
Chapter 5

Discriminant Analysis

This chapter considers discriminant analysis: given p measurements w, we
want to correctly classify w into one of G groups or populations. The max-
imum likelihood, Bayesian, and Fisher’s discriminant rules are used to show
why methods like linear and quadratic discriminant analysis can work well
for a wide variety of group distributions.

5.1 Introduction

Definition 5.1. In supervised classification, there are G known groups and
m test cases to be classified. Each test case is assigned to exactly one group
based on its measurements wi.

Suppose there are G populations or groups or classes where G ≥ 2. Assume
that for each population there is a probability density function (pdf) fj(z)
where z is a p×1 vector and j = 1, ..., G. Hence if the random vector x comes
from population j, then x has pdf fj(z). Assume that there is a random sam-
ple of nj cases x1,j, ..., xnj,j for each group. Let (xj , Sj) denote the sample
mean and covariance matrix for each group. Let wi be a new p×1 (observed)
random vector from one of the G groups, but the group is unknown. Usually
there are many wi, and discriminant analysis (DA) or classification attempts
to allocate the wi to the correct groups. The w1, ..., wm are known as the
test data. Let πk = the (prior) probability that a randomly selected case wi

belongs to the kth group. If x1,1..., xnG,G are a random sample of cases from

the collection of G populations, then π̂k = nk/n where n =
∑G

i=1 ni. Often
the training data x1,1, ..., xnG,G is not collected in this manner. Often the nk

are fixed numbers such that nk/n does not estimate πk. For example, sup-
pose G = 2 where n1 = 100 and n2 = 100 where patients in group 1 have a
deadly disease and patients in group 2 are healthy, but an attempt has been
made to match the sick patients with healthy patients on p variables such as
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298 5 Discriminant Analysis

age, weight, height, an indicator for smoker or nonsmoker, and gender. Then
using π̂j = 0.5 does not make sense because π1 is much smaller than π2. Here
the indicator variable is qualitative, so the p variables do not have a pdf.

Let W i be the random vector and wi be the observed random vector. Let
Y = j if wi comes from the jth group for j = 1, ..., G. Then πj = P (Y = j)
and the posterior probability that Y = k or that wi belongs to group k is

pk(wi) = P (Y = k|W i = wi) =
πkfk(wi)

∑G
j=1 πjfj(wi)

. (5.1)

Definition 5.2. a) The maximum likelihood discriminant rule allocates

case wi to group a if f̂a(wi) maximizes f̂j(wi) for j = 1, ..., G.
b) The Bayesian discriminant rule allocates case wi to group a if p̂a(wi)

maximizes

p̂k(wi) =
π̂kf̂k(wi)

∑G
j=1 π̂j f̂j(wi)

for k = 1, ..., G.
c) The (population) Bayes classifier allocates case wi to group a if pa(wi)

maximizes pk(wi) for k = 1, ..., G.

Note that the above rules are robust to nonnormality of the G groups. Fol-
lowing James et al. (2013, pp. 38-39, 139), the Bayes classifier has the lowest
possible expected test error rate out of all classifiers using the same p predic-
tor variables w. Of course typically the πj and fj are unknown. Note that
the maximum likelihood rule and the Bayesian discriminant rule are equiva-
lent if π̂j ≡ 1/G for j = 1, ..., G. If p is large, or if there is multicollinearity
among the predictors, or if some of the predictor variables are noise variables
(useless for prediction), then there is likely a subset z of d of the p variables
w such that the Bayes classifier using z has lower error rate than the Bayes
classifier using w.

Several of the discriminant rules in this chapter can be modified to in-
corporate πj and costs of correct and incorrect allocation. See Johnson and
Wichern (1988, ch. 11). We will assume that costs of correct allocation are
unknown or equal to 0, and that costs of incorrect allocation are unknown
or equal. Unless stated otherwise, assume that the probabilities πj that wi is
in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Some rules can
handle discrete predictors.
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5.2 LDA and QDA

Often it is assumed that the G groups have the same covariance matrix Σx.
Then the pooled covariance matrix estimator is

Spool =
1

n − G

G
∑

j=1

(nj − 1)Sj (5.2)

where n =
∑G

j=1 nj. The pooled estimator Spool can also be useful if some

of the ni are small so that the Sj are not good estimators. Let (µ̂j , Σ̂j) be
the estimator of multivariate location and dispersion for the jth group, e.g.
the sample mean and sample covariance matrix (µ̂j , Σ̂j) = (xj, Sj). Then a
pooled estimator of dispersion is

Σ̂pool =
1

k − G

G
∑

j=1

(kj − 1)Σ̂j (5.3)

where often k =
∑G

j=1 kj and often kj is the number of cases used to compute

Σ̂j.

LDA is especially useful if the population dispersion matrices are equal:
Σj ≡ Σ for j = 1, ..., G. Then Σ̂pool is an estimator of cΣ for some constant

c > 0 if each Σ̂j is a consistent estimator of cjΣ where cj > 0 for j = 1, ..., G.
If LDA does not work well with predictors x = (X1, ..., Xp), try adding
squared terms X2

i and possibly two way interaction terms XiXj . If all squared
terms and two way interactions are added, LDA will often perform like QDA.

Definition 5.3. Let Σ̂pool be a pooled estimator of dispersion. Then the
linear discriminant rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj , Spool).

Definition 5.4. The quadratic discriminant rule is allocate w to the group
with the largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj , Sj).
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Definition 5.5. The distance discriminant rule allocates w to the group

with the smallest squared distance D2
w(µ̂j, Σ̂j) = (w − µ̂j)

T Σ̂
−1

j (w − µ̂j)
where j = 1, ..., G.

Examining some of the rules for G = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a − 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute value
of the z-score. Hence D1(w) ≈ 1.732|w − a| and D2(w) ≈ 0.1732|w|. If w is
from group 1, then w will not be classified very well unless |a| ≥ 10 or if w is
very close to a. In particular, if a = 0 then expect nearly all w to be classified
to group 2 if w is used to classify the groups. On the other hand, if a = 0,
then D1(w) is small for w in group 1 but large for w in group 2. Hence using
z = D1(w) in the distance rule would result in classification with low error
rates.

Similarly if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(µ, Ip) distribution, the maximum likelihood rule will tend
to classify w in group 1 if w is close to µ and to classify w in group 2
otherwise. The two misclassification error rates should both be low. For the
distance rule, the distances Di have an approximate χ2

p distribution if w is
from group i. If covering ellipsoids from the two groups have little overlap,
then the distance rule does well. If µ = 0, then expect nearly all of the w to be
classified to group 2 with the distance rule, but D1(w) will be small for w from
group 1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering hyperellipsoid that has little overlap with
the observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
observations from group 2 do not fall in an hyperellipsoidal region.

Now suppose the G groups come from the same family of elliptically con-
toured EC(µj, Σj, g) distributions where g is a continuous decreasing func-
tion that does not depend on j for j = 1, ..., G. For example, the jth distri-
bution could have w ∼ Np(µj , Σj). Using Equation (1.16), log(fj(w)) =

log(kp) −
1

2
log(|Σj)|) + log(g[(w − µj)

T Σ−1
j (w − µj)]) =

log(kp) −
1

2
log(|Σj)|) + log(g[D2

w(µj , Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(µj, Σj) distributions where g(z) = exp(−z/2), and the maximum
likelihood rule leads to the distance rule if the groups have dispersion matrices
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that have the same determinant: det(Σj) = |Σj | ≡ |Σ| for j = 1, ..., k.
This result is true since then maximizing fj(w) is equivalent to minimizing
D2

w(µj , Σj). Plugging in estimators leads to the distance rule. The same
determinant assumption is a much weaker assumption than that of equal
dispersion matrices. For example, let cXΣj be the covariance matrix of x,
and let Γ j be an orthogonal matrix. Then y = Γ jx corresponds to rotating

x, and cXΓ jΣjΓ
T
j is the covariance matrix of y with |Cov(x)| = |Cov(y)|.

Note that if the G groups come from the same family of elliptically
contoured EC(µj, Σj, g) distributions with nonsingular covariance matrices
cXΣj , then D2

w(xj, Sj) is a consistent estimator of D2
w(µj , Σj)/cX . Hence

the distance rule using (xj , Sj) is a maximum likelihood rule if the Σj have
the same determinant. The constant cX is given below Equation (1.19).

Now D2
w(µj , Σj) = wT Σ−1

j w − wT Σ−1
j µj − µT

j Σ−1
j w + µT

j Σ−1
j µj =

wT Σ−1
j w−2µT

j Σ−1
j w+µT

j Σ−1
j µj = wT Σ−1

j w+µT
j Σ−1

j (−2w+µj). Hence

if Σj ≡ Σ for j = 1, ..., G, then we want to minimize µT
j Σ−1(−2w + µj)

or maximize µT
j Σ−1(2w − µj). Plugging in estimators leads to the linear

discriminant rule.
The maximum likelihood rule is robust to nonnormality, but it is difficult

to estimate f̂j(w) if p > 2. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
G = 2. The distance rule tends to work well when the ellipsoidal covering
regions of the G groups have little overlap. The distance rule can be very
poor if the groups overlap and have very different variability.

