
Chapter 2

Prediction and Variable Selection When

n >> p

This chapter considers variable selection when n >> p and prediction in-
tervals that can work if n > p or p > n. Prediction regions and prediction
intervals applied to a bootstrap sample can result in confidence regions and
confidence intervals. The bootstrap confidence regions will be used for infer-
ence after variable selection.

2.1 Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large. Consider the 1D regression model where Y x|SP where
SP = xT β. See Chapters 1 and 4. A model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (2.1)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS) × 1 vector. Given that xS is in the model, βE = 0 and
E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (2.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

75



76 2 Prediction and Variable Selection When n >> p

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding
to β1 is always in the model, and β = (β1 , β2, 0, 0)T . Then there are J =
2p−1 = 8 possible subsets of {1, 2, ..., p} that contain 1, including I1 = {1}
and S = I2 = {1, 2}. There are 2p−aS = 4 subsets such that S ⊆ Ij . Let

β̂I2
= (β̂1, β̂2)

T and xI2
= (x1, x2)

T .

Definition 2.1. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI .

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selec-
tion. The relaxed lasso or relaxed elastic net estimator fits the regression
method, such as a GLM or Cox (1972) proportional hazards regression, to
the predictors than had nonzero lasso or elastic net coefficients. See Chapters
3 and 4.

Underfitting occurs if submodel I does not contain S. Following, for ex-
ample, Pelawa Watagoda (2019), let X = [XI XO] and β = (βT

I ,β
T
O)T .

Then Xβ = XIβI + XOβO, and β̂I = (XIXI)
−1XT

I Y = AY . Assuming

the usual MLR model, Cov(β̂I) = Cov(AY ) = Aσ2IAT = σ2(XT
I XI)

−1.

Now E(β̂I) = E(AY ) = AXβ = (XIXI)
−1XT

I (XIβI + XOβO) =

βI + (XIXI)
−1XT

I XOβO = βI + AXOβO.

If S ⊆ I, then βO = 0, but if underfitting occurs then the bias vector
AXOβO can be large.

2.1.1 OLS Variable Selection

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable se-
lection. For example, an OLS MLR model with unnecessary predictors has∑n

i=1 V (Ŷi) that is too large. If (2.1) holds, S ⊆ I, βS is an aS × 1 vector,
and βI is a j × 1 vector with j > aS , then
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1

n

n∑

i=1

V (ŶIi) =
σ2j

n
>
σ2aS

n
=

1

n

n∑

i=1

V (ŶSi). (2.2)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ). A model I underfits if it does not include all of the
predictors in S. A model I does not underfit if S ⊆ I.

To see that (2.2) holds, assume that the full model includes all p possible

terms so the full model may overfit but does not underfit. Then Ŷ = HY
and Cov(Ŷ ) = σ2HIHT = σ2H. Thus

1

n

n∑

i=1

V (Ŷi) =
1

n
tr(σ2H) =

σ2

n
tr((XT X)−1XT X) =

σ2p

n

where tr(A) is the trace operation. Replacing p by j and aS and replac-
ing H by HI and HS implies Equation (2.2). Hence if only aS parame-
ters are needed and p >> aS , then serious overfitting occurs and increases

1

n

n∑

i=1

V (Ŷi).

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model,
and MSE(I) = σ̂2

I , the estimated error variance. See Definitions 1.42 and
1.43. Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where

R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 −MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An important criterion
for variable selection is the Cp criterion.

Definition 2.2.
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k− n)MSE = rT (I)r(I) + (2k− n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor βT x = xT β,
such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xT

i β̂ = Yi−Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.

Theorem 2.1. Suppose that a numerical variable selection method sug-
gests several submodels with k predictors, including a constant, where 2 ≤
k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Theorem 2.2 below. �

Remark 2.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi
.

Using Definition 2.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.
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More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p− k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 2.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (2.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 2.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
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the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 2.2. Suppose that every submodel contains a constant and that
X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and

b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .
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iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 2.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
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lection. Assuming the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin

) → 1 as n → ∞ by Theorem 2.2
vi). Referring to Equation (2.1), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞. This result is due to Rathnayake and Olive (2023).

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 2.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Theorem 2.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP,ESP (I)) both go to 1.0 as n→ ∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, but overfit is likely. Let d be a lower
bound on corr(r, rI). Theorem 2.2 vi) implies that if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

d ≡ dn =

√
1 − p

n
.

To avoid excluding too many good submodels, consider models I with
Cp(I) ≤ min(2k, p). Models under both the Cp = k line and the Cp = 2k line
are of interest.

Rule of thumb 2.1. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin)+1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model. Do
not use more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Underfit
is especially likely to occur if a predictor with one degree of freedom is deleted
(if the c − 1 indicator variables corresponding to a factor are deleted, then
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the factor has c− 1 degrees of freedom) and the jump in Cp is large, greater
than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses
j predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has
a constant but no nontrivial predictors. To form I2, consider all models I
with two predictors including x∗1. Compute Q2(I) = SSE(I) = RSS(I) =
rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2. Let I2 minimize Q2(I) for the
p−1 models I that contain x∗1 and one other predictor. Denote the predictors
in I2 by x∗1, x

∗
2. In general, to form Ij consider all models I with j predictors

including variables x∗1, ..., x
∗
j−1. Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =∑n

i=1(Yi − Ŷi(I))
2 . Let Ij minimize Qj(I) for the p − j + 1 models I that

contain x∗1, ..., x
∗
j−1 and one other predictor not already selected. Denote the

predictors in Ij by x∗1, ..., x
∗
j. Continue in this manner for j = 2, ...,M = p.

Backward elimination also forms a sequence of submodels I1, ..., Ip where
Ij uses j predictors including the constant. Let Ip be the full model. To form
Ip−1 consider all models I with p−1 predictors including the constant. Com-
pute Qp−1(I) = SSE(I) = RSS(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi −

Ŷi(I))
2 . Let Ip−1 minimizeQp−1(I) for the p−1 models I that exclude one of

the predictors x2, ..., xp. Denote the predictors in Ip−1 by x∗1, x
∗
2, ..., x

∗
p−1. In

general, to form Ij consider all models I with j predictors including variables

x∗1, ..., x
∗
j+1. Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi− Ŷi(I))

2 .
Let Ij minimize Qj(I) for the p − j + 1 models I that exclude one of the
predictors x∗2, ..., x

∗
j+1. Denote the predictors in Ij by x∗1, ..., x

∗
j. Continue in

this manner for j = p = M, p− 1, ..., 2, 1 where I1 uses x∗1 = x1 ≡ 1.
Several criterion produce the same sequence of models if forward selection

or backward elimination are used, includingMSE(I), Cp(I), R
2
A(I), AIC(I),

BIC(I), and EBIC(I). This result holds since if the number of predictors
k in the model I is fixed, the criterion is equivalent to minimizing SSE(I)
plus a constant. The constants differ so the model Imin that minimizes the
criterion often differ. Heuristically, backward elimination tries to delete the
variable that will increase Cp the least while forward selection tries to add
the variable that will decrease Cp the most.

When there is a sequence of M submodels, the final submodel Id needs to
be selected with ad terms, including a constant. Let the candidate model I
contain a terms, including a constant, and let xI and β̂I be a × 1 vectors.
Then there are many criteria used to select the final submodel Id. For a given
data set, the quantities p, n, and σ̂2 act as constants, and a criterion below
may add a constant or be divided by a positive constant without changing
the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form
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CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 2.2.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p
and if the final model has n ≥ 10ad. For p < n < 5p, forward selection with
Cp and AIC tends to pick the full model (which overfits since n < 5p) too
often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989, 1991) AICC

criterion can be useful if n ≥ max(2p, 10ad).
The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and relaxed lasso.
The Cp criterion can also be applied to lasso. See Efron and Hastie (2016,
pp. 221, 231).

Now suppose p = 6 and S in Equation (2.1) corresponds to x1 ≡ 1, x2,
and x3. Suppose the data set is such that underfitting (omitting a predic-
tor in S) does not occur. Then there are eight possible submodels that
contain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6;
v) x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full
model viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5,
or 6. Since the variable selection criteria for forward selection described above
minimize the MSE given that x∗1, ..., x

∗
k−1 are in the model, the MSE(Ik) are
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too small and underestimate σ2. Also the model Imin fits the data a bit too
well. Suppose Imin = Id. Compared to selecting a model Ik before examining
the data, the residuals ri(Imin) are too small in magnitude, the |ŶImin,i −Yi|
are too small, and MSE(Imin) is too small. Hence using Imin = Id as the full
model for inference does not work. In particular, the partial F test statistic
FR, using Id as the full model, is too large since the MSE is too small. Thus
the partial F test rejects H0 too often. Similarly, the confidence intervals for
βi are too short, and hypothesis tests reject H0 : βi = 0 too often when H0

is true. The fact that the selected model Imin from variable selection cannot
be used as the full model for classical inference is known as selection bias.
Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of β̂Imin,0

(defined in the following section) and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

2.2 Large Sample Theory for Some Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

2.2.1 Some Variable Selection Estimators

Consider 1D regression models where the response variable Y is independent
of the p × 1 vector of predictors x given xT β, written Y x|xT β. Many
important regression models satisfy this condition, including multiple lin-
ear regression, the Nelder and Wedderburn (1972) generalized linear models
(GLMs), and the Cox (1972) proportional hazards regression model. For-
ward selection or backward elimination with the Akaike (1973) AIC criterion
or Schwarz (1978) BIC criterion are often used for variable selection.

Sparse regression methods can also be used for variable selection even if
n/p is not large: the regression submodel, such as a Nelder and Wedderburn
(1972) generalized linear model (GLM), uses the predictors that had nonzero
sparse regression estimated coefficients. These methods include least angle re-
gression, lasso, relaxed lasso, elastic net, and sparse regression by projection.
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Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li
(2001), Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Qi et
al. (2015), Simon et al. (2011), Tibshirani (1996), and Zou and Hastie (2005).
The Meinshausen (2007) relaxed lasso estimator fits lasso with penalty λn to
get a subset of variables with nonzero coefficients, and then fits lasso with a
smaller penalty φn to this subset of variables where n is the sample size.

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As

a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

The large sample theory for β̂MIX , defined below, is useful for explaining

the large sample theory of β̂V S . Review Section 1.6 for mixture distributions.

Definition 2.4. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 2.5. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

Inference will consider bootstrap hypothesis testing with confidence inter-
vals (CIs) and regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g × 1 vector. A large sample 100(1 − δ)% confidence
region for θ is a set An such that P (θ ∈ An) is eventually bounded below by
1− δ as the sample size n→ ∞. Then reject H0 if θ0 is not in the confidence
region. Let the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the

bootstrap sample for Tn. Let A be a full rank g × p constant matrix. For
variable selection, test H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ.

Then let Tn = Aβ̂SEL and let T ∗
i = Aβ̂

∗

SEL for i = 1, ..., B and SEL is V S
or MIX. See Section 2.6 for the bootstrap confidence regions that will be
used for variable selection inference.
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2.2.2 Large Sample Theory for Variable Selection

Estimators

The Theorems 2.3 and 2.4 in this subsection are due to Rathnayake and
Olive (2023), and generalize the Pelawa Watagoda and Olive (2021b) theory
for multiple linear regression to many other models. The theory assumes that
there is a “true model” S and that at least one subset I is considered such
that S ⊆ I. For example, with forward selection and backward elimination,
the theory assumes that the full model contains S. The theory does not hold
if the true model S is not a subset of any of the considered models. For
example, S could contain some interactions that were not included in the
“full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (2.1) holds, and that if S ⊆ Ij where

the dimension of Ij is aj , then
√
n(β̂Ij

−βIj
)

D→ Naj
(0,V j) where V j is the

covariance matrix of the asymptotic multivariate normal distribution. Then

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (2.3)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model. This large
sample theory holds for many models, including multiple linear regression fit
by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression
fit by maximum partial likelihood. See, for example, Sen and Singer (1993,
pp. 280, 309).

The first assumption in Theorem 2.3 is P (S ⊆ Imin) → 1 as n→ ∞. Then
the variable selection estimator corresponding to Imin underfits with proba-
bility going to zero, and the assumption holds under regularity conditions if
BIC or AIC is used for many parametric regression models such as GLMs.
See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp. 70,
101, 102, 114, 232). This assumption is a necessary condition for a variable
selection estimator to be a consistent estimator. See Zhao and Yu (2006).
Thus if a sparse estimator that does variable selection is a consistent estima-
tor of β, then P (S ⊆ Imin) → 1 as n → ∞. Hence Theorem 2.3c) proves that
the lasso variable selection and elastic net variable selection estimators are√
n consistent estimators of β if lasso and elastic net are consistent. Also see

Theorem 2.4. The assumption on ujn in Theorem 2.3 is reasonable by (2.3)

since S ⊆ Ij for each πj, and since β̂MIX uses random selection.
Consider the assumption P (S ⊆ Imin) → 1 as n → ∞ for multiple linear

regression. Charkhi and Claeskens (2018) proved the assumption holds for
AIC for a wide variety of error distributions. Shao (1993) gave similar results
for AIC, BIC, and Cp. Also see Remark 2.2. The assumption holds for lasso

variable selection and elastic net variable selection provided that λ̂n/n → 0

as n → ∞ so lasso and elastic net are consistent estimators. Here λ̂n is
the shrinkage penalty parameter selected after k-fold cross validation. See
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Theorems 3.5, 3.6, Pelawa Watogoda and Olive (2021b) and Knight and Fu
(2000).

Theorem 2.3 a) proves that u is a mixture distribution of the uj with
probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0. Some of the

submodels Ik will have πk = 0. For example, since the probability of underfit-
ting goes to zero, every submodel Ik that underfits has πk = 0. Hence S ⊆ Ij
corresponding to the πj > 0. If πd = 1, then submodel Id is picked with
probability going to 1 as n→ ∞, and Id is the only submodel with a positive
πk. Often πd = πS in the literature. For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (2.5) where E(v) = 0, and Σv =
∑

j πjAV j,0A
T .

