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CHAPTER 1

INTRODUCTION

In Actuarial mathematics, Statistics has become increasingly important since large insurance

companies and banks have large data bases from which information needs to be extracted. Statisti-

cal Learning methods such as shrinkage estimators have become important. Chapter 2 derives the

large sample theory for ridge type estimators such as the Liu-Type Regression Estimators.

Chapter 3 gives frequentist prediction intervals based on the maximum likelihood estimator.

Actuarial texts often use Bayesian predictive distributions.

Chapter 4 gives some simple proofs for some formulas that are useful for the life contingen-

cies actuarial exams.
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CHAPTER 2

LARGE SAMPLE THEORY FOR SOME RIDGE-TYPE REGRESSION ESTIMATORS

2.1 INTRODUCTION

This section reviews the multiple linear regression model, some ridge-type regression esti-

mators, and the large sample theory for the ordinary least squares estimator. Suppose that the

response variable Yi and at least one predictor variable xi, j are quantitative with xi,1 ≡ 1. Let

xT
i = (xi,1, ..., xi,p) and β = (β1, ..., βp)T where β1 corresponds to the intercept. Then the multiple

linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (2.1)

for i = 1, ..., n. Here n is the sample size, and assume that the random variables ei are independent

and identically distributed (iid) with mean E(ei) = 0 and variance V(ei) = σ2. In matrix notation,

these n equations become

Y = Xβ + e (2.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of predictors, β is a p × 1

vector of unknown coefficients, and e is an n × 1 vector of unknown errors. The ith fitted value

Ŷi = xT
i β̂ and the ith residual ri = Yi− Ŷi where β̂ is any p×1 estimator of β. Ordinary least squares

(OLS) is often used for inference if n/p is large.

Liu (2003) defined the Liu-type estimator

β̂k,d = (XT X + kI)−1(XT Y − dβ̂) = β̂R,k −
d
n

n(XT X + kI)−1β̂ (2.3)

where k = kn ≥ 0, d = dn is a real number, and the Hoerl and Kennard (1970) ridge regression

estimator β̂R,k corresponds to d = 0. The Liu (1993) estimator

β̂c = (XT X + I)−1(XT Y + cβ̂)

is another special case with k = 1 and d = −c where 0 < c < 1.
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Kurnaz and Akay (2015) showed that several ridge-type regression estimators in the literature

can be written as β̂ f = (XT X + kI)−1(XT Y + f (k)β̂) where k ≥ 0 and f (·) is a continuous func-

tion of k, including ridge-type estimators given by Özkale and Kaçiranlar (2007), Sakallioǧlu and

Kaçiranlar (2008), and Yang and Chang (2010). Note that β̂ f = β̂k,d with d = − f (k). If β̂ = β̂R,k,

then β̂ f = (XT X + kI)−1(XT X + [k + f (k)]I)β̂R,k.

Kibria and Lukman (2020) defined the estimator

β̂KL = (XT X + kI)−1(XT X − kI)β̂OLS .

Since (XT X + kI)−1(XT X − kI) = I − 2k(XT X + kI)−1,

β̂KL = [I − 2k(XT X + kI)−1]β̂OLS = β̂OLS − 2k(XT X + kI)−1β̂OLS . (2.4)

The OLS estimator β̂OLS = (XT X)−1XT Y has large sample theory given, for example, by Sen

and Singer (1993, p. 280). Let the hat matrix H = X(XT X)−1XT and let the ith leverage hi = Hii

be the ith diagonal element of H. Consider the multiple linear regression model (2.1) where the ei

are iid with E(ei) = 0 and V(ei) = σ2. Assume that maxi(h1, ..., hn) → 0 in probability as n → ∞

and
XT X

n
→ V−1

as n→ ∞. Then
√

n(β̂OLS − β)
D
→ Np(0, σ2 V). (2.5)

Note that n(XT X)−1 → V, and if k/n→ 0, then(
XT X + kI

n

)−1

= n(XT X + kI)−1 → V. (2.6)

Knight and Fu (2000) derived the large sample theory for ridge regression and the Tibshirani

(1996) lasso estimator with p fixed. The following section derives some large sample theory for

the Liu-type estimator β̂k,d and for β̂KL.
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2.2 LARGE SAMPLE THEORY

The large sample theory assumes that p is fixed and that Equation (2.5) holds for the OLS

estimator. Then β̂k,d = (XT X + kI)−1(XT Y − dβ̂) =

(XT X + kI)−1(XT X)(XT X)−1XT Y − d(XT X + kI)−1β̂ =

Anβ̂OLS − d(XT X + kI)−1β̂

where An = (XT X + kI)−1(XT X) = Bn = I − k(XT X + kI)−1 since An − Bn = 0. This identity

appears in Gunst and Mason (1980, p. 332) and was used by Pelawa Watagoda and Olive (2021)

to simplify ridge regression large sample theory. Thus

β̂k,d = [I − k(XT X + kI)−1]β̂OLS − d(XT X + kI)−1β̂ =

β̂k,d = β̂OLS −
k
n

n(XT X + kI)−1β̂OLS −
d
n

n(XT X + kI)−1β̂. (2.7)

Theorem 1. Assume Equations 2.5) and 2.6) hold, and that β̂ is a consistent estimator of β. a)

If k/
√

n→ 0 and d/
√

n→ 0, then β̂k,d is asymptotically equivalent to β̂OLS with

√
n(β̂k,d − β)

D
→ Np(0, σ2 V).

b) If k/
√

n→ τ ≥ 0 and d/
√

n→ δ, then

√
n(β̂k,d − β)

D
→ Np(−(τ + δ)Vβ, σ2 V).

c) If k/n→ 0 and d/n→ 0, then β̂k,d is a consistent estimator of β.