Rule of thumb 5.1. It is often useful to use predictor transformations
from Section 1.2 to remove nonlinearities from the predictors. The log rule is
especially useful for highly skewed predictors. After making transformations,
assume that there are 1 ≤ k ≤ p continuous predictors X1, ..., Xk where no
terms like X2 = X2

1 or X3 = X1X2 are included. If nj ≥ 10k for j = 1, ..., G,
then make the G DD plots using the k predictors from each group to check
for outliers, which could be cases that were incorrectly classified. Then use
p predictors which could include squared terms, interactions, and categorical
predictors. Try several discriminant rules. For a given rule, the error rates
computed using the training data xi,j with known groups give a lower bound
on the error rates for the test data wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups for the test data wi are unknown, the error
rates will be higher. If equal covariance matrices are assumed, plot Di(xj, Sj)
versus Di(xj , Σpool) for each of the G groups, where the xi,j are used for i =
1, ..., nj. If all of the nj are large, say nj ≥ 30p, then the plotted points should
cluster tightly about the identity line in each of the G plots if the assumption
of equal covariance matrices is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices. See
Remark 5.3.
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5.2.1 Regularized Estimators

A regularized estimator reduces the degrees of freedom d of the estimator.
We want n ≥ 10d, say. Often regularization is done by reducing the number
of parameters in the model. For MLR, lasso and ridge regression were regu-
larized if λ > 0. A covariance matrix of a p × 1 vector x is symmetric with
p + (p − 1) + · · ·+ 2 + 1 = p(p + 1)/2 parameters. A correlation matrix has
p(p − 1)/2 parameters. We want n ≥ 10p for the sample covariance and cor-
relation matrices S and R. If n < 5p, then these matrices are being overfit:
the degrees of freedom is too large for the sample size n.

Hence QDA needs ni ≥ 10p for i = 1, ..., G. LDA need n ≥ 10p where
∑G

i=1 ni = n. Hence the pooled covariance matrix can be regarded as a
regularized estimator of the Σi. Hence LDA can be regarded as a regularized
version of QDA. See Friedman (1989, p. 167). Adding squared terms and
interactions to LDA can make LDA perform more like QDA if the ni ≥ 10p,
but increases the LDA degrees of freedom.

For QDA, Friedman (1989) suggested using Σ̂(λ) = Sk(λ)/nk(λ) where
Sk(λ) = (1 − λ)Sk + λSpool , 0 ≤ λ ≤ 1, and nk(λ) = (1 − λ)nk + λn. Then
λ = 0 gives QDA, while λ = 1 gives LDA if the covariance matrices are
computed using slightly different divisors such as nk instead of nk − 1. This
regularized QDA method needs n large enough so LDA is useful with Spool .
If further regularization is needed and 0 ≤ γ ≤ 1, then use

Sk(λ, γ) = (1 − λ)Sk(λ) +
γ

p
tr[Sk(λ)]Ip.

If n < 5p, the LDA should not be used with Spool , and more regularization
is needed. An extreme amount of regularization would replace Spool by the
identity matrix Ip. Hopefully better estimators are discussed in Chapter 6.

5.3 LR

Definition 5.6. Assume that G = 2 and that there is a group 0 and a group
1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR)
estimate of ρ(w). The logistic regression discriminant rule allocates w to
group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. The training
data for logistic regression are cases (xi, Yi) where Yi = j if the ith case is in
group j for j = 0, 1 and i = 1, ..., n. Logistic regression produces an estimated

sufficient predictor ESP = α̂ + β̂
T
x. Then

ρ̂(x) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
x)

1 + exp(α̂ + β̂
T
x)

.
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See Section 4.3 for more on logistic regression. The response plot is an
important tool for visualizing the logistic regression.

An extension of the above binary logistic regression model uses

ρ̂(w) =
eĥ(w)

1 + eĥ(w)
,

and will be discussed below after some notation. Note that ĥ(w) > 0 corre-

sponds to ρ̂(w) > 0.5 while ĥ(w) < 0 corresponds to ρ̂(w) < 0.5. LR uses

ĥ(w) = ESP and the binary logistic GAM defined in Definition 5.7 uses

ĥ(w) = ESP = EAP . These two methods are robust to nonnormality and
are special cases of 1D regression. See Definition 1.2.

Definition 5.7. Let ρ(w) = exp(w)/[1 + exp(w)].
a) For the binary logistic GLM, Y1, ..., Yn are independent with Y |SP ∼

binomial(1, ρ(SP )) where ρ(SP ) = P (Y = 1|SP ). This model has E(Y |SP )
= ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

b) For the binary logistic GAM, Y1, ..., Yn are independent with Y |AP ∼
binomial(1, ρ(AP)) where ρ(AP ) = P (Y = 1|AP ). This model has E(Y |AP )
= ρ(AP ) and V (Y |AP ) = ρ(AP )(1−ρ(AP )). The response plot and discrim-
inant rule are similar to those of Definition 5.6, and the EAP–response plot
adds the estimated mean function ρ(EAP ) and a step function to the plot.
The logistic GAM discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and
allocates w to group 0 if ρ̂(w) < 0.5 where

ρ̂(w) =
eEAP

1 + eEAP

and EAP = α̂ +
∑p

j=1 Ŝj(wj).

Lasso for binomial logistic regression can be used as in Section 4.6.2.
Changing the 10-fold CV criterion to classification error might be useful.
For this data from Section 4.6.2, the default deviance criterion had moderate
overfit and gave a better response plot than the classification error crite-
rion, which has severe underfit. Compare the following R code to the code in
Section 4.6.2.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y
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vars <- 1:q

beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial",type.measure="class")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0]

vin #underfit compared to the default in Section 4.6.2

[1] 2 4

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

lrplot3(tem=tem,x=x[,vin]) #binary response plot

5.4 KNN

The K-nearest neighbors (KNN) method identifies the K cases in the train-
ing data that are closest to w. Suppose mj of the K cases are from group
j. Then the KNN estimate of pj(w) = P (Y = j|W = w) = P (w is
from the jth group) is p̂j(w) = mj/K. (Actually mj/K ≈ cpj(w) so
mj/mk ≈ pj(w)/pk(w). See the end of this section.) Applying the Bayesian
discriminant rule to the p̂j(w) gives the KNN discriminant rule.

Definition 5.8. The K-nearest neighbors (KNN) discriminant rule allo-
cates w to group a if ma maximizes mj for j = 1, ..., G.

A couple of examples will be useful. When K = 1, find the case in the
training data closest to w. If that training data case is from group j then
allocate w to group j. Suppose nj is the largest nk for k = 1, ..., G. Hence
group j is the group with the most training data cases. Then if K = n, w

is always allocated to group j. The K = n rule is bad. The K = 1 rule is
surprisingly good, but tends to have low bias and high variability. Generally
values of K > 1 will have smaller test error rates.

For KNN and other discriminant analysis rules, it is often useful to stan-
dardize the data so that all variables have a sample mean of 0 and sample
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standard deviation of 1. The scale function in R can be used to standardize
data. The test data is standardized using means and SDs from the training
data. The jth variable from xi uses (xij − xj)/Sj . Hence the jth variable
from a text case w would use (wj − xj)/Sj . Here xj and Sj are the sample
mean and standard deviation of the jth variable using all of the training data
(so group is ignored).

To see why KNN might be reasonable, let Dε be a hypersphere of radius
ε centered at w. Since the pdf fj(x) is continuous, there exists ε > 0 small
enough such that fj(x) ≈ fj(w) for all x ∈ Dε and for each j = 1, ..., G. If z

is a random vector from a distribution with pdf fj(x), then Pj(z ∈ Dε) =

∫

Dε

fj(x)dx ≈ fj(w)

∫

Dε

1dx = fj(w)V ol(Dε) = fj(w)
2πp/2

pΓ (p/2)
εp.

Here Pj denotes the probability when the distribution has pdf fj(x).
If for i = 1, ..., n, the zi are iid from a distribution with pdf fj(x), ε is

fixed, and if fj(w) > 0, then the number of zi in Dε is proportional to n.
Hence if the number of zi in Dε is proportional to nδ with 0 < δ < 1, then
ε → 0. So if K/n → 0 in KNN, then the hypersphere containing the K cases
has radius ε → 0 as n → ∞. Hence the above approximations will be valid
for large n. Note that if p = 1, then Dε is the line segment (w− ε, w + ε) and
V ol(Dε) = 2ε = length of the line segment. If p = 2, then Dε is the circle of
radius ε centered at w and V ol(Dε) = πε2 = the area of the circle. If p = 3,
then Dε is the sphere of radius ε centered at w and V ol(Dε) = 4πε3/3 = the
volume of the sphere.

Now suppose that the training data x1,1, ..., xnG,G is a random sample

from the G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Then

for ε small and K large, mj/K ≈

P (W ∈ Dε, Y = j) = P (W ∈ Dε|Y = j)P (Y = j) ≈ πjfj(w)V ol(Dε).

Now P (W ∈ Dε) =
∑G

j=1 P (W ∈ Dε, Y = j) =
∑G

j=1 P (W ∈ Dε|Y = j)P (Y = j) since the sets {Y = j} form a disjoint
partition. Hence

P (Y = k|W ∈ Dε) =
P (Y = k, W ∈ Dε)

P (W ∈ Dε)
=

P (W ∈ Dε)|Y = k)P (Y = k)

P (W ∈ Dε)

≈ πkfk(w)V ol(Dε)
∑G

j=1 πjfj(w)V ol(Dε)
,

which is the quantity used by the Bayes classifier since the constant V ol(Dε)
cancels. This argument can also be used to justify Equation (5.1). Since the
denominator is a constant, allocating w to group a with the largest ma/K,
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or equivalently with the largest ma, approximates the Bayes classifier if n is
very large, K is large, and ε is very small.

This approximation likely needs unrealistically large n, especially if p is
large and w is in a region where there is a lot of group overlap. However,
KNN often works well in practice. Silverman (1986, pp. 96-100) also discusses

using KNN to find an estimator f̂(w) of f(w).
As claimed above Definition 5.8, note, for large K and small ε, that

mj/K ≈ P (W ∈ Dε, Y = j) = P (Y = j|W ∈ Dε)P (W ∈ Dε) ≈

cP (Y = j|W = w) = cpk(w)

where c = P (W ∈ Dε).

