If U = X2, derive the probability density function fU(u) of U .
b) Find the method of moments estimator of θ.
c) Find the method of moments estimator of θ2.

5.42. (Jan. 2009 Qual): Suppose that the joint probability distribution function of
X1, ..., Xk is

f(x1, x2, ..., xk|θ) =
n!

(n− k)!θk
exp

(
−[(
∑k

i=1 xi) + (n− k)xk]

θ

)

14



where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk and θ > 0.

a) Find the maximum likelihood estimator (MLE) for θ.

b) What is the MLE for θ2? Explain briefly.

Solution. a) Let t = [(
∑k

i=1 xi) + (n − k)xk]. L(θ) = f(x|θ) and log(L(θ)) =
log(f(x|θ)) =

d− k log(θ) − t

θ
.

Hence
d

dθ
log(L(θ)) =

−k
θ

+
t

θ2

set
= 0.

Hence
kθ = t

or

θ̂ =
t

k
.

This is a unique solution and

d2

dθ2
log(L(θ)) =

k

θ2
− 2t

θ3

∣∣∣∣
θ=θ̂

=
k

θ̂2
− 2kθ̂

θ̂3
= − k

θ̂2
< 0.

Hence θ̂ = T/k is the MLE where T = [(
∑k

i=1Xi) + (n− k)Xk].

b) θ̂2 by the invariance principle.

5.43. (Jan. 2010 Qual): Let X1, ..., Xn be iid with pdf

f(x) =
cos(θ)

2 cosh(πx/2)
exp(θx)

where x is real and |θ| < π/2.
a) Find the maximum likelihood estimator (MLE) for θ.

b) What is the MLE for tan(θ)? Explain briefly.

Solution. a) L(θ) = [cos(θ)]n exp(θ
P

xi)Q
2 cosh(πxi/2)

. So log(L(θ)) = c+ n log(cos(θ)) + θ
∑
xi, and

d log(L(θ))

dθ
= n

1

cos(θ)
[− sin(θ)] +

∑
xi

set
= 0,

or tan(θ) = x, or θ̂ = tan−1(X).
Since

d2 log(L(θ))

dθ2
= −n sec2(θ) < 0

for |θ| < 1/2, θ̂ is the MLE.
b) The MLE is tan(θ̂) = tan(tan−1(X)) = X by the invariance principle.
(By properties of the arctan function, θ̂ = tan−1(X) iff

tan(θ̂) = X and −π/2 < θ̂ < π/2.)
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5.44. (Aug. 2009 Qual): Let X1, ..., Xn be a random sample from a population with
pdf

f(x) =
1

σ
exp

(
− x− µ

σ

)
, x ≥ µ,

where −∞ < µ <∞, σ > 0.
a) Find the maximum likelihood estimator of µ and σ.
b) Evaluate τ (µ, σ) = Pµ,σ[X1 ≥ t] where t > µ. Find the maximum likelihood

estimator of τ (µ, σ).

Solution. a) This is a two parameter exponential distribution. So see Section 10.14
where σ = λ and µ = θ.

b)

1 − F (x) = τ (µ, σ) = exp

[
−
(
x− µ

σ

)]
.

By the invariance principle, the MLE of τ (µ, σ) = τ (µ̂, σ̂)

= exp

[
−
(
x−X(1)

X −X(1)

)]
.

5.45. (Sept. 2010 Qual): Let Y1, ..., Yn be independent identically distributed (iid)
random variables from a distribution with probability density function (pdf)

f(y) =
1

2
√

2π

(
1

θ

√
θ

y
+

θ

y2

√
y

θ

)
1

ν
exp

[−1

2ν2

(
y

θ
+

θ

y
− 2

)]

where y > 0, θ > 0 is known and ν > 0.
a) Find the maximum likelihood estimator (MLE) of ν.
b) Find the MLE of ν2.

Solution. a) Let

w = t(y) =
y

θ
+
θ

y
− 2.

Then the likelihood

L(ν) = d
1

νn
exp(

−1

2ν2

n∑

i=1

wi),

and the log likelihood

log(L(ν)) = c− n log(ν) − 1

2ν2

n∑

i=1

wi.

Hence
d

dν
log(L(ν)) =

−n
ν

+
1

ν3

n∑

i=1

wi
set
= 0,

or

ν̂ =

√∑n
i=1 wi

n
.
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This solution is unique and

d2

dν2
log(L(ν)) =

n

ν2
− 3

∑n
i=1wi

ν4

∣∣∣∣
ν=ν̂

=
n

ν̂2
− 3nν̂2

ν̂4
=

−2n

ν̂2
< 0.

Thus

ν̂ =

√∑n
i=1 Wi

n

is the MLE of ν if ν̂ > 0.

b) ν̂2 =

∑n
i=1Wi

n
by invariance.

5.46. (Sept. 2011 Qual): Let Y1, ..., Yn be independent identically distributed (iid)
random variables from a distribution with probability density function (pdf)

f(y) = φ y−(φ+1) 1

1 + y−φ

1

λ
exp[

−1

λ
log(1 + y−φ)]

where y > 0, φ > 0 is known and λ > 0.
a) Find the maximum likelihood estimator (MLE) of λ.
b) Find the MLE of λ2.

Solution. a) The likelihood

L(λ) = c
1

λn
exp

[
−1

λ

n∑

i=1

log(1 + y−φ
i )

]
,

and the log likelihood log(L(λ)) = d− n log(λ) − 1
λ

∑n
i=1 log(1 + y−φ

i ). Hence

d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 log(1 + y−φ

i )

λ2

set
= 0,

or
∑n

i=1 log(1 + y−φ
i ) = nλ or

λ̂ =

∑n
i=1 log(1 + y−φ

i )

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(1 + y−φ

i )

λ3

∣∣∣∣∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Thus

λ̂ =

∑n
i=1 log(1 + Y −φ

i )

n

is the MLE of λ if φ is known.
b) The MLE is λ̂2 by invariance.
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5.47. (Aug. 2012 Qual): Let Y1, ..., Yn be independent identically distributed (iid)
random variables from an inverse half normal distribution with probability density func-
tion (pdf)

f(y) =
2

σ
√

2π

1

y2
exp

( −1

2σ2y2

)

where y > 0 and σ > 0.
a) Find the maximum likelihood estimator (MLE) of σ2.
b) Find the MLE of σ.
Solution. a) The likelihood

L(σ2) = c

(
1

σ2

)n
2

exp

[
−1

2σ2

n∑

i=1

1

y2
i

]
,

and the log likelihood

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n∑

i=1

1

y2
i

.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2(σ2)

+
1

2(σ2)2

n∑

i=1

1

y2
i

set
= 0,

or
∑n

i=1
1
y2

i
= nσ2 or

σ̂2 =
1

n

n∑

i=1

1

y2
i

.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1
1
y2

i

(σ2)3

∣∣∣∣∣
σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2σ̂4

< 0.

Thus

σ̂2 =
1

n

n∑

i=1

1

Y 2
i

is the MLE of σ2.
b) By invariance, σ̂ =

√
σ̂2.

5.48. (Jan. 2013 Qual): Let Y1, ..., Yn be independent identically distributed (iid)
random variables from a distribution with probability density function (pdf)

f(y) =
θ

y2
exp

(−θ
y

)
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where y > 0 and θ > 0.
a) Find the maximum likelihood estimator (MLE) of θ.
b) Find the MLE of 1/θ.

Solution. a) The likelihood L(θ) = c θn exp

[
−θ

n∑

i=1

1

yi

]
, and the log likelihood

log(L(θ)) = d+ n log(θ) − θ
n∑

i=1

1

yi
. Hence

d

dθ
log(L(θ)) =

n

θ
−

n∑

i=1

1

yi

set
= 0, or θ̂ =

n∑n
i=1

1
yi

.

Since this solution is unique and
d2

dθ2
log(L(θ)) =

−n
θ2

< 0,

θ̂ =
n∑n

i=1
1
Yi

is the MLE of θ.

b) By invariance, the MLE is 1/θ̂ =

∑n
i=1

1
Yi

n
.

5.49. (Aug. 2013 Qual): Let Y1, ..., Yn be independent identically distributed (iid)
random variables from a Lindley distribution with probability density function (pdf)

f(y) =
θ2

1 + θ
(1 + y)e−θy

where y > 0 and θ > 0.
a) Find the maximum likelihood estimator (MLE) of θ. You may assume that

d2

dθ2
log(L(θ))

∣∣∣∣
θ=θ̂

< 0.

b) Find the MLE of 1/θ.
Solution: a) The likelihood

L(θ) = c

(
θ2

1 + θ

)n

exp(−θ
n∑

i=1

yi),

and the log likelihood

log(L(θ)) = d+ n log

(
θ2

1 + θ

)
− θ

n∑

i=1

yi.

Always use properties of logarithms to simplify the log likelihood before taking deriva-
tives. Note that

log(L(θ)) = d+ 2n log(θ) − n log(1 + θ) − θ
n∑

i=1

yi.
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Hence
d

dθ
log(L(θ)) =

2n

θ
− n

(1 + θ)
−

n∑

i=1

yi
set
= 0,

or
2(1 + θ) − θ

θ(1 + θ)
− y = 0 or

2 + θ

θ(1 + θ)
− y = 0

or 2 + θ = y(θ + θ2) or yθ2 + θ(y − 1) − 2 = 0. So

θ̂ =
−(Y − 1) +

√
(Y − 1)2 + 8Y

2Y
.

b) By invariance, the MLE is 1/θ̂.

5.53. (Jan. 2015 QUAL): b) σ̂ =
√
σ̂2 =

√
Q/n by invariance.

5.54. (Aug. 2016 QUAL): Suppose X1, ..., Xn are random variables with likelihood
function

L(θ) =

[∏n−k
i=1

1
θ
e−xi/θ

] [∏n
i=n−k+1 e

−xi/θ
]

∏n−k
i=1 e

−di/θ

where θ > 0, xi > 0, and xi > di > 0 for i = 1, ..., n − k. The di and k are known
constants. Find the maximum likelihood estimator (MLE) of θ.

Solution:

L(θ) =
1

θn−k

n−k∏

i=1

e−(xi−di)/θ

n∏

i=n−k+1

e−xi/θ.

Hence

log(L(θ)) = −(n− k) log(θ) − 1

θ

n−k∑

i=1

(xi − di) −
1

θ

n∑

i=n−k+1

xi =

−(n− k) log(θ) − 1

θ

n−k∑

i=1

xi +
1

θ

n−k∑

i=1

di −
1

θ

n∑

i=n−k+1

xi =

−(n− k) log(θ) − f

θ

where f =
∑n−k

i=1 xi −
∑n−k

i=1 di +
∑n

i=n−k+1 xi =
∑n

i=1 xi −
∑n−k

i=1 di =∑n−k
i=1 (xi − di) +

∑n
i=n−k+1 xi > 0. So

d log(L(θ)

dθ
=

−(n− k)

θ
+
f

θ2

set
= 0

or (n− k)θ = f or

θ̂ =
f

n− k
.
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This solution was unique and

d2 log(L(θ)

dθ2
=
n− k

θ2
− 2f

θ3

∣∣∣∣
θ̂

=
n− k

θ̂2
− 2(n− k)θ̂

θ̂3
=

−(n− k)

θ̂2
< 0.

Hence θ̂ is the MLE.
5.55. (Jan. 2018 QUAL): Suppose X1, ..., Xn are iid from a Kumaraswamy distribu-

tion with probability density function (pdf)

f(x) = θxθ−1β(1 − xθ)β−1

where θ > 0 is known, β > 0, and 0 < x < 1.
a) Find a complete sufficient statistic for β.
b) Find the maximum likelihood estimator of β.
Solution: a) Note that f(x) = θxθ−1I(0 < x < 1)β exp[(β−1) log(1−xθ)] is the pdf of

a 1PREF with h(x) = θxθ−1I(0 < x < 1), c(β) = β, η = w(β) = β−1, t(x) = log(1−xθ)
and Ω = (−1,∞). Hence the complete sufficient statistic is

∑n
i=1 log(1 −Xθ

i ).
b) L(β) = dβn exp[(β − 1)

∑n
i=1 log(1 − xθ

i )]. Hence log(L(β)) = c + n log(β) + (β −
1)
∑n

i=1 log(1 − xθ
i ). So

d log(L(β))

dβ
=
n

β
+

n∑

i=1

log(1 − xθ
i )

set
= 0,

or

β̂ =
−n∑n

i=1 log(1 −Xθ
i )

which is unique. Then β̂ is the MLE since

d2 log(L(β))

dβ2
=

−n
β2

< 0.

5.56. (Jan. 2018 QUAL): Assume X1, ..., Xn are i.i.d from Gamma distribution with
parameters α and β (Gamma(α, β)) where both α and β are unknown.

a) Find the method of moments estimators for α and β.
b) Show that the estimators obtained in part (a) for α and β are always non-negative.
Solution: a) We have

µ1 = E[X] = αβ = m1, where m1 =
1

n

n∑

i=1

Xi

µ2 = E[X2] = αβ2 + α2β2 = α(α + 1)β2 = m2, where m2 =
1

n

n∑

i=1

X2
i .

Then
m2

m2
1

=
α(α + 1)β2

α2β2
= 1 +

1

α
=⇒ 1

α
=
m2 −m2

1

m2
1
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or

α̂ =
m2

1

m2 −m2
1

& β̂ =
m1

α̂
=
m2 −m2

1

m1

b) Since Xi > 0, therefore m1 > 0. Also we have

m2 −m2
1 =

1

n

n∑

i=1

X2
i − X̄2

=
1

n

[ n∑

i=1

X2
i − nX̄2

]

=
1

n

[ n∑

i=1

(Xi − X̄)2
]
≥ 0

Therefore α̂ ≥ 0 and β̂ ≥ 0.
5.57. (Jan. 2020 QUAL): Let X1, ..., Xn be independent and identically distributed

with probability density function (pdf)

f(x|θ) = A(θ)B(x)

for 0 < x ≤ θ, and f(x|θ) = 0, otherwise. Here the parameter θ > 0, the function
A(θ) > 0 for θ > 0 and the function B(x) > 0 for 0 < x ≤ θ.

a) Is the family of distributions (with pdf f(x|θ) for θ > 0) an exponential family?
Explain.

b) Find a minimal sufficient statistic for θ, and show that it is so.
c) If A(θ) = 1/θ and B(x) ≡ 1 for 0 < x ≤ θ, find the maximum likelihood estimator

of θ.
Solution: a) No, the support depends on θ.
b)

f(x)

f(y)
=

[A(θ)]n[
∏n

i=1 B(xi)]I [max(xi) ≤ θ]

[A(θ)]n[
∏n

i=1 B(yi)]I [max(yi) ≤ θ]
≡ c ∀θ iff

I [max(xi) ≤ θ]

I [max(yi) ≤ θ]
≡ d ∀θ

Hence max(Xi) is the minimal sufficient statistic by LSM.
c) X ∼ U(0, θ) with L(θ) = θ−nI [max(xi) ≥ θ] which is maximized at θ = max(xi).

Hence max(Xi) is the maximum likelihood estimator.
6.2. (Aug. 2002 QUAL): Let X1, ..., Xn be independent identically distributed ran-

dom variable from a N(µ, σ2) distribution. Hence E(X1) = µ and V AR(X1) = σ2.
Consider estimators of σ2 of the form

S2(k) =
1

k

n∑

i=1

(Xi −X)2

where k > 0 is a constant to be chosen. Determine the value of k which gives the smallest
mean square error. (Hint: Find the MSE as a function of k, then take derivatives with
respect to k. Also, use Theorem 4.1c and Remark 5.1 VII.)
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6.7. (Jan. 2001 Qual): Let X1, ..., Xn be independent, identically distributed N(µ, 1)
random variables where µ is unknown and n ≥ 2. Let t be a fixed real number. Then the
expectation

Eµ(I(−∞,t](X1)) = Pµ(X1 ≤ t) = Φ(t− µ)

for all µ where Φ(x) is the cumulative distribution function of a N(0, 1) random variable.

a) Show that the sample mean X is a sufficient statistic for µ.

b) Explain why (or show that) X is a complete sufficient statistic for µ.

c) Using the fact that the conditional distribution of X1 given X = x is the N(x, 1−
1/n) distribution where the second parameter 1 − 1/n is the variance of conditional
distribution, find

Eµ(I(−∞,t](X1)|X = x) = Eµ[I(−∞,t](W )]

where W ∼ N(x, 1 − 1/n). (Hint: your answer should be Φ(g(x)) for some function g.)

d) What is the uniformly minimum variance unbiased estimator for
Φ(t− µ)?

Solution. a) The joint density

f(x) =
1

(2π)n/2
exp[−1

2

∑
(xi − µ)2]

=
1

(2π)n/2
exp[−1

2
(
∑

x2
i − 2µ

∑
xi + nµ2)]

=
1

(2π)n/2
exp[−1

2

∑
x2

i ] exp[nµx− nµ2

2
].

Hence by the factorization theorem X is a sufficient statistic for µ.

b) X is sufficient by a) and complete since the N(µ, 1) family is a regular one param-
eter exponential family.

c) E(I−(∞,t](X1)|X = x) = P (X1 ≤ t|X = x) = Φ( t−x√
1−1/n

).

d) By the LSU theorem,

Φ(
t−X√
1 − 1/n

)

is the UMVUE.

6.14. (Jan. 2003 Qual): Let X1, ..., Xn be independent, identically distributed
exponential(θ) random variables where θ > 0 is unknown. Consider the class of esti-
mators of θ

{Tn(c) = c
n∑

i=1

Xi | c > 0}.
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Determine the value of c that minimizes the mean square error MSE. Show work and
prove that your value of c is indeed the global minimizer.

Solution. Note that
∑
Xi ∼ G(n, θ). Hence MSE(c) = V arθ(Tn(c)) + [EθTn(c) − θ]2

= c2V arθ(
∑
Xi) + [ncEθX − θ]2 = c2nθ2 + [ncθ − θ]2.

