
Chapter 9

High Dimensional Statistics

This chapter gives some results on high dimensional statistics. Some results
for regression were already covered.

9.1 Introduction

Several statistical methods, covered in previous chapters, can be computed
using an n × n matrix or a p × p matrix, depending on whether n or p is
smaller. See Remark 3.14 for ridge regression and Section 9.1 for principle
components analysis, which is used for principle components regression.

9.2 Principle Components Analysis

Principle components analysis (PCA) was used for PCR. See Chapter 3.
Suppose W is the standardized n × p data matrix and T = W g/

√
n− g.

If n < p, then the correlation matrix R = T T T = W T
g W g/(n− g) does not

have full rank. By singular value decomposition (SVD) theory, the SVD of T

is T = UΛV T where the positive singular values σi are square roots of the
positive eigenvalues of both T T T and of TT T . (The singular values are not

standard deviations.) Also V = (ê1 ê2 · · · êp), and T T T êi = σ2
i êi. Hence

classical principal component analysis on the standardized data can be done
using êi and λ̂i = σ2

i . The SVD of T T is T T = V ΛT UT , and

TT T =
1

n − g
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which is the matrix of scalar products divided by n. Similarly, if W c is the
centered data matrix (subtract the means), then T c = W c/

√
n− g, and the

covariance matrix S = T T
c T c = W T

c W c/(n−g). For more information about
the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).

The following output shows how to do classical PCA with S on a data set
using the SVD and g = 1. The eigenvectors agree up to sign.

x<-cbind(buxx,buxy) # data matrix

mn <- apply(x,2,mean) #sample mean

J <- 0*1:87 + 1 # vector of n ones, n = 87

J <- J%*%t(J)/87 #J%*%x has rows = mn

zc <- x-J%*%x #centered x

yc <- zc/sqrt(87-1) #t(yc) %*% yc = cov(x)

svd(yc)$v #right eigenvectors of Yc

[,1] [,2] [,3] [,4] [,5]

[1,] 0.653883 0.75596 -0.01173 0.00988 0.0268

[2,] -0.001366 0.03980 0.06800 -0.42534 -0.9016

[3,] -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

[4,] -0.000714 0.00251 -0.10890 0.89588 -0.4308

[5,] -0.756594 0.65327 -0.00952 0.00854 0.0252

> svd(t(yc))$u #left eigenvectors of YcˆT

[,1] [,2] [,3] [,4] [,5]

[1,] -0.653883 -0.75596 0.01173 -0.00988 -0.0268

[2,] 0.001366 -0.03980 -0.06800 0.42534 0.9016

[3,] 0.000489 0.01276 0.99161 0.12775 0.0151

[4,] 0.000714 -0.00251 0.10890 -0.89588 0.4308

[5,] 0.756594 -0.65327 0.00952 -0.00854 -0.0252

> prcomp(x)

Standard deviations:

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Rotation:

PC1 PC2 PC3 PC4 PC5

len 0.653883 0.75596 -0.01173 0.00988 0.0268

nasal -0.001366 0.03980 0.06800 -0.42534 -0.9016

bigonal -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

cephalic -0.000714 0.00251 -0.10890 0.89588 -0.4308

buxy -0.756594 0.65327 -0.00952 0.00854 0.0252

svd(yc)$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

svd(t(yc))$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Although PCA can be done if p > n, in general need p fixed for the sample
eigenvector to be a good estimator of a population eigenvector.
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9.3 MANOVA Type Tests

This section reviews Wald type tests and Wald type tests with the wrong dis-
persion matrix, and uses results from Rajapaksha and Olive (2022). Consider
testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g × 1 statistic Tn satisfies√
n(Tn − θ)

D→ u ∼ Ng(0,Σ). If Σ̂
−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0

(Tn, Σ̂/n) = n(Tn − θ0)
T Σ̂

−1
(Tn − θ0)

