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Preface

Many statistics departments offer a one semester graduate course in statistical
learning theory using texts such as Hastie et al. (2009), Hastie et al. (2015),
and James et al. (2021). Also see Berk (2016), Izenman (2008), Kuhn and
Johnson (2013), Marden (2006), and Murphy (2012).

The prerequisite for this text is a calculus based course in statistics at
the level of Chihara and Hesterberg (2011), Hogg, Tanis, and Zimmerman
(2020), Larsen and Marx (2011), Wackerly, Mendenhall and Scheaffer (2008)
or Walpole, Myers, Myers and Ye (2016). Linear algebra and one computer
programming class are essential. Knowledge of regression would be useful.
See Olive (2017a) and Cook and Weisberg (1999). Knowledge of multivariate
analysis would be useful. See Olive (2017b) and Johnson and Wichern (2007).

Some highlights of this text follow.

• Prediction intervals are given that can be useful even if n < p.
• The response plot is useful for checking the model.
• The large sample theory for the elastic net, lasso, and ridge regression is

greatly simplified.
• The large sample theory for some data splitting estimators, variable selec-

tion estimators, marginal maximum likelihood estimators, and one com-
ponent partial least squares will be given. See Olive and Zhang (2023).

Downloading the book’s R functions slpack.txt and data files sl-
data.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/slpack.txt")

source("http://parker.ad.siu.edu/Olive/sldata.txt")

The R software is used in this text. See R Core Team (2020). Some packages
used in the text include glmnet Friedman et al. (2015), leaps Lumley
(2009), MASS Venables and Ripley (2010), and pls Mevik et al. (2015).
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Teaching the material to Math 583 students at Southern Illinois University
in 2017 was very useful. The text was used for a high dimensional statistics
course in 2023. Trevor Hastie’s website had a lot of useful information. Work
by R. Dennis Cook and his coauthors was useful for figuring out OPLS.
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Chapter 1

Introduction

This chapter provides a preview of the book, and some techniques useful
for visualizing data in the background of the data are given in Section 1.2.
Sections 1.3 and 1.7 review the multivariate normal distribution and multiple
linear regression. Section 1.4 suggests methods for outlier detection. Some
large sample theory is presented in Section 1.5, and Section 1.6 covers mixture
distributions.

1.1 Overview

Statistical Learning could be defined as the statistical analysis of multivari-
ate data. Machine learning, data mining, analytics, business analytics, data
analytics, and predictive analytics are synonymous terms. The techniques are
useful for Data Science and Statistics, the science of extracting information
from data. The R software will be used. See R Core Team (2020).

Let z = (z1, ..., zk)
T where z1, ..., zk are k random variables. Often z =

(Y,xT )T where xT = (x1, ..., xp) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
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2 1 Introduction

method performs on the test data. If the training data is (x1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf , Yf), then particular interest is in

the accuracy of the estimator Ŷf of Yf obtained when the Statistical Learning
method is applied to the predictor xf . The two Pelawa Watagoda and Olive
(2021b) prediction intervals, developed in Section 2.2, will be tools for eval-
uating Statistical Learning methods for the additive error regression model
Yi = m(xi) + ei = E(Yi|xi) + ei for i = 1, ..., n where E(W ) is the expected
value of the random variableW . The multiple linear regression (MLR) model,
Yi = β1 + x2β2 + · · · + xpβp + e = xT β + e, is an important special case.
Olive, Rathnayake, and Haile (2022) give prediction intervals for paramet-
ric regression models such as generalized linear models (GLMs), generalized
additive models (GAMs), and some survival regression models.

The estimator Ŷf is a prediction if the response variable Yf is continuous,

as occurs in regression models. If Yf is categorical, then Ŷf is a classification.
For example, if Yf can be 0 or 1, then xf is classified to belong to group i if

Ŷf = i for i = 0 or 1.

Following Marden (2006, pp. 5,6), the focus of supervised learning is pre-
dicting a future value of the response variable Yf given xf and the training
data (Y1,x1), ..., (Yn,x1). Hence the focus is not on hypothesis testing, con-
fidence intervals, parameter estimation, or which model fits best, although
these four inference topics can be useful for better prediction. The focus
of unsupervised learning is to group x1, ...,xn into clusters. Data mining is
looking for relationships in large data sets.

Notation: Typically lower case boldface letters such as x denote column
vectors, while upper case boldface letters such as S or Y are used for ma-
trices or column vectors. If context is not enough to determine whether y
is a random vector or an observed random vector, then Y = (Y1, ..., Yp)

T

may be used for the random vector, and y = (y1 , ..., yp)
T for the observed

value of the random vector. An upper case letter such as Y will usually be a
random variable. A lower case letter such as x1 will also often be a random
variable. An exception to this notation is the generic multivariate location
and dispersion estimator (T,C) where the location estimator T is a p × 1
vector such as T = x. C is a p× p dispersion estimator and conforms to the
above notation.

The main focus of the first three chapters is developing tools to analyze
the multiple linear regression (MLR) model Yi = xT

i β + ei for i = 1, ..., n.
Classical regression techniques use (ordinary) least squares (OLS) and assume
n >> p, but Statistical Learning methods often give useful results if p >> n.
OLS forward selection, lasso, ridge regression, marginal maximum likelihood
(MMLE), one component partial least squares (OPLS), the elastic net, partial
least squares (PLS), and principal component regression (PCR) will be some
of the techniques examined. See Chapter 3.
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Chapter 2 develops prediction regions and inference after variable selec-
tion. Prediction intervals are a special case of prediction regions, and applying
the large sample nonparametric prediction region on the bootstrap sample
results in a bootstrap confidence region. These tools will be useful for infer-
ence when n/p is large. Prediction intervals are developed that can be useful
even if p ≥ n.

For classical regression and multivariate analysis, we often want n ≥ 10p,
and a model with n < 5p is overfitting: the model does not have enough data
to estimate parameters accurately. Statistical Learning methods often use a
model with a complexity measure d, where n ≥ Jd with J ≥ 5 and preferably
J ≥ 10. For several regression models with lasso, d is the number of variables
with nonzero lasso coefficients.

Acronyms are widely used in regression and Statistical Learning, and some
of the more important acronyms appear in Table 1.1. Also see the text’s index.

Remark 1.1. There are several important Statistical Learning principles.
1) There is more interest in prediction or classification, e.g. producing Ŷf ,
than in other types of inference such as parameter estimation, hypothesis
testing, confidence intervals, or which model fits best.
2) Often the focus is on extracting useful information for high dimensional
statistics where n/p is not large, e.g. n < 5p where p > n is common. If d
is a complexity measure for the fitted model, we want n/d large. A sparse
model has few nonzero coefficients. We can have sparse population models
and sparse fitted models. Sometimes sparse fitted models are useful even if
the population model is not sparse. Often the number of nonzero coefficients
of a sparse fitted model = d. Sparse fitted models are often useful for predic-
tion.
3) Interest is in how well the method performs on test data. Performance on
training data is overly optimistic for estimating performance on test data.
4) Some methods are flexible while others are unflexible. For unflexible re-
gression methods, the sufficient predictor is often a hyperplane SP = xT β
(see Definition 1.2), and often the mean function E(Y |x) = M(xT β) where
the function M is known but the p×1 vector of parameters β is unknown and
must be estimated (GLMs). Flexible methods tend to be useful for more com-
plicated regression methods where E(Y |x) = m(x) for an unknown function
m or SP 6= xT β (GAMs). Flexibility tends to increase with d. See Chapter
4, Table 1.1, and Definition 1.2 for GLMs and GAMs.
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Table 1.1 Acronyms

Acronym Description
AER additive error regression
AP additive predictor = SP for a GAM
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
CV cross validation
DA discriminant analysis
EC elliptically contoured

EAP estimated additive predictor = ESP for a GAM
ESP estimated sufficient predictor
ESSP estimated sufficient summary plot = response plot
FDA Fisher’s discriminant analysis
GAM generalized additive model
GLM generalized linear model
iid independent and identically distributed

KNN K–nearest neighbors discriminant analysis
lasso an MLR method
LDA linear discriminant analysis
LR logistic regression

MAD the median absolute deviation
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression

MMLE marginal maximum likelihood
MVN multivariate normal
OLS ordinary least squares

OPLS one component partial least squares
PCA principal component analysis
PCR principal component(s) regression
PLS partial least squares
pdf probability density function
PI prediction interval
pmf probability mass function
QDA quadratic discriminant analysis
SE standard error
SP sufficient predictor
SSP sufficient summary plot
SVM support vector machine
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1.2 Response Plots and Response Transformations

This section will consider tools for visualizing the regression model in the
background of the data. The definitions in this section tend not to depend
on whether n/p is large or small, but the estimator ĥ tends to be better if
n/p is large. In regression, the response variable is the variable of interest:
the variable you want to predict. The predictors or features x1, ..., xp are
variables used to predict Y .

Definition 1.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (1.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = α + βT x where ESP = α̂ + β̂
T
x and often α = 0. This class of

models includes the generalized linear model (GLM). Another important spe-
cial case is a generalized additive model (GAM), where Y is independent of
x = (x1, ..., xp)

T given the additive predictor AP = SP = α +
∑p

j=1 Sj(xj)
for some (usually unknown) functions Sj . The estimated additive predictor

EAP = ESP = α̂+
∑p

j=1 Ŝj(xj).

Notation. Often the index i will be suppressed. For example, the multiple
linear regression model

Yi = xT
i β + ei (1.2)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xT β + e. More accurately,
Y |x = xT β + e, but the conditioning on x will often be suppressed. Often
the errors e1, ..., en are iid (independent and identically distributed) from a
distribution that is known except for a scale parameter. For example, the
ei’s might be iid from a normal (Gaussian) distribution with mean 0 and
unknown standard deviation σ. For this Gaussian model, estimation of β and
σ is important for inference and for predicting a new future value of the
response variable Yf given a new vector of predictors xf .

1.2.1 Response and Residual Plots

Definition 1.3. An estimated sufficient summary plot (ESSP) or response
plot is a plot of the ESP versus Y . A residual plot is a plot of the ESP versus
the residuals.



6 1 Introduction

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi−m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).

For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.
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Fig. 1.1 Residual and Response Plots for the Tremearne Data
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Example 1.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
when sitting, height when kneeling, head length, nasal breadth, and span (per-
haps from left hand to right hand). Figure 1.1 presents the (ordinary) least
squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xT β + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xT β,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.

Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points as
outliers: cases that lie far away from the bulk of the data. Mentally draw a
box about the bulk of the data ignoring any outliers. Double the width of the
box (about the identity line for the response plot and about the horizontal
line for the residual plot). Cases outside of this imaginary doubled box are
potential outliers. Alternatively, visually estimate the standard deviation of
the residuals in both plots. In the residual plot look for residuals that are
more than 5 standard deviations from the r = 0 line. In Figure 1.1, the
standard deviation of the residuals appears to be around 10. Hence cases 3
and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 1.1 was made with the following R commands,
using slpack function MLRplot and the major.lsp data set from the text’s
webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots
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A problem with response and residual plots is that there can be a lot of
black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model would
plot the identity line, the two lines parallel to the identity line corresponding
to the Section 2.2 large sample 100(1− δ)% prediction intervals for Yf that

depends on Ŷf . Then plot points corresponding to training data cases that
do not lie in their 100(1 − δ)% PI. Use δ = 0.01 or 0.05. Try the following
commands that used δ = 0.2 since n is small. The commands use the slpack
function AERplot. See Problem 1.10.

out<-lsfit(X,Y)

res<-out$res

yhat<-Y-res

AERplot(yhat,Y,res=res,d=2,alph=1) #usual response plot

AERplot(yhat,Y,res=res,d=2,alph=0.2)

#plots data outside the 80% pointwise PIs

n<-100000; q<-7

b <- 0 * 1:q + 1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

out<-lsfit(x,y)

res<-out$res

yhat<-y-res

dd<-length(out$coef)

AERplot(yhat,y,res=res,d=dd,alph=1) #usual response plot

AERplot(yhat,y,res=res,d=dd,alph=0.01)

#plots data outside the 99% pointwise PIs

AERplot2(yhat,y,res=res,d=2)

#response plot with 90% pointwise prediction bands

1.2.2 Response Transformations

A response transformation Y = tλ(Z) can make the MLR model or additive
error regression model hold if the variable of interest Z is measured on the
wrong scale. For MLR, Y = tλ(Z) = xT β +e, while for additive error regres-
sion, Y = tλ(Z) = m(x) + e. Predictor transformations are used to remove
gross nonlinearities in the predictors, and this technique is often very useful.
However, if there are hundreds or more predictors, graphical methods for
predictor transformations take too long. Olive (2017a, Section 3.1) describes
graphical methods for predictor transformations.

Power transformations are particularly effective, and a power transforma-
tion has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for
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λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (1.3)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” e.g. from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added. The
following rules are useful for both response transformations and predictor
transformations.

a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to
logs. So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule appears in Cook and Weisberg (1999a, p. 86), and is
used for a plot of two variables, such as ESP versus Y for response transfor-
mations or x1 versus x2 for predictor transformations.
Ladder rule: To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.
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Fig. 1.2 Plots to Illustrate the Ladder Rule
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Example 1.2. Examine Figure 1.2. Since w is on the horizontal axis,
mentally add a narrow vertical slice to the plot. If a large amount of data falls
in the slice at the left of the plot, then small values need spreading. Similarly,
if a large amount of data falls in the slice at the right of the plot (compared
to the middle and left of the plot), then large values need spreading. For
the variable on the vertical axis, make a narrow horizontal slice. If the plot
looks roughly like the northwest corner of a square then small values of the
horizontal and large values of the vertical variable need spreading. Hence in
Figure 1.2a, small values of w need spreading. If the plot looks roughly like
the northeast corner of a square, then large values of both variables need
spreading. Hence in Figure 1.2b, large values of x need spreading. If the plot
looks roughly like the southwest corner of a square, as in Figure 1.2c, then
small values of both variables need spreading. If the plot looks roughly like
the southeast corner of a square, then large values of the horizontal and
small values of the vertical variable need spreading. Hence in Figure 1.2d,
small values of x need spreading.

Consider the additive error regression model Y = m(x) + e. Then the
response transformation model is Y = tλ(Z) = mλ(x)+ e, and the graphical
method for selecting the response transformation is to plot m̂λi(x) versus
tλi(Z) for several values of λi, choosing the value of λ = λ0 where the plotted
points follow the identity line with unit slope and zero intercept. For the
multiple linear regression model, m̂λi (x) = xT β̂λi

where β̂λi
can be found

using the desired fitting method, e.g. OLS or lasso.

Definition 1.4. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 1.5. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z(λ)
i =

Zλ
i − 1

λ
(1.4)

for λ 6= 0 and Z
(0)
i = log(Zi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as ΛL. This family is a special case of the
response transformations considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
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the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band if the MLR or additive error
regression model is reasonable for Y = W and x. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Notice that the graphical method is equivalent to making “response plots”
for the seven values of W = tλ(Z), and choosing the “best response plot”
where the MLR model seems “most reasonable.” The seven “response plots”
are called transformation plots below. Our convention is that a plot of X
versus Y means that X is on the horizontal axis and Y is on the vertical
axis.

Definition 1.6. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several of the
powers correspond to simple transformations such as the log, square root, and
cube root. These powers are easier to interpret than λ = 0.28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
power transformations are the λ = 0 (log), λ = 1/2, λ = −1, and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n

can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 1.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform the regression fitting method, such as OLS or lasso, on
(Wi,xi) and make the transformation plot of Ŵi versus Wi. If the plotted

points follow the identity line for λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z)
is the response transformation.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W−Ŵ look reasonable. The values of λ in decreasing order
of importance are 1, 0, 1/2,−1, and 1/3. So the log transformation would be
chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show W = tλ(Z) on the vertical axis.
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Fig. 1.3 Four Transformation Plots for the Textile Data

The label “TZHAT” of the horizontal axis are the “fitted values” Ŵ that
result from using W = tλ(Z) as the “response” in the OLS software.

Example 1.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response”
Z is the number of cycles to failure and a constant is used along with the
three predictors length, amplitude, and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.
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Shown in Figure 1.3 are transformation plots of Ŵ versus W = Zλ for
four values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 1.3a to form along a linear scatter in
Figure 1.3c. Dynamic plotting using λ as a control seems quite effective for
judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 1.3a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
Figure 1.3c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
1.3a suggests that the log rule is reasonable since max(Z)/min(Z) > 10.

1.3 The Multivariate Normal Distribution

For much of this book, X is an n×p design matrix, but this section will usu-
ally use the notation X = (X1, ..., Xp)

T and Y for the random vectors, and
x = (x1, ..., xp)

T for the observed value of the random vector. This notation
will be useful to avoid confusion when studying conditional distributions such
as Y |X = x. It can be shown that Σ is positive semidefinite and symmetric.