Theorem 2.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (2.4)

where the cdf of u is Fu(t) =
∑

j πjFuj
(t). Thus u has a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (2.5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S −β) =

OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun

(t) =
∑

k πknFukn
(t) → Fu(t) =

∑
j πjFuj

(t) at
continuity points of the Fuj

(t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia
)T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for
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other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use β̂ = β̂FULL to denote the full model.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL

have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. In the simulations

when V is diagonal, the confidence regions applied to Aβ̂
∗

SEL = Bβ̂
∗

S,SEL

had similar volume and cutoffs where SEL is MIX, V S, or FULL.
Theorem 2.3 can be used to justify prediction intervals after variable se-

lection. See Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake, and
Haile (2022). Theorem 2.3d) is useful for variable selection consistency and
the oracle property where πd = πS = 1 if P (Imin = S) → 1 as n → ∞. See
Claeskens and Hjort (2008, pp. 101-114) and Fan and Li (2001) for references.
A necessary condition for P (Imin = S) → 1 is that S is one of the models
considered with probability going to one. This condition holds under very
strong regularity conditions for fast methods. See Wieczorek and Lei (2022)
for forward selection and Hastie, Tibshirani, and Wainwright (2015, pp. 295-
302) for lasso, where the predictors need a “near orthogonality” condition.

Remark 2.4. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj) = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the proof of the result in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S −β). Let β̂

C

Ik,0 be a random vector

from the conditional distribution β̂Ik,0|(β̂V S = β̂Ik,0). Let wkn =
√
n(β̂Ik,0−

β)|(β̂V S = β̂Ik,0) ∼ √
n(β̂

C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp)
by P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b)
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show

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Proof: Let W = WV S = k if β̂V S = β̂Ik,0 where P (WV S = k) = πkn

for k = 1, ..., J. Then (β̂V S:n,WV S:n) = (β̂V S ,WV S) has a joint distribution

where the sample size n is usually suppressed. Note that β̂V S = β̂IW ,0. Then
by Remark 2.4,

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn
(t)πkn. �

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj

if S ⊆ Ij for the maximum likelihood estimator (MLE) with AIC, and gave
a forward selection example. They claim that wj is a multivariate truncated
normal distribution (where no truncation is possible) that is symmetric about

0. Hence E(wj) = 0, and Cov(wj) = Σj exits. Note that both
√
n(β̂MIX−β)

and
√
n(β̂V S − β) are selecting from the ukn =

√
n(β̂Ik,0 − β) and asymp-

totically from the uj . The random selection for β̂MIX does not change the
distribution of ujn, but selection bias does change the distribution of the

selected ujn and uj to that of wjn and wj. The assumption that wjn
D→ wj

may not be mild. The proof for Equation (2.6) is the same as that for (2.4).
Theorem 2.4 proves that w is a mixture distribution of the wj with proba-
bilities πj.

Theorem 2.4. Assume P (S ⊆ Imin) → 1 as n→ ∞, and let β̂V S = β̂Ik,0

with probabilities πkn where πkn → πk as n→ ∞. Denote the positive πk by

πj. Assume wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (2.6)

where the cdf of w is Fw(t) =
∑

j πjFwj
(t).
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Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn

(t) =
∑

k πknFwkn
(t) → Fw(t) =

∑
j πjFwj

(t) at
continuity points of the Fwj

(t) as n → ∞. �

Remark 2.5. If P (S ⊆ Imin) → 1 as n→ ∞, then β̂V S is a
√
n consistent

estimator of β since selecting from a finite number J of
√
n consistent estima-

tors (even on a set that goes to one in probability) results in a
√
n consistent

estimator by Pratt (1959). By both this result and Theorems 2.3 and 2.4, the
lasso variable selection and elastic net variable selection estimators are

√
n

consistent if lasso and elastic net are consistent.
Remark 2.6. Another variable selection model is xT β = xT

Si
βSi

for i =
1, ..., K. Then submodel I underfits if no Si ⊆ I. A necessary condition for
an estimator to be consistent is P(no Si ⊆ Imin) → 0 as n → ∞. By Remark
2.2, the above probability holds if Cp is used. Then in Theorem 2.4, we can
replace P (S ⊆ Imin) → 1 by P(no Si ⊆ Imin) → 0 as n → ∞.

Example 2.1. This is an example where the πkn → πk as n → ∞. Assume
S ⊆ I where I has a predictors, including a constant. Then for a wide variety

of iid error distributions, FI
D→ X/(p−a) where X ∼ χ2

p−a. Let F denote the
full model, and let S = I = Ii be the model that deletes predictor xi with

a = p−1. Then from Definition 2.2, Cp(I)
D→ X+p−2 where X ∼ χ2

1. Let F
denote the full model and consider all subsets variable selection withCp. Since
only S and F do not underfit, only πS and πF are positive. Since Cp(F ) = p,
I = S is selected if Cp(I) < p. Hence πS = P (χ2

1 + p− 2 < p) = P (χ2
1 < 2),

and πF = 1 − πS . This result also holds for backward elimination since the
probability that xi will be the first predictor deleted goes to 1 as n → ∞
because Cp(Ii) = Cp(S) is bounded in probability while Cp(Ij) diverges as
n → ∞ for j 6= i. For forward selection with correlated predictors, expect
that πS < P (χ2

1 < 2), and hence πF > 1 − P (χ2
1 < 2).

2.3 Prediction Intervals

Prediction intervals for regression and prediction regions for multivariate re-
gression are important topics. Inference after variable selection will consider
bootstrap hypothesis testing. Applying certain prediction intervals or pre-
diction regions to the bootstrap sample will result in confidence intervals or
confidence regions. The prediction intervals and regions are based on samples
of size n, while the bootstrap sample size is B = Bn. Hence this section and
the following section are important.

Notation: P (An) is “eventually bounded below” by 1 − δ if P (An) gets
arbitrarily close to or higher than 1− δ as n → ∞. Hence P (An) > 1− δ− ε
for any ε > 0 if n is large enough. If P (An) → 1− δ as n→ ∞, then P (An) is
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eventually bounded below by 1 − δ. The actual coverage is 1 − γn = P (Yf ∈
[Ln, Un]), the nominal coverage is 1 − δ where 0 < δ < 1. The 90% and 95%
large sample prediction intervals and prediction regions are common.

Definition 2.6. Consider predicting a future test value Yf given a p × 1
vector of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample size
n→ ∞. A large sample 100(1− δ)% PI is asymptotically optimal if it has the
shortest asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as
n→ ∞ where [Ls, Us] is the population shorth: the shortest interval covering
at least 100(1 − δ)% of the mass.

If Yf |xf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞.
The interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k times where the k trials are independent from the
same population. If Yfi is the ith random variable and PIi is the ith PI,
then the probability that Yfi ∈ PIi for j of the PIs approximately follows a
binomial(k, ρ= 1− δ) distribution. Hence if 100 95% PIs are made, ρ = 0.95
and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This section
will describe three nonparametric PIs for the additive error regression model,
Y = m(x) + e, that work well for a large class of unknown zero mean error
distributions.

Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf are iid, and
there are no vectors of predictors xi and xf . Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

be the order statistics of the iid training data Y1, ..., Yn. Then the unknown
future value Yf is the test data.

Remark 2.7. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as the open sets, but have coverage at least as high
as the open sets with weaker regularity conditions. In particular, confidence
and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval (Y(k1), Y(k2)) was used, we
would need to add the regularity condition that Yδ/2 and Y1−δ/2 are continuity
points of FY (y).
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Theorem 2.5. Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1 − δ/2)e
where 0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval
for Yf is

[Y(k1), Y(k2)]. (2.7)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution, the
population shorth is not unique. Of course the length of the population shorth
is unique.

Definition 2.7. Let the shortest closed interval containing at least c of
the Y1, ..., Yn be

shorth(c) = [Y(s),Y(s+c−1)]. (2.8)

Theorem 2.6, Frey (2013). Let Y1, ..., Yn be iid. Let

kn = dn(1 − δ)e. (2.9)

For large nδ and iid data, the large sample 100(1−δ)% shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n. The maximum undercov-

erage occurs for the family of uniform U(θ1, θ2) distributions.

Theorem 2.7, Frey (2013). Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤
· · · ≤ Y(n) be the order statistics of the training data. The large sample
100(1− δ)% shorth(c) prediction interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (2.10)

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (2.8) using c = kn given by (2.9)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse on
test data. For iid data, Frey (2013) used (2.10) to correct for undercoverage.

Remark 2.8. a) The shorth PI (2.10) often has good coverage for n ≥ 50
and 0.05 ≤ δ ≤ 0.1, but the convergence of Un −Ln to the population shorth
length Us −Ls can be quite slow. Under regularity conditions, Grübel (1982)
showed that for iid data, the length and center the shorth(kn) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the pop-
ulation shorth interval, respectively. The correction factor also increases the
length. For a unimodal and symmetric error distribution, the nonparametric
PI (2.7) and the shorth PI (2.10) are asymptotically equivalent, but PI (2.7)
can be the shorter. b) The nonparametric PI (2.7) can be much longer than
the shorth PI (2.10) if the data distribution is skewed.

Example 2.2. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
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was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

0 1 2 3 4 5
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.8

1
.0
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Fig. 2.1 The 36.8% Highest Density Region is [0,1]

Remark 2.9. The large sample 100(1 − δ)% shorth PI (2.10) may or
may not be asymptotically optimal if the 100(1 − δ)% population shorth is
[Ls, Us] and F (x) is not strictly increasing in intervals (Ls − ε, Ls + ε) and
(Us − ε, Us + ε) for some ε > 0. To see the issue, suppose Y has probability
mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and
p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1 − δ)%
population shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ x) = 1 if
Yi ≤ x and 0, otherwise. The empirical cdf
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F̂n(x) =
1

n

n∑

i=1

I(Yi ≤ x) =
1

n

n∑

i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x,
nF̂n(x) ∼ binomial(n, F (x)). Thus F̂n(x) ∼ AN(F (x), F (x)(1 − F (x))/n).

For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) < 0.9) →

0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(2.10) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (2.10) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 2.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

The additive error regression model is Y = m(x) + e where m(x) is a real
valued function and the ei are iid, often with zero mean and constant variance
V (e) = σ2. The large sample theory for prediction intervals is simple for this
model, and variable selection models for the multiple linear regression model
have this form withm(x) = xT β = xT

I βI if S ⊆ I. Let the residuals ri = Yi−
m̂(xi) = Yi−Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator ofm(x)
such that the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent
estimators of the population percentiles [L, U ] of the error distribution where
P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then P (Yf ∈ [Ŷf + L̂n(r), Ŷf +

Ûn(r)] → P (Yf ∈ [m(xf )+L,m(xf )+U ]) = P (e ∈ [L, U ]) = 1−δ as n→ ∞.
Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)
P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ with L = −U , and c)
the population shorth is the shortest interval (with length U − L) such that
P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically optimal while a) and b)
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are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions. The split conformal PI (2.16), described below, estimates
[−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number
of “variables” used by the method. For MLR, forward selection, lasso, and
relaxed lasso use variables x∗1, ..., x

∗
d while PCR and PLS use variables that

are linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. (We could

let d = j if j is the degrees of freedom of the selected model if that model
was chosen in advance without model or variable selection. Hence d = j is
not the model degrees of freedom if model selection was used.) See Chapter
3 for more about these estimators. See Hong et al. (2018) for why classical
prediction intervals after variable selection fail to work.

For n/p large and d = p, Olive (2013a) developed prediction intervals for
models of the form Yi = m(xi) + ei, and variable selection models for MLR
have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2021b)
gave two prediction intervals that can be useful even if n/p is not large. These
PIs will be defined below. The first PI modifies the Olive (2013a) PI that can
only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d

√
(1 + hf) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (2.11) is changed
to qn = 1 − δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (2.11)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let
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c = dnqne, (2.12)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(2.13)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will
be less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1

, ξ̃1−δ2
]. Then the first 100 (1 − δ)% large sample PI

for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

]. (2.14)

The second PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n−nH

cases i1, ..., inV
. The estimator m̂H(x) is computed using the training data

set H . Then the validation residuals vj = Yij
−m̂H(xij

) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
of the validation residuals (replacing n in (2.10) by nV = n− nH). Then the
second new 100(1− δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf) + v(s+c−1)]. (2.15)

Remark 2.10. Note that correction factors bn → 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p,
but a tdn

or pFp,dn
cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ →

1 if dn → ∞ as n → ∞. Using correction factors for large sample confi-
dence intervals, tests, prediction intervals, prediction regions, and bootstrap
confidence regions improves the performance for moderate sample size n.

Remark 2.11. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(2.15) while PI (2.14) needs a stronger correction factor.

We can also motivate PI (2.15) by modifying the justification for the Lei
et al. (2018) split conformal prediction interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (2.16)

where aq is the 100(1 − α)th quantile of the absolute validation residuals.
PI (2.15) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H



98 2 Prediction and Variable Selection When n >> p

from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (2.14) to (2.16) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the PIs (2.14) and (2.15) are
asymptotically optimal for a large class of error distributions while the split
conformal PI (2.16) needs the error distribution to be unimodal and symmet-
ric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half
the efficiency of m̂. When p ≥ n, the regularity conditions for consistent esti-
mators are strong. For example, EBIC and lasso can have P (S ⊆ Imin) → 1
as n→ ∞. Then forward selection with EBIC and relaxed lasso can produce
consistent estimators. PLS can be

√
n consistent. See Chapter 3 for the large

sample for many MLR estimators.
None of the three prediction intervals (2.14), (2.15), and (2.16) dominates

the other two. Recall that βS is an aS × 1 vector in (2.1). If a good fit-
ting method, such as lasso or forward selection with EBIC, is used, and
1.5aS ≤ n ≤ 5aS , then PI (2.14) can be much shorter than PIs (2.15) and
(2.16). For n/d large, PIs (2.14) and (2.15) can be shorter than PI (2.16) if
the error distribution is not unimodal and symmetric; however, PI (2.16) is
often shorter if n/d is not large since the sample shorth converges to the pop-
ulation shorth rather slowly. Grübel (1982) shows that for iid data, the length
and center the shorth(kn) interval are

√
n consistent and n1/3 consistent es-

timators of the length and center of the population shorth interval. For a
unimodal and symmetric error distribution, the three PIs are asymptotically
equivalent, but PI (2.16) can be the shortest PI due to different correction
factors.
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If the estimator is poor, the split conformal PI (2.16) and PI (2.15) can
have coverage closer to the nominal coverage than PI (2.14). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (2.15) will be long compared
to PI (2.16).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
as PIs (2.14) and (2.15), may be the only easily computed asymptotically

optimal PIs for a wide range of consistent estimators β̂ of β for the multiple
linear regression model. If the error distribution is e ∼ EXP (1)−1, then the
asymptotic length of the 95% PI (2.14) or (2.15) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, see Section 3.9 and Pelawa Watagoda and Olive (2021b).