D→ uT Σ−1u ∼ χ2
g

as n → ∞. Then a Wald type test rejects H0 at significance level δ if D2
n >

χ2
g,1−δ where P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g, a chi-square distribution

with g degrees of freedom.
It is common to implement a Wald type test using

D2
n = D2

θ0

(Tn,Cn/n) = n(Tn − θ0)
T C−1

n (Tn − θ0)
D→ uT C−1u

as n → ∞ if H0 is true, where the g × g symmetric positive definite matrix

Cn
P→ C 6= Σ. Hence Cn is the wrong dispersion matrix, and uT C−1u

does not have a χ2
g distribution when H0 is true. Often Cn is a regularized

estimator of Σ, or C−1
n is a regularized estimator of the precision matrix

Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g× g identity matrix. Another
example is Cn = Sp, where Sp is a pooled covariance matrix, and it is
assumed that the p groups have the same covariance matrix Σ. When this
assumption is violated, Cn is usually not a consistent estimator of Σ. When
the bootstrap is used, often Cn = nS∗

T where S∗
T is the sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. The assumption that nS∗

T is a
consistent estimator of Σ is strong. See, for example, Machado and Parente
(2005). Rajapaksha and Olive (2022) showed how to bootstrap Wald tests
with the wrong dispersion matrix using the BR and PR bootstrap confidence
regions from Definitions 2.19 and 2.20.

Some examples include the pooled t test and one-way ANOVA test. Ru-
pasinghe Arachchige Don and Pelawa Watagoda (2018) and Rupasinghe
Arachchige Don and Olive (2019) gave Wald type tests for analogs of the
two sample Hotelling’s T 2 and one-way MANOVA tests using a consistent
estimator Σ̂ of Σ. These tests could greatly outperform the classical tests
that used the pooled covariance matrix when the sample sizes were large
enough to give good estimates of the covariance matrix of each group, but
for small sample sizes, the classical tests (with the wrong dispersion matrix)
sometimes did better in the simulations.

The bootstrap is useful since if
√
n(Tn − θ)

D→ u and
√
n(T ∗

n − Tn)
D→ u,

then the percentiles of n(Tn − θ0)
T C−1

n (Tn − θ0) can be estimated with the
sample percentiles of n(T ∗

n − Tn)T C−1
n (T ∗

n − Tn). See Remark 2.20.
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9.3.1 Large Sample Theory

One-way MANOVA type tests give a large class of Wald type tests and Wald
type tests with the wrong dispersion matrix. Using double subscripts will be
useful for describing these models. Suppose there are independent random
samples of size ni from p different populations (treatments), or ni cases are
randomly assigned to p treatment groups. Then n =

∑p
i=1 ni and the group

sample sizes are ni for i = 1, ..., p. Assume that m response variables yij =

(Yij1, ..., Yijm)T are measured for the ith treatment group and the jth case
in the group. Hence i = 1, ..., p and j = 1, ..., ni. Assume the p treatments
have possibly different population location vectors µi, such as E(yij) = µi.
Coordinatewise population medians and coordinatewise population trimmed
means are also useful. Then a one-way MANOVA type test is used to test
H0 : µ1 = µ2 = · · · = µp versus the alternative that not all of the µi are
equal.

Large sample theory can be used to derive Wald type tests, although
large sample theory is not the only solution. Let Cov(yij) = Σi be the
nonsingular population covariance matrix of the ith treatment group or
population. To simplify the large sample theory, assume ni = πin where
0 < πi < 1 and

∑p
i=1 πi = 1. Let Ti be a multivariate location estimator

such that
√
ni(Ti −µi)

D→ Nm(0,Σi), and
√
n(Ti −µi)

D→ Nm

(

0,
Σi

πi

)

. Let

T = (TT
1 , T

T
2 , ..., T

T
p )T , ν = (µT

1 ,µ
T
2 , ...,µ

T
p )T , and A be a full rank r ×mp

matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus
H1 : Aν 6= θ0 uses

A
√
n(T − ν)

D→ u ∼ Nr

(

0,A diag

(

Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)

AT

)

. (9.1)

Let the Wald type statistic

t0 = [AT − θ0]
T

[

A diag

(

Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)

AT

]−1

[AT − θ0]. (9.2)

These results prove the following theorem.

Theorem 9.1. Under the above conditions, t0
D→ χ2

r if H0 is true.

A useful fact for the F and chi-square distributions is dnFg,dn,1−δ → χ2
g,1−δ

as dn → ∞. Here P (X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn
. Reject H0 if

t0/r > Fg,dn,1−δ where dn = min(ni) = min(n1, ..., np).
This one-way MANOVA type test was used by Rupasinghe Arachchige

Don and Olive (2019), and a special case was used by Zhang and Liu (2013)

and Konietschke et al. (2015) with Ti = yi and Σ̂i = Si, the sample covari-
ance matrix corresponding to the ith treatment group. The p = 2 case gives
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analogs to the two sample Hotelling’s T 2 test. See Rupasinghe Arachchige
Don and Pelawa Watagoda (2018).