Definition 1.7: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (1.5)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 1.8. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix
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Cov(X) = E(X − E(X))(X −E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (1.6)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (1.7)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (1.8)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch.
8).

Theorem 1.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.



1.3 The Multivariate Normal Distribution 15

Theorem 1.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 1.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 −Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21).

Example 1.4. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1− ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance
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a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 1.2. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 1.2b and Theorem 1.3c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. See Seber and
Lee (2003, p. 23), and examine the following example from Rohatgi (1976,
p. 229). Suppose that the joint pdf of X and Y is a mixture of two bivariate
normal distributions both with EX = EY = 0 and VAR(X) = VAR(Y ) = 1,
but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1− ρ2
exp(

−1

2(1− ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1− ρ2
exp(

−1

2(1− ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 1.3 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ

for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 1.3. In Theorem 1.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

1.4 Outlier Detection

Outliers are cases that lie far away from the bulk of the data, and outliers can
ruin a statistical analysis. For multiple linear regression, the response plot is
often useful for outlier detection. Look for gaps in the response plot and for
cases far from the identity line. There are no gaps in Figure 1.1, but case 44
is rather far from the identity line. Figure 1.4 has a gap in the response plot.

Next, this section discusses a technique for outlier detection that works
well for certain outlier configurations provided bulk of the data consists of
more than n/2 cases. The technique could fail if there are g > 2 groups of
about n/g cases per group. First we need to define Mahalanobis distances
and the coordinatewise median. Some univariate estimators will be defined
first.
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1.4.1 The Location Model

The location model is

Yi = µ+ ei, i = 1, . . . , n (1.9)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. The location model is used when there is
one variable Y , such as height, of interest. The location model is a special
case of the multiple linear regression model and of the multivariate location
and dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. Statistical Learning is the analysis of multivariate
data, and the location model is an example of univariate data, not an example
of multivariate data.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
Also assume that the Yi have a cumulative distribution function (cdf) F that
is known up to a few parameters. For example, Yi could be normal, exponen-
tial, or double exponential. The location parameter µ is often the population
mean or median while the scale parameter is often the population standard
deviation

√
V (Y ). The ith case is Yi.

Point estimation is one of the oldest problems in statistics and four impor-
tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid. The sample mean is a measure of
location and estimates the population mean (expected value) µ = E(Y ).

Definition 1.9. The sample mean

Y =

∑n
i=1 Yi

n
. (1.10)

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 1.10. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.11)
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MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(n, Yi) = MED(Y1, ..., Yn) will also be used.

Definition 1.11. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (1.12)

and the sample standard deviation Sn =
√
S2

n.

Definition 1.12. The sample median absolute deviation is

MAD(n) = MED(|Yi −MED(n)|, i = 1, . . . , n). (1.13)

Since MAD(n) = MAD(n, Yi) is the median of n distances, at least half of
the observations are within a distance MAD(n) of MED(n) and at least half
of the observations are a distance of MAD(n) or more away from MED(n).
Like the standard deviation, MAD(n) is a measure of spread.

Example 1.5. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

1.4.2 Outlier Detection with Mahalanobis Distances

Now suppose the multivariate data has been collected into an n× p matrix

W = X =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 1.13. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.

Example 1.6. Let the data forX1 be 1, 2, 3, 4, 5, 6, 7, 8, 9while the data for
X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1),MED(X2))

T =
(5, 6)T .
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For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 1.14. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 1.15. Let x1, ...,xn be the data where xi is a p × 1 vector.
The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W T HW .
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Definition 1.16. The sample correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zj =
xj − xj√

Sjj

for j = 1, ..., p.Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)

T where i = 1, ..., n.
Often it is useful to standardize variables with a robust location estimator

and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj −MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j, ..., xnj) and MAD(xj) =
MAD(x1j, ..., xnj) are the sample median and sample median absolute de-
viation of the data for the jth variable: x1j, ..., xnj. See Definitions 1.10 and
1.12. Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)

len nasal bigonal

len 118299.9257 -191.084603 -104.718925

nasal -191.0846 18.793905 -1.967121

bigonal -104.7189 -1.967121 36.796311

cor(x)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

z <- scale(x)

cov(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)

madd <- apply(x,2,mad)/1.4826

z <- scale(x,center=medd,scale=madd)

ddplot4(z)#scaled data still has 5 outliers
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cov(z) #in the length variable

len nasal bigonal

len 4731.997028 -12.738974 -6.981262

nasal -12.738974 2.088212 -0.218569

bigonal -6.981262 -0.218569 4.088479

cor(z)

len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157

nasal -0.12815187 1.00000000 -0.07480324

bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)

len nasal bigonal

0 0 0

#scaled data has coord. median = (0,0,0)ˆT

apply(z,2,mad)/1.4826

len nasal bigonal

1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of Thumb 1.1. Multivariate procedures often start to give good
results for n ≥ 10p, especially if the distribution is close to multivariate nor-
mal. In particular, we want n ≥ 10p for the sample covariance and correlation
matrices. For procedures with large sample theory on a large class of distri-
butions, for any value of n, there are always distributions where the results
will be poor, but will eventually be good for larger sample sizes. Hence some-
times smaller n can be used, and sometimes much larger n is needed. This
rule of thumb is called the One in Ten Rule by Wikepedia. Also see Austin
and Steyerberg (2015), Green (1991), Harrell (2015, p. 72), Harrell, Lee, and
Mark (1996), Hair et al. (2009, pp. 573-574), Norman and Streiner (1986, pp.
122, 130, 157), and Vittinghoff and McCulloch (2006). This rule of thumb
is much like the rule of thumb that says the central limit theorem normal
approximation for Y starts to be good for many distributions for n ≥ 30.

Definition 1.17. The ith Mahalanobis distance Di =
√
D2

i where the ith
squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (1.14)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then

D2
x(T,C) = (x− T )T C−1(x− T ).
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Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let
the p × p dispersion matrix be Σ, often the population covariance matrix.
See Definition 1.8. Notice that if x is a random vector, then the population
squared Mahalanobis distance is

D2
x(µ,Σ) = (x−µ)T Σ−1(x− µ) (1.15)

and that the term Σ−1/2(x−µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an ana-
log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

1.4.3 Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Application 1.2. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the regression method on the m cases wi

corresponding to the covmb2 set B indices i1, ..., im, where m ≥ n/2.

Definition 1.18. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. Then the covmb2 estimator (T,C) is the
sample mean and sample covariance matrix applied to the cases in set B.
Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.
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Example 1.7. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator attempts to give a robust dispersion estimator
that reduces the bias by using a big ball about MEDj instead of a ball that
contains half of the cases. The weighting is the default method, but you can
also plot the squared Euclidean distances and estimate the number m ≥ n/2
of cases with the smallest distances to be used. The slpack function medout

makes the plot, and the slpack function getB gives the set B of cases that
got weight 1 along with the index indx of the case numbers that got weight
1. The function vecw stacks the columns of the dispersion matrix C into a
vector. Then the elements of the matrix can be plotted.

The function ddplot5 plots the Euclidean distances from the coordi-
natewise median versus the Euclidean distances from the covmb2 location
estimator. Typically the plotted points in this DD plot cluster about the
identity line, and outliers appear in the upper right corner of the plot with
a gap between the bulk of the data and the outliers. An alternative for out-
lier detection is to replace C by Cd = diag(σ̂11, ..., σ̂pp). For example, use
σ̂ii = Cii. See Ro et al. (2015) and Tarr et al. (2016) for references.

Example 1.8. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
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Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 1.13 to reproduce the following
plots.
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b) lasso using covmb set B

Fig. 1.4 Response plot for lasso and lasso applied to the covmb2 set B.

Figure 1.4a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
1.4b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 1.4b) is better for data analysis: impossible outliers should be deleted or
given 0 weight, we do not want to predict that some people are about 0.75
inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 1.5 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.
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Fig. 1.5 DD plot.

Also see Problem 1.14 where the covmb2 set B deleted the 8 cases with
the largest Di, including 5 outliers and 3 clean cases.
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Fig. 1.6 Elements of C for outlier data.
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Fig. 1.7 Elements of the classical covariance matrix S for outlier data.

Example 1.9. This example helps illustrate the effect of outliers on clas-
sical methods. The artificial data set had n = 50, p = 100, and the clean
data was iid Np(0, Ip). Hence the diagonal elements of the population co-
variance matrix are 0 and the diagonal elements are 1. Plots of the elements
of the sample covariance matrix S and the covmb2 estimator C are not
shown, but were similar to Figure 1.6. Then the first ten cases were contam-
inated: xi ∼ Np(µ, 100Ip) where µ = (10, 0, ..., 0)T. Figure 1.6 shows that
the covmb2 dispersion matrix C was not much effected by the outliers. The
diagonal elements are near 1 and the off diagonal elements are near 0. Figure
1.7 shows that the sample covariance matrix S was greatly effected by the
outliers. Several sample covariances are less than −20 and several sample
variances are over 40.

R code to used to produce Figures 1.6 and 1.7 is shown below.

#n = 50, p = 100

x<-matrix(rnorm(5000),nrow=50,ncol=100)

out<-medout(x) #no outliers, try ddplot5(x)

out <- covmb2(x,msteps=0)

z<-out$cov

plot(diag(z)) #plot the diagonal elements of C

plot(out$center) #plot the elements of T

vecz <- vecw(z)$vecz

plot(vecz)
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out<-covmb2(x,m=45)

plot(out$center)

plot(diag(out$cov))

#outliers

x[1:10,] <- 10*x[1:10,]

x[1:10,1] <- x[1:10]+10

medout(x) #The 10 outliers are easily detected in

#the plot of the distances from the MED(X).

ddplot5(x) #two widely separated clusters of data

tem <- getB(x,msteps=0)

tem$indx #all 40 clean cases were used

dim(tem$B) #40 by 100

out<-covmb2(x,msteps=0)

z<-out$cov

plot(diag(z))

plot(out$center)

vecz <- vecw(z)$vecz

plot(vecz) #plot the elements of C

#Figure 1.6

#examine the sample covariance matrix and mean

plot(diag(var(x)))

plot(apply(x,2,mean)) #plot elements of xbar

zc <- var(x)

vecz <- vecw(zc)$vecz

plot(vecz) #plot the elements of S

#Figure 1.7

out<-medout(x) #10 outliers

out<-covmb2(x,m=40)

plot(out$center)

plot(diag(out$cov))

The covmb2 estimator can also be used for n > p. The slpack function
mldsim6 suggests that for 40% outliers, the outliers need to be further away
from the bulk of the data (covmb2(k=5) needs a larger value of pm) than for
the other six estimators if n ≥ 20p. With some outlier types, covmb2(k=5)
was often near best. Try the following commands. The other estimators need
n > 2p, and as n gets close to 2p, covmb2 may outperform the other esti-
mators. Also see Problem 1.15.

#near point mass on major axis

mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)

mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad

mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)
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mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)

#mean shift outliers

mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)

mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)

mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)

#concentration steps can help

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)

mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

Elliptically contoured distributions, defined below, are an important class
of distributions for multivariate data. The multivariate normal distribution
is also an elliptically contoured distribution. This distributions is useful for
discriminant analysis in Chapter 5 and for multivariate analysis in Chapter
6.

Definition 1.19: Johnson (1987, pp. 107-108). A p×1 random vector
X has an elliptically contoured distribution, also called an elliptically sym-
metric distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z −µ)T Σ−1(z − µ)], (1.16)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (1.17)

for some function ψ. If the second moments exist, then

E(X) = µ (1.18)

and
Cov(X) = cXΣ (1.19)

where
cX = −2ψ′(0).

1.5 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.
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1.5.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 1.4: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ
σ

)
=
√
n

(∑n
i=1 Yi − nµ
nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000
is needed for moderately skewed distributions. A special case of the CLT is
proven after Theorem 1.17.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ
σ

)
=

(
Y n − µ
σ/
√
n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 1.20. Similarly, the notation

Y n ≈ N(µ, σ2/n),



30 1 Introduction

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of
√
n(Y n−µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 1.10. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ) D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ
)

D→ N(0, ρ(1− ρ))

since
√
n

(
Yn

n
− ρ
)

D
=
√
n(Xn − ρ) D→ N(0, ρ(1− ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn →∞ as n→∞. Then

√
kn

(
Yn

kn
− ρ
)
≈ N(0, ρ(1− ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)
kn

)
or Yn ≈ N(knρ, knρ(1− ρ)) .

Theorem 1.5: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ) D→ N(0, σ2),

then √
n(g(Tn) − g(θ)) D→ N(0, σ2[g′(θ)]2).

Example 1.11. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).
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Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 1.12. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 1.10b gives the limiting distribution of
√
n(X

n − p). Let
g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=
√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1− p)).
Example 1.13. Let Xn ∼ Poisson(nλ) where the positive integer n is

large and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−
√
λ

]
.

Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=
√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−
√
λ

]
=
√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 1.14. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.
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Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

1.5.2 Modes of Convergence and Consistency

Definition 1.20. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a)→ F (b)− F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t)−F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 1.15. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n
1, x ≥ 1

n
.
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Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n→∞,

Fn(x)→





0, x < 0
1
2
x = 0

1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x)→ FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 1.16. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 1.21. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 1.22. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X P→ 0.
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Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn −X| ≥ ε) = 0.

Definition 1.23. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 1.24. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r)→ 0

as n→∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2]→ 0

as n→∞.

Theorem 1.6: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.
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Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c
∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 1.7. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 1.6 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤
Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn)→ 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
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estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 1.8. a) Let Xθ be a random variable with distribution depend-
ing on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ)) D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ)) D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 1.25. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 1.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤
V (Y n)

ε2
=

σ2

nε2
→ 0

as n→∞. �

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 1.26. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that
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P (|Wn| ≤ Dε) ≥ 1− ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1). Similarly, Wn =
OP (n−1/2) if |√n Wn| = OP (1).

b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1− ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 1.27. Let Wn = ‖µ̂n −µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ) D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 1.10. Suppose there exists a constant κ such that

nδ(Wn − κ) D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 1.11. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
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d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1− ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P
(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1− ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1− ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1− ε/2

for all n ≥ N2. Hence

P (A) ≡ P
(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1− ε/2

and

P (B) ≡ P
(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)
≥ 1− ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1− ε/2 + 1− ε/2− 1 = 1− ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 1.13 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n−β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 1.12: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (1.20)
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Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1− P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1− ε/2K)− (K − 1) = K − ε/2−K + 1 = 1− ε/2
and

−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥
−1 +K(1 − ε/2K)− (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.

Hence
FWn(B) − FWn(−B) ≥ 1− ε for n > N. �

Theorem 1.13. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (1.21)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
1.10, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

1.5.3 Slutsky’s Theorem and Related Results

Theorem 1.14: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 1.15. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).
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f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 1.15. We are assuming that
the function τ does not depend on n.

Example 1.17. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since i)
the SLLN holds (use Theorems 1.9 and 1.15), ii) the WLLN holds, and iii)
the CLT holds (use Theorem 1.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 1.7b. By the delta method
and Theorem 1.8b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 1.15e, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 1.16. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the

function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 1.4. For Theorem 1.15, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 1.16 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.

Example 1.18. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 1.19. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the
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iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
1.15e.

Theorem 1.17: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t)→ φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t)→ m(t) as n→∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ
σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that

Wn =
√
n

(
Y n − µ
σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ
σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ
σ

.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(

n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =
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lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[

−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0)− [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ
σ

)
D→ N(0, 1). �

1.5.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.

Definition 1.28. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n→∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn −X‖ > ε)→ 0 as n→∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→X, if E(‖Xn −X‖r)→ 0 as n→∞.
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d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 1.18 and 1.19 below are the multivariate extensions of the
limit theorems in subsection 1.5.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 1.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 1.19: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n)− g(θ))

D→ Nd(0,Dg(θ)ΣDT
g(θ)

)

where the d× k Jacobian matrix of partial derivatives

Dg(θ) =




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)


 .

Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Definition 1.29. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Theorem 1.20. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n)− g(θ))
D→X ,

then g(T n)
P→ g(θ).
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Theorem 1.21. If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ, and

b) SLLN: Xn
ae→ µ.

Theorem 1.22: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→X iff φn(t)→ φ(t)

for all t ∈ R
k.

Theorem 1.23: Cramér Wold Device. Let Xn be a sequence of k× 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→X iff tTXn

D→ tTX

for all t ∈ R
k.

Application: Proof of the MCLT Theorem 1.18. Note that for fixed
t, the tT X i are iid random variables with mean tT µ and variance tT Σt.

Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand side has

distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,
√
n(Xn −µ)

D→ Nk(0,Σ). �

Theorem 1.24. a) If Xn
P→X , then Xn

D→X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 1.30. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 1.25: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→X and if the function g : R

k → R
j is continuous, then

g(Xn)
D→ g(X).
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The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 1.26. Let Xn = (X1n, ..., Xkn)T be a sequence of k × 1
random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→XT C−1.

Theorem 1.27. LetWn, Xn, Yn, and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 1.28. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p
constant matrix. Then A

√
n(Tn−µ) =

√
n(ATn−Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. Assume n is large enough so that C > 0. If (T,C)

is a consistent estimator of (µ, s Σ) where s > 0 is some constant, then
D2

x(T,C) = (x− T )T C−1(x− T ) = s−1D2
x(µ,Σ) + oP (1), so D2

x(T,C) is
a consistent estimator of s−1D2

x(µ,Σ).

iii) Let Σ > 0. Assume n is large enough so that C > 0. If
√
n(T −µ)

D→
Np(0,Σ) and if C is a consistent estimator of Σ, then n(T − µ)T C−1(T −
µ)

D→ χ2
p. In particular,

n(x− µ)T S−1(x−µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x− T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x− µ)T [s−1Σ−1](x−µ) + (x− T )T [C−1 − s−1Σ−1](x− T )
+(x−µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x−µ)
+(µ− T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
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(Note that D2
x(T,C) = s−1D2

x(µ,Σ) +OP (n−δ) if (T,C) is a consistent
estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T −µ)T Σ−1(T −µ)
D→ χ2

p. Now n(T −µ)T C−1(T −µ) =

n(T −µ)T [C−1 −Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T −µ) +

n(T −µ)T [C−1−Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 −Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 1.20. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→
[

x
y

]

by Theorem 1.22. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function

φzn(t) = φxn(t1)φyn
(t2)→ φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 1.25.

Remark 1.5. In the above example, we can show x y instead of assum-
ing x y. See Ferguson (1996, p. 42).

Remark 1.6. The behavior of convergence in distribution to a MVN
distribution in B) is much like the behavior of the MVN distributions in
A). The results in B) can be proven using the multivariate delta method. Let
A be a q× k constant matrix, b a constant, a a k× 1 constant vector, and d
a q × 1 constant vector. Note that a + bXn = a+ AXn with A = bI . Thus
i) and ii) follow from iii).

A) Suppose X ∼ Nk(µ,Σ), then
i) AX ∼ Nq(Aµ,AΣAT ).
ii) a + bX ∼ Nk(a + bµ, b2Σ).
iii) AX + d ∼ Nq(Aµ + d,AΣAT ).
(Find the mean and covariance matrix of the left hand side and plug in those
values for the right hand side. Be careful with the dimension k or q.)

B) Suppose Xn
D→ Nk(µ,Σ). Then

i) AXn
D→ Nq(Aµ,AΣAT ).

ii) a + bXn
D→ Nk(a + bµ, b2Σ).

iii) AXn + d
D→ Nq(Aµ + d,AΣAT ).
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1.6 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Sections 2.3, 3.2, and 3.6. A random

vector u has a mixture distribution if u equals a random vector uj with
probability πj for j = 1, ..., J . See Definition 1.8 for the population mean and
population covariance matrix of a random vector.

Definition 1.31. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =

J∑

j=1

πjFuj (t) (1.22)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj (t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 1.29. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =

J∑

j=1

πjE[h(uj)]. (1.23)

Hence

E(u) =

J∑

j=1

πjE[uj ], (1.24)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT )− E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (1.25)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf
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fu(t) =

J∑

j=1

πjfuj (t), and E(h(u)) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=

J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj (t)dt =

J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (1.26)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =

∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

1.7 A Review of Multiple Linear Regression

The following review follows Olive (2017a: ch. 2) closely. Several of the results
in this section will be covered in more detail or proven in Chapter 2.

Definition 1.32. Regression is the study of the conditional distribution
Y |x of the response variable Y given the vector of predictors x = (x1, ..., xp)

T .

Definition 1.33. A quantitative variable takes on numerical values
while a qualitative variable takes on categorical values.

Definition 1.34. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.27)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

In matrix notation, these n equations become

Y = Xβ + e, (1.28)
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where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (1.29)

Often the first column of X is X1 = 1, the n × 1 vector of ones. The ith
case (xT

i , Yi) = (xi1, xi2, ..., xip, Yi) corresponds to the ith row xT
i of X and

the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted). In the MLR
model Y = xT β + e, the Y and e are random variables, but we only have
observed values Yi and xi. If the ei are iid (independent and identically
distributed) with zero mean E(ei) = 0 and variance VAR(ei) = V (ei) = σ2,
then regression is used to estimate the unknown parameters β and σ2.

Definition 1.35. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.

If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 1.36. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 1.37. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 1.38. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.
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The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.

Most regression methods attempt to find an estimate β̂ of β which mini-
mizes some criterion function Q(b) of the residuals.

Definition 1.39. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑

i=1

r2i (b), (1.30)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 1.40. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response Yi, while the residual plot is a plot of the
ESP = Ŷi versus the residuals ri.

Theorem 1.30. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Definitions 1.38 and 1.39 define the hat
matrix H , vector of fitted values Ŷ , and vector of residuals r. Parts f) and
g) make residual plots useful. If the plotted points are linear with roughly
constant variance and the correlation is zero, then the plotted points scatter
about the r = 0 line with no other pattern. If the plotted points in a residual
plot of w versus r do show a pattern such as a curve or a right opening
megaphone, zero correlation will usually force symmetry about either the
r = 0 line or the w = median(w) line. Hence departures from the ideal plot
of random scatter about the r = 0 line are often easy to detect.

Let the n× p design matrix of predictor variables be
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X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 1.31. Suppose that X is an n× p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.

e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p× p identity matrix.

c) XT r = XT (Ip −H)Y = [XT −XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In−H)Y ]THY = Y T (In−H)HY = Y T (H −H)Y = 0.

f) The sample correlation between W and Z is corr(W,Z) =

∑n
i=1(wi − w)(zi − z)

(n− 1)swsz
=

∑n
i=1(wi −w)(zi − z)√∑n

i=1(wi −w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus
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A =

n∑

i=1

Ŷiri − Ŷ
n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �

1.7.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If

at least one of these predictors is useful, then the OLS fitted values Ŷi should
be used. If none of the nontrivial predictors is useful, then Y will give as
good predictions as Ŷi. Here the sample mean Y is given by Definition 1.9.
In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 1.41. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =

n∑

i=1

(Yi − Y )2. (1.31)

b) The regression sum of squares

SSR =
n∑

i=1

(Ŷi − Y )2. (1.32)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.33)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
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two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 1.32. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =

n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2

n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But

A =

n∑

i=1

riŶi − Y
n∑

i=1

ri = 0

by Theorem 1.31 d) and e). �

Definition 1.42. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1− SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
v) R2 tends to be too high if there are two or more separated clusters of

data in the response plot.
vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.
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The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 1.34 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 1.34, E(R2) ≤ 0.1.

Theorem 1.33. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 1.34. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2 , n−p

2 ).

b)

E(R2) =
p− 1

n− 1
.

c)

VAR(R2) =
2(p− 1)(n− p)
(n− 1)2(n+ 1)

.

Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 1.43. Assume that a constant is in the MLR model. Associated
with each SS in Definition 1.41 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · ·+ xi,pβ̂p or with the sample mean Y .
ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p− 1 SSR MSR F0=MSR/MSE for H0:
Residual n− p SSE MSE β2 = · · · = βp = 0
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Remark 1.7. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0

(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n→∞. See Section 1.4. Then the computer output pval is a
good estimator of the unknown pvalue. We will use Fo ≡ F0, Ho ≡ H0, and
Ha ≡ HA ≡ H1.

The 4 step ANOVA F test of hypotheses is below.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1− δ
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when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n− p)/(p− 1) decreases
to 0 as p increases to n, Theorem 1.35a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 1.35. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1− R2

n− p
p− 1

.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p− 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 1.8. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.” See Section 1.7.5.

1.7.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 1.44. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.
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The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1

= · · ·= βip = 0, and alternative
hypothesis HA : at least one of the βij 6= 0 for j > q. The null hypothesis is
equivalent to H0: “the reduced model is good.” Since only the full model and
reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.
Full model

Source df SS MS F0 and p-value
Regression p − 1 SSR MSR F0=MSR/MSE

Residual dfF = n− p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n− q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0

The 4 step partial F test of hypotheses is below. i) State the hy-
potheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). ( Here dfR−dfF = p−q = number
of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.
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Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let

‖a‖ =
√
a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.

The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 1.36. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2
dfR − dfF

]
/MSE(F ) =

SSE(R) − SSE(F )

SSE(F )

n− p
p − q =

R2 −R2
R

1−R2

n− p
p− q .

Definition 1.45. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
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the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
be good if the main goal of the analysis is to predict Y. These plots are also
useful for other methods such as lasso.

1.7.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 1.46. The 100 (1− δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).
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Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall thatH0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.

1.7.4 The OLS Criterion

The OLS estimator β̂ minimizes the OLS criterion

QOLS(η) =
n∑

i=1

r2i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r
2
i ≤

∑n
i=1 r

2
i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
In particular, if X has full rank p, then

∑n
i=1 r

2
i <

∑n
i=1 r

2
i (β) =

∑n
i=1 e

2
i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r

2
i (β). This no-

tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 1.21. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 1.8a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of
squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
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Fig. 1.8 The OLS Fit Minimizes the Sum of Squared Residuals

deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 1.8b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 1.37. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
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and that HX = X . Let η be any p× 1 vector. Then

(Y −Xβ̂)T (Xβ̂ −Xη) = (Y −HY )T (HY −HXη) =

Y T (I −H)H(Y −Xη) = 0.

Thus QOLS(η) = ‖Y −Xη‖2 = ‖Y −Xβ̂ + Xβ̂ −Xη‖2 =

‖Y −Xβ̂‖2 + ‖Xβ̂ −Xη‖2 + 2(Y −Xβ̂)T (Xβ̂ −Xη).

Hence
‖Y −Xη‖2 = ‖Y −Xβ̂‖2 + ‖Xβ̂ −Xη‖2. (1.34)

So
‖Y −Xη‖2 ≥ ‖Y −Xβ̂‖2

with equality iff
X(β̂ − η) = 0

iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives

XT Y −XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (1.35)

Equation (1.35) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (1.34).
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1.7.5 The No Intercept MLR Model

The no intercept MLR model, also known as regression through the origin, is
still Y = Xβ+e, but there is no intercept in the model, so X does not contain
a column of ones 1. Hence the intercept term β1 = β1(1) is replaced by β1xi1.
Software gives output for this model if the “no intercept” or “intercept = F”
option is selected. For the no intercept model, the assumption E(e) = 0 is
important, and this assumption is rather strong.

Many of the usual MLR results still hold: β̂OLS = (XT X)−1XT Y , the

vector of predicted fitted values Ŷ = Xβ̂OLS = HY where the hat matrix
H = X(XT X)−1XT provided the inverse exists, and the vector of residuals

is r = Y − Ŷ . The response plot and residual plot are made in the same way
and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F
test in Section 1.7.1 tests H0 : β2 = · · · = βp = 0. The test in this subsection
tests H0 : β1 = · · · = βp = 0 ≡ H0 : β = 0. The following definition and test
follows Guttman (1982, p. 147) closely.

Definition 1.47. Assume that Y = Xβ +e where the ei are iid. Assume
that it is desired to test H0 : β = 0 versus HA : β 6= 0.

a) The uncorrected total sum of squares

SST =

n∑

i=1

Y 2
i . (1.36)

b) The model sum of squares

SSM =

n∑

i=1

Ŷ 2
i . (1.37)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.38)

d) The degrees of freedom (df) for SSM is p, the df for SSE is n − p and
the df for SST is n. The mean squares are MSE = SSE/(n− p) and MSM =
SSM/p.

The ANOVA table given for the “no intercept” or “intercept = F” option
is below.

Summary Analysis of Variance Table
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Source df SS MS F p-value

Model p SSM MSM F0=MSM/MSE for H0:
Residual n− p SSE MSE β = 0

The 4 step no intercept ANOVA F test for β = 0 is below.
i) State the hypotheses H0 : β = 0, HA : β 6= 0.
ii) Find the test statistic F0 = MSM/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval = P (Fp,n−p > F0).
iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x1, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x1, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

1.8 Summary

1) Statistical Learning techniques extract information from multivariate data.
A case or observation consists of k random variables measured for one
person or thing. The ith case zi = (zi1, ..., zik)

T . The training data consists
of z1, ..., zn. A statistical model or method is fit (trained) on the training
data. The test data consists of zn+1, ..., zn+m, and the test data is often
used to evaluate the quality of the fitted model.

2) The focus of supervised learning is predicting a future value of the
response variable Yf given xf and the training data (Y1,x1), ..., (Yn,xn).
The focus of unsupervised learning is to group x1, ...,xn into clusters. Data
mining is looking for relationships in large data sets.

3) For classical regression and multivariate analysis, we often want n ≥
10p, and a model with n < 5p is overfitting: the model does not have enough
data to estimate parameters accurately if x is p × 1. Statistical Learning
methods often use a model with a crude degrees of freedom d, where n ≥
Jd with J ≥ 5 and preferably J ≥ 10. A model is underfitting if it omits
important predictors. Fix p, if the probability that a model underfits goes
to 0 as the sample size n → ∞, then overfitting may not be too serious if
n ≥ Jd. Underfitting can cause the model to fail to hold.

4) There are several important Statistical Learning principles.
i) There is more interest in prediction or classification, e.g. producing Ŷf ,
than in other types of inference.
ii) Often the focus is on extracting useful information when n/p is not large,
e.g. p > n. If d is a crude estimator of the fitted model degrees of freedom,
we want n/d large. A sparse model has few nonzero coefficients. We can have
sparse population models and sparse fitted models. Sometimes sparse fitted
models are useful even if the population model is dense (not sparse). Often
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the number of nonzero coefficients of a sparse fitted model = d.
iii) Interest is in how well the method performs on test data. Performance on
training data is overly optimistic for estimating performance on test data.
iv) Some methods are flexible while others are unflexible. For unflexible meth-
ods, the sufficient predictor is often a hyperplane SP = xT β and often the
mean function E(Y |x) = M(xT β) where the function M is known but the
p × 1 vector of parameters β is unknown and must be estimated (GLMs).
Flexible methods tend to be useful for more complicated regression methods
where E(Y |x) = m(x) for an unknown function m or SP 6= xT β (GAMs).
Flexibility tends to increase with d.

5) Regression investigates how the response variable Y changes with the
value of a p × 1 vector x of predictors. For a 1D regression model, Y is
conditionally independent of x given the sufficient predictor SP = h(x),
written Y x|h(x), where the real valued function h : R

p → R. The estimated

sufficient predictorESP = ĥ(x). A response plot is a plot of the ESP versus

the response Y . Often SP = xT β and ESP = xT β̂. A residual plot is a plot
of the ESP versus the residuals. Tip: if the model for Y (more accurately
for Y |x) depends on x only through the real valued function h(x), then
SP = h(x).

6) a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule: to spread small values of a variable, make λ smaller,
to spread large values of a variable, make λ larger.

7) Let the ladder of powers ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}. Let
tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0. Consider the addi-
tive error regression model Y = m(x)+ e. Then the response transformation
model is Y = tλ(Z) = mλ(x) + e. Compute the “fitted values” Ŵi using
Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus Wi

is made for each of the seven values of λ ∈ ΛL with the identity line added
as a visual aid. Make the transformations for λ ∈ ΛL, and choose the trans-
formation with the best transformation plot where the plotted points scatter
about the identity line.

8) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample

variance S2
n =

∑n
i=1(Yi − Y )2

n− 1
, and the sample standard deviation Sn =

√
S2

n. If the data Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.
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The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi −MED(n)|, i = 1, . . . , n).

9) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT
1
...

xT
n


 .

The coordinatewise median MED(W ) = (MED(X1), ...,MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

10) Let (T,C) = (T (W ),C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ),C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
11) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

12) Let the covmb2 set B of at least n/2 cases correspond to the cases
with weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean
and sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

13) If X and Y are p×1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then
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E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
14) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.

15) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

16) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let
X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n→∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn. Note
that X does not depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn −X‖ > ε)→ 0 as n→∞.
17) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

18) Suppose
√
n(Tn −µ)

D→ Np(θ,Σ). Let A be a q × p constant matrix.

Then A
√
n(Tn −µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).

18) Suppose A is a conformable constant matrix and Xn
D→ X . Then

AXn
D→ AX .

