Prediction and Statistical Learning

by David Olive
        Preprint M-02-006
        Copyright June 2016, Jan. 2022

2nd draft of course notes for Prediction and Statistical Learning. This manuscript is unfinished. Revisions are ongoing. Not even close to being ready yet. The .PDF version below is as of May 2023.

If you wish to contact the author, click here.

The complete text is in the file multnotes.pdf. The MDATA files are for ARC.

.PDF Version R Programs R Data R Code
slearnnotes.pdf slpack.txt sldata.txt slrhw.txt hdrhw.txt
Table of Contents
Pages
PDF
Misc MDATA Files
Preface i-x   cont bodfat.lsp
Chapter 1-Introduction 1-74   ch1 boston2.lsp
Chapter 2-Prediction Regions and the Bootstrap 75-142   ch2 buxton.lsp, cbrain.lsp
Chapter 3-Multiple Linear Regression 143-208   ch3 credit.lsp, cyp.lsp
Chapter 4-Additive Error Regression, GLMs, and GAMs 209-296   ch4 gladstone.lsp
Chapter 5-Discriminant Analysis 297-340   ch5 ICU.lsp
Chapter 6-Multivariate Analysis 341-348   ch6 major.lsp
Chapter 7-Cluster Analysis 349-356   ch7 marry.lsp, mbb1415
Chapter 8-MLR with Heterogeneity 357-366   ch8 museum.lsp
Chapter 9-High Dimensional Statistics 357-366   ch9 muss.lsp
Chapter 10-Multivariate Linear Regression 357-366   ch10
Chapter 11-Stuff for Students 357-366   ch11 pollution.lsp
Bibliography- 367-392   bib
data- NA-NA   ch povc.lsp
data- NA-NA   ch pov.lsp
data- NA-NA   ch
data- NA-NA   ch skeleton.lsp
data- NA-NA   ch
data- NA-NA   ch wbb1415
data NA-NA   ch  

 

 


Comments: Webmaster

Copyright © 2005, Board of Trustees, Southern Illinois University
Privacy Policy Last Updated