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PREFACE

This paper will look at confidence intervals for the binomial distribution and

the binomial regression model. There are three chapters that follow. In Chapter 1,

we will consider three confidence intervals for the binomial parameter. In Chapter

2, we will examine graphical diagnostics for the binomial regression model. Chapter

3 examines a method of generating binomial regression data and checking whether

OLS tests have correct p-values for large samples.
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INTRODUCTION

A binomial experiment consists of a fixed number n of independent and iden-

tical trials, where each trial results in one of two outcomes. One outcome will be

labeled a “success”, while the other will be called a “failure”. The probability of a

“success” in a single trial is equal to some value ρ, while the probability of a “fail-

ure” is equal to (1− ρ). We are interested in the random variable Y , the number of

successes observed during n trials.

Some examples of a binomial experiment would be:

• Tossing a die 10 times and counting the number of times a three is observed.

• Selecting 500 refridgerators at random and observing the number that are not

defective.

• Shooting a gun at a target and counting the number of “hits”.

Suppose we conduct n trials and count the number of successes, denoted S,

and the number of failures, denoted F. Let the probability of a success be ρ and the

probability of failure be (1 − ρ). For some n trials the sequence of successes and

failures could be

SSFSFSF...SSF

Let y be the number of successes, then (n − y) is the number of failures. Since the

trials are independent then any point has probability

ρy(1 − ρ)n−y ,
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and since the number of n-tuples that contain y S’s and n − y F’s is

n!
y!(n−y)!

,

then the random variable Y is said to have a binomial distribution based on n trials

with success probability ρ if and only if

P (Y = y) = n!
y!(n−y)!

ρy(1 − ρ)n−y , y = 0, 1, 2, ..., n.

This research paper will provide information about finding an appropriate

confidence interval for ρ, and about diagnostics for binomial regression.

Chapter 1 deals with selecting the best confidence interval (CI) for ρ. Three

confidence intervals will be considered, namely; classical CI, Agresti-Coull CI, and

exact CI.

Chapter 2 deals with diagnostics for binomial regression.

Chapter 3 examines a method of generating binomial regression data and

checking whether OLS tests have correct p-values for large samples.
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CHAPTER 1

CONFIDENCE INTERVALS

1.1 INTRODUCTION TO CONFIDENCE INTERVALS

Definition 1.1.1. Let the data Y1, Y2, . . . , Yn have pdf or pmf f(y | θ) with pa-

rameter space Θ and support Y. Let Ln(Y) and Un(Y) be statistics such that

Ln(y) ≤ Un(y), for all y ∈ Y. Then (Ln(y), Un(y)) is a 100 (1 − α)% confidence

interval (CI) for θ if

Pθ(Ln(Y) < θ < Un(Y))=1 − α

for all θ ∈ Θ. The interval (Ln(y), Un(y)) is a large sample 100 (1−α)% CI for θ if

Pθ(Ln(Y) < θ < Un(Y))→ 1 − α

for all θ ∈ Θ as n→ ∞. (Olive 2007a)

We will consider three types of confidence intervals for the binomial distribu-

tion: classical, Agresti-Coull, and exact. First we will define the three CIs.

Let Y1, ..., Yn be iid binomial(1, ρ). Let ρ̂ =
∑n

i=1 Yi/n =

number of “successes”/n.

Definition 1.1.2. The classical large sample 100 (1 − α)% CI for ρ is

ρ̂ ± z1−α/2

√
ρ̂(1 − ρ̂)

n

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1). (Olive 2007a)
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The classical interval should only be used if it agrees with the Agresti Coull

interval.

The Agresti Coull CI takes ñ = n + z2
1−α/2 and

ρ̃ =
nρ̂ + 0.5z2

1−α/2

n + z2
1−α/2

.

(The method adds 0.5z2
1−α/2 “0’s and 0.5z2

1−α/2 “1’s” to the sample, so that ñ in-

creases by z2
1−α/2.)

Definition 1.1.3. The large sample 100 (1 − α)% Agresti Coull CI for ρ is

ρ̃ ± z1−α/2

√
ρ̃(1 − ρ̃)

ñ
.

(Olive 2007a)

Now let Y1, ..., Yn be independent bin(mi, ρ) random variables, let W =

∑n
i=1 Yi ∼ bin(

∑n
i=1 mi, ρ) and let nw =

∑n
i=1 mi. Often mi ≡ 1 and then nw = n.

Let P (Fd1 ,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F distribution with d1 and d2

degrees of freedom. Assume W = w is observed.

Definition 1.1.4. The Clopper Pearson “exact” 100 (1 − α)% CI for ρ is

(
0,

1

1 + nw F2nw ,2(α)

)
for w = 0,

(
nw

nw + F2,2nw(1 − α)
, 1

)
for w = nw,

and (ρL, ρU ) for 0 < w < nw with

ρL =
w

w + (nw − w + 1)F2(nw−w+1),2w(1 − α/2)

4



and

ρU =
w + 1

w + 1 + (nw − w)F2(nw−w),2(w+1)(α/2)
.