Proof. a) follows from b).

b) By Equation (2.7),

√
n(β̂k,d − β) =

√
n(β̂OLS − β) −

k
√

n
n(XT X + kI)−1β̂OLS −

d
√

n
n(XT X + kI)−1β̂

D
→ Np(0, σ2 V) − τVβ − δVβ ∼ Np(−(τ + δ)Vβ, σ2 V).

c) By Equation (2.7), β̂k,d
P
→ β − 0Vβ − 0Vβ = β.
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Theorem 2. Assume Equations 2.5) and 2.6) hold. a) If k/
√

n→ 0, then β̂KL is asymptotically

equivalent to β̂OLS with
√

n(β̂KL − β)
D
→ Np(0, σ2 V).

b) If k/
√

n→ τ ≥ 0, then

√
n(β̂KL − β)

D
→ Np(−2τVβ, σ2 V).

c) If k/n→ 0, then β̂KL is a consistent estimator of β.

Proof. a) follows from b).

b) By Equation (2.4),

√
n(β̂KL − β) =

√
n(β̂OLS − β) −

2k
√

n
n(XT X + kI)−1β̂OLS

D
→ Np(0, σ2 V) − 2τVβ ∼ Np(−2τVβ, σ2 V).

c) By Equation (2.4),

β̂KL = β̂OLS −
2k
n

n(XT X + kI)−1β̂OLS
P
→ β − 2(0)Vβ = β.

2.3 CONCLUSIONS

Theorems 1 and 2 gave some large sample theory for many ridge-type estimators. Taking

d = −k is interesting in Theorem 1. Several of the ridge-type estimators can be computed if k > 0

even if XT X is singular, and such estimators can be useful if p > n. Li and Yang (2012) gave a

Liu-type estimator that replaced β̂ by a vector b that represents prior information.

For many regression estimators, a method is needed so that everyone who uses the same

units of measurement for the predictors and Y gets the same (Ŷ, β̂). Let the nontrivial predictors

uT
i = (xi,2, ..., xi,p) where xi = (1,uT

i )T . A common method is to use the centered response Z = Y−Y

where Y = Y1, and the n × (p − 1) matrix of standardized nontrivial predictors W = (Wi j). For

j = 1, ..., p−1, let Wi j denote the ( j+1)th variable standardized so that
∑n

i=1 Wi j = 0 and
∑n

i=1 W2
i j =

n. Note that the sample correlation matrix of the nontrivial predictors ui is Ru = WTW/n. Then
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regression through the origin is used for the model Z = Wη + e where the vector of fitted values

Ŷ = Y + Ẑ. Large sample theory could be given for Z = Wη+ e, as in Pelawa Watagoda and Olive

(2021), or for Y = Xβ + e, as in this chapter.

[margin=1.0in]geometry
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CHAPTER 3

PREDICTION INTERVALS FOR CENSORED DATA FROM SOME PARAMETRIC

MODELS

3.1 INTRODUCTION

Assume that training data Y1, ...,Yn are independent and identically distributed from a para-

metric distribution Y ∼ D(θ) where θ is a d×1 vector of parameters. This chapter presents a simple

large sample 100(1 − δ)% prediction interval (PI) for a future value Y f given Y1, ...,Yn. Apply the

nonparametric shorth prediction interval to Y∗1 , ...,Y
∗
B where the Y∗i are independent and identically

distributed (iid) from the distribution D(θ̂). If θ̂ is a consistent estimator of θ, then this prediction

interval is a large sample 100(1 − δ)% PI that is a consistent estimator of the shortest population

interval [L,U] that contains at least 1 − δ of the mass as B, n → ∞. This PI can be regarded

as a special case of the Olive, Rathnayake, and Haile (2021) prediction interval for a parametric

regression model that has no predictors. Consistent estimators of θ, such as method of moments

estimators, maximum likelihood estimators (MLEs) or percentile matching estimators should be

used.

A large sample 100(1−δ)% prediction interval (PI) for Y f has the form [L̂n, Ûn] where P(L̂n ≤

Y f ≤ Ûn)→ 1− δ as the sample size n→ ∞. A PI is asymptotically optimal if [L̂n, Ûn]→ [Ls,Us]

as n→ ∞where [Ls,Us] is the population shorth: the shortest interval covering at least 100(1−δ)%

of the mass. (A highest density region is a union of intervals such that the sum of the lengths is

minimized given at least 100(1 − δ)% coverage. For a unimodal error distribution with pdf, the

population shorth is the population highest density region.)

The shorth(c) estimator of the population shorth is useful for making asymptotically optimal

prediction intervals if the data are iid. Let Z(1), ...,Z(n) be the order statistics of Z1, ...,Zn. Then let

the shortest closed interval containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (3.1)
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Let dxe be the smallest integer ≥ x, e.g., d7.7e = 8. Let

kn = dn(1 − δ)e. (3.2)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) PI has maximum undercoverage

≈ 1.12
√
δ/n, and used the shorth(c) estimator as the large sample 100(1 − δ)% PI where

c = min(n, dn[1 − δ + 1.12
√
δ/n ] e).

The large sample 100(1 − δ)% PI using Y∗1 , ...,Y
∗
B uses the shorth(c) PI with

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (3.3)

The prediction interval (3.3) can have undercoverage if n is small compared to the number of

estimated parameters d. The modified shorth PI (3.4) inflates PI (3.3) to compensate for parameter

estimation. We want n ≥ 10d, and the prediction interval length will be increased (penalized) if

n/d is not large. Let qn = min(1 − δ + 0.05, 1 − δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the shorth PI with

cmod = min(B, dB[qn + 1.12
√
δ/B ] e). (3.4)

Olive (2007, 2013) and Pelawa Watagoda and Olive (2021) used similar correction factors since

the maximum simulated undercoverage was about 0.05 when n = 20d.

