
EXAM3, FINAL REVIEW (and a review for some of the QUAL problems): No
notes will be allowed, but you may bring a calculator. Memorize the pmf or pdf f ,
E(Y ) and V(Y ) for the following RVs: 1) beta(δ, ν), 2) Bernoulli(ρ) = bin(k = 1, ρ),
3) binomial(k, ρ), 4) Cauchy(µ, σ), 5) chi-square(p) = gamma(ν = p/2, λ = 2),
6) exponential(λ) = gamma(ν = 1, λ), 7) gamma(ν, λ), 8) N(µ, σ2), 9) Poisson(θ), and
10) uniform(θ1, θ1). Sufficient, minimal sufficient, and complete sufficient statis-
tics will be on exam 2.

Memorize the mgf of the binomial, χ2
p, exponential, gamma, normal and Poisson dis-

tributions. You should memorize the cdf of the exponential and of the normal distribution

Φ(
y − µ

σ
). Know how to get the uniform cdf.

Let CB stand for Casella and Berger (2002) and BD 1st ed. or BD for
Bickel and Doksum (1977, 2007). Old for Olive (2008). Other references are
for Olive (2014).

From chapters 1 and 2 (CB ch. 1, 2, 3, 4, 5) you should know the sample space, con-
ditional probability, random variables, cdfs, pmfs, pdfs, how to find the distribution of a
function of a RV (Th. 2.13 p. 47; Old p. 51; CB th. 2.1.5, p. 51; BD p. 486), expected
values, mgfs, the kernel method, the binomial theorem, the Gamma function, location,
scale and location-scale families, random vectors, joint and marginal distributions, con-
ditional distributions, independence, the law of iterated expectations (Th. 2.10, p. 43;
Old p. 45; CB th. 4.4.3, p. 164; BD p. 481), Steiner’s formula (p. 43; Old p. 45; CB

th. 4.4.7, p. 167; BD p. 34), that the pdf of Y = t(X) is fY (y) = fX(t−1(y))
∣

∣

∣

dt−1(y)
dy

∣

∣

∣

for y ∈ Y (Th 2.13 p. 47), covariance, correlation, multivariate distributions, random
sample (CB th. 5.2.4, p. 212), (Th 2.15, p. 52; Old p. 56-7; CB lemma 5.2.5, p. 213),
(CB th. 5.2.6, p. 213-4), and (Th. 3.5, p. 92; Old p. 99; CB th. 5.2.11, p. 217; BD Th.
1.6.1, p. 51).

You should know the central limit theorem (Th. 8.1, p. 215; Old p. 203; CB p. 236;
BD p. 470). Know the t and F distributions (CB 5.3.2). Know how to find the pdf of
the min and the max (Th 4.2 p. 105, Old p. 110). Indicator functions (p. 110; Old p.
115; CB p. 113) are extremely important. Exponential families (Ch. 3; CB

∮

3.4; BD
∮

1.6) are extremely important.

Suppose W =
∑n

i=1 Yi or W = Y n where Y1, ..., Yi are independent. Be able to find
the distribution of W if i) Yi ∼ N(µi, σ

2
i ), ii) Yi ∼ Ber(p), iii) Yi ∼ bin(ni, p),

iv) Yi ∼ neg.bin.(1, p), v) Yi ∼ neg.bin.(ni, p), vi) Yi ∼ pois(λ), vii) Yi ∼ exp(λ), viii)
Yi ∼ gamma(αi, λ), ix) Yi ∼ χ2

ni
.

Given the pdf of Y or that Y is a brand name distribution, know how to show whether
Y belongs to an exponential family or not.

If Y belongs to an exponential family, know how to find the natural parameterization
and the natural parameter space Ω.

If Y belongs to an exponential family, know how to show whether Y belongs to a
k-parameter regular exponential family (kP-REF). In particular, if k = 2 you should be
able to show whether η1 and η2 satisfy a linearity constraint (plotted points fall on a line)
and whether t1 and t2 satisfy a linearity constraint, to plot Ω and to determine whether
Ω contains a 2-parameter rectangle.
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Section 4.1 (CB 5.3) is important, especially (Th 4.1, p. 103; Old p. 108; CB p.
218; BD p. 495). If Y1, ..., Yn are iid N(µ, σ2), know that Y and S2 are independent,
Y ∼ N(µ, σ2/n) and (n− 1)S2/σ2 ∼ χ2

n−1. Use these facts to find the distribution of S2.
Know that (Y − µ)/(S/

√
n) ∼ tn−1.

Dr. Olive usually uses problems from EIGHT basic questions for Exam 3,
the final and the qual. Other topics can be added and the qual is written by
at least 2 professors and often has additional topics.

1) Minimal sufficient and complete statistics
2) MLE
3) Method of Moments
4) Minimize MSE
5) UMVUE and FCRLB
6) UMP TEST with Neyman Pearson Lemma and exponential family theory
7) LRT
8) Large Sample Theory (CLT, Limiting Distribution of the MLE, Delta method,

consistency and asymptotic efficiency)

——————————–

1) Minimal Sufficient and Complete Statistics
(p. 108; Old p. 113; CB p. 272): A statistic T (Y1, ..., Yn) is a sufficient statistic

for θ if the conditional distribution of (Y1, ..., Yn) given T does not depend on θ.