2.4 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 2.8. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A
PI is a prediction region where p = 1. Highest density regions are usually
hard to estimate for p much larger than four, but many elliptically contoured
distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (2.22). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).
Mahalanobis distances Dx andDi =

√
D2

i are defined in Definition 1.17. The
sample mean and covariance matrix (x,S) are defined in Definition 1.15.

Consider the hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (2.17)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un

where Un decreases to kn, can improve small sample performance. Un will be
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defined in the paragraph below Equation (2.21). Olive (2013a) showed that
(2.17) is a large sample 100(1− δ)% prediction region under mild conditions,
although regions with smaller volumes may exist. Note that the result follows
since if Σx and S are nonsingular, then the Mahalanobis distance is a con-

tinuous function of (x,S). Let µ = E(x) and D = D(µ,Σx). Then Di
D→ D

and D2
i

D→ D2. Hence the sample percentiles of the Di are consistent estima-
tors of the population percentiles of D at continuity points of the cumulative
distribution function of D.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (2.17) for c = kn), is that they have coverage
lower than the nominal coverage of 1 − δ for moderate n. This result is not
surprising since empirically statistical methods perform worse on test data.
Increasing c will improve the coverage for moderate samples. Also see Remark
2.12. Empirically for many distributions, for n ≈ 20p, the prediction region
(2.17) applied to iid data using c = kn = dn(1 − δ)e tended to have under-
coverage as high as 5%. The undercoverage decreases rapidly as n increases.
Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (2.18)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (2.19)

in (2.17) decreased the undercoverage. Note that Equations (2.11) and (2.12)
are similar to Equations (2.18) and (2.19), but replace p by d.

If (T,C) is a
√
n consistent estimator of (µ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x− µ + µ− T )

= d−1D2(µ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(µ,Σ) (at continuity points D1−δ of the cdf of D2(µ,Σ)).
If x ∼ Nm(µ,Σ), then D2

x(µ,Σ) = D2(µ,Σ) ∼ χ2
m.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical estimator
satisfies this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (2.20)

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM). (2.21)
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A future observation (random vector) xf is in the region (2.20) if Dxf
≤ h.

If (T,C) is a consistent estimator of (µ, dΣ) for some constant d > 0 where
Σ is nonsingular, then (2.20) is a large sample 100(1− δ)% prediction region
if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di where qn

is defined above (2.19). If x1, ...,xn and xf are iid, then prediction region
(2.22) is asymptotically optimal for a large class of elliptically contoured
distributions since the volume of (2.22) converges in probability to the volume
of the highest density region. (These distributions have a highest density
region which is a hyperellipsoid determined by a population Mahalanobis
distance. See Definition 1.19.)

The Olive (2013a) nonparametric prediction region uses (T,C) = (x,S).
For the classical prediction region, see Chew (1966) and Johnson and Wichern
(1988, pp. 134, 151). Refer to the above paragraph for D(Un).

Definition 2.9. The large sample 100(1 − δ)% nonparametric prediction
region for a future value xf given iid data x1, ...,xn is

{z : D2
z(x,S) ≤ D2

(Un)}, (2.22)

while the large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (2.23)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (2.10) and (2.19) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 2.2 where ol = (Eq.
2.19)/n is plotted versus fr = (Eq. 2.10)/n for n = 20, 21, ..., 500. The top
plot is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is
added to each plot as a visual aid. The value of n increases from 20 to 500
from the right of the plot to the left of the plot. Examining the axes of each
plot shows that the correction factors do not differ greatly. R code to create
Figure 2.2 is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)

Remark 2.12. The nonparametric prediction region (2.22) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf,
although prediction regions with smaller volume may exist. If the 100(1−δ)th
percentile D1−δ of D is not a continuity point of the distribution of D, then
the asymptotic coverage tends to be ≥ 1 − δ since a sample percentile with
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Fig. 2.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

cutoff qn that decreases to 1−δ is used and a closed region is used. OftenD has
a continuous distribution and hence has no discontinuity points for 0 < δ < 1.
(If there is a jump in the distribution from 0.9 to 0.96 at discontinuity point a,
and the nominal coverage is 0.95, we want 0.96 coverage instead of 0.9. So we
want the sample percentile to decrease to a.) The nonparametric prediction
region (2.22) contains Un of the training data cases xi provided that S is
nonsingular, even if the model is wrong. For many distributions, the coverage
started to be close to 1 − δ for n ≥ 10p where the coverage is the simulated
percentage of times that the prediction region contained xf .

Remark 2.13. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. Using (2.21), the ratio
of the volumes of regions (2.23) and (2.22) is
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(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1 − p/γ > 0
for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in (2.20)
usually results in prediction regions with volume and coverage that is too
large.

Remark 2.14. The nonparametric prediction region (2.22) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013a)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are error distributions that will have severe
undercoverage.

For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (2.22) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1 − δ + 0.05 for n ≤ 20p and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ and
(T,C) is a consistent estimator of (µ, dΣ) where d > 0 and Σ is nonsingular,
then (2.20) with h = D(Un) is a large sample prediction region, but taking
qn given by (2.18) improves the finite sample performance of the prediction
region. Taking qn ≡ 1 − δ does not take into account variability of (T,C),
and for n = 20p the resulting prediction region tended to have undercoverage
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as high as min(0.05, δ/2). Using (2.18) helped reduce undercoverage for small
n ≥ 20p due to the unknown variability of (T,C).

2.4.1 Prediction Regions If n/p Is Small

See Haile, Zhang, and Olive (2023).

2.5 Bootstrapping Hypothesis Tests and Confidence

Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 2.4 to a bootstrap sample results in a
confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1 − δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal.

When teaching confidence intervals, it is often noted that by the central
limit theorem, the probability that Y n is within two standard deviations
(2SD(Y n) = 2σ/

√
n) of θ = µ is about 95%. Hence the probability that θ is

within two standard deviations of Y n is about 95%. Thus the interval [θ −
1.96S/

√
n, θ+1.96S/

√
n] is a large sample 95% prediction interval for a future

value of the sample mean Y n,f if θ is known, while [Y n − 1.96S/
√
n, Y n +

1.96S/
√
n] is a large sample 95% confidence interval for the population mean

θ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter θ or the statistic Y n, determines whether the
interval is a prediction or a confidence interval. See Theorem 2.10 for a similar
relationship between confidence regions and prediction regions.

Definition 2.10. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An) → 1 − δ as n→ ∞.

There are several methods for obtaining a bootstrap sample T ∗
1 , ...., T

∗
B

where the sample size n is suppressed: T ∗
i = T ∗

in. The parametric bootstrap,
nonparametric bootstrap, and residual bootstrap will be used. Applying the
nonparametric prediction region (2.22) to the bootstrap sample will result in
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a confidence region for θ. When g = 1, applying the shorth PI (2.10) or the
percentile PI (2.7) to the bootstrap sample results in a confidence interval
for θ. Section 2.5.2 will help clarify ideas.

When g = 1, a confidence interval is a special case of a confidence region.
One sided confidence intervals give a lower or upper confidence bound for θ.
A large sample 100(1−δ)% lower confidence interval (−∞, Un] uses an upper

confidence bound Un and is in the lower tail of the distribution of θ̂. A large
sample 100(1−δ)% upper confidence interval [Ln,∞) uses a lower confidence

bound Ln and is in the upper tail of the distribution of θ̂. These CIs can be
useful if θ ∈ [a, b] and θ = a or θ = b is of interest for a hypothesis test. For
example, [a, b] = [0, 1] if θ = ρ2, the squared population correlation. Then use
[0, Un] and [Ln, 1] as CIs, e.g. if we expect θ = 0 we might test H0 : θ ≤ 0.05
versus H0 : θ > 0.05, and fail to reject H0 if Un < 0.05. See Section 2.5.4 for
an illustration. Again we often want the probability to converge to 1 − δ if
the confidence interval is based on a statistic with an asymptotic distribution
that has a pdf.

Definition 2.11. The interval [Ln, Un] is a large sample 100(1 − δ)%
confidence interval for θ if P (Ln ≤ θ ≤ Un) is eventually bounded below by
1 − δ as n → ∞. The interval (−∞, Un] is a large sample 100(1− δ)% lower
confidence interval for θ if P (θ ≤ Un) is eventually bounded below by 1 − δ
as n → ∞. The interval [Ln,∞) is large sample 100(1−δ)% upper confidence
interval for θ if P (θ ≥ Ln) is eventually bounded below by 1− δ as n→ ∞.

Next we discuss bootstrap confidence intervals that are obtained by apply-
ing prediction intervals (2.7) and (2.10) to the bootstrap sample. Some ad-
ditional bootstrap CIs are obtained from bootstrap confidence regions from
Section 2.5.2 when g = 1. See Efron (1982) and Chen (2016) for the percentile
CI. Let Tn be an estimator of a parameter θ such as Tn = Z =

∑n
i=1 Zi/n

with θ = E(Z1). Let T ∗
1 , ..., T

∗
B be a bootstrap sample for Tn. Let T ∗

(1), ..., T
∗
(B)

be the order statistics of the the bootstrap sample. The percentile CI (2.24)
is obtained by applying percentile PI (2.7) to the bootstrap sample with B
used instead of n. Hence (2.24) is also a large sample prediction interval for a
future value of T ∗

f if the T ∗
i are iid from the empirical distribution discussed

in Section 2.5.1.

Definition 2.12. The bootstrap large sample 100(1− δ)% percentile con-
fidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1 − δ)e of

the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (2.24)

The large sample 100(1− δ)% lower percentile CI for θ is
(−∞, T ∗

(dB(1−δ)e)]. The large sample 100(1 − δ)% upper percentile CI for θ is

[T ∗
(dBδe),∞).
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In the next definition, the large sample 100(1−δ)% shorth(c) CI uses the in-
terval [T ∗

(1), T
∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length, denoted

by [T ∗
(s), T

∗
(s+c−1)]. The shorth CI (2.25) is obtained by applying shorth PI

(2.10) to the bootstrap sample.

Definition 2.13. The large sample 100(1 − δ)% lower shorth CI for θ
is (−∞, T ∗

(c)], while the large sample 100(1 − δ)% upper shorth CI for θ is
[T ∗

(B−c+1),∞). The large sample 100(1− δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] where c = min(B, dB[1 − δ + 1.12

√
δ/B ] e). (2.25)

Applied to a bootstrap sample, the shorth CI can be regarded as the short-
est percentile confidence interval, asymptotically. Hence the shorth confidence
interval is a practical implementation of the Hall (1988) shortest bootstrap
interval based on all possible bootstrap samples. See Remark 2.19 for some
theory for bootstrap CIs such as (2.24) and (2.25).

2.5.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples.
Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases with

replacement uses the empirical distribution.

Definition 2.14. Suppose that data x1, ...,xn has been collected and
observed. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 2.3. Let w be a random variable having the empirical distri-
bution given by Definition 2.14. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence
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E(w) =

n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �

Example 2.4. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

Suppose there is data w1, ...,wn collected into an n×p matrix W with ith
row wT

i . Let the statistic Tn = t(W ) = T (Fn) be computed from the data.
Suppose the statistic estimates µ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n

indicate that t was computed from an iid sample from the empirical distri-
bution Fn: a sample w∗

1, ...,w
∗
n of size n was drawn with replacement from

the observed sample w1, ...,wn. This notation is used for von Mises differen-
tiable statistical functions in large sample theory. See Serfling (1980, ch. 6).
The empirical distribution is also important for the influence function (widely
used in robust statistics). The nonparametric bootstrap draws B samples of
size n from the rows of W , e.g. from the empirical distribution of w1, ...,wn.
Then T ∗

jn is computed from the jth bootstrap sample for j = 1, ..., B.

Example 2.5. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7
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median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we
only have one sample of data and one value Tn = T1n of the statistic. Often
Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗
Bn is formed where

T ∗
jn = t(w∗

j1, ...,w
∗
jn). Section 2.5.3 will show that

√
n(T ∗

1n−Tn), ...,
√
n(T ∗

Bn−
Tn) is pseudodata for

√
n(T1n − θ), ...,

√
n(TBn − θ) when n and B are large

in that
√
n(Tn − θ)

D→ u and
√
n(T ∗ − Tn)

D→ u.

Example 2.6. Suppose there is training data (yi,xi) for the model
yi = m(xi) + εi for i = 1, ..., n, and it is desired to predict a future test
value yf given xf and the training data. The model can be fit and the resid-
ual vectors formed. One method for obtaining a prediction region for yf is to
form the pseudodata ŷf +ε̂i for i = 1, ..., n, and apply the nonparametric pre-
diction region (2.22) to the pseudodata. See Olive (2017b, 2018). The residual
bootstrap could also be used to make a bootstrap sample ŷf + ε̂∗1, ..., ŷf + ε̂∗B
where the ε̂∗j are selected with replacement from the residual vectors for
j = 1, ..., B. As B → ∞, the bootstrap sample will take on the n values
ŷf + ε̂i (the pseudodata) with probabilities converging to 1/n for i = 1, ..., n.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (2.26)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n. Fix n, and let E(T ∗

i,n) = θn and Cov(T ∗
i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√
n(Tn − θ)

D→ Ng(0,ΣA)

where ΣA > 0 is positive definite and nonsingular. Often nΣ̂T
P→ ΣA.

For example, using least squares and the residual bootstrap for the multiple

linear regression model, Σn =
n− p

n
MSE(XT X)−1, Tn = θn = β̂, θ = β,

Σ̂T = MSE(XT X)−1 and ΣA = σ2 limn→∞(XT X/n)−1. See Example 2.8
in Section 2.6.