The prediction intervals (3.3) and (3.4) are computed using the parametric bootstrap. There

are not many references for prediction intervals for parametric models with censoring. The pre-

diction intervals tend to be constructed using predictive distributions, have complicated correction

factors, lack software, and may only be applicable when n ≥ 10d. See Hall, Peng, and Tajvidi

(1999), Hall and Rieck (2001), Lawless and Fredette (2005), and Ueki and Fueda (2007).

Bayesian predictive distributions are often hard to compute. In the simplest setting, let Z =

Y f , let y = (Y1, ...,Yn)T , and let Y1, ...,Yn,Z be iid with pdf fZ|Θ(z|θ) = f (z|θ) whenΘ = θ. Then the
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Bayesian predictive pdf fZ|y(z|y) =
∫

fZ|θ(z|θ)πΘ|y(θ|y)dθ where πΘ|y(θ|y) is the posterior pdf and

Θ is a g × 1 random vector. Hence the Bayesian predictive pdf is a continuous mixing distribution

weighted by the posterior pdf. See, for example, Geisser (1993), Klugman, Panjer, and Willmot

(2008, p. 406), and Kellison and London (2011, pp. 409-410). Frequentists could use the pdf

f (z|θ̂n) where θ̂n is the MLE of θ. The Bernstein-von Mises theorem, also known as the Bayesian

central limit theorem, states that the posterior distribution Θ|y ≈ Ng(θ̂n, I−1(θ̂n)/n), a multivariate

normal approximation, where I−1(θ) is the inverse information matrix and θ̂n is the MLE of θ. See,

for example, Ferguson (1996, pp. 140-141). Then for large n, the posterior pdf is approximately

the point mass at θ̂n, and fZ|y(z|y) ≈ f (z|θ̂n). These heuristics suggest that the PIs based on the

Bayesian predictive distribution and the PIs (3.3) and (3.4) will be similar for large n.

Section 3.2 describes some parametric models where the prediction intervals (3.3) and (3.4)

are useful. Section 3.3 gives a simulation.

3.2 EXAMPLES

Suppose that Y1, ...,Yn,Y f are iid where Y f is a future value and Yn = (Y1, ...,Yn)T is the data

vector. If X is (left) truncated at d then W = X|(X > d) has survival function S W(x) =
S X(x)
S X(d)

for

x > d, and cumulative distribution function (cdf) FW(x) = 1 − S W(x) for x > d. For insurance,

losses are truncated if there is a deductible d.

Let Yi = loss or time to event for ith person. Y∗i = Ti = min(Yi,Zi) where Yi and Zi are

independent and Zi is the censoring random variable for the ith person (for time until event, Zi

is the time the ith person is lost to the study for any reason other than the time to event under

study, often death). Let δi = I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored.

Alternatively, the censored data is y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored

and yi+ means the time was censored. For insurance, losses are right censored if there is a policy

limit u: if the amount of the policy holder’s loss exceeds u, then the benefit paid is u and the exact

value of the loss for the policy holder is not recorded (the loss for the insurance company is the

benefit paid).

Several random variables used in this section are briefly described next. We follow Klugman,
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Panjer, and Willmot (2008) closely.

X ∼ Gamma(α, θ) if X has probability density function (pdf)

f (x) =
1

θαΓ(α)
xα−1e−x/θ

where α, θ, and x are positive. Then E(X) = αθ, and V(X) = αθ2.

X ∼ Exponential(θ) if X ∼ Gamma(α = 1, θ) or if X ∼ Weibull(θ, τ = 1). Thus the pdf is

f (x) =
1
θ

e−x/θ where x, θ > 0. Then E(X) = θ, and V(X) = θ2.

X ∼ Pareto(α, θ) if the pdf of X is f (x) =
αθα

(θ + x)α+1 where α, θ, and x are positive. Then

E(X) =
θ

α − 1
for α > 1, and V(X) =

θ2α

(α − 1)2(α − 2)
for α > 2.

X ∼ single parameter Pareto(α, θ) if the pdf of X is f (x) =
αθα

xα+1 I(x > θ) where α > 0 and

θ is real. Note the support is x > θ. Then E(X) =
αθ

α − 1
for α > 1 and V(X) =

αθ2

α − 2
−(

αθ

α − 1

)2

for α > 2.

X ∼ Weibull(θ, τ) if the pdf of X is f (x) =
τ(x/θ)τe−(x/θ)τ

x
where θ > 0 and τ > 0. Then

E(Xk) = θkΓ(1 + k/τ) for k > −τ. V(X) = E(X2) − [E(X)]2.

Let X have a negative binomial NB(r, β) distribution where β, r > 0. Then the probability

mass function (pmf) of X is p0 = (1 + β)−r, and for k = 1, 2, ...,

pk =
r(r + 1) · · · (r + k − 1)βk

k!(1 + β)r+k and pk =
(k + r − 1)!βk

k!(r − 1)!(1 + β)r+k for integer r.

Then the expected value E(X) = rβ and the variance V(X) = rβ(1 + β). The parameterization(
1

1 + β

)r (
β

1 + β

)k

= ρr(1 − ρ)k

with ρ = (1 + β)−1 is also used.

X ∼ Poisson(λ) if the pmf of X is pk =
e−λλk

k!
for k = 0, 1, . . ., where λ > 0. Then E(X) =

λ = V(X).