Several tests use the common covariance matrix assumption Σi ≡ Σ for
i = 1, ..., p. These tests are Wald type tests with the wrong dispersion matrix
if the common covariance matrix assumption is wrong. Examples include the
pooled t test with m = p = 1, the one-way ANOVA test with m = 1, the two
sample Hotelling’s T 2 test (with common covariance matrix) with p = 2, and
the one-way MANOVA test.

For the Rupasinghe Arachchige Don and Olive (2019) one-way MANOVA
type test, let A be the m(p − 1) ×mp block matrix

A =











I 0 0 . . . -I
0 I 0 . . . -I
...

...
...

...
0 0 . . . I -I











.

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let

w = AT =















T1 − Tp

T2 − Tp

...
Tp−2 − Tp

Tp−1 − Tp















. (9.3)

Then
√
nw

D→ Nm(p−1)(0,Σw) if H0 is true with Σw = (Σij) where Σij =
Σp

πp
for i 6= j, and Σii =

Σi

πi
+

Σp

πp
for i = j. Hence

t0 = nwT Σ̂
−1

w w = wT

(

Σ̂w

n

)−1

w
D→ χ2

m(p−1)

as the ni → ∞ ifH0 is true. Here
Σ̂w

n
is a block matrix where the off diagonal

block entries equal Σ̂p/np and the ith diagonal block entry is
Σ̂i

ni
+

Σ̂p

np
for

i = 1, ..., (p− 1). Reject H0 if

t0 > m(p − 1)Fm(p−1),dn
(1 − δ) (9.4)

where dn = min(n1, ..., np). This Wald type test may start to outperform the
one-way MANOVA test if n ≥ (m+ p)2 and ni ≥ 40m for i = 1, ..., p.

If H0 : Aν = θ0 is true, if the Σi ≡ Σ for i = 1, ..., p, and if Σ̂ is a
consistent estimator of Σ, then by Theorem 9.1
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t0 = [AT − θ0]
T

[

A diag

(

Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)

AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, then we get a bootstrap cutoff by
using

t∗0i = [AT ∗
i − AT ]T

[

A diag

(

Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)

AT

]−1

[AT ∗
i − AT ] =

D2
AT ∗

i

(

AT ,A diag

(

Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)

AT

)

.

Let F0 = t0/r. Then we can get a bootstrap cutoff using F ∗
0i = t∗0i/r. For

Ti = yi, let Σ̂ be the usual pooled covariance matrix estimator.

For Theorem 9.2, (n−p)U = t0
D→ χ2

m(p−1) follows trivially from Theorem

9.1, under the equal covariance matrix assumption. Fujikoshi (2002) also

showed (n− p)U
D→ χ2

m(p−1). Kakizawa (2009) also gave large sample theory

for some MANOVA tests. Lengthy calculations show (n − p)U = t0. See
Rajapaksha (2021) for details.

Theorem 9.2. For the one-way MANOVA test using θ0 = 0, A as defined
above Equation (9.3), and Ti = yi,

(n− p)U = t0 = [AT ]T

[

A diag

(

Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)

AT

]−1

[AT ]

where U is the Hotelling Lawley trace statistic. Hence if the Σi ≡ Σ and

H0 : µ1 = · · · = µp is true, then (n − p)U = t0
D→ χ2

m(p−1).

9.3.2 One Sample Hotelling T 2 Type Tests

Suppose there is a random sample x1, ...,xn from a population. A common
multivariate one sample test of hypotheses is H0 : µ = µ0 versus H1 : µ 6= µ0

where µ is a population location measure of the population. When n is much
larger than p, the one sample Hotelling (1931) T 2 test is often used. If the
xi are iid with expected value E(xi) = µ and nonsingular covariance matrix
Cov(xi) = Σ, then by the multivariate central limit theorem

√
n(x − µ)

D→ Np(0,Σ).

If H0 is true, then
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T 2
H = n(x− µ0)

T S−1(x− µ0)
D→ χ2

p.