19) A g × 1 random vector u has a mixture distribution of the uj

with probabilities πj if u is equal to uj with probability πj. The cdf of

u is Fu(t) =

J∑

j=1

πjFuj
(t) where the probabilities πj satisfy 0 ≤ πj ≤

1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj (t) is the cdf of a g × 1 ran-

dom vector uj . Then E(u) =
∑J

j=1 πjE[uj ] and Cov(u) = E(uuT ) −
E(u)E(uT ) = E(uuT )−E(u)[E(u)]T =

∑J
j=1 πjE[uju

T
j ]−E(u)[E(u)]T =∑J

j=1 πjCov(uj) +
∑J

j=1 πjE(uj)[E(uj)]
T −E(u)[E(u)]T . If E(uj) = θ for

j = 1, ..., J , then E(u) = θ and Cov(u) =
∑J

j=1 πjCov(uj). Note that

E(u)[E(u)]T =
∑J

j=1

∑J
k=1 πjπkE(uj)[E(uk)]T .
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1.9 Complements

Graphical response transformation methods similar to those in Section 1.2
include Cook and Olive (2001) and Olive (2004, 2017a: section 3.2). A nu-
merical method is given by Zhang and Yang (2017).

Section 1.5 followed Olive (2014, ch. 8) closely, which is a good Master’s
level treatment of large sample theory. Olive (2023d) is an online text. There
are several PhD level texts on large sample theory including, in roughly in-
creasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). White (1984) considers asymptotic theory for
econometric applications.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix, and the eigenvalues of the matrix are continuous functions of
the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant, and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant, and eigenvalues of Σ > 0. See, for example, Bhatia et al. (1990),
Stewart (1969), and Severini (2005, pp. 348-349).

Outliers
The outlier detection methods of Section 1.4 are due to Olive (2017b, sec-

tion 4.7). For competing outlier detection methods, see Boudt et al. (2017).
Also, google “novelty detection,” “anomaly detection,” and “artefact identi-
fication.”

Big Data Sets
Sometimes n is huge and p is small. Then importance sampling and se-

quential analysis with sample size less than 1000 can be useful for inference
for regression and time series models. Sometimes n is much smaller than p,
for example with microarrays. Sometimes both n and p are large.

1.10 Problems

crancap hdlen hdht Data for 1.1

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

1.1∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length, and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
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a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

1.2. The table W shown below represents 4 measurements on 5 people.

age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

1.3. Suppose x1, ...,xn are iid p × 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x− c) for appropriate vector c.

1.4. Suppose x1, ...,xn are iid p× 1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

1.5. Suppose x1, ...,xn are iid 2 × 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j )− 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x− c) for appropriate vector c.

1.6. The most used Poisson regression model is Y |x ∼ Poisson(exp(xT β)).
What is the sufficient predictor SP = h(x)?

1.7. Let Z be the variable of interest and let Y = t(z) be the response
variable for the multiple linear regression model Y = xT β + e. For the four
transformation plots shown in Figure 1.9, n = 1000, and p = 4. The fitting
method was the elastic net. What response transformation should be used?

1.8. The data set follows the multiple linear regression model Y = xT β+e
with n = 100 and p = 101. The response plots for two methods are shown
in Figure 1.10. Which method fits the data better, lasso or ridge regression?
For ridge regression, is anything wrong with yhat = Ŷ .

1.9. For the Buxton (1920) data with multiple linear regression, height was
the response variable while an intercept, head length, nasal height, bigonal
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Fig. 1.9 Elastic Net Transformation Plots for Problem 1.7.

breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet! The response plot shown in Figure 1.4a) is for lasso.
The response plot in Figure 1.4b) did lasso for the cases in the covmb2 set B
applied to the predictors and set B included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers. Both plots include the identity line and prediction interval bands.

Which method is better: Fig. 1.4 a) or Fig. 1.4 b) for data analysis?

R Problem

Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the slpack func-
tion, e.g. tplot2, will display the code for the function. Use the args com-
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Fig. 1.10 Response Plots for Problem 1.8.

mand, e.g. args(tplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

1.10. This problem uses some of the R commands at the end of Section
1.2.1. A problem with response and residual plots is that there can be a lot
of black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model Y =
m(x)+e would plot the identity line, the two lines parallel to the identity line
corresponding to the Section 2.1 large sample 100(1−δ)% prediction intervals
for Yf that depends on Ŷf . Then plot points corresponding to training data
cases that do not lie in their 100(1−δ)% PI. We will use δ = 0.01, n = 100000,
and p = 8.

a) Copy and paste the commands for this part into R. They make the
usual response plot with a lot of black. Do not include the plot in Word.
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b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.

c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

1.11. The slpack function tplot2 makes transformation plots for the
multiple linear regression model Y = t(Z) = xT β + e. Type = 1 for full
model OLS and should not be used if n < 5p, type = 2 for elastic net, 3 for
lasso, 4 for ridge regression, 5 for PLS, 6 for PCR, and 7 for forward selection
with Cp if n ≥ 10p and EBIC if n < 10p. These methods are discussed in
Chapter 3.

Copy and paste the three library commands near the top of slrhw into R.
For parts a) and b), n = 100, p = 4 and Y = log(Z) = 0x1 + x2 + 0x3 +

0x4 + e = x2 + e. (Y and Z are swapped in the R code.)
a) Copy and paste the commands for this part into R. This makes the

response plot for the elastic net using Y = Z and x when the linear model
needs Y = log(Z). Do not include the plot in Word, but explain why the plot
suggests that something is wrong with the model Z = xT β + e.

b) Copy and paste the command for this part into R. Right click Stop 3
times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

c) Is the response plot linear?
For the remaining parts, n = p − 1 = 100 and Y = log(Z) = 0x1 + x2 +

0x3 + · · ·+ 0x101 + e = x2 + e. Hence the model is sparse.
d) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

e) Is the plot linear?
f) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the true
model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right click
Stop 3 more times so that the cursor returns in the command window. PLS
is probably overfitting since the identity line nearly interpolates the fitted
points.

1.12. Get the R commands for this problem. The data is such that Y =
2 + x2 + x3 + x4 + e where the zero mean errors are iid [exponential(2) -
2]. Hence the residual and response plots should show high skew. Note that
β = (2, 1, 1, 1)T. The R code uses 3 nontrivial predictors and a constant, and
the sample size n = 1000.
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a) Copy and paste the commands for part a) of this problem into R. Include
the response plot in Word. Is the lowess curve fairly close to the identity line?

b) Copy and paste the commands for part b) of this problem into R.
Include the residual plot in Word: press the Ctrl and c keys as the same time.
Then use the menu command “Paste” in Word. Is the lowess curve fairly
close to the r = 0 line? The lowess curve is a flexible scatterplot smoother.

c) The output out$coef gives β̂. Write down β̂ or copy and paste β̂ into

Word. Is β̂ close to β?

1.13. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

1.14. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.
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1.15. The slpack function mldsim6 compares 7 estimators: FCH, RFCH,
CMVE, RCMVE, RMVN, covmb2, and MB described in Olive (2017b, ch.
4). Most of these estimators need n > 2p, need a nonsingular dispersion
matrix, and work best with n > 10p. The function generates data sets and
counts how many times the minimum Mahalanobis distance Di(T,C) of the
outliers is larger than the maximum distance of the clean data. The value
pm controls how far the outliers need to be from the bulk of the data, and
pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-
trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 1.2 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 1.2 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 1.2, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

Table 1.3 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42
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b) Copy and paste the commands for this part into R and make a table
similar to Table 1.3, but type 2 outliers are used. Now γ = 0.4, the default
value.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations by Wang (2018) sug-
gest that “covmb2” using Di(T, Ip) outperforms “diag” using Di(T,Cd) for
many outlier configurations, but there are some exceptions. Copy and paste
the commands for this part into R and make a table similar to Table 1.3, but
type 3 outliers are used.





Chapter 2

Prediction and Variable Selection When

n >> p

This chapter considers variable selection when n >> p and prediction in-
tervals that can work if n > p or p > n. Prediction regions and prediction
intervals applied to a bootstrap sample can result in confidence regions and
confidence intervals. The bootstrap confidence regions will be used for infer-
ence after variable selection.

2.1 Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large. Consider the 1D regression model where Y x|SP where
SP = xT β. See Chapters 1 and 4. A model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (2.1)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS)× 1 vector. Given that xS is in the model, βE = 0 and
E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (2.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

77
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where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding
to β1 is always in the model, and β = (β1 , β2, 0, 0)T . Then there are J =
2p−1 = 8 possible subsets of {1, 2, ..., p} that contain 1, including I1 = {1}
and S = I2 = {1, 2}. There are 2p−aS = 4 subsets such that S ⊆ Ij . Let

β̂I2
= (β̂1, β̂2)

T and xI2
= (x1, x2)

T .

Definition 2.1. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI .

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selec-
tion. The relaxed lasso or relaxed elastic net estimator fits the regression
method, such as a GLM or Cox (1972) proportional hazards regression, to
the predictors than had nonzero lasso or elastic net coefficients. See Chapters
3 and 4.

Underfitting occurs if submodel I does not contain S. Following, for ex-
ample, Pelawa Watagoda (2019), let X = [XI XO] and β = (βT

I ,β
T
O)T .

Then Xβ = XIβI + XOβO, and β̂I = (XIXI)
−1XT

I Y = AY . Assuming

the usual MLR model, Cov(β̂I) = Cov(AY ) = Aσ2IAT = σ2(XT
I XI)

−1.

Now E(β̂I) = E(AY ) = AXβ = (XIXI)
−1XT

I (XIβI + XOβO) =

βI + (XIXI)
−1XT

I XOβO = βI + AXOβO.

If S ⊆ I, then βO = 0, but if underfitting occurs then the bias vector
AXOβO can be large.

2.1.1 OLS Variable Selection

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable se-
lection. For example, an OLS MLR model with unnecessary predictors has∑n

i=1 V (Ŷi) that is too large. If (2.1) holds, S ⊆ I, βS is an aS × 1 vector,
and βI is a j × 1 vector with j > aS , then
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1

n

n∑

i=1

V (ŶIi) =
σ2j

n
>
σ2aS

n
=

1

n

n∑

i=1

V (ŶSi). (2.2)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ). A model I underfits if it does not include all of the
predictors in S. A model I does not underfit if S ⊆ I.

To see that (2.2) holds, assume that the full model includes all p possible

terms so the full model may overfit but does not underfit. Then Ŷ = HY
and Cov(Ŷ ) = σ2HIHT = σ2H. Thus

1

n

n∑

i=1

V (Ŷi) =
1

n
tr(σ2H) =

σ2

n
tr((XT X)−1XT X) =

σ2p

n

where tr(A) is the trace operation. Replacing p by j and aS and replac-
ing H by HI and HS implies Equation (2.2). Hence if only aS parame-
ters are needed and p >> aS , then serious overfitting occurs and increases

1

n

n∑

i=1

V (Ŷi).

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model,
and MSE(I) = σ̂2

I , the estimated error variance. See Definitions 1.42 and
1.43. Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where

R2
A(I) = 1− (1− R2(I))

n

n − k = 1−MSE(I)
n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k)− (n − p)/
SSE

n− p =
n− p
p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An important criterion
for variable selection is the Cp criterion.

Definition 2.2.
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 : βO = 0 is true, (p−k)(FI−1)+k
D→ χ2

p−k +2k−p for
a large class of iid error distributions. Minimizing Cp(I) is equivalent to mini-
mizingMSE [Cp(I)] = SSE(I)+(2k−n)MSE = rT (I)r(I)+(2k−n)MSE.
The following theorem helps explain why Cp is a useful criterion and suggests
that for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are es-
pecially interesting. Olive and Hawkins (2005) show that this interpretation
of Cp can be generalized to 1D regression models with a linear predictor

βT x = xT β, such as generalized linear models. Denote the residuals and
fitted values from the full model by ri = Yi − xT

i β̂ = Yi − Ŷi and Ŷi = xT
i β̂

respectively. Similarly, let β̂I be the estimate of βI obtained from the regres-
sion of Y on xI and denote the corresponding residuals and fitted values by
rI,i = Yi − xT

I,iβ̂I and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.

Theorem 2.1. Suppose that a numerical variable selection method sug-
gests several submodels with k predictors, including a constant, where 2 ≤
k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1− p

n
.

c) As corr(r, rI)→ 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI)→ 1.

Proof. These results are a corollary of Theorem 2.2 below. �

Remark 2.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi.

Using Definition 2.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.

More generally, it can be shown that Cp(I) ≤ 2k iff
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FI ≤
p

p− k .

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 2.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (2.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 2.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I −HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
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the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 2.2. Suppose that every submodel contains a constant and that
X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and

b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .
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iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I −H)(I −HI)Y and (I −H)(I −HI) =
I −H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p . �

Remark 2.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
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lection. Assuming the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin) → 1 as n → ∞ by Theorem 2.2
vi). Referring to Equation (2.1), if P (S ⊆ Imin) does not go to 1 as n→∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→∞. This result is due to Rathnayake and Olive (2023).

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 2.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Theorem 2.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP,ESP (I)) both go to 1.0 as n→∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, but overfit is likely. Let d be a lower
bound on corr(r, rI). Theorem 2.2 vi) implies that if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

d ≡ dn =

√
1− p

n
.

To avoid excluding too many good submodels, consider models I with
Cp(I) ≤ min(2k, p). Models under both the Cp = k line and the Cp = 2k line
are of interest.

Rule of thumb 2.1. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin)+1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model. Do
not use more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Underfit
is especially likely to occur if a predictor with one degree of freedom is deleted
(if the c − 1 indicator variables corresponding to a factor are deleted, then
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the factor has c− 1 degrees of freedom) and the jump in Cp is large, greater
than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses
j predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has
a constant but no nontrivial predictors. To form I2, consider all models I
with two predictors including x∗1. Compute Q2(I) = SSE(I) = RSS(I) =
rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2. Let I2 minimize Q2(I) for the
p−1 models I that contain x∗1 and one other predictor. Denote the predictors
in I2 by x∗1, x

∗
2. In general, to form Ij consider all models I with j predictors

including variables x∗1, ..., x
∗
j−1. Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =∑n

i=1(Yi − Ŷi(I))
2 . Let Ij minimize Qj(I) for the p − j + 1 models I that

contain x∗1, ..., x
∗
j−1 and one other predictor not already selected. Denote the

predictors in Ij by x∗1, ..., x
∗
j. Continue in this manner for j = 2, ...,M = p.

Backward elimination also forms a sequence of submodels I1, ..., Ip where
Ij uses j predictors including the constant. Let Ip be the full model. To form
Ip−1 consider all models I with p−1 predictors including the constant. Com-
pute Qp−1(I) = SSE(I) = RSS(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi −

Ŷi(I))
2 . Let Ip−1 minimizeQp−1(I) for the p−1 models I that exclude one of

the predictors x2, ..., xp. Denote the predictors in Ip−1 by x∗1, x
∗
2, ..., x

∗
p−1. In

general, to form Ij consider all models I with j predictors including variables

x∗1, ..., x
∗
j+1. Compute Qj(I) = rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi− Ŷi(I))

2 .
Let Ij minimize Qj(I) for the p − j + 1 models I that exclude one of the
predictors x∗2, ..., x

∗
j+1. Denote the predictors in Ij by x∗1, ..., x

∗
j. Continue in

this manner for j = p = M, p− 1, ..., 2, 1 where I1 uses x∗1 = x1 ≡ 1.
Several criterion produce the same sequence of models if forward selection

or backward elimination are used, includingMSE(I), Cp(I), R
2
A(I), AIC(I),

BIC(I), and EBIC(I). This result holds since if the number of predictors
k in the model I is fixed, the criterion is equivalent to minimizing SSE(I)
plus a constant. The constants differ so the model Imin that minimizes the
criterion often differ. Heuristically, backward elimination tries to delete the
variable that will increase Cp the least while forward selection tries to add
the variable that will decrease Cp the most.

When there is a sequence of M submodels, the final submodel Id needs to
be selected with ad terms, including a constant. Let the candidate model I
contain a terms, including a constant, and let xI and β̂I be a × 1 vectors.
Then there are many criteria used to select the final submodel Id. For a given
data set, the quantities p, n, and σ̂2 act as constants, and a criterion below
may add a constant or be divided by a positive constant without changing
the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form
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CS(I) = SSE(I) + aKnσ̂
2.

These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 2.2.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p
and if the final model has n ≥ 10ad. For p < n < 5p, forward selection with
Cp and AIC tends to pick the full model (which overfits since n < 5p) too
often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989, 1991) AICC

criterion can be useful if n ≥ max(2p, 10ad).
The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and relaxed lasso.
The Cp criterion can also be applied to lasso. See Efron and Hastie (2016,
pp. 221, 231).