Example 1. Suppose that Y1, ...,Yn,Y f are iid Poisson(λ). Following Klugman, Panjer, and

Willmot (2008, p. 412), if W = Y f and the prior distribution λ ∼ Gamma(α, θ), then the predictive

distribution

W |Yn ∼ NB

r = α +

n∑
i=1

Yi, β =
θ

1 + nθ

 .
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We could use PI (3.3) or (3.4) or generate Y∗1 , ...,Y
∗
B from the above predictive distribution

and and apply the shorth interval (3.3). See Chen and Shao (1999). If rnβn → λ and βn → 0, then

the negative binomial distribution converges in distribution to the Poisson(λ) random variable. See

Agresti (2002, p. 560). Since E(W |Yn) ≈ V(W |Yn) ≈ Yn, which is the MLE λ̂ of λ, the Bayesian

and frequentist methods give similar results for large n.

Some MLE Formulas.

Let m = number of uncensored observations, c = number of censored observations, n = m+c,

let di be the truncation point for each observation (0 if untruncated). Let xi be the observation if

uncensored or the censoring point (ui) if censored. The following MLE formulas work if left

truncation and right censoring are present or not.

a) EXP(θ): θ̂ =

∑n
i=1(xi − di)

m
.

b) Weibull fixed τ: θ̂ =

(∑n
i=1(xτi − dτi )

m

)1/τ

.

c) Pareto fixed θ: α̂ =
−m∑n

i=1 ln
(
θ+di
θ+xi

) .
d) single parameter Pareto fixed θ: α̂ =

−m∑n
i=1 ln

(
max(θ,di)

xi

) .
3.3 SIMULATIONS

R uses Y ∼ Exponential(λ) with E(Y) = θ = 1/λ. The simulation generated Yi ∼

Exponential(λ) and Zi ∼ Exponential(λ = 0.1) with E(Zi) = 10. The MLE λ̂ = 1/θ̂ was com-

puted. Then Y∗i ∼ Exponential(λ̂) were computed for i = 1, ..., B. Then the 95% PI (3.4) was

computed with d = 1. 5000 runs were used and the average length of the 5000 PIs was computed.

The coverage is the percentage of times that the PIs contained the future value Y f . Coverage be-

tween 0.94 and 0.96 suggest that the actual coverage is close to the nominal coverage 0.95. The

population shorth is the interval [0,−θ ln(0.05)] ≈ [0, 2.9957/λ]. Need n and B very large to get

the average length close to the length of the population shorth.

source("http://parker.ad.siu.edu/Olive/survpack.txt")

args(exppisim)
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function(n=100,nruns=100,B=1000,lam=1,clam=0.1,alpha=0.05)

exppisim(n=100,nruns=5000,B=1000,lam=1)

$lam

[1] 1

$mle

[1] 1.104127

$fullpicov

[1] 0.956

$fullpimenlen

[1] 3.284781

3.4 CONCLUSION

Since PIs (3.3) and (3.4) are for a parametric model, it is crucial to check that the parametric

model is appropriate. In a similar application, Chen and Shao (1999) and Olive (2014, p. 364)

used the shorth estimator to estimate Bayesian credible regions.

The simulations were done in R. See R Core Team (2016). The collection of Olive (2022)

R functions survpack, available from (http://parker.ad.siu.edu/Olive/survpack.txt), has some useful

functions for the inference. The functions exppisim and mshpi were used to make Table 3.1 and

Table 3.2.
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CHAPTER 4

KERNEL METHOD PROOFS

This chapter will use the kernel method to prove some results that are used in the life contin-

gencies actuarial exams.

4.1 THE KERNEL METHOD

Using the fact that a probability density function integrates to 1 is often useful for integration.

Similarly, a probability mass function (pmf) sums to 1. Notation such as E(Y |θ) ≡ Eθ(Y) or fY(y|θ)

is used to indicate that the formula for the expected value or pdf are for a family of distributions

indexed by θ ∈ Θ.

Following Olive (2014, pp. 12-13), the kernel method is a widely used technique for finding

E[g(Y)].

Definition. Let fY(y) be the pdf or pmf of a random variable Y and suppose that fY(y|θ) =

c(θ)k(y|θ). Then k(y|θ) ≥ 0 is the kernel of fY and c(θ) > 0 is the constant term that makes fY sum

or integrate to one. Thus
∫ ∞
−∞

k(y|θ)dy = 1/c(θ) or
∑

y∈Y k(y|θ) = 1/c(θ).

Often E[g(Y)] is found using “tricks” tailored for a specific distribution. The word “ker-

nel” means “essential part.” Notice that if fY(y) is a pdf, then E[g(Y)] =
∫ ∞
−∞

g(y) f (y|θ)dy =∫
Y

g(y) f (y|θ)dy. Suppose that after algebra, it is found that

E[g(Y)] = a c(θ)
∫ ∞

−∞

k(y|τ)dy

for some constant a where τ ∈ Θ and Θ is the parameter space. Then the kernel method says that

E[g(Y)] = a c(θ)
∫ ∞

−∞

c(τ)
c(τ)

k(y|τ)dy =
a c(θ)
c(τ)

∫ ∞

−∞

c(τ)k(y|τ)dy︸               ︷︷               ︸
1

=
a c(θ)
c(τ)

.

Similarly, if fY(y) is a pmf, then

E[g(Y)] =
∑

y: f (y)>0

g(y) f (y|θ) =
∑
y∈Y

g(y) f (y|θ)

where Y = {y : fY(y) > 0} is the support of Y . Suppose that after algebra, it is found that

E[g(Y)] = a c(θ)
∑
y∈Y

k(y|τ)
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for some constant a where τ ∈ Θ. Then the kernel method says that

E[g(Y)] = a c(θ)
∑
y∈Y

c(τ)
c(τ)

k(y|τ) =
a c(θ)
c(τ)

∑
y∈Y

c(τ)k(y|τ)︸          ︷︷          ︸
1

=
a c(θ)
c(τ)

.