(Olive 2007a)

The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − α = the

nominal coverage. This interval performs well if ρ is very close to 0 or 1.

Simulation of the confidence intervals is included in the following tables. The

simulation gives coverage and scaled length for the three confidence intervals, where

scaled length=
√

n(Un − Ln) ≈ 2(1.96)
√

ρ(1 − ρ) for large n. For each value of ρ,

the probability of success, there are simulations for n = 10, 50, 100, and 5000 each

with α = 0.05 and 5000 runs. We will use ccov, accov, and ecov to represent the

coverage of the classical, Agresti-Coull, and exact confidence intervals, respectively.

Clen, alen, elen will be used for the scaled lengths of the classical, Agresti-Coull,

and exact confidence intervals, respectively. The confidence interval performs well

when the coverage is between 0.92 and 0.98 and the scaled lengths are short.

We can make the following observations from the tables:

1. The exact coverage was good for all n(min(ρ, 1 − ρ)).

2. The classical coverage was good for all n(min(ρ, 1 − ρ)) > 50. In the simulation

the classical CI performs well when n = 100 and 5000 and 0.1 ≤ ρ ≤ 0.9. In general,

the classical CI performs well when n is large and ρ is not close to 0 or 1.

3. The Agresti-Coull coverage was good for all n(min(ρ, 1 − ρ)) combinations, but

for n(min(ρ, 1− ρ)) small, the length of the exact interval was shorter.
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n ρ ccov clen accov aclen ecov elen

10 .0001 .0006 .0005 1 1.0149 .9994 .8189

50 .0001 .0052 .0022 1 .6037 .9948 .4129

100 .0001 .0106 .0031 1 .4458 .9894 .2978

5000 .0001 .3998 .0193 .986 .0768 .986 .0588

10 .001 .0108 .0098 1 1.0183 .9892 .8249

50 .001 .0472 .0198 .9994 .6125 .9994 .4273

100 .001 .101 .0304 .9964 .4603 .9964 .3206

5000 .001 .8794 .1189 .9642 .1439 .982 .1394

10 .01 .096 .0895 .9952 1.0475 .9952 .8758

50 .01 .3956 .1906 .986 .7022 .986 .5639

100 .01 .632 .2469 .9816 .5842 .9816 .4965

5000 .01 .9516 .3891 .9476 .3962 .9554 .4044

10 .1 .6508 .7602 .9244 1.2815 .9836 1.2883

50 .1 .8804 1.1224 .972 1.2432 .972 1.2767

100 .1 .935 1.1626 .9736 1.2169 .9584 1.2599

5000 .1 .9584 1.1756 .9552 1.1768 .959 1.1898

10 .2 .8864 1.2664 .9654 1.4451 .9938 1.5803

50 .2 .9388 1.5387 .9492 1.547 .97 1.6481

100 .2 .9308 1.5528 .9414 1.5568 .9696 1.6372

5000 .2 .9546 1.5678 .9542 1.5679 .9562 1.5816

Table 1.1. Results for simulation of CIs when nruns = 5000.
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n ρ ccov clen accov aclen ecov elen

10 .3 .834 1.5881 .9496 1.5445 .9632 1.7596

50 .3 .9374 1.7787 .9548 1.7396 .9674 1.8746

100 .3 .948 1.7863 .949 1.7659 .9598 1.8629

5000 .3 .9508 1.7936 .9502 1.7959 .9524 1.8101

10 .4 .9054 1.7856 .983 1.6052 .983 1.8696

50 .4 .9432 1.8994 .9432 1.8386 .9724 1.9892

100 .4 .948 1.9099 .948 1.8779 .9576 1.9847

5000 .4 .955 1.9202 .9526 1.9196 .9564 1.9339

10 .5 .8886 1.8329 .9782 1.6201 .9782 1.8967

50 .5 .9356 1.9401 .9356 1.8723 .9636 2.0279

100 .5 .937 1.9498 .937 1.9141 .9608 2.0237

5000 .5 .9546 1.9598 .9546 1.9590 .9546 1.9734

10 .6 .9032 1.7783 .9802 1.6029 .9802 1.8655

50 .6 .941 1.8985 .941 1.8379 .9686 1.9883

100 .6 .9492 1.9113 .9492 1.8791 .9576 1.9861

5000 .6 .9526 1.9203 .9508 1.9196 .9534 1.9339

10 .7 .8324 1.5875 .9546 1.5446 .9618 1.7597

50 .7 .931 1.7753 .9546 1.7369 .9664 1.8714

100 .7 .9466 1.7859 .9422 1.7657 .9594 1.864

5000 .7 .9528 1.7961 .9526 1.7956 .955 1.8098

Table 1.2. Continuation of Table 1.1.
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n ρ ccov clen accov aclen ecov elen