The one sample Hotelling’s T 2 test rejects H0 if T 2
H > D2

1−δ where D2
1−δ =

χ2
p,δ and P (Y ≤ χ2

p,δ) = δ if Y ∼ χ2
p. Alternatively, use

D2
1−δ =

(n− 1)p

n− p
Fp,n−p,1−δ

where P (Y ≤ Fp,d,δ) = δ if Y ∼ Fp,d. The scaled F cutoff can be used since

T 2
H

D→ χ2
p if H0 holds, and

(n− 1)p

n− p
Fp,n−p,1−δ → χ2

p,1−δ

as n → ∞.
Suppose there is a random sample x1, ...,xn, and that it is desired to

test H0 : µ = µ0 versus H1 : µ 6= µ0 where µ is a p × 1 vector. We will
use µ = E(xi). Let the test statistic Tn = x and the bootstrapped test
statistic T ∗ = x∗ where the nonparametric bootstrap is used. Hence n cases
are drawn with replacement from the sample to form x∗. We will also use
Tn = the coordinatewise median where µ is the population coordinatewise
median. We will use Cn = C−1

n = Ip. Let θ = µ0 = 0.
The first large sample 100(1− δ)% confidence region is

{w : (w − Tn)T C−1
n (w − Tn) ≤ D2

(UB,T )} =

{w : D2
w(Tn, I) ≤ D2

(UB,T )} (9.5)

where the cutoff D2
(UB,T ) is the 100(1− α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i − Tn)T (T ∗
i − Tn). Note that the corresponding

test for H0 : θ = 0 rejects H0 if (Tn − 0)T (Tn − 0) > D2
(UB,T ).

The second large sample 100(1− δ)% confidence region for θ is

{w : (w − T
∗
)T C−1

n (w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
, I) ≤ D2

(UB)} (9.6)

where the cutoff D2
(UB) is the 100(1 − α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i −T
∗
)T (T ∗

i −T
∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = 0 rejects H0 if (T
∗ − 0)T (T

∗ − 0) > D2
(UB).

The test uses the result that
√
n(x−u)

D→ Np(0,Σx) and
√
n(x∗ −x)

D→
Np(0,Σx). Since I is independent of the bootstrap sample, correction factors
for the bootstrap cutoffs were not needed. Since the sample quantile is that
of a random variable, B does not need to be large. If Σx = I , then
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(x − µ)T I−1(x − µ) ≈ 1

n
χ2

p

since
n(x− µ)T I−1(x− µ)

D→ χ2
p

as n → ∞. For high dimensional data with p ≥ n, we still have E(x) = µ,
Cov(x) = Σx/n, E(x∗) = x, and Cov(x∗) = (n− 1)S/n2.

C−1
n = I can be replaced by C−1

n = diag(1/S2
1 , ..., 1/S

2
p) where S2

i = Sii

when the sample covariance matrix S = (Sij). Other choices of Cn can be
used as long as the computational complexity of C−1

n is not too high.
The mpack function hdhot1wsim was used for the simulation.
The argument xtype gives the multivariate distribution of x where y =

Ax. Hence xtype= 1 for x ∼ Np(0, I), xtype= 2 for a mixture distribution
x ∼ 0.6Np(0, I)+0.4Np(0, 25I) for the default argument eps = 0.4, xtype
= 3 for a multivariate t4 distribution for the default argument dd = 4, and
xtype = 4 for a multivariate lognormal distribution where x = (x1, ..., xp)
with wi = exp(Z) where Z ∼ N(0, 1) and xi = wi − E(wi) where E(wi) =
exp(0.5). The argument covtyp = 1 if A = I so, and covtyp = 2 if A =
diag(

√
1, ...,

√
p). When covtyp = 3, cor(Yi, Yj) = ρ where ρ = 0 if ψ = 0,

ρ → 1/(c+ 1) as p → ∞ if ψ = 1/
√
cp where c > 0, and ρ → 1 as p → ∞ if

ψ ∈ (0, 1) is a constant. E(x) = δ1 where 1 is the p× 1 vector of ones. Then
the argument delta = δ.

The first three distributions have mean µ = E(x) equal to the population
coordinatewise median since the distributions are elliptically contoured dis-
tributions with center µ. The fourth distribution does not have E(x) = the
population coordinatewise median. Hence if H0 : µ = 0 is true for µ = E(x),
then H0 is false if µ is the population coordinatewise median.

