
Chapter 6

Regularizing a Correlation Matrix

This chapter will show how to regularize the correlation and inverse correla-
tion matrices. Many techniques from multivariate analysis, such as classifica-
tion, are based on a covariance or correlation matrix. The inverse covariance
matrix is also known as a precision matrix. A regularized estimator reduces
the degrees of freedom d of the estimator. Often regularization is done by
reducing the number of parameters in the model. For MLR, lasso and ridge
regression were regularized if λ > 0. A covariance matrix of a p × 1 vector x

is symmetric with p + (p − 1) + · · ·+ 2 + 1 = p(p + 1)/2 parameters. A cor-
relation matrix has p(p − 1)/2 parameters. We want n ≥ 10p for the sample
covariance and correlation matrices S and R. If n < 5p, then these matrices
are being overfit: the degrees of freedom is too large for the sample size n,
and the matrices may be ill conditioned. Too much regularization results in
underfitting. We roughly want d to be such that the matrix is well condi-
tioned for a given n, and the statistical or machine learning technique that
used the matrix, such as classification, performs satisfactorily.

6.1 Correlation and Inverse Correlation Matrices

The sample covariance and correlation matrices S and R are given in Defi-
nitions 1.13 and 1.14.

Rule of Thumb 6.1. Multivariate procedures based on S or R start
to give good results for n ≥ 10p, especially if the distribution is close to
multivariate normal. In particular, we want n ≥ 10p for the sample covariance
and correlation matrices. For procedures with large sample theory on a large
class of distributions, for any value of n, there are always distributions where
the results will be poor, but will eventually be good for larger sample sizes.
Norman and Streiner (1986, pp. 122, 130, 157) gave this rule of thumb and
note that some authors recommend n ≥ 30p. This rule of thumb is much like
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342 6 Regularizing a Correlation Matrix

the rule of thumb that says the central limit theorem normal approximation
for Y starts to be good for many distributions for n ≥ 30. See the paragraph
below Theorem 1.2.

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p × p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp). (6.1)

Then
S = DRD, (6.2)

and
R = D

−1
SD

−1. (6.3)

The inverse covariance matrix or inverse correlation matrix can be used
to find the partial correlation rij,x(ij) between xi and xj where x(ij) is
the vector of predictors with xi and xj deleted where i 6= j. This partial
correlation is the correlation of xi and xj after eliminating the linear effects
of x(ij) from both variables: regress xi and xj on x(ij) and get the two sets
of residuals, then find the correlation of the two sets of residuals. If p ≥ 3
and S

−1 = (Sij), then

rij,x(ij) =
−Sij

(SiiSjj)1/2
=

−rij

(riirjj)1/2
.

Srivastava and Khatri (1979, p. 53) proved this result. The second equality
holds since

R
−1 = DS

−1
D = (rij) = (Sij

√

Sii

√

Sjj). (6.4)

The ith diagonal element rii, called a variance inflation factor, is found by
regressing xi on the remaining predictors x1, ..., xi−1, xi+1, ..., xp. Then

rii = V IFi =
1

1 − R2
i

where R2
i is the squared multiple correlation from the regression. See Belsley

et al. (1980, p. 93).
Some R code illustrating the result for rij is shown below. The function

lsfit is used to regress x1 on x3 and then regress x2 on x3. Note that
x(i = 1, j = 2) = x3 once x1 and x2 have been deleted since p = 3.

x <- buxx[,1:3]; z<-solve(cor(x))

z #inverse correlation matrix

len nasal bigonal

len 1.02042523 0.13535798 0.06134196
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nasal 0.13535798 1.02358206 0.08336109

bigonal 0.06134196 0.08336109 1.00931453

out1 <- lsfit(x[,3],x[,1])$resid

out2 <- lsfit(x[,3],x[,2])$resid

cor(out1,out2)

[1] -0.1324439

-z[1,2]/sqrt(z[1,1]*z[2,2])

[1] -0.1324439

zz <- solve(var(x)) #inverse covariance matrix

-zz[1,2]/sqrt(zz[1,1]*zz[2,2])

[1] -0.1324439

The slpack function gcor returns a (generalized) correlation matrix R
given a symmetric positive definite matrix C with positive diagonal elements.
The matrix D is such that C = D R D. See the following R code.