5.5 Some Matrix Optimization Results

The following results will be useful for multivariate analysis including Fisher’s
discriminant analysis. Let B > 0 denote that B is a positive definite matrix.
The generalized eigenvalue problem finds eigenvalue eigenvector pairs (λ, g)
such that C−1Ag = λg which are also solutions to the equation Ag =
λCg. Then the pairs are used to maximize or minimize the Rayleigh quotient
aT Aa

aT Ca
. Results from linear algebra show that if C > 0 and A are both

symmetric, then the p eigenvalues of C−1A are real, and the number of
nonzero eigenvalues of C−1A is equal to rank(C−1A) = rank(A). Note that
if a1 = c1g1 is the maximizer and ap = cpgp is the minimizer of the Rayleigh
quotient for any nonzero constants c1 and cp, then there is a vector β that
is the maximizer or minimizer such that ‖β‖ = 1.

Theorem 5.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, pp. 64-65, 184).

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.
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d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x, S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a6=0

naT (x − µ)(x − µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. For a), note that rank(C−1A) = 1, where C = B and
A = ddT , since rank(C−1A) = rank(A) = rank(d) = 1. Hence C−1A has
one nonzero eigenvalue eigenvector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)

For f), see Mardia et al. (1979, p. 480). �

Suppose A > 0 and C > 0 are p×p symmetric matrices, and let C−1Aa =

λa. Then Aa = λCa, or A−1Ca =
1

λ
a. Hence if (λi(C

−1A), a) are eigen-

value eigenvector pairs of C−1A, then

(

λi(A
−1C) =

1

λi(C
−1A)

, a

)

are

eigenvalue eigenvector pairs of A−1C. Thus we can maximize
aT Aa

aT Ca
with the

eigenvector a corresponding to the smallest eigenvalue of A−1C, and mini-

mize
aT Aa

aT Ca
with the eigenvector a corresponding to the largest eigenvalue

of A−1C.

Remark 5.1. Suppose A and C are symmetric p × p matrices, A >

0, C is singular, and it is desired to make
aT Aa

aT Ca
large but finite. Hence
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aT Ca

aT Aa
should be made small but nonzero. The above result suggests that

the eigenvector a corresponding to the smallest nonzero eigenvalue of A−1C

may be useful. Similarly, suppose it is desired to make
aT Aa

aT Ca
small but

nonzero. Hence
aT Ca

aT Aa
should be made large but finite. Then the eigenvector

a corresponding to the largest eigenvalue of A−1C may be useful.

5.6 FDA

The FDA method of discriminant analysis, a special case of the generalized
eigenvalue problem, finds eigenvalue eigenvector pairs so that the êT

1 xij have

low variability in each group, but the variability of the êT
1 xij between groups

is large. More precisely, let Ŵ be a p× p dispersion matrix used to measure
variability within groups and let B̂ be a p × p symmetric matrix used to
measure variability between classes. Let the eigenvalue eigenvector pairs of a

matrix Ŵ
−1

B̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then from

Theorem 5.1 f), max
a 6=0

aT B̂a

aT Ŵa
= λ̂1, the largest eigenvalue of Ŵ

−1
B̂. The

value of a that achieves the max is the eigenvector ê1. Then ê2 will achieve
the max among all unit vectors orthogonal to ê1. Similarly, ê3 will achieve
the max among all unit vectors orthogonal to ê1 and ê2, et cetera.

Many choices of Ŵ have been suggested. Typically assume rank(Ŵ ) = p

and rank(B̂) = min(p, G − 1). Let q ≤ min(p, G − 1) be the number of

nonzero eigenvalues λ̂i of Ŵ
−1

B̂. Let (Ti, Ci) be an estimator of multivariate

location and dispersion for the ith group. Let T =
1

G

G
∑

i=1

Ti. Let B̂T =

∑G
i=1(Ti−T )(Ti−T )T . Note that B̂T /(G−1) is the sample covariance matrix

of the T1, ..., TG. Let Ŵ T =
∑G

i=1 Ci. Typically (Ti, Ci) = (xi, Si) is used

where the notation T = x is used. Let B̂B =
∑G

i=1 π̂i(Ti − T )(Ti − T )T , and

Ŵ B =
∑G

i=1 π̂iCi. Let Ŵ L = GΣ̂pool . See Equation (5.3). Let A = (aij) be
a p × p matrix, and let diag(A) = diag(a11, ..., app) be the diagonal matrix

with the aii along the diagonal. Let Ŵ D = diag(Ŵ A) for any previously

defined Ŵ A, e.g. A = T . Then Ŵ D is nonsingular if all wii > 0 even if
Ŵ A = (wij) is singular. Sometimes TB =

∑

i=1 π̂iTi is used instead of T .

The rule may also use B̂ = c1B̂A and Ŵ = c2Ŵ A for positive constants c1

and c2, e.g. c1 = 1/(G − 1) and c2 = 1/(n− G).
The FDA rule finds ê1 and summarizes the group by the linear combination

êT
1 Ti. Then FDA allocates w to the group a for which êT

1 w is closest to
êT

1 Ta. (We can view êT
1 Ti as a summary of the ni linear combinations of
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the predictors êT
1 xij in the ith group where j = 1, ..., ni.) The FDA method

should work well if the within group variability is small and the between
group variability is large.

Definition 5.9. For Fisher’s discriminant analysis (FDA), the FDA dis-
criminant rule allocates w to group a that minimizes |êT

1 w − êT
1 Ti| for

i = 1, ..., G.

Remark 5.2. a) Often it is suggested to use PCA for DA: find D such that
the first D principal components explain at least 95% of the variance. Then
use the D ≤ min(n, p) principal components as the variables. The problem
with this idea is that principal components are used to explain the structure
of the dispersion matrix of the data, not to be linear combinations of the
data that are good for DA. Using the J linear combinations from FDA such
that

J
∑

i=1

λ̂i/

p
∑

i=1

λ̂i ≥ 0.95

might be a better choice for DA, especially if the number of nonzero eigen-
values q is not too small.

b) Often DA rules from the other FDA eigenvectors simply replace ê1

with êj . It might be better to consider J rules such that (êT
1 w, ..., êT

k w)T is

closest to (êT
1 Ta, ..., êT

k Ta)T for k = 1, ..., J where a ∈ {1, ..., G} and J is as

in Remark 5.2 a). Or let V̂ = [ê1 ê2 · · · êq]. Then allocate w to group a

that minimizes D2
j (w) where D2

j (w) = (w− Tj)
T V̂ V̂

T
(w−Tj)

T − 2 log(π̂j)

where Ŵ B and B̂B are used. See Filzmoser et al. (2006).

c) If Ŵ is singular and B̂ is nonsingular, then the eigenvalue eigenvector

pair(s) corresponding to the smallest nonzero eigenvalue(s) of B̂
−1

Ŵ may
be of interest, as argued below Theorem 5.1.

Following Koch (2014, pp. 120-124) closely, consider the population version
of FDA where the ith group has mean and covariance matrix (µi, Σxi

) for
i = 1, ..., G where xi is a random vector from the population corresponding
to the ith group. Let µ = 1

G

∑G
i=1 µi, B =

∑G
i=1(µi − µ)(µi − µ)T , and

W =
∑G

i=1 Σxi
. Then the between group variability

b(a) = aT Ba =
G

∑

i=1

|aT (µi − µ)|, (5.4)

and the within group variability =

w(a) = aT Wa =

G
∑

i=1

aT Σxi
a =

G
∑

i=1

Var(aTxi) (5.5)
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since Var(aT xi) = E[(aT xi−E(aT xi))
2] = E[aT (xi−E(xi))(xi−E(xi))

T a]
= aT Σxi

a. Then

max
a 6=0

b(a)

w(a)
= max

a 6=0

aT Ba

aT Wa

is achieved by a = e1, the eigenvector corresponding to the largest eigenvalue
λ1(W

−1B) of W−1B. Hence b(e1) is large while w(e1) is small in that the
ratio is a max.

FDA approximates Equations (5.4) and (5.5) by using B̂T and Ŵ T with
(Ti, Ci) = (xi, Si). Note that W /G tends not to be a good estimator of
dispersion unless the G groups have the same covariance matrix Σxi

= Σx
for i = 1, ..., G, but w(a) is a good measure of within group variability even if

the Σxi
are not equal. Also, if Ŵ A is such that aT Ŵ Aa can be made small,

then FDA will likely work well with B̂T and Ŵ A if there are no outliers.

Remark 5.3. If G = 2, (Ti, Ci) = (xi, Si), B̂ = B̂T , and Ŵ = 2Spool ,
then LDA and FDA are equivalent. See Koch (2014, p. 129). This result helps
explain why LDA works well on so many data sets.

Two special cases are illustrative. First, let Ŵ = Ip and use B̂T . Then

FDA attempts to find a vector ê1 such that the ê
T
1 Ti are far from ê

T
1 T .

Then find group a such that êT
1 w is closer to êT

1 Ta than to êT
1 Ti for i 6= a.

Second, consider G = 2. Then B̂T = (T1 − T2)(T1 − T2)
T /2. Using Theorem

5.1a) with d = (T1 − T2)/
√

2 shows that ê1 =
Ŵ

−1
(T1 − T2)

‖Ŵ−1
(T1 − T2)‖

. If the

Ŵ
−1

xij are “standardized data,” and the Ŵ
−1

Ti are standardized centers
for i = 1, 2, then FDA projects w on the line between the standardized
centers and allocates w to the group with the standardized center closest to
êT

1 w.

library(MASS) ##Use ?lda. Output for Ex. 5.1.

out <- lda(as.matrix(iris[, 1:4]), iris$Species)

names(out); out; plot(out) #plots LD1 versus LD2

Prior probabilities of groups:

setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:

Sep.Len Sep.Wid Pet.Len Pet.Wid

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.8293776 0.02410215

Sepal.Width 1.5344731 2.16452123
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Petal.Length -2.2012117 -0.93192121

Petal.Width -2.8104603 2.83918785

Proportion of trace:

LD1 LD2

0.9912 0.0088

gp <- as.integer(iris$Species)

x <- as.matrix(iris[,1:4]) #AER 0.02

out<- lda(x,gp); 1-mean(predict(out,x)$class==gp)

plot(out) #Get numbers in Figure 5.1.