Suppose the T ∗
i = T ∗

i,n are iid from some distribution with cdf F̃n. For

example, if T ∗
i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the

cdf of t(F ∗
n). With respect to F̃n, both θn and Σn are parameters, but with

respect to F , θn is a random vector and Σn is a random matrix. For fixed
n, by the multivariate central limit theorem,
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√
B(T

∗ − θn)
D→ Ng(0,Σn) and B(T

∗ − θn)
T[S∗

T]−1(T
∗ − θn)

D→ χ2
r

as B → ∞.

Remark 2.15. For Examples 2.3, 2.6, and 2.8, the bootstrap works but
is expensive compared to alternative methods. For Example 2.3, fix n, then

T
∗ P→ θn = x and S∗

T
P→ (n − 1)S/n as B → ∞, but using (x,S) makes

more sense. For Example 2.6, use the pseudodata instead of the residual boot-
strap. For Example 2.8, using β̂ and the classical estimated covariance ma-
trix Ĉov(β̂) = MSE(XT X)−1 makes more sense than using the bootstrap.
For these three examples, it is known how the bootstrap sample behaves as

B → ∞. The bootstrap can be very useful when
√
n(Tn − θ)

D→ Ng(0,ΣA),
but it not known how to estimate ΣA without using a resampling method

like the bootstrap. The bootstrap may be useful when
√
n(Tn − θ)

D→ u, but
the limiting distribution (the distribution of u) is unknown.

The following theorem shows that
√
m(T ∗

1,n − Tn), ...,
√
m(T ∗

B,n − Tn) are

pseudodata for
√
n(T1,n − θ), ...,

√
n(TB,n − θ). Here T ∗

i = T ∗
i,m with n sup-

pressed or T ∗
i,n = T ∗

i,n,m where m is the sample size of the bootstrap data set
used to compute T ∗

i , and often m = n. (For example, for the nonparametric
bootstrap, take a sample of size m = n with replacement from the n cases to
get the ith bootstrap data set. Then compute T ∗

i from that bootstrap data
set.) The first two convergence assumptions are with respect to the data dis-
tribution, while the third convergence assumption is with respect to the boot-
strap distribution. The technique is similar to using a triangular array, except
both n→ ∞ and m→ ∞. Note that for large n, Ng(0,Σn) ≈ Ng(0,Σ), and
often the Ng(0,Σn) approximation is used to produce output since Σ is un-
known. Typically large sample theory is used to prove the three assumptions
of the following theorem.

Theorem 2.8, Bootstrap Proof Technique: Suppose
√
n(Tn − θ)

D→
Ng(0,Σ) and Σn

P→ Σ as n → ∞, and for fixed n,
√
m(T ∗

n,m − Tn)
D→

Ng(0,Σn) as m → ∞. Then a)
√
m(T ∗

n,m − Tn)
D→ Ng(0,Σ) as m, n → ∞.

Also b)
√
n(T ∗

n − Tn)
D→ Ng(0,Σ) as n → ∞ where T ∗

n = T ∗
n,n has m = n.

Proof: By the three assumptions, un =
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ) as

n→ ∞, w∗
n,m =

√
m(T ∗

n,m − Tn)
D→ wn ∼ Ng(0,Σn) as m→ ∞ for fixed n,

and wn
D→ u as n → ∞. Hence w∗

n,m =
√
m(T ∗

n,m − Tn)
D→ u ∼ Ng(0,Σ)

as m, n → ∞. Since this result does not depend on m as long as m→ ∞, b)
follows. �

Example 2.7. Suppose x1, ...,xn are iid p × 1 random vectors with
E(xi) = µ and Cov(xi) = Σ. a) For the parametric bootstrap, let x∗

1, ...,x
∗
m

be iid Np(xn,Sn) where Sn
P→ Σ as n → ∞. By the multivariate central
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limit theorem
√
n(xn − µ)

D→ Np(0,Σ) and for fixed n,
√
m(x∗

n,m − xn)
D→

Np(0,Sn) where x∗
n,m = 1

m

∑m
i=1 x∗

i is the sample mean of the bootstrap

data set x∗
1, ...,x

∗
m. Hence

√
m(x∗

n,m − xn)
D→ Np(0,Σ) as n,m → ∞ by

Theorem 2.8. Note that m = n can be used by Theorem 2.8 b).
b) For the nonparametric bootstrap, E(x∗

n) = E(wn) = xn, and Cov(x∗
n) =

Cov(wn)/n = (n − 1)Sn/n
2 by Example 2.3 where w = wn. The x∗

i

are iid with respect to the bootstrap distribution. If the sample mean
x∗

n,m is computed from m x∗
i selected with replacement from the xi, then

√
m(x∗

n,m −xn)
D→ Np(0,

n−1
n Sn) for fixed n by the multivariate CLT. Then

by Theorem 2.8 b) with m = n,
√
n(x∗

n − xn)
D→ Np(0,Σ) as n → ∞.

2.5.2 Bootstrap Confidence Regions for Hypothesis

Testing

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B → ∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1
vector. Then reject H0 if θ0 is not in the confidence region An. Let the g× 1
vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap sample for Tn.

Let A be a full rank g × p constant matrix. For variable selection, consider
testing H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often

θ0 = 0. Then let Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗

Imin,0,i for i = 1, ..., B. The

statistic β̂Imin,0 is the variable selection estimator padded with zeroes. See
Section 2.2.

Let T
∗

and S∗
T be the sample mean and sample covariance matrix of the

bootstrap sample T ∗
1 , ..., T

∗
B. See Equation (2.26). Here P (X ≤ χ2

g,1−δ) = 1−δ
if X ∼ χ2

g, and P (X ≤ Fg,dn,1−δ) = 1− δ if X ∼ Fg,dn
. See Remark 2.10. Let

kB = dB(1 − δ)e.

Definition 2.15. a) The large sample 100(1 − δ)% standard bootstrap
confidence region for θ is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (2.27)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n → ∞.

b) The large sample 100(1 − δ)% Bickel and Ren confidence region for θ is

{w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kBT )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kBT )} (2.28)
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where the cutoff D2
(kBT ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (2.27) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity con-
ditions for this assumption. Bickel and Ren (2001) have interesting sufficient

conditions for (2.28) to be a confidence region when Σ̂A is a consistent esti-
mator of positive definite ΣA. Let the vector of parameters θ = T (F ), the
statistic Tn = T (Fn), and the bootstrapped statistic T ∗ = T (F ∗

n) where F
is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empiri-
cal cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn − θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ”

and F ∗
n is a perfectly good empirical cdf from Fn = “F .” Thus if n is fixed,

and a sample of size m is drawn with replacement from the empirical distribu-

tion, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn

. Now let n → ∞ with m = n. Then

bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn

= Ṫ (F )zF ∼ u.
The following three confidence regions will be used for inference after vari-

able selection. The Olive (2017ab, 2018) prediction region method confidence
region applies the nonparametric prediction region (2.22) to the bootstrap
sample. Olive (2017ab, 2018) also gave the modified Bickel and Ren confi-

dence region that uses Σ̂A = nS∗
T . The hybrid confidence region is due to

Pelawa Watagoda and Olive (2021a). Let qB = min(1− δ+0.05, 1− δ+g/B)
for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (2.29)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (2.29) as a correction factor for finite
B ≥ 50p.

Definition 2.16. The large sample 100(1− δ)% prediction region method

confidence region for θ is {w : (w − T
∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (2.30)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).)
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Definition 2.17. The large sample 100(1−δ)% (modified) Bickel and Ren
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UBT )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UBT )} (2.31)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)T [S∗
T ]−1(T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UBT ).

Definition 2.18. Shift region (2.30) to have center Tn, or equivalently,
change the cutoff of region (2.31) toD2

(UB) to get the large sample 100(1−δ)%
hybrid confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (2.32)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).

Rajapaksha and Olive (2022) gave the following two confidence regions.
The names of these confidence regions were chosen since they are similar to
the Bickel and Ren and prediction region method confidence regions.

Definition 2.19. The large sample 100(1− δ)% BR confidence region is

{w : n(w − Tn)T C−1
n (w − Tn) ≤ D2

(UBT )} =

{w : D2
w(Tn,Cn/n) ≤ D2

(UBT )} (2.33)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = n(T ∗
i −

Tn)T C−1
n (T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0 rejects
H0 if n(Tn − θ0)

T C−1
n (Tn − θ0) > D2

(UBT ).

Definition 2.20. The large sample 100(1− δ)% PR confidence region for
θ is

{w : n(w − T
∗
)T C−1

n (w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,Cn/n) ≤ D2

(UB)} (2.34)

where D2
(UB) is computed from D2

i = n(T ∗
i − T

∗
)T C−1

n (T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if
n(T

∗ − θ0)
T C−1

n (T
∗ − θ0) > D2

(UB).

Hyperellipsoids (2.31) and (2.32) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (2.30) and (2.31) is
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|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UBT )

)g

=

(
D(UB)

D(UBT )

)g

. (2.35)

The volume of confidence region (2.31) tends to be greater than that of (2.30)

since the T ∗
i are closer to T

∗
than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are
special cases of confidence regions. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval that
contains UB ≈ kB = dB(1−δ)e of the T ∗

i . Let ai = |T ∗
i −T ∗|. Let T

∗
and S2∗

T

be the sample mean and variance of the T ∗
i . Then the squared Mahalanobis

distanceD2
θ = (θ−T ∗

)2/S∗2
T ≤ D2

(UB) is equivalent to θ ∈ [T
∗−S∗

TD(UB), T
∗
+

S∗
TD(UB)] = [T

∗ −a(UB), T
∗
+a(UB)], which is an interval centered at T

∗
just

long enough to cover UB of the T ∗
i . Hence the prediction region method CI

is a special case of the percentile method CI if g = 1. See Definition 2.12.
Efron (2014) used a similar large sample 100(1 − δ)% confidence interval

assuming that T
∗

is asymptotically normal. The CI [Tn−a(UBT ), Tn +a(UBT )]
corresponding to (2.31) is defined similarly, and [Tn − a(UB), Tn + a(UB)] is
the CI for (2.32). Note that the three CIs corresponding to (2.30)–(2.32) can
be computed without finding S∗

T or D(UB) even if S∗
T = 0. The shorth(c)

CI (2.25) computed from the T ∗
i can be much shorter than the Efron (2014)

or prediction region method confidence intervals. See Remark 2.18 for some
theory for bootstrap CIs.

In the following definition, let UB and UBT be as in Definitions 2.15 to
2.20. Let ai be as in the above paragraph. In Definition 2.21, the PI given
by a) corresponds to both the prediction region method and PR confidence
regions, while the PI given by b) corresponds to both the (modified) Bickel
and Ren and BR confidence regions.

Definition 2.21. a) The large sample 100(1 − δ)% PR CI is

[T
∗ − a(UB), T

∗
+ a(UB)].

b) The large sample 100(1− δ)% BR CI is
[Tn − a(UBT ), Tn + a(UBT )].

c) The large sample 100(1 − δ)% hybrid CI is
[Tn − a(UB), Tn + a(UB)].

Remark 2.16. From Example 2.8, Cov(β̂
∗
) =

n− p

n
MSE(XT X)−1 =

n− p

n
Ĉov(β̂) where Ĉov(β̂) = MSE(XT X)−1 starts to give good estimates

of Cov(β̂) = ΣT for many error distributions if n ≥ 10p and T = β̂. For

the residual bootstrap with large B, note that S∗
T ≈ 0.95Ĉov(β̂) for n = 20p

and S∗
T ≈ 0.99Ĉov(β̂) for n = 100p. Hence we may need n >> p before the

S∗
T is a good estimator of Cov(T ) = ΣT . The distribution of

√
n(Tn − θ) is
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approximated by the distribution of
√
n(T ∗ − Tn) or by the distribution of√

n(T ∗ − T
∗
), but n may need to be large before the approximation is good.

Suppose the bootstrap sample mean T
∗

estimates θ, and the bootstrap
sample covariance matrix S∗

T estimates cnĈov(Tn) ≈ cnΣT where cn in-

creases to 1 as n → ∞. Then S∗
T is not a good estimator of Ĉov(Tn) un-

til cn ≈ 1 (n ≥ 100p for OLS β̂), but the squared Mahalanobis distance

D2∗
w(T

∗
,S∗

T ) ≈ D2
w(θ,ΣT )/cn and D2∗

(UB) ≈ D2
1−δ/cn. Hence the prediction

region method has a cutoff D2∗
(UB) that estimates the cutoff D2

1−δ/cn. Thus
the prediction region method may give good results for much smaller n than
a bootstrap method that uses a χ2

g,1−δ cutoff when a cutoff χ2
g,1−δ/cn should

be used for moderate n.

Remark 2.17. For bootstrapping the p× 1 vector β̂Imin,0, we will often
want n ≥ 20p and B ≥ max(100, n, 50p). If Tn is g × 1, we might replace p
by g or replace p by d if d is the model degrees of freedom. Sometimes much
larger n is needed to avoid undercoverage. We want B ≥ 50g so that S∗

T is a
good estimator of Cov(T ∗

n). Prediction region theory uses correction factors
like (2.19) and (2.10) to compensate for finite n. The bootstrap confidence
regions (2.30)–(2.34) and the shorth CI use the correction factors (2.29) and
(2.25) to compensate for finite B ≥ 50g. Note that the correction factors
make the volume of the confidence region larger as B decreases. Hence a test
with larger B will have more power.

2.5.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator.

Remark 2.18. Some regularity conditions used for bootstrap confidence

regions are i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u,

iv)
√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u). Regularity condition v)
is rather strong by Machado and Parente (2005). Regularity conditions i)
and ii) are often shown using large sample theory. Since (2.31) is a large
sample confidence region by Bickel and Ren (2001), (2.30) and (2.32) are

too, provided vi)
√
n(T

∗ − Tn)
P→ 0. Also note that (2.31) is a large sample

confidence region if the standard confidence region (2.27) is a large sample
confidence region.
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Olive (2017b:
∮

5.3.3, 2018) proved that the prediction region method
gives a large sample confidence region under v) from Remark 2.18 and u ∼
Ng(0,Σu), but the following Pelawa Watagoda and Olive (2021a) theorem
and proof is simpler. Since iii) and iv) hold by Theorem 2.9, the sample
percentile will be consistent under much weaker conditions than v) if Σu is
nonsingular.