So
d

dc
MSE(c) = 2cnθ2 + 2[ncθ − θ]nθ.

Set this equation to 0 to get 2nθ2[c+ nc − 1] = 0 or c(n+ 1) = 1. So c = 1/(n + 1).
The second derivative is 2nθ2 +2n2θ2 > 0 so the function is convex and the local min

is in fact global.

6.19. (Aug. 2000 SIU, 1995 Univ. Minn. Qual): Let X1, ..., Xn be independent
identically distributed random variables from a N(µ, σ2) distribution. Hence E(X1) = µ
and V AR(X1) = σ2. Suppose that µ is known and consider estimates of σ2 of the form

S2(k) =
1

k

n∑

i=1

(Xi − µ)2

where k is a constant to be chosen. Note: E(χ2
m) = m and V AR(χ2

m) = 2m. Determine
the value of k which gives the smallest mean square error. (Hint: Find the MSE as a
function of k, then take derivatives with respect to k.)

Solution.
W ≡ S2(k)/σ2 ∼ χ2

n/k

and
MSE(S2(k)) = MSE(W ) = V AR(W ) + (E(W ) − σ2)2

=
σ4

k2
2n + (

σ2n

k
− σ2)2

= σ4[
2n

k2
+ (

n

k
− 1)2] = σ42n+ (n − k)2

k2
.

Now the derivative d
dk
MSE(S2(k))/σ4 =

−2

k3
[2n+ (n− k)2] +

−2(n− k)

k2
.

Set this derivative equal to zero. Then

2k2 − 2nk = 4n + 2(n− k)2 = 4n + 2n2 − 4nk + 2k2.

Hence
2nk = 4n + 2n2

or k = n+ 2.
Should also argue that k = n + 2 is the global minimizer. Certainly need k > 0

and the absolute bias will tend to ∞ as k → 0 and the bias tends to σ2 as k → ∞, so
k = n+ 2 is the unique critical point and is the global minimizer.
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6.20. (Aug. 2001 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables with pdf

f(x|θ) =
2x

θ
e−x2/θ, x > 0

and f(x|θ) = 0 for x ≤ 0.

a) Show that X2
1 is an unbiased estimator of θ. (Hint: use the substitution W = X2

and find the pdf of W or use u-substitution with u = x2/θ.)

b) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of θ.

c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ.

Solution. a) Let W = X2. Then f(w) = fX(
√
w) 1/(2

√
w) = (1/θ) exp(−w/θ) and

W ∼ EXP (θ). Hence Eθ(X
2) = Eθ(W ) = θ.

b) This is an exponential family and

log(f(x|θ)) = log(2x) − log(θ) − 1

θ
x2

for x > 0. Hence
∂

∂θ
f(x|θ) =

−1

θ
+

1

θ2
x2

and
∂2

∂θ2
f(x|θ) =

1

θ2
+

−2

θ3
x2.

Hence

I1(θ) = −Eθ[
1

θ2
+

−2

θ3
x2] =

1

θ2

by a). Now

CRLB =
[τ ′(θ)]2

nI1(θ)
=
θ2

n

where τ (θ) = θ.

c) This is a regular exponential family so
∑n

i=1X
2
i is a complete sufficient statistic.

Since

Eθ[

∑n
i=1 X

2
i

n
] = θ,

the UMVUE is
Pn

i=1 X2
i

n
.

6.21. (Aug. 2001 Qual): See Mukhopadhyay (2000, p. 377). Let X1, ..., Xn be iid
N(θ, θ2) normal random variables with mean θ and variance θ2. Let

T1 = X =
1

n

n∑

i=1

Xi
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and let

T2 = cnS = cn

√∑n
i=1(Xi −X)2

n− 1

where the constant cn is such that Eθ[cnS] = θ. You do not need to find the constant cn.
Consider estimators W (α) of θ of the form.

W (α) = αT1 + (1 − α)T2

where 0 ≤ α ≤ 1.

a) Find the variance

V arθ[W (α)] = V arθ(αT1 + (1 − α)T2).

b) Find the mean square error of W (α) in terms of V arθ(T1), V arθ(T2) and α.

c) Assume that

V arθ(T2) ≈
θ2

2n
.

Determine the value of α that gives the smallest mean square error. (Hint: Find the
MSE as a function of α, then take the derivative with respect to α. Set the derivative
equal to zero and use the above approximation for V arθ(T2). Show that your value of α
is indeed the global minimizer.)

Solution. a) In normal samples, X and S are independent, hence

V arθ[W (α)] = α2V arθ(T1) + (1 − α)2V arθ(T2).

b) W (α) is an unbiased estimator of θ. Hence MSE[W (α)] ≡MSE(α) = V arθ[W (α)]
which is found in part a).

c) Now
d

dα
MSE(α) = 2αV arθ(T1) − 2(1 − α)V arθ(T2)

set
= 0.

Hence

α̂ =
V arθ(T2)

V arθ(T1) + V arθ(T2)
≈

θ2

2n
2θ2

2n
+ θ2

2n

= 1/3

using the approximation and the fact that Var(X̄) = θ2/n. Note that the second deriva-
tive

d2

dα2
MSE(α) = 2[V arθ(T1) + V arθ(T2)] > 0,

so α = 1/3 is a local min. The critical value was unique, hence 1/3 is the global min.
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6.22. (Aug. 2003 Qual): Suppose that X1, ..., Xn are iid normal distribution with
mean 0 and variance σ2. Consider the following estimators: T1 = 1

2
|X1 − X2| and

T2 =
√

1
n

∑n
i=1X

2
i .

a) Is T1 unbiased for σ? Evaluate the mean square error (MSE) of T1.

b) Is T2 unbiased for σ? If not, find a suitable multiple of T2 which is unbiased for σ.

Solution. a) X1 −X2 ∼ N(0, 2σ2). Thus,

E(T1) =

∫ ∞

0

u
1√

4πσ2
e

−u2

4σ2 du

=
σ√
π
.

E(T 2
1 ) =

1

2

∫ ∞

0

u2 1√
4πσ2

e
−u2

4σ2 du

=
σ2

2
.

V (T1) = σ2(1
2
− 1

π
) and

MSE(T1) = σ2[(
1√
π

) − 1)2 +
1

2
− 1

π
] = σ2[

3

2
− 2√

π
].

b) Xi

σ
has a N(0,1) and

Pn
i=1 X2

i

σ2 has a chi square distribution with n degrees of freedom.
Thus

E(

√∑n
i=1 X

2
i

σ2
) =

√
2Γ(n+1

2
)

Γ(n
2
)

,

and

E(T2) =
σ√
n

√
2Γ(n+1

2
)

Γ(n
2
)

.

Therefore,

E(

√
n√
2

Γ(n
2
)

Γ(n+1
2

)
T2) = σ.

6.23. (Aug. 2003 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables with pdf (probability density function)

f(x) =
1

λ
exp

(
−x
λ

)

where x and λ are both positive. Find the uniformly minimum variance unbiased esti-
mator (UMVUE) of λ2.
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Solution. This is a regular one parameter exponential family with complete sufficient
statistic Tn =

∑n
i=1Xi ∼ G(n, λ). Hence E(Tn) = nλ, E(T 2

n) = V (Tn) + (E(Tn))
2 =

nλ2 + n2λ2, and T 2
n/(n + n2) is the UMVUE of λ2.

6.24. (Jan. 2004 Qual): LetX1, ..., Xn be independent identically distributed random
variables with pdf (probability density function)

f(x) =

√
σ

2πx3
exp

(
− σ

2x

)

where x and σ are both positive. Then Xi =
σ

Wi
where Wi ∼ χ2

1. Find the uniformly

minimum variance unbiased estimator (UMVUE) of
1

σ
.

Solution.
1

Xi
=
Wi

σ
∼ χ2

1

σ
.

Hence if

T =
n∑

i=1

1

Xi
, then E(

T

n
) =

n

nσ
,

and T/n is the UMVUE since f(x) is an exponential family with complete sufficient
statistic 1/X.

6.25. (Jan. 2004 Qual): Let X1, ..., Xn be a random sample from the distribution
with density

f(x) =

{
2x
θ2 , 0 < x < θ
0 elsewhere

Let T = max(X1, ..., Xn). To estimate θ consider estimators of the form CT . Determine
the value of C which gives the smallest mean square error.

Solution. The pdf of T is

g(t) =
2nt2n−1

θ2n

for 0 < t < θ.
E(T ) = 2n

2n+1
θ and E(T 2) = 2n

2n+2
θ2.

MSE(CT ) = (C
2n

2n + 1
θ − θ)2 + C2[

2n

2n+ 2
θ2 − (

2n

2n+ 1
θ)2]

dMSE(CT )

dC
= 2[

2Cnθ

2n + 1
− θ][

2nθ

2n+ 1
] + 2C [

2nθ2

2n+ 2
− 4n2θ2

(2n + 1)2
].

Solve dMSE(CT )
dC

set
= 0 to get

C = 2
n+ 1

2n + 1
.
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The MSE is a quadratic in C and the coefficient on C2 is positive, hence the local min is
a global min.

6.26. (Aug. 2004 Qual): Let X1, ..., Xn be a random sample from a distribution with
pdf

f(x) =
2x

θ2
, 0 < x < θ.

Let T = cX be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and of θ and n).

b) Find the value c that minimizes the MSE. Prove that your value is the minimizer.

Solution. a) E(Xi) = 2θ/3 and V (Xi) = θ2/18. So bias of T = B(T ) = EcX − θ =
c2

3
θ − θ and Var(T ) =

V ar(
c
∑
Xi

n
) =

c2

n2

∑
V ar(Xi) =

c2

n2

nθ2

18
.

So MSE = Var(T) +[B(T )]2 =

c2θ2

18n
+ (

2θ

3
c− θ)2.

b)
dMSE(c)

dc
=

2cθ2

18n
+ 2(

2θ

3
c− θ)

2θ

3
.

Set this equation equal to 0 and solve, so

θ22c

18n
+

4

3
θ(

2

3
θc − θ) = 0

or

c[
2θ2

18n
+

8

9
θ2] =

4

3
θ2

or

c(
1

9n
+

8

9
)θ2 =

4

3
θ2

or

c(
1

9n
+

8n

9n
) =

4

3
or

c =
9n

1 + 8n

4

3
=

12n

1 + 8n
.

This is a global min since the MSE is a quadratic in c2 with a positive coefficient, or
because

d2MSE(c)

dc2
=

2θ2

18n
+

8θ2

9
> 0.

6.27. (Aug. 2004 Qual): Suppose that X1, ..., Xn are iid Bernoulli(p) where n ≥ 2
and 0 < p < 1 is the unknown parameter.
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a) Derive the UMVUE of ν(p), where ν(p) = e2(p(1 − p)).

b) Find the Cramér Rao lower bound for estimating ν(p) = e2(p(1 − p)).

Solution. a) Consider the statistic W = X1(1−X2) which is an unbiased estimator of
ψ(p) = p(1−p). The statistic T =

∑n
i=1Xi is both complete and sufficient. The possible

values of W are 0 or 1. Let U = φ(T ) where

φ(t) = E[X1(1 −X2)|T = t]

= 0P [X1(1 −X2) = 0|T = t] + 1P [X1(1 −X2) = 1|T = t]

= P [X1(1 −X2) = 1|T = t]

=
P [X1 = 1, X2 = 0 and

∑n
i=1 Xi = t]

P [
∑n

i=1 Xi = t]

=
P [X1 = 1]P [X2 = 0]P [

∑n
i=3Xi = t− 1]

P [
∑n

i=1Xi = t]
.

Now
∑n

i=3Xi is Bin(n− 2, p) and
∑n

i=1Xi is Bin(n, p). Thus

φ(t) =
p(1 − p)[

(
n−2
t−1

)
pt−1(1 − p)n−t−1]

(
n
t

)
pt(1 − p)n−t

=

(
n−2
t−1

)
(

n
t

) =
(n− 2)!

(t− 1)!(n− 2 − t+ 1)!

t(t− 1)!(n− t)(n− t− 1)!

n(n− 1)(n − 2)!
=

t(n− t)

n(n− 1)

=
t
n
(n − n t

n
)

n− 1
=

t
n
n(1 − t

n
)

n− 1
=

n

n− 1
x(1 − x).

Thus n
n−1

X(1 − X) is the UMVUE of p(1 − p) and e2U = e2 n
n−1

X(1 − X) is the
UMVUE of τ (p) = e2p(1 − p).

Alternatively, X is a complete sufficient statistic, so try an estimator of the form
U = a(X)2 + bX + c. Then U is the UMVUE if Ep(U) = e2p(1 − p) = e2(p− p2). Now
E(X) = E(X1) = p and V (X) = V (X1)/n = p(1 − p)/n since

∑
Xi ∼ Bin(n, p). So

E[(X)2] = V (X) + [E(X)]2 = p(1 − p)/n + p2. So Ep(U) = a[p(1 − p)/n] + ap2 + bp+ c

=
ap

n
− ap2

n
+ ap2 + bp + c = (

a

n
+ b)p + (a− a

n
)p2 + c.

So c = 0 and a− a
n

= an−1
n

= −e2 or

a =
−n
n− 1

e2.

Hence a
n

+ b = e2 or

b = e2 − a

n
= e2 +

n

n(n− 1)
e2 =

n

n − 1
e2.
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So

U =
−n
n− 1

e2(X)2 +
n

n − 1
e2X =

n

n− 1
e2X(1 −X).

b) The FCRLB for τ (p) is [τ ′(p)]2/nI1(p). Now f(x) = px(1 − p)1−x, so log f(x) =
x log(p) + (1 − x) log(1 − p). Hence

∂ log f

∂p
=
x

p
− 1 − x

1 − p

and
∂2 log f

∂p2
=

−x
p2

− 1 − x

(1 − p)2
.

So

I1(p) = −E(
∂2 log f

∂p2
) = −(

−p
p2

− 1 − p

(1 − p)2
) =

1

p(1 − p)
.

So

FCRLBn =
[e2(1 − 2p)]2

n
p(1−p)

=
e4(1 − 2p)2p(1 − p)

n
.

6.30. (Jan. 2009 Qual): Suppose that Y1, ..., Yn are independent binomial(mi, ρ)
where the mi ≥ 1 are known constants. Let

T1 =

∑n
i=1 Yi∑n
i=1 mi

and T2 =
1

n

n∑

i=1

Yi

mi

be estimators of ρ.
a) Find MSE(T1).

b) Find MSE(T2).

c) Which estimator is better?
Hint: by the arithmetic–geometric–harmonic mean inequality,

1

n

n∑

i=1

mi ≥
n∑n

i=1
1

mi

.

Solution. a)

E(T1) =

∑n
i=1E(Yi)∑n

i=1 mi

=

∑n
i=1miρ∑n
i=1 mi

= ρ,

so MSE(T1) = V (T1) =

1

(
∑n

i=1 mi)2
V (

n∑

i=1

Yi) =
1

(
∑n

i=1 mi)2

n∑

i=1

V (Yi) =
1

(
∑n

i=1 mi)2

n∑

i=1

miρ(1 − ρ)

=
ρ(1 − ρ)∑n

i=1mi
.
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b)

E(T2) =
1

n

n∑

i=1

E(Yi)

mi
=

1

n

n∑

i=1

miρ

mi
=

1

n

n∑

i=1

ρ = ρ,

so MSE(T2) = V (T2) =

1

n2
V (

n∑

i=1

Yi

mi
) =

1

n2

n∑

i=1

V (
Yi

mi
) =

1

n2

n∑

i=1

V (Yi)

(mi)2
=

1

n2

n∑

i=1

miρ(1 − ρ)

(mi)2

=
ρ(1 − ρ)

n2

n∑

i=1

1

mi

.

c) The hint

1

n

n∑

i=1

mi ≥
n∑n

i=1
1

mi

implies that

n∑n
i=1 mi

≤
∑n

i=1
1

mi

n
and

1∑n
i=1 mi

≤
∑n

i=1
1

mi

n2
.

Hence MSE(T1) ≤ MSE(T2), and T1 is better.
6.31. (Sept. 2010 Qual): Let Y1, ..., Yn be iid gamma(α = 10, β) random variables.

Let T = cY be an estimator of β where c is a constant.
a) Find the mean square error (MSE) of T as a function of c (and of β and n).
b) Find the value c that minimizes the MSE. Prove that your value is the minimizer.

Solution. a) E(T ) = cE(Y ) = cαβ = 10cβ.
V (T ) = c2V (Y ) = c2αβ2/n = 10c2β2/n.
MSE(T ) = V (T ) + [B(T )]2 = 10c2β2/n+ (10cβ − β)2.

b)
d MSE(c)

dc
=

2c10β2

n
+ 2(10cβ − β)10β

set
= 0

or [20β2/n] c+ 200β2 c − 20β2 = 0
or c/n+ 10c − 1 = 0 or c(1/n + 10) = 1
or

c =
1

1
n

+ 10
=

n

10n + 1
.

This value of c is unique, and

d2 MSE(c)

dc2
=

20β2

n
+ 200β2 > 0,

so c is the minimizer.

6.32. (Jan. 2011 Qual): Let Y1, ..., Yn be independent identically distributed random
variables with pdf (probability density function)

f(y) = (2 − 2y)I(0,1)(y) ν exp[(1 − ν)(− log(2y − y2))]
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where ν > 0 and n > 1. The indicator I(0,1)(y) = 1 if 0 < y < 1 and I(0,1)(y) = 0,
otherwise.

a) Find a complete sufficient statistic.
b) Find the Fisher information I1(ν) if n = 1.
c) Find the Cramer Rao lower bound (CRLB) for estimating 1/ν.
d) Find the uniformly minimum unbiased estimator (UMVUE) of ν.
Hint: You may use the fact that Tn = −∑n

i=1 log(2Yi − Y 2
i ) ∼ G(n, 1/ν), and

E(T r
n) =

1

νr

Γ(r + n)

Γ(n)

for r > −n. Also Γ(1 + x) = xΓ(x) for x > 0.