(p. 111; Old p. 116; CB p. 280; BD p. 46): A sufficient statistic T (Y ) is a minimal
sufficient statistic if for any other sufficient statistic S(Y ), T (Y ) is a function of S(Y ).

(p. 112; Old p. 116; CB p. 285): Suppose that a statistic T (Y ) has a pmf or pdf
f(t|θ). Then T (Y ) is a complete sufficient statistic if Eθ[g(T )] = 0 for all θ implies
that
Pθ[g(T (Y )) = 0] = 1 for all θ.

(p. 114; Old p. 119; CB p. 280, 282): A one to one function of a sufficient, minimal
sufficient, or complete sufficient statistic is sufficient, minimal sufficient, or complete
sufficient respectively.

Factorization Theorem, (p. 108; Old p. 113; CB p. 276; BD p. 43): Let f(y|θ)
denote the pdf or pmf of a sample Y . A statistic T (Y ) is a sufficient statistic for θ iff
for all sample points y and for all parameter points θ ∈ Θ,

f(y|θ) = g(T (y)|θ)h(y)

where both g and h are nonnegative functions.

Note: if no such factorization exists for T , then T is not sufficient.

Lehmann-Scheffé (LSM) Theorem (p. 112; Old p. 116; CB p. 281): Let f(y|θ)
be the pmf or pdf of a sample Y . Let cx,y be a constant. Suppose there exists a function
T (y) such that for any two sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) =
cx,y for all θ in Θ iff T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for θ.
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Minimal and complete sufficient statistics for k-parameter exponential
families (Th. 4.5, p. 112; Old p. 117; CB p. 279, 288): Let Y1, ..., Yn be iid from an
exponential family f(y|θ) = h(y)c(θ) exp[

∑k
j=1 wj(θ)tj(y)] with the natural parameter-

ization f(y|η) = h(y)b(η) exp[
∑k

j=1 ηjtj(y)]. Then T (Y ) = (
∑n

i=1 t1(Yi), ...,
∑n

i=1 tk(Yi))
is

a) a minimal sufficient statistic for η if the ηj do not satisfy a linearity constraint and
for θ if the wj(θ) do not satisfy a linearity constraint.

b) a complete sufficient statistic for θ and for η if η is a one to one function of θ and
if Ω contains a k–dimensional rectangle.

Completeness of REFs (Cor. 4.6, p. 114; Old p. 118; CB th. 6.2.25, p. 288; BD
p. 123 1st ed.): Suppose that Y1, ..., Yn are iid from a kP–REF

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)]

with θ ∈ Θ, and f(y|η) = h(y)b(η) exp[
∑k

j=1 ηjtj(y)] with natural parameter η ∈ Ω.
Then

T (Y ) = (
n
∑

i=1

t1(Yi), ...,
n
∑

i=1

tk(Yi)) is

a) a minimal sufficient statistic for η and for θ,
b) a complete sufficient statistic for θ and for η if η is a one to one function of θ and if
Ω contains a k–dimensional rectangle.

For a 2-parameter exponential family (k = 2), η1 and η2 satisfy a linearity constraint
if the plotted points fall on a line in a plot of η1 versus η2. If the plotted points fall on
a nonlinear curve, then T is minimal sufficient but Ω does not contain a 2-dimensional
rectangle.

Tips for finding sufficient, minimal sufficient and complete sufficient statis-
tics. a) Typically Y1, ..., Yn are iid so the joint distribution f(y1, ..., yn) =

∏n
i=1 f(yi)

where f(yi) is the marginal distribution. Use the factorization theorem to find the
candidate sufficient statistic T .
b) Use factorization to find candidates T that might be minimal sufficient statistics. Try
to find T with as small a dimension k as possible. If the support of the random variable
depends on θ, often Y(1) or Y(n) will be a component of the minimal sufficient statistic.
To prove that T is minimal sufficient, use the LSM theorem. Alternatively prove
or recognize that Y comes from a regular exponential family. T will be minimal
sufficient for θ if Y comes from an exponential family as long as the wi(θ) do not satisfy
a linearity constraint.
c) To prove that the statistic is complete, prove or recognize that Y comes
from a regular exponential family. Check whether dim(Θ) = k, if dim(Θ) < k, then
the family is usually not a kP–REF and Th. 4.5 and Cor. 4.6 do not apply. The uniform
distribution where one endpoint is known also has a complete sufficient statistic.
d) Let k be free of the sample size n. Then a k−dimensional complete sufficient statistic
is also a minimal sufficient statistic (Bahadur’s theorem).
e) To show that a statistic T is not a sufficient statistic, either show that factorization
fails or find a minimal sufficient statistic S and show that S is not a function of T .
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f) To show that T is not minimal sufficient, first try to show that T is not a sufficient
statistic. If T is sufficient, find a minimal sufficient statistic S and show that T is not
a function of S. (Of course S will be a function of T .) The Lehmann-Scheffé (LSM)
theorem cannot be used to show that a statistic is not minimal sufficient.
g) To show that a sufficient statistics T is not complete, find a function g(T ) such that
Eθ(g(T )) = 0 for all θ but g(T ) is not equal to the zero with probability one. Finding
such a g is often hard, unless there are clues. For example, if T = (X, Y , ....) and µ1 = µ2,
try g(T ) = X − Y . As a rule of thumb, a k–dimensional minimal sufficient statistic
will generally not be complete if k > dim(Θ). In particular, if T is k–dimensional and θ