Theorem 2.9. a) Suppose i)
√
n(Tn − θ)

D→ u, and ii)
√
n(T ∗

i − Tn)
D→ u

with E(u) = 0 and Cov(u) = Σu. Then iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i −
T

∗
)

D→ u, and vi)
√
n(T

∗ − Tn)
P→ 0.

b) Then the prediction region method gives a large sample confidence

region for θ provided that the sample percentile D̂2
1−δ of the D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −T
∗
)T (nS∗

T )−1
√
n(T ∗

i −T ∗
) is a consistent estimator of the percentile

D2
n,1−δ of the random variable D2

θ(T
∗
,S∗

T ) =
√
n(θ − T

∗
)T (nS∗

T )−1√n(θ −
T

∗
) in that D̂2

1−δ −D2
n,1−δ

P→ 0.

Proof. With respect to the bootstrap sample, Tn is a constant and the√
n(T ∗

i − Tn) are iid for i = 1, ..., B. Fix B. Then




√
n(T ∗

1 − Tn)
...√

n(T ∗
B − Tn)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 1.22 and
1.23, and see Example 1.20.) For fixed B, the average of the

√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 1.25 where z ∼ ANg(0,Σ) is an asymptotic multivariate normal

approximation. Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii), iv), and vi)

hold. Hence b) follows. �

Remark 2.19. Note that if
√
n(Tn − θ)

D→ U and
√
n(T ∗

i − Tn)
D→ U

where U has a unimodal probability density function symmetric about zero,
then the confidence intervals from the three confidence regions (2.30)–(2.32),
the shorth confidence interval (2.25), and the “usual” percentile method con-
fidence interval (2.24) are asymptotically equivalent (use the central propor-
tion of the bootstrap sample, asymptotically). This result is due to Pelawa
Watagoda and Olive (2021a).

Assume nS∗
T

P→ ΣA as n, B → ∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that
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√
n (Tn − θ)

D→ u (2.36)

as n → ∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zT z = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (2.37)

as n, B → ∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (2.27) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A . The following
remark gives a simple technical explanation for why bootstrap confidence
regions and tests work.

Remark 2.20. a) Assume un
D→ u where un = i)

√
n(Tn − θ), ii)

√
n(T ∗

i − Tn), iii)
√
n(T ∗

i − T
∗
), or iv)

√
n(T

∗ − θ), and nS∗
T

P→ C where C
is nonsingular. Let

D2
1 = D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1√n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1

√
n(T ∗

i − Tn).

Then D2
j ≈ uT (nS∗

T )−1u ≈ uT C−1u, and the percentiles of D2
1 and D2

4

can be used as cutoffs. If (nS∗
T )−1 is “not too ill conditioned” then D2

j ≈
uT (nS∗

T )−1u for large n, and the confidence regions (2.30), (2.31), and (2.32)
will have coverage near 1− δ. For confidence regions (2.33) and (2.34), want

C−1
n

P→ C−1 or C−1
n to be “not too ill conditioned.” The regularity conditions

for (2.30)–(2.34) are weaker when g = 1, since S∗
T and Cn do not need to be

computed.
b) Both I)

√
n(T ∗

1n−Tn), ...,
√
n(T ∗

Bn−Tn) and II)
√
n(T ∗

1n−T
∗
), ...,

√
n(T ∗

Bn

−T ∗
) can be used as pseudodata for III)

√
n(T1n −θ), ...,

√
n(TBn −θ) when

n is large since i), ii) and iii) hold. We can’t get the random quantities in III)
since θ is unknown, and we only have B = 1 value of the statistic Tn. Note
that i) would give an asymptotic pivot if the distribution of u was known.
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The following Pelawa Watagoda and Olive (2021a) theorem is very use-
ful. The improved proof, due to Rathnayake and Olive (2023), is used. Let
(T ,ST ) be the sample mean and sample covariance matrix computed from
T1, ..., TB which have the same distribution as Tn where Ti = Tin. Let D2

(UB)

be the cutoff computed from the D2
i (T ,ST ) for i = 1, ..., B. The hyperellip-

soids corresponding to D2(Tn,C) and D2(T ,C) are centered at Tn and T ,
respectively. Note that D2

T
(Tn,C) = D2

Tn
(T ,C). Thus D2

T
(Tn,C) ≤ D2

(UB)

iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem 2.10, since Rp contains Tf with prob-

ability 1 − δB , the region Rc contains T with probability 1 − δB . Since Tn

depends on the sample size n, we need (nST )−1 to be fairly well behaved,

e.g. (nST )−1 P→ Σ−1
A . Note that Ti = Tin.

Theorem 2.10: Geometric Argument. Suppose
√
n(Tn−θ)

D→ u with
E(u) = 0 and Cov(u) = Σu 6= 0. Assume T1, ..., TB are iid with non-

singular covariance matrix ΣTn
where (nST )−1 P→ Σ−1

A . Then the large
sample 100(1− δ)% prediction region Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} cen-

tered at T contains a future value of the statistic Tf with probability 1− δB
which is eventually bounded below by 1 − δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ where Tn is a randomly selected Ti.
Proof. The region Rc centered at a randomly selected Tn contains T with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 1.22
and 1.23, and see Example 1.20.) For fixed B, the average of these random
vectors is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 1.25, where ANg denotes an approximate multivariate normal
distribution. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily close
to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1 − δ)%
confidence region for θ as n, B → ∞. �

Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u ∼ Ng(0,Σ), say, then
the bootstrap sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid

T1, ..., TB shifted to be centered at Tn. The nonparametric confidence region
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Fig. 2.3 Confidence Regions for 2 Statistics with MVN Distributions
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(2.30) applies the prediction region to the bootstrap. Then the hybrid region
(2.32) centers that region at Tn. Hence (2.32) is a confidence region by the

geometric argument, and (2.30) is a confidence region if
√
n(T

∗ − Tn)
P→ 0.

Since the T ∗
i are closer to T

∗
than Tn on average, D2

(UBT ) tends to be greater

than D2
(UB). Hence the coverage and volume of (2.31) tend to be at least as

large as the coverage and volume of (2.32).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
D2

T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 2.3 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 2.3 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.

If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 2.10, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 2.3. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 2.21. Remark 2.16 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

g , the pre-
diction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
g,1−δ. Theorem 2.10 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
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by using D2
(Un). If n is large, by using D2

(UB), the prediction region method
confidence region compensates for undercoverage when B is moderate, say
B ≥ Jg where J = 20 or 50. See Remark 2.17. This result can be useful
if a simulation with B = 1000 or B = 10000 is much slower than a simu-
lation with B = Jg. The price to pay is that the prediction region method
confidence region is inflated to have better coverage, so the power of the
hypothesis test is decreased if moderate B is used instead of larger B.

2.5.4 Bootstrapping the Population Coefficient of

Multiple Determination

This subsection illustrates a case where the shorth(c) bootstrap CI fails, but
the lower shorth CI can be useful. See Definition 2.13.

The multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei

for i = 1, ..., n.See Definition 1.42 for the coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.
Assume that the variance of the errors is σ2

e and that the variance of Y is
σ2

Y . Let the linear combination L =
∑p

i=2 xiβi where Y = β1 +
∑p

i=2 xiβi +
e = β1 + L + e. Let the variance of L be σ2

L. Then

R2 = 1 −
∑n

i=1 r
2
i∑n

i=1(Yi − Y )2
P→ τ2 = 1 − σ2

e

σ2
Y

= 1 − σ2
e

σ2
e + σ2

L

.

Here we assume that e is independent of the predictors x2, ..., xp. Hence e is
independent of L and the variance σ2

Y = V (L+e) = V (L)+V (e) = σ2
L +σ2

e .
One of the sufficient conditions for the shorth(c) interval to be a large

sample CI for θ is
√
n(T − θ)

D→ N(0, σ2). If the function t(θ) has an inverse,

and
√
n(t(T )− t(θ))

D→ N(0, v2), then the above condition typically holds by
the delta method. See Remark 2.19.

For T = R2 and θ = τ2, the test statistic F0 for testing H0 : β2 = · · · =

βp = 0 in the Anova F test has (p − 1)F0
D→ χ2

p−1 for a large class of error
distributions when H0 is true, where

F0 =
R2

1 −R2

n− p

p − 1
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if the MLR model has a constant. If H0 is false, then F0 has an asymptotic
scaled noncentral χ2 distribution. These results suggest that the large sample
distribution of

√
n(R2 − τ2) may not be N(0, σ2) if H0 is false so τ2 > 0. If

τ2 = 0, we may have
√
n(R2 − 0)

D→ N(0, 0), the point mass at 0. Hence the
shorth CI may not be a large sample CI for τ2. The lower shorth CI should
be useful for testing H0 : τ2 = 0 versus HA : τ2 > a where 0 < a ≤ 1 since
the coverage is 1 and the length of the CI converges to 0. So reject H0 if a is
not in the CI.

The simulation simulated iid data w with u = Aw and Aij = ψ for i 6= j
and Aii = 1 where 0 ≤ ψ < 1 and u = (x2, ..., xp)

T . Hence Cor(xi, xj) = ρ =
[2ψ+(p−3)ψ2]/[1+(p−2)ψ2] for i 6= j. If ψ = 1/

√
kp, then ρ→ 1/(k+1) as

p→ ∞ where k > 0. We used w ∼ Np−1(0, Ip−1). If ψ is high or if p is large
with ψ ≥ 0.5, then the data are clustered tightly about the line with direction
1 = (1, ..., 1)T, and there is a dominant principal component with eigenvector
1 and eigenvalue λ1. We used ψ = 0, 1/

√
p, and 0.9. Then ρ = 0, ρ→ 0.5, or

ρ→ 1 as p → ∞.
We also used V (x2) = · · · = V (xp) = σ2

x. If p > 2, then Cov(xi, xj) = ρσ2
x

for i 6= j and Cov(xi, xj) = V (xi) = σ2
x for i = j. Then V (Y ) = σ2

Y = σ2
L+σ2

e

where

σ2
L = V (L) = V (

p∑

i=2

βixi) = Cov(

p∑

i=2

βixi,

p∑

j=2

βjxj) =

p∑

i=2

p∑

j=2

βiβjCov(xi, xj)

=

p∑

i=2

β2
i σ

2
x + 2ρσ2

x

p∑

i=2

p∑

j=i+1

βiβj .

The simulations took βi ≡ 0 or βi ≡ 1 for i = 2, ..., p. For the latter case,

σ2
L = V (L) = (p − 1)σ2

x + 2ρσ2
xp(p− 1)/2.

The zero mean errors ei were from 5 distributions: i) N(0,1), ii) t3, iii)
EXP (1)− 1, iv) uniform(−1, 1), and v) (1− ε)N(0, 1)+ εN(0, (1+ s)2) with
ε = 0.1 and s = 9 in the simulation. Then Y = 1 + bx2 + bx3 + · · ·+ bxp + e
with b = 0 or b = 1.

Remark 2.22. Suppose the simulation uses K runs and Wi = 1 if µ is
in the ith CI, and Wi = 0 otherwise, for i = 1, ..., K. Then the Wi are iid
binomial(1,1− δn) where ρn = 1− δn is the true coverage of the CI when the

sample size is n. Let ρ̂n = W . Since
∑K

i=1Wi ∼ binomial(K, ρn), the standard

error SE(W ) =
√
ρn(1 − ρn)/K. For K = 5000 and ρn near 0.9, we have

3SE(W ) ≈ 0.01. Hence an observed coverage of ρ̂n within 0.01 of the nominal
coverage 1 − δ suggests that there is no reason to doubt that the nominal
CI coverage is different from the observed coverage. So for a large sample
95% CI, we want the observed coverage to be between 0.94 and 0.96. Also
a difference of 0.01 is not large. Coverage slightly higher than the nominal
coverage is better than coverage slightly lower than the nominal coverage.
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Bootstrapping confidence intervals for quantities like ρ2 and τ2 is notori-
ously difficult. If β2 = · · · = βp = 0, then σ2

L = 0 and τ2 = 0. However, the
probability that R2∗

i > 0 = 1. Hence the usual two sided bootstrap percentile
and shorth intervals for τ2 will never contain 0. The one sided bootstrap CI
[0, T ∗

(c)] always contains 0, and is useful if the length of the CI goes to 0 as

n→ ∞. In the table below, βi = b for i = 2, ..., p. If b = 0, then τ2 = 0.
The simulation for the table used 5000 runs with the bootstrap sample

size B = 1000. When n = 400, the shorth(c) CI never contains τ2 = 0 and
the average length of the CI is 0.035. See ccov and clen. The lower shorth CI
always contained τ2 = 0 with lcov = 1, and the average CI length was llen =
0.036. The upper shorth CI never contains τ2 = 0, and the average length is
near 1.

Table 2.1 Bootstrapping τ2 with R2 and B = 1000

etype n p b ψ τ2 ccov clen lcov llen ucov ulen
1 100 4 0 0 0 0 0.135 1 0.137 0 0.990
1 200 4 0 0 0 0 0.0693 1 0.0702 0 0.995
1 400 4 0 0 0 0 0.0354 1 0.0358 0 0.988

Three slpack functions were used in the simulation. The function shorthLU
gets the shorth(c) CI, the lower shorth CI, and the upper shorth CI. The
function Rsqboot bootstraps R2, while the function Rsqbootsim does the
simulation. Some R code for the first line of Table 2.1 is below where b = cc.

Rsqbootsim(n=100,p=4,BB=1000,nruns=5000,type=1,psi=0,

cc=0)

$rho

[1] 0

$sigesq

[1] 1

$sigLsq

[1] 0

$poprsq

[1] 0

$cicov

[1] 0

$avelen

[1] 0.1348881

$lcicov

[1] 1

$lavelen

[1] 0.13688

$ucicov

[1] 0
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$uavelen

[1] 0.9896608

2.6 OLS Large Sample Theory

For this section, we will make several assumptions for the multiple linear
regression model Yi = β1 +xi,2β2 + · · ·+xi,pβp +ei = xT

i β+ei for i = 1, ..., n
where the random variables ei are iid with variance V (ei) = σ2. In matrix
notation, these n equations become Y = Xβ+e. Let H = X(XT X)−1XT .
First, assume Equation (2.1) holds. Second, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n → ∞ for each I with
S ⊆ I.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y
is asymptotically normal and the t–interval will perform well if the sample
size is large enough. The result below suggests that the OLS estimators Ŷi

and β̂ are good if the sample size is large enough. The condition maxhi → 0
in probability usually holds if the researcher picked the design matrix X or
if the xi are iid random vectors from a well behaved population. Outliers

can cause the condition to fail. Convergence in distribution, Zn
D→ Np(0,Σ),

means the multivariate normal approximation can be used for probability
calculations involving Zn. When p = 1, the univariate normal distribution
can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies

that β̂ ≈ Np(β, σ2(XT X)−1)). Let hi = Hii where H = PX . Note that

the following theorem is for the full rank model since XT X is nonsingular.