> C <- var(buxx)

> R<- cor(buxx)

> R

len nasal bigonal cephalic

len 1.00000000 -0.12815187 -0.05019157 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal -0.05019157 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

> out<-gcor(C)

> out$R

[,1] [,2] [,3] [,4]

[1,] 1.00000000 -0.12815187 -0.05019157 -0.08359332

[2,] -0.12815187 1.00000000 -0.07480324 -0.08261217

[3,] -0.05019157 -0.07480324 1.00000000 0.07204296

[4,] -0.08359332 -0.08261217 0.07204296 1.00000000

> C

len nasal bigonal cephalic

len 118299.9257 -191.084603 -104.718925 -124.477916

nasal -191.0846 18.793905 -1.967121 -1.550533

bigonal -104.7189 -1.967121 36.796311 1.892005

cephalic -124.4779 -1.550533 1.892005 18.743774

> out$D%*%R%*%out$D

[,1] [,2] [,3] [,4]

[1,] 118299.9257 -191.084603 -104.718925 -124.477916

[2,] -191.0846 18.793905 -1.967121 -1.550533

[3,] -104.7189 -1.967121 36.796311 1.892005

[4,] -124.4779 -1.550533 1.892005 18.743774
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6.2 Regularizing a Correlation Matrix

Ridge regression regularizes W
T
W = nR, which is closely related to regular-

izing a covariance or correlation matrix. For δ ≥ 0, a simple way to regularize
a p × p correlation matrix R = (rij) is to use

Rδ =
1

1 + δ
(R + δIp) = (tij) (6.5)

where tii = 1 and

tij =
rij

1 + δ

for i 6= j. Note that each correlation rij is divided by the same factor 1 + δ.
If λi is the ith eigenvalue of R, then (λi + δ)/(1 + δ) is the ith eigenvalue of
Rδ. The eigenvectors of R and Rδ are the same since if R x = λi x, then

Rδ x =
1

1 + δ
(R + δIp) x =

1

1 + δ
(λi + δ) x.

Note that Rδ = κR + (1 − κ)Ip where κ = 1/(1 + δ) ∈ (0, 1]. See Warton
(2008).

Following Datta (1995, pp. 250-254), the condition number of a symmetric
positive definite p × p matrix A is cond(A) = λ1(A)/λp(A) where λ1(A) ≥
λ2(A) ≥ · · · ≥ λp(A) > 0 are the eigenvalues of A. Note that cond(A) ≥ 1. A
well conditioned matrix has condition number cond(A) ≤ c for some number
c such as 50 or 500. Hence Rδ is nonsingular for δ > 0 and well conditioned
if

cond(Rδ) =
λ1 + δ

λp + δ
≤ c,

or

δ = max

(

0,
λ1 − cλp

c − 1

)

(6.6)

if 1 < c ≤ 500. Taking c = 50 suggests using

δ = max

(

0,
λ1 − 50λp

49

)

.

This type of regularization is simple, but inverting a p × p matrix is ex-
pensive for large p. It would good to be able to do variable selection with r
variables where n ≥ 10r, and then use the correlation matrix of these vari-
ables. Since the tij are between −1 and 1, |tij| < 0.02 are likely unimportant,
and we want a well conditioned matrix, the grid of δ values can be small: e.g.
δ ∈ {0, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, ..., 20, 40, 50}.