is j–dimensional with j < k (especially j = 1 < 2 = k) then T will generally not be
complete. If you can show that a k–dimensional sufficient statistic T is not minimal
sufficient (often hard), then T is not complete by Bahadur’s Theorem. Basu’s Theorem
can sometimes be used to show that a minimal sufficient statistic is not complete.

A common question takes Y1, ..., Yn iid U(hl(θ), hu(θ)) where the min = Y(1) and the
max = Y(n) form the 2-dimensional minimal sufficient statistic. Since θ is one dimensional,
the minimal sufficient statistic is not complete. State this fact, but if you have time find
Eθ[Y(1)] and Eθ[Y(n)]. Then show that Eθ[aY(1) + bY(n) + c] ≡ 0 so that T = (Y(1), Y(n)) is
not complete.

——————————————————————

2) MLEs

Def. (p. 129; Old 133; CB p. 290; BD p. 47): Let f(y|θ) be the pmf or pdf of a
sample Y . If Y = y is observed, then the likelihood function L(θ) = f(y|θ).

Note: it is crucial to observe that the likelihood function is a function of θ (and that
y1, ..., yn act as fixed constants).

Note: If Y1, ..., Yn is an independent sample from a population with pdf or pmf f(y|θ)
then the likelihood function

L(θ) = L(θ|y1, ..., yn) =
n
∏

i=1

f(yi|θ).

Def. (p. 129, Old 133; CB p. 316, BD p. 114): Let Y = (Y1, ..., Yn). For each
sample point y = (y1, ..., yn), let θ̂(y) be a parameter value at which L(θ|y) attains its
maximum as a function of θ with y held fixed. Then a maximum likelihood estimator
(MLE) of the parameter θ based on the sample Y is θ̂(Y ).

Note: If the MLE θ̂ exists, then θ̂ ∈ Θ.

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(θ|y), the log likelihood.

• Potential candidates can be found by differentiating the likelihood.

• The MLE can sometimes be found by direct maximization of the likelihood. (Sketch-
ing the likelihood function and (CB th. 5.2.4, p. 212) can be useful for this method.)

• Invariance Principle (p. 130; Old 134; CB p. 320; BD p. 114): If
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• θ̂ is the MLE of θ, then h(θ̂) is the MLE of h(θ).

You should know how to find the MLE for the normal distribution (including when
µ or σ2 is known, memorize the MLEs Y , S2

M =
∑n

i=1(Yi − Y )2/n,
∑n

i=1(Yi − µ)2/n) and
for the uniform distribution. Also Y is the MLE for several brand name distributions.

Know how to find the max and min of a function h that is continuous on an interval
[a,b] and differentiable on (a, b). Solve h′(x) ≡ 0 and find the places where h′(x) does not
exist. These values are the critical points. Evaluate h at a, b, and the critical points.
One of these values will be the min and one the max.

Assume h is continuous. Then a critical point θo is a local max of h(θ) if h is increasing
for θ < θo in a neighborhood of θo and if h is decreasing for θ > θo in a neighborhood of
θo. The first derivative test is often used.

If h is strictly concave (
d2

dθ2
h(θ) < 0 for all θ), then any local max of h is a global

max.

Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0, then θo is a

local max.

(p. 131; Old 135-6; CB p. 317). If h(θ) is a continuous function on an interval with
endpoints a < b (not necessarily finite), and differentiable on (a, b) and if the critical
point is unique, then the critical point is a global maximum if it is a local maximum
(because otherwise there would be a local minimum and the critical point would not
be unique). To show that θ̂ is the MLE (the global maximizer of logL(θ)), show that
logL(θ) is differentiable on (a, b) where Θ may contain the endpoints a and b. Then show
that θ̂ is the unique solution to the equation d

dθ
logL(θ) = 0 and that the 2nd derivative

evaluated at θ̂ is negative:
d2

dθ2
logL(θ)|θ̂ < 0.

Suppose X1, ..., Xn are iid with pdf or pmf f(x|λ) and Y1, ..., Yn are iid with pdf or
pmf g(y|µ). Suppose that the X’s are independent of the Y ’s. Then

sup
(λ,µ)∈Θ

L(λ, µ|x,y) ≤ sup
λ
Lx(λ) sup

µ
Ly(µ)

where Lx(λ) =
∏n

i=1 f(xi|λ). Hence if λ̂ is the marginal MLE of λ and µ̂ is the marginal
MLE of µ, then (λ̂, µ̂) is the MLE of (λ, µ) provided that (λ̂, µ̂) is in the parameter space
Θ.