10 .8 .8874 1.2584 .9654 1.4428 .9926 1.5761

50 .8 .9362 1.5408 .9516 1.5488 .9662 1.6502

100 .8 .9342 1.5561 .9394 1.5597 .967 1.6404

5000 .8 .9522 1.5677 .952 1.5678 .9536 1.5816

10 .9 .654 .7613 .9276 1.2821 .9882 1.2892

50 .9 .8778 1.1191 .9702 1.2412 .9702 1.2739

100 .9 .931 1.1622 .9716 1.2167 .955 1.2597

5000 .9 .9504 1.1759 .9474 1.1771 .95 1.19

10 .99 .0894 .0828 .9962 1.0450 .9962 .8716

50 .99 .3934 .1897 .9866 .7018 .9866 .5633

100 .99 .6354 .2496 .9814 .5859 .9814 .4987

5000 .99 .9464 .3881 .9452 .3952 .9528 .4034

10 .999 .013 .0118 1 1.0191 .987 .8262

50 .999 .0532 .0227 .998 .6140 .998 .4296

100 .999 .0924 .0279 .9964 .4589 .9964 .3184

5000 .999 .8626 .1175 .963 .1429 .9794 .1383

10 .9999 .0006 .0005 1 1.0149 .9994 .8189

50 .9999 .0048 .0019 1 .6036 .9952 .4128

100 .9999 .0102 .0030 .9998 .4457 .9898 .2977

5000 .9999 .3916 .0191 .984 .0767 .984 .0586

Table 1.3. Continuation of Table 1.1.
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1.2 CONFIDENCE INTERVALS FOR FINITE POPULATIONS

Let ρ̂ = number of “successes”/n. Consider taking a simple random sample

of size n from a finite population of known size N .

Definition 1.2.1. The classical finite population large sample 100 (1−α)% CI for

ρ is

ρ̂ ± z1−α/2

√
ρ̂(1−ρ̂)
n−1

(
N−n

N

)
= ρ̂ ± z1−α/2SE(ρ̂)

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1). (Olive 2007a)

The Agresti-Coull CI takes ñ = n + z2
1−α/2 and

ρ̃ =
nρ̂ + 0.5z2

1−α/2

n + z2
1−α/2

.

Definition 1.2.2. The large sample 100 (1 − α)% Agresti Coull type finite popu-

lation CI for ρ is

ρ̃ ± z1−α/2

√
ρ̃(1−ρ̃)

ñ

(
N−n

N

)
= ρ̃ ± z1−α/2SE(ρ̃).

(Olive 2007a)

(This method adds 0.5z2
1−α/2 “0’s” and 0.5z2

1−α/2 “1’s” to the sample, so ñ

increases by z2
1−α/2.)

Notice that a 95% CI uses z1−α/2 = 1.96 ≈ 2.

For data from a finite population, large sample theory gives useful approxima-

tions as N and n → ∞ and n/N → 0. Theory suggests that the Agresti Coull CI

should have better coverage than the classical CI if ρ is near 0 or 1, if the sample

size n is moderate, and if n is small compared to the population size N . If n is large,

9



but small compared to N , the coverage of the classical and Agresti Coull CIs should

be similar. As n increases to N , ρ̂ goes to ρ, SE(ρ̂) goes to 0, and the classical CI

may perform well. SE(ρ̃) also goes to 0, but ρ̃ is a biased estimator of ρ and the

Agresti Coull CI will not perform well if n/N is too large.

Simulation of the CIs is included in the following tables. The simulation gives

coverage and scaled length for the classical and Agresti-Coull CIs. For each value

of ρ, the probability of success, there are simulations for n = 50, 100, 200, 300, 400,

and 450 each with N = 500, α = 0.05, and 5000 runs.

We can make the following observations from the tables:

1. The classical coverage was good for all values of ρ when n was near N .

2. The Agresti-Coull coverage was good for n ≤ 0.6N .

10



n ρ ccov clen accov aclen

50 .01 .4072 .2324 .9912 .7350

100 .01 .6666 .2764 .9528 .5603

200 .01 .9208 .2814 .9174 .4076

300 .01 .9112 .2412 .9216 .3085

400 .01 .9374 .1734 .6744 .2091

450 .01 .9236 .1231 .4072 .1456

50 .1 .9036 1.0949 .9496 1.1818

100 .1 .95 1.0451 .962 1.0879

200 .1 .9374 .9081 .9412 .9273

300 .1 .9402 .7435 .9418 .7541

400 .1 .9348 .5261 .9500 .5317

450 .1 .9500 .3723 .898 .3758

50 .2 .9446 1.4797 .9608 1.4713

100 .2 .9454 1.3987 .9492 1.3948

200 .2 .9422 1.2144 .9626 1.2127

300 .2 .9578 .9922 .9384 .9912

400 .2 .9484 .7017 .9484 .7012

450 .2 .9636 .4962 .9546 .4959

Table 1.4. Results for simulation of finite CIs when nruns = 5000.
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n ρ ccov clen accov aclen