Now suppose p = 6 and S in Equation (2.1) corresponds to x1 ≡ 1, x2,
and x3. Suppose the data set is such that underfitting (omitting a predic-
tor in S) does not occur. Then there are eight possible submodels that
contain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6;
v) x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full
model viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5,
or 6. Since the variable selection criteria for forward selection described above
minimize the MSE given that x∗1, ..., x

∗
k−1 are in the model, the MSE(Ik) are
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too small and underestimate σ2. Also the model Imin fits the data a bit too
well. Suppose Imin = Id. Compared to selecting a model Ik before examining
the data, the residuals ri(Imin) are too small in magnitude, the |ŶImin,i−Yi|
are too small, and MSE(Imin) is too small. Hence using Imin = Id as the full
model for inference does not work. In particular, the partial F test statistic
FR, using Id as the full model, is too large since the MSE is too small. Thus
the partial F test rejects H0 too often. Similarly, the confidence intervals for
βi are too short, and hypothesis tests reject H0 : βi = 0 too often when H0

is true. The fact that the selected model Imin from variable selection cannot
be used as the full model for classical inference is known as selection bias.
Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of β̂Imin,0

(defined in the following section) and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

2.2 Large Sample Theory for Some Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

2.2.1 Some Variable Selection Estimators

Consider 1D regression models where the response variable Y is independent
of the p × 1 vector of predictors x given xT β, written Y x|xT β. Many
important regression models satisfy this condition, including multiple lin-
ear regression, the Nelder and Wedderburn (1972) generalized linear models
(GLMs), and the Cox (1972) proportional hazards regression model. For-
ward selection or backward elimination with the Akaike (1973) AIC criterion
or Schwarz (1978) BIC criterion are often used for variable selection.

Sparse regression methods can also be used for variable selection even if
n/p is not large: the regression submodel, such as a Nelder and Wedderburn
(1972) generalized linear model (GLM), uses the predictors that had nonzero
sparse regression estimated coefficients. These methods include least angle re-
gression, lasso, relaxed lasso, elastic net, and sparse regression by projection.
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Least angle regression variable selection is the LARS-OLS hybrid estimator
of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso
by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso
estimator with φ = 0 by Meinshausen (2007, p. 376). Also see Fan and Li
(2001), Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Qi et
al. (2015), Simon et al. (2011), Tibshirani (1996), and Zou and Hastie (2005).
The Meinshausen (2007) relaxed lasso estimator fits lasso with penalty λn to
get a subset of variables with nonzero coefficients, and then fits lasso with a
smaller penalty φn to this subset of variables where n is the sample size.

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. If β̂I is a×1, use

zero padding to form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T , then

the observed variable selection estimator β̂V S = β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . As

a statistic, β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J
where there are J subsets, e.g. J = 2p − 1.

The large sample theory for β̂MIX , defined below, is useful for explaining

the large sample theory of β̂V S . Review Section 1.6 for mixture distributions.

Definition 2.4. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 2.5. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

Inference will consider bootstrap hypothesis testing with confidence inter-
vals (CIs) and regions. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is a known g × 1 vector. A large sample 100(1 − δ)% confidence
region for θ is a set An such that P (θ ∈ An) is eventually bounded below by
1− δ as the sample size n→∞. Then reject H0 if θ0 is not in the confidence
region. Let the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the

bootstrap sample for Tn. Let A be a full rank g × p constant matrix. For
variable selection, test H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ.

Then let Tn = Aβ̂SEL and let T ∗
i = Aβ̂

∗
SEL for i = 1, ..., B and SEL is V S

or MIX. See Section 2.6 for the bootstrap confidence regions that will be
used for variable selection inference.
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2.2.2 Large Sample Theory for Variable Selection

Estimators

The Theorems 2.3 and 2.4 in this subsection are due to Rathnayake and
Olive (2023), and generalize the Pelawa Watagoda and Olive (2021b) theory
for multiple linear regression to many other models. The theory assumes that
there is a “true model” S and that at least one subset I is considered such
that S ⊆ I. For example, with forward selection and backward elimination,
the theory assumes that the full model contains S. The theory does not hold
if the true model S is not a subset of any of the considered models. For
example, S could contain some interactions that were not included in the
“full” model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (2.1) holds, and that if S ⊆ Ij where

the dimension of Ij is aj , then
√
n(β̂Ij

−βIj
)

D→ Naj (0,V j) where V j is the
covariance matrix of the asymptotic multivariate normal distribution. Then

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (2.3)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model. This large
sample theory holds for many models, including multiple linear regression fit
by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression
fit by maximum partial likelihood. See, for example, Sen and Singer (1993,
pp. 280, 309).

The first assumption in Theorem 2.3 is P (S ⊆ Imin)→ 1 as n→∞. Then
the variable selection estimator corresponding to Imin underfits with proba-
bility going to zero, and the assumption holds under regularity conditions if
BIC or AIC is used for many parametric regression models such as GLMs.
See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp. 70,
101, 102, 114, 232). This assumption is a necessary condition for a variable
selection estimator to be a consistent estimator. See Zhao and Yu (2006).
Thus if a sparse estimator that does variable selection is a consistent estima-
tor of β, then P (S ⊆ Imin)→ 1 as n→∞. Hence Theorem 2.3c) proves that
the lasso variable selection and elastic net variable selection estimators are√
n consistent estimators of β if lasso and elastic net are consistent. Also see

Theorem 2.4. The assumption on ujn in Theorem 2.3 is reasonable by (2.3)

since S ⊆ Ij for each πj, and since β̂MIX uses random selection.
Consider the assumption P (S ⊆ Imin) → 1 as n→ ∞ for multiple linear

regression. Charkhi and Claeskens (2018) proved the assumption holds for
AIC for a wide variety of error distributions. Shao (1993) gave similar results
for AIC, BIC, and Cp. Also see Remark 2.2. The assumption holds for lasso

variable selection and elastic net variable selection provided that λ̂n/n → 0

as n → ∞ so lasso and elastic net are consistent estimators. Here λ̂n is
the shrinkage penalty parameter selected after k-fold cross validation. See
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Theorems 3.5, 3.6, Pelawa Watogoda and Olive (2021b) and Knight and Fu
(2000).

Theorem 2.3 a) proves that u is a mixture distribution of the uj with
probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0. Some of the

submodels Ik will have πk = 0. For example, since the probability of underfit-
ting goes to zero, every submodel Ik that underfits has πk = 0. Hence S ⊆ Ij
corresponding to the πj > 0. If πd = 1, then submodel Id is picked with
probability going to 1 as n→∞, and Id is the only submodel with a positive
πk. Often πd = πS in the literature. For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (2.5) where E(v) = 0, and Σv =
∑

j πjAV j,0A
T .

Theorem 2.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→∞. Denote the positive

πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (2.4)

where the cdf of u is Fu(t) =
∑

j πjFuj(t). Thus u has a mixture distribution
of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0.

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX −Aβ)

D→ Au = v (2.5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β:

√
n(β̂V S −β) =

OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun(t) =

∑
k πknFukn

(t) → Fu(t) =
∑

j πjFuj(t) at
continuity points of the Fuj (t) as n→∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for
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other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use β̂ = β̂FULL to denote the full model.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL

have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. In the simulations

when V is diagonal, the confidence regions applied to Aβ̂
∗
SEL = Bβ̂

∗
S,SEL

had similar volume and cutoffs where SEL is MIX, V S, or FULL.
Theorem 2.3 can be used to justify prediction intervals after variable se-

lection. See Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake, and
Haile (2022). Theorem 2.3d) is useful for variable selection consistency and
the oracle property where πd = πS = 1 if P (Imin = S) → 1 as n → ∞. See
Claeskens and Hjort (2008, pp. 101-114) and Fan and Li (2001) for references.
A necessary condition for P (Imin = S) → 1 is that S is one of the models
considered with probability going to one. This condition holds under very
strong regularity conditions for fast methods. See Wieczorek and Lei (2022)
for forward selection and Hastie, Tibshirani, and Wainwright (2015, pp. 295-
302) for lasso, where the predictors need a “near orthogonality” condition.

Remark 2.4. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj) = 0. Then a Generalized Law of Total Probability is

P (B) =

m∑

j=1

P (B ∩Aj) =

m∑

j=1

P (B|Aj)P (Aj),

and will be used in the proof of the result in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S−β). Let β̂

C

Ik,0 be a random vector

from the conditional distribution β̂Ik,0|(β̂V S = β̂Ik,0). Let wkn =
√
n(β̂Ik,0−

β)|(β̂V S = β̂Ik,0) ∼
√
n(β̂

C

Ik,0 − β). Denote Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp)
by P (z ≤ t). Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b)
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show

Fwn
(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

Fwkn
(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Proof: Let W = WV S = k if β̂V S = β̂Ik,0 where P (WV S = k) = πkn

for k = 1, ..., J. Then (β̂V S:n,WV S:n) = (β̂V S ,WV S) has a joint distribution

where the sample size n is usually suppressed. Note that β̂V S = β̂IW ,0. Then
by Remark 2.4,

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn

=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn
(t)πkn. �

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj

if S ⊆ Ij for the maximum likelihood estimator (MLE) with AIC, and gave
a forward selection example. They claim that wj is a multivariate truncated
normal distribution (where no truncation is possible) that is symmetric about

0. Hence E(wj) = 0, and Cov(wj) = Σj exits. Note that both
√
n(β̂MIX−β)

and
√
n(β̂V S − β) are selecting from the ukn =

√
n(β̂Ik,0 − β) and asymp-

totically from the uj . The random selection for β̂MIX does not change the
distribution of ujn, but selection bias does change the distribution of the

selected ujn and uj to that of wjn and wj. The assumption that wjn
D→ wj

may not be mild. The proof for Equation (2.6) is the same as that for (2.4).
Theorem 2.4 proves that w is a mixture distribution of the wj with proba-
bilities πj.

Theorem 2.4. Assume P (S ⊆ Imin)→ 1 as n→∞, and let β̂V S = β̂Ik,0

with probabilities πkn where πkn → πk as n→∞. Denote the positive πk by

πj. Assume wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj. Then

wn =
√
n(β̂V S − β)

D→ w (2.6)

where the cdf of w is Fw(t) =
∑

j πjFwj(t).



2.3 Prediction Intervals 93

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn(t) =

∑
k πknFwkn

(t)→ Fw(t) =
∑

j πjFwj(t) at
continuity points of the Fwj (t) as n→∞. �

Remark 2.5. If P (S ⊆ Imin)→ 1 as n→∞, then β̂V S is a
√
n consistent

estimator of β since selecting from a finite number J of
√
n consistent estima-

tors (even on a set that goes to one in probability) results in a
√
n consistent

estimator by Pratt (1959). By both this result and Theorems 2.3 and 2.4, the
lasso variable selection and elastic net variable selection estimators are

√
n

consistent if lasso and elastic net are consistent.
Remark 2.6. Another variable selection model is xT β = xT

Si
βSi

for i =
1, ..., K. Then submodel I underfits if no Si ⊆ I. A necessary condition for
an estimator to be consistent is P(no Si ⊆ Imin)→ 0 as n→∞. By Remark
2.2, the above probability holds if Cp is used. Then in Theorem 2.4, we can
replace P (S ⊆ Imin)→ 1 by P(no Si ⊆ Imin)→ 0 as n→∞.

Example 2.1. This is an example where the πkn → πk as n→∞. Assume
S ⊆ I where I has a predictors, including a constant. Then for a wide variety

of iid error distributions, FI
D→ X/(p−a) where X ∼ χ2

p−a. Let F denote the
full model, and let S = I = Ii be the model that deletes predictor xi with

a = p−1. Then from Definition 2.2, Cp(I)
D→ X+p−2 where X ∼ χ2

1. Let F
denote the full model and consider all subsets variable selection withCp. Since
only S and F do not underfit, only πS and πF are positive. Since Cp(F ) = p,
I = S is selected if Cp(I) < p. Hence πS = P (χ2

1 + p− 2 < p) = P (χ2
1 < 2),

and πF = 1 − πS . This result also holds for backward elimination since the
probability that xi will be the first predictor deleted goes to 1 as n → ∞
because Cp(Ii) = Cp(S) is bounded in probability while Cp(Ij) diverges as
n → ∞ for j 6= i. For forward selection with correlated predictors, expect
that πS < P (χ2

1 < 2), and hence πF > 1− P (χ2
1 < 2).

2.3 Prediction Intervals

Prediction intervals for regression and prediction regions for multivariate re-
gression are important topics. Inference after variable selection will consider
bootstrap hypothesis testing. Applying certain prediction intervals or pre-
diction regions to the bootstrap sample will result in confidence intervals or
confidence regions. The prediction intervals and regions are based on samples
of size n, while the bootstrap sample size is B = Bn. Hence this section and
the following section are important.

Notation: P (An) is “eventually bounded below” by 1 − δ if P (An) gets
arbitrarily close to or higher than 1− δ as n→∞. Hence P (An) > 1− δ− ε
for any ε > 0 if n is large enough. If P (An)→ 1− δ as n→∞, then P (An) is
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eventually bounded below by 1− δ. The actual coverage is 1− γn = P (Yf ∈
[Ln, Un]), the nominal coverage is 1− δ where 0 < δ < 1. The 90% and 95%
large sample prediction intervals and prediction regions are common.

Definition 2.6. Consider predicting a future test value Yf given a p × 1
vector of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1− δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample size
n→∞. A large sample 100(1− δ)% PI is asymptotically optimal if it has the
shortest asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as
n→∞ where [Ls, Us] is the population shorth: the shortest interval covering
at least 100(1− δ)% of the mass.

If Yf |xf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞.
The interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k times where the k trials are independent from the
same population. If Yfi is the ith random variable and PIi is the ith PI,
then the probability that Yfi ∈ PIi for j of the PIs approximately follows a
binomial(k, ρ= 1− δ) distribution. Hence if 100 95% PIs are made, ρ = 0.95
and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This section
will describe three nonparametric PIs for the additive error regression model,
Y = m(x) + e, that work well for a large class of unknown zero mean error
distributions.

Consider the location model, Yi = µ + ei, where Y1, ..., Yn, Yf are iid, and
there are no vectors of predictors xi and xf . Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

be the order statistics of the iid training data Y1, ..., Yn. Then the unknown
future value Yf is the test data.

Remark 2.7. Confidence intervals, prediction intervals, confidence re-
gions, and prediction regions should used closed sets not open sets. The closed
sets have the same volume as the open sets, but have coverage at least as high
as the open sets with weaker regularity conditions. In particular, confidence
and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval (Y(k1), Y(k2)) was used, we
would need to add the regularity condition that Yδ/2 and Y1−δ/2 are continuity
points of FY (y).
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Theorem 2.5. Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the
order statistics of the training data. Let k1 = dnδ/2e and k2 = dn(1− δ/2)e
where 0 < δ < 1. The large sample 100(1− δ)% percentile prediction interval
for Yf is

[Y(k1), Y(k2)]. (2.7)

The shorth(c) estimator of the population shorth is useful for making
asymptotically optimal prediction intervals. For the uniform distribution, the
population shorth is not unique. Of course the length of the population shorth
is unique.

Definition 2.7. Let the shortest closed interval containing at least c of
the Y1, ..., Yn be

shorth(c) = [Y(s),Y(s+c−1)]. (2.8)

Theorem 2.6, Frey (2013). Let Y1, ..., Yn be iid. Let

kn = dn(1− δ)e. (2.9)

For large nδ and iid data, the large sample 100(1−δ)% shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n. The maximum undercov-

erage occurs for the family of uniform U(θ1, θ2) distributions.

Theorem 2.7, Frey (2013). Let Y1, ..., Yn, Yf be iid. Let Y(1) ≤ Y(2) ≤
· · · ≤ Y(n) be the order statistics of the training data. The large sample
100(1− δ)% shorth(c) prediction interval for Yf is

[Y(s), Y(s+c−1)] where c = min(n, dn[1− δ + 1.12
√
δ/n ] e). (2.10)

A problem with the prediction intervals that cover ≈ 100(1− δ)% of the
training data cases Yi (such as (2.8) using c = kn given by (2.9)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse on
test data. For iid data, Frey (2013) used (2.10) to correct for undercoverage.

Remark 2.8. a) The shorth PI (2.10) often has good coverage for n ≥ 50
and 0.05 ≤ δ ≤ 0.1, but the convergence of Un−Ln to the population shorth
length Us−Ls can be quite slow. Under regularity conditions, Grübel (1982)
showed that for iid data, the length and center the shorth(kn) interval are

√
n

consistent and n1/3 consistent estimators of the length and center of the pop-
ulation shorth interval, respectively. The correction factor also increases the
length. For a unimodal and symmetric error distribution, the nonparametric
PI (2.7) and the shorth PI (2.10) are asymptotically equivalent, but PI (2.7)
can be the shorter. b) The nonparametric PI (2.7) can be much longer than
the shorth PI (2.10) if the data distribution is skewed.