The simulation used 5000 runs, the 4 xtypes, and the 3 covtyps. We used
n = 100 and p = 10, 100, 200, 400. For covty=3, we used ψ = 1/

√
p. We used

delta = 0 and delta = 1. For δ = 0, expect coverage to be less than 0.1 as p
increases.

Consider testing H0 : µ = 0 versus HA : µ 6= 0 using independent and
identically distributed (iid) x1, ...,xn where the xi are p× 1 random vectors
and p may be much larger than n. Replace xi by wi = xi − µ0 to test
H0 : µ = µ0 versus HA : µ 6= µ0.

The next two high dimensional tests are described in Srivastava and Du
(2008). Also see Hu and Bai (2015). Let tr(A) be the trace of square matrix
A. Let R be the sample correlation matrix. Consider testing H0 : µ = 0

versus HA : µ 6= 0. Let D = diag(S). Let

cp,n = 1 +
tr(R2)

p3/2
.

Let n = O(pδ) where 0.5 < δ ≤ n. Then under regularity conditions
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Z1 =
nxT D−1x− (n−1)p

n−3

2
(

tr(R2) − p2

n−1

)

D→ N(0, 1)

as n, p → ∞. The next test is attributed to Bai and Saranadasa (1996).
Suppose p/n→ c > 0. Under regularity conditions,

Z2 =
nxT x − tr(S)

[

2(n−1)n
(n−2)(n+1)

(

tr(S2) − 1
n
[tr(S)]2

)

]1/2

D→ N(0, 1)

as n, p → ∞. Both of these test statistics needed p/n → c > 0 or p/n2 → 0.
Hence p can not be too big.

There are test statistics Tn for testing H0 : µ = 0 where p can be much
larger with

Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute.
The following test is due to Chen and Qin (2010). Also see Hu and Bai (2015).
Let a =

∑n
i=1 xi and let X = (xij) be the data matrix with ith row = xT

i

and ij element = xij. Let vec(A) stack the columns of matrix A so that

c = vec(XT ) = [xT
1 ,x

T
2 , ...,x

T
n ]T . Then

cT c =

n
∑

i=1

xT
i xi =

n
∑

i=1

‖xi‖2 =

n
∑

i=1

p
∑

j=1

(xij)
2.

Let Tn =

1

n(n− 1)
[aT a − cT c] =

1

n(n− 1)

∑∑

i 6=j

xT
i xj =

1

n(n− 1)

∑

i 6=j

xT
i xj . (9.7)

The terms in cT c =
∑n

i=1 xT
i xi are the terms that cause the restriction on p

for asymptotic normality for the previous two tests. Under H0 : µ = 0 and
additional regularity conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. Here

s2n =
2

n(n− 1)
tr





∑

i 6=j

(xi − x(i,j))x
T
i (xj − x(i,j))x

T
j





where x(i,j) is the sample mean computed without xi or xj :



390 9 High Dimensional Statistics

x(i,j) =
1

n− 2

∑

k 6=i,j

xk.

The Tn in Equation (9.7) can be viewed as a modification of ‖x‖2 = xT x

that is a better estimator of µT µ in high dimensions. Note that µ = 0 iff
µT µ = 0 and E(Tn) = E(xT

i xj) = µT µ if xi and xj are iid with E(xi) = µ

and i 6= j.
The bootstrap often works well on such statistics, but the nonparametric

bootstrap fails because terms like xT
j xj need to be avoided, and the non-

parametric bootstrap has replicates: the proportion of cases in the bootstrap
sample that are not replicates is about 1 − e1 ≈ 2/3 ≈ 7/11. The m out
of n bootstrap without replacement draws a sample of size m without re-
placement from the n cases. For B = 1, this is a data splitting estimator,
and T ∗

m ≈ N(0, s2m) for large enough m and p. If B is larger, the data cloud

has correlated T ∗
m,1, ..., T

∗
m,B centered at T

∗∗
with variance σ2

m which may be

less than s2m. Here T
∗∗

is the sample mean of all
(

n
m

)

statistics T ∗
m obtained

by drawing a sample of size m with replacement from n. Theory for the m
out of n bootstrap often has m/n → 0 with m → ∞. Sampling without
replacement is like sampling with replacement when n >> m, and sampling
with replacement leads to iid T ∗

m with respect to the bootstrap distribution.

Heuristically, the T ∗
m may be approximately iid N(T

∗∗
, s2m) if m/n → 0 and

m→ ∞. The slpack program hdhot1sim uses m = floor(2n/3) and worked
well in simulations. This choice of m gives an ad hoc test unless theory can
be given for the test.