50 .3 .942 1.6990 .9408 1.6459

100 .3 .9478 1.6070 .948 1.5807

200 .3 .9486 1.3926 .9498 1.3809

300 .3 .9524 1.1374 .9514 1.1310

400 .3 .9496 .8042 .9498 .8008

450 .3 .9488 .5687 .9464 .5666

50 .4 .9258 1.8224 .9514 1.7461

100 .4 .9496 1.7182 .9496 1.6808

200 .4 .9532 1.4889 .9532 1.4724

300 .4 .9478 1.2158 .9478 1.2067

400 .4 .9398 .8596 .9398 .8548

450 .4 .9528 .6079 .9528 .6048

50 .5 .9512 1.8614 .9512 1.7780

100 .5 .9464 1.7548 .9464 1.7139

200 .5 .9480 1.5197 .9480 1.5017

300 .5 .9426 1.2408 .9426 1.2309

400 .5 .9452 .8774 .9452 .8721

450 .5 .9496 .6204 .9496 .6171

Table 1.5. Continuation of Table 1.4.
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n ρ ccov clen accov aclen

50 .6 .9342 1.8226 .9568 1.7463

100 .6 .9488 1.7195 .9488 1.6819

200 .6 .9528 1.4889 .9528 1.4724

300 .6 .9486 1.2156 .9486 1.2065

400 .6 .9456 .8595 .9456 .8547

450 .6 .9528 .6078 .9528 .6048

50 .7 .9502 1.7015 .9488 1.6479

100 .7 .9466 1.6062 .9498 1.5799

200 .7 .9546 1.3924 .9528 1.3808

300 .7 .9546 1.1369 .9574 1.1306

400 .7 .9452 .8039 .9476 .8006

450 .7 .9472 .5686 .9496 .5665

50 .8 .9534 1.4834 .962 1.4741

100 .8 .9448 1.3998 .9448 1.3958

200 .8 .9410 1.2154 .9598 1.2136

300 .8 .9606 .9921 .9416 .9911

400 .8 .9488 .7019 .9450 .9014

450 .8 .9588 .4963 .9440 .4959

Table 1.6. Continuation of Table 1.4.
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n ρ ccov clen accov aclen

50 .9 .9036 1.0989 .9464 1.1844

100 .9 .9486 1.0448 .9642 1.0876

200 .9 .9410 .9088 .9380 .9279

300 .9 .9412 .7433 .9432 .7538

400 .9 .9370 .5259 .9486 .5316

450 .9 .9494 .3722 .8896 .3758

50 .99 .4094 .2319 .9924 .7344

100 .99 .6738 .2806 .9476 .5621

200 .99 .9228 .2826 .9146 .4083

300 .99 .9164 .2416 .9200 .3089

400 .99 .9414 .1734 .6740 .2091

450 .99 .9176 .1229 .4120 .1455

Table 1.7. Continuation of Table 1.4.
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CHAPTER 2

PLOTS FOR BINOMIAL REGRESSION

2.1 INTRODUCTION TO BINOMIAL REGRESSION

Regression models are used to study the conditional distribution Y |x given

the p×1 vector of nontrivial predictors x. In this chapter we will consider regression

models for the binomial distribution. This section follows Olive (2007b) closely.

Definition 2.1.1. Let the sufficient predictor SP = α +βTx. The binomial regres-

sion model states that Y1, ..., Yn are independent random variables with

Yi ∼ binomial(mi, ρ(α + βTxi)),

or

Yi|SPi ∼ binomial(mi, ρ(SPi)).

The binary regression model is the special case where mi ≡ 1 for i = 1, ..., n.

(Olive 2007b)

The conditional mean function is E(Yi|SPi) = miρ(SPi) and variance function

is V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)).

Definition 2.1.2. The logistic regression (LR) model is the special case of binomial

regression where

P (success|xi) = ρ(xi) = exp(α+βTxi)

1+exp(α+βTxi)
.

Equivalently,

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

15



(Olive 2007b)

The binary logistic regression model is important since for many data sets the

response variable takes on two values: 0 or 1. The occurrence of an event is labelled

as a 1 or a “success,” while the nonoccurrence of an event is labelled as a 0 or a

“failure.” For binary data, if P (Y = 1) = ρ then Y ∼ binomial(1,ρ). Hence if the

Yi are independent with P (Y = 1|SP ) = ρ(SP ) = 1−P (Y = 0|SP ), then a binary

regression model holds.

For the nonbinary case it is more difficult to check if the regression model

holds because there are other distributions that are appropriate for data that takes

on values 0, 1, ...,m if m ≥ 2. Often the LR mean function is a good approximation

to the data, the LR MLE is a consistent estimator of β, but the LR model is not

appropriate. The problem is that for many data sets where E(Yi|xi) = miρ(SPi),

it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)). This phenomenon is called

overdispersion.

The beta–binomial regression (BBR) model can be used as an alternative to

the LR model. Let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and θ = 1/(δ + ν).