Example 5.1. The library MASS has a function lda that does FDA. The
famous iris data set has variables x1 = sepal length, x2 = sepal width, x3 =
petal length, and x4 = petal width. There are three groups corresponding
to types of iris: setosa, versicolor, and virginica. The above R code performs
FDA. Figure 5.1 shows the plot of LD1 = ê1 versus LD2 = ê2. Since the
proportion of trace for LD2 is small, LD2 is not needed. Note that LD1
separates setosa from the other two types of iris, and versicolor and virginica
are nearly separated.

Let β̂ = ê1 = LD1 be the first eigenvector from FDA. The func-
tion FDAboot bootstraps β̂ and gives the nominal 95% shorth CIs. Also

shown below is the sample mean vector of the bootstrapped β̂
∗

i where
i = 1, ..., B = 1000. The bootstrap is performed by taking samples of size
ni with replacement from each group for i = 1, ..., G. Perform FDA on the

combined sample to get β̂
∗

j . Since β̂ is an eigenvector, the bootstrapped eigen-

vector could estimate β̂ or −β̂. Pick a β̂j that is large in magnitude, and see

how many times the β̂∗
j have the same sign as β̂j . Multiply the bootstrap vec-

tor by −1 if it has opposite sign. In the output below, all B = 1000 bootstrap
vectors had β̂∗

4 < 0.

#Sample sizes may not be large enough for the

#shorth CI coverage to be close to the nominal 95%.

out<-FDAboot(x,gp)

apply(out$betas,2,mean)

[1] 0.8468 1.5807 -2.2558 -2.9180

sum(out$betas[,4]<0) #all betahatˆ*
[1] 1000 #estimate betahat, not -betahat

ddplot4(out$betas) #right click Stop

#covers the identity line

out$shorci[[1]]$shorth

[1] 0.3148 1.4634

out$shorci[[2]]$shorth

[1] 0.7745 2.3096

out$shorci[[3]]$shorth

[1] -2.9276 -1.6260
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out$shorci[[4]]$shorth

[1] -3.8609 -1.8875

Next, R code is given for robust FDA. The function getUbig gets the
RMVN set Ui for each group for i = 1, ..., G and combines the sets into one
large data set. RMVN is useful when n/p is large. Then RFDA is the classical
FDA applied to this cleaned data set. See the output below. Figure 5.2 only
uses the cleaned cases since outliers could obscure the plot, and this technique
can distort the amount of group overlap.
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Fig. 5.1 Plot of LD1 versus LD2 for the iris data.

tem<-getubig(x,gp) ##Robust FDA

outr<-lda(tem$Ubig,tem$grp)

1-mean(predict(outr,x)$class==gp) #AER 0.03

plot(outr)

outr

Prior probabilities of groups:

1 2 3

0.3206107 0.3282443 0.3511450

Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.026190 3.438095 1.464286 0.2309524

2 5.923256 2.813953 4.234884 1.3093023

3 6.486957 2.950000 5.454348 2.0173913
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Fig. 5.2 RFDA Plot of LD1 versus LD2 for the iris data.

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.4281837 -0.06899442

Sepal.Width 2.5221645 2.01270912

Petal.Length -2.3230167 -1.11944258

Petal.Width -3.2947263 3.25076179

Proportion of trace:

LD1 LD2

0.9942 0.0058

The covmb2 subset B can be found when p < n or p ≥ n. See Section
1.3. The function getBbig gets the set Bi for each group for i = 1, ..., G and
combines the sets into one large data set. Then a robust FDA is the classical
FDA applied to this cleaned data set. For the iris data, using covmb2 did
not discard any cases, so the robust FDA and classical FDA had identical
output. See the R code below.

#Robust FDA with covmb2 set B from each group.

#This subset of cases can be found when p > n.

tem<-getBbig(x,gp)

outr<-lda(tem$Bbig,tem$grp) #AER 0.02

plot(outr); 1-mean(predict(outr,x)$class==gp)

outr #Output is same as that for classical FDA.
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5.7 Estimating the Test Error

Definition 5.10. The test error rate Ln is the population proportion of
misclassification errors made by the DA method on test data.

The Bayes classifier has the smallest expected test error, but the Bayes
classifier generally can’t be computed used since the πk and fk are unknown.
If it was known that π1 = 0.9, a simple DA rule would be to always allocate
w to group 1. Then the test error of this rule would be Ln = 0.1.

Generally the test error Ln needs to be estimated by L̂n. A simple method
for estimating the test error is to apply the DA method to the training data
and find the proportion of classification errors made. To help see why this
method is poor, consider KNN with K = 1. Then the training data is perfectly
classified with a training error rate of 0, although the test error rate may be
quite high.

Definition 5.11. The training error rate or apparent error rate (AER) is

AER = L̂n =
1

n

nj
∑

i=1

G
∑

j=1

I[Ŷij 6= Yij ]

where Ŷij is the DA estimate of Yij using all n training cases x1,1, ..., xG,nG
.

Note that Yij = j since xij comes from the jth group. If mj of the nj group
j cases are correctly classified, then the apparent error rate for group j is

1 − mj/nj. If mA =
G

∑

j=1

mj of the n =
G

∑

j=1

nj training cases are correctly

classified, then AER = 1 − mA/n.

DA methods fit the training data better than test data, so the AER tends
to underestimate the error rate for test data. We want to use a DA method
with a low test error rate. Cross validation (CV) divides the training data
into a big part and a small part, perhaps J times. For each of the J divisions,
the DA rule is computed for the big part and applied to the small part. Hence
the small part is used as a validation set. The proportion of errors made for
the small part is recorded.

For leave one out or delete one cross validation, J = n, the big part uses
n − 1 cases from the training data while the small part uses the 1 case left
out of the big part. This case will either be correctly or incorrectly classified.
The leave one out CV rule can sometimes be rapidly computed, but usually
requires the DA method to be fit n times.

Definition 5.12. An estimator of the test error rate is the leave one out
cross validation error rate



5.7 Estimating the Test Error 315

L̂n =
1

n

nj
∑

i=1

G
∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is deleted from the n training

cases x1,1, ..., xG,nG
. Note that L̂n is the proportion of training cases that

are misclassified by the n leave one out rules. If mC is the number of cases
correctly classified by leave one out classification, then L̂n = 1 − mC/n.

For KNN , find the K cases in the training data closest to xi,j not in-
cluding xi,j. Then compute the leave one out cross validation error rate as
in Definition 5.12.

Assume that the training data x1,1, ..., xnG,G is a random sample from the

G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Hence nj/n

is a consistent estimator of πj. Following Devroye and Wagner (1982), when
K = 1 the test error rate Ln of KNN method converges in probability to L
where LB ≤ L ≤ 2LB and LB is the test error rate of the Bayes classifier. If
Kn → ∞ and Kn/n → 0 as n → ∞, then the KNN method converges to the

Bayes classifier in that the KNN test error rate Ln
P→ LB . Then the leave one

out cross validation error rate L̂n is a good estimator of Ln in that 2e−2nε2

was usually an upper bound on P [|L̂n − Ln| ≥ ε] for small ε > 0.

For the method below, J = 1 and the validation set or hold-out set is the
small part of the data. Typically 10% or 20% of the data is randomly selected
to be in the validation set. Note that the DA method is only computed once
to compute the error rate.

Definition 5.13. The validation set approach has J = 1. Let the valida-
tion set contain nv cases (x1, Y1), ..., (xnv

, Ynv
), say. Then the validation set

error rate is

L̂n =
1

nv

nv
∑

i=1

I(Ŷi 6= Yi)

where Ŷi is the estimate of Yi computed from the DA method applied to the
n − nv cases not in the validation set. If mL is the number of the nv cases
from the validation set correctly classified, then L̂n = 1 − mL/nv.

The k-fold CV has J = k partitions of the data into big and small sets, and
the DA method is computed k times. The values k = 5 and 10 are common
because they have been shown empirically to work well.

Definition 5.14. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the DA method to the k − 1
remaining folds, and then find the proportion of errors for the first fold.
Repeat for folds 2, ..., k. The k-fold CV error rate is
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L̂n =
1

n

nj
∑

i=1

G
∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is in the deleted fold. If mk is the

number of the n training cases correctly classified, then L̂n = 1 − mk/n.

Definition 5.15. A truth table or confusion matrix for a G category
classifier is a G × G table with G labels on the top for the “truth” (true
classes) and G labels on the left side for the predicted classes. The cells give
classification counts. The diagonal cells are counts for correctly classified
cases, while the off diagonals are counts for incorrectly classified cases. The
error rate = (sum of off diagonal cells)/(sum of all cells) =
1 - (sum of diagonal cells)/(sum of all cells).

For a binary classifier, consider the following truth table where the counts
TN = true negative, FN = false negative, FP = false positive, and TP = true
positive.

truth total
−1 1

predict −1 TN FN N∗

1 FP TP P ∗

total N P

The true positive rate = TP/P = sensitivity = power = recall = 1−
type II error. The false positive rate = FP/N = 1− specifity ≈ type I
error. The positive predicted value = TP/P ∗ ≈ precison = 1− false dis-
covery proportion. The negative predicted value = TN/N . The error rate
= (FP + FN)/(FP + FN + TN + TP ).