Note: Finding the potential candidates for the MLE will get a lot of partial credit.
Sometimes showing that the MLE is actually the global max is unreasonable. Make an
attempt to show that the MLE is a global max, but do not waste much time if you get
stuck. On the other hand, you should always evaluate L(θ) or logL(θ) at the endpoints
a and b of Θ = [a, b].

(CB p. 322) shows how to use the Hessian to determine that (θ̂1, θ̂2) is a local max.
This is a very involved calculation and should be avoided if possible.

MLE for a REF (Barndorff–Nielsen 1982): Suppose that the natural parameteriza-
tion of the k-parameter regular exponential family is used so that Ω is a k-dimensional
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convex set (usually an open interval or cross product of open intervals). Then the log
likelihood function log L(η) is a strictly concave function of η. Hence if η̂ is a critical
point of log L(η) and if η̂ ∈ Ω then η̂ is the unique MLE of η. (The Hessian matrix of
2nd derivatives does not need to be checked!) If η is a one to one function of θ, then θ̂

is the MLE of θ by invariance.

Note: the MLE is usually a function of the minimal sufficient statistic.
On the qual, the N(µ, µ) and N(µ, µ2) distributions are common. (See problems

5.30 and 5.35.)
———————————————

3) Method of Moments

See
∮

5.2. Let µ̂j = 1
n

∑n
i=1 Y

j
i , let µj = E(Y j) and assume that µj = µj(θ1, ..., θk).

Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1, ..., θk)

for the method of moments estimator θ̃.

If g is a continuous function of the first k moments and h(θ) = g(µ1(θ), ..., µk(θ)),
then the method of moments estimator of h(θ) is
g(µ̂1, ..., µ̂k).

If the method of moments estimator is a sum or sample mean T =
∑n

i=1 Wi or T =
∑n

i=1Wi/n, you may need to find the limiting distribution of
√
n(T − E(T )) using the

central limit theorem. See 8).

————————————————-

4) Minimizing MSE

Def. (p. 157, Old p. 160) The bias of an estimator T ≡ T (Y1, ..., Yn) of τ (θ) is
B

τ (θ)
(T ) ≡ Bias(T) ≡ Bias

τ (θ)
(T) = Eθ(T) − τ (θ).

Def. (p. 157, Old p. 160) The MSE of an estimator T for τ (θ) is

MSE = Eθ[(T − τ (θ))2] = V arθ(T ) + [Bias
τ (θ)

(T)]2.

Def. (p. 157, Old p. 160) T is an unbiased estimator of τ (θ) if Eθ(T ) = τ (θ) for
all θ ∈ Θ.

For this type of problem, consider a class of estimators Tk(Y ) of τ (θ) where k ∈ Λ.
Find the MSE as a function of k and then find the value ko ∈ Λ that is the global
minimizer of MSE(k). This type of problem is a lot like the MLE problem except you
need to find the global min rather than the global max.

If Y1, ..., Yn are iid N(µ, σ2) then ko = n+ 1 will minimize the MSE for estimators of
σ2 of the form

S2(k) =
1

k

n
∑

i=1

(Yi − Y )2

where k > 0.
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This type of problem can be done if Tk = kS1(Y ) + (1− k)S2(Y ) where both S1 and
S2 are unbiased estimators of τ (θ) and 0 ≤ k ≤ 1.

———————————————

5) UMVUEs and FCRLB for Unbiased Estimators of a real valued function τ (θ)

Def. (p. 160; Old p. 163; CB p. 334): Let U ≡ U(Y1, ..., Yn) be an estimator of a real
valued function τ (θ). Then U is the UMVUE of τ (θ) if U is an unbiased estimator of
τ (θ) and if VARθ(U) ≤ VARθ(W) for all θ ∈ Θ where W is any other unbiased estimator
of τ (θ).

Lehmann-Scheffé LSU Th. (p. 160; Old p. 163; CB p. 347, 369; BD p. 122, 1st
ed.): If T (Y ) is a complete sufficient statistic for θ, then U = g(T (Y )) is the UMVUE of
τ (θ) = Eθ(U) = Eθ[g(T (Y ))]. In particular, if W (Y ) is any unbiased estimator of τ (θ),
then U ≡ E[W (Y )|T (Y )] is the UMVUE of τ (θ).

Note: This process is also called Rao-Blackwellization because of the following theo-
rem.

Rao-Blackwell th: LetW ≡ W (Y ) be an unbiased estimator of τ (θ) and let T ≡ T (Y )
be a sufficient statistic for θ. Then φ(T ) = E[W |T ] is an unbiased estimator of τ (θ) and
VARθ[φ(T )] ≤ VARθ(W ) for all θ ∈ Θ.

The following th. is sometimes useful when no complete sufficient statistic is available.

(CB Th 7.3.20, p. 344): If W is an unbiased estimator of τ (θ) then W is the UMVUE
of τ (θ) iff W is uncorrelated with all unbiased estimators U of zero. (The underlying
distribution for the expectations is the distribution of W .)