Let

B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
.

If Y has a beta–binomial distribution, Y ∼ BB(m, ρ, θ), then the probability mass

function of Y is

P (Y = y) =

(
m

y

)
B(δ + y, ν + m − y)

B(δ, ν)

for y = 0, 1, 2, ...,m where 0 < ρ < 1 and θ > 0. Then δ > 0 and ν > 0. Then
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E(Y ) = mδ/(δ + ν) = mρ and V(Y ) = mρ(1 − ρ)[1 + (m − 1)θ/(1 + θ)]. If Y |π ∼

binomial(m,π) and π ∼ beta(δ, ν), then Y ∼ BB(m, ρ, θ).

Definition 2.1.3. The BBR model states that Y1, ..., Yn are independent random

variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ).

For the BBR model the conditional mean function is E(Yi|SPi) = miρ(SPi)

and the conditional variance function is V (Yi|SPi) = miρ(SPi)(1−ρ(SPi))[1+(mi−

1)θ/(1 + θ)].

The BBR model has the same mean function as the binomial regression model,

but allows for overdispersion. As θ → 0, it can be shown that V (π) → 0 and the

BBR model converges to the binomial regression model.

2.2 THE ESS PLOT AND THE OD PLOT

A useful plot to visualize the conditional distribution Y |x of the LR binary re-

gression model is the estimated sufficient summary plot or ESS plot of the estimated

sufficient predictor ESP = α̂ + β̂T x versus Y with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Since binomial regression is the study of Y |x, the ESS plot

is very important for analyzing LR models.

The ESS plot can be used to assess the adequacy of the binary LR model.

Suppose that both the number of 0s and the number of 1s is large compared to the

number of predictors p, that the ESP takes on many values, and that the binary LR
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model is a good approximation to the data. Then Y |ESP ≈ Binomial(1, ρ̂(ESP )).

If −5 < ESP < 5 then the estimated mean function has the characteristic “ESS”

shape of the logistic curve.

This plot is useful as a goodness of fit diagnostic. Divide the ESP into J

“slices” each containing approximately n/J cases. Compute the sample mean =

sample proportion of the Y ’s in each slice and add the resulting step function to

the ESS plot. This step function is a simple nonparametric estimator of the mean

function ρ(SP ). If the step function follows the estimated LR mean function (the

logistic curve) closely, then the LR model fits the data well. The lowess curve is a

nonparametric estimator of the mean function called a “scatterplot smoother.” The

lowess curve may be more useful than the step function if the ESP does not take on

many values.

For both the LR and BBR models with

ρ(SP ) =
exp(SP )

1 + exp(SP )
,

the conditional distribution of Y |x can be visualized with an ESS plot of the ESP

versus Yi/mi with the logistic curve ρ̂(ESP ) added as a visual aid.

Using graphical diagnostics to check the goodness of fit of the LR model would

be useful since the binomial regression model is simpler than the BBR model. To

check for overdispersion, the OD plot of V̂ (Y |SP ) versus V̂ = [Y − Ê(Y |SP )]2

should be used.

Using both the ESS plot and the OD plot we can assess the adequacy of the

LR model. The ESS plot is used to visualize the conditional distribution Y |x. The

18



plotted points should follow the estimated parametric mean function ρ̂(ESP ). If

the lowess curve follows the logistic curve closely, then the LR mean function may

be a useful approximation for E(Y |x). The OD plot is used to check the variance

function.

Recall that if a count Y is not too small, then a normal approximation is good

for the binomial distribution. Notice that if Yi = E(Y |SP ) + 2
√

V (Y |SP ), then

[Yi − E(Y |SP )]2 = 4V (Y |SP ). Then if both the estimated mean and estimated

variance functions are good approximations, the plotted points in the OD plot will

scatter about a wedge formed by the V̂ = 0 line and the line through the origin

with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should be above

this line. The evidence of overdispersion increases as the scale of the vertical axis

increases from 4 to 10 times the scale of the horizontal axis. If the scale of the

vertical axis is more than 10 times that of the horizontal then there is evidence of

overdispersion.

If the binomial LR OD plot is used but the data follows a beta–binomial

regression model, then V̂mod = V̂ (Yi|ESP ) ≈ miρ(ESP )(1 − ρ(ESP )) while

V̂ = [Yi − miρ(ESP )]2 ≈ (Yi − E(Yi))
2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 −

ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should scatter

about a line with slope ≈

1 + (m − 1)
θ

1 + θ
=

1 + mθ

1 + θ
.

Numerical summaries are also available. The deviance G2 is a statistic used

to assess the goodness of fit of the logistic regression model much as R2 is used for
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multiple linear regression. If the ESS and OD plots look good and the deviance

G2 satisfies G2/(n − p − 1) ≈ 1, then the LR model is likely useful. If G2 >

(n − p − 1) + 3
√

n − p + 1, then a more complicated count model may be needed.