For a binary classifier, sometimes one error is much more important than
the other. For example consider a loan with categories “default” and “does
not default.” Misclassifying “default” should be small compared to misclas-
sifying “does not default.”

A ROC curve is used to evaluate a binary classifier. The horizontal axis is
the false positive rate while the vertical axis is the true positive rate. Both
axes go from 0 to 1, so the total area of the square plot is 1. The overall
performance of the binary classifier is summarized by the area under the
curve (AUC). An ideal ROC curve is close to the top left corner of the plot,
so the larger the AUC, the better the classifier. Note that 0 ≤ AUC ≤ 1. A
classifier with AUC = 0.5 does no better than chance. A ROC from test data
or validation data is better than a ROC from training data.
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5.8 Some Examples

Example 5.2. The following output illustrates crude variable selection using
the LDA function. See Problems 5.6 and 5.7. The code deletes predictors as
long as the AER does not increase if the predictor is deleted. Using all of the
data, the AER = 0.0357. Eventually the AER = 0.

library(MASS) #Output for Example 5.2.

group <- pottery[pottery[,1]!=5,1]

group <- (as.integer(group!=1)) + 1

x <- pottery[pottery[,1]!=5,-1]

out<-lda(x,group)

1-mean(predict(out,x)$class==group)

[1] 0.03571429 #AER using all of the predictors.

out<-lda(x[,-c(1)],group)

1-mean(predict(out,x[,-c(1)])$class==group)

out<-lda(x[,-c(1,2)],group)

1-mean(predict(out,x[,-c(1,2)])$class==group)

out<-lda(x[,-c(1,2,3)],group)

1-mean(predict(out,x[,-c(1,2,3)])$class==group)

out<-lda(x[,-c(1,2,3,4)],group)

1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)

out<-lda(x[,-c(1,2,3,4,5)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)

[1] 0.03571429 #Can delete predictors 1-5.

out<-lda(x[,-c(1,2,3,4,5,6)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)

[1] 0.07142857 #Predictor x6 is important.

out<-lda(x[,-c(1,2,3,4,5,7)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])

$class==group)

[1] 0.07142857 #Predictor x11 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)
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1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

14)])$class==group)

[1] 0.07142857 #Predictor x14 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],

group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

18)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,18)])$class==group)

[1] 0.07142857 #Predictor x18 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19,20)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19,20)])$class==group)

[1] 0

#Predictors x6, x11, x14, x18 seem good for LDA.

Example 5.3. This example illustrates that the AER tends to under-
estimate the test error rate compared to the validation set approach. The
validation test error estimates can change greatly when the random number
generator seed is changed. See Definitions 5.11 and 5.13. The men’s basket-
ball data set mbb1415 is described in Problem 7.4, which tells how to get the
data set into R. The KNN method AER is especially poor when K is small
(K < 10, say). The KNN method also depends on a random number seed,
perhaps to handle ties. (If there are three groups and K = 3, it is possible
that the 3 nearest neighbors to w come from groups 1, 2, and 3. How does
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KNN decide which group to allocate w?) The R commands below standard-
ize the variables to have mean 0 and variance 1, puts guards into group 1,
small forwards into group 2, centers and power forwards into group 3, and
individuals with unknown position into group 0. Then individuals who do
not play much (are in the bottom quartile in playing time) are deleted. Next,
players in group 0 are deleted, leaving a data set z with 86 cases, 3 groups,
and 35 predictor variables. The data set z is also divided into a validation
test set ztest of 20 cases and a training set ztrain of 66 cases.

set.seed(1)

z <- mbb1415[,-1]

z <- scale(z) #standardize the variables

grp <- mbb1415[,1]

grp[grp==2]<-1

grp[grp==3]<-2

grp[grp==4]<-3

grp[grp==5]<-3

#Put guards in group 1, small forwards in group 2,

#centers and power forwards in group 3,

#unknowns in group 0.

#Get rid of players who did not play much.

z <- z[mbb1415[,3]>182,]

grp <- grp[mbb1415[,3]>182]

#Get rid of group 0, 86 cases left.

z <- z[grp>0,]

grp<-grp[grp>0]

indx<-sample(1:86,replace=F)

train <- indx[21:86]

test <- indx[1:20]

ztest <- z[test,] #20 test cases

grptest <- grp[test]

ztrain <- z[train,]

grptrain <- grp[train]

Since x1 is used as group, zi = xi+1. Below we use z7 = turnovers, z10 =
stl.pos (stolen possessions, a ball handling rating), z12 = rebounds, z13 =
offensive rebounds, z28 = three point field goal percentage, and z32 = free
throw percentage. With 2 nearest neighbors, the AER is 0.151, but (the
validation error rate) VER = 0.45. With 1 nearest neighbor, the AER = 0
since each training case is its own nearest neighbor. Hence the training cases
are perfectly classified.

#see what the variables are

z[1,c(7,10,12,13,28,32)]

library(class)
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out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=2)

mean(grp!=out) #0.151 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=2)

mean(grptest!=out) #0.45 validation ER

out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=1)

mean(grp!=out) #0.0 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=1)

mean(grptest!=out) #0.45 validation ER

The output below shows that VER = 0.5 and AER = 0.22 with FDA
(LDA), and VER = 0.45 and AER = 0.13 with QDA.

library(MASS) #three ways to get VER = 0.5

out <- lda(z[,c(7,10,12,13,28,32)],grp, subset=train)

1-mean(predict(out,z[-train,c(7,10,12,13,28,32)])

$class==grp[-train])

1-mean(predict(out,z[test,c(7,10,12,13,28,32)])

$class==grptest)

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-lda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.22

out <- qda(z[,c(7,10,12,13,28,32)],grp, subset=train)

#VER = 0.45

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-qda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.13

5.9 Classification Trees, Bagging, and Random Forests

A classification tree is a flexible method for classification that is very similar
to the regression tree of Section 4.10. The method produces a graph called a
tree. Each branch has a label like xi > 7.56 if xi is quantitative, or xj ∈ {a, c}
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(written xj = ac) where xj is a factor taking on values a, b, c, d, e, f, say.
Unless told otherwise, go to the left branch if the condition is true, go to
the right branch if the condition is false. (Some software switches this. Check
the story problem.) The bottom of the tree has leaves that give a label for a
group such as Ŷ = j for some j = 1, ..., G. The root is the top node, a leaf is
a terminal node, and a split is a rule for creating new branches. Each node
has a left and right branch.

|
Mg < 2.695

Na < 13.785

Al < 1.38 Ba < 0.2

Al < 1.42

RI < −0.93

K < 0.29

Mg < 3.75

Mg < 3.455

WinNF Con

Tabl Head

Veh

WinF

WinF WinNF

WinNF WinNF

Fig. 5.3 Classification Tree for Example 5.4.

Example 5.4.

The Venables and Ripley (2010) fgl data set has fragments of glass clas-
sified by five chemicals x1 = Al, x2 = Ba, x3 = K, x4 = Mg, x5 = Na, and
x6 = RI = refractive index. The categories which occur are window float
glass (WinF), window non-float glass (WinNF), vehicle window glass (Veh),
containers (Con), tableware (Tabl), and vehicle headlamps (Head). In the
second node to the left, the split is NA < 13.785, but the 13.785 is hard to
read.

a) Predict the class Y if Mg = 2, Na = 14 and Ba = 0.35.
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Solution: Go left, right, right to predict class Head.
b) Predict the class Y if Mg = 3.1 and Al = 1.6.
Solution: Go right right left to predict class WinNF.
Note that the tree in Figure 5.3 can be simplified: predict WinNF if Mg ≥

2.65 and i) Al ≥ 1.42 or ii) Al < 1.42 and RI ≥ −0.93.

Classification trees have some advantages. Trees can be easier to interpret
than competing methods when some predictors are numerical and some are
categorical. Trees are invariant to monotone (increasing or decreasing) trans-
formations of the predictor variable xi. Trees can handle complex unknown
interactions. Classification and regression trees i) give prediction rules that
can be rapidly and repeatedly evaluated, ii) are useful for screening predic-
tors (interactions, variable selection), iii) can be used to assess the adequacy
of linear models, and iv) can summarize large multivariate data sets.

Trees that use recursive partitioning for classification and regression trees
use the CART algorithm. In growing a tree, the binary partitioning algorithm
recursively splits the data in each node until either the node is homogeneous
(roughly 0 training data misclassifications for a classification tree) or the
node contains too few observations (default ≤ 5). The deviance is a measure
of node homogeneity, and deviance = 0 for a perfectly homogeneous node.
For a classification tree, Ŷ is often the mode of the node labels (Ŷ is the class
that occurs the most).

Trees divide the predictor space (set of possible values of the training
data xi) into J distinct and nonoverlapping regions R1, ..., RJ that are high
dimensional boxes. Then for every observation that falls in Rj, make the

same prediction. Hence ŶRj
= modal class modej of training data Yi in Rj.

Choose Rj so RSS =
∑J

j=1

∑

i∈Rj
I(Yi 6= ŶRj

) is small. Let {x|xj < s} be

the region in the predictor space such that xj < s where x = (x1, ..., xp)
T .

Define 2 regions R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s}. Then seek
cutpoint s and variable xj to minimize

∑

i:xi∈R1(j,s)

I(Yi 6= ŶR1
) +

∑

i:xi∈R2(j,s)

I(Yi 6= ŶR2
).

This can be done “quickly” if p is small (could use order statistics). Then
repeat the process looking for the best predictor and the best cutpoint in
order to split the data further so as to minimize the RSS within each of the
resulting regions. Only split one of the regions, R1, R2, and R3. Continue this
process until a stopping criterion is reached such as no region contains more
than 5 observations (and stop if the region is homogeneous). If J is too large,
the tree overfits.