Example 2.2. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
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was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]

0 1 2 3 4 5
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.0
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d
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Fig. 2.1 The 36.8% Highest Density Region is [0,1]

Remark 2.9. The large sample 100(1 − δ)% shorth PI (2.10) may or
may not be asymptotically optimal if the 100(1 − δ)% population shorth is
[Ls, Us] and F (x) is not strictly increasing in intervals (Ls − ε, Ls + ε) and
(Us − ε, Us + ε) for some ε > 0. To see the issue, suppose Y has probability
mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and
p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1 − δ)%
population shorth is [0,3] for (1− δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ x) = 1 if
Yi ≤ x and 0, otherwise. The empirical cdf
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F̂n(x) =
1

n

n∑

i=1

I(Yi ≤ x) =
1

n

n∑

i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x,
nF̂n(x) ∼ binomial(n, F (x)). Thus F̂n(x) ∼ AN(F (x), F (x)(1 − F (x))/n).

For the Y with the above pmf, F̂n(2)
P→ 0.9 as n→∞ with P (F̂n(2) < 0.9)→

0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(2.10) will be [0,2] or [0,3] with probabilities→ 0.5 as n→∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (2.10) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1− δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 2.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

The additive error regression model is Y = m(x) + e where m(x) is a real
valued function and the ei are iid, often with zero mean and constant variance
V (e) = σ2. The large sample theory for prediction intervals is simple for this
model, and variable selection models for the multiple linear regression model
have this form withm(x) = xT β = xT

I βI if S ⊆ I. Let the residuals ri = Yi−
m̂(xi) = Yi−Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator ofm(x)
such that the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent
estimators of the population percentiles [L, U ] of the error distribution where
P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then P (Yf ∈ [Ŷf + L̂n(r), Ŷf +

Ûn(r)] → P (Yf ∈ [m(xf )+L,m(xf )+U ]) = P (e ∈ [L, U ]) = 1−δ as n→∞.
Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)
P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ with L = −U , and c)
the population shorth is the shortest interval (with length U − L) such that
P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically optimal while a) and b)
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are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions. The split conformal PI (2.16), described below, estimates
[−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number
of “variables” used by the method. For MLR, forward selection, lasso, and
relaxed lasso use variables x∗1, ..., x

∗
d while PCR and PLS use variables that

are linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. (We could

let d = j if j is the degrees of freedom of the selected model if that model
was chosen in advance without model or variable selection. Hence d = j is
not the model degrees of freedom if model selection was used.) See Chapter
3 for more about these estimators. See Hong et al. (2018) for why classical
prediction intervals after variable selection fail to work.

For n/p large and d = p, Olive (2013a) developed prediction intervals for
models of the form Yi = m(xi) + ei, and variable selection models for MLR
have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2021b)
gave two prediction intervals that can be useful even if n/p is not large. These
PIs will be defined below. The first PI modifies the Olive (2013a) PI that can
only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d
√

(1 + hf) ri ≈
√
n+ 2d

n− d ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (2.11) is changed
to qn = 1− δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1− δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δd/n), otherwise. (2.11)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let
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c = dnqne, (2.12)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d (2.13)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will
be less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1

, ξ̃1−δ2
]. Then the first 100 (1 − δ)% large sample PI

for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

]. (2.14)

The second PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n−nH

cases i1, ..., inV . The estimator m̂H(x) is computed using the training data
set H . Then the validation residuals vj = Yij−m̂H(xij) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
of the validation residuals (replacing n in (2.10) by nV = n− nH). Then the
second new 100(1− δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf) + v(s+c−1)]. (2.15)

Remark 2.10. Note that correction factors bn → 1 are used in large sam-
ple confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p,
but a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ →

1 if dn → ∞ as n → ∞. Using correction factors for large sample confi-
dence intervals, tests, prediction intervals, prediction regions, and bootstrap
confidence regions improves the performance for moderate sample size n.

Remark 2.11. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(2.15) while PI (2.14) needs a stronger correction factor.

We can also motivate PI (2.15) by modifying the justification for the Lei
et al. (2018) split conformal prediction interval

[m̂H(xf)− aq, m̂H(xf ) + aq] (2.16)

where aq is the 100(1 − α)th quantile of the absolute validation residuals.
PI (2.15) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H
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from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1− δ if b = d(nV + 1)(1− δ)e+ 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (2.14) to (2.16) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the PIs (2.14) and (2.15) are
asymptotically optimal for a large class of error distributions while the split
conformal PI (2.16) needs the error distribution to be unimodal and symmet-
ric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half
the efficiency of m̂. When p ≥ n, the regularity conditions for consistent esti-
mators are strong. For example, EBIC and lasso can have P (S ⊆ Imin)→ 1
as n→∞. Then forward selection with EBIC and relaxed lasso can produce
consistent estimators. PLS can be

√
n consistent. See Chapter 3 for the large

sample for many MLR estimators.
None of the three prediction intervals (2.14), (2.15), and (2.16) dominates

the other two. Recall that βS is an aS × 1 vector in (2.1). If a good fit-
ting method, such as lasso or forward selection with EBIC, is used, and
1.5aS ≤ n ≤ 5aS , then PI (2.14) can be much shorter than PIs (2.15) and
(2.16). For n/d large, PIs (2.14) and (2.15) can be shorter than PI (2.16) if
the error distribution is not unimodal and symmetric; however, PI (2.16) is
often shorter if n/d is not large since the sample shorth converges to the pop-
ulation shorth rather slowly. Grübel (1982) shows that for iid data, the length
and center the shorth(kn) interval are

√
n consistent and n1/3 consistent es-

timators of the length and center of the population shorth interval. For a
unimodal and symmetric error distribution, the three PIs are asymptotically
equivalent, but PI (2.16) can be the shortest PI due to different correction
factors.



2.4 Prediction Regions 101

If the estimator is poor, the split conformal PI (2.16) and PI (2.15) can
have coverage closer to the nominal coverage than PI (2.14). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (2.15) will be long compared
to PI (2.16).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
as PIs (2.14) and (2.15), may be the only easily computed asymptotically

optimal PIs for a wide range of consistent estimators β̂ of β for the multiple
linear regression model. If the error distribution is e ∼ EXP (1)−1, then the
asymptotic length of the 95% PI (2.14) or (2.15) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, see Section 3.9 and Pelawa Watagoda and Olive (2021b).

2.4 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 2.8. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A
PI is a prediction region where p = 1. Highest density regions are usually
hard to estimate for p much larger than four, but many elliptically contoured
distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (2.22). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).
Mahalanobis distances Dx andDi =

√
D2

i are defined in Definition 1.17. The
sample mean and covariance matrix (x,S) are defined in Definition 1.15.

Consider the hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (2.17)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un

where Un decreases to kn, can improve small sample performance. Un will be
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defined in the paragraph below Equation (2.21). Olive (2013a) showed that
(2.17) is a large sample 100(1− δ)% prediction region under mild conditions,
although regions with smaller volumes may exist. Note that the result follows
since if Σx and S are nonsingular, then the Mahalanobis distance is a con-

tinuous function of (x,S). Let µ = E(x) and D = D(µ,Σx). Then Di
D→ D

and D2
i

D→ D2. Hence the sample percentiles of the Di are consistent estima-
tors of the population percentiles of D at continuity points of the cumulative
distribution function of D.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (2.17) for c = kn), is that they have coverage
lower than the nominal coverage of 1 − δ for moderate n. This result is not
surprising since empirically statistical methods perform worse on test data.
Increasing c will improve the coverage for moderate samples. Also see Remark
2.12. Empirically for many distributions, for n ≈ 20p, the prediction region
(2.17) applied to iid data using c = kn = dn(1 − δ)e tended to have under-
coverage as high as 5%. The undercoverage decreases rapidly as n increases.
Let qn = min(1− δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δp/n), otherwise. (2.18)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Using

c = dnqne (2.19)

in (2.17) decreased the undercoverage. Note that Equations (2.11) and (2.12)
are similar to Equations (2.18) and (2.19), but replace p by d.

If (T,C) is a
√
n consistent estimator of (µ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x− T )T C−1(x− T ) =

(x−µ + µ− T )T [C−1 − d−1Σ−1 + d−1Σ−1](x−µ + µ− T )

= d−1D2(µ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(µ,Σ) (at continuity points D1−δ of the cdf of D2(µ,Σ)).
If x ∼ Nm(µ,Σ), then D2

x(µ,Σ) = D2(µ,Σ) ∼ χ2
m.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical estimator
satisfies this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (2.20)

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM). (2.21)
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A future observation (random vector) xf is in the region (2.20) if Dxf
≤ h.

If (T,C) is a consistent estimator of (µ, dΣ) for some constant d > 0 where
Σ is nonsingular, then (2.20) is a large sample 100(1− δ)% prediction region
if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di where qn

is defined above (2.19). If x1, ...,xn and xf are iid, then prediction region
(2.22) is asymptotically optimal for a large class of elliptically contoured
distributions since the volume of (2.22) converges in probability to the volume
of the highest density region. (These distributions have a highest density
region which is a hyperellipsoid determined by a population Mahalanobis
distance. See Definition 1.19.)

The Olive (2013a) nonparametric prediction region uses (T,C) = (x,S).
For the classical prediction region, see Chew (1966) and Johnson and Wichern
(1988, pp. 134, 151). Refer to the above paragraph for D(Un).

Definition 2.9. The large sample 100(1− δ)% nonparametric prediction
region for a future value xf given iid data x1, ...,xn is

{z : D2
z(x,S) ≤ D2

(Un)}, (2.22)

while the large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (2.23)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (2.10) and (2.19) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 2.2 where ol = (Eq.
2.19)/n is plotted versus fr = (Eq. 2.10)/n for n = 20, 21, ..., 500. The top
plot is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is
added to each plot as a visual aid. The value of n increases from 20 to 500
from the right of the plot to the left of the plot. Examining the axes of each
plot shows that the correction factors do not differ greatly. R code to create
Figure 2.2 is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)

Remark 2.12. The nonparametric prediction region (2.22) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf,
although prediction regions with smaller volume may exist. If the 100(1−δ)th
percentile D1−δ of D is not a continuity point of the distribution of D, then
the asymptotic coverage tends to be ≥ 1 − δ since a sample percentile with
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Fig. 2.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

cutoff qn that decreases to 1−δ is used and a closed region is used. OftenD has
a continuous distribution and hence has no discontinuity points for 0 < δ < 1.
(If there is a jump in the distribution from 0.9 to 0.96 at discontinuity point a,
and the nominal coverage is 0.95, we want 0.96 coverage instead of 0.9. So we
want the sample percentile to decrease to a.) The nonparametric prediction
region (2.22) contains Un of the training data cases xi provided that S is
nonsingular, even if the model is wrong. For many distributions, the coverage
started to be close to 1 − δ for n ≥ 10p where the coverage is the simulated
percentage of times that the prediction region contained xf .

Remark 2.13. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. Using (2.21), the ratio
of the volumes of regions (2.23) and (2.22) is



2.4 Prediction Regions 105

(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1− p/γ > 0
for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in (2.20)
usually results in prediction regions with volume and coverage that is too
large.

Remark 2.14. The nonparametric prediction region (2.22) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013a)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are error distributions that will have severe
undercoverage. Statisticians often say that correction factors are ad hoc, but
doing nothing is much more ad hoc than using correction factors.

For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (2.22) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1− δ + 0.05 for n ≤ 20p and qn → 1 − δ as n→ ∞. If qn ≡ 1 − δ and
(T,C) is a consistent estimator of (µ, dΣ) where d > 0 and Σ is nonsingular,
then (2.20) with h = D(Un) is a large sample prediction region, but taking
qn given by (2.18) improves the finite sample performance of the prediction
region. Taking qn ≡ 1 − δ does not take into account variability of (T,C),
and for n = 20p the resulting prediction region tended to have undercoverage
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as high as min(0.05, δ/2). Using (2.18) helped reduce undercoverage for small
n ≥ 20p due to the unknown variability of (T,C).

2.4.1 Prediction Regions If n/p Is Small

See Haile, Zhang, and Olive (2023).

2.5 Bootstrapping Hypothesis Tests and Confidence

Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 2.4 to a bootstrap sample results in a
confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1− δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal.

When teaching confidence intervals, it is often noted that by the central
limit theorem, the probability that Y n is within two standard deviations
(2SD(Y n) = 2σ/

√
n) of θ = µ is about 95%. Hence the probability that θ is

within two standard deviations of Y n is about 95%. Thus the interval [θ −
1.96S/

√
n, θ+1.96S/

√
n] is a large sample 95% prediction interval for a future

value of the sample mean Y n,f if θ is known, while [Y n − 1.96S/
√
n, Y n +

1.96S/
√
n] is a large sample 95% confidence interval for the population mean

θ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter θ or the statistic Y n, determines whether the
interval is a prediction or a confidence interval. See Theorem 2.10 for a similar
relationship between confidence regions and prediction regions.

Definition 2.10. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1− δ as n→∞.

If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An)→ 1− δ as n→∞.

There are several methods for obtaining a bootstrap sample T ∗
1 , ...., T

∗
B

where the sample size n is suppressed: T ∗
i = T ∗

in. The parametric bootstrap,
nonparametric bootstrap, and residual bootstrap will be used. Applying the
nonparametric prediction region (2.22) to the bootstrap sample will result in
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a confidence region for θ. When g = 1, applying the shorth PI (2.10) or the
percentile PI (2.7) to the bootstrap sample results in a confidence interval
for θ. Section 2.5.2 will help clarify ideas.

When g = 1, a confidence interval is a special case of a confidence region.
One sided confidence intervals give a lower or upper confidence bound for θ.
A large sample 100(1−δ)% lower confidence interval (−∞, Un] uses an upper

confidence bound Un and is in the lower tail of the distribution of θ̂. A large
sample 100(1−δ)% upper confidence interval [Ln,∞) uses a lower confidence

bound Ln and is in the upper tail of the distribution of θ̂. These CIs can be
useful if θ ∈ [a, b] and θ = a or θ = b is of interest for a hypothesis test. For
example, [a, b] = [0, 1] if θ = ρ2, the squared population correlation. Then use
[0, Un] and [Ln, 1] as CIs, e.g. if we expect θ = 0 we might test H0 : θ ≤ 0.05
versus H0 : θ > 0.05, and fail to reject H0 if Un < 0.05. See Section 2.5.4 for
an illustration. Again we often want the probability to converge to 1 − δ if
the confidence interval is based on a statistic with an asymptotic distribution
that has a pdf.

Definition 2.11. The interval [Ln, Un] is a large sample 100(1 − δ)%
confidence interval for θ if P (Ln ≤ θ ≤ Un) is eventually bounded below by
1− δ as n→∞. The interval (−∞, Un] is a large sample 100(1− δ)% lower
confidence interval for θ if P (θ ≤ Un) is eventually bounded below by 1− δ
as n→∞. The interval [Ln,∞) is large sample 100(1−δ)% upper confidence
interval for θ if P (θ ≥ Ln) is eventually bounded below by 1− δ as n→∞.

Next we discuss bootstrap confidence intervals that are obtained by apply-
ing prediction intervals (2.7) and (2.10) to the bootstrap sample. Some ad-
ditional bootstrap CIs are obtained from bootstrap confidence regions from
Section 2.5.2 when g = 1. See Efron (1982) and Chen (2016) for the percentile
CI. Let Tn be an estimator of a parameter θ such as Tn = Z =

∑n
i=1 Zi/n

with θ = E(Z1). Let T ∗
1 , ..., T

∗
B be a bootstrap sample for Tn. Let T ∗

(1), ..., T
∗
(B)

be the order statistics of the the bootstrap sample. The percentile CI (2.24)
is obtained by applying percentile PI (2.7) to the bootstrap sample with B
used instead of n. Hence (2.24) is also a large sample prediction interval for a
future value of T ∗

f if the T ∗
i are iid from the empirical distribution discussed

in Section 2.5.1.

Definition 2.12. The bootstrap large sample 100(1− δ)% percentile con-
fidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1 − δ)e of

the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (2.24)

The large sample 100(1− δ)% lower percentile CI for θ is
(−∞, T ∗

(dB(1−δ)e)]. The large sample 100(1− δ)% upper percentile CI for θ is

[T ∗
(dBδe),∞).
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In the next definition, the large sample 100(1−δ)% shorth(c) CI uses the in-
terval [T ∗

(1), T
∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length, denoted

by [T ∗
(s), T

∗
(s+c−1)]. The shorth CI (2.25) is obtained by applying shorth PI

(2.10) to the bootstrap sample.