Let Wi be an indicator random variable with Wi = 1 if x∗
i is in the sample

and Wi = 0, otherwise, for i = 1, ..., n. The Wi are binary and identically
distributed, but not independent. Hence P (Wi = 1) = m/n. Let Wij =
WiWj with i 6= j. Again, the Wij are binary and identically distributed.
P (Wij = 1) = P(ordered pair (xi,xj)) was selected in the sample. Hence
P (Wij = 1) = m(m − 1)/[n(n − 1)] since m(m − 1) ordered pairs were
selected out of n(n − 1) possible ordered pairs. Then

T ∗
m =

1

m(m − 1)

∑∑

k 6=d

xT
ik

xid
=

1

m(m− 1)

∑∑

i 6=j

WiWjx
T
i xj

where the xi1 , ...,xim
are the m vectors xi selected in the sample. The first

double sum has m(m − 1) terms while the second double sum has n(n − 1)
terms. Hence

E(T ∗
m) =

1

m(m− 1)

∑∑

i 6=j

E[WiWj ]x
T
i xj = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V (T ∗
m) =

E([T ∗
m]2) − [Tn]2 = Cov(T ∗

m, T
∗
m).
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To find the variance V (Tn) from Equation (9.7), let Wij = xT
i xj = Wji,

and note that

Tn =
2

n(n − 1)
Hn where Hn =

∑

i <

∑

j

xT
i xj =

∑

i<j

xT
i xj.

Then V (Hn) = Cov(Hn, Hn) =

Cov(
∑

i <

∑

j

Wij,
∑

k <

∑

d

Wkd) =
∑

i <

∑

j

∑

k <

∑

d

Cov(Wij,Wkd). (9.8)

Let V (Wij) = σ2
W for i 6= j. The covariances are of 3 types. First, if

(ij) = (kd), then Cov(Wij ,Wkd) = V (Wij) = σ2
W . There are n(n − 1)/2

such terms. Second, if i, j, k, d are distinct, then Wij and Wkd are indepen-
dent with Cov(Wij ,Wkd) = 0. Third, there are terms where exactly three of
the four subscripts are distinct, which have Cov(Wij ,Wid) = θ where j 6= d,
i < j, and i < d or Cov(Wij,Wkj) = θ where i 6= k, i < j, and k < j. These
covariance terms are all equal to the same number θ since Wij = Wji. The
number of ways to get three distinct subscripts is

a− b− c =

(

n

2

)2

−
(

n

2

)(

n− 2

2

)

−
(

n

2

)

= n(n− 1)(n− 2)

since a is the number of terms on the right hand side of (9.8), b is the number
of terms where i, j, k, d are distinct, and c is the number of terms where
(ij) = (kd).

V (Hn) = 0.5n(n− 1)σ2
W + n(n− 1)(n − 2)θ.

This calculation was taken from Lehmann (1975, pp. 336-337). Thus

V (Tn) =
4

[n(n− 1)]2
V (Hn) =

2σ2
W

n(n− 1)
+

4(n − 2)θ

n(n− 1)
.

It can be shown that θ = 0 if µ = 0. Hence the test based on (9.7) can be
good if

√

2σ2
W/n2 is small where σ2

W does depend on p.

The following test has simple large sample theory, and can be good if
√

σ2
W /n is small. Hence we expect the test based on (9.7) to be better. Some

notation for the simple test is needed. Assume x1, ...,xn are iid, E(xi) = µ

and the variance V (xT
i xj) = σ2

W for i 6= j. Let m = floor(n/2) = bn/2c
be the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid
random variables Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1,W2, ...,Wm =
xT

1 x2,x
T
3 x4, ...,x

T
2m−1x2m. Note that E(Wi) = µT µ and V (Wi) = σ2

W . Let
S2

W be the sample variance of the Wi:
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S2
W =

1

m− 1

m
∑

i=1

(Wi −W )2.

If σ2
W ∝ τp, then n may not be large enough for the normal approximation to

hold. The following theorem follows from the univariate central limit theorem.

Theorem 9.1. Assume x1, ...,xn are iid, E(xi) = µ, and the variance
V (xT

i xj) = σ2
W for i 6= j. Let W1, ...,Wm be defined as above. Then

a)
√
m(W − µT µ)

D→ N(0, σ2
W).

b)

√
m(W − µT µ)

SW

D→ N(0, 1)

as n → ∞.