The kernel method is often useful for finding E[g(Y)], especially if g(y) = y, g(y) = y2

or g(y) = ety. The kernel method is often easier than memorizing a trick specific to a distribu-

tion because the kernel method uses the same trick for every distribution:
∑

y∈Y f (y) = 1 and∫
y∈Y

f (y)dy = 1. Of course sometimes tricks are needed to get the kernel f (y|τ) from g(y) f (y|θ).

For example, complete the square for the normal (Gaussian) kernel.

Example. To use the kernel method to find the moment generating function of a gamma (ν, λ)

distribution, note that

m(t) = E(etY) =

∫ ∞

0
ety yν−1e−y/λ

λνΓ(ν)
dy =

1
λνΓ(ν)

∫ ∞

0
yν−1 exp[−y(

1
λ
− t)]dy.

The integrand is the kernel of a gamma (ν, η) distribution with

1
η

=
1
λ
− t =

1 − λt
λ

so η =
λ

1 − λt
.

Now ∫ ∞

0
yν−1e−y/λdy =

1
c(ν, λ)

= λνΓ(ν).

Hence

m(t) =
1

λνΓ(ν)

∫ ∞

0
yν−1 exp[−y/η]dy = c(ν, λ)

1
c(ν, η)

=

1
λνΓ(ν)

ηνΓ(ν) =

(
η

λ

)ν
=

(
1

1 − λt

)ν
for t < 1/λ.

4.2 LIFE CONTINGENCIES FORMULAS

Many of the following formulas can be found in Bowers et al. (1997), Camilli, Duncan, and

London (2014), Cunningham, Herzog, and London (2008), Dickson, Hardy, and Waters (2020),

and Weishaus (2010).
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For life contingencies, the exponential(β) random variable = the gamma(ν = 1, λ = 1/β)

random variable with pdf

f (x) = β exp(−βx) I(x ≥ 0) where β > 0.

Then the expected value E(X) = 1/β, the variance V(X) = 1/β2, and the cumulative distribution

function F(x) = 1 − exp(−βx), x ≥ 0. Here I(x ≥ 0) = 1 if x ≥ 0 and I(x ≥ 0) = 0, otherwise. The

force of mortality µ(x) = β for x > 0. Often β is replaced by µ.

Let T0 correspond to the lifetime of an object at birth or when the object is made. Let Tx be

the time until failure of the object given that the object has survived to time x > 0. If T0 ∼ EXP(µ),

then Tx ∼ EXP(µ). This result is known as the memoryless property of the exponential distribution.

We use E
= when the exponential RV is used.

Let t > 0. Let fx(t) = fTx(t), Fx(t) = FTx(t), S x(t) = S Tx(t) and µx(t) = µTx(t).

a)

t px =
S 0(x + t)

S 0(x)
= 1 − tqx = P(Tx > t) = P(T0 > x + t|T0 > x) = S x(t)

= exp(−
∫ x+t

x
µr dr) = exp(−

∫ t

0
µx+s ds)

Note that S 0(x + t) = S 0(x)S x(t).

b)

tqx = 1 − t px = 1 −
S 0(x + t)

S 0(x)
= P(Tx ≤ t) = P(T0 ≤ x + t|T0 > x) = Fx(t)

c)

fx(t) =
f0(x + t)
S 0(x)

= t px µx+t =
d
dt

Fx(t) = −
d
dt

S x(t)

d)

µx+t =
f0(x + t)

S 0(x + t)
= µ0(x + t) = µx(t)

Suppose (x) buys insurance and dies at t > 0 years from purchase so T = Tx = t. Suppose

a unit payment (eg of $100000, $500000 or $1000000) is made. Then v =
1

1 + i
= e−δ and

δ = log(1 + i) = − log(v). Often use vt = e−δt and v2t = e−2δt.
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The rule of moments for bt ∈ {0, 1} (unit payment insurance) is if E[ Z ] = A = g(δ), then

E[(Z) j] = jA = g( jδ). This rule is usually used for j = 2. Often Z is used instead of Z.

I) Continuous whole life insurance makes unit payment at time t = k with vt = vt, t ≥ 0 and

bt = 1, t ≥ 0. Then zt = btvt = vt, t ≥ 0. The present value random variable Zx = zT = vT . Then the

actuarial present value APV = EPV = NSP =

Ax = E(Zx) = E(vT ) = E(e−δT ) =

∫ ∞

0
vt fT (t) dt =

∫ ∞

0
e−δt fT (t) dt =

∫ ∞

0
vt

t px µx+t dt, and

2Ax = E[(Zx)2] = E[(vT )2] = E(e−2δT ) =

∫ ∞

0
v2t fT (t) dt =

∫ ∞

0
e−2δt fT (t) dt =

∫ ∞

0
v2t

t px µx+t dt.

The moment generating function of a nonnegative random variable T is mT (z) = E(ezT ) =∫ ∞
0

ezt fT (t) dt provided that mT (z) exists in a neighborhood of z = 0. Thus Ax = mT (−δ) and

2Ax = mT (−2δ). A problem with this formula is T = Tx usually does not have a nice distribution

or moment generating function even if T0 has a nice distribution.

II) Continuous n year term insurance makes unit payment at time t > 0 only if t ≤ n, other-

wise no payment is made. Now vt = vt, t ≥ 0,

bt =


1, t ≤ n

0, t > n,
zt = btvt =


vt, t ≤ n

0, t > n,
and Z

1
x:n| =


vTx , T ≤ n

0, T > n.