The null classifier hat Ŷ = d where d is the modal (dominant) class. So if
k% of the test observations belong to the dominant class, then the test error
=

100− k

100
≤ 1 − 1

G
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where there are G groups since k ≥ 100/G. Classifiers that do not beat the
null classifier are very bad.

Classification trees are often beat by one of the earlier techniques from this
chapter. Bagging, pruning, and random forests makes trees more competitive.
The following subsections follow James et al. (2013) closely.

5.9.1 Pruning

Trees use regions R1, ..., RJ, and if J is too large, the tree overfits. One
strategy is to grow a large tree T0 with J0 regions, then prune it to get a
subtree Tα with Jα regions.

Next, we describe cost complexity pruning = weakest link pruning. Let T ⊆
T0, α ≥ 0, and |T | = number of terminal nodes of tree T . Each terminal node
corresponds to a hyperbox region Ri. Let Rm be the region corresponding to
the mth terminal node and ŶRm

be the predicted response for Rm. For each
value of α > 0, there corresponds a subtree T ⊆ T0 such that

|T |
∑

m=1

∑

i:xi∈Rm

I(Yi 6= ŶRm
) + α|T | (5.6)

is as small as possible. (Replace I(Yi 6= ŶRm
) by (yi − ŷRm

)2 for a regression
tree.) Note that α = 0 has T = T0 and (5.16) = RSS(T0) = training data
RSS for T0. Much like lasso, there is a sequence of nested subtrees

Tαm
⊆ · · · ⊆ Tα2

⊆ Tα1
⊆ T0. (5.7)

Branches get “pruned” from T0 in a nested and predictable fashion.
The pruning algorithm is a) build tree T0, stopping when each (region

corresponding to a terminal node has ≤ 5 observations. b) Use (5.6) to obtain
(5.7). c) Use k-fold CV to choose α = αd: for each i ∈ 1, ..., k, i) repeat steps
a) and b) on all but the ith fold. ii) Evaluate the mean squared prediction
error

MSEi =
1

ni

ni
∑

j=1

I(Yji 6= Ŷj(i))

on the data Yji in the left out fold i as a function of α. Note that MSEi =
proportion misclassified in the ith fold. Average the results for each value of
α am pick αd to minimize the average error

CV (k) =
1

k

k
∑

i=1

MSEi.

d) Use tree Tαd
from (5.7). Note that if ni = n/k, then
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CV (k) =
1

n

n
∑

j=1

I(Yji 6= Ŷj(i)) =

proportion of misclassified observations. (For a regression tree, use

MSEi =
1

ni

ni
∑

j=1

(Yji − Ŷj(i))
2.)

5.9.2 Bagging

Bagging was used before: compute T ∗
1 , ..., T ∗

B with the bootstrap, and the
sample mean

T
∗

=
1

B

B
∑

i=1

Ti

is the baggin estimator. For a regression tree, draw a sample of size n with
replacement from the training data x1, ..., xn. Fit the tree and find f̂1(x).

Repeat B times to get T ∗
i = f̂i(x). The trees are not pruned, so terminate

when each terminal node has 5 or fewer observations.
Bagging a classification tree draws a sample of size nj from each group

with replacement. For the ith bootstrap estimator (i = 1, ..., B), fit the clas-

sification tree, and let f̂∗
i (x) = ji(x) ∈ {1, ..., G} where Y takes on levels

1, ..., G. That is, determine how the classification tree classifies x. Compute
f̂∗
1 (x), ..., f̂∗

B(x), and let mk = the number of ji(x) = k for k = 1, ..., G. Take

f̂bag(x) = d where md = max{m1, ..., mG}.
For each bootstrap sample b, let xi1 , ..., xikb

be the kb observations not in
the bootstrap sample. These a the “out of bag” (OOB) observations. Predict
Ŷ for each OOB observation. Doing this for all B bootstraps produces about
e−1b ≈ B/3 predictors for each xi. Let Ŷio = mode level for a classification
tree. Then the OOB MSE =

1

n

n
∑

i=1

I(Yi 6= Ŷi0)

is “virtually equivalent” to the leave one out CV estimator for large enough B.
(For a regression tree, let Ŷio = the average of the Ŷi, and replace I(Yi 6= Ŷi0)
by (Yi − Ŷi0)

2 to get the OOB MSE.)
For classification trees, let ρ̂mk = proportion of training observations in

Rm from the kth class. Then Gini’s index =

G
∑

k=1

ρ̂mk(1 − ρ̂mk)
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is small if all ρ̂mk are close to 0 or 1.
For bagging with B trees, a measure of variable importance can be com-

puted for each variable using the number of splits for each variable. This
measure can be summarized with a variable importance plot.

For a binary classifier whith Y = 0 or 1, for a fixed test value x, the
bootstrap produces B estimators of P (Y = 1|x). Two common ways to get
Ŷ |x are a) Ŷ |x = mode class of 0 or 1, and b) average the B estimates of
P (Y = 1|x) and set Ŷ |x = 0 if ave. P̂ (Y = 1|x) ≤ 0.5, with Ŷ |x = 1,
otherwise.

5.9.3 Random Forests

For random forests, the bootstrap is used, but each time a split is consid-
ered, a random sample of m = d√pe predictors is chosen as split candidates.
Random forest tend to produce bootstrap trees that are less correlated than
bagged trees (that use m = p), and the random forests estimator tends to
have better test error and OOB error than the bagging estimator. Also, B
around a few hundred seems to work.

If there is a single strong predictor, bagged trees tend to use that predictor
in the first split. For random forests, the strong predictor is not considered
for (p − m)/p splits, on average.

5.10 Support Vector Machines

This section follow James et al. (2013, ch. 9) closely. Logistic regression is used
a lot in biostatistics and epidemiology where the focus is statistical inference.
Support vector machines (SVMs) are used in machine learning where the goal
is classification accuracy.

5.10.1 Two Groups

When p >> n, there is often a hyperplane that perfectly separates two groups
(even if the two groups are iid from the same population: severe overfitting).
The launching point for SVMs was finding the optimal separating hyperplane.
Wide data has p >> n. If n ≤ p + 1, then there is a separating hyperplane
unless there are “exact predictor ties across the class barrier.”

For 2 groups, let SP = β0 + βT x. Classify x in group 1 if ESP > 0 and
in group −1 if ESP < 0. So the classifier Ĉ(x) = sign(ESP ). Note that the
second group now has label −1 instead of 0.
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Suppose two groups of training data can be separated by a hyperplane.
Then there are two parallel separating hyperplanes where the first separating
hyperplane passes through some cases in group 1 and the second hyperplane
passes through some cases in group 2. The distance between the two sepa-
rating hyperplanes is called the margin between classes. The cases that just
touch the two separating hyperplanes are called the support set. Then the
“optimal separating hyperplane” ESP has the largest margin on the training
data, and the optimal separating hyperplane is parallel and equidistant from
the two separating hyperplanes that determine the support set.

As a visual aid, use “0” for cases from group −1 and “+” for cases from
group 1. Draw a plot on a piece of paper where the two groups can be
separated by a line. A separating line that touches one case from each group
has margin 0. Draw two parallel lines such that one line touches at least one
0 and one line touches at least one +. Make the distance between the two
parallel lines as far as possible (biggest margin). Then the parallel line in
the middle of these two parallel lines is the optimal sepparating hyperplane
(line).

Think of the hyperplane β0 +βT xi = β0 +β1xi1+ · · ·+βpxip as separating
R

p into two halves.

Definition 5.16. A separating hyperplane has SP > 0 if x ∈ group 1 and
SP < 0 if x ∈ group −1. So Yi SPi = Yi(β0 + βT xi) > 0 for i = 1, ..., n.

Now let Z = 1 iff Y = 1 and Z = 0 iff Y = −1. Then think of the binary
classifier that uses ESP as a binary regression Z|x ∼ bin(m = 1, ρ(x)) where
ρ(x) = ρ(SP ) = P (Z = 1|x) = P (Y = 1|x) is unknown. Make a response
plot of ESP versus Z with lowess and possibly a step function added as
visual aids. The bootstrap is likely useful if ni ≥ 10p for both groups. a) Use
the bootstrap with with ni cases selected with replacements from each group.
b) Use the bootstrap with Z∗

i = 1 with probability ρ̂(xi) and Z∗
i = 0 with

probability 1 − ρ̂(xi). Fit the SVM using Y ∗
j and X for j = 1, ..., B.

Classification and regression trees (CART) splits Rp with regions Rm ∈
Rp while a SVM splits Rp into two regions using ESP ∈ R so there is
dimension reduction. The SVM split tries to make the 2 “halves” or partitions
as homogeneous as possible.

The hyperplanes parallel to the ESP hyperplane that form the boundaries
of the margin are called fences. The fence pass through at least two training
data cases. These cases form the support set S of support vectors. It turns
out that if a separating hyperplane exists, then the optimal margin classifier
β̂M =

∑

i∈S α̂ixi.

Let M be the margin. The optimal margin classifier (β̂0M , β̂M ) maximizes
M subject to

Yi SPi = Yi(β0 + β1xi1 + · · ·+ βpxip) ≥ M (5.8)
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for all i = 1, ..., n. This is called a hard margin classifier since no cases from
either group can pass the fences of the classifier. The maximization is over
β0 ∈ R and β ∈ Rp. The maximization is equivalent to minimizing ‖β‖2

subject to (5.8).
A soft margin classifier allows cases from either group to pass the fences or

to be misclassified. This classifier minimizes ‖β‖2 subject to Yi(β0 +βT xi) ≥
1 − εi for i = 1, ..., n where the slack variables εi ≥ 0 and

∑n
i=1 εi ≤ D.