Definition 2.13. The large sample 100(1 − δ)% lower shorth CI for θ
is (−∞, T ∗

(c)], while the large sample 100(1 − δ)% upper shorth CI for θ is
[T ∗

(B−c+1),∞). The large sample 100(1− δ)% shorth(c) CI

[T ∗
(s), T

∗
(s+c−1)] where c = min(B, dB[1− δ + 1.12

√
δ/B ] e). (2.25)

Applied to a bootstrap sample, the shorth CI can be regarded as the short-
est percentile confidence interval, asymptotically. Hence the shorth confidence
interval is a practical implementation of the Hall (1988) shortest bootstrap
interval based on all possible bootstrap samples. See Remark 2.19 for some
theory for bootstrap CIs such as (2.24) and (2.25).

2.5.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples.
Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases with

replacement uses the empirical distribution.

Definition 2.14. Suppose that data x1, ...,xn has been collected and
observed. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 2.3. Let w be a random variable having the empirical distri-
bution given by Definition 2.14. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence
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E(w) =

n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �

Example 2.4. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

Suppose there is data w1, ...,wn collected into an n×p matrix W with ith
row wT

i . Let the statistic Tn = t(W ) = T (Fn) be computed from the data.
Suppose the statistic estimates µ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n

indicate that t was computed from an iid sample from the empirical distri-
bution Fn: a sample w∗

1, ...,w
∗
n of size n was drawn with replacement from

the observed sample w1, ...,wn. This notation is used for von Mises differen-
tiable statistical functions in large sample theory. See Serfling (1980, ch. 6).
The empirical distribution is also important for the influence function (widely
used in robust statistics). The nonparametric bootstrap draws B samples of
size n from the rows of W , e.g. from the empirical distribution of w1, ...,wn.
Then T ∗

jn is computed from the jth bootstrap sample for j = 1, ..., B.

Example 2.5. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7
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median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we
only have one sample of data and one value Tn = T1n of the statistic. Often
Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗
Bn is formed where

T ∗
jn = t(w∗

j1, ...,w
∗
jn). Section 2.5.3 will show that

√
n(T ∗

1n−Tn), ...,
√
n(T ∗

Bn−
Tn) is pseudodata for

√
n(T1n− θ), ...,

√
n(TBn − θ) when n and B are large

in that
√
n(Tn − θ)

D→ u and
√
n(T ∗ − Tn)

D→ u.

Example 2.6. Suppose there is training data (yi,xi) for the model
yi = m(xi) + εi for i = 1, ..., n, and it is desired to predict a future test
value yf given xf and the training data. The model can be fit and the resid-
ual vectors formed. One method for obtaining a prediction region for yf is to
form the pseudodata ŷf +ε̂i for i = 1, ..., n, and apply the nonparametric pre-
diction region (2.22) to the pseudodata. See Olive (2017b, 2018). The residual
bootstrap could also be used to make a bootstrap sample ŷf + ε̂∗1, ..., ŷf + ε̂∗B
where the ε̂∗j are selected with replacement from the residual vectors for
j = 1, ..., B. As B → ∞, the bootstrap sample will take on the n values
ŷf + ε̂i (the pseudodata) with probabilities converging to 1/n for i = 1, ..., n.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (2.26)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n. Fix n, and let E(T ∗

i,n) = θn and Cov(T ∗
i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√
n(Tn − θ)

D→ Ng(0,ΣA)

where ΣA > 0 is positive definite and nonsingular. Often nΣ̂T
P→ ΣA.

For example, using least squares and the residual bootstrap for the multiple

linear regression model, Σn =
n− p
n

MSE(XT X)−1, Tn = θn = β̂, θ = β,

Σ̂T = MSE(XT X)−1 and ΣA = σ2 limn→∞(XT X/n)−1. See Example 2.8
in Section 2.6.

Suppose the T ∗
i = T ∗

i,n are iid from some distribution with cdf F̃n. For

example, if T ∗
i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the

cdf of t(F ∗
n). With respect to F̃n, both θn and Σn are parameters, but with

respect to F , θn is a random vector and Σn is a random matrix. For fixed
n, by the multivariate central limit theorem,
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√
B(T

∗ − θn)
D→ Ng(0,Σn) and B(T

∗ − θn)
T[S∗

T]−1(T
∗ − θn)

D→ χ2
r

as B →∞.

Remark 2.15. For Examples 2.3, 2.6, and 2.8, the bootstrap works but
is expensive compared to alternative methods. For Example 2.3, fix n, then

T
∗ P→ θn = x and S∗

T
P→ (n − 1)S/n as B → ∞, but using (x,S) makes

more sense. For Example 2.6, use the pseudodata instead of the residual boot-
strap. For Example 2.8, using β̂ and the classical estimated covariance ma-
trix Ĉov(β̂) = MSE(XT X)−1 makes more sense than using the bootstrap.
For these three examples, it is known how the bootstrap sample behaves as

B → ∞. The bootstrap can be very useful when
√
n(Tn − θ)

D→ Ng(0,ΣA),
but it not known how to estimate ΣA without using a resampling method

like the bootstrap. The bootstrap may be useful when
√
n(Tn − θ)

D→ u, but
the limiting distribution (the distribution of u) is unknown.

The following theorem shows that
√
m(T ∗

1,n − Tn), ...,
√
m(T ∗

B,n − Tn) are

pseudodata for
√
n(T1,n − θ), ...,

√
n(TB,n − θ). Here T ∗

i = T ∗
i,m with n sup-

pressed or T ∗
i,n = T ∗

i,n,m where m is the sample size of the bootstrap data set
used to compute T ∗

i , and often m = n. (For example, for the nonparametric
bootstrap, take a sample of size m = n with replacement from the n cases to
get the ith bootstrap data set. Then compute T ∗

i from that bootstrap data
set.) The first two convergence assumptions are with respect to the data dis-
tribution, while the third convergence assumption is with respect to the boot-
strap distribution. The technique is similar to using a triangular array, except
both n→∞ and m→∞. Note that for large n, Ng(0,Σn) ≈ Ng(0,Σ), and
often the Ng(0,Σn) approximation is used to produce output since Σ is un-
known. Typically large sample theory is used to prove the three assumptions
of the following theorem.

Theorem 2.8, Bootstrap Proof Technique: Suppose
√
n(Tn − θ)

D→
Ng(0,Σ) and Σn

P→ Σ as n → ∞, and for fixed n,
√
m(T ∗

n,m − Tn)
D→

Ng(0,Σn) as m → ∞. Then a)
√
m(T ∗

n,m − Tn)
D→ Ng(0,Σ) as m, n → ∞.

Also b)
√
n(T ∗

n − Tn)
D→ Ng(0,Σ) as n→∞ where T ∗

n = T ∗
n,n has m = n.

Proof: By the three assumptions, un =
√
n(Tn − θ)

D→ u ∼ Ng(0,Σ) as

n→∞, w∗
n,m =

√
m(T ∗

n,m− Tn)
D→ wn ∼ Ng(0,Σn) as m→∞ for fixed n,

and wn
D→ u as n → ∞. Hence w∗

n,m =
√
m(T ∗

n,m − Tn)
D→ u ∼ Ng(0,Σ)

as m, n→∞. Since this result does not depend on m as long as m→∞, b)
follows. �

Example 2.7. Suppose x1, ...,xn are iid p × 1 random vectors with
E(xi) = µ and Cov(xi) = Σ. a) For the parametric bootstrap, let x∗

1, ...,x
∗
m

be iid Np(xn,Sn) where Sn
P→ Σ as n → ∞. By the multivariate central
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limit theorem
√
n(xn − µ)

D→ Np(0,Σ) and for fixed n,
√
m(x∗

n,m − xn)
D→

Np(0,Sn) where x∗
n,m = 1

m

∑m
i=1 x∗

i is the sample mean of the bootstrap

data set x∗
1, ...,x

∗
m. Hence

√
m(x∗

n,m − xn)
D→ Np(0,Σ) as n,m → ∞ by

Theorem 2.8. Note that m = n can be used by Theorem 2.8 b).
b) For the nonparametric bootstrap, E(x∗

n) = E(wn) = xn, and Cov(x∗
n) =

Cov(wn)/n = (n − 1)Sn/n
2 by Example 2.3 where w = wn. The x∗

i

are iid with respect to the bootstrap distribution. If the sample mean
x∗

n,m is computed from m x∗
i selected with replacement from the xi, then

√
m(x∗

n,m−xn)
D→ Np(0,

n−1
n Sn) for fixed n by the multivariate CLT. Then

by Theorem 2.8 b) with m = n,
√
n(x∗

n − xn)
D→ Np(0,Σ) as n→∞.

2.5.2 Bootstrap Confidence Regions for Hypothesis

Testing

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B →∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1
vector. Then reject H0 if θ0 is not in the confidence region An. Let the g× 1
vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap sample for Tn.

Let A be a full rank g × p constant matrix. For variable selection, consider
testing H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often

θ0 = 0. Then let Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The

statistic β̂Imin,0 is the variable selection estimator padded with zeroes. See
Section 2.2.

Let T
∗

and S∗
T be the sample mean and sample covariance matrix of the

bootstrap sample T ∗
1 , ..., T

∗
B. See Equation (2.26). Here P (X ≤ χ2

g,1−δ) = 1−δ
if X ∼ χ2

g, and P (X ≤ Fg,dn,1−δ) = 1− δ if X ∼ Fg,dn . See Remark 2.10. Let
kB = dB(1 − δ)e.

Definition 2.15. a) The large sample 100(1 − δ)% standard bootstrap
confidence region for θ is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (2.27)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n → ∞.

b) The large sample 100(1 − δ)% Bickel and Ren confidence region for θ is

{w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kBT )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kBT )} (2.28)
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where the cutoff D2
(kBT ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (2.27) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity con-
ditions for this assumption. Bickel and Ren (2001) have interesting sufficient

conditions for (2.28) to be a confidence region when Σ̂A is a consistent esti-
mator of positive definite ΣA. Let the vector of parameters θ = T (F ), the
statistic Tn = T (Fn), and the bootstrapped statistic T ∗ = T (F ∗

n) where F
is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empiri-
cal cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn − θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ”

and F ∗
n is a perfectly good empirical cdf from Fn = “F .” Thus if n is fixed,

and a sample of size m is drawn with replacement from the empirical distribu-

tion, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn . Now let n→∞ with m = n. Then

bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn = Ṫ (F )zF ∼ u.

The following three confidence regions will be used for inference after vari-
able selection. The Olive (2017ab, 2018) prediction region method confidence
region applies the nonparametric prediction region (2.22) to the bootstrap
sample. Olive (2017ab, 2018) also gave the modified Bickel and Ren confi-

dence region that uses Σ̂A = nS∗
T . The hybrid confidence region is due to

Pelawa Watagoda and Olive (2021a). Let qB = min(1− δ+0.05, 1− δ+g/B)
for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (2.29)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (2.29) as a correction factor for finite
B ≥ 50p.

Definition 2.16. The large sample 100(1− δ)% prediction region method

confidence region for θ is {w : (w − T ∗
)T [S∗

T ]−1(w − T ∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (2.30)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).)
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Definition 2.17. The large sample 100(1−δ)% (modified) Bickel and Ren
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UBT )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UBT )} (2.31)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)T [S∗
T ]−1(T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UBT ).

Definition 2.18. Shift region (2.30) to have center Tn, or equivalently,
change the cutoff of region (2.31) toD2

(UB) to get the large sample 100(1−δ)%
hybrid confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (2.32)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).

Rajapaksha and Olive (2022) gave the following two confidence regions.
The names of these confidence regions were chosen since they are similar to
the Bickel and Ren and prediction region method confidence regions.

Definition 2.19. The large sample 100(1− δ)% BR confidence region is

{w : n(w − Tn)T C−1
n (w − Tn) ≤ D2

(UBT )} =

{w : D2
w(Tn,Cn/n) ≤ D2

(UBT )} (2.33)

where the cutoff D2
(UBT ) is the 100qBth sample quantile of the D2

i = n(T ∗
i −

Tn)T C−1
n (T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0 rejects
H0 if n(Tn − θ0)

T C−1
n (Tn − θ0) > D2

(UBT ).

Definition 2.20. The large sample 100(1− δ)% PR confidence region for
θ is

{w : n(w − T ∗
)T C−1

n (w − T ∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,Cn/n) ≤ D2

(UB)} (2.34)

where D2
(UB) is computed from D2

i = n(T ∗
i − T

∗
)T C−1

n (T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if
n(T

∗ − θ0)
T C−1

n (T
∗ − θ0) > D2

(UB).

Hyperellipsoids (2.31) and (2.32) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (2.30) and (2.31) is
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|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UBT )

)g

=

(
D(UB)

D(UBT )

)g

. (2.35)

The volume of confidence region (2.31) tends to be greater than that of (2.30)

since the T ∗
i are closer to T

∗
than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are
special cases of confidence regions. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval that
contains UB ≈ kB = dB(1−δ)e of the T ∗

i . Let ai = |T ∗
i −T

∗|. Let T
∗

and S2∗
T

be the sample mean and variance of the T ∗
i . Then the squared Mahalanobis

distanceD2
θ = (θ−T ∗

)2/S∗2
T ≤ D2

(UB) is equivalent to θ ∈ [T
∗−S∗

TD(UB), T
∗
+

S∗
TD(UB)] = [T

∗−a(UB), T
∗
+a(UB)], which is an interval centered at T

∗
just

long enough to cover UB of the T ∗
i . Hence the prediction region method CI

is a special case of the percentile method CI if g = 1. See Definition 2.12.
Efron (2014) used a similar large sample 100(1 − δ)% confidence interval

assuming that T
∗

is asymptotically normal. The CI [Tn−a(UBT ), Tn +a(UBT )]
corresponding to (2.31) is defined similarly, and [Tn − a(UB), Tn + a(UB)] is
the CI for (2.32). Note that the three CIs corresponding to (2.30)–(2.32) can
be computed without finding S∗

T or D(UB) even if S∗
T = 0. The shorth(c)

CI (2.25) computed from the T ∗
i can be much shorter than the Efron (2014)

or prediction region method confidence intervals. See Remark 2.18 for some
theory for bootstrap CIs.

In the following definition, let UB and UBT be as in Definitions 2.15 to
2.20. Let ai be as in the above paragraph. In Definition 2.21, the PI given
by a) corresponds to both the prediction region method and PR confidence
regions, while the PI given by b) corresponds to both the (modified) Bickel
and Ren and BR confidence regions.

Definition 2.21. a) The large sample 100(1− δ)% PR CI is

[T
∗ − a(UB), T

∗
+ a(UB)].

b) The large sample 100(1− δ)% BR CI is
[Tn − a(UBT ), Tn + a(UBT )].

c) The large sample 100(1− δ)% hybrid CI is
[Tn − a(UB), Tn + a(UB)].

Remark 2.16. From Example 2.8, Cov(β̂
∗
) =

n− p
n

MSE(XT X)−1 =

n− p
n

Ĉov(β̂) where Ĉov(β̂) = MSE(XT X)−1 starts to give good estimates

of Cov(β̂) = ΣT for many error distributions if n ≥ 10p and T = β̂. For

the residual bootstrap with large B, note that S∗
T ≈ 0.95Ĉov(β̂) for n = 20p

and S∗
T ≈ 0.99Ĉov(β̂) for n = 100p. Hence we may need n >> p before the

S∗
T is a good estimator of Cov(T ) = ΣT . The distribution of

√
n(Tn − θ) is
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approximated by the distribution of
√
n(T ∗ − Tn) or by the distribution of√

n(T ∗ − T ∗
), but n may need to be large before the approximation is good.

Suppose the bootstrap sample mean T
∗

estimates θ, and the bootstrap
sample covariance matrix S∗

T estimates cnĈov(Tn) ≈ cnΣT where cn in-

creases to 1 as n → ∞. Then S∗
T is not a good estimator of Ĉov(Tn) un-

til cn ≈ 1 (n ≥ 100p for OLS β̂), but the squared Mahalanobis distance

D2∗
w(T

∗
,S∗

T ) ≈ D2
w(θ,ΣT )/cn and D2∗

(UB) ≈ D2
1−δ/cn. Hence the prediction

region method has a cutoff D2∗
(UB) that estimates the cutoff D2

1−δ/cn. Thus
the prediction region method may give good results for much smaller n than
a bootstrap method that uses a χ2

g,1−δ cutoff when a cutoff χ2
g,1−δ/cn should

be used for moderate n.