Then the actuarial present value APV = EPV = NSP =

A
1
x:n| = E(Z

1
x:n|) =

∫ n

0
e−δt fT (t) dt =

∫ n

0
vt fT (t) dt =

∫ n

0
vt

t px µx+t dt, and

2A
1
x:n| = E[(Z

1
x:n|)

2] =

∫ n

0
e−2δt fT (t) dt =

∫ n

0
v2t fT (t) dt =

∫ n

0
v2t

t px µx+t dt.

The 1 above the x means unit benefit is payable after (x) dies if death is not after time n.

III) Continuous n year deferred insurance makes unit payment at time t > 0 only if t > n,

otherwise no payment is made. Now vt = vt, t ≥ 0,

bt =


0, t ≤ n

1, t > n
and zt = btvt =


0, t ≤ n

vt, t > n.
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The present value random variable

n|Zx =


0, T ≤ n

vT , T > n.

Then the actuarial present value APV = EPV = NSP =

n|Ax = E(n|Zx) =

∫ ∞

n
e−δt fT (t) dt =

∫ ∞

n
vt fT (t) dt =

∫ ∞

n
vt

t px µx+t dt, and

2
n|Ax = E[(n|Zx)2] =

∫ ∞

n
e−2δt fT (t) dt =

∫ ∞

n
v2t fT (t) dt =

∫ ∞

n
v2t

t px µx+t dt.

IV) Discrete = continuous n year pure endowment insurance makes unit payment at time n

only if t > n , otherwise no payment is made. Now

vt =


vt, t ≤ n

vn, t > n,
bt =


0, t ≤ n

1, t > n
and zt = btvt =


0, t ≤ n

vn, t > n.

The present value random variable

Z
x:

1
n|

=


0, Tx ≤ n

vn, Tx > n.

Then the actuarial present value APV = EPV = NSP =

A
x:

1
n|

= E(Z
x:

1
n|

) = nEx = vnP(Tx > n) = vn
∫ ∞

n
fx(t) dt = vn

∫ ∞

n
t px µx+t dt = vn

n px

(= vnP(Kx ≥ n) = vn ∑∞
k=n P(Kx = k) = vnS x(n) = e−δnS x(n) and

2A
x:

1
n|

= E[(Z
x:

1
n|

)2] = v2nP(Tx > n) = v2n
∫ ∞

n
fx(t) dt = v2n

∫ ∞

n
t px µx+t dt = v2n

n px

= v2nP(Kx ≥ n) = v2n ∑∞
k=n P(Kx = k) = v2nS x(n) = e−2δnS x(n). The 1 above the n| means unit

benefit is payable after (x) dies if death is after time n.

Also V(Z
x:

1
n|

) = v2n
n px nqx.
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V) Continuous n year endowment life insurance is a term insurance plus a pure endowment

insurance, and makes unit payment at time t > 0 if t < n and at time n if t > n. Then bt = 1, t ≥ 0

and

vt =


vt, t ≤ n

vn, t > n
and zt = btvt =


vt, t ≤ n

vn, t > n.

The present value random variable

Zx:n| =


vT , T ≤ n

vn, T > n.

Note that the n year endowment present value random variable

Zx:n| = Z
1
x:n| + Z

x:
1
n|

, the sum of the n year term and n year pure endowment present value RVs.

Then the actuarial present value APV = EPV = NSP =

Ax:n| = E[Zx:n|] = A
1
x:n| + A

x:
1
n|

=

∫ n

0
vt fT (t) dt + vnP(T > n) =

∫ n

0
vt

t px µx+t dt + vn
n px.

Similarly, [Zx:n|]2 = [Z
1
x:n|]

2 + [Z
x:

1
n|

]2 and 2Ax:n| =
2A

1
x:n| +

2A
x:

1
n|

=

∫ n

0
v2t fT (t) dt + v2nP(Tx > n) =

∫ n

0
v2t

t px µx+t dt + v2n
n px.

VI) A continuous n year deferred m year term insurance pays 1 unit at time t only if n < t ≤

n + m with bt = 0 for t ≤ n and t > n + m and bt = 1 for n < t < n + m. Then zt = btvt and

ZT = vT = e−δt for n < T ≤ n + m and ZT = 0 for T < n or T > n + m. Then

E(ZT ) = n|mAx = n|A
1
x:m| = Ax( nEx − n+mEx) =

∫ n+m

n
e−δt fT (t)dt

E
=

µ

µ + δ
[e−n(µ+δ) − e−(n+m)(µ+δ)].

VII) Continuous increasing whole life insurance pays t units at time t and has vt = vt = e−δt

and bt = t for t ≥ 0. So zt = btvt = tvt and the present value RV Z = Bx = zTx = TxvTx . Hence the

APV = E(Z) = E[Bx] = (I A)x =

∫ ∞

0
te−δt fx(t)dt =

∫ ∞

0
tvt

t px µx+t dt.
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VIII) A continuous whole life annuity makes a continuous payment at an annual rate of 1 unit

per year as long as (x) survives. The present value RV

Y x = aTx |
=

1 − vTx

δ
=

1 − Zx

δ
.

The APV is ax = E(Y x) =

∫ ∞

0
vt

t pxdt =

∫ ∞

0
e−δt S x(t)dt where S x(t) =

S 0(x + t)/S 0(x) = S Tx(t). Note the δ in the denominator of the continuous annuity. V(Y x) =

V(Zx)
δ2 =

2Ax − (Ax)2

δ2 .

Y x =
1 − Zx

δ
.

E[Y x] = ax =

∫ ∞

0
e−δtS T (t)dt E

=
1

µ + δ
. V(Y x) =

V(Zx)
δ2 =

2Ax − (Ax)2

δ2 .