Hastie et al. (2001, p. 380) showed that this minimization is equivalent to
minimizing

n
∑

i=1

[1− Yi(β0 + βT xi)]+ + λ‖β‖2
2 (5.9)

where [w]+ = w if w ≥ 0 and [w]+ = 0 if w < 0. The hinge loss
[1−Yi(β0 +βT xi)]+ = 0 if xi is on the correct side of the margin. Otherwise,
the hinge loss is the cost of xi being on the wrong side of the margin. The
minimization is over β0 ∈ R and β ∈ Rp, and the criterion (5.9) is similar to
the ridge regression criterion.

A support vector machine (SVM) that uses xi minimizes the above cri-

terion. For separable data, (β̂0,SV M , β̂SV M) → (β̂0,M , β̂M ) as λ → 0. A
lasso-SVM minimizes

n
∑

i=1

[1 − Yi(β0 + βT xi)]+ + λ‖β‖1, (5.10)

and does variable selection. A “ridged logistic regression” with Yi ∈ {−1, 1}
minimizes

n
∑

i=1

log[1 + exp(−Yi(β0 + βT xi))] + λ‖β‖2
2. (5.11)

The criterion (5.9) and (5.11) are similar. It can be shown that the SVM
maximizes M = width of margin subject to

∑p
j=1 β2

j = 1 such that εi ≥ 0,
∑p

i=1 εi ≤ D, and Yi(β0 + βT xi) ≥ M(1 − εi). Compare (5.8). The maxi-
mization is over β0 ∈ R, β ∈ R

p, and ε1, ..., εn.

A slack variable εi = 0 if xi is on the correct side of the margin. If εi > 0,
then xi is on the wrong side of the hyperplane. Yi(β0 + βT xi) ≥ M has
εi = 0 and is necessary for xi to be on the correct side of the margin. If
Yi(β0 + βT xi) ≥ M(1 − εi) with εi > (but not if εi = 0), then xi is on the
wrong side of the hyperplane. See Definition 5.15.

It can be shown that β̂SV M =
∑

i∈S γ̂ixi, and ESP = β̂0,SV M +

xT β̂SV M = β̂0,SV M +
∑

i∈S γ̂ix
T xi. This quantity can ge computed using

the n× n Gram matrix XXT with O(n2p) complexity, or using XT X with
O(np2) complexity. Ridge regression could also be computed this way.

Sometimes one or a few cases shift the maximal margin hyperplane. The
SVM classifier is a soft margin classifier and can do better.
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The SVM that uses xi is like LDA and logistic regression for two groups.
An SVM that uses a kernel function is similar to QDA. Let the kernel function
be k(xi, xj). A linear kernel is k(xi, xj) = xT

i xj. A polynomial kernel of
degree d is k(xi, xj) = (1 + xT

i xj)
d. A radial kernel is k(xi, xj) =

exp

[

−γ

p
∑

k=1

(xik − xjk)2

]

= exp[−γ‖xi − xj‖2].

If x is far from xi, then ‖x−xi‖2
2 is large so k(xi, xj) = exp[−γ‖xi − xj‖2]

is tiny, and xi has almost no contribution to SP = SP (x) =
β0 +

∑n
i=1 αik(x, xi). Compare KNN.

A support vector machine (SVM) uses

SP = SP (x) = β0 +

n
∑

i=1

αik(x, xi) = β0 +
∑

i∈S

αik(x, xi)

where S is the index of support vectors. The support vectors determine the
hyperplane and the margin: if the support vectors are moved, then the hy-
perplane moves.

Using k(x, xi) leads o nonlinear decision boundaries if the kernel k is
nonlinear. The kernel is a bivariate transformation. There are

(

n
2

)

= n(n −
1)/2 istinct pairs (xi, xj) that are needed to estimate β0 and the αi. The

SVM with ESP = ESP (x) = β̂0 +
∑n

i=1 α̂ik(x, xi) is a competitor for QDA

while the SVM with ESP = ESP (x) = β̂0 + β̂
T
x is a competitor for LDA.

5.10.2 SVM With More Than Two Groups

There are two common ways to extend binary classifies, such as SVMs and
binary logistic regression, to G > 2 classes. First, the one versus one or all
pairs classifier constructs

(

G
2

)

binary classifiers, one for each pair of groups.
Classify x with fij(x) = ESPij(x), and let mi = number of times x is

predicted to be in class i. Then Ŷ (x) = d where md = max(m1, ..., mG).
Second, the one versus all classifier fits G binary classifiers (such as SVMs):

group i = 1 versus the G−1 other classes coded as −1 with ESPi(x) = fi(x).
Then Ŷ (x) = d where fd(x) = max(f1(x), ..., fG(x)).

5.11 Summary

1) In supervised classification, there are G known groups or populations and
m test cases. Each case is assigned to exactly one group based on its mea-
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surements wi. Assume that for each population there is a probability density
function (pdf) fj(z) where z is a p × 1 vector and j = 1, ..., G. Hence if the
random vector x comes from population j, then x has pdf fj(z). Assume
that there is a random sample of nj cases x1,j, ..., xnj,j for each group. The

n =
∑G

j=1 nj cases make up the training data. Let (xj , Sj) denote the sample
mean and covariance matrix for each group. Let the ith test case wi be a new
p × 1 random vector from one of the G groups, but the group is unknown.
Discriminant analysis attempts to allocate the wi to the correct groups for
i = 1, ..., m.

2) The maximum likelihood discriminant rule allocates case w to group a

if f̂a(w) maximizes f̂j(w) for j = 1, ..., G. This rule is robust to nonnormality
and the assumption of equal population dispersion matrices, but fj is hard
to estimate for p > 2.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likeli-
hood discriminant rule.

For the following rules, assume that costs of correct and incorrect alloca-
tion are unknown or equal, and assume that the probabilities πj = ρj(wi)
that wi is in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Often
it is assumed that the G groups have the same covariance matrix Σx. Then
the pooled covariance matrix estimator is

Spool =
1

n − G

G
∑

j=1

(nj − 1)Sj

where n =
∑G

j=1 nj . Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, e.g. the sample mean and sample covariance
matrix (µ̂j , Σ̂j) = (xj , Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for

j = 1, ..., G. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj , Spool). LDA is robust to nonnormality and somewhat robust to the as-
sumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj , Sj). QDA has some robustness to nonnormality.
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6) The distance discriminant rule allocates w to the group with the small-

est squared distance D2
w(µ̂j , Σ̂j) = (w−µ̂j)

T Σ̂
−1

j (w−µ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj, but
needs nj ≥ 10p for j = 1, ..., G.

7) Assume that G = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP ≥ 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is
a plot of ESP versus Yi (on the vertical axis) with ρ̂(x) ≡ ρ̂(ESP ) added
as a visual aid where xi is the vector of predictors for case i. Also divide the
ESP into J slices with approximately the same number of cases in each slice.
Then compute the sample mean = sample proportion in slice s: ρ̂s = Y s =
∑

s Yi/ms where ms is the number of cases in slice s. Then plot the resulting
step function as a visual aid. If n0 and n1 are the sample sizes of both groups
and ni ≥ 5p, then the logistic regression model was useful if the step function
of observed slice proportions scatter fairly closely about the logistic curve
ρ̂(ESP ). If the LR response plot is good, n0 ≥ 5p and n1 ≥ 5p, then the
LR rule is robust to nonnormality and the assumption of equal population
dispersion matrices. Know how to tell a good LR response plot from a bad
one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p-value

Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status,Terms = (Bottom Left),Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000
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Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it
is known that xij came from group j where there are G ≥ 2 groups. Use the
discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 − mj/nj. If mA =

∑G
j=1 mj of the n =

∑G
j=1 nj cases were correctly

classified, then the apparent error rate AER = 1 − mA/n.
11) Get apparent error rates for LDA, and QDA with the following com-

mands.

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the
following commands.

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4, and x5 with
the following commands.

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works better
on the training data than on the new test data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1 − mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
nv cases to be left out when computing the discriminant rule. Hence n − nv

cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1 − mL/nv. Here nv should be large enough to get a good
rate. Often use nv between 0.1n and 0.5n.
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15) Variable selection is the search for a subset of variables that does a
good job of classification.

16) Crude forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ..., Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ..., Wk are in the model at the end of Step k).
Step p) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
17) Crude backward elimination: suppose X1, ..., Xp are variables.
Step 1) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p− 1 variables

W1, ..., Wp−1 minimizes the AER.
Step 3) Delete variable Wp−1 = Xj such that the model with p−2 variables

W1, ..., Wp−2 minimizes the AER.
Step k) W1, ..., Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ..., Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.

18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

5.12 Complements

This chapter followed Olive (2017c: ch. 8) closely. Discriminant analysis has
a massive literature. James et al. (2013) and Hastie et al. (2009) discuss
many other important methods such as trees, random forests, boosting, and
support vector machines. Koch (2014, pp. 120-124) shows that Fisher’s dis-
criminant analysis is a generalized eigenvalue problem. James et al. (2013)
has useful R code for fitting KNN. Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve standard methods
of linear discriminant analysis.

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮

6.1) is a good reference for
nonparametric discriminant analysis. Discrimination when p > n is interest-
ing. See Cai and Liu (2011) and Mai et al. (2012). See Friedman (1989) for
regularized discriminant analysis.

A DA method for two groups can be extended to G groups by performing
the DA method G times where Yij = 1 if xij is in the jth group and Yij = 0
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if xij is not in the jth group for j = 1, ..., G. Then compute ρ̂j = P̂ (w is in
the jth) group, and assign w to group a where ρ̂a is a max.

There are variable selection methods for DA, and some implementations
are needed in R, especially forward selection for when p > n. Witten and
Tibshirani (2011) give a LASSO type FDA method useful for p > n. See
the R package penalizedLDA. An outlier resistant version can be made using
getBbig to find Bbig. See Section 1.3 and Example 5.1.