Def. (p. 162; Old 164; CB p. 338; BD p. 180): Let Y = (Y1, ..., Yn) have a pdf or
pmf f(y|θ). Then the information number or Fisher Information is

In(θ) = Eθ





[

∂

∂θ
log(f(Y |θ))

]2


 .

Let η = τ (θ) where τ ′(θ) 6= 0. Then In(η) ≡ In(τ (θ)) = In(θ)
[τ ′(θ)]2.

Let Y1, ..., Yn be independent with joint pdf or pmf f(y|θ) =
∏n

i=1 f(yi|θ). Then the
information number of Fisher Information is

In(θ) = Eθ[(
∂

∂θ
log

n
∏

i=1

f(Yi|θ))2].

Fact (p. 162; Old 165; CB p. 338): If Y comes from an exponential family, then

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ[

∂2

∂θ2
log f(Y |θ)].

Fact (p. 162; Old 165; CB p. 338): If the derivative and integral operators can be
interchanged, and if Y1, ..., Yn are iid (ie the data are iid from a REF), then In(θ) = nI1(θ).
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(p. 90; Old 97; CB Lemma p. 337): If Y comes from an exponential family, then

d

dθ

∫

...
∫

g(y)f(y|θ)dy =
∫

...
∫

g(y)
∂

∂θ
f(y|θ)dy

for any function g(y) with Vθ[w(Y )] <∞. Replace integrals by sums for a pmf.

Fréchet Cramér Rao Lower Bound or Information Inequality: (p. 164; Old
p. 167) Let Y1, ..., Yn be iid with joint pdf or pmf f(x|θ) that satisfies the above lemma.
Let W (Y1, ..., Yn) be any estimator of τ (θ) ≡ Eθ[W (Y )]. Then

Vθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[ d
dθ
EθW (Y )]2

Eθ[(
∂
∂θ

log f(Y |θ))2]
=

[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
.

The quantity
[τ ′(θ)]2

nI1(θ)
= FCRLBn(τ (θ)) is the Fréchet Cramér Rao lower bound

(FCRLB) for the variance of unbiased estimators of τ (θ). F and Fréchet are often omitted.

Fact: if the family is not an exponential family, the FCRLB may not be a lower
bound on the variance of unbiased estimators of τ (θ).

Fact: Even if the sample is from a one parameter exponential family with complete
sufficient statistic T , the FCRLB will typically hold with equality for linear functions of
T , but not for nonlinear functions of T . ( Recall that U = g(T ) is the UMVUE of its
expectation Eθ(g(T )) by the LSU theorem.)

Finding the UMVUE given a complete sufficient statistic T : The first method
for finding the UMVUE of τ (θ) is to guess g and show that Eθ[U(Y )] = Eθ[g(T (Y ))] =
τ (θ) for all θ. The second method is to find any unbiased estimator W (Y ) of τ (θ).
Then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of τ (θ). For full credit, E[W (Y )|T (Y )]
needs to be computed.

Note: If you are asked to find the UMVUE of τ (θ), see if an unbiased estimatorW (Y )
is given in the problem. Also check whether you are asked to compute E[W (Y )|T (Y ) = t]
anywhere.

Note: This problem is typically very hard. Write down the two methods for finding
the UMVUE for partial credit. If you can not guess g, find an unbiased estimator W , or
compute E[W |T ], come back to the problem later.

The following facts can be useful for computing the conditional expectation. Suppose
Y1, ..., Yn are iid with finite expectation.
a) Then E[Y1|

∑n
i=1 Yi = x] = x/n.

b) If the Yi are iid Poisson(θ), then (Y1|
∑n

i=1 Yi = x) ∼ bin(x, 1/n).
c) If the Yi are iid Bernoulli Ber(ρ), then (Y1|

∑n
i=1 Yi = x) ∼ Ber(x/n).

d) If the Yi are iid N(µ, σ2), then (Y1|
∑n

i=1 Yi = x) ∼ N [x/n, σ2(1 − 1/n)].

———————————————-

6) UMP TESTS via the Neyman Pearson Lemma and Exponential Family
Theory
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Def. (p. 183; Old p. 182; CB p. 383): A type I error is rejecting Ho when Ho is
true, while a type II error is failing to reject Ho when Ho is false.

Def. (p. 183; Old p. 182; CB def. 8.3.1, p. 383): The power function of a
hypothesis test with rejection region R is β(θ) = Pθ(Y ∈ R) for θ ∈ Θ. More generally,
β(θ) = Pθ(Ho is rejected).

Def. (p. 184; Old 183; CB p. 385): Let 0 ≤ α ≤ 1. Then a test with power function
β(θ) is a level α test if

sup
θ∈Θo

β(θ) ≤ α.

Def. (p. 185; Old 183; CB p. 388; BD p. 227): Consider all levelα tests of Ho : θ ∈ Θo

vs H1 : θ1 ∈ Θ1. A uniformly most powerful (UMP) level α test is a test with power
function βUMP(θ) such that βUMP(θ) ≥ β(θ) for every θ ∈ Θ1 where β is a power function
for any level α test of Ho vs H1.