Multiple life functions consider failure or survival of a status of multiple lives. Insurance

is payable when the status fails. Annuities are payable as long as the status survives. For 2 life

functions the x and y are separated by a colon. So think of (xy) as (x:y), and (xy) as (x : y).

Notation x + n : y + n is also used. Let Tx Ty mean that Tx and Ty are independent. Usually

assume Tx1 Tx2 ... Txk .

A joint life status for (xy) fails as soon as x or y dies. Let Txy = min(Tx,Ty) = time until 1st

death. A two life last survivor status for (xy) fails after both x and y die. Let Txy = max(Tx,Ty) =

time until 2nd death. Then Txy + Txy = Tx + Ty.

If Tx ∼ EXP(µx) Ty ∼ EXP(µy), then Txy = min(Tx,Ty) ∼ EXP(µx + µy).

Let Tx1 , ...,Txm be independent EXP(µi) RVs. Let u = (x1 · · · xm) or u = x1 · · · xm. Then

T = Tu = Tx1···xm = min(Tx1 , ...,Txm) ∼ EXP(
m∑

i=1

µi). Then µT (t) =
∑m

i=1 µi, S T (t) = exp(−t
∑m

i=1 µi),

o
eu= E(T ) = 1/(

m∑
i=1

µi) and V(T ) = 1/(
∑m

i=1 µi)2.

IX) For whole life insurance, Au = E[Zu] =

∑m
i=1 µi

δ +
∑m

i=1 µi
, and 2Au = E[(Zu)2] =

∑m
i=1 µi

2δ +
∑m

i=1 µi
.

X) For a whole life annuity, au = E[Yu] =
1

δ +
∑m

i=1 µi
, and V[Yu] =

2Au − (Au)2

δ2 .
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4.3 SOME PROOFS

Let T ∼ EXP(µ) with S (t) = e−µt for t > 0. Then E(T ) =
∫ ∞

0
tµe−µtdt =

∫ ∞
0

e−µtdt = 1/µ. So∫ ∞
0

tDe−t(D)dt =
∫ ∞

0
e−t(D)dt = 1/D for D > 0. Use E

= when the exponential RV is used.

0) Continuous whole life insurance with the exponential(µ) distribution often has Z = bt vt =

eθte−δt where bt = eθt and vt = e−δt. Then E[Z] E
=

µ

µ + δ − θ
provided µ + δ − θ > 0. Also

E[(Z) j] E
=

µ

µ + δ j − θ j
provided µ + δ j − θ j > 0.

Proof: Now
∫ ∞

0
µe−µtdt = 1 so

∫ ∞

0
e−µtdt = 1/µ if µ > 0. Hence

E[Z] =

∫ ∞

0
bte−δtµe−µtdt =

∫ ∞

0
eθte−δtµe−µtdt = µ

∫ ∞

0
e−t(µ+δ−θ)dt =

µ

µ + δ − θ
provided µ+δ−θ >

0. Also E[(Z) j] =

∫ ∞

0
[bte−δt] jµe−µtdt =

∫ ∞

0
eθ jte−δ jtµe−µtdt = µ

∫ ∞

0
e−t(µ+δ j−θ j)dt =

µ

µ + δ j − θ j
provided µ + δ j − θ j > 0. �

Notes: i) If bt = ceθt and Z = bT vT , then E[Z
j
] = E[(bT vT ) j] = c jE[(eθT vT ) j]. So multiply

c = 1 formulas by c j. Usually want j = 1, 2.

ii) If T = Tx has moment generating function mT (z), then E(Z
j
) = mT (θ j−δ j) = mT ([θ−δ] j).

I) Continuous whole life insurance: special case of 0) with θ = 0.

Zx = e−δT . Ax = E(Zx) = E(e−δT ) E
=

µ

µ + δ
, and 2Ax = E[(Zx)2] = E(e−2δT ) E

=
µ

µ + 2δ
.

V(Zx) = 2Ax − (Ax)2.

Proof: Note that θ = 0 corresponds to unit payment, bt = e0t = 1. E[Zx] =

∫ ∞

0
e−δtµe−µtdt =

µ

∫ ∞

0
e−t(µ+δ)dt =

µ

µ + δ
provided µ+ δ > 0. Also E[(Zx) j] =

∫ ∞

0
e−δ jtµe−µtdt = µ

∫ ∞

0
e−t(µ+δ j)dt =

µ

µ + δ j
provided µ + δ j > 0. �

Often
∫ ∞

0
is replaced by

∫ b

a
. Thus E[Z] =

∫ b

a
bte−δtµe−µtdt =

∫ b

a
eθte−δtµe−µtdt =

µ

∫ b

a
e−t(µ+δ−θ)dt =

µ

µ + δ − θ
[e−a(µ+δ−θ) − e−b(µ+δ−θ)] provided µ + δ − θ > 0. And E[(Z) j] =∫ b

a
[bte−δt] jµe−µtdt =

∫ b

a
eθ jte−δ jtµe−µtdt = µ

∫ b

a
e−t(µ+δ j−θ j)dt =

µ

µ + δ j − θ j
[e−a(µ+δ j−θ j) − e−b(µ+δ j−θ j)]

provided µ + δ j − θ j > 0.
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If D > 0,
∫ n

0
De−tDdt = 1 − e−nD,

∫ ∞

n
De−tDdt = e−nD,

∫ n

0
e−tDdt =

1
D

∫ n

0
De−tDdt =

1
D

[1 − e−nD], and
∫ ∞

n
e−tDdt =

1
D

∫ ∞

n
De−tDdt =

1
D

e−nD.