Theorem 2.11, OLS CLT (Least Squares Central Limit Theo-
rem): Consider the MLR model Yi = xT

i β + ei and assume that the zero
mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞ and

XT X

n
→ W−1

as n → ∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ). (2.38)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (2.39)
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Then using the OLS CLT Theorem 2.11 and notation from Section 2.2,

for the full OLS model,
√
n(β̂ − β)

D→ Np(0, σ2W ) ∼ Np(0,V ) where

(XT X)/n
P→ W−1. If S ⊆ Ij , then

√
n(β̂Ij

− βIj
)

D→ Naj
(0, σ2W j) ∼

Naj
(0,V j) where n(XT

Ij
XIj

)−1 P→ W j . Let β̂Ij
= (XT

Ij
XIj

)−1XT
Ij

Y =

DjY , Tn = β̂Imin,0, and Tjn = β̂Ij ,0 = Dj,0Y where Dj,0 adds rows of

zeroes to Dj corresponding to the xi not in Ij . Then ujn =
√
n(β̂Ij,0−β)

D→
uj ∼ Np(0, σ

2W j,0) ∼ Np(0,V j,0) where W j,0 adds columns and rows of
zeroes corresponding to the xi not in Ij .

For variable selection with P (S ⊆ Imin) → 1 as n → ∞, let Tn = Tkn =

β̂Ik,0 with probabilities πkn where πkn → πk as n → ∞. Denote the πk with

S ⊆ Ik by πj. The other πk = 0. Then Theorem 2.4 holds:
√
n(β̂V S−β)

D→ u.
Note that V j,0 = σ2W j,0 is singular unless Ij corresponds to the full

model. For example, if p = 3 and model Ij uses a constant x1 ≡ 1 and x3

with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

For variable selection, the next section will show that the bootstrap sample
data cloud T ∗

1 , ..., T
∗
B tends to be slightly more variable than the data cloud

of iid T1, ..., TB for large n. This result will hold for the parametric bootstrap,
residual bootstrap, and nonparametric bootstrap, which are discussed in the
next three subsections. Hence by the geometric argument, we expect D2

(UB)

or D2
(UBT ) can be used as D̂2

1−δ.

2.7 Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate Y ∗

and X∗ that would be used to produce β̂
∗

if the full model estimator β̂ was

being bootstrapped. Instead of computing β̂
∗
, compute the variable selection

estimator β̂
∗

V S,1 = β̂
∗C

Ik1
,0. Then generate another Y ∗ and X∗ and compute

β̂
∗

MIX,1 = β̂
∗

Ik1
,0 (using the same subset Ik1

). This process is repeated B
times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn. Then
apply the confidence regions (2.30), (2.31), and (2.32) on the bootstrap sam-

ple T ∗
1 , ..., T

∗
B where T ∗

i = Aβ̂
∗

SEL,i where SEL is V S or MIX.

For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (10)
where E(v) = 0, and Σv =

∑
j πjAV j,0A

T . By Theorem 2.10, if we had iid
data T1, ..., TB, then Rc would be a large sample confidence region for θ. If



2.7 Bootstrapping Variable Selection Estimators 125

√
n(T ∗

n − Tn)
D→ v, then we could use the bootstrap sample and confidence

regions (2.30) to (2.32). This condition holds only under strong regularity
conditions such as πd = 1 or θ = Aβ = BβS if V was diagonal.

Now we will try to explain why the bootstrap confidence regions may
still be useful. By Sections 2.2 and 2.5, we expect the confidence regions to
simulate well (have coverage close to or higher than the nominal level so that
the type I error is close to or less than the nominal level) if πd = 1 or if the
asymptotic covariance matrix for the full model is nonsingular and diagonal,
but these conditions are very strong. In simulations for β̂V S with n ≥ 20p,
if the confidence regions (2.30) and (2.31) simulated well for the full model

bootstrap, then (2.31) and (2.32) also simulated well for β̂V S . The hybrid
confidence region (2.32) had poorer performance, and confidence regions for

β̂V S tended to have less undercoverage than confidence regions for β̂
∗

MIX .
Undercoverage can occur if the bootstrap data cloud is less variable than

the iid data cloud, e.g., if n < 20p. Heuristically, if n ≥ 20p, then coverage can
be higher than the nominal coverage for two reasons: i) the bootstrap data
cloud T ∗

1 , ..., T
∗
B is more variable than the iid data cloud of T1, ..., TB, and

ii) zero padding. In the simulations for H0 : Aβ = BβS = θ, the simulated
coverage for confidence intervals and confidence regions (2.30) and (2.31) was
roughly 2% less than to 2% higher than the nominal 95% coverage due to
i). In the simulations for H0 : Aβ = BβE = 0, the simulated coverage
for confidence intervals and confidence regions (2.30) and (2.31) tended to
be close to 99% when the nominal coverage was 95%, but the nominal 95%
confidence intervals tended to be shorter than those for the full model, and
the confidence region volumes were often much smaller than those for the
full model. See Pelawa Watagoda and Olive (2021a) for more on why zero
padding tends to increase the coverage while decreasing the volume of the
confidence regions and confidence intervals. The simulations also used B ≥
max(200, 50p) so that S∗

T is a good estimator of Cov(T ∗).
The matrix S∗

T can be singular due to one or more columns of zeros
in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the

full model estimator β̂
∗

= β̂
∗

FULL to the bootstrap sample. For example,
take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (2.30), (2.31), and (2.32). Using the confidence interval
[max(Ln, T

∗
(1)),min(Un, T

∗
(B))] can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable
than the iid data cloud. Let Bjn count the number of times T ∗

i = T ∗
ij in the

bootstrap sample. Then the bootstrap sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J .

Denote T ∗
1j, ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap sample

with sample mean T
∗
j and sample covariance matrix S∗

T,j. Similarly, we can
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define the jth component of the iid sample T1, ..., TB to have sample mean
T j and sample covariance matrix ST,j.

Let Tn = β̂MIX . If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) and

√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j). Then by Equation (2.3),

√
n(β̂Ij ,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗

Ij,0−β̂Ij,0)
D→ Np(0,V j,0). (2.40)

If Equation (2.38) holds, then the component clouds have the same variability
asymptotically, and the confidence regions will shrink to a point at β as n →
∞, giving good test power, asymptotically. The iid data component clouds are
all centered at β. If the bootstrap data component clouds were all centered
at the same value β̃, then the bootstrap cloud would be like an iid data cloud
shifted to be centered at β̃, and (2.31) and (2.32) would be confidence regions
for θ = β by Theorem 2.10. Instead, the bootstrap data component clouds
are shifted slightly from a common center, and are each centered at a β̂Ij,0.
Geometrically, the shifting of the bootstrap component data clouds makes the
bootstrap data cloud more variable than the iid data cloud, asymptotically
(we want n ≥ 20p). The shifting also makes the T ∗

i further from T
∗

than

if there is no shifting. A similar argument can be given for Tn = Aβ̂MIX

and θ = Aβ. Region (2.30) has the same volume as region (2.32), but tends

to have higher coverage since empirically, the bagging estimator T
∗

tends
to estimate θ at least as well as Tn for a mixture distribution. See Breiman
(1996) and Yang (2003).

The above argument is heuristic since we have not been able to prove
that the coverage is ≥ 1 − δ, asymptotically, except under strong regularity
conditions. Then the type I error ≤ δ, asymptotically. Confidence region
(2.31) rejects H0 if (Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB ,T ). If an iid data

cloud was available, the cutoff D2
(UB)(Tn,S

∗
T ) could be computed from D2

i =

(Ti−θ0)
T [S∗

T ]−1(Ti −θ0) for i = 1, ..., B. Hence the type I error is controlled
if D2

(UB,T ) tends to be larger than D2
(UB)(Tn,S

∗
T ).

The bootstrap component clouds for β̂
∗

V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗

S,V S is roughly similar to β̂
∗

S,MIX . Typically the distributions of β̂
∗

E,V S and

β̂
∗

E,MIX are not similar, but use the same zero padding.
Next we will examine when Equation (2.38) holds. If S ⊆ Ij, then

√
n(β̂Ij

− βIj
)

D→ Naj
(0,V j) by the large sample theory (2.3) for the es-

timator. Bootstrap theory should show that
√
n(β̂

∗ − β̂)
D→ Np(0,V ), but

showing
√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j) is often difficult.
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2.7.1 The Parametric Bootstrap

For the parametric regression model Yi|xi ∼ D(xT
i β, γ), assume

√
n(β̂ −

β)
D→ Np(0,V (β)), and that V (β̂)

P→ V (β) as n → ∞. These assumptions

tend to be mild for a parametric regression model where the MLE β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix. For GLMs, see,
for example, Sen and Singer (1993, p. 309). For the parametric regression

model, we regress Y on X to obtain (β̂, γ̂) where the n× 1 vector Y = (Yi)
and the ith row of the n× p design matrix X is xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗

j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b
does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (2.41)

as n → ∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI
(0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

Then showing
√
n(β̂

∗

Ij
− β̂Ij

)
D→ Naj

(0,V j) is often difficult.
For the multiple linear regression model, Y = Xβ +e, assume a constant

x1 is in the model, and the zero mean ei are iid with variance V (ei) = σ2. Let
H = X(XT X)−1XT . For each I with S ⊆ I, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n → ∞. For least squares

with S ⊆ I,
√
n(β̂I −βI)

D→ NaI
(0,V I) where (XT

I XI)/(nσ
2)

P→ V −1
I . See,

for example, Sen and Singer (1993, p. 280).
Consider the parametric bootstrap for the above model with Y ∗ ∼

Nn(Xβ̂, σ̂2
nI) ∼ Nn(HY , σ̂2

nI) where we are not assuming that the
ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i

where the residuals are from the full OLS model. Then MSE is a
√
n

consistent estimator of σ2 under mild conditions by Su and Cook (2012).

Thus β̂
∗

I = (XT
I XI)

−1XT
I Y ∗ ∼ NaI

(β̂I , σ̂
2
n(XT

I XI)
−1) since E(β̂

∗

I) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗

I) = σ̂2
n(XT

I XI)
−1.
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Hence √
n(β̂

∗

I − β̂I) ∼ NaI
(0, nσ̂2

n(XT
I XI)

−1)
D→ NaI

(0,V I)

as n, B → ∞ if S ⊆ I. Hence Equation (2.38) holds under mild conditions.

When V is diagonal,
√
n(β̂S,full − βS)

D→ NaS
(0,V S) where V S is

a diagonal matrix using the relevant diagonal elements of V . For multi-

ple linear regression with the parametric bootstrap, the full model β̂
∗ ∼

Np(β̂, σ̂
2
n(XT X)−1) ≈ Np(β̂,V /n). If the columns of X are orthogonal

and S ⊆ I, then β̂
∗

S,I = β̂
∗

S,full and β̂S,I = β̂S,full . Hence
√
n(β̂

∗

S,MIX −
β̂S,full)

D→ NaS
(0,V S). When V is diagonal, the columns of X are asymp-

totically orthogonal. Hence if S ⊆ I, β̂S,I ≈ β̂S,full ≈ T
∗
, and the bootstrap

component clouds have the same asymptotic variability as the iid data clouds.

Hence we expect the bootstrap cutoffs for Aβ̂
∗

S,MIX to be near χ2
g,1−δ.

The weighted least squares formulation of the GLM maximum likelihood
estimator, given for example by Hillis and Davis (1994) and Sen and Singer
(1993, p. 307), suggests that similar results hold for the GLM when V is
diagonal.

2.7.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi),
and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0, it is often useful to replace ri by εi = ri − r, and r∗ij by ε∗ij.

Example 2.8. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with
ith element Ŷi = m̂(xi) = xT

i β̂. For j = 1, ..., B, regress Y ∗
j on X to form

β̂
∗

1,n, ..., β̂
∗

B,n using the residual bootstrap.
Now examine the OLS model with a constant in the model so the OLS

residuals sum to 0. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the fitted val-
ues from the OLS full model. Let rW denote an n × 1 random vector of
elements selected with replacement from the OLS full model residuals. Fol-
lowing Freedman (1981) and Efron (1982, p. 36),
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Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rW
i of rW are iid from

the empirical distribution of the OLS full model residuals ri. Hence

E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XT X)−1XT Y ∗ with Cov(β̂
∗
) = σ2

n(XT X)−1 =
n− p

n
MSE(XT X)−1, and E(β̂

∗
) = (XT X)−1XTE(Y ∗) =

(XT X)−1XT HY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant. One dif-

ference from the usual OLS MLR model is that σ2
n

P→ σ2 depends on n. The
usual model has V (ei) = σ2 which does not depend on n.

For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗
) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗
i ) ≈

√
n− p

n
SE(β̂i) for i = 1, ..., p where

β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The OLS CLT Theorem 2.11 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2W )

where n(XT X)−1 → W . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞
nĈov(β̂

∗
)) ∼ Np(0, σ

2W ). (2.42)

Imagine for large fixed n = N we get the OLS residuals. Then we use these

residuals for n > N to get β̂
∗

n,N . Then by the OLS CLT,
√
n(β̂

∗

n,N −β̂OLS)
D→

Np(0, σ
2
NW ) as n→ ∞, andNp(0, σ2

NW )
D→ Np(0, σ2W ) as N → ∞. Hence

Theorem 2.8 is satisfied, and Equation (2.42) holds. See Freedman (1981) for
an alternative proof.