Solution. a) Since this distribution is a one parameter regular exponential family,
Tn = −∑n

i=1 log(2Yi − Y 2
i ) is complete.

b) Note that log(f(y|ν)) = log(ν) + log(2 − 2y) + (1 − ν)[− log(2y − y2)]. Hence

d log(f(y|ν))
dν

=
1

ν
+ log(2y − y2)

and
d2 log(f(y|ν))

dν2
=

−1

ν2
.

Since this family is a 1P-REF, I1(ν) = −E
(−1

ν2

)
=

1

ν2
.

c)
[τ ′(ν)]2

nI1(ν)
=

ν2

ν4 n
=

1

nν2
.

d) E[T−1
n ] =

1

ν−1

Γ(−1 + n)

Γ(n)
=

ν

n− 1
. So (n− 1)/Tn is the UMVUE of ν by LSU.

6.33. (Sept. 2011 Qual): Let Y1, ..., Yn be iid random variables from a distribution
with pdf

f(y) =
θ

2(1 + |y|)θ+1

where θ > 0 and y is real. Then W = log(1 + |Y |) has pdf f(w) = θe−wθ for w > 0.
a) Find a complete sufficient statistic.
b) Find the (Fisher) information number I1(θ).
c) Find the uniformly minimum variance unbiased estimator (UMVUE) for θ.

Solution. a) Since f(y) =
θ

2
[exp[−(θ + 1) log(1 + |y|)] is a 1P-REF,

T =
∑n

i=1 log(1 + |Yi|) is a complete sufficient statistic.
b) Since this is an exponential family, log(f(y|θ)) = log(θ/2)− (θ+1) log(1+ |y|) and

∂

∂θ
log(f(y|θ)) =

1

θ
− log(1 + |y|).

Hence
∂2

∂θ2
log(f(y|θ)) =

−1

θ2
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and

I1(θ) = −Eθ

[
∂2

∂θ2
log(f(Y |θ))

]
=

1

θ2
.

c) The complete sufficient statistic T ∼ G(n, 1/θ). Hence the UMVUE of θ is (n−1)/T
since for r > −n,

E(T r) = E(T r) =

(
1

θ

)r
Γ(r + n)

Γ(n)
.

So

E(T−1) = θ
Γ(n− 1)

Γ(n)
= θ/(n − 1).

6.34. (Similar to Sept. 2010 Qual): Suppose that X1, X2, ..., Xn are independent
identically distributed random variables from normal distribution with unknown mean µ
and known variance σ2. Consider the parametric function g(µ) = e2µ.

a) Derive the uniformly minimum variance unbiased estimator (UMVUE) of g(µ).
b) Find the Cramer-Rao lower bound (CRLB) for the variance of an unbiased esti-

mator of g(µ).
c) Is the CRLB attained by the variance of the UMVUE of g(µ)?

Solution. a) Note that X is a complete and sufficient statistic for µ and X ∼
N(µ, n−1σ2). We know that E(e2X), the mgf of X when t = 2, is given by e2µ+2n−1σ2

.

Thus the UMVUE of e2µ is e−2n−1σ2
e2X.

b) The CRLB for the variance of unbiased estimator of g(µ) is given by 4n−1σ2e4µ

whereas

V (e−2n−1σ2

e2X̄) = e−4n−1σ2

E(e4X̄) − e4µ (3)

= e−4n−1σ2

e4µ+ 1
2
16n−1σ2 − e4µ

= e4µ[e4n−1σ2 − 1]

> 4n−1σ2e4µ

since ex > 1 + x for all x > 0. Hence the CRLB is not attained.

6.36. (Aug. 2012 Qual): Let Y1, ..., Yn be iid from a one parameter exponential
family with pdf or pmf f(y|θ) with complete sufficient statistic T (Y ) =

∑n
i=1 t(Yi) where

t(Yi) ∼ θX and X has a known distribution with known mean E(X) and known variance
V (X). Let Wn = cT (Y ) be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of Wn as a function of c (and of n, E(X) and
V (X)).

b) Find the value of c that minimizes the MSE. Prove that your value is the minimizer.
c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ.
Solution. See Theorem 6.5.
a) E(Wn) = c

∑n
i=1E(t(Yi)) = cnθE(X), and

V (Wn) = c2
∑n

i=1 V (t(Yi)) = c2nθ2V (X). Hence MSE(c) ≡ MSE(Wn) =
V (Wn) + [E(Wn) − θ]2 = c2nθ2V (X) + (cnθE(X) − θ)2.
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b) Thus

d MSE(c)

dc
= 2cnθ2V (X) + 2(cnθE(X) − θ)nθE(X)

set
= 0,

or
c(nθ2V (X) + n2θ2[E(X)]2) = nθ2E(X),

or

cM =
E(X)

V (X) + n[E(X)]2
,

which is unique. Now

d2 MSE(c)

dc2
= 2[nθ2V (X) + n2θ2[E(X)]2] > 0.

So MSE(c) is convex and c = cM is the minimizer.

c) Let cU =
1

nE(X)
. Then E[cUT (Y )] = θ, hence cUT (Y ) is the UMVUE of θ by the

Lehmann Scheffe theorem.

6.37. (Jan. 2013 qual):Let X1, ..., Xn be a random sample from a Poisson (λ) dis-
tribution. Let X and S2 denote the sample mean and the sample variance, respectively.

a) Show that X is uniformly minimum variance unbiased (UMVU) estimator of λ.

b) Show that E(S2|X) = X .

c) Show that Var(S2) > Var(X).

Solution: a) Since f(x) =
1

x!
exp[log(λ)x]I(x ∈ {0, 1, ...}) is a 1P-REF,

∑n
i=1 Xi is a

complete sufficient statistic and E(X) = λ. Hence X = (
∑n

i=1Xi)/n is the UMVUE of
λ by the LSU theorem.

b) E(S2) = λ is an unbiased estimator of λ. Hence E(S2|X) is the unique UMVUE
of λ by the LSU theorem. Thus E(S2|X) = X by part a).

c) By Steiner’s formula, V (S2) = V (E(S2|X))+E(V (S2|X)) = V (X)+E(V (S2|X)) >
V (X). (To show V (S2) ≥ V (X), note that X is the UMVUE and S2 is an unbiased esti-
mator of λ. Hence V (X) ≤ V (S2) by the definition of a UMVUE, and the inequality is
strict for at least one value of λ since the UMVUE is unique.)

6.38. (Aug. 2012 Qual): Let X1, ..., Xn be a random sample from a Poisson distri-
bution with mean θ.

a) Show that T =
∑n

i=1Xi is complete sufficient statistic for θ.
b) For a > 0, find the uniformly minimum variance unbiased estimator (UMVUE) of

g(θ) = eaθ.
c) Prove the identity:

E
[
2X1 |T

]
=

(
1 +

1

n

)T

.
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Solution: a) See solution to Problem 6.37 a).
b) The complete sufficient statistic T =

∑n
i=1Xi ∼ Poisson (nθ). Hence the mgf of

T is
E(etT) = mT (t) = exp[nθ(et − 1)].

Thus n(et − 1) = a, or et = a/n+ 1, or et = (a + n)/n, or t = log[(a+ n)/n]. Thus

etT = (et)T =

(
a + n

n

)T

= exp[(T log(
a + n

n
)]

is the UMVUE of eaθ by the LSU theorem.
c) Let X = X1, and note that 2X is an unbiased estimator of eθ since

2X = elog(2X) = e(log 2)X,

and E(2X) = mX(log 2) = exp[θ(elog2 − 1)] = eθ.

Thus E[2X |T ] is the UMVUE of E(2X) = eθ by the LSU theorem. By part b) with a = 1,

E[2X |T ] =

(
1 + n

n

)T

.

6.39. (Aug. 2013 Qual): Let X1, ..., Xn be independent identically distributed from
a N(µ, σ2) population, where σ2 is known. Let X be the sample mean.

a) Find E(X − µ)2.
b) Using a), find the UMVUE of µ2.
c) Find E(X − µ)3. [Hint: Show that if Y is a N(0, σ2) random variable, then

E(Y 3) = 0].
d) Using c), find the UMVUE of µ3.

Solution. a) E(X − µ)2 = Var(X) = σ2

n
.

b) From a), E(X
2 − 2µX + µ2) = E(X

2
) − µ2 = σ2

n
, or E(X

2
) − σ2

n
= µ2, or

E(X
2 − σ2

n
) = µ2.

Since X is a complete and sufficient statistic, and X
2 − σ2

n
is an unbiased estimator

of µ2 and is a function of X , the UMVUE of µ2 is X
2 − σ2

n
by the Lehmann-Scheffé

Theorem.
c) Let Y = X − µ ∼N(0, τ 2 = σ2/n). Then E(Y 3) =

∫∞
−∞ h(y)dy = 0, because h(y)

is an odd function.
d) E(X − µ)3 = E(X

3 − 3µX
2
+ 3µ2X − µ3) = E(X

3
) − 3µE(X

2
) + 3µ2E(X) − µ3

= E(X
3
) − 3µ

(
σ2

n
+ µ2

)
+ 3µ3 − µ3 = E(X

3
) − 3µσ2

n
− µ3.

Thus E(X
3
) − 3µσ2

n
− µ3 = 0, so replacing µ with its unbiased estimator X in the

middle term, we get

E

[
X

3 − 3X
σ2

n

]
= µ3.

Since X is a complete and sufficient statistic, and X
3 − 3X σ2

n
is an unbiased estimator

of µ3 and is a function of X̄, the UMVUE of µ3 is X
3 − 3X σ2

n
by the Lehmann-Scheffé

Theorem.
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6.40. (Jan. 2014 Qual): Let Y1, ..., Yn be iid from a uniform U(0, θ) distribution
where θ > 0. Then T = max(Y1, ..., Yn) is a complete sufficient statistic.

a) Find E(T k) for k > 0.
b) Find the UMVUE of θk for k > 0.

Solution: a) The pdf of T is f(t) = ntn−1

θn I(0 < t < θ). Hence E(T k) =

∫ θ

0

tk
ntn−1

θn
dt =

∫ θ

0

ntk+n−1

θn
dt =

nθk+n

(k + n)θn
=

n

k + n
θk.

b) Thus the UMVUE of θk is
k + n

n
T k.

6.41. (Jan. 2014 Qual): Let Y1, ..., Yn be iid from a distribution with probability
distribution function (pdf)

f(y) =
θ

(1 + y)θ+1

where y > 0 and θ > 0.
a) Find a minimal sufficient statistic for θ.
b) Is the statistic found in a) complete? (prove or disprove)
c) Find the Fisher information I1(θ) if n = 1.
d) Find the Cramer Rao lower bound (CRLB) for estimating θ2.
6.42. (Aug. 2014 and Jan. 2024 Quals): Let X1, ..., Xn be iid from a distribution

with pdf
f(x|θ) = θxθ−1I(0 < x < 1), θ > 0.

a) Show W = − log(X) ∼ exponential(1/θ).
b) Find the method of moments estimator of θ.
c) Find the UMVUE of 1/θ2.
d) Find the Fisher information I1(θ).
e) Find the Cramér Rao lower bound for unbiased estimators of τ (θ) = 1/θ2.

Solution. a) Show f(w) = θe−wθ for w > 0.

b) E(X) =
∫ 1

0
θxθdx = θ/(θ + 1)

set
= X. So θ = θX + X, or θ(1 − X) = X. So

θ̂ =
X

1 −X
.

c) T = −
∑n

i=1 log(Xi) ∼ G(n, 1/θ) is complete and

E(T 2) =
1
θ2 Γ(2 + n)

Γ(n)
=
n(n + 1)

θ2
.

Or use

E(T 2) = V (T ) + [E(T )]2 =
n

θ2
+
(n
θ

)2

=
n2 + n

θ2
.

Hence
Γ(n)

Γ(2 + n)
T 2 =

T 2

n(n+ 1)

is the UMVUE of θ2 by LSU.
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d) Now log(f(x|θ) = log(θ) + (θ − 1) log(x). So
d

dθ
log(f(x|θ) =

1

θ
+ log(x), and

d2

dθ2
log(f(x|θ) =

−1

θ2
. This familay is a 1P-REF, so

I1(θ) = −Eθ

[
d2

dθ2
log(f(x|θ)

]
= 1/θ2.

e) Now τ ′(θ) = −2θ−3, and CRLB =
[τ ′(θ)]2

nI1(θ)
=

4

nθ4
.

6.43. (Jan. 2015 QUAL): (Y , S2) is complete sufficient.
a) Y + S2 by LSU.

b) Using Y S2, get E

(
cnY

S2

)
=

µ

σ2
=
cnµ

σ2
= cnµE

(
1

S2

)
.

Using
n− 1

σ2
S2 ∼ χ2

n−1, show E

(
1

S2

)
=
n− 1

n− 3

1

σ2
. So cn =

n− 3

n− 1
.

6.44. (Aug. 2016 Qual): Assume the service time of a customer at a store follows
a Pareto distribution with minimum waiting time equal to θ minutes. The maximum
length of the service is dependent on the type of the service. Suppose X1, ..., Xn is a
random sample of service times of n customers, where each Xi has a Pareto density given
by

f(x|θ) =

{
4θ4x−5 x ≥ θ,
0 x < θ

for an unknown θ > 0. WE are interested in estimating the parameter θ.
a) Write the likelihood function for observed values x1, ..., xn of X1, ..., Xn.

b) Find a sufficient statistics for θ. Call it θ̂.

c) Derive the distribution function and probability density function of θ̂.

d) Determine the bias and mean squared error of θ̂.

e) Derive the value of an that makes anθ̂ an unbiased estimator of θ.

f) Is the unbiased estimator anθ̂ the uniformly minimum-variance unbiased estimator
(UMVUE) of θ ? explain.

Solution:
a)

L(θ|x1, . . . , xn) =
n∏

i=1

fθ(xi) =
n∏

i=1

4θ4x−5
i I[θ,∞)(xi) = 4nθ4nI[θ,∞)(x(1))

n∏

i=1

x−5
i

where x(1) is the first order statistics.
b) By factorization theorem, we have

f(x|θ) = 4nθ4nI[θ,∞)(x(1))
n∏

i=1

x−5
i = g(T (x)|θ)h(x)

where T (x) = X(1). Therefore, θ̂ = X(1) is a sufficient statistics.
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c) The distribution function:

FX(1)
(t) = P (X(1) ≤ t) = 1 − P (X(1) > t) = 1 − P (X1 > t, . . . , Xn > t)

= 1 − P (X1 > t) . . . P (Xn > t) = 1 −
n∏

i=1

P (Xi > t)

= 1 − (1 − FX(t))n = 1 − (
θ

t
)4n

The density function:

fX(1)
(t) =

d

dt
FX(1)

(t) =

{
4nθ4nt−4n−1 t ≥ θ,
0 t < θ

d)

Bias(θ̂) = E[θ̂] − θ = E[T (x)]− θ =
4nθ

4n − 1
− θ =

1

4n− 1
θ

MSE(θ̂) = MSE(T (x)) = V ar(T (x)) + Bias(T (x))2

=
4nθ2

(4n − 1)2(4n − 2)
+

θ2

(4n − 1)2

e) From part d) we have

E[θ̂] = E[T (x)] =
4nθ

4n− 1
,

therefore,

E[
4n− 1

4n
θ̂] = E[

4n− 1

4n
T (x)] = θ,

that is, an = 4n−1
4n

.

f) Yes, anθ̂ is the UMVUE of θ. Because it is an unbiased estimator, and also it is a
function of the complete sufficient statistics X(1). Then, based on the Lehmann-Scheffe
Theorem, it is the UMVUE.

To show that T (x) = X(1) is complete, we need to show if E[g(T )] = 0 for all θ,
implies P (g(T ) = 0) = 1 for all θ. The following “method” is not quite right because
there may be functions g such that E(g(T )) is not differentiable.

Suppose for all θ, g(t) is a function that satisfying

E[g(T )] =

∫ ∞

θ

g(t)4nθ4n 1

t4n+1
dt = 0
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Then, by taking derivative on both sides of this, we have

0 =
d

dθ
E[g(T )] =

d

dθ

∫ ∞

θ

g(t)4nθ4n 1

t4n+1
dt

= θ4n d

dθ

∫ ∞

θ

g(t)4n
1

t4n+1
dt+

( d
dθ
θ4n
) ∫ ∞

θ

g(t)4n
1

t4n+1
dt

= −θ4ng(θ)4n
1

θ4n+1
+ 0

= −4ng(θ)
1

θ

Since 4ng(θ)1
θ

= 0, and 4n1
θ
6= 0, it must be that g(θ) = 0, and this is true for every

θ > 0, therefore T (x) = X(1) is a complete statistics.
6.45. (Jan. 2018 Qual): Let Y1, ..., Yn be independent identically distributed random

variables with pdf
f(y|θ) = θyθ−1I(0 < y < 1), θ > 0.

Then − log(Y ) ∼ exponential(1/θ).

a) Find I1(θ).
b) Find the Cramer Rao lower bound (CRLB) for unbiased estimators of θ2.
c) Find the uniformly minimum unbiased estimator (UMVUE) of 1/θ2.
Solution: a) Note that f(y|θ) = θI(0 < y < 1) exp[(θ − 1) log(y)] is the pdf of a

1PREF. Now log(f(y|θ)) = log(θ) + (θ − 1) log(y), and

d

dθ
log(f(y|θ)) =

1

θ
+ log(y).

So
d2

dθ2
log(f(y|θ)) =

−1

θ2
.

For a 1PREF, I1(θ) = −E(1/θ2) = 1/θ2.
b) If τ (θ) = θ2, then τ ′(θ) = 2θ, and

CRLB =
[τ ′(θ)]2

nI1(θ)]
=

4θ2

n 1
θ2

=
4θ4

n
.

c) Let Wi = − log(Yi) and Tn = W =
−1

n

∑
log(Yi) ∼

1

n
G(n, 1/θ). Then

E(T 2
n) = W [(W )2] = V (W ) + [E(W )]2 =

V (W )

n
+ [E(W )]2 =

1

nθ2
+

1

θ2

n

n
=
n+ 1

nθ2
.