II) Continuous n year term insurance: A
1
x:n| = E(Z

1
x:n|)

E
=

∫ n

0
e−δtµe−µt dt = µ

∫ n

0
e−t(µ+δ)dt =

µ

µ + δ
[1 − e−n(µ+δ)] and 2A

1
x:n| = E[(Z

1
x:n|)

2] E
=

∫ n

0
e−2δtµe−µt dt = µ

∫ n

0
e−t(µ+2δ)dt =

µ

µ + 2δ
[1 −

e−n(µ+2δ)].

III) Continuous n year deferred insurance:

n|Ax = E(n|Zx)
E
=

∫ ∞

n
e−δtµe−µt dt = µ

∫ ∞

n
e−t(µ+δ)dt =

µ

µ + δ
[e−n(µ+δ)]

and

2
n|Ax = E[(n|Zx)2] E

=

∫ ∞

n
e−2δtµe−µt dt = µ

∫ ∞

n
e−t(µ+2δ)dt =

µ

µ + 2δ
[e−n(µ+2δ)].

IV) Discrete = continuous n year pure endowment insurance:

A
x:

1
n|

= E(Z
x:

1
n|

) = nEx = vnP(Tx > n) = e−δnS x(n) E
= e−δne−µn = e−n(µ+δ)

and

2A
x:

1
n|

= E[(Z
x:

1
n|

)2] = v2nP(Tx > n) = e−2δnS x(n) E
= e−2δne−µn = e−n(µ+2δ).

Note: If S x(t) is easy to derive, then the above quantities can be obtained. Hence the expo-

nential distribution does not need to be used in hand calculations.

V) A continuous n year endowment life insurance with the exponential(µ) distribution has

Ax:n| = A
1
x:n|+ A

x:
1
n|

= A
1
x:n|+ nEx = Ax + nEx(1−Ax+n) = Ax + A

x:
1
n|

(1−Ax+n) E
=

µ

µ + δ
+ (e−δne−µn)(1−

µ

µ + δ
) =

µ

µ + δ
+ e−n(µ+δ) δ

µ + δ
=
µ + δe−n(µ+δ)

µ + δ
.

VI) A continuous n year deferred m year term insurance with the exponential(µ) distribution

has E(ZT ) = n|mAx = n|A
1
x:m| = Ax( nEx − n+mEx)

E
=

∫ n+m

n
e−δtµe−µtdt = µ

∫ n+m

n
e−t(µ+δ)dt =

µ

µ + δ
[e−n(µ+δ) − e−(n+m)(µ+δ)].

VII) Continuous increasing whole life insurance: If T ∼ EXP(µ), then (I A)x
E
=

µ

(µ + δ)2 .

VIII) A continuous whole life annuity makes a continuous payment at an annual rate of 1 unit

per year with the exponential(µ) distribution has ax = E(Y x)
E
=

1
µ + δ

.
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Proof: ax = E(Y x) =

∫ ∞

0
vt

t pxdt E
=

∫ ∞

0
e−δte−µtdt =

∫ ∞

0
e−t(µ+δ)dt =

1
µ + δ

.

�

Proofs for IX) and X):

For a multiple whole life insurance with Tx1 , ...,Txm as independent EXP(µi) RVs and u =

(x1 · · · xm) or u = x1 · · · xm with T = Tu = Tx1···xm = min(Tx1 , ...,Txm) ∼ EXP(
m∑

i=1

µi), we

have Au = E[Zu] =

∫ ∞

0
e−δt(

m∑
i=1

µi)e−(
∑m

i=1 µi)tdt =

m∑
i=1

µi

∫ ∞

0
e−t(δ+

∑m
i=1 µi)dt =

∑m
i=1 µi

δ +
∑m

i=1 µi
, and

2Au = E[(Zu)2] =

∫ ∞

0
e−(2δ)t(

m∑
i=1

µi)e−(
∑m

i=1 µi)tdt =

m∑
i=1

µi

∫ ∞

0
e−t(2δ+

∑m
i=1 µi)dt =

∑m
i=1 µi

2δ +
∑m

i=1 µi
. For

a multiple whole life annuity, au = E[Yu] =

∫ ∞

0
e−δte−(

∑m
i=1 µi)tdt =

∫ ∞

0
e−t(δ+

∑m
i=1 µi)dt =

1
δ +

∑m
i=1 µi

by using the kernel method. �
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[31] Sakallioǧlu, S., and Kaçiranlar, S. (2008), “A New Biased Estimator Based on Ridge Estima-

tion,” Statistical Papers, 49, 669-689.

[32] Sen, P.K., and Singer, J.M. (1993), Large Sample Methods in Statistics: an Introduction with

Applications, Chapman & Hall, New York, NY.

[33] Tibshirani, R. (1996), “Regression Shrinkage and Selection Via the Lasso,” Journal of the

Royal Statistical Society, B, 58, 267-288.

[34] Ueki, M. and Fueda, K. (2007), “Adjusting Estimative Prediction Limits,” Biometrika, 94,

509-511.

[35] Weishaus, A. (2010), ASM Study Manual for SOA Exam MLC, 10th ed., Actuarial Study

Materials, Westbury, NY. (See www.studymanuals.com.)

[36] Yang, H., and Chang, X. (2010), “A New Two-Parameter Estimator in Linear Regression,”

Communications in Statistics: Theory and Methods, 39, 923-934.

27



VITA

Graduate School
Southern Illinois University Carbondale

Yu Jin

jinyu85@siu.edu
jinyu85@yahoo.com

Southern Illinois University Carbondale
Master of Science, Mathematics, May 2010

Dissertation Paper Title:
Some Topics Relevant to Actuarial Mathematics

Major Professor: Dr. David Olive

28