One Sided UMP Tests for one parameter REFs, (p. 186; Old 185; see CB th.
8.3.17 p. 391 and th. 5.2.11 p. 217; see BD p. 228-229): Let Y1, ..., Yn be iid with pdf or
pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

from a one parameter exponential family where θ is real and w(θ) is increasing. Here
T (y) =

∑n
i=1 t(yi). I) Let θ1 > θo. Consider the test that rejects Ho if T (y) > k and

rejects Ho with probability γ if T (y) = k where α = Pθo
(T (Y ) > k) + γPθo

(T (Y ) = k).
This test is the UMP test for
a) Ho : θ = θo vs H1 : θ = θ1,
b) Ho : θ = θo vs H1 : θ > θo, and
c) Ho : θ ≤ θo vs H1 : θ > θo.
II) Let θ1 < θo. Consider the test that rejects Ho if T (y) < k and rejects Ho with
probability γ if T (y) = k where α = Pθo

(T (Y ) < k) + γPθo
(T (Y ) = k). This test is the

UMP test for
d) Ho : θ = θo vs H1 : θ = θ1

e) Ho : θ = θo vs H1 : θ < θo, and
f) Ho : θ ≥ θo vs H1 : θ < θo. As a mnemonic, note that the inequality used in the
“rejection region” is the same as the inequality in the alternative hypothesis.

Note: usually γ = 0 if f is a pdf.

The Neyman Pearson Lemma, (p. 185; Old 184; CB p. 388; BD p. 224):
Consider testing H0 : θ = θ0 vs H1 : θ = θ1 where the pdf or pmf corresponding to θi

is f(y|θi) for i = 0, 1. Suppose the test rejects H0 if f(y|θ1) > kf(y|θ0), and rejects H0

with probability γ if f(y|θ1) = kf(y|θ0) for some k ≥ 0. If

α = β(θ0) = Pθ0
[f(Y |θ1) > kf(Y |θ0)] + γPθ0

[f(Y |θ1) = kf(Y |θ0)],

then this test is a UMP level α test.

Fact: typically γ = 0 if f is a pdf, but usually γ > 0 if f is a pmf.

Fact: To find an UMP test with the NP lemma, often the ratio
f(y|θ1)

f(y|θ0)
is computed.

The test will certainly reject Ho is the ratio is large, but usually the distribution of
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the ratio is not easy to use. Hence try to get an equivalent test by simplifying and
transforming the ratio. Ideally, the ratio can be transformed into a statistic T ≡ T (Y )
whose distribution is tabled. If the test rejects Ho if T > k and with probability γ if
T = k, (or if T < k and with probability γ if T = k) the test is in useful form if for
a given α, k is also given. If you are asked to use a table, put the test in useful form.
Often it is too hard to give the test in useful form. Then simply specify when the test
rejects Ho and α in terms of k (eg α = PHo

(T > k) + γPHo
(T = k)).

Def. (p. 187; CB p. 388, 391): A simple hypothesis consists of exactly one distri-
bution for the sample. A composite hypothesis consists of more than one distribution
for the sample.

One Sided UMP Tests via NP lemma: (p. 186; Old p. 185) Suppose that the
hypotheses are of the form Ho : θ ≤ θo vs H1 : θ > θo or Ho : θ ≥ θo vs H1 : θ < θo, or
that the inequality in Ho is replaced by equality. Also assume that supθ∈Θ0

β(θ) = β(θo).
Pick θ1 ∈ Θ1 and use the Neyman Pearson lemma to find the UMP test for H∗

o : θ = θo

vs H∗
A : θ = θ1. Then the UMP test rejects H∗

o if f(y|θ1) > kf(y|θo), and rejects H∗
o

with probability γ if f(y|θ1) = kf(y|θo) for some k ≥ 0 where α = β(θo). This test is
also the UMP level α test for Ho : θ ∈ Θ0 vs H1 : θ ∈ Θ1 if k does not depend on the

value of θ1 ∈ Θ1. Note that k does depend on α and θo. If R = f(Y |θ1)/f(Y |θo), then
α = Pθo

(R > k) + γPθo
(R = k).

The power β(θ) = Pθ(reject Ho) is the probability of rejecting Ho when θ is the
true value of the parameter. Often the power function can not be calculated, but you
should be prepared to calculate the power for a sample of size one for a test of the form
Ho : f(y) = f0(y) versus H1 : f(y) = f1(y) or if the test is of the form

∑

t(Yi) > k
or
∑

t(Yi) < k when
∑

t(Yi) has an easily handled distribution under H1, eg binomial,
normal, Poisson or χ2

p. To compute the power, you need to find k and γ for the given
value of α.

——————————————————————

7) Likelihood Ratio Tests

Def. (p. 192; Old 190; CB p. 375, 386): Let Y1, ..., Yn be the data with pdf or pmf
f(y|θ) where θ is a vector of unknown parameters with parameter space Θ. Let θ̂ be
the MLE of θ and let θ̂o be the MLE of θ if the parameter space is Θ0 (where Θ0 ⊂ Θ).
A likelihood test (LRT) statistic for testing Ho : θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is

λ(y) =
L(θ̂o|y)

L(θ̂|y)
=

supΘ0
L(θ|y)

supΘL(θ|y)
.