Hence by LSU, the UMVUE is

n

n + 1
T 2

n =
n

n+ 1

(−∑ log(Yi)

n

)2

.
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6.46. (Jan 2019 Qual): Let X1, ..., Xn be independent and identically distributed
(iid) from a distribution with probability density function (pdf)

f(x) = e−(x−θ)

where θ ≤ x <∞. Hence f(x) = 0 for x < θ.
a) Find the method of moments estimator of θ.
b) Let T = min(X1, ..., Xn) = X(1). To estimate θ, consider estimators of the form

T + c. Determine the value of c which gives the smallest mean square error.
c) T is the MLE of θ and T is a complete sufficient statistic for θ. Find the UMVUE

of θ.
Solution: Y = X − θ ∼ EXP (1)

a) E(Y ) = 1 so E(X) = θ + 1
set
= X. Thus θ̂MM = X − 1.

b) Let T = X(1). Then show fT (t) = ne−(t−θ)n for t > 0. Hence T ∼ EXP (θ, 1/n)
and E(T ) = θ + 1/n. Then MSE(T + c) = Vθ(T + c) = [biasθ(T + c)]2 =
Vθ(T ) + [Eθ(T + c) − θ]2 = a+ (θ + 1/n+ c − θ)2 which is minimized by c = −1/n.

c) E(T − 1/n) = θ so T − 1/n = X(1) − 1/n is the UMVUE by LSU.
6.47. (Sept. 2022 Qual): Let Y1, ..., Yn be iid with probability density function (pdf)

f(y) =
2

σ
√

2π

θyθ−1

1 − yθ
exp

(−1

2σ2
[log(1 − yθ)]2

)

where 0 < y < 1, θ > 0 is known, and σ2 > 0. Then t(Y ) = [log(1 − Y θ)]2 ∼
G

(
1

2
, 2σ2

)
.

a) Find a complete sufficient statistic for σ.
b) Find I1(σ).
c) Find the UMVUE of σ2.
d) Find the Cramér Rao lower bound (CRLB) for unbiased estimators of σ2.

Solution: a) This family is a 1PREF. Hence T (Y ) =
∑n

i=1[log(1−Y θ
i )]2 is a complete

sufficient statistic.
b)

log(f(y)) = d− log(σ) − 1

2σ2
t(y)

d

dσ
log(f(y)) =

−1

σ
+
t(y)

σ3

d2

dσ2
log(f(y)) =

1

σ2
− 3t(y)

σ4

I1(σ) =
1

σ2
+

3

σ4
E(t(Y )) =

1

σ2
+

3

σ4
σ2 = 2/σ2.

c) T (Y ) =
∑n

i=1 t(Yi) ∼ G(n/2, 2σ2). Thus E(T (Y )/n) = σ2 and T (Y )/n is the
UMVUE of σ2.

d) Let τ (σ) = σ2. then τ ′(σ) = 2σ and

CRLB =
[τ ′(σ)]2

nI1(σ)
=

4σ2σ2

2n
=

2σ4

n
.
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6.48. (Feb. 2023 Qual): Suppose Y1, ..., Yn are iid with pdf
√

2

π

1

σ3
y2I(y > 0) exp

(−1

2σ2
y2

)

where σ2 > 0 and W = Y 2 ∼ G(3/2, 2σ2).
a) Let Tn = cWn be an estimator of σ2. Find the mean square error (MSE) of Tn as

a function of c (and of σ and n).
b) Find the value c that minimizes the MSE. Prove that your value is the minimizer.

Solution: a) E(Tn) = cE(W n) = cE(W ) = c(3/2)2σ2 = 3cσ2.
V (Tn) = c2V (W n) = c2V (W )/n = c2(3/2)(4σ4/n) = 6c2σ4/n.

MSE(Tn) = V (Tn)+(E(Tn)−σ2)2 = 6c2σ4/n+(3cσ2−σ2)2 =
6c2σ4

n
+σ4(3c−1)2 = MSE(c).

b)
dMSE(c)

dc
=

12cσ4

n
+ 2σ4(3c− 1)3

set
= 0

or cσ412

n
+ cσ418 − 6σ4 = 0

or c

(
12

n
+ 18

)
= 6

or c =
6

(12/n) + 18
=

6n

12 + 18n
=

n

2 + 3n
.

d2MSE(c)

dc2
=

12σ4

n
+ 18σ4 > 0,

so c is the minimizer.
6.49. (Jan. 2025 Qual): Suppose Y is a random variable with probability density

function (pdf)

f(y) =
Γ(α+ β)

Γ(α)Γ(β)

(y − c)α−1(d− y)β−1

(d − c)α+β−1

where α > 0, β > 0 and c ≤ y ≤ d where c < d are known real numbers. Also, f(y) = 0
for y < c and y > d.

a) Show that the family of distributions f(y) = f(y|α, β) is a two parameter regular
exponential family.

b) Find a complete sufficient statistic for (α, β) if the sample size is n.
c) Now suppose β = 1 and d = c+ 1 so the pdf of Y is

f(y) = α(y − c)α−1

for c ≤ y ≤ c + 1. Let Y1, ..., Yn be independent and identically distributed (iid) ran-
dom variables from this distribution. Find the uniformly minimum variance unbiased
estimator (UMVUE) of 1/α. You may use the fact that

Tn = −
n∑

i=1

log(Yi − c) ∼ G(n, 1/α).

42



Solution. a)

f(y) = I[c,d](y)
Γ(α + β)

Γ(α)Γ(β)

1

(d − c)α+β−1
exp[(α− 1) log(y − c) + (β − 1) log(d− y)]

is a 2-parameter regular exponential family with η1 = α − 1, η2 = β − 1 and Ω =
(−1,∞) × (−1,∞).

b) (
∑n

i=1 log(Yi − c),
∑n

j=1 log(d− Yj)) by exponential family theory.
c) Then we have a 1 parameter regular exponential family with Tn a complete sufficient

statistic. Hence Tn/n is the UMVUE of 1/α since E(Tn/n) = 1/α.
7.6. (Aug. 2002 Qual): LetX1, ..., Xn be independent, identically distributed random

variables from a distribution with a beta(θ, θ) pdf

f(x|θ) =
Γ(2θ)

Γ(θ)Γ(θ)
[x(1 − x)]θ−1

where 0 < x < 1 and θ > 0.
a) Find the UMP (uniformly most powerful) level α test for Ho : θ = 1 vs. H1 : θ = 2.

b) If possible, find the UMP level α test for Ho : θ = 1 vs. H1 : θ > 1.

Solution. For both a) and b), the test is reject Ho iff
∏n

i=1 xi(1 − xi) > c where
Pθ=1[

∏n
i=1 xi(1 − xi) > c] = α.

7.10. (Jan. 2001 SIU and 1990 Univ. MN Qual): Let X1, ..., Xn be a random sample
from the distribution with pdf

f(x, θ) =
xθ−1e−x

Γ(θ)
, x > 0, θ > 0.

Find the uniformly most powerful level α test of

H: θ = 1 versus K: θ > 1.

Solution. H says f(x) = e−x while K says

f(x) = xθ−1e−x/Γ(θ).

The monotone likelihood ratio property holds for
∏
xi since then

fn(x, θ2)

fn(x, θ1)
=

(
∏n

i=1 xi)
θ2−1(Γ(θ1))

n

(
∏n

i=1 xi)θ1−1(Γ(θ2))n
= (

Γ(θ1)

Γ(θ2)
)n(

n∏

i=1

xi)
θ2−θ1

which increases as
∏n

i=1 xi increases if θ2 > θ1. Hence the level α UMP test rejects H if

n∏

i=1

Xi > c

43



where

PH(

n∏

i=1

Xi > c) = PH(
∑

log(Xi) > log(c)) = α.

7.11. (Jan 2001 Qual, see Aug 2013 Qual): Let X1, ..., Xn be independent identically
distributed random variables from aN(µ, σ2) distribution where the variance σ2 is known.
We want to test H0 : µ = µ0 against H1 : µ 6= µ0.

a) Derive the likelihood ratio test.

b) Let λ be the likelihood ratio. Show that −2 log λ is a function of (X − µ0).

c) Assuming that H0 is true, find P (−2 log λ > 3.84).

Solution. a) The likelihood function

L(µ) = (2πσ2)−n/2 exp[
−1

2σ2

∑
(xi − µ)2]

and the MLE for µ is µ̂ = x. Thus the numerator of the likelihood ratio test statistic is
L(µ0) and the denominator is L(x). So the test is reject H0 if λ(x) = L(µ0)/L(x) ≤ c
where α = Pµ0(λ(X) ≤ c).

b) As a statistic, logλ = logL(µ0) − logL(X) =
− 1

2σ2 [
∑

(Xi −µ0)
2 −∑(Xi −X)2] = −n

2σ2 [X−µ0]
2 since

∑
(Xi −µ0)

2 =
∑

(Xi −X +X−
µ0)

2 =
∑

(Xi −X)2 + n(X − µ0)
2. So −2 log λ = n

σ2 [X − µ0]
2.

c) −2 log λ ∼ χ2
1 and from a chi–square table, P (−2 log λ > 3.84) = 0.05.

7.12. (Aug. 2001 Qual): Let X1, ..., Xn be iid from a distribution with pdf

f(x) =
2x

λ
exp(−x2/λ)

where λ and x are both positive. Find the level α UMP test for Ho : λ = 1 vs H1 : λ > 1.

7.13. (Jan. 2003 Qual): Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) =
(log θ)θx

θ − 1

where 0 < x < 1 and θ > 1. Find the UMP (uniformly most powerful) level α test of
Ho : θ = 2 vs. H1 : θ = 4.

Solution. Let θ1 = 4. By Neyman Pearson lemma, reject Ho if

f(x|θ1)

f(x|2) =

(
log(θ1)

θ1 − 1

)n

θ
P

xi

1

(
1

log(2)

)n
1

2
P

xi
> k

iff (
log(θ1)

(θ1 − 1) log(2)

)n(
θ1

2

)P
xi

> k

44



iff (
θ1

2

)P
xi

> k′

iff ∑
xi log(θ1/2) > c′.

So reject Ho iff
∑
Xi > c where Pθ=2(

∑
Xi > c) = α.

7.14. (Aug. 2003 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables from a distribution with pdf

f(x) =
x2 exp

(
−x2

2σ2

)

σ3
√

2 Γ(3/2)

where σ > 0 and x ≥ 0.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ = 1 vs. H1 : σ = 2 ?

b) If possible, find the UMP level α test for Ho : σ = 1 vs. H1 : σ > 1.

Solution. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.

The LHS =
1

23n exp[−1
8

∑
x2

i ]

exp[−1
2

∑
x2

i ]

So reject Ho if
1

23n
exp[

∑
x2

i (
1

2
− 1

8
)] > k′

or if
∑
x2

i > k where PHo(
∑
x2

i > k) = α.

b) In the above argument, with any σ1 > 1, get

∑
x2

i (
1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.15. (Jan. 2004 Qual): LetX1, ..., Xn be independent identically distributed random
variables from a distribution with pdf

f(x) =
2

σ
√

2π

1

x
exp

(−[log(x)]2

2σ2

)

45



where σ > 0 and x ≥ 1.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ = 1 vs. H1 : σ = 2 ?

b) If possible, find the UMP level α test for Ho : σ = 1 vs. H1 : σ > 1.

Solution. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.

The LHS =
1
2n exp[−1

8

∑
[log(xi)]

2]

exp[−1
2

∑
[log(xi)]2]

So reject Ho if
1

2n
exp[

∑
[log(xi)]

2(
1

2
− 1

8
)] > k′

or if
∑

[log(Xi)]
2 > k where PHo(

∑
[log(Xi)]

2 > k) = α.

b) In the above argument, with any σ1 > 1, get

∑
[log(xi)]

2(
1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.16. (Aug. 2004 Qual): Suppose X is an observable random variable with its pdf
given by f(x), x ∈ R. Consider two functions defined as follows:

f0(x) =

{
3
64
x2 0 ≤ x ≤ 4

0 elsewhere

f1(x) =

{
3
16

√
x 0 ≤ x ≤ 4

0 elsewhere.

Determine the most powerful level α test for H0 : f(x) = f0(x) versus Ha : f(x) =
f1(x) in the simplest implementable form. Also, find the power of the test when α = 0.01

Solution. The most powerful test will have the following form.
Reject H0 iff f1(x)

f0(x)
> k.

But f1(x)
f0(x)

= 4x−
3
2 and hence we reject H0 iff X is small, i.e. reject H0 is X < k for

some constant k. This test must also have the size α, that is we require:
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α = P (X < k) when f(x) = f0(x)) =
∫ k

0
3
64
x2dx = 1

64
k3,

so that k = 4α
1
3 .

For the power, when k = 4α
1
3

P [X < k when f(x) = f1(x)] =
∫ k

0
3
16

√
xdx =

√
α.

When α = 0.01, the power is = 0.10.

7.17. (Sept. 2005 Qual): Let X be one observation from the probability density
function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the most powerful level α test of H0 : θ = 1 versus H1 : θ = 2.

b) For testing H0 : θ ≤ 1 versus H1 : θ > 1, find the size and the power function of

the test which rejects H0 if X >
5

8
.

c) Is there a UMP test of H0 : θ ≤ 1 versus H1 : θ > 1? If so, find it. If not, prove so.

7.19. (Jan. 2009 Qual): LetX1, ..., Xn be independent identically distributed random
variables from a half normal HN(µ, σ2) distribution with pdf

f(x) =
2

σ
√

2π
exp

(−(x− µ)2

2σ2

)

where σ > 0 and x > µ and µ is real. Assume that µ is known.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 vs. H1 : σ2 = 4 ?

b) If possible, find the UMP level α test for H0 : σ2 = 1 vs. H1 : σ2 > 1.

Solution. a) By the NP lemma reject Ho if

f(x|σ2 = 4)

f(x|σ2 = 1)
> k′.

The LHS =
1
2n exp[(−

P
(xi−µ)2

2(4)
)]

exp[(−
P

(xi−µ)2

2
)]

.

So reject Ho if
1

2n
exp[

∑
(xi − µ)2(

−1

8
+

1

2
)] > k′

or if
∑

(xi − µ)2 > k where Pσ2=1(
∑

(Xi − µ)2 > k) = α.

Under Ho,
∑

(Xi − µ)2 ∼ χ2
n so k = χ2

n(1 − α) where P (χ2
n > χ2

n(1 − α)) = α.

b) In the above argument,

−1

2(4)
+ 0.5 =

−1

8
+ 0.5 > 0
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but −1

2σ2
1

+ 0.5 > 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(σ2) = −1/(2σ2)
is an increasing function of σ2 with T (Xi) = (Xi − µ)2. Hence the test in a) is UMP for
a) and b) by Theorem 7.3.

7.20. (Aug. 2009 Qual): Suppose that the test statistic T (X) for testing H0 : λ = 1
versus H1 : λ > 1 has an exponential(1/λ1) distribution if λ = λ1. The test rejects H0 if
T (X) < log(100/95).

a) Find the power of the test if λ1 = 1.

b) Find the power of the test if λ1 = 50.
c) Find the pvalue of this test.

Solution. E[T (X)] = 1/λ1 and the power = P(test rejects H0) = Pλ1(T (X) <
log(100/95)) = Fλ1(log(100/95))
= 1 − exp(−λ1 log(100/95)) = 1 − (95/100)λ1 .

a) Power = 1 − exp(− log(100/95)) = 1 − exp(log(95/100)) = 0.05.
b) Power = 1 − (95/100)50 = 0.923055.
c) Let T0 be the observed value of T (X). Then pvalue = P (W ≤ T0) where W ∼

exponential(1) since under H0, T (X) ∼ exponential(1). So pvalue = 1 − exp(−T0).

7.21. (Aug. 2009 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables from a Burr type X distribution with pdf

f(x) = 2 τ x e−x2

(1 − e−x2

)τ−1

where τ > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : τ = 2 versus H1 : τ = 4 ?

b) If possible, find the UMP level α test for H0 : τ = 2 versus H1 : τ > 2.

Solution. Note that

f(x) = I(x > 0) 2x e−x2

τ exp[(τ − 1)(log(1 − e−x2

))]

is a one parameter exponential family and w(τ ) = τ−1 is an increasing function of τ. Thus
the UMP test rejects H0 if T (x) =

∑n
i=1 log(1 − e−x2

i ) > k where α = Pτ=2(T (X) > k).
Or use NP lemma.
a) Reject Ho if

f(x|τ = 4)

f(x|τ = 1)
> k.

The LHS =
4n

2n

∏n
i=1(1 − e−x2

i )4−1

∏n
i=1(1 − e−x2

i )
= 2n

n∏

i=1

(1 − e−x2
i )2.
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So reject Ho if
n∏

i=1

(1 − e−x2
i )2 > k′

or
n∏

i=1

(1 − e−x2
i ) > c

or
n∑

i=1

log(1 − e−x2
i ) > d

where

α = Pτ=2(
n∏

i=1

(1 − e−x2
i ) > c).

b) Replace 4 − 1 by τ1 − 1 where τ1 > 2. Then reject H0 if

n∏

i=1

(1 − e−x2
i )τ1−2 > k′

which gives the same test as in a).

7.22. (Jan. 2010 Qual): LetX1, ..., Xn be independent identically distributed random
variables from an inverse exponential distribution with pdf

f(x) =
θ

x2
exp

(−θ
x

)

where θ > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : θ = 1 versus H1 : θ = 2 ?

b) If possible, find the UMP level α test for H0 : θ = 1 versus H1 : θ > 1.

Solution. By exponential family theory, the UMP test rejects H0 if
T (x) = −∑n

i=1
1
xi
> k where Pθ=1(T (X) > k) = α.