For the above residual bootstrap, β̂
∗

Ij
= (XT

Ij
XIj

)−1XT
Ij

Y ∗ = DjY
∗

with Cov(β̂
∗

Ij
) = σ2

n(XT
Ij

XIj
)−1 and E(β̂

∗

Ij
) = (XT

Ij
XIj

)−1XT
Ij
E(Y ∗) =

(XT
Ij

XIj
)−1XT

Ij
HY = β̂Ij

since HXIj
= XIj

. The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗

I ) = β̂I and nCov(β̂
∗

I) = n[(n− p)/n]σ̂2
n(XT

I XI)
−1 P→ V I
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as n → ∞ with σ̂2
n = MSE. Hence β̂

∗

I − β̂I
P→ 0 as n → ∞ by Lai et al.

(1979). Note that β̂
∗

I = β̂
∗

I,n and β̂I = β̂I,n depend on n.

Remark 2.23. The Cauchy Schwartz inequality says |aT b| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if

√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence

√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Remark 2.24. Note that both the residual bootstrap and parametric
bootstrap for OLS are robust to the unknown error distribution of the iid
ei. For the residual bootstrap with S ⊆ I where I is not the full model, we

conjecture that
√
n(β̂

∗

I − β̂I)
D→ NaI

(0,V I ) as n → ∞ since OLS estimators
tend to be asymptotically normal with a distribution that depends on the
covariance matrix of the estimator. For the model Y = Xβ+e, the ei are iid
from a distribution that does not depend on n, and βE = 0 where E denotes

the terms in the full model that are not in I. For Y ∗ = Xβ̂ + rW , the
distribution of the rW

i depends on n and β̂E 6= 0 although
√
nβ̂E = OP (1).

2.7.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, and the pairs bootstrap) draws a sample of n cases (Y ∗

i ,x
∗
i )

with replacement from the n cases (Yi,xi), and regresses the Y ∗
i on the

x∗
i to get β̂

∗

V S,1, and then draws another sample to get β̂
∗

MIX,1. This pro-
cess is repeated B times to get the two bootstrap samples for i = 1, ..., B. If√
n(β̂

∗−β̂)
D→ Np(0,V ) for the full model, then

√
n(β̂

∗

Ij
−β̂Ij

)
D→ Naj

(0,V j)
when S ⊆ Ij : just use Ij as the new full model. Thus Equation (2.38) should
hold when the full model bootstrap works. The method is used for multiple
linear regression, Cox proportional hazards regression with right censored
Yi, and GLMs. See, for example, Burr (1994), Efron and Tibshirani (1986),
Freedman (1981), and Shao and Tu (1995, pp. 335-349).

Then for the full MLR model,
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Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rW

I .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ). Hence if S ⊆ I,

√
n(β̂

∗

I − β̂I)
D→ NaI

(0,V I)

as n → ∞. (Treat I as if I is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uT
i )T , then the wi = (Yi uT

i )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗
1, ...,w

∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 2.3, E(w∗) = w, and

Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2

Y Σ̃Y u
Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then it can be shown that

β̂
∗

=

[
β̂∗

1

β̂
∗

u

]
=

[
Y

∗ − β̂
∗T

u u∗

Σ̃
−1∗

u Σ̃
∗

uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

2.8 Examples and Simulations

Example 2.9. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set
on 82 mussels sampled off the coast of New Zealand. Let the response variable
be the logarithm log(M) of the muscle mass, and the predictors are the length
L and height H of the shell in mm, the logarithm log(W ) of the shell width
W, the logarithm log(S) of the shell mass S, and a constant. Inference for the
full model is shown below along with the shorth(c) nominal 95% confidence
intervals for βi computed using the nonparametric and residual bootstraps.
As expected, the residual bootstrap intervals are close to the classical least
squares confidence intervals ≈ β̂i ± 1.96SE(β̂i).

large sample full model inference
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Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel FS

Est. SE 95% shorth CI 95% shorth CI

int -0.9573 0.1519 [-3.294, 0.495] [-2.769, 0.460]

L 0 [-0.005, 0.004] [-0.004, 0.004]

logW 0 [ 0.000, 1.024] [-0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016] [ 0.000, 0.016]

logS 0.6530 0.1160 [ 0.322, 0.901] [ 0.324, 0.913]

for forward selection for all subsets

The minimum Cp model from all subsets variable selection and forward
selection both used a constant, H , and log(S). The shorth(c) nominal 95%
confidence intervals for βi using the residual bootstrap are shown. Note that
the intervals for H are right skewed and contain 0 when closed intervals
are used instead of open intervals. Some least squares output is shown, but
should only be used for inference if the model was selected before looking at
the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
the Imin model selected by all subsets variable selection. (Of course this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2 , β3, β4)

T = 0. Using the prediction region method with the

full model gave an interval [0,2.930] with D0 = 1.641. Note that
√
χ2

3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0.

Then we redid the bootstrap with the full model and forward selection. The
full model had [0, D(UB)] = [0, 2.908] with D0 = 1.577. So fail to reject H0.
Using the prediction region method with the Imin forward selection model
had [0, D(UB)] = [0, 3.258] whileD0 = 1.245. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.392. (Use
(2.33) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test. Some R code used
to produce the above output is shown below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)
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tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs

outfs <- fselboot(x,y,B=1000) #get bootstrap CIs

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3) #for all subsets

apply(outfs$betas,2,shorth3) #for forward selection

ls.print(outvs$full)

ls.print(outvs$sub)

ls.print(outfs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #full model

#prediction region method with residual bootstrap

out<-predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin all subsets

outvs <- predreg(Abeta)

Abeta <- outfs$betas[,2:4]

#prediction region method with Imin forward sel.

outfs<-predreg(Abeta)

#ratio of volumes for forward selection and full model

(sqrt(det(outfs$cov))*outfs$D0ˆ3)/(sqrt(det(out$cov))*out$D0ˆ3)

Example 2.10. Consider the Gladstone (1905) data set that has 12 vari-
ables on 267 persons after death. The response variable was brain weight.
Head measurements were breadth, circumference, head height, length, and
size as well as cephalic index and brain weight. Age, height, and two categor-
ical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also
given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II ) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 2.8

Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]

age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]

breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]

cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]

circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]

headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]

height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]

len 13.475 9.422 1.43 0.154 [ -5.519,32.605]
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sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]

output and shorth intervals for the min Cp submodel

Estimate SE t Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]

age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]

breadth 0 [-32.992, 8.148]

cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]

headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]

height 0 [ -2.859, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,30.508]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]

output and shorth for I_I model

Estimate Std.Err t-val Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]

age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]

breadth 0 [-31.012, 6.567]

cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]

headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]

height 0 [ -2.173, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,28.819]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]

The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]

y<-cbrainy

library(leaps)

out <- regboot(x,y,B=1000)

outvs <- fselboot(x,cbrainy) #get bootstrap CIs,

apply(out$betas,2,shorth3)

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

outvs <- modIboot(x,cbrainy) #get bootstrap CIs,

apply(outvs$betas,2,shorth3)

ls.print(outvs$sub)

tem<-regsubsets(x,y,method="forward")

tem2<-summary(tem)

tem2$which

tem2$cp
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2.8.1 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗

Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal

and not highly skewed. Then the plotted points in the response and residual
plots should scatter in roughly even bands about the identity line (with unit
slope and zero intercept) and the r = 0 line, respectively. See Figure 1.1. If
the error distribution is skewed or multimodal, then much larger sample sizes
may be needed.

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are Cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p − k − 1 zeros. The zero mean errors ei were iid from
five distributions: i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v)
0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal
value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 2.2 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 2.2 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
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confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (2.30),
hybrid region (2.32), and Bickel and Ren region (2.31). The 0 indicates the
test was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1.
The length and coverage = P(fail to reject H0) for the interval [0, D(UB)] or
[0, D(UB,T )] where D(UB) or D(UB,T ) is the cutoff for the confidence region.

The cutoff will often be near
√
χ2

g,0.95 if the statistic T is asymptotically nor-

mal. Note that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression

bootstrap tests.
Volume ratios of the three confidence regions can be compared using (2.33),

but there is not enough information in Table 2.2 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.

Table 2.2 Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

The inference for forward selection was often as precise or more precise
than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then from Section 2.2, β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (2.31) cutoffs and coverages were at least as high as those of the
hybrid region (2.32).

For ψ > 0 and Imin, the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often
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occurred for β̂∗
j for j = 3, 4. The average CI lengths were shorter for Imin

than for the OLS full model for β3 and β4. Note that for Imin, the coverage
for testing H0 : βS = 1 was higher than that for the OLS full model.

Table 2.3 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317

Results for other values of n, p, k, and distributions of ei were similar. For
forward selection with ψ = 0.9 and Cp, the hybrid region (2.32) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S∗

T was singular.
For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(2.30) and (2.31) worked for much smaller n, but tended to be longer than
the shorth CIs.

See Table 2.3 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (2.30), and
(2.31), respectively. In Table 2.3, k = 8 and the two nonzero πj correspond

to the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0.
Hence confidence intervals for β10 had the highest coverage and usually the
shortest average length (for i 6= 1) due to zero padding. Theory in Section
2.2 showed that the CI lengths are proportional to 1/

√
n. When n = 25000,

the shorth CI uses the 95.16th percentile while CI (2.30) uses the 95.00th
percentile, allowing the average CI length of (2.30) to be shorter than that of

the shorth CI, but the distribution for β̂∗
i is likely approximately symmetric

for i 6= 10 since the average lengths of the three confidence intervals were
about the same for each i 6= 10.
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When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (2.30) and (2.31). BIC
also occasionally had 100% coverage since BIC produces more zeroes than
Cp.

Some R code for the simulation is shown below.

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1

regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410

0.9368 0.9362 0.9370

$avelen

[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521

[8] 2.4496 2.4496 2.4508

$beta

[1] 1 1 0 0

$k

[1] 1

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914

0.9384 0.9394 0.9402

$avelen

[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020

[8] 2.4497 2.4497 2.4570

$beta

[1] 1 1 0 0

$k

[1] 1

2.9 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
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enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. Forward selection with the Chen and Chen (2008)
EBIC criterion and lasso are useful for finding a reasonable fitted model.
BIC and the Hurvich and Tsai (1989) AICC criterion can be useful if n ≥
max(2p, 10ad). For example, if n = 500000 and p = 90, using n1 = 900 would
result in a much smaller loss of efficiency than n1 = 250000.

2.10 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1

vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→ ∞.

2) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI
(0,V I) where (XT

I XI)/(nσ
2)

P→ V −1
I .

3) Theorem 2.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let Tn = β̂Imin,0 and Tjn = β̂Ij ,0. Let Tn = Tkn = β̂Ik,0

with probabilities πkn where πkn → πk as n → ∞. Denote the πk with
S ⊆ Ik by πj. The other πk = 0 since P (S ⊆ Imin) → 1 as n → ∞. Assume
√
n(β̂Ij

−βIj
)

D→ Naj
(0,V j) and ujn =

√
n(β̂Ij,0 −β)

D→ uj ∼ Np(0,V j,0).
a) Then √

n(β̂Imin,0 − β)
D→ w

where the cdf of u is Fw(z) =
∑

j πjFwj
(z). Thus w is a mixture distribu-

tion of the wj with probabilities πj.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

√
n(Aβ̂Imin,0 − Aβ)

D→ Aw = v

where Aw has a mixture distribution of the Awj with probabilities πj.

4) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is
in this region if Dxf

≤ h. A large sample 100(1− δ)% prediction region is a
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set An such that P (xf ∈ An) is eventually bounded below by 1−δ as n → ∞
where 0 < δ < 1. A large sample 100(1−δ)% confidence region for a vector of
parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

5) Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If
(T,C) is a consistent estimator of (µ, dΣ), then {z : Dz(T,C) ≤ h} is a large
sample 100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth
sample quantile of the Di. The large sample 100(1 − δ)% nonparametric
prediction region {z : D2

z (x,S) ≤ D2
(Un)} uses (T,C) = (x,S). We want

n ≥ 10p for good coverage and n ≥ 50p for good volume.
6) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known

g × 1 vector. Make a confidence region and reject H0 if θ0 is not in the
confidence region. Let qB and UB be as in 5) with n replaced by B and p

replaced by g. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. a) The prediction region method

large sample 100(1−δ)% confidence region for θ is {w : (w−T ∗
)T [S∗

T ]−1(w−
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding

test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample

quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

For some data sets, S∗
T may be singular due to one or more columns of

zeroes in the bootstrap sample for β1, ..., βp. The variables corresponding to
these columns are likely not needed in the model given that the other predic-
tors are in the model if n and B are large enough. Let βO = (βi1 , ..., βig

)T ,

and consider testing H0 : AβO = 0. If Aβ̂
∗

O,i = 0 for greater than Bδ of the
bootstrap samples i = 1, ..., B, then fail to reject H0. (If S∗

T is nonsingular,
the 100(1− δ)% prediction region method confidence region contains 0.)

7) Theorem 2.10: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u
withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn

. Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ.
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8) Applying the nonparametric prediction region (2.22) to the iid data
T1, ..., TB results in the 100(1−δ)% confidence region {w : (w−Tn)T S−1

T (w−
Tn) ≤ D2

(UB)(Tn,ST )} where D2
(UB)(Tn,ST ) is computed from the (Ti −

Tn)T S−1
T (Ti − Tn) provided the ST = STn

are “not too ill conditioned.”
For OLS variable selection, assume there are two or more component clouds.
The bootstrap component data clouds have the same asymptotic covariance
matrix as the iid component data clouds, which are centered at θ. The jth
bootstrap component data cloud is centered at E(T ∗

ij) and often E(T ∗
jn) =

Tjn. Confidence region (2.30) is the prediction region (2.22) applied to the
bootstrap sample, and (2.30) is slightly larger in volume than (2.22) applied
to the iid sample, asymptotically. The hybrid region (2.32) shifts (2.30) to be
centered at Tn. Shifting the component clouds slightly and computing (2.22)
does not change the axes of the prediction region (2.22) much compared
to not shifting the component clouds. Hence by the geometric argument, we
expect (2.32) to have coverage at least as high as the nominal, asymptotically,
provided the S∗

T are “not too ill conditioned.” The Bickel and Ren confidence

region (2.31) tends to have higher coverage and volume than (2.32). Since T
∗

tends to be closer to θ than Tn, (2.30) tends to have good coverage.
9) Suppose m independent large sample 100(1 − δ)% prediction regions

are made where x1, ...,xn,xf are iid from the same distribution for each of
the m runs. Let Y count the number of times xf is in the prediction region.
Then Y ∼ binomial (m, 1− δn) where 1− δn is the true coverage. Simulation
can be used to see if the true or actual coverage 1−δn is close to the nominal
coverage 1− δ. A prediction region with 1− δn < 1− δ is liberal and a region
with 1− δn > 1− δ is conservative. It is better to be conservative by 3% than
liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

10) For the bootstrap, perform variable selection on Y ∗
i and X (or X∗

for the nonparametric bootstrap), fit the model that minimizes the criterion,
and add 0s corresponding to the omitted variables, resulting in estimators

β̂
∗

1, ..., β̂
∗

B where β̂
∗

i = β̂
∗

Imin,0,i.
11) Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order

statistics, and let c be a positive integer. Compute Z(c) − Z(1), Z(c+1) −
Z(2), ..., Z(n) − Z(n−c+1). Let shorth(c) = [Z(d),Z(d+c−1)] correspond to the
interval with the shortest length.