The likelihood ratio test (LRT) has a rejection region of the form

R = {y|λ(y) ≤ c}

where 0 ≤ c ≤ 1, and α = supθ∈Θ0

Pθ(λ(Y ) ≤ c). Suppose θo ∈ Θ0 and supθ∈Θ0

Pθ(λ(Y ) ≤
c) = Pθo

(λ(Y ) ≤ c). Then α = Pθo

(λ(Y ) ≤ c).
Fact: often Θo = (a, θo] and Θ1 = (θo, b) or Θo = [θo, b) and Θ1 = (a, θo).

Asymptotic Distribution of LRT, (p. 193; Old 190; CB th 10.3.3 p. 490): Let
Y1, ..., Yn be iid. Then under strong regularity conditions, −2 log λ(y) ≈ χ2

j for large n
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where j = r − q, r is the number of free parameters specified by θ ∈ Θ, and q is the
number of free parameters specified by θ ∈ Θo. Hence the approximate LRT rejects Ho

if −2 log λ(y) > c where P (χ2
j > c) = α. Thus c = χ2

j,1−α.
Note: to find the LRT, find the two MLEs and write L(θ|y) in terms of a sufficient

statistic. Simplify the statistic λ(y) and state that the LRT test rejects Ho if λ(y) ≤ c
where α = Pθo

(λ(y) ≤ c).
Note: The above rejection region is not in useful form. Sometimes you do not need

to put the rejection region into a useful form, but often you do. Either you will use
the above asymptotic distribution, or you can simplify λ or transform λ so that the test
rejects Ho if some statistic T > k (or T < k). Getting the test into useful form can
be very difficult. Monotone transformations such as log or power transformations can
be useful. State the asymptotic result if you can not find a statistic T with a simple
distribution.

Warning: BD uses ψ(y) = 1/λ(y) as the test statistic. So −2 log λ(y) = 2 logψ(y)
and λ(y) ≤ c is equivalent to ψ(y) ≥ c.

A common LRT problem is X1, ..., Xn are iid with pdf f(x|θ) while Y1, ..., Ym are iid
with pdf f(y|µ). H0 : µ = θ and H1 : µ 6= θ. Then under H0, X1, ..., Xn, Y1, ..., Ym are an
iid sample of size n + m with pdf f(y|θ). Hence if under H0 f(y|θ) is the N(µ, 1) pdf,

then µ̂0(= θ̂0) =

∑n
i=1 Xi +

∑m
j=1 Yj

n+m
, the sample mean of the combined sample, while

θ̂ = Xn and µ̂ = Y m.
—————————————————

8) Large Sample Theory (CLT, Limiting Distribution of the MLE or of an estimator
that is a sum, Delta method, Consistency and Asymptotic Efficiency)

Central Limit Theorem (p. 215; Old 203; CB p. 236; BD p. 470): Let Y1, ..., Yn

be iid with E(Y ) = µ and V (Y ) = σ2. Let the sample mean Y n = 1
n

∑n
i=1 Yi. Then

√
n(Y n − µ)

D→ N(0, σ2). Hence
√
n

(

Y n − µ

σ

)

=
√
n

(

∑n
i=1 Yi − nµ

nσ

)

D→ N(0, 1).

MLE Rule of thumb (p. 226; Old 214; CB p. 472; BD p. 331) If θ̂n is the MLE or
UMVUE of θ, then under strong regularity conditions Tn = τ (θ̂n) is an asymptotically
efficient estimator of τ (θ), and if τ ′(θ) 6= 0, then

√
n(θ̂ − θ)

D→ N

(

0,
1

I1(θ)

)

and
√

n[τ (θ̂n) − τ (θ)]
D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

The Delta Method (p. 217; Old 205; CB p. 243; BD p. 311): Suppose that√
n(Tn − θ)

D→ N(0, σ2). Then

√
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2)

if g′(θ) 6= 0 exists.

Know: Often the θ and σ2 in the delta method are found either by using the central
limit theorem with θ = µ or by using the above MLE rule of thumb with σ2 = 1/I1(θ).
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(p. 225; Old 213; CB p. 471): Let Y1, ..., Yn be iid RVs. An estimator Tn(x) is
asymptotically efficient for τ (θ) if

√
n(Tn − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

∼ N(0, FCRLB1[τ (θ)])

where I1(θ) is the Fisher information for θ based on a sample of size 1. Since FCRLBn(τ (θ))

= [τ ′(θ)]2

nI1(θ)
, an asymptotically efficient estimator Tn satisfies

(Tn − τ (θ)) ≈ N(0, FCRLBn[τ (θ)]).

Rule of thumb: in one parameter REFs, the MLE and UMVUE of τ (θ) tend to be
asymptotically efficient if τ ′(θ) 6= 0 exists. For MLEs the result follows when the MLE
rule of thumb holds by the delta method.

Notation: (p. 228; Old 216): If Tn
P→ τ (θ) for all θ ∈ Θ, then Tn is a consistent

estimator of τ (θ).