Olive and Hawkins (2005) suggest that fast variable selection methods orig-
inally meant for multiple linear regression are also often effective for logistic
regression when the Cp criterion is used. See Olive (2010: ch. 10, 2013b, 2017a:
ch. 13) for more information about variable selection and response plots for
logistic regression.

Hand (2006) notes that supervised classification is a research area in statis-
tics, machine learning, pattern recognition, computational learning theory,
and data mining. Hand (2006) argues that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisti-
cated methods such as neural networks and support vector machines.

5.13 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

5.1∗. Assume the cases in each of the G groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., G.

Logistic Regression Output for Problem 5.2

Response = nodal involvement, Terms = (acid size xray)

Label Estimate Std. Error Est/SE p-value

Constant -3.57564 1.18002 -3.030 0.0024

acid 2.06294 1.26441 1.632 0.1028

size 1.75556 0.738348 2.378 0.0174

xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49,

Deviance: 50.660

5.2. Following Collett (1999, p. 11), treatment for prostate cancer de-
pends on whether the cancer has spread to the surrounding lymph nodes.
Let the response variable = group y = nodal involvement (0 for absence, 1
for presence). Let x1 = acid (serum acid phosphatase level), x2 = size (=
tumor size: 0 for small, 1 for large) and x3 = xray (xray result: 0 for negative,
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1 for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0, and x3 = 0. Refer to the above output.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.3. Recall that X comes from a uniform(a,b) distribution, written x ∼
U(a, b), if the pdf of x is f(x) =

1

b − a
for a < x < b and f(x) = 0, otherwise.

Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5), and group
3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant rule for
classifying a new observation x.

#Problem 5.4

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

5.4. The above LDA output is for the Minor (2012) state data where gdp
= GDP per capita, povrt = poverty rate, unins = 3 year average uninsured
rate 2007-9, and lifexp = life expectancy for the 50 states. The fifth variable
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

> out <- lda(x,group) #Problem 5.5

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)

[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

5.5. The above output is for LDA on the famous iris data set. The variables
are x1 = sepal length, x2 = sepal width, x3 = petal length, and x4 = petal
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width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa, versicolor, and virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.6.

Logistic Regression Output

Response = survival, Terms = (Age Vel)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -16.9845 5.14715 -3.300 0.0010

Age 0.162501 0.0414345 3.922 0.0001

Vel 0.233906 0.0862480 2.712 0.0067

The survival outcomes of 58 side-impact collisions using crash dummies
was examined. x1 = age is the “age” of the crash dummy while x2 = vel
was the velocity of the automobile at impact. The group = response variable
survival was coded as a 1 if the accident would have been fatal, 0 otherwise.
Assume the case to be classified has x with age = x1 = 60.0 and velocity
= x2 = 50.0.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.7.

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

The LDA output above is for the Minor (2012) state data where gdp =
GDP per capita, povrt = poverty rate, unins = 3 year average uninsured rate
2007-9, and lifexp = life expectancy for the 50 states. The fifth variable Y
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

5.8.

> out <- lda(x,group)

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)
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[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

The above output is for LDA on the famous iris data set. the variables
are x1 = sepal length, x2 = sepal width, x3 = petal length and x4 = petal
width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa versicolor virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.9. The James et al. (2013) ISLR Default data set is simulated data for
predicting which customers will default on their credit card debt. Let Y = 1 if
the customer defaulted and Y = −1 otherwise. The predictors were x1 = Y es
if the customer is a student and X1 = No, otherwise, x2 = balance = the
average monthly balance after the monthly payment, and x3 = income of the
customer.

i) For SVM

truth

predict -1 1 AER =

-1 9667 333

1 0 0

ii) For bagging

truth

predict -1 1 AER =

-1 9566 227

1 101 106

iii) For random forests

truth

predict -1 1 AER =

-1 9625 245

1 42 88

a) Compute the error rate AER for each table.
b) Which method was worst for predicting a default?
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5.10. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1 or z = 0, M for y = 1 = z) using various predictors
including head measurements, brain weight, and height. Some outliers were
removed and the data set was divided into a training set with n = 200 cases
and a test set with m = 61 cases. Compute the VER for each table.

truth

predict -1 1

-1 16 12 bagging VER =

1 3 30

truth

predict -1 1

-1 15 13 random forest VER =

1 4 29

truth

predict -1 1 (10-fold CV) SVM VER =

-1 12 13

1 7 29

truth

predict -1 1

-1 12 18 LDA VER =

1 7 24

truth

predict -1 1

-1 17 21 QDA VER =

1 2 21

truth

predict -1 1

-1 14 14 (K = 7) KNN VER =

1 5 28

R Problems

Warning: Use the command source(“G:/slpack.txt”) to download

the programs. See Preface or Section 8.1. Typing the name of the
slpack function, e.g. ddplot, will display the code for the function. Use the
args command, e.g. args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

5.11. The Wisseman et al. (1987) pottery data has 36 pottery shards
of Roman earthware produced between second century B.C. and fourth cen-
tury A.D. Often the pottery was stamped by the manufacturer. A chemical
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analysis was done for 20 chemicals (variables), and 28 cases were classified as
Arrentine (group 1) or nonArrentine (group 2), while 8 cases were of ques-
tionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA.
Nonetheless, variable selection using QDA will be done. Copy and paste the
R commands for this part into R. The first 9 variables result in no misclas-
sification errors.

c) Now use commands like those shown in Example 5.2 to delete variables
whose deletion does not result in a classification error. You should get four
variables are needed for perfect classification. What are they (e.g. X1, X2,
X3, and X4)?

5.12. Variable selection for LDA used the pottery data described in Prob-
lem 5.11, and suggested that variables X6, X11, X14, and X18 are good. Use
the R commands for this problem to get the apparent error rate AER.

5.13. This problem uses KNN on the same data set as in Problem 5.11.
a) Copy and paste the commands for this part into R to show AER = 0

for KNN if K = 1.
b) Copy and paste the commands for this part into R to get the validation

error rate for KNN if K = 1. Give the rate. The validation set has 12 cases
and KNN is computed from the remaining 16 cases.

c) Use these commands to give the AER if K = 2.
d) Use these commands to give the validation ER if K = 2.
e) Use these commands to give the AER for 2NN using variables X6, X11, X14,

and X18 that were good for LDA in Problem 5.7.
f) Use these commands to give the validation ER for 2NN using variables

X6, X11, X14, and X18 that were good for LDA.

5.14. For the Gladstone (1905) data, the response variable Y = gender,
gives the group (0-F, 1-M). The predictors are x1 = age, x2 = log(age), x3 =
breadth of head, x4 and x5 are indicators for cause of death coded as a factor,
x6 = cephalic index (a head measurement), x7 = circumference of head, x8 =
height of the head, x9 = height of the person, x10 = length of head, x11 =
size of the head, and x12 = log(size) of head. The sample size is n = 267.

a) The R code for this part does backward elimination for logistic regres-
sion. Backward elimination should only be used if n ≥ Jp with J ≥ 5 and
preferably J ≥ 10.

Include the coefficients for the selected model (given by the summary(back)
command) in Word. (You may need to do some editing to make the table
readable.)

b) The R code for this part gives the response plot for the backward
elimination submodel IB . Does the response plot look ok?

c) Use the R code for this part to give the AER for IB .
d) Use the R code for this part to give a validation ER for IB .
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(Another validation ER would apply backward elimination on the cases not
in the validation set. We just used the variables from the backward elimina-
tion model selected using the full data set. The first method is likely superior,
but the second method is easier to code.)

e) These R commands will use lasso with a classification criterion. We got
rid of the factor (two indicator variables) since cv.glmnet uses a matrix
of predictors. Lasso can handle indicators like gender as a response variable,
but will not keep or delete groups two or more indicators that are needed
for a quantitative variable with 3 or more levels. These commands give the
k-fold CV error rate for the lasso logistic regression. What is it?

f) Use the commands for this part to get the relaxed lasso response plot
where relaxed lasso uses the lasso from part e). Include the plot in Word.

g) Use the commands from this plot to make the EE plot of the ESP from
relaxed lasso (ESPRL) versus the ESP from lasso (ESPlasso).

5.15. This problem creates a classification tree. The vignette Therneau
and Atkinson (2017) and book MathSoft (1999b) were useful. The dataset has
n = 81 children who have had corrective spinal surgery. The variables are Y =
Kyphosis: postoperative deformity is present/absent, and predictors x1 =
Age of child in months, xn = Number vertebrae involved in the operation,
and Start = beginning of the range of vertebrae involved.

a) Use the R code for this part to print the classification tree. Then predict
whether Y = absent or Y = present if Start = 13 and Age = 25.

b) Then predict whether Y = absent or Y = present if Start = 10 and
Age = 120. Note that you go to the left of the tree branch if the label
condition is true, and to the right of the tree branch if the label condition is
not true.

5.16. This is the pottery data of Problem 5.11, but the 28 cases were
classified as Arrentine for y = −1 and nonArrentine for y = 1.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

c) Copy and paste the commands for this part into R. These commands
do SVM with a fixed cost. Copy and paste the truth table into Word. What
is the AER?

d) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

5.17. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1, M for y = 1) using various predictors including
head measurements, brain weight, and height. Some outliers were removed
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and the data set was divided into a training set with n = 200 cases and a
test set with m = 61 cases.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These use bagging
on the training data and validation set. Copy and paste the truth table into
Word. What is the bagging validation error rate?

c) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

d) Copy and paste the commands for this part into R. These use random
forests on the training data and validation set. Copy and paste the truth
table into Word. What is the random forests validation error rate?

e) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

f) Copy and paste the commands for this part into R. These commands do
SVM with a cost chosen by 10-fold CV on the training data and validation
set. Copy and paste the truth table into Word. What is the SVM validation
error rate?