Alternatively, use the Neyman Pearson lemma:
a) reject Ho if

f(x|θ = 2)

f(x|θ = 1)
> k′.

The LHS =
2n exp(−2

∑
1
xi

)

exp(−
∑

1
xi

)
.

So reject Ho if

2n exp[(−2 + 1)
∑ 1

xi
] > k′

or if −∑ 1
xi
> k where P1(−

∑
1
xi
> k) = α.
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b) In the above argument, reject H0 if

2n exp[(−θ1 + 1)
∑ 1

xi
] > k′

or if −
∑

1
xi
> k where P1(−

∑
1
xi
> k) = α for any θ1 > 1. Hence the UMP test is the

same as in a).

7.23. (Sept. 2010 Qual): Suppose that X is an observable random variable with its
pdf given by f(x). Consider the two functions defined as follows: f0(x) is the probability
density function of a Beta distribution with α = 1 and β = 2 and and f1(x) is the pdf of
a Beta distribution with α = 2 and β = 1.

a) Determine the UMP level α = 0.10 test for H0 : f(x) = f0(x) versus H1 : f(x) =
f1(x). (Find the constant.)

b) Find the power of the test in a).

Solution. a) We reject H0 iff f1(x)
f0(x)

> k. Thus we reject H0 iff 2x
2(1−x)

> k. That is
1−x

x
< k1, that is 1

x
< k2, that is x > k3. Now 0.1 = P (X > k3) when f(x) = f0(x), so

k3 = 1 −
√

0.1.
7.24. (Sept. 2010 Qual): The pdf of a bivariate normal distribution is f(x, y) =

1

2πσ1σ2(1 − ρ2)1/2
exp

(
−1

2(1 − ρ2)

[(
x− µ1

σ1

)2

− 2ρ

(
x− µ1

σ1

)(
y − µ2

σ2

)
+

(
y − µ2

σ2

)2
])

where −1 < ρ < 1, σ1 > 0, σ2 > 0, while x, y, µ1, and µ2 are all real. Let (X1, Y1), ..., (Xn, Yn)
be a random sample from a bivariate normal distribution.
Let θ̂(x,y) be the observed value of the MLE of θ, and let θ̂(X,Y ) be the MLE as a
random variable. Let the (unrestricted) MLEs be µ̂1, µ̂2, σ̂1, σ̂2, and ρ̂. Then

T1 =

n∑

i=1

(
xi − µ̂1

σ̂1

)2

=
nσ̂2

1

σ̂2
1

= n, and T3 =

n∑

i=1

(
yi − µ̂2

σ̂2

)2

=
nσ̂2

2

σ̂2
2

= n,

and T2 =
n∑

i=1

(
xi − µ̂1

σ̂1

)(
yi − µ̂2

σ̂2

)
= nρ̂.

Consider testing H0 : ρ = 0 vs. HA : ρ 6= 0. The (restricted) MLEs for µ1, µ2, σ1 and
σ2 do not change under H0, and hence are still equal to µ̂1, µ̂2, σ̂1, and σ̂2.

a) Using the above information, find the likelihood ratio test for H0 : ρ = 0 vs.
HA : ρ 6= 0. Denote the likelihood ratio test statistic by λ(x,y).

b) Find the large sample (asymptotic) likelihood ratio test that uses test statistic
−2 log(λ(x,y)).

Solution. a) Let k = [2πσ1σ2(1 − ρ2)1/2]. Then the likelihood L(θ) =

1

kn
exp

(
−1

2(1 − ρ2)

n∑

i=1

[(
xi − µ1

σ1

)2

− 2ρ

(
xi − µ1

σ1

)(
yi − µ2

σ2

)
+

(
yi − µ2

σ2

)2
])

.
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Hence

L(θ̂) =
1

[2πσ̂1σ̂2(1 − ρ̂2)1/2]n
exp

( −1

2(1 − ρ̂2)
[T1 − 2ρ̂T2 + T3]

)

=
1

[2πσ̂1σ̂2(1 − ρ̂2)1/2]n
exp(−n)

and

L(θ̂0) =
1

[2πσ̂1σ̂2]n
exp

(−1

2
[T1 + T3]

)

=
1

[2πσ̂1σ̂2]n
exp(−n).

Thus λ(x,y) =

L(θ̂0)

L(θ̂)
= (1 − ρ̂2)n/2.

So reject H0 if λ(x,y) ≤ c where α = supθ∈Θo
P (λ(X ,Y ) ≤ c). Here Θo is the set of

θ = (µ1, µ2, σ1, σ2, ρ) such that the µi are real, σi > 0 and ρ = 0, i.e., such that Xi and
Yi are independent.

b) Since the unrestricted MLE has one more free parameter than the restricted MLE,
−2 log(λ(X ,Y )) ≈ χ2

1, and the approximate LRT rejects H0 if −2 log λ(x,y) > χ2
1,1−α

where P (χ2
1 > χ2

1,1−α) = α.

7.26. (Aug. 2012 Qual): Let Y1, ..., Yn be independent identically distributed random
variables with pdf

f(y) = eyI(y ≥ 0)
1

λ
exp

[−1

λ
(ey − 1)

]

where y > 0 and λ > 0.

a) Show that W = eY − 1 ∼ λ

2
χ2

2.

b) What is the UMP (uniformly most powerful) level α test for
H0 : λ = 2 versus H1 : λ > 2?

c) If n = 20 and α = 0.05, then find the power β(3.8386) of the above UMP test if
λ = 3.8386. Let P (χ2

d ≤ χ2
d,δ) = δ. The tabled values below give χ2

d,δ.

d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
30 14.953 18.493 20.599 24.478 34.800 40.256 43.773 50.892
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691

Solution. b) This family is a regular one parameter exponential family where w(λ) =
−1/λ is increasing. Hence the level α UMP test rejects H0 when∑n

i=1(e
yi − 1) > k where α = P2(

∑n
i=1(e

Yi − 1) > k) = P2(T (Y ) > k).

c) Since T (Y ) ∼ λ

2
χ2

2n,
2T (Y )

λ
∼ χ2

2n. Hence

α = 0.05 = P2(T (Y ) > k) = P (χ2
40 > χ2

40,1−α),
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and k = χ2
40,1−α = 55.758. Hence the power

β(λ) = Pλ(T (Y ) > 55.758) = P (
2T (Y )

λ
>

2(55.758)

λ
) = P (χ2

40 >
2(55.758)

λ
)

= P (χ2
40 >

2(55.758)

3.8386
) = P (χ2

40 > 29.051) = 1 − 0.1 = 0.9.

7.27. (Jan. 2013 Qual): Let Y1, ..., Yn be independent identically distributed N(µ =
0, σ2) random variables with pdf

f(y) =
1√

2πσ2
exp

(−y2

2σ2

)

where y is real and σ2 > 0.

a) Show W = Y 2 ∼ σ2χ2
1.

b) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 versus H1 : σ2 > 1?

c) If n = 20 and α = 0.05, then find the power β(3.8027) of the above UMP test if
σ2 = 3.8027. Let P (χ2

d ≤ χ2
d,δ) = δ. The tabled values below give χ2

d,δ.

d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
30 14.953 18.493 20.599 24.478 34.800 40.256 43.773 50.892
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691

Solution. b) This family is a regular one parameter exponential family where w(σ2) =
−1/(2σ2) is increasing. Hence the level α UMP test rejects H0 when∑n

i=1 y
2
i > k where α = P1(

∑n
i=1 Y

2
i ) > k) = P1(T (Y ) > k).

c) Since T (Y ) ∼ σ2χ2
n,
T (Y )

σ2
∼ χ2

n. Hence

α = 0.05 = P1(T (Y ) > k) = P (χ2
20 > χ2

20,1−α),

and k = χ2
20,1−α = 31.410. Hence the power

β(σ) = Pσ(T (Y ) > 31.41) = P (
T (Y )

σ2
>

31.41

σ2
) = P (χ2

20 >
31.41

3.8027
)

= P (χ2
20 > 8.260) = 1 − 0.01 = 0.99.

7.28. (Aug. 2013 Qual): Let Y1, ..., Yn be independent identically distributed random
variables with pdf

f(y) =
y

σ2
exp

[
−1

2

( y
σ

)2
]

where σ > 0, µ is real, and y ≥ 0.

a) Show W = Y 2 ∼ σ2χ2
2. Equivalently, show Y 2/σ2 ∼ χ2

2.
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b) What is the UMP (uniformly most powerful) level α test for
H0 : σ = 1 versus H1 : σ > 1?

c) If n = 20 and α = 0.05, then find the power β(
√

1.9193) of the above UMP test if
σ =

√
1.9193. Let P (χ2

d ≤ χ2
d,δ) = δ. The above tabled values for problem 7.27 give χ2

d,δ.

Solution. a) Let X = Y 2/σ2 = t(Y ). Then Y = σ
√
X = t−1(X). Hence

dt−1(x)

dx
=
σ

2

1√
x

and the pdf of X is

g(x) = fY (t−1(x))

∣∣∣∣
dt−1(x)

dx

∣∣∣∣ =
σ
√
x

σ2
exp

[
−1

2

(
σ
√
x

σ

)2
]

σ

2
√
x

=
1

2
exp(−x/2)

for x > 0, which is the χ2
2 pdf.

b) This family is a regular one parameter exponential family where w(σ) = −1/(2σ2)
is increasing. Hence the level α UMP test rejects H0 when∑n

i=1 y
2
i > k where α = P1(

∑n
i=1 Y

2
i > k) = P1(T (Y ) > k).

c) Since T (Y ) ∼ σ2χ2
2n,

T (Y )

σ2
∼ χ2

2n. Hence

α = 0.05 = P1(T (Y ) > k) = P (χ2
40 > χ2

40,1−α),

and k = χ2
40,1−α = 55.758. Hence the power

β(σ) = Pσ(T (Y ) > 55.758) = P (
T (Y )

σ2
>

55.758

σ2
) = P (χ2

40 >
55.758

σ2
)

= P (χ2
40 >

55.758

1.9193
) = P (χ2

40 > 29.051) = 1 − 0.1 = 0.9.

7.29. (Aug. 2012 Qual): Consider independent random variables X1, ..., Xn, where
Xi ∼ N(θi, σ

2), 1 ≤ i ≤ n, and σ2 is known.
a) Find the most powerful test of

H0 : θi = 0, ∀i, versus H1 : θi = θi0, ∀i,

where θi0 are known. Derive (and simplify) the exact critical region for a level α test.
b) Find the likelihood ratio test of

H0 : θi = 0, ∀i, versus H1 : θi 6= 0, for some i.

Derive (and simplify) the exact critical region for a level α test.
c) Find the power of the test in (a), when θi0 = n−1/3, ∀i. What happens to this

power expression as n→ ∞?

Solution: a) In Neyman Pearson’s lemma, let θ = 0 if H0 is true and θ = 1 if H1 is
true. Then want to find f(x|θ = 1)/f(x|θ = 0) ≡ f1(x)/f0(x). Since

f(x) =
1

(
√

2π σ)n
exp[

−1

2σ2

n∑

i=1

(xi − θi)
2],
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f1(x)

f0(x)
=

exp[ −1
2σ2

∑n
i=1(xi − θi0)

2]

exp[ −1
2σ2

∑n
i=1 x

2
i ]

= exp(
−1

2σ2
[

n∑

i=1

(xi − θi0)
2 −

n∑

i=1

x2
i ]) =

exp(
−1

2σ2
[−2

n∑

i=1

xiθi0 +
n∑

i=1

θ2
i0]) > k′

if
−1

2σ2
[−2

n∑

i=1

xiθi0 +
n∑

i=1

θ2
i0]) > k” or if

∑n
i=1 xiθi0 > k.UnderHo,

∑n
i=1 Xiθi0 ∼ N(0, σ2

∑n
i=1 θ

2
i0).

Thus ∑n
i=1 Xiθi0

σ
√∑n

i=1 θ
2
i0

∼ N(0, 1).

By Neyman Pearson’s lemma, reject Ho if
∑n

i=1 Xiθi0

σ
√∑n

i=1 θ
2
i0

> z1−α

where P (Z < z1−α) = 1 − α when Z ∼ N(0, 1).
b) The MLE under Ho is θ̂i = 0 for i = 1, ..., n, while the unrestricted MLE is θ̂i = xi

for i = 1, ..., n since xi = xi when the sample size is 1. Hence

λ(x) =
L(θ̂i = 0)

L(θ̂i = xi)
=

exp[ −1
2σ2

∑n
i=1 x

2
i ]

exp[ −1
2σ2

∑n
i=1(xi − xi)2]

= exp[
−1

2σ2

n∑

i=1

x2
i ] ≤ c′

if
−1

2σ2

n∑

i=1

x2
i ] ≤ c”, or if

∑n
i=1 x

2
i ≥ c. Under Ho, Xi ∼ N(0, σ2), Xi/σ ∼ N(0, 1), and

∑n
i=1X

2
i /σ

2 ∼ χ2
n. So the LRT is reject Ho if

∑n
i=1 X

2
i /σ

2 ≥ χ2
n,1−α where P (W ≥

χ2
n,1−α) = 1 − α if W ∼ χ2

n.
c) Power = P(reject Ho) =

P

(
n−1/3

∑n
i=1Xi

σ
√
n n−2/3

> z1−α

)
= P

(
n−1/3

∑n
i=1 Xi

σ n1/6
> z1−α

)
=

P

(
n−1/2

∑n
i=1Xi

σ
> z1−α

)
= P (

n∑

i=1

Xi > σ z1−α n
1/2)

where

n∑

i=1

Xi ∼ N(n n−1/3, n σ2) ∼ N(n2/3, n σ2). So

∑n
i=1Xi − n2/3

√
n σ

∼ N(0, 1), and power = P

(∑n
i=1 Xi√
n σ

> z1−α

)
=

P

(∑n
i=1 Xi − n2/3

√
n σ

> z1−α − n2/3

√
n σ

)
= 1 − Φ

(
z1−α − n2/3

√
n σ

)
=

1 − Φ

(
z1−α − n1/6

σ

)
→ 1 − Φ(−∞) = 1
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as n→ ∞.
7.31. (Jan. 2014 Qual): Let X1, ..., Xm be iid from a distribution with pdf

f(x) = µxµ−1,

for 0 < x < 1 where µ > 0. Let Y1, ..., Yn be iid from a distribution with pdf

g(y) = θyθ−1,

for 0 < y < 1 where θ > 0. Let

T1 =
m∑

i=1

log(Xi) and T2 =
n∑

j=1

log(Yi).

Find the likelihood ratio test statistic for H0 : µ = θ versus H1 : µ 6= θ in terms of T1, T2

and the MLEs. Simplify.
Solution: L(µ) = µm exp[(µ− 1)

∑
log(xi)], and

log(L(µ)) = m log(µ) + (µ − 1)
∑

log(xi). Hence

d log(L(µ))

dµ
=
m

µ
+
∑

log(xi)
set
= 0.

Or µ
∑

log(xi) = −m or µ̂ = −m/T1, unique. Now

d2 log(L(µ))

dµ2
=

−m
µ2

< 0.

Hence µ̂ is the MLE of µ. Similarly θ̂ =
−n∑n

j=1 log(Yj)
=

−n
T2
. Under H0 combine the two

samples into one sample of size m+ n with MLE

µ̂0 =
−(m+ n)

T1 + T2
.

Now the likelihood ratio statistic

λ =
L(µ̂0)

L(µ̂, θ̂)
=

µ̂m+n
0 exp[(µ̂0 − 1)(

∑
log(Xi) +

∑
log(Yi))]

µ̂mθ̂n exp[(µ̂− 1)
∑

log(Xi) + (θ̂ − 1)
∑

log(Yi)]

=
µ̂m+n

0 exp[(µ̂0 − 1)(T1 + T2)]

µ̂mθ̂n exp[(µ̂− 1)T1 + (θ̂ − 1)T2]
=

µ̂m+n
0 exp[−(m+ n)] exp[−(T1 + T2)]

µ̂mθ̂n exp(−m) exp(−n) exp[−(T1 + T2)]

=
µ̂m+n

0

µ̂mθ̂n
=

(
−(m+n)
T1+T2

)m+n

(
−m
T1

)m (−n
T2

)n .
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7.32. (Aug. 2014 Qual): If Z has a half normal distribution, Z ∼ HN(0, σ2), then
the pdf of Z is

f(z) =
2√

2π σ
exp

(−z2

2σ2

)

where σ > 0 and z ≥ 0. Let X1, ..., Xn be iid HN(0, σ2
1) random variables and let Y1, ..., Ym

be iid HN(0, σ2
2) random variables that are independent of the X’s.

a) Find the α level likelihood ratio test for H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 6= σ2

2 . Simplify
the test statistic.

b) What happens if m = n?
Solution: a)

(σ̂2
1 , σ̂

2
2) =

(∑n
i=1X

2
i

n
,

∑m
i=1 Y

2
i

m

)

is the MLE of (σ2
1, σ

2
2), and that under the restriction σ2

1 = σ2
2 = σ2

0, say, then the
restricted MLE

σ̂2
0 =

∑n
i=1 X

2
i +

∑m
i=1 Y

2
i

n+m
.

Now the likelihood ratio statistic

λ =
L(σ̂2

0)

L(σ̂2
1, σ̂

2
2)

=

1
σ̂m+n
0

exp
[

−1
2σ̂2

0
(
∑n

i=1 x
2
i +

∑m
i=1 y

2
i )
]

1
σ̂n
1

exp
[

−1
2σ̂2

1

∑n
i=1 x

2
i

]
1

σ̂m
2

exp
[

−1
2σ̂2

2

∑m
i=1 y

2
i )
]

=

1
σ̂m+n
0

exp
[
−(n+m

2
)
]

1
σ̂n
1

exp(−n/2) 1
σ̂m
2

exp(−m/2) =
σ̂n

1 σ̂
m
2

σ̂m+n
0

.