9.3.3 Two Sample Hotelling T 2 Type Tests

Suppose there are two independent random samples from two populations or
groups. A common multivariate two sample test of hypotheses isH0 : µ1 = µ2

versus H1 : µ1 6= µ2 where µi is a population location measure of the ith
population for i = 1, 2. The two sample Hotelling’s T 2 test is the classical
method for the test.

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from two populations or groups, and that it is desired to test
H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where µi arem×1 vectors. Let n = n1+n2.

The classical test uses

T 2
C = (x1 − x2)

T

[(

1

n1
+

1

n2

)

Σ̂pool

]−1

(x1 − x2)

where

Σ̂pool =
(n1 − 1)S1 + (n2 − 1)S2

n− 2
.

Then reject H0 if T 2
C > mFm,n−2,1−α.

The large sample test uses

T 2
L = (x1 − x2)

T

(

S1

n1
+

S2

n2

)−1

(x1 − x2).

Let dn = min(n1 − p, n2 − p). Then reject H0 if T 2
L > mFm,dn,1−α.

Note that T 2
C ≈ T 2

L if n1 ≈ n2 ≥ 20m and the two tests are asymptotically
equivalent if ni/n → 0.5 as n1, n2 → ∞. The BR bootstrap cutoff for the
classical test uses
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D2
i = (T ∗

i − Tn)T

[(

1

n1
+

1

n2

)

Σ̂pool

]−1

(T ∗
i − Tn)

where Tn = (x1 − x2) and T ∗
i = (x∗

1i − x∗
2i). We also use the PR and BR

bootstrap tests for the test statistic

(x1 − x2)
T (x1 − x2)

that uses Cn = I . These two tests are also used in Section 9.
The data distributions in the simulation are the same as those described

in Section 9.3.2, but ni ≥ 10m. For the classical test, there are distributions
where T 2

C is too large compared to the cutoff, resulting in large type I error,
and there are distributions where T 2

C is too small compared to the cutoff,
resulting in small type I error. For highly skewed data, large ni were often
needed before the large sample test had type I error close to the nominal, but
the type I error tended to be less than 0.12 when the nominal type I error was
0.05. The tests using Cn tended to have type I error close to the nominal, at
the cost of producing a confidence region that has a large volume.

Suppose there are two independent random samples from two populations
or groups. A common multivariate two sample test of hypotheses is H0 : µ1 =
µ2 versus H1 : µ1 6= µ2 where µi is a population location measure of the ith
population for i = 1, 2. The two sample Hotelling’s T 2 test is the classical
method for the test.

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from two populations or groups, and that it is desired to test
H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where µi are m × 1 vectors. We will
use µi = E(xi), and p > ni is possible. Let the test statistic Tn = x1 − x2

and the bootstrapped test statistic T ∗ = x∗
1 − x∗

2 where the nonparametric
bootstrap is used. Hence ni cases are drawn with replacement from sample i
to form x∗

i . We will use Cn = C−1
n = Im. Let θ = µ1 − µ2.

The first large sample 100(1− δ)% confidence region is

{w : (w − Tn)T C−1
n (w − Tn) ≤ D2

(UB,T )} = {w : D2
w(Tn, I) ≤ D2

(UB,T )}
(9.9)

where the cutoff D2
(UB,T ) is the 100(1− α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i − Tn)T (T ∗
i − Tn). Note that the corresponding

test for H0 : θ = 0 rejects H0 if (Tn − 0)T (Tn − 0) > D2
(UB ,T ).

The second large sample 100(1− δ)% confidence region for θ is

{w : (w−T ∗
)T C−1

n (w−T ∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
, I) ≤ D2

(UB)} (9.10)

where the cutoff D2
(UB) is the 100(1 − α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i −T
∗
)T (T ∗

i −T
∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = 0 rejects H0 if (T
∗ − 0)T (T

∗ − 0) > D2
(UB).
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The test uses the result that
√
n(x−u)

D→ Np(0,Σx) and
√
n(x∗ −x)

D→
Np(0,Σx). Since I is independent of the bootstrap sample, correction factors
for the bootstrap cutoffs were not needed. Since the sample quantile is that
of a random variable, B does not need to be large. If µ1 = µ2, Σxi