The following three pages are examples of the ESS plot and OD plot for specific

data sets. Explanation of each data set is provided with the plots.
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Figure 2.1. Plots for Museum Data

Example 1. Schaaffhausen (1878) gives data on skulls at a museum. The 1st

47 skulls are humans while the remaining 13 are apes. The response variable ape is 1

for an ape skull. The left plot in Figure 2.1 uses the predictor face length. The model

fits very poorly since the probability of a 1 decreases then increases. The middle

plot uses the predictor head height and perfectly classifies the data since the ape

skulls can be separated from the human skulls with a vertical line as ESP = 0. The

right plot uses predictors lower jaw length, face length, and upper jaw length. None

of the predictors is good individually, but together provide a good LR model since

the observed proportions (the step function) track the model proportions (logistic
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curve) closely.
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Figure 2.2. Plots for Death Penalty Data

Example 2. Abraham and Ledolter (2006) describe death penalty sentencing

in Georgia. The predictors are aggravation level from 1 to 6 (treated as a continuous

variable) and race of victim coded as 1 for white and 0 for black. There were 362

jury decisions and 12 level–race combinations. The response variable was the number

of death sentences in each combination. The ESS plot in Figure 2.2a shows that

the Yi/mi are close to the estimated LR mean function (the logistic curve). The

step function based on 5 slices also tracks the logistic curve well. The OD plot

is shown in Figure 2.2b with the identity, slope 4 and OLS lines added as visual
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aids. The vertical scale is less than the horizontal scale and there is no evidence of

overdispersion.
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Figure 2.3. Plots for Rotifer Data

Example 3. Collett (1999) describes a data set where the response variable

is the number of rotifers that remain in suspension in a tube. A rotifer is a mi-

croscopic invertebrate. The two predictors were the density of a stock solution of

Ficolli and the species of rotifer coded as 1 for polyarthra major and 0 for keratella

cochlearis. Figure 2.3a shows the ESS plot. Both the observed proportions and the

step function track the logistic curve well, suggesting that the LR mean function is a

good approximation to the data. The OD plot suggests that there is overdispersion

since the vertical scale is about 30 times the horizontal scale. The OLS line has

25



slope much larger than 4 and two outliers seem to be present.

2.3 SIMULATION OF BINOMIAL AND BETA-BINOMIAL

REGRESSION DATA

Computer simulation was used to generate binomial and beta-binomial regres-

sion data to check for overdispersion. For type 1 a binomial distribution was used

and for type 2 a beta-binomial distribution was used. For n = 50, 100, 200, 300,

400, and 500 the number of times V̂ /V̂ (Y |SP ) ≥ 10 was counted. This is labeled mr

in the following tables. For the same values of n the number of times the deviance

G2 > n− q − 1 + 3
√

(n − q − 1) was counted. This is labeled as dr in the following

tables. The simulation used nruns = 1000, so mr and dr are listed as percentages

out of 1000 runs.

We can make the following conclusions from the tables:

1. For the binomial distribution mr < 0.06 for all values of n. Also, G2 = 0 for all

values of n. The values of mr and G2 that were obtained from simulation suggest

the LR model holds.

2. For the beta-binomial distribution mr > 0.06 for all values of n. When G2 > 0.8

then values of mr and dr suggest that the LR model does not hold.
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n type θ mr dr

50 1 1 .001 0

100 1 1 .01 0

200 1 1 .025 0

300 1 1 .036 0

400 1 1 .047 0

500 1 1 .059 0

Table 2.1. Results for overdispersion using the binomial distribution.
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n type θ mr dr

50 2 .1 .063 .163

50 2 .2 .247 .444

50 2 .3 .398 .632

50 2 .4 .531 .722

50 2 .5 .599 .773

50 2 .6 .697 .804

50 2 .7 .727 .84

50 2 .8 .762 .858

50 2 .9 .806 .872

50 2 1 .808 .882

100 2 .1 .205 .27

100 2 .2 .499 .682

100 2 .3 .77 .898

100 2 .4 .875 .945

100 2 .5 .939 .977

100 2 .6 .963 .98

100 2 .7 .98 .99

100 2 .8 .979 .99

100 2 .9 .984 .989

100 2 1 .993 .994

Table 2.2. Results for overdispersion using the beta-binomial distribution.
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n type θ mr dr

200 2 .1 .449 .433

200 2 .2 .869 .925

200 2 .3 .964 .994

200 2 .4 .99 1

200 2 .5 .999 1

200 2 .6 .997 1

200 2 .7 1 1

200 2 .8 1 1

200 2 .9 1 1

200 2 1 1 1

300 2 .1 .61 .581

300 2 .2 .956 .98

300 2 .3 .998 .999

300 2 .4 1 1

300 2 .5 1 1

300 2 .6 1 1

300 2 .7 1 1

300 2 .8 1 1

300 2 .9 1 1

300 2 1 1 1

Table 2.3. Continuation of Table 2.2
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n type θ mr dr