The matrix can be further regularized by setting tij = 0 if |tij| ≤ τ where
τ ∈ [0, 1) should be less than 0.5. Denote the resulting matrix by R(δ, τ ).
We suggest using τ = 0.05. Note that Rδ = R(δ, 0). Using τ is known as
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thresholding. We recommend computing Ip, R(δ, 0) and R(δ, 0.05) for c =
50, 100, 200, 300, 400, and 500. Compute R if it is nonsingular. Note that a
regularized covariance matrix can be found using

S(δ, τ ) = D R(δ, τ ) D (6.7)

where D is given by Equation (6.1).
A common type of regularization of a covariance matrix S is to use

SD = diag(S) where the ijth element of SD = 0 and SD(i, i) = S(i, i). The
corresponding correlation matrix is the identity matrix, and Mahalanobis
distances using the identity matrix correspond to Euclidean distances. These
estimators tend to use too much regularization, and underfit. Note that as
δ → ∞, Rδ → Ip, and Ip corresponds to c = 1. Note that SD corresponds
to using R(δ = ∞, 0) = Ip in Equation (6.6).

The slpack function corrlar produces the regularized correlation matri-
ces Rd = R(δ, 0) and Rt = R(δ, τ ) given a correlation matrix (e.g. from the
function gcor), condition number c and threshold tau with τ = 0.05 the
default. The value delta = δ depends on c through Equation (6.6). See the
following R code.

R<- cor(buxx)

corrlar(R,tau=0.05) #well conditioned so no regularization

corrlar(R,tau=0.07)

$Rr #no regularization

len nasal bigonal cephalic

len 1.00000000 -0.12815187 -0.05019157 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal -0.05019157 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

$Rt #two entries changed to 0

len nasal bigonal cephalic

len 1.00000000 -0.12815187 0.00000000 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal 0.00000000 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

corrlar(R,c=1.2)

$Rr

len nasal bigonal cephalic

len 1.00000000 -0.06378780 -0.02498294 -0.04160871

nasal -0.06378780 1.00000000 -0.03723343 -0.04112034

bigonal -0.02498294 -0.03723343 1.00000000 0.03585950

cephalic -0.04160871 -0.04112034 0.03585950 1.00000000

$Rt #too much regularization
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len nasal bigonal cephalic

len 1.0000000 -0.0637878 0 0

nasal -0.0637878 1.0000000 0 0

bigonal 0.0000000 0.0000000 1 0

cephalic 0.0000000 0.0000000 0 1

It is also common to analyze analogs of the inverse correlation matrix
R

−1 = (rij) since the rij are closely related to partial correlations. See the
discussion above and below Equation (6.4).

Here is a simple algorithm. If the condition number cond(R) ≤ 500,
let Rd = R. Otherwise, let Rd = R(δ = 0.01, 0). Let A = R

−1
d be

the analog of R
−1 to be regularized. Let DA = diag(

√
A11, ...,

√

App).
Hence A acts like a covariance matrix. Then a generalized correlation ma-
trix RI = D

−1
A AD

−1
A is made and regularized with RI,d = RI(δ, 0) and

RI,t = RI(δ, τ ). Then the regularized analogs of the inverse correlation ma-
trix are RINV,d = DARI,dDA and RINV,t = DARI,tDA. The slpack func-
tion rinvrlar gets the above two matrices.

R<- cor(buxx) #no regularization

rinvrlar(R) #same as solve(R) = Rˆ(-1)

$Rinvd

[,1] [,2] [,3] [,4]

[1,] 1.02906945 0.14379621 0.05564264 0.09389398

[2,] 0.14379621 1.03181920 0.07779758 0.09165646

[3,] 0.05564264 0.07779758 1.01307222 -0.06190635

[4,] 0.09389398 0.09165646 -0.06190635 1.01988077

$Rinvt

[,1] [,2] [,3] [,4]

[1,] 1.02906945 0.14379621 0.05564264 0.09389398

[2,] 0.14379621 1.03181920 0.07779758 0.09165646

[3,] 0.05564264 0.07779758 1.01307222 -0.06190635

[4,] 0.09389398 0.09165646 -0.06190635 1.01988077

If p is large, then matrix inversion should be avoided if possible: the step
A = R

−1
d has the expensive O(p3) complexity. See Friedman et al. (2008)

and Hsieh et al. (2011).