So reject H0 if λ(x,y) ≤ c where α = supσ2∈Θo
P (λ(X ,Y ) ≤ c). Here Θo is the set

of σ2
1 = σ2

2 ≡ σ2 such that the Xi and Yi are iid.
b) Then

λ(x,y) =
σ̂n

1 σ̂
n
2

σ̂2n
0

≤ c

is equivalent to
σ̂1σ̂2

σ̂2
0

≤ k.

7.33. (Aug. 2016 QUAL): Let θ > 0 be known. Let X1, ..., Xn be independent,
identically distributed random variables from a distribution with a pdf

f(x) =
λθλ

xλ+1

for x > θ where λ > 0. Note that f(x) = 0 for x ≤ θ.
a) Find the UMP (uniformly most powerful) level α test for

H0 : λ = 1 vs. H1 : λ = 2.

b) If possible, find the UMP level α test for H0 : λ = 1 vs. H1 : λ > 1.
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Solution: ab)

f(x) =
I(x > θ)

x
λθλ exp(λ[− log(x)])

is a 1PREF where w(λ) = λ is increasing. Hence the UMP level α test rejects H0 if
T (x) = −∑n

i=1 xi > c where α = P1(−
∑n

i=1 Xi > c).

7.34. (Aug. 2016 QUAL): Let X1, X2, . . . , X15 denote a random sample from the
density function

f(x|θ) =

{
1
θ
4x3e−x4/θ x > 0;

0 x ≤ 0,

where θ > 0 is an unknown parameter.

a) Find the rejection region for the most powerful (MP) test of H0 : θ = 2 against
HA : θ = θ1, θ1 > 2, at α = .05. (Hint: X4

i /θ ∼ Exponential(1).)
b) If you observe

∑15
i=1 x

4
i = 46.98, what is the p-value?

c) Suppose we decide to reject H0 at level α = 0.05, then what is your decision based
on part b)?

d) What is the approximate power of your MP test at θ1 = 5 ?
e) Is your MP test also a uniformly most powerful (UMP) test for testing H0 : θ = 2

versus HA : θ > 2? Give reasons.
d δ

0.034 0.05 0.1 0.25 0.75 0.9 0.95 0.975 0.99
15 6.68 7.26 8.55 11.04 19.31 22.31 25.00 27.49 30.58
30 17.51 18.49 20.60 24.48 34.80 40.26 43.77 46.98 50.89
40 25.31 26.51 29.05 33.66 47.27 51.81 55.76 59.34 63.69

Solution:
An easier way to do much of this problem is to not that the distribution is a 1PREF

with w(θ) = −1/θ an increasing function of θ and t(x) = x4. Hence reject H0 if∑n
i=1X

4
i > c.

a) We can use the Neyman-Pearson Lemma for specifying the rejection region. Let
R represents the rejection region.

X ∈ R if
f(x|θ1)

f(x|θ0)
> k ⇒

f(x|θ1)

f(x|θ = 2)
=

2n
∏15

i=1 4x3
i e

−x4
i /θ1

θn
1

∏15
i=1 4x3

i e
−x4

i /2
=
( 2

θ1

)n
exp

{θ1 − 2

2θ1

15∑

i=1

x4
i

}

Since θ1 > 2, then
( 2

θ1

)n
exp

{θ1 − 2

2θ1

15∑

i=1

x4
i

}
> k ⇔

15∑

i=1

x4
i > c

So

R =
{
X :

15∑

i=1

X4
i > c

}
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We should determine the c in such way that the size of the test be equal α = .05. i.e.,

Pθ0(X ∈ R) = α ⇒ Pθ0(
15∑

i=1

X4
i > c) = .05

From the hint, we have
∑15

i=1
X4

i

θ0
∼ Gamma(15, 1) or 2

∑15
i=1

X4
i

θ0
∼ χ2

(30), and since θ0 = 2,

therefore
∑15

i=1 X
4
i ∼ χ2

(30); hence we can conclude that c = χ2
(30, 0.05)=43.77. Or

R =
{
X :

15∑

i=1

X4
i > 43.77

}
.

b)

p-value = sup
θ∈Θ0

Pθ(
15∑

i=1

X4
i > 46.98) = Pθ=2(

15∑

i=1

X4
i > 46.98) = 0.0249

c)
Since p − value < α, we reject the null hypothesis in favor of HA. Or

∑15
i=1X

4
i =

46.98 > 43.77, so reject H0 by a).
d)
Note that the power function is given by

β(θ) = Pθ(X ∈ R) = Pθ(
15∑

i=1

X4
i > 43.77) = P (2

15∑

i=1

X4
i

θ
> 2

43.77

θ
)

= P (W > 2
43.77

θ
)

where W has chi-square distribution with 30 degree of freedom. Then, we can compute
the power of the test as follows

β(θ = 5) = P (W > 2
43.77

5
) = P (W > 17.5) = 0.966

e)
Let T =

∑15
i=1 X

4
i , then from the hint, it can be shown that T ∼ Gamma(15, θ), with

density function

fT (t|θ) =
1

Γ(15)

1

θ15
t14e−t/θ

Now, let θ2 > θ1, then it can be shown that the family of pdf {f(t|θ), θ ∈ Θ} has a MLR.
That is, the ratio

fT (t|θ2)

fT (t|θ1)
=
(θ1

θ2

)15
e

t( 1
θ1

− 1
θ2

)

is a increasing function of t. Then, by applying the Karlin-Rubin Theorem we can
conclude that the MP test given in part a) is UMP test for H0 : θ = 2 versus HA : θ > 2.
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7.35. (Jan. 2018 Qual): As in Problem 5.55, let X1, ..., Xn be iid from a Ku-
maraswamy distribution with pdf

f(x) = θxθ−1β(1 − xθ)β−1

where θ > 0 is known, β > 0, and 0 < x < 1. Then Y = − log(1 −Xθ) ∼ EXP (1/β)
with E(Y ) = 1/β, and if β = 0.5, then −∑n

i=1 log(1 − Xθ
i ) ∼ χ2

2n. Find the uniformly
most powerful level α test for H0 : β = 0.5 versus H1 : β > 0.5.

Solution: As in Problem 5.55a), this family is a 1PREF with w(β) = β−1 increasing
and t(x) = log(1 − xθ). Hence the UMP level α test rejects H0 if

∑n
i=1 log(1 −Xθ

i ) > k
where α = Pβ=0.5(

∑n
i=1 log(1 − Xθ

i ) > k) = P (χ2
2n < −k) with −k = χ2

2n,α where
P (χ2

2n < χ2
2n,α) = α.

7.36. (Jan. 2019 Qual): Let X ∼ binomial (2, θ). Consider tests for

H0 : θ =
1

2
versus H1 : θ =

3

4
.

Consider the most powerful (MP) test using the Neyman-Pearson Lemma when
(a) k = .2, .5, 1, 2.2; find the size of the MP test for each value of k.
(b) Consider k = .75; how do you find size of the MP test for this case?

Solution: Using the Neyman Pearson lemma gives reject H0 if the ratio
3x

4
> k. Take

γ = 0 since we are finding the level α = P1/2(reject H0) which depends on k.

Table 1:

x 0 1 2
P1/2(X = x) 1/4 2/4 1/4

ratio 3x

4
1/4 3/4 9/4

a) Refer to Table 12.1: k = 0.2 : α = P1/2(X = 0, 1, 2) = 1 (always reject H0)
k = 0.5 : α = P1/2(X = 1, 2) = 3/4
k = 1 : α = P1/2(X = 2) = 1/4
k = 2.2 : α = P1/2(X = 2) = 1/4

(k = 2.5 : α = 0 (never reject H0))
b) k = 0.75 : α = P1/2(X = 2) = 1/4
7.37. (Jan. 2019 Qual): a) Suppose the likelihood function

L(λ) = Aλm
m∏

i=1

[(xi − µ) exp[−λ(Ri + 1)(xi − µ)2]] where A,m, µ and the Ri are known,

λ > 0, and xi > µ for i = 1, ..., m. Find the maximum likelihood estimator of λ.
b) Let Wm =

∑m
i=1(Ri + 1)(xi − µ)2. It can be shown that 2λWm ∼ χ2

2m. Consider a
level α = 0.1 test of H0 : λ = 5 versus HA : λ 6= 5. If m = 20 and Wm = 5.7 would you
fail to reject H0? Explain.

Let P (χ2
d ≤ χ2

d,δ) = δ. The tabled values below give χ2
d,δ.
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d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691

Solution: a) Show that the MLE is λ̂ = m/Wm where Wm is defined in b).
b) Fail to reject H0 if 2λWm ∈ [26.509, 55.768]. Since 2(5)5.7 = 57, reject H0.
Note that a χ2

40 random variable is approximately symmetric (approximately normal),
and to get a rejection region with α = 0.1 from the table, you need to use δ = 0.05, 0.95.
So reject H0 if 2λWm < 26.509 or if 2λWm > 55.768.

7.38. (Jan. 2019 Qual): Suppose Y1, ..., Yn are iid from a distribution with probability

mass function f(y) =
1

θ
for y = 1, ..., θ where θ is a nonnegative integer. Then the

likelihood function

L(θ) =
1

θn
I(θ ≥ Y(n))I(θ ∈ Z)

where Y(n) = max(Y1, ...., Yn), Z is the set of integers, the indicator function
I(θ ∈ A) = 1 if θ ∈ A, and I(θ ∈ A) = 0 if θ 6∈ A. Consider the likelihood ratio test
(LRT) for H0 : θ ≤ θ0 versus HA : θ > θ0 where θ0 is a known positive integer.

a) Find the likelihood ratio test statistic if θ0 ≥ Y(n).
b) Find the likelihood ratio test statistic if θ0 < Y(n). Do you rejectH0 or fail to reject

H0 in this case? Explain.
Solution: Note that L(θ) > 0 for θ = Y(n), Y(n) + 1, Y(n) + 2, ..... Hence the MLE

θ̂ = Y(n). If θ0 ≥ Y(n), then under H0, L(θ) > 0 for θ = Y(n), Y(n) + 1, Y(n) + 2, ..., L(θ0).

Hence θ̂0 = Y(n) if θ0 ≥ Y(n). If Y(n) > θ0, then H0 is not true, but L(0) = L(1) = · · · =

L(θ0) = 0. Hence θ̂0 = j for any j = 1, ..., θ0 if Y(n) > θ0. We will take θ̂0 = θ0 if Y(n) > θ0

since θ0 will be the j closest to θ̂.

a) If θ0 ≥ Y(n), then λ(y) =
L(θ̂0)

L(Y(n))
=
L(Y(n))

L(Y(n))
= 1.

b) If θ0 < Y(n), then λ(y) =
L(θ̂0)

L(Y(n))
=
supθ∈Θ0L(θ)

L(Y(n))
=

L(θ0)

L(Y(n))
= 0, and reject H0.

Note: if H0 is true, then P (Y(n) = θ0) → 1 fast as n→ ∞. Under a) fail to reject H0

and under b) reject H0 since λ(y) ∈ [0, 1]. No error is made under b), and the probability
of an error goes to 0 fast as n→ ∞ under a).

7.39. (Sept. 2022 Qual): Let (Xi, Yi) be independent identically distributed random
variables with pdf

fX,Y (x, y) = exp
[
−
(
xθ +

y

θ

)]

for i = 1, ..., n where the constant θ > 0, y > 0 and x > 0.
a) Find the maximum likelihood estimator (MLE) of θ.
b) Give the level α likelihood ratio test (LRT) for the null hypothesisH0 : θ = 1 versus an
alternative hypothesis H1 : θ 6= 1. Do not find the distribution on the LRT test statistic.

Solution: a)

L(θ) =
n∏

i=1

fX,Y (xi, yi) = exp(−θ
n∑

i=1

xi −
1

θ

n∑

i=1

yi)
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log(L(θ)) = −θ
n∑

i=1

xi −
1

θ

n∑

i=1

yi

d log(L(θ))

dθ
= −

n∑

i=1

xi +
1

θ2

n∑

i=1

yi
set
= 0, or θ2

n∑

i=1

xi =
n∑

i=1

yi

Hence

θ̂2 =

∑n
i=1 Yi∑n
i=1 Xi

, and θ̂ =

√∑n
i=1 Yi∑n
i=1 Xi

, unique.

d2 log(L(θ))

dθ2
=

−2

θ3

n∑

i=1

yi < 0

Thus θ̂ is the MLE.
b) Since θ̂0 = 1,

λ =
L(1)

L(θ̂)
=

exp(−∑n
i=1 xi −

∑n
i=1 yi)

exp(−
√Pn

i=1 yiPn
i=1 xi

∑n
i=1 xi −

√Pn
i=1 xiPn
i=1 yi

∑n
i=1 yi)

=

exp(−∑n
i=1 xi −

∑n
i=1 yi)

exp(−2
√∑n

i=1 xi

∑n
i=1 yi)

.

Then the α level LRT rejects H0 if λ ≤ c where α = P1(λ ≤ c).
7.40. (Feb. 2023 Qual): Let Y1, ..., Yn be iid from a distribution with probability

mass function

f(y) =
e−θ θy

(1 − e−θ) y!

for y = 1, 2, 3, ... where θ > 0. Find the uniformly most powerful level α test for H0 : θ = 1
versus H1 : θ > 1.

Solution:

f(y) =
1

y!
I [y ∈ {1, ...}] e−θ

1 − e−θ
exp[log(θ)y]

is a 1P–REF. Thus Θ = (0,∞), η = log(θ) and Ω = (−∞,∞). Since w(θ) = log(θ) is
increasing, the UMP level α test rejects H0 if T (y) > k and rejects H0 with probability
γ if T (y) = k where α = Pθ0(T (Y ) > k) + γPθ0(T (Y ) = k) where θ0 = 1 and T (Y ) =∑n

i=1 Yi.
7.41. (Jan. 2024 Qual): Suppose X1, ..., Xn are iid Uniform (θ1 = α− β, θ2 = α+ β)

random variables with pdf f(x) = 1/(2β) if α−β ≤ x ≤ α+β where θ1 < θ2, β > 0, and

α is a real number. Then the likelihood L(α, β) =
1

(2β)n
I(α− β ≤ x(1) ≤ x(n) ≤ α+ β).

Thus x(n) −x(1) ≤ τ = 2β and the maximum likelihood estimator of τ is τ̂ = X(n) −X(1).

Hence β̂ = τ̂ /2 regardless of the value of α. Then the profile likelihood

LP (α) = L(α, β̂) = cI

(
α − x(n) − x(1)

2
≤ x(1) ≤ x(n) ≤ α+

x(n) − x(1)

2

)
,
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and it can be shown that the MLE α̂ = (X(1) +X(n))/2. Then L(α̂, β̂) = 1/[X(n) −X(1)]
n

since the indicator for L(α̂, β̂) is equal to one.
Consider the likelihood ratio test (LRT) for the null hypothesis H0 : α = 0 versus

an alternative hypothesis H1 : α 6= 0. If H0 is true, then the Xi are iid U(−β, β).
Then α̂0 = 0 and it can be shown that β̂0 = Z = max(−X(1), X(n)) with likelihood

L0(α̂0, β̂0) = 1/(2Z)n since the indicator is equal to one. Let λ(x) be the likelihood ratio

test statistic. It can be shown that −2 log λ(x)
D→ χ2

2. Assume this approximation is
good for n = 6. Let the critical value for the following α = 0.05 test be χ2

2(0.05) = 5.99.
Suppose the ordered data from the uniform distribution are −0.4,−0.3,−0.2, 0.3, 0.4, 0.5

with n = 6. Compute −2 log λ(x). Does the LRT reject H0 or fail to reject H0? Explain.
Solution.

λ(x) =
L0(α̂0, β̂0)

L(α̂, β̂)
=

1/(2Z)n

1/[X(n) −X(1)]n
=

[
X(n) −X(1)

2Z

]n

=

[
0.5 − (−0.4)

2max(0.4, 0.5)

]6

= (0.9)6 = 0.5314. Hence −2 log λ(x) = −2 log(0.5314) = 1.2643 < 5.99. Fail to reject
H0.

7.42. (Aug. 2024 Qual.) Let Y1, ..., Yn be iid exponential (λ) random variables where
λ > 0.

a) Find the α level likelihood ratio test (LRT) for H0 : λ = 1 vs. H1 : λ 6= 1.
b) If λ(y) is the LRT test statistic of the above test, use the approximation

−2 log λ(y) ≈ χ2
d

for the appropriate degrees of freedom d to find the rejection region of the test in useful

form if α = 0.05. Use the table shown below.
Let P (χ2

d > χ2
d,δ) = δ. The tabled values below give χ2

d,δ (the upper tail cutoff).

d δ
0.01 0.025 0.05 0.1 0.15 0.25

1 6.63 5.02 3.84 2.71 2.07 1.32
2 9.21 7.38 5.99 4.61 3.79 2.77
3 11.34 9.35 7.81 6.25 5.32 4.11

Solution: a) λ̂ = Y , λ̂0 = 1, L(λ) = (1/λn)e−
P

yi/λ, and

λ(y) =
L(λ̂0)

L(λ̂)
=

e−
P

yi

1
[y]n

e−
P

yi/y
=

(y)ne−
P

yi

e−n
= (y)nen−ny = (y)nen−

P
yi .

Reject H0 if λ(y) ≤ c where α = P1(λ(y) ≤ c).
b) d = 1, reject H0 if −2 log(λ(y)) > χ2

1,0.05 = 3.84 where P (χ2
1 > χ2

1,0.05) = 0.05.
7.43. (Jan. 2025 Qual): Suppose X1, ..., Xn are iid EXP(λ) and Y1, ..., Ym are iid

EXP(2µ) where the Xi and Yi are independent.
a) If µ = λ, then the likelihood

L(λ) =
1

λn

1

(2λ)m
e−

Pn
i=1 Xi/λe−

Pm
j=1 Yj/(2λ) =

1

2m

1

λn+m
exp

[
−1

2λ

(
2

n∑

i=1

Xi +
m∑

j=1

Yj

)]
.
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Find the MLE of λ.
b) Find the likelihood ratio test statistic for testing H0 : µ = λ versus H1 : µ 6= λ.