400 2 .1 .741 .651

400 2 .2 .984 .996

400 2 .3 1 1

400 2 .4 1 1

400 2 .5 1 1

400 2 .6 1 1

400 2 .7 1 1

400 2 .8 1 1

400 2 .9 1 1

400 2 1 1 1

500 2 .1 .84 .754

500 2 .2 .996 .999

500 2 .3 .999 1

500 2 .4 1 1

500 2 .5 1 1

500 2 .6 1 1

500 2 .7 1 1

500 2 .8 1 1

500 2 .9 1 1

500 2 1 1 1

Table 2.4. Continuation of Table 2.2
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CHAPTER 3

OLS TESTS FOR BINOMIAL REGRESSION DATA

3.1 THE OLS ESTIMATOR

In this chapter we will simulate binary regression data to find whether the OLS

tests have correct p-values for large samples. But first we will give some important

results concerning the OLS estimator. This section follows Chang and Olive (2006)

closely.

Let

Cov(x) = E[(x− E(x))(x − E(x))T] = Σx

and Cov(x, Y ) = E[(x − E(x))(Y − E(Y ))] = ΣxY . Let the OLS estimator be

(α̂OLS, β̂OLS). Then the population coefficients from an OLS regression of Y on x

are

αOLS = E(Y ) − βT
OLSE(x) and βOLS = Σ−1

x ΣxY. (3.1)

Let the data be (Yi,xi) for i = 1, ..., n. Let the p × 1 vector η = (α,βT )T , let

X be the n × p OLS design matrix with ith row (1,xT
i ), and let Y = (Y1, ..., Yn)

T .

Then the OLS estimator η̂ = (XTX)−1XT Y . The sample covariance of x is

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T where the sample mean x =
1

n

n∑

i=1

xi.

Similarly, define the sample covariance of x and Y to be

Σ̂xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .
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Following Seber and Lee (2003, p. 106),

(XT X)−1 =




1
n

+ xT D−1x −xT D−1

−D−1x D−1




where the (p − 1) × (p − 1) matrix

D−1 = [(n − 1)Σ̂x]−1 = Σ̂
−1

x /(n − 1). (3.2)

The first result shows that η̂ is a consistent estimator of η.

i) Suppose that (Yi,x
T
i )T are iid random vectors such that Σ−1

x and ΣxY exist.

Then

α̂OLS = Y − β̂
T

OLSx
D→ αOLS

and

β̂OLS =
n

n − 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞.

The following results will be for 1D regression and some notation is needed.

Many 1D regression models have an error e with

σ2 = Var(e) = E(e2). (3.3)

Let ê be the error residual for e. Let the population OLS residual

v = Y − αOLS − βT
OLSx (3.4)

with

τ 2 = E[(Y − αOLS − βT
OLSx)2] = E(v2), (3.5)

and let the OLS residual be

r = Y − α̂OLS − β̂
T

OLSx. (3.6)
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Typically the OLS residual r is not estimating the error e and τ 2 6= σ2, but the

following results show that the OLS residual is of great interest for 1D regression

models.

Assume that a 1D model holds, Y x|α + βTx, which is equivalent to

Y x|βTx. Then under regularity conditions, results ii) – iv) below hold.

ii) Li and Duan (1989): βOLS = cβ for some constant c.

iii) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂OLS − cβ)

D→ Np−1(0,COLS) (3.7)

where

COLS = Σ−1
x E[(Y − αOLS − βT

OLSx)2(x − E(x))(x − E(x))T ]Σ−1
x . (3.8)

iv) Chen and Li (1998): Let A be a known full rank constant k × (p − 1)

matrix. If the null hypothesis Ho: Aβ = 0 is true, then

√
n(Aβ̂OLS − cAβ) =

√
nAβ̂OLS

D→ Nk(0,ACOLSAT )

and

ACOLSAT = τ 2AΣ−1
x AT . (3.9)

Notice that COLS = τ 2Σ−1
x if v = Y −αOLS −βT

OLSx x or if the MLR model

holds. If the MLR model holds, τ 2 = σ2.

To create test statistics, the estimator

τ̂ 2 = MSE =
1

n − p

n∑

i=1

r2
i =

1

n − p

n∑

i=1

(Yi − α̂OLS − β̂
T

OLSxi)
2
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will be useful. The estimator ĈOLS =

Σ̂
−1

x

[
1

n

n∑

i=1

[(Yi − α̂OLS − β̂
T

OLSxi)
2(xi − x)(xi − x)T ]

]
Σ̂

−1

x (3.10)

can also be useful. Notice that for general 1D regression models, the OLS MSE

estimates τ 2 rather than the error variance σ2.

v) Result iv) suggests that a test statistic for Ho : Aβ = 0 is

WOLS = nβ̂
T

OLSAT [AΣ̂
−1

x AT ]−1Aβ̂OLS/τ̂ 2 D→ χ2
k, (3.11)

the chi–square distribution with k degrees of freedom.