(p. 230; Old 219) Fact: if
√
n(Tn − τ (θ))

D→ N(0, v(θ)) for all θ ∈ Θ, then Tn is a
consistent estimator of τ (θ).

Fact: (p. 229; Old 218; CB p. 469): If Vθ(Tn) → 0 and Eθ(Tn) → τ (θ) as n → 0 for
all θ ∈ Θ (ie if MSEτ (θ)(Tn) → 0), then Tn is a consistent estimator of τ (θ).

Slutsky’s Theorem (p. 230; Old 220; CB p. 239; BD p. 467): If Yn
D→ Y and

Wn
P→ w for some constant w, then YnWn

D→ wY , Yn +Wn
D→ Y +w and Yn/Wn

D→ Y/w
for w 6= 0.

(p. 223; Old 211-2; CB p. 476; BD p. 357): Let T1,n and T2,n be two estimators of a
parameter τ such that

nδ(T1,n − τ )
D→ N(0, σ2

1(F ))

and
nδ(T2,n − τ )

D→ N(0, σ2
2(F )),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

Some distribution facts not on p. 1 of the review.
Suppose Y1, ..., Yn are iid N(µ, σ2). Then Z = Y −µ

σ
∼ N(0, 1).

Z = Y −µ
σ/

√
n
∼ N(0, 1) while a + cYi ∼ N(a + cµ, c2σ2).

Suppose Z,Z1, ..., Zn are iid N(0,1). Then Z2 ∼ χ2
1.

Also a + cZi ∼ N(a, c2) while
∑n

i=1 Z
2
i ∼ χ2

n.

If Xi are independent χ2
ki
≡ χ2(ki) for i = 1, ..., n, then

∑n
i=1 Xi ∼ χ2(

∑n
i=1 ki).

Let W ∼ EXP (λ) and let c > 0. Then cW ∼ EXP (cλ).

Let W ∼ gamma(ν, λ) and let c > 0. Then cW ∼ gamma(ν, cλ).

If W ∼ EXP (λ) ∼ gamma(1, λ), then 2W/λ ∼ EXP (2) ∼ gamma(1, 2) ∼ χ2(2).
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Let k ≥ 0.5 and let 2k be an integer. IfW ∼ gamma(k, λ), then 2W/λ ∼ gamma(k, 2) ∼
χ2(2k).

Let W1, ...,Wn be independent gamma(νi, λ). Then
∑n

i=1 Wi ∼ gamma(
∑n

i=1 νi, λ).
————————————–

9) Note that sometimes you need the following result: the pdf of Y = t(X) is fY (y) =

fX(t−1(y))
∣

∣

∣

dt−1(y)
dy

∣

∣

∣ for y ∈ Y. See Jan. 2009 1a, Aug. 2012 5a, Jan. 2012 2b, and Jan.
2013 5a.

————————————–

The following types of qual problems will not appear on the 3rd midterm
or final.

A) Sometimes problems that require memorization of the solution appear on the qual.
a) Jan. 2004 1a): Prove that Y and S2 are independent if Y1, ..., Yn are iid N(µ, σ2)

using Basu’s theorem. See p. 119 (Old p. 124) and CB example 6.2.27 on p. 289).

b) Aug. 2001 1b): Y1, ..., Yn are iid U(0, θ). Show that max(Yi) is a complete statistic
for θ. See CB example 6.2.23 on p. 286.

c) Memorization of the solution of UMVUE problems from Lehmann’s Theory of
Point Estimation such as (CB p. 86).

B) Other problems not from 1) - 8) occur. Work old quals to see the types of
problems.

a) Aug. 2000 1) Steiner’s formula = conditional variance identity (p. 43; Old p. 45;
problem 2.68 on p. 94; Old p. 85; CB p. 167). Also see Jan. 2012 qual.

b) Jan. 2004 and Jan. 2010 5): A) a) above. Independence of X and S2 if data is iid
N(µ, σ2).

c) Aug. 2003 problem 9.1b on p. 334; Old p. 269. Also see problem 9.12 from Aug.
2009 7), Sept. 2010 7), Jan 2018 6), Jan. 2020 6d). Confidence intervals.

d) Theorem 8.30: Suppose that g does not depend on n, g′(θ) = 0, g′′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, τ 2(θ)).

Then n[g(Tn) − g(θ)]
D→ 1

2
τ 2(θ)g′′(θ)χ2

1.

Sept. 2005 problem 8.27c, Jan 2014 2c). Also see ex. 8.14.
e) Wald statistic for testing: Jan. 2010 problem 6bc.
f) Jan. 2007 3a: state Basu’s theorem.
g) Find moment generating function of Y = X1X2, Jan. 2012, 1.
h) Jan. 2016 1a) pdf of X + Y , X,Y iid U(0,1)

—————————-
To pass the qual you need to satisfy the graders. Often a score of 80% or higher will

pass, but the needed score may be higher or lower for a given qual. Students who have
answered 3 out of 6 questions correctly (or at least with a grade of an A) and 2 questions
with “right idea” but some moderate calculation errors (with a grade of high C or low
B) and one question with major errors (grade of D or high F) have passed, but have also
not passed.
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