The large sample 100(1−δ)% shorth(c) CI uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2),

T ∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here c = min(B, dB[1 − δ +

1.12
√
δ/B ] e). The shorth CI is computed by applying the shorth PI to the

bootstrap sample.
12) OLS CLT. Suppose that the ei are iid and

XT X

n
→ W−1.
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Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ).

Also,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip).

2.11 Complements

This chapter followed Olive (2017b, ch. 5), Pelawa Watagoda and Olive
(2021ab), and Rathnayake and Olive (2023) closely. Also see Olive (2013a,

2018). For MLR, Olive (2017a: p. 123, 2017b: p. 176) showed that β̂Imin,0

is a consistent estimator. Olive (2014: p. 283, 2017ab, 2018) recommended
using the shorth(c) estimator for the percentile method. Olive (2017a: p. 128,
2017b: p. 181, 2018) showed that the prediction region method can simulate

well for the p×1 vector β̂Imin,0. Hastie et al. (2009, p. 57) noted that variable
selection is a shrinkage estimator: the coefficients are shrunk to 0 for the omit-
ted variables. Olive (2013a) shows how to visualize some prediction regions
while Welagedara and Olive (2023) shows how to visualize some bootstrap
confidence regions.

Good references for the bootstrap include Efron (1982), Efron and Hastie
(2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen (2016)
and Hesterberg (2014). One of the sufficient conditions for the bootstrap
confidence region is that T has a well behaved Hadamard derivative. Fréchet
differentiability implies Hadamard differentiability, and many statistics are
shown to be Hadamard differentiable in Bickel and Ren (2001), Clarke (1986,
2000), Fernholtz (1983), Gill (1989), Ren (1991), and Ren and Sen (1995).
Bickel and Ren (2001) showed that their method can work when Hadamard
differentiability fails.

There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2005, 2006, 2008), Leeb et al. (2015), Tibshirani et al. (2016), and Tibshi-
rani et al. (2018). Knight and Fu (2000) have some results on the residual
bootstrap that uses residuals from one estimator, such as full model OLS,
but fit another estimator, such as lasso.

Inference techniques for the variable selection model, other than data split-
ting, have not had much success. For multiple linear regression, the methods
are often inferior to data splitting, often assume normality, or are asymptot-
ically equivalent to using the full model, or find a quantity to test that is not
Aβ. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality,
needs p no more than about 30, assumes σ2 can be estimated independently
of the data, and Leeb et al. (2015) say the method does not work. The

bootstrap confidence region (2.30) is centered at T
∗ ≈ ∑

j ρjnTjn, which is
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closely related to a model averaging estimator. Wang and Zhou (2013) show
that the Hjort and Claeskens (2003) confidence intervals based on frequentist
model averaging are asymptotically equivalent to those obtained from the
full model. See Buckland et al. (1997) and Schomaker and Heumann (2014)
for standard errors when using the bootstrap or model averaging for linear
model confidence intervals.

Efron (2014) used the confidence interval T
∗ ± z1−δSE(T

∗
) assuming T

∗

is asymptotically normal and using delta method techniques, which require
nonsingular covariance matrices. There is not yet rigorous theory for this
method. Section 2.2 proved that T

∗
is asymptotically normal: under regular-

ity conditions: if
√
n(Tn − θ)

D→ Ng(0,ΣA) and
√
n(T ∗

i − Tn)
D→ Ng(0,ΣA),

then under regularity conditions
√
n(T

∗ − θ)
D→ Ng(0,ΣA). If g = 1,

then the prediction region method large sample 100(1 − δ)% CI for θ has

P (θ ∈ [T
∗ − a(UB), T

∗
+ a(UB)]) → 1 − δ as n → ∞. If the Frey CI also has

coverage converging to 1−δ, than the two methods have the same asymptotic
length (scaled by multiplying by

√
n), since otherwise the shorter interval will

have lower asymptotic coverage.
For the mixture distribution with two or more component groups,

√
n(Tn−

θ)
D→ v by Theorem 2.3 b). If

√
n(T ∗

i − cn)
D→ u then cn must be a value

such as cn = T
∗
, cn =

∑
j ρjnTjn, or cn =

∑
j πjTjn. Next we will examine

T
∗
. If S ⊆ Ij , then

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0), and for the parametric

and nonparametric bootstrap,
√
n(β̂

∗

Ij,0 − β̂Ij,0)
D→ Np(0,V j,0). Let Tn =

Aβ̂Imin,0 and Tjn = Aβ̂Ij,0 = ADj0Y using notation from Section 2.6. Let

θ = Aβ. Hence from Section 2.5.3,
√
n(T

∗

j − Tjn)
P→ 0. Assume ρ̂in

P→ ρi as

n→ ∞. Then
√
n(T

∗ − θ) =

∑

i

ρ̂in

√
n(T

∗
i − θ) =

∑

j

ρ̂jn

√
n(T

∗
j − θ) +

∑

k

ρ̂kn

√
n(T

∗
k − θ)

= dn + an where an
P→ 0 since ρk = 0. Now

dn =
∑

j

ρ̂jn

√
n(T

∗

j − Tjn + Tjn − θ) =
∑

j

ρ̂jn

√
n(Tjn − θ) + cn

where cn = oP (1) since
√
n(T

∗

j − Tjn) = oP (1). Hence under regularity con-

ditions, if
√
n(T

∗ − θ)
D→ w then

∑
j ρj

√
n(Tjn − θ)

D→ w.
To examine the last term and w, let the n×1 vector Y have characteristic

function φY , E(Y ) = Xβ, and Cov(Y ) = σ2I. Let Z = (Y T , ...,Y T )T be a

Jn× 1 vector with J copies of Y stacked into a vector. Let t = (tT
1 , ..., t

T
J )T .

Then Z has characteristic function φZ (t) = φY (
∑J

j=1 ti) = φY (s). Now

assume Y ∼ Nn(Xβ, σ2I). Then tT Z = sT Y ∼ N(sT Xβ, σ2sT s). Hence
Z has a multivariate normal distribution by Definition 1.7 with E(Z) =
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(XβT , ...,XβT )T , and Cov(Z) a block matrix with J × J blocks each equal
to σ2I . Then

∑

j

ρjTjn =
∑

j

ρjADj0Y = BY ∼ Ng(θ, σ2BBT ) =

Ng(θ, σ2
∑

j

∑

k

ρjρkADj0D
T
k0A)

since E(Tjn) = E(Aβ̂Ij,0) = Aβ = θ if S ⊆ Ij . Since (TT
1n, ..., T

T
jn)T =

diag(AD10, ...,ADJ0)Z, then (TT
1n, ..., T

T
jn)

T is multivariate normal and

∑

j

ρjTjn ∼ Ng[θ,
∑

j

∑

k

πjπkCov(Tjn, Tkn)].

Now assume nDj0D
T
k0

P→ W jk as n → ∞. Then

∑

j

ρj

√
n(Tjn − θ)

D→ w ∼ Ng(0, σ
2
∑

j

∑

k

ρjρkAW jkA).

We conjecture that this result may hold under milder conditions than
Y ∼ Nn)Xβ, σ2I), but even the above results are not yet rigorous. If
√
n(Tjn − θ)

D→ wj ∼ Ng(0,Σj), then a possibly poor approximation is

T
∗ ≈∑j ρjTjn ≈ Ng[θ,

∑
j

∑
k ρjρkCov(Tjn, Tkn)], and estimating∑

j

∑
k ρjρkCov(Tjn, Tkn) with delta method techniques may not be possible.

The double bootstrap technique may be useful. See Hall (1986) and Chang

and Hall (2015) for references. The double bootstrap for T
∗

= T
∗

B says that

Tn = T
∗

is a statistic that can be bootstrapped. Let Bd ≥ 50gmax where
1 ≤ gmax ≤ p is the largest dimension of θ to be tested with the double
bootstrap. Draw a bootstrap sample of size B and compute T

∗
= T ∗

1 . Repeat
for a total of Bd times. Apply the confidence region (2.30), (2.31), or (2.32) to

the double bootstrap sample T ∗
1 , ..., T

∗
Bd

. If D(UBd
) ≈ D(UBd

,T ) ≈
√
χ2

g,1−δ,

then T
∗

may be approximately multivariate normal. The CI (2.30) applied
to the double bootstrap sample could be regarded as a modified Frey CI
without delta method techniques. Of course the double bootstrap tends to
be too computationally expensive to simulate.

We can get a prediction region by randomly dividing the data into two
half sets H and V where H has nH = dn/2e of the cases and V has the
remaining m = nV = n − nH cases. Compute (xH ,SH) from the cases in
H . Then compute the distances D2

i = (xi − xH)T S−1
H (xi − xH) for the m

vectors xi in V . Then a large sample 100(1− δ)% prediction region for xF is
{x : D2

x(xH ,SH) ≤ D2
(km)} where km = dm(1 − δ)e. This prediction region
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may give better coverage than the nonparametric prediction region (2.22) if
5p ≤ n ≤ 20p.

The iid sample T1, ..., TB has sample mean T . Let Tin = Tijn if Tjn is

chosen Djn times where the random variables Djn/B
P→ πjn. The Djn follow

a multinomial distribution. Then the iid sample can be written as

T1,1, ..., TD1n,1, ..., T1,J, ..., TDJn,J ,

where the Tij are not iid. Denote T1j, ..., TDjn,j as the jth component of the

iid sample with sample mean T j and sample covariance matrix ST,j. Thus

T =
1

B

B∑

i=1

Tijn =
∑

j

Djn

B

1

Djn

Djn∑

i=1

Tij =
∑

j

π̂jnT j.

Hence T is a random linear combination of the T j . Conditionally on the Djn,
the Tij are independent, and T is a linear combination of the T j . Note that
Cov(T ) = Cov(Tn)/B.

Software. The simulations were done in R. See R Core Team (2016). We
used several R functions including forward selection as computed with the
regsubsets function from the leaps library. Several slpack functions were
used. The function predrgn makes the nonparametric prediction region and
determines whether xf is in the region. The function predreg also makes
the nonparametric prediction region, and determines if 0 is in the region. For
multiple linear regression, the function regboot does the residual bootstrap
for multiple linear regression, regbootsim simulates the residual bootstrap
for regression, and the function rowboot does the empirical nonparametric
bootstrap. The function vsbootsim simulates the bootstrap for all subsets
variable selection, so needs p small, while vsbootsim2 simulates the pre-
diction region method for forward selection. The functions fselboot and
vselboot bootstrap the forward selection and all subsets variable selec-
tion estimators that minimize Cp. See Examples 2.9 and 2.10. The shorth3
function computes the shorth(c) intervals with the Frey (2013) correction
used when g = 1. Table 2.2 was made using regbootsim3 for the OLS full
model and vsbootsim4 for forward selection. The functions bicboot and
bicbootsim are useful if BIC is used instead of Cp. For forward selection
with Cp, the function vscisim was used to make Table 2.3, and can be used
to compare the shorth, prediction region method, and Bickel and Ren CIs for
βi.
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2.12 Problems

2.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

2.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

2.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

2.4. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.

actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

2.5. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

2.6. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
bootstrap samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5

2.7. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith bootstrap
sample. bootstrap samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:
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b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B∑

i=1

T ∗
i where B = 4 is the number of

bootstrap samples.

2.8. Consider the output for Example 2.9 for the minimum Cp forward
selection model based on the residual bootstrap.

a) What is β̂Imin
?

b) What is β̂Imin,0?
c) The large sample 95% shorth CI for H is [0,0.016]. Is H needed is the

minimum Cp model given that the other predictors are in the model?
d) The large sample 95% shorth CI for log(S) is [0.324,0.913] for all subsets.

Is log(S) needed is the minimum Cp model given that the other predictors
are in the model?

e) Suppose x1 = 1, x4 = H = 130, and x5 = log(S) = 5.075. Find

Ŷ = (x1 x4 x5)β̂Imin
. Note that Y = log(M).

R Problems
Use the command source(“G:/slpack.txt”) to download the func-

tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the linmodpack func-
tion, e.g. regbootsim2, will display the code for the function. Use the args

command, e.g. args(regbootsim2), to display the needed arguments for the
function. For the following problem, the R command can be copied and pasted
from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

2.9. a) Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞.

b) Were the three coverages near 90%?

2.10. Consider the multiple linear regression model Yi = β1 + β2xi,2 +
β3xi,3 + β4xi,4 + ei where β = (1, 1, 0, 0)T . The function regbootsim2

bootstraps the regression model, finds bootstrap confidence intervals for βi

and a bootstrap confidence region for (β3 , β4)
T corresponding to the test

H0 : β3 = β4 = 0 versus HA: not H0. See the R code near Table 2.3. The
lengths of the CIs along with the proportion of times the CI for βi contained
βi are given. The fifth interval gives the length of the interval [0, D(c)] where
H0 is rejected if D0 > D(c) and the fifth “coverage” is the proportion of times
the test fails to reject H0. Since nominal 95% CIs were used and the nominal
level of the test is 0.05 when H0 is true, we want the coverages near 0.95.
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The CI lengths for the first 4 intervals should be near 0.392. The residual
bootstrap is used.

Copy and paste the commands for this problem into R, and include the
output in Word.