Before presenting the main theoretical result, some results from OLS MLR

theory are needed. Let the p × 1 vector η = (α,βT )T , the known k × p constant

matrix Ã = [a A] where a is a k × 1 vector, and let c be a known k × 1 constant

vector. Following Seber and Lee (2003), the usual F statistic for testing Ho : Ãη = c

is

F0 =
(SSE(H) − SSE)/k

SSE/(n − p)
= (3.12)

(Ãη̂ − c)T [Ã(XT X)−1Ã
T
]−1(Ãη̂ − c)/(kτ̂ 2)

where MSE = τ̂ 2 = SSE/(n − p), SSE =
∑n

i=1 r2
i and

SSE(H) =
n∑

i=1

r2
i (H)

is the minimum sum of squared residuals subject to the constraint Ãη = c. Recall

that if Ho is true, the MLR model holds and the errors ei are iid N(0, σ2), then

Fo ∼ Fk,n−p, the F distribution with k and n − p degrees of freedom. Also recall

that if Zn ∼ Fk,n−p, then

Zn
D→ χ2

k/k (3.13)
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as n → ∞.

Theorem 3.1.1 and (3.13) suggest that OLS output, originally meant for testing

with the MLR model, can also be used for testing with many 1D regression data

sets. Without loss of generality, let the 1D model Y x|α + βT x be written as

Y x|α + βT
RxR + βT

OxO

where the reduced model is Y x|α + βT
RxR and xO denotes the terms outside of

the reduced model. Notice that OLS ANOVA F test corresponds to Ho: β = 0 and

uses A = Ip−1. The tests for Ho: βi = 0 use A = (0, ..., 0, 1, 0, ..., 0) where the 1 is

in the ith position and are equivalent to the OLS t tests. The test Ho: βO = 0 uses

A = [0 I j] if βO is a j × 1 vector, and the test statistic (3.12) can be computed by

running OLS on the full model to obtain SSE and on the reduced model to obtain

SSE(R) ≡ SSE(H).

In the theorem below, it is crucial that Ho: Aβ = 0. Tests for Ho: Aβ = 1,

say, may not be valid even if the sample size n is large. Also, confidence intervals

corresponding to the t tests are for cβi, and are usually not very useful when c is

unknown.

Theorem 3.1.1. Assume that a 1D regression model holds and that Equation (3.11)

holds when Ho : Aβ = 0 is true. Then the test statistic (3.12) satisfies

F0 =
n − 1

kn
WOLS

D→ χ2
k/k

as n → ∞.

Proof. See Olive (2007c).
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3.2 SIMULATION OF THE OLS F STATISTIC

In this section, simulation is used to generate the OLS F statistic for binary

logistic regression.

For atype = 1 the partial F test is used. That is, we test Ho : βi = 0, i = q/2, ..., q

where q is the number of predictors.

For atype = 2 the t test is used. That is, we test Ho : βq = 0.

For atype = 3 we test Ho : β = 0.

For each atype and each value of n, nruns = 1000. For each table folscov is the

proportion of 1000 runs where FOLS > F(0.95,dfNum,dfDenom).

In Table 3.1, where atype = 1, FOLS > F(0.95,q/2,n−q−1 ).

In Table 3.2, where atype = 2, FOLS > F(0.95,1,n−q−1).

In Table 3.3, where atype = 3, FOLS > F(0.95,q,n−q−1)
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n atype folscov

10 1 NA

50 1 0.04

100 1 0.054

200 1 0.054

300 1 0.054

400 1 0.044

500 1 0.051

600 1 0.062

700 1 0.056

800 1 0.051

900 1 0.047

1000 1 0.047

2000 1 0.051

3000 1 0.049

4000 1 0.047

5000 1 0.051

Table 3.1. Results for simulation of folscov when atype = 1.
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n type folscov

10 2 0.044

50 2 0.045

100 2 0.046

200 2 0.047

300 2 0.042

400 2 0.052

500 2 0.049

600 2 0.045

700 2 0.064

800 2 0.04

900 2 0.062

1000 2 0.064

2000 2 0.04

3000 2 0.052

4000 2 0.057

5000 2 0.054

Table 3.2. Results for simulation of folscov when atype = 2.
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n type folscov

10 3 NA

50 3 0.035

100 3 0.038

200 3 0.056

300 3 0.042

400 3 0.05

500 3 0.041

600 3 0.034

700 3 0.053

800 3 0.042

900 3 0.055

1000 3 0.065

2000 3 0.054

3000 3 0.057

4000 3 0.043

5000 3 0.06

Table 3.3. Results for simulation of folscov when atype = 3.
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Conclusions from Tables 3.1, 3.2, and 3.3.

1. For atype = 1, folscov is around 0.05.

2. For atype = 2, folscov is around 0.05.

3. For atype = 3, folscov is around 0.05.

We can conclude that the OLS p-values are approximately correct for some binary

regression models.
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