= I , and
n1 = n2 = k, then

(x1 − x2)
T I−1(x1 − x2) ≈

2

k
χ2

m

since
(x1 − x2)

T (2I/k)−1(x1 − x2)
D→ χ2

m

as k → ∞.
Four types of data distributions wi were considered that were identical

for i = 1, 2. Then x1 = Aw1 + δ1 and x2 = σBw2 where 1 = (1, .., 1)T

is a vector of ones. We used A = B = diag(1,
√

2, ...,
√
m), A = B = I ,

and A = I with B = diag(1,
√

2, ...,
√
m). The wi distributions were the

multivariate normal distributionNp(0, I), the multivariate t distribution with
4 degrees of freedom, the mixture distribution 0.6Nm(0, I) + 0.4Nm(0, 25I),
and the multivariate lognormal distribution shifted to have zero mean. Note
that Cov(x2) = σ2 Cov(x1) when A = B, and E(xi) = E(wi) = 0 if δ = 0.

The mpack function hdhot2wsim was used for the simulation.
There are test statistics Tn for testing H0 : µ1 = µ2 where p can be much

larger with
Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute.
Let a =

∑n1

i=1 x1i and let X1 = (x1ij) be the data matrix with ith row =
xT

1i and ij element = x1ij. Let vec(A) stack the columns of matrix A so that

c = vec(XT
1 ) = [xT

11,x
T
12, ...,x

T
1n1

]T . Then

cT c =

n1
∑

i=1

xT
1ix1i =

n1
∑

i=1

‖x1i‖2 =

n1
∑

i=1

p
∑

j=1

(x1ij)
2.

Let b =
∑n2

i=1 x2i and let X2 = (x2ij) be the data matrix with ith row =

xT
2i and ij element = x2ij. Let d = vec(XT

2 ) = [xT
21,x

T
22, ...,x

T
2n2

]T . Then

dT d =

n2
∑

i=1

xT
2ix2i =

n2
∑

i=1

‖x2i‖2 =

n2
∑

i=1

p
∑

j=1

(x2ij)
2.

Note that ‖a − b‖2 = aT a + bT b − 2aT a, and let

Tn =
1

n1(n1 − 1)
[aT a − cT c] +

1

n2(n2 − 1)
[bT b − dT d] − 2aT b

n1n2
.



9.6 Complements 395

The terms in cT c and dT d are the terms that cause the restriction on
p for asymptotic normality. Under H0 : µ1 = µ2 and additional regularity
conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. See Hu and Bai (2015) and Chen and
Qin (2010).

The m out of n bootstrap without replacement draws a sample of size
mi without replacement from the ni cases, i = 1, 2. For B = 1, this is a
data splitting estimator, and T ∗

m ≈ N(0, s2m) for large enough m and p.

If B is larger, the data cloud has correlated T ∗
m,1, ..., T

∗
m,B centered at T

∗∗

with variance σ2
m which may be less than s2m. Here T

∗∗
is the sample mean

of all
(

n1

m1

)

+
(

n2

m2

)

statistics T ∗
m obtained by drawing a sample of size mi

with replacement from ni. Heuristically, the T ∗
m may be approximately iid

N(T
∗∗
, s2m) if mi/n → 0 and mi → ∞.

The slpack program hdhot2sim uses mi = floor(2ni/3) and worked well
in simulations. This choice of mi gives an ad hoc test unless theory can be
given for the test.

9.4 One Way MANOVA Type Tests

9.5 Summary

9.6 Complements

Jolliffe (2010) is an authoritative text on PCA. Mφller et al. (2005) discussed
PCA, principal component regression, and drawbacks of M estimators. Olive
(2017b) discussed outlier resistant PCA methods. Koch (2014) has some in-
teresting results on high dimensional PCA.

Some high dimensional one sample tests include Chen et al. (2011), Hyodo
and Nishiyama (2017), Park and Ayyala (2013), Srivastava and Du (2008),
and Wang, Peng, and Li (2015). Hu and Bai (2015) also describes some tests.

Some high dimensional two sample tests include Feng et al. (2015), Feng
and Sun (2015), and Gregory et al. (2015). Tests that assume Σx1

= Σx2
can

have nice large sample theory, but the equal covariance matrix assumption
is too strong.
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9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

9.1. Consider the data set 6, 3, 8, 5, and 2. Show work.