Example 6.1. Let

R =

[

1 0.4
0.4 1

]

.

Then

Rδ=1 =

[

1 0.2
0.2 1

]

= R(δ = 1, τ = 0.1), and R(δ = 1, τ = 0.2) =

[

1 0
0 1

]

.

Note that for Rδ=1, the nondiagonal (nonunit) elements of R are divided by
1 + δ = 2.
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6.3 Complements

Note that we can regularize robust covariance and correlation matrices such
as the covmb2 estimator C given by Definition 1.16.

There is a lot of recent work on high dimensional covariance matrix or
inverse covariance matrix estimation. See Pourahmadi (2011) for a review.
Regularizing S

−1 = (Sij) needs the inverse covariance matrix to exist, or
a method to compute the Sij directly. It is also possible to regularize a
positive definite analog of S

−1. The inverse covariance matrix is also known
as a precision matrix or concentration matrix. Friedman et al. (2008) provides
an interesting method: graphical lasso (Glasso) takes a positive semidefinite
(possibly singular) covariance matrix estimator as an input, and returns a
positive definite one. Then the resulting estimator of the inverse covariance
matrix has many of its elements exactly equal to zero. Also see Hastie et al.
(2015, ch. 9). Again the robust covmb2 estimator could be the input. See
Croux and Öllerer (2016), which has some useful R code.

Also see Cai et al. (2011), Hsieh et al. (2011), Huang et al. (2006), Ledoit
and Wolf (2004), Liu et al. (2003), Naul and Taylor (2017), Rothman et al.
(2008), Schäfer and Strimmer (2007), Yu et al. (2017), and Yuan and Lin
(2007). There are R packages for graphical lasso: glasso and huge. The
second package appears to be better. See Croux and Öllerer (2016).

Some topics from multivariate analysis are discussed next. These topics
often need a covariance or correlation matrix, possibly regularized. Texts on
high dimensional multivariate analysis include Fujikoshi, et al. (2010), Izen-
man (2008), Koch (2014), Pourahmadi (2013), Rish and Grabarnik (2015),
and Yao et al. (2015). Also see Hastie et al. (2015, ch. 7, ch. 8).

For high dimensional clustering, see Jin and Wang (2016).
Discrimination analysis when p > n is interesting. See Cai and Liu (2011),

Hand (2006), Mai et al. (2012), and Mai and Zou (2013). See Friedman (1989)
for regularized discriminant analysis. Witten and Tibshirani (2011) give a
LASSO type FDA method useful for p > n. See the R package penalizedLDA.
Also see Xia (2017).

For high dimensional GLM variable selection, see Guo et al. (2017).
For a high dimensional 1 and 2 sample Hotelling’s T 2 type tests, see Hyodo

and Nishiyama (2017), Gregory et al. (2015), and Feng and Sun (2015).
Methods like ridge regression and lasso can also be extended to multivari-

ate linear regression. See, for example, Obozinski et al. (2011).
For high dimensional outlier detection see section 1.3 of this text, Aggar-

wal (2017), Agostinelli et al. (2015), Boudt et al. (2017), Öllerer and Croux
(2015), and Ro et al. (2015)

For high dimensional principal component analysis, see Croux et al. (2013),
Johnstone and Lu (2009), and Zou et al. (1993). Feng and He (2014) give a
method for the singular value decomposition that may be useful for principal
component analysis.
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6.4 Problems

6.1. Suppose

R =





1 0.4 0.8
0.4 1 0.5
0.8 0.5 1



 .

a) Find Rδ=1.
b) Find R(δ = 1, τ = 0.3).

6.2. Suppose

R =





1 0.6 −0.4
0.6 1 0.9
−0.4 0.9 1



 .

a) Find Rδ=1.
b) Find R(δ = 1, τ = 0.3).

R Problems

For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.