Simplify the test statistic.

Solution. a) log(L(λ)) = −(n+m) log(λ) − 1

2λ

(
2

n∑

i=1

Xi +
m∑

j=1

Yj

)
. Thus

d log(λ)

dλ
=

−(n+m)

λ
+

1

2λ2

(
2

n∑

i=1

Xi +
m∑

j=1

Yj

)
set
= 0.

So 2
∑n

i=1Xi +
∑m

j=1 Yj = 2(n+m)λ or λ̂ =
2
∑n

i=1 Xi +
∑m

j=1 Yj

2(n +m)
, unique.

d2 log(λ)

dλ2
|λ̂ =

n+m

λ̂2
− 2(n +m)

λ̂2
=

−(n+m)

λ̂2
< 0.

b)

L(λ, µ|x,y) =
1

λn
exp(−

∑

i

Xi/λ)
1

(2µ)m
exp(−

∑

j

Yj/(2µ)).

Since λ̂ = X and 2̂µ = Y , we have µ̂ = Y /2. Thus

L(λ̂, µ̂|x,y) =
1

(X)n
exp(−

∑

i

Xi/X)
1

(2Y /2)m
exp(−

∑

j

Yj/Y ) =

1

(X)n

1

(Y )m
e−(n+m).

Now let λ̂0 be equal to the λ̂ given by a).

L(λ̂0) = L(λ̂0|x,y) =
1

2m

1

λ̂n+m
0

exp

[
−1

2λ̂0

(2
∑

i

Xi +
∑

j

Yj)

]
=

1

2m

1

λ̂n+m
0

e−(n+m).

Thus the likelihood ratio test statistic

λ(x,y) =
L(λ̂0|x,y)

L(λ̂, µ̂|x,y)
=

1

2m

1

λ̂n+m
0

(X)n(Y )m.

8.3. (Aug. 2003 Qual): Let X1, ..., Xn be a random sample from a population with
pdf

f(x) =

{
θxθ−1

3θ 0 < x < 3
0 elsewhere

The method of moments estimator for θ is Tn =
X

3 −X
.

a) Find the limiting distribution of
√
n(Tn − θ) as n→ ∞.
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b) Is Tn asymptotically efficient? Why?

c) Find a consistent estimator for θ and show that it is consistent.

Solution. a) E(X) = 3θ
θ+1

, thus
√
n(X − E(X))

D→ N(0, V (X)), where
V (X) = 9θ

(θ+2)(θ+1)2
. Let g(y) = y

3−y
, thus g′(y) = 3

(3−y)2
. Using the delta method,

√
n(Tn − θ)

D→ N(0, θ(θ+1)2

θ+2
).

b) It is asymptotically efficient if
√
n(Tn − θ)

D→ N(0, ν(θ)), where

ν(θ) =
d
dθ

(θ)

−E( d2

dθ2 lnf(x|θ))
.

But, E(( d2

dθ2 lnf(x|θ)) = 1
θ2 . Thus ν(θ) = θ2 6= θ(θ+1)2

θ+2
.

c) X → 3θ
θ+1

in probability. Thus Tn → θ in probability.

8.8. (Sept. 2005 Qual): Let X1, ..., Xn be independent identically distributed random
variables with probability density function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the MLE of
1

θ
. Is it unbiased? Does it achieve the information inequality

lower bound?

b) Find the asymptotic distribution of the MLE of
1

θ
.

c) Show that Xn is unbiased for
θ

θ + 1
. Does Xn achieve the information inequality

lower bound?

d) Find an estimator of
1

θ
from part (c) above using Xn which is different from the

MLE in (a). Find the asymptotic distribution of your estimator using the delta method.

e) Find the asymptotic relative efficiency of your estimator in (d) with respect to the
MLE in (b).

8.14. (Sept. 2022, Aug. 2018, Aug. 2015 Quals ): Let X1, ..., Xn be iid with cdf
F (x) = P (X ≤ x). Let Yi =
I(Xi ≤ x) where the indicator equals 1 if Xi ≤ x and 0, otherwise.

a) Find E(Yi).

b) Find VAR(Yi).

c) Let F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) for some fixed real number x. Find the limiting

distribution of
√
n
(
F̂n(x) − cx

)
for an appropriate constant cx.
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Solution: Yi ∼ bin(n = 1, F (x)) since an indicator random variable Yi takes on values
0 and 1, so Yi ∼ bin(n = 1, p) with p = to the probability of the indicator event:
p = P (Xi ≤ x) = F (x).

a) E(Yi) = np = 1F (x) = F (X)
b) V (Yi) = p(1 − p) = F (x)[1− F (x)]
c) Then √

n
(
F̂n(x) − F (x)

)
D→ N(0, F (x)[1− F (x)])

by the CLT since F̂n(x) = Y n and the Yi are iid.
8.17. (Jan. 2025 Qual): Suppose that Y1, ..., Yn are iid with E(Y ) = (1 − ρ)/ρ

and VAR(Y ) = (1 − ρ)/ρ2 where 0 < ρ < 1. a) Find the limiting distribution of

√
n

(
Y n − 1 − ρ

ρ

)
.

b) Find the limiting distribution of
√
n
[
g(Y n) − ρ

]
for appropriate function g.

Hint: want g(µ) such that g((1− ρ)/ρ) = ρ. So set µ = (1− ρ)/ρ and solve for ρ = g(µ).
Solution.

a)
D→ N

(
0,

1 − ρ

ρ2

)
by the CLT.

b) µ =
1 − ρ

ρ
=

1

ρ
−1 so ρ =

1

1 + µ
= g(µ). By the delta method,

√
n(g(Y )−g(µ))

D→

N(0, [g′(µ)]2τ 2) where τ 2 = (1 − ρ)/ρ2. Now g′(µ) =
d

dµ
(1 + µ)−1 =

−1

(1 + µ)2
. Thus

[
g′
(

1 − ρ

ρ

)]2

=

[
1

1 + 1−ρ
ρ

]4

=
1

(1 + 1
ρ
− 1)4

= ρ4.

Since g(µ) = ρ,
√
n
[
g(Y n) − ρ

] D→ N

(
0,
ρ4

ρ2
(1 − ρ)

)
∼ N(0, ρ2(1 − ρ)).

8.27. (Sept. 2005 Qual): Let X ∼ Binomial(n, p) where the positive integer n is
large and 0 < p < 1.

a) Find the limiting distribution of
√
n

(
X

n
− p

)
.

b) Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

c) Show how to find the limiting distribution of

[ (
X

n

)3

− X

n

]
when p =

1√
3
.

(Actually want the limiting distribution of

n

([ (
X

n

)3

− X

n

]
− g(p)

)

where g(θ) = θ3 − θ.)
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Solution. a) X
D
=
∑n

i=1 Yi where Y1, ..., Yn are iid Ber(ρ). Hence

√
n(
X

n
− ρ)

D
=

√
n(Y n − ρ)

D→ N(0, ρ(1 − ρ)).

b) Let g(p) = p2. Then g′(p) = 2p and by the delta method and a),

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g(
X

n
) − g(p)

)
D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

c) Refer to a) and Theorem 8.30. Let θ = p. Then g′(θ) = 3θ2 − 1 and g′′(θ) = 6θ.
Notice that

g(1/
√

3) = (1/
√

3)3 − 1/
√

3 = (1/
√

3)(
1

3
− 1) =

−2

3
√

3
= c.

Also g′(1/
√

3) = 0 and g′′(1/
√

3) = 6/
√

3. Since τ 2(p) = p(1 − p),

τ 2(1/
√

3) =
1√
3
(1 − 1√

3
).

Hence

n

[
g

(
Xn

n

)
−
( −2

3
√

3

) ]
D→ 1

2

1√
3
(1 − 1√

3
)

6√
3
χ2

1 = (1 − 1√
3
) χ2

1.

8.28. (Aug. 2004 Qual): Let X1, ..., Xn be independent and identically distributed
(iid) from a Poisson(λ) distribution.

a) Find the limiting distribution of
√
n ( X − λ ).

b) Find the limiting distribution of
√
n [ (X)3 − (λ)3 ].

Solution. a) By the CLT,
√
n(X − λ)/

√
λ

D→ N(0, 1). Hence
√
n(X − λ)

D→ N(0, λ).

b) Let g(λ) = λ3 so that g′(λ) = 3λ2 then
√
n[(X)3 − (λ)3]

D→ N(0, λ[g′(λ)]2) =
N(0, 9λ5).

8.29. (Jan. 2004 Qual): Let X1, ..., Xn be iid from a normal distribution with

unknown mean µ and known variance σ2. Let X =
Pn

i=1 Xi

n
and S2 = 1

n−1

∑n
i=1(Xi−X)2.

a) Show that X and S2 are independent.

b) Find the limiting distribution of
√
n((X)3 − c) for an appropriate constant c.

Solution. a) X is a complete sufficient statistic. Also, we have (n−1)S2

σ2 has a chi
square distribution with df = n − 1, thus since σ2 is known the distribution of S2 does
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not depend on µ, so S2 is ancillary. Thus, by Basu’s Theorem X and S2 are independent.

b) by CLT (n is large )
√
n(X−µ) has approximately normal distribution with mean

0 and variance σ2. Let g(x) = x3, thus, g
′

(x) = 3x2. Using delta method
√
n(g(X) −

g(µ)) goes in distribution to N(0, σ2(g
′

(µ))2) or
√
n(X

3 − µ3) goes in distribution to
N(0, σ2(3µ2)2).

8.34. (abc Jan. 2010 Qual): Let Y1, ..., Yn be independent and identically distributed
(iid) from a distribution with probability mass function f(y) = ρ(1−ρ)y for y = 0, 1, 2, ...
and 0 < ρ < 1. Then E(Y ) = (1 − ρ)/ρ and VAR(Y ) = (1 − ρ)/ρ2.

a) Find the limiting distribution of
√
n

(
Y − 1 − ρ

ρ

)
.

b) Show how to find the limiting distribution of g(Y ) = 1
1+Y

. Deduce it completely.

(This bad notation means find the limiting distribution of
√
n(g(Y )−c) for some constant

c.)

c) Find the method of moments estimator of ρ.

d) Find the limiting distribution of
√
n
(

(1 + Y ) − d
)

for appropriate constant d.
e) Note that 1 + E(Y ) = 1/ρ. Find the method of moments estimator of 1/ρ.

Solution. a)
√
n

(
Y − 1 − ρ

ρ

)
D→ N

(
0,

1 − ρ

ρ2

)

by the CLT.
c) The method of moments estimator of ρ is ρ̂ = 1

1+Y
.

d) Let g(θ) = 1 + θ so g′(θ) = 1. Then by the delta method,

√
n

(
g(Y ) − g(

1 − ρ

ρ
)

)
D→ N

(
0,

1 − ρ

ρ2
12

)

or
√
n

(
(1 + Y ) − 1

ρ

)
D→ N

(
0,

1 − ρ

ρ2

)
.

This result could also be found with algebra since 1+Y − 1
ρ

= Y +1− 1
ρ

= Y + ρ−1
ρ

=

Y − 1−ρ
ρ
.

e) Y is the method of moments estimator of E(Y ) = (1−ρ)/ρ, so 1+Y is the method
of moments estimator of 1 + E(Y ) = 1/ρ.

8.35. (Sept. 2010 Qual): Let X1, ..., Xn be independent identically distributed ran-
dom variables from a normal distribution with mean µ and variance σ2.

a) Find the approximate distribution of 1/X̄ . Is this valid for all values of µ?
b) Show that 1/X̄ is asymptotically efficient for 1/µ, provided µ 6= µ∗. Identify µ∗.

67



Solution. a)
√
n(X̄ − µ) is approximately N(0, σ2) Define g(x) = 1

x
, g′(x) = −1

x2 .

Using delta method
√
n( 1

X̄
− 1

µ
) has approximately N(0, σ2

µ4 ). Thus 1/X is approximately

N( 1
µ
, σ2

nµ4 ), provided µ 6= 0.

b) Using part a) 1
X

is asymptotically efficient for 1
µ

if

σ2

µ4
=




(
τ ′(µ)

)2

Eµ

(
∂
∂µ

ln f(X/µ)
)2




τ (µ) = 1
µ

τ ′(µ) = −1
µ2

ln f(x|µ) = −1
2

ln 2πσ2 − (x−µ)2

2σ2

E

[
∂

∂µ
ln f(X/µ)

]2

=
E(X − µ)2

σ4
=

1

σ2

Thus (
τ ′(µ)

)2

Eµ

[
∂
∂µ

ln f(X/µ)
]2 =

σ2

µ4
.

8.36. (Jan. 2011 Qual): Let Y1, ..., Yn be independent and identically distributed
(iid) from a distribution with probability density function

f(y) =
2y

θ2

for 0 < y ≤ θ and f(y) = 0, otherwise.
a) Find the limiting distribution of

√
n
(
Y − c

)
for appropriate constant c.

b) Find the limiting distribution of
√
n
(

log( Y ) − d
)

for
appropriate constant d.

c) Find the method of moments estimator of θk.

Solution. a) E(Y k) = 2θk/(k+2) so E(Y ) = 2θ/3, E(Y 2) = θ2/2 and V (Y ) = θ2/18.

So
√
n

(
Y − 2θ

3

)
D→ N

(
0,
θ2

18

)
by the CLT.

b) Let g(τ ) = log(τ ) so [g′(τ )]2 = 1/τ 2 where τ = 2θ/3. Then by the delta method,
√
n

(
log(Y ) − log

(
2θ

3

) )
D→ N

(
0,

1

8

)
.

c) θ̂k = k+2
2n

∑
Y k

i .

8.37. (Jan. 2013 Qual): Let Y1, ..., Yn be independent identically distributed discrete
random variables with probability mass function

f(y) = P (Y = y) =

(
r + y − 1

y

)
ρr(1 − ρ)y
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for y = 0, 1, . . . where positive integer r is known and 0 < ρ < 1. Then
E(Y ) = r(1 − ρ)/ρ, and V (Y ) = r(1 − ρ)/ρ2.

a) Find the limiting distribution of
√
n

(
Y − r(1 − ρ)

ρ

)
.

b) Let g(Y ) =
r

r + Y
. Find the limiting distribution of

√
n
(
g(Y ) − c

)
for appro-

priate constant c.

c) Find the method of moments estimator of ρ.

Solution: a)
√
n

(
Y − r(1 − ρ)

ρ

)
D→ N

(
0,
r(1 − ρ)

ρ2

)
by the CLT.

b) Let θ = r(1 − ρ)/ρ. Then

g(θ) =
r

r + r(1−ρ)
ρ

=
rρ

rρ+ r(1 − ρ)
= ρ = c.

Now

g′(θ) =
−r

(r + θ)2
=

−r
(r + r(1−ρ)

ρ
)2

=
−rρ2

r2
.

So

[g′(θ)]2 =
r2ρ4

r4
=
ρ4

r2
.

Hence by the delta method

√
n ( g(Y ) − ρ )

D→ N

(
0,
r(1 − ρ)

ρ2

ρ4

r2

)
= N

(
0,
ρ2(1 − ρ)

r

)
.

c) Y
set
= r(1 − ρ)/ρ or ρY = r − rρ or ρY + rρ = r or ρ̂ = r/(r + Y ).

8.38. (Aug. 2013 Qual): Let X1, ..., Xn be independent identically distributed uni-
form (0, θ) random variables where θ > 0.

a) Find the limiting distribution of
√
n(X − cθ) for an appropriate constant cθ that

may depend on θ.
b) Find the limiting distribution of

√
n[(X)2−kθ] for an appropriate constant kθ that

may depend on θ.
Solution: a) By the CLT,

√
n

(
X − θ

2

)
D→ N

(
0,
θ2

12

)
.

b) Let g(y) = y2. Then g′(y) = 2y and by the delta method,

√
n

(
X

2 − (
θ

2
)2

)
=

√
n

(
X

2 − θ2

4

)
=

√
n

(
g(X) − g(

θ

2
)

)
D→

N

(
0,
θ2

12
[g′(

θ

2
)]2
)

= N

(
0,
θ2

12

4θ2

4

)
= N

(
0,
θ4

12

)
.
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8.39. (Aug. 2014 Qual): Let X1, ..., Xn be independent identically distributed (iid)
beta(β, β) random variables.

a) Find the limiting distribution of
√
n( Xn − θ ), for appropriate constant θ.

b) Find the limiting distribution of
√
n( log(Xn) − d ), for appropriate constant d.

Solution. a) E(Xi) = β/(β + β) = 1/2 and V (Xi) =
β2

(2β)2(2β + 1)
=

1

4(2β + 1)
=

1

8β + 4
. So

√
n

(
Xn − 1

2

)
D→ N

(
0,

1

8β + 4

)

by the CLT.
b) Let g(x) = log(x). So d = g(1/2) = log(1/2). Now g′(x) = 1/x and (g′(x))2 =

1/x2. So (g′(1/2))2 = 4. So

√
n( log(Xn) − log(1/2) )

D→ N

(
0,

1

8β + 4
4

)
= N

(
0,

1

2β + 1

)

by the delta method.
8.40. (Jan. 2018 Qual): Let X1, ..., Xn be a random sample of size n from U(θ, 2θ).
a) Find a minimal sufficient statistic for θ.
b) Is the minimal sufficient statistic found in part (a) complete? Please justify your

answer.
c) Find the limiting distribution of

√
n(X − c) for an appropriate constant c.

d) Find the limiting distribution of
√
n(log(X) − d) for an appropriate constant d.

e) Let T = aX be an estimator of θ where a is a constant. Find the value a such that
minimizes the mean square error (MSE). Show that your answer is the minimizer.

Solution: a) Suppose statistic T (X) is a minimal sufficient statistics, then the ratio
f(X|θ)
f(Y|θ) does not depend on θ if and only if T (X) = T (Y). Here, the ratio is given as

f(X|θ)
f(Y|θ) =

(1/θ)nI{X(n)<2θ}I{X(1)>θ}

(1/θ)nI{Y(n)<2θ}I{Y(1)>θ}
.

This ratio does not depend on θ if and only if X(1) = Y(1) and X(n) = Y(n). Therefore,
T (X) = (X(1), X(n)) is a minimal sufficient statistics.

b) T (X) = (X(1), X(n)) obtained in part (a) is not complete, since

E(
n+ 1

n+ 2
X(1) −

n+ 1

2n + 1
X(n)) = 0

but

P (
n+ 1

n+ 2
X(1) −

n + 1

2n + 1
X(n) = 0) 6= 1.

c) We have E[X] = 3θ
2

and V ar(X) = θ2

12
.
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Therefore
√
n(X − 3θ

2
)

D−→ N(0, θ2

12
) by the CLT.

d) Let g(x) = log(x) so (g′(x))2 = 1/x2 where x = 3θ
2
. Then by using the delta

method we have

√
n
(
log(X) − log(

3θ

2
)
) D−→ N(0,

1

27
).

e) Note that

MSE(T ) = V ar(T ) + (E[T ] − θ)2

= V ar(aX) + (E[aX] − θ)2

= a2 θ
2

12n
+ (

3a

2
θ − θ)2 =

a2θ2

12n
+

(3a− 2)2

4
θ2.

then, we can minimizes MSE with respect to a as follows

dMSE(T )

da
=

2aθ2

12n
+

6(3a− 2)

4
θ2

by setting the derivative equal to zero and solving, we get a = 18n
1+27n

. This is a global
minimum, because

d2MSE(T )

da2
=

2θ2

12n
+

18

4
θ2 > 0.

8.41. Let Yn ∼ Poisson(n).

a) Find the limiting distribution of
√
n

(
Yn

n
− 1

)
.

b) Find the limiting distribution of
√
n

[ (
Yn

n

)2

− 1

]
.

Solution. a) Let Yn
D
=

n∑
i=1

Xi, where Xi are iid Poisson(1), then by central limit

theorem, we have
√
n

(
Yn

n
− 1

)
D→ N(0, 1).

b) Let g(t) = t2, g′(t) = 2t 6= 0. Using the Delta method, we have

√
n

[ (
Yn

n

)2

− 1

]
D→ N(0, 1(2 · 1)2) ∼ N(0, 4).

8.42. (Sept. 2022 Qual): Let Y1, ..., Yn be iid uniform U(θ, 2θ) for θ > 0 and iid
U(2θ, θ) for θ < 0.

a) Find the limiting distribution of
√
n[ Y − c] for appropriate constant c.

b) Find the limiting distribution of
√
n[ (Y )2 − d] for appropriate constant d.

Solution. E(Y ) = 3θ/2 and V (Y ) = θ2/12.

a)
√
n(Y − 3θ/2)

D→ N(0, θ2/12) by the CLT
b) Let g(µ) = µ2, g′(µ) = 2µ, and g′(3θ/2) = 3θ. Then by the delta method,

√
n[ (Y )2 − g(3θ/2)]

D→ N(0, [g′(3θ/2)]2θ2/12), or
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√
n

[
(Y )2 − 9θ2

4

]
D→ N

(
0,

9θ2θ2

12

)
∼ N

(
0,

9θ4

12

)
∼ N

(
0,

3θ4

4

)
.

8.43. (Jan. 2024 Qual): Let x1, ...,xk be iid with E(x) = µ where x is p × 1. Let
n = floor(k/2) = bk/2c be the integer part of k/2. So floor(100/2) = floor(101/2) =
50. Let the iid random variables Wi = xT

2i−1x2i for i = 1, ..., n. Hence W1,W2, ...,Wn =
xT

1 x2,x
T
3 x4, ...,x

T
2n−1x2n. Then E(Wi) = µT µ = θ ≥ 0 and V (Wi) = σ2

W .
a) Find the limiting distribution of

√
n(W − θ).

b) Find the limiting distribution of
√
n(
√
W −

√
θ).

Solution.

a)
√
n(W − θ)

D→ N(0, σ2
W ) by the CLT.

b) Let g(θ) =
√
θ with g′(θ) = 0.5θ−0.5. Then

√
n(
√
W −

√
θ)

D→ N(0, σ2
W [g′(θ)]2) ∼

N(0, 0.25σ2
W /θ) by the delta method provided θ > 0.

8.44. (Aug. 2024 Qual): Let W1, . . . ,Wn be iid random variables with probability
density function (pdf)

f(w|λ) =
3w2

λ
e−w3/λ if w > 0,

and f(w|λ) = 0, elsewhere, where λ > 0. Use E(W 3) = λ,

µ = E(W ) =
1

3
Γ(1/3) λ1/3, and σ2 = V (W ) =

(
2

3
Γ(2/3) − 1

9
[Γ(1/3)]2

)
λ2/3.

a) Find the method of moments estimator λ̂MM of λ based on W1, . . . ,Wn.
b) Give the asymptotic behavior of

√
n(λ̂MM − λ) as n → ∞. Derive the answer

which is given in simplified form in e). Hint: use the Delta Method with

g(µ) =

[
3µ

Γ(1/3)

]3

= λ.

c) Find the maximum likelihood estimator λ̂MLE of λ based on W1, . . . ,Wn.
d) Give the asymptotic behavior of

√
n(λ̂MLE − λ) as n→ ∞.

e) Find the asymptotic relative efficiency of λ̂MM relative to λ̂MLE . (Assume
√
n(λ̂MM−

λ)
D→ N(0, 1.18884λ2).)
Solution. a)

W
set
=

1

3
Γ(1, 3)λ1/3

gives

λ̂MM =

[
3W

Γ(1/3)

]3

.

b) By the CLT,
√
n(W − µ)

D→ N(0, σ2). By the Delta Method,
√
n(g(W ) − g(µ)) =√

n(λ̂MM − λ)
D→ N(0, [g′(µ)]2σ2). Now

g′(µ) = 3

[
3µ

Γ(1/3)

]2
3

Γ(1/3)
=

81µ2

[Γ(1/3)]3
=

81

[Γ(1/3)]3

[
1

3
Γ(1/3)λ1/3

]2

=
9

Γ(1/3)
λ2/3.
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Thus

[g′(µ)]2σ2 =

[
9

Γ(1/3)
λ2/3

]2

σ2 =
81

[Γ(1/3)]2
λ4/3

(
2

3
Γ(2/3) − 1

9
[Γ(1/3)]2

)
λ2/3 =

81

[Γ(1/3)]2

(
2

3
Γ(2/3) − 1

9
[Γ(1/3)]2

)
λ2 = cλ2.

Thus
√
n(λ̂MM − λ)

D→ N(0, cλ2).

c) Note that L(λ) = (a/λn)e−
P

w3
i /λ, and log(L(λ)) = d− n log(λ) −

∑
w3

i /λ. Thus

d log(L(λ))

dλ
= −n/λ +

∑
w3

i /λ
2 set

= 0,

or λ̂MLE =
1

n

n∑

i=1

W 3
i , unique. Now

d2 log(L(λ))

dλ2
= n/λ2 − 2

∑
w3

i /λ
3 |λ̂ = n/λ̂2 − 2nλ̂/λ̂3 = −n/λ̂2 < 0.

d) The family is a 1PREF. Now log(f(w|λ)) = log(3w2) − log(λ) − w3/λ, and

d log(f(w|λ))
dλ

=
−1

λ
+
w3

λ2
.

So
d2 log(f(w|λ))

dλ2
=

1

λ2
− 2w3

λ3
,

and

I1(λ) =
−1

λ2
+

2E[W 3]

λ3
=

−1

λ2
+

2λ

λ3
=

1

λ2
.

Thus
√
n(λ̂MLE − λ)

D→ N(0, 1/I1(λ)) ∼ N(0, λ2).
e) ARE(λ̂MM , λ̂MLE) = λ2/cλ2 = 1/c = 1/1.18884 = 0.8412 < 1
9.1. (Aug. 2003 Qual): Suppose that X1, ..., Xn are iid with the Weibull distribution,

that is the common pdf is

f(x) =

{
b
a
xb−1e−

xb

a 0 < x
0 elsewhere

where a is the unknown parameter, but b(> 0) is assumed known.

a) Find a minimal sufficient statistic for a.
b) Assume n = 10. Use the Chi-Square Table and the minimal sufficient statistic to

find a 95% two sided confidence interval for a.

Solution. a)
∑n

i=1X
b
i is minimal sufficient for a.

73



b) It can be shown that Xb

a
has an exponential distribution with mean 1. Thus,

2
Pn

i=1 Xib

a
is distributed χ2

2n. Let χ2
2n,α/2 be the upper 100(1

2
α)% point of the chi-square

distribution with 2n degrees of freedom. Thus, we can write

1 − α = P (χ2
2n,1−α/2 <

2
∑n

i=1 X
b
i

a
< χ2

2n,α/2)

which translates into (
2
∑n

i=1X
b
i

χ2
2n,α/2

,
2
∑n

i=1X
b
i

χ2
2n,1−α/2

)

as a two sided (1 − α) confidence interval for a. For α = 0.05 and n = 20, we have
χ2

2n,α/2 = 34.1696 and χ2
2n,1−α/2 = 9.59083. Thus the confidence interval for a is

(∑n
i=1 X

b
i

17.0848
,

∑n
i=1 X

b
i

4.795415

)
.

9.12. (Aug. 2009 qual): Let X1, ..., Xn be a random sample from a uniform(0, θ)
distribution. Let Y = max(X1, X2, ..., Xn).

a) Find the pdf of Y/θ.
b) To find a confidence interval for θ, can Y/θ be used as a pivot?
c) Find the shortest (1 − α)% confidence interval for θ.

Solution. a) Let Wi ∼ U(0, 1) for i = 1, ..., n and let Tn = Y/θ. Then

P (
Y

θ
≤ t) = P (max(W1, ...,Wn) ≤ t) =

P(all Wi ≤ t) = [FWi(t)]
n = tn for 0 < t < 1. So the pdf of Tn is

fTn(t) =
d

dt
tn = ntn−1

for 0 < t < 1.
b) Yes, the distribution of Tn = Y/θ does not depend on θ by a).
c) Not sure this is shortest. Let Wi = Xi/θ ∼ U(0, 1) which has cdf FZ(t) = t for

0 < t < 1. Let W(n) = X(n)/θ = max(W1, ...,Wn). Then

FW(n)
(t) = P (

X(n)

θ
≤ t) = tn

for 0 < t < 1 by a).
Want cn so that

P (cn ≤ X(n)

θ
≤ 1) = 1 − α

for 0 < α < 1. So
1 − FW(n)

(cn) = 1 − α or 1 − cn
n = 1 − α
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or
cn = α1/n.

Then (
X(n),

X(n)

α1/n

)

is an exact 100(1 − α)% CI for θ.
9.14. (Aug. 2016 Qual, continuation of Problem 6.44):

a) Find the distribution function of
bθ
θ
, and use it to explain why this is a pivotal

quantity.
b) Using this pivotal quantity, derive a statistics θ̂L such that P (θ̂L < θ) = 0.9.
c) Find the method of moments estimator of θ. Is this estimator unbiased?
d) Is the method of moments estimator consistent? Fully justify your answer.

e) How do you think the variance of anθ̂ compares to that of the method of moments
estimator, and why?

f) What is the MLE of θ? Is the MLE consistent?
Solution:
a) Refer to 6.44 c). Let Y =

bθ
θ
, then we have

Fy(y) = P (Y ≤ y) = P (
θ̂

θ
≤ y) = P (θ̂ ≤ θy) = P (X(1) ≤ θy) = FX(1)

(θy)

= 1 −
( θ
θy

)4n
= 1 −

(1
y

)4n

As it can been seen, the distribution of
bθ
θ

is independent of any parameter, and that is
the definition of a pivotal quantity.

b)
First, let us to find a b value such that

P (
θ̂

θ
≤ b) = 0.9 ⇒ 1 −

(1
b

)4n
= 0.9 ⇒ b = 101/4n

or

P (
θ̂

θ
≤ 101/4n) = 0.9 ⇒ P (

θ̂

101/4n
≤ θ) = 0.9

Therefore, θ̂L =
bθ

101/4n =
X(1)

101/4n .
c) MME:

µ′
1 = E[X] =

4

3
θ, m′

1 =
1

n

n∑

i=1

Xi = X̄

µ′
1 = m′

1 ⇒ θ̃ =
3

4
X̄

Check the unbiasedness of MME:

E[θ̃] = E[
3

4
X̄ ] =

3

4
E[X̄] =

3

4
∗ (

4

3
θ) = θ
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hence, θ̃ is an unbiased estimator.
d) One way to check the consistency of an estimator is to check the limits of its MSE,

it goes to zero, then the estimator is consistent. We have,

MSE(θ̃) = V ar(θ̃) + Bias(θ̃)

=
9

16
V ar(X̄) + 0 =

9

16

4θ2

18n
=
θ2

8n

then,

lim
n→∞

MSE(θ̃) = lim
n→∞

θ2

8n
= 0,

and this proves the consistency of the MM estimator.

An easier way is X
P→ E(X) by the WLLN, so 0.75X

P→ 0.75E(X) = θ.

e) The variance of anθ̂ should be less than the variance of any other unbiased estima-
tor, because we proved that the first one is the UMVUE. Also note that

V ar(anθ̂) = a2
nV ar(X(1)) =

(4n− 1

4n

)2 4nθ2

(4n − 1)2(4n − 2)
=

θ2

4n(4n − 2)
,

V ar(θ̃) =
θ2

8n
,

f) From part a) of Problem 6.44, we have

L(θ|x1, . . . , xn) =

n∏

i=1

fθ(xi) = 4nθ4nI[θ,∞)(x(1))

n∏

i=1

x−5
i .

The indicator can be written as I(0 < θ ≤ x(1)), so L(θ) > 0 on (0, x(1)], and
L(θ) ∝ θ4n is an increasing function on (0, x(1)]. (Make a sketch of L(θ).) Hence X(1) is
the MLE.

Alternatively, taking derivative with respect to θ (without considering the indicator
function) from the likelihood function we have

d

dθ
L(θ|x1, . . . , xn) = 4n(4n)θ4n−1

n∏

i=1

x−5
i > 0

Therefore, the likelihood function is a increasing function of θ on (0, x(1)]. Therefore X(1)

is the MLE of θ.
Following the argument in part d), and recall the MSE of X(1) from part d) of Problem

6.44, we have

lim
n→∞

MSE(X(1)) = lim
n→∞

V ar(X(1)) + lim
n→∞

Bias(X(1))
2

= lim
n→∞

4nθ2

(4n− 1)2(4n − 2)
+ lim

n→∞

θ2

(4n − 1)2
= 0,

which shows that the MLE is also consistent.
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9.15. (Jan. 2018 Qual): Let X1, ..., Xn be a random sample from the following
density function

f(x, θ) =
2√
πθ

exp{−x
2

θ
}, x > 0, θ > 0.

Hint: note that
2X2

1

θ
∼ χ2

1.
a) Find the likelihood ratio test of size α ∈ (0, 1) for H0 : θ = θ0 vs. HA : θ 6= θ0

b) Use the likelihood ratio test obtained in part (a) to obtain a 100(1−α)% confidence
interval for θ. Justify your answer.

Solution: a) The likelihood function is given as

L(θ) =
n∏

i=1

f(xi, θ) =
n∏

i=1

2√
πθ

exp{−X
2
i

θ
} = 2n(πθ)−n/2 exp{−

∑n
i=1X

2
i

θ
},

and it is easy to show that the MLE of θ is θ̂ =
2

Pn
i=1 X2

i

n
.

Then the likelihood ratio test statistic for H0 : θ = θ0 vs. HA : θ 6= θ0 is given by

λ(x) =
L(θ0)

L(θ̂)
=

2n(πθ0)
−n/2 exp{−

Pn
i=1 X2

i

θ0
}

2n(πθ̂)−n/2 exp{−
Pn

i=1 X2
i

bθ }
=

(
2
∑n

i=1X
2
i

nθ0

)n/2

exp

{
n

2
−
∑n

i=1X
2
i

θ0

}
.

Now let x =
2

Pn
i=1 X2

i

θ0
. Then the likelihood statistic λ above can be written as g(x) =

(
x
n

)n/2
exp{n−x

2
}, x > 0. It can be shown that the g(x) is a concave down (limx→0+ g(x) =

limx→∞ g(x) = 0), and takes its maximum at x = n with maximum value g(n) = 1. That
is, g(x) is increasing on (0, n] and decreasing on [n,∞]. Then, the test reject H0 if
λ(x) < c, if and only if x < c1 or x > c2, where 0 < c1 < n < c2 are constants satisfying
g(c1) = g(c2) = c, such that

α = Pθ0(x < c1 or x > c2) = Pθ0(
2
∑n

i=1 X
2
i

θ0
< c1 or

2
∑n

i=1 X
2
i

θ0
> c2)

which is equivalent to

α = 1 − Pθ0 (c1 <
2
∑n

i=1 X
2
i

θ0

< c2)

Under H0 : θ = θ0, we have
2

Pn
i=1 X2

i

θ0
∼ χ2

n. So we choose c1 = χ2
n,1−α/2 and c2 = χ2

n,α/2.

b) The acceptance region for the likelihood ratio test of size α for H0 : θ = θ0 is given
as

A(θ0) =
{
(X1, ..., Xn) : c1 <

2
∑n

i=1 X
2
i

θ0
< c2

}

By inverting the region, the 100(1 − α)% confidence region of θ is given {θ > 0 :
(X1, ..., Xn) ∈ A(θ)} which can be written as follows

{
θ > 0 : c1 <

2
∑n

i=1 X
2
i

θ
< c2

}
=

[
2
∑n

i=1 X
2
i

c2
,
2
∑n

i=1 X
2
i

c1

]
.
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