Remark 2.17. For bootstrapping the p× 1 vector β̂Imin,0, we will often
want n ≥ 20p and B ≥ max(100, n, 50p). If Tn is g × 1, we might replace p
by g or replace p by d if d is the model degrees of freedom. Sometimes much
larger n is needed to avoid undercoverage. We want B ≥ 50g so that S∗

T is a
good estimator of Cov(T ∗

n). Prediction region theory uses correction factors
like (2.19) and (2.10) to compensate for finite n. The bootstrap confidence
regions (2.30)–(2.34) and the shorth CI use the correction factors (2.29) and
(2.25) to compensate for finite B ≥ 50g. Note that the correction factors
make the volume of the confidence region larger as B decreases. Hence a test
with larger B will have more power.

2.5.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator.

Remark 2.18. Some regularity conditions used for bootstrap confidence

regions are i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u,

iv)
√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u). Regularity condition v)
is rather strong by Machado and Parente (2005). Regularity conditions i)
and ii) are often shown using large sample theory. Since (2.31) is a large
sample confidence region by Bickel and Ren (2001), (2.30) and (2.32) are

too, provided vi)
√
n(T

∗ − Tn)
P→ 0. Also note that (2.31) is a large sample

confidence region if the standard confidence region (2.27) is a large sample
confidence region.
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Olive (2017b:
∮

5.3.3, 2018) proved that the prediction region method
gives a large sample confidence region under v) from Remark 2.18 and u ∼
Ng(0,Σu), but the following Pelawa Watagoda and Olive (2021a) theorem
and proof is simpler. Since iii) and iv) hold by Theorem 2.9, the sample
percentile will be consistent under much weaker conditions than v) if Σu is
nonsingular.

Theorem 2.9. a) Suppose i)
√
n(Tn − θ)

D→ u, and ii)
√
n(T ∗

i − Tn)
D→ u

with E(u) = 0 and Cov(u) = Σu. Then iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i −
T

∗
)

D→ u, and vi)
√
n(T

∗ − Tn)
P→ 0.

b) Then the prediction region method gives a large sample confidence

region for θ provided that the sample percentile D̂2
1−δ of the D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −T
∗
)T (nS∗

T )−1
√
n(T ∗

i −T
∗
) is a consistent estimator of the percentile

D2
n,1−δ of the random variable D2

θ(T
∗
,S∗

T ) =
√
n(θ − T ∗

)T (nS∗
T )−1√n(θ −

T
∗
) in that D̂2

1−δ −D2
n,1−δ

P→ 0.

Proof. With respect to the bootstrap sample, Tn is a constant and the√
n(T ∗

i − Tn) are iid for i = 1, ..., B. Fix B. Then




√
n(T ∗

1 − Tn)
...√

n(T ∗
B − Tn)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 1.22 and
1.23, and see Example 1.20.) For fixed B, the average of the

√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 1.25 where z ∼ ANg(0,Σ) is an asymptotic multivariate normal

approximation. Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii), iv), and vi)

hold. Hence b) follows. �

Remark 2.19. Note that if
√
n(Tn − θ)

D→ U and
√
n(T ∗

i − Tn)
D→ U

where U has a unimodal probability density function symmetric about zero,
then the confidence intervals from the three confidence regions (2.30)–(2.32),
the shorth confidence interval (2.25), and the “usual” percentile method con-
fidence interval (2.24) are asymptotically equivalent (use the central propor-
tion of the bootstrap sample, asymptotically). This result is due to Pelawa
Watagoda and Olive (2021a).

Assume nS∗
T

P→ ΣA as n, B →∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that
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√
n (Tn − θ)

D→ u (2.36)

as n→∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zT z = D2

as n→∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (2.37)

as n, B →∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (2.27) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A . The following
remark gives a simple technical explanation for why bootstrap confidence
regions and tests work.

Remark 2.20. a) Assume un
D→ u where un = i)

√
n(Tn − θ), ii)

√
n(T ∗

i − Tn), iii)
√
n(T ∗

i − T
∗
), or iv)

√
n(T

∗ − θ), and nS∗
T

P→ C where C
is nonsingular. Let

D2
1 = D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1√n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1

√
n(T ∗

i − Tn).

Then D2
j ≈ uT (nS∗

T )−1u ≈ uT C−1u, and the percentiles of D2
1 and D2

4

can be used as cutoffs. If (nS∗
T )−1 is “not too ill conditioned” then D2

j ≈
uT (nS∗

T )−1u for large n, and the confidence regions (2.30), (2.31), and (2.32)
will have coverage near 1− δ. For confidence regions (2.33) and (2.34), want

C−1
n

P→ C−1 or C−1
n to be “not too ill conditioned.” The regularity conditions

for (2.30)–(2.34) are weaker when g = 1, since S∗
T and Cn do not need to be

computed.
b) Both I)

√
n(T ∗

1n−Tn), ...,
√
n(T ∗

Bn−Tn) and II)
√
n(T ∗

1n−T
∗
), ...,

√
n(T ∗

Bn

−T ∗
) can be used as pseudodata for III)

√
n(T1n−θ), ...,

√
n(TBn−θ) when

n is large since i), ii) and iii) hold. We can’t get the random quantities in III)
since θ is unknown, and we only have B = 1 value of the statistic Tn. Note
that i) would give an asymptotic pivot if the distribution of u was known.
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The following Pelawa Watagoda and Olive (2021a) theorem is very use-
ful. The improved proof, due to Rathnayake and Olive (2023), is used. Let
(T ,ST ) be the sample mean and sample covariance matrix computed from
T1, ..., TB which have the same distribution as Tn where Ti = Tin. Let D2

(UB)

be the cutoff computed from the D2
i (T ,ST ) for i = 1, ..., B. The hyperellip-

soids corresponding to D2(Tn,C) and D2(T ,C) are centered at Tn and T ,
respectively. Note that D2

T
(Tn,C) = D2

Tn
(T ,C). Thus D2

T
(Tn,C) ≤ D2

(UB)

iff D2
Tn

(T ,C) ≤ D2
(UB). In Theorem 2.10, since Rp contains Tf with prob-

ability 1 − δB , the region Rc contains T with probability 1 − δB . Since Tn

depends on the sample size n, we need (nST )−1 to be fairly well behaved,

e.g. (nST )−1 P→ Σ−1
A . Note that Ti = Tin.

Theorem 2.10: Geometric Argument. Suppose
√
n(Tn−θ)

D→ u with
E(u) = 0 and Cov(u) = Σu 6= 0. Assume T1, ..., TB are iid with non-

singular covariance matrix ΣTn where (nST )−1 P→ Σ−1
A . Then the large

sample 100(1− δ)% prediction region Rp = {w : D2
w(T ,ST ) ≤ D2

(UB)} cen-

tered at T contains a future value of the statistic Tf with probability 1− δB
which is eventually bounded below by 1 − δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1− δ)% confidence

region for θ where Tn is a randomly selected Ti.
Proof. The region Rc centered at a randomly selected Tn contains T with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 1.22
and 1.23, and see Example 1.20.) For fixed B, the average of these random
vectors is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 1.25, where ANg denotes an approximate multivariate normal
distribution. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily close
to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1 − δ)%
confidence region for θ as n, B →∞. �

Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u ∼ Ng(0,Σ), say, then
the bootstrap sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid

T1, ..., TB shifted to be centered at Tn. The nonparametric confidence region
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Fig. 2.3 Confidence Regions for 2 Statistics with MVN Distributions
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(2.30) applies the prediction region to the bootstrap. Then the hybrid region
(2.32) centers that region at Tn. Hence (2.32) is a confidence region by the

geometric argument, and (2.30) is a confidence region if
√
n(T

∗ − Tn)
P→ 0.

Since the T ∗
i are closer to T

∗
than Tn on average, D2

(UBT ) tends to be greater

than D2
(UB). Hence the coverage and volume of (2.31) tend to be at least as

large as the coverage and volume of (2.32).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
D2

T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 2.3 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 2.3 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.

If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 2.10, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 2.3. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 2.21. Remark 2.16 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

g , the pre-
diction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
g,1−δ. Theorem 2.10 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
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by using D2
(Un). If n is large, by using D2

(UB), the prediction region method
confidence region compensates for undercoverage when B is moderate, say
B ≥ Jg where J = 20 or 50. See Remark 2.17. This result can be useful
if a simulation with B = 1000 or B = 10000 is much slower than a simu-
lation with B = Jg. The price to pay is that the prediction region method
confidence region is inflated to have better coverage, so the power of the
hypothesis test is decreased if moderate B is used instead of larger B.

2.5.4 Bootstrapping the Population Coefficient of

Multiple Determination

This subsection illustrates a case where the shorth(c) bootstrap CI fails, but
the lower shorth CI can be useful. See Definition 2.13.

The multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei

for i = 1, ..., n.See Definition 1.42 for the coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1− SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.
Assume that the variance of the errors is σ2

e and that the variance of Y is
σ2

Y . Let the linear combination L =
∑p

i=2 xiβi where Y = β1 +
∑p

i=2 xiβi +
e = β1 + L + e. Let the variance of L be σ2

L. Then

R2 = 1−
∑n

i=1 r
2
i∑n

i=1(Yi − Y )2
P→ τ2 = 1− σ2

e

σ2
Y

= 1− σ2
e

σ2
e + σ2

L

.

Here we assume that e is independent of the predictors x2, ..., xp. Hence e is
independent of L and the variance σ2

Y = V (L+e) = V (L)+V (e) = σ2
L +σ2

e .
One of the sufficient conditions for the shorth(c) interval to be a large

sample CI for θ is
√
n(T − θ) D→ N(0, σ2). If the function t(θ) has an inverse,

and
√
n(t(T )− t(θ)) D→ N(0, v2), then the above condition typically holds by

the delta method. See Remark 2.19.
For T = R2 and θ = τ2, the test statistic F0 for testing H0 : β2 = · · · =

βp = 0 in the Anova F test has (p − 1)F0
D→ χ2

p−1 for a large class of error
distributions when H0 is true, where

F0 =
R2

1−R2

n− p
p − 1
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if the MLR model has a constant. If H0 is false, then F0 has an asymptotic
scaled noncentral χ2 distribution. These results suggest that the large sample
distribution of

√
n(R2 − τ2) may not be N(0, σ2) if H0 is false so τ2 > 0. If

τ2 = 0, we may have
√
n(R2 − 0)

D→ N(0, 0), the point mass at 0. Hence the
shorth CI may not be a large sample CI for τ2. The lower shorth CI should
be useful for testing H0 : τ2 = 0 versus HA : τ2 > a where 0 < a ≤ 1 since
the coverage is 1 and the length of the CI converges to 0. So reject H0 if a is
not in the CI.

The simulation simulated iid data w with u = Aw and Aij = ψ for i 6= j
and Aii = 1 where 0 ≤ ψ < 1 and u = (x2, ..., xp)

T . Hence Cor(xi, xj) = ρ =
[2ψ+(p−3)ψ2]/[1+(p−2)ψ2] for i 6= j. If ψ = 1/

√
kp, then ρ→ 1/(k+1) as

p→∞ where k > 0. We used w ∼ Np−1(0, Ip−1). If ψ is high or if p is large
with ψ ≥ 0.5, then the data are clustered tightly about the line with direction
1 = (1, ..., 1)T, and there is a dominant principal component with eigenvector
1 and eigenvalue λ1. We used ψ = 0, 1/

√
p, and 0.9. Then ρ = 0, ρ→ 0.5, or

ρ→ 1 as p→∞.
We also used V (x2) = · · · = V (xp) = σ2

x. If p > 2, then Cov(xi, xj) = ρσ2
x

for i 6= j and Cov(xi, xj) = V (xi) = σ2
x for i = j. Then V (Y ) = σ2

Y = σ2
L+σ2

e

where

σ2
L = V (L) = V (

p∑

i=2

βixi) = Cov(

p∑

i=2

βixi,

p∑

j=2

βjxj) =

p∑

i=2

p∑

j=2

βiβjCov(xi, xj)

=

p∑

i=2

β2
i σ

2
x + 2ρσ2

x

p∑

i=2

p∑

j=i+1

βiβj .

The simulations took βi ≡ 0 or βi ≡ 1 for i = 2, ..., p. For the latter case,

σ2
L = V (L) = (p − 1)σ2

x + 2ρσ2
xp(p− 1)/2.

The zero mean errors ei were from 5 distributions: i) N(0,1), ii) t3, iii)
EXP (1)− 1, iv) uniform(−1, 1), and v) (1− ε)N(0, 1)+ εN(0, (1+ s)2) with
ε = 0.1 and s = 9 in the simulation. Then Y = 1 + bx2 + bx3 + · · ·+ bxp + e
with b = 0 or b = 1.

Remark 2.22. Suppose the simulation uses K runs and Wi = 1 if µ is
in the ith CI, and Wi = 0 otherwise, for i = 1, ..., K. Then the Wi are iid
binomial(1,1− δn) where ρn = 1− δn is the true coverage of the CI when the

sample size is n. Let ρ̂n = W . Since
∑K

i=1Wi ∼ binomial(K, ρn), the standard

error SE(W ) =
√
ρn(1− ρn)/K. For K = 5000 and ρn near 0.9, we have

3SE(W ) ≈ 0.01. Hence an observed coverage of ρ̂n within 0.01 of the nominal
coverage 1 − δ suggests that there is no reason to doubt that the nominal
CI coverage is different from the observed coverage. So for a large sample
95% CI, we want the observed coverage to be between 0.94 and 0.96. Also
a difference of 0.01 is not large. Coverage slightly higher than the nominal
coverage is better than coverage slightly lower than the nominal coverage.
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Bootstrapping confidence intervals for quantities like ρ2 and τ2 is notori-
ously difficult. If β2 = · · · = βp = 0, then σ2

L = 0 and τ2 = 0. However, the
probability that R2∗

i > 0 = 1. Hence the usual two sided bootstrap percentile
and shorth intervals for τ2 will never contain 0. The one sided bootstrap CI
[0, T ∗

(c)] always contains 0, and is useful if the length of the CI goes to 0 as

n→∞. In the table below, βi = b for i = 2, ..., p. If b = 0, then τ2 = 0.
The simulation for the table used 5000 runs with the bootstrap sample

size B = 1000. When n = 400, the shorth(c) CI never contains τ2 = 0 and
the average length of the CI is 0.035. See ccov and clen. The lower shorth CI
always contained τ2 = 0 with lcov = 1, and the average CI length was llen =
0.036. The upper shorth CI never contains τ2 = 0, and the average length is
near 1.

Table 2.1 Bootstrapping τ2 with R2 and B = 1000

etype n p b ψ τ2 ccov clen lcov llen ucov ulen
1 100 4 0 0 0 0 0.135 1 0.137 0 0.990
1 200 4 0 0 0 0 0.0693 1 0.0702 0 0.995
1 400 4 0 0 0 0 0.0354 1 0.0358 0 0.988

Three slpack functions were used in the simulation. The function shorthLU
gets the shorth(c) CI, the lower shorth CI, and the upper shorth CI. The
function Rsqboot bootstraps R2, while the function Rsqbootsim does the
simulation. Some R code for the first line of Table 2.1 is below where b = cc.

Rsqbootsim(n=100,p=4,BB=1000,nruns=5000,type=1,psi=0,

cc=0)

$rho

[1] 0

$sigesq

[1] 1

$sigLsq

[1] 0

$poprsq

[1] 0

$cicov

[1] 0

$avelen

[1] 0.1348881

$lcicov

[1] 1

$lavelen

[1] 0.13688

$ucicov

[1] 0
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$uavelen

[1] 0.9896608

2.6 OLS Large Sample Theory

For this section, we will make several assumptions for the multiple linear
regression model Yi = β1 +xi,2β2 + · · ·+xi,pβp +ei = xT

i β+ei for i = 1, ..., n
where the random variables ei are iid with variance V (ei) = σ2. In matrix
notation, these n equations become Y = Xβ+e. Let H = X(XT X)−1XT .
First, assume Equation (2.1) holds. Second, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n → ∞ for each I with
S ⊆ I.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y
is asymptotically normal and the t–interval will perform well if the sample
size is large enough. The result below suggests that the OLS estimators Ŷi

and β̂ are good if the sample size is large enough. The condition maxhi → 0
in probability usually holds if the researcher picked the design matrix X or
if the xi are iid random vectors from a well behaved population. Outliers

can cause the condition to fail. Convergence in distribution, Zn
D→ Np(0,Σ),

means the multivariate normal approximation can be used for probability
calculations involving Zn. When p = 1, the univariate normal distribution
can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies

that β̂ ≈ Np(β, σ2(XT X)−1)). Let hi = Hii where H = PX . Note that

the following theorem is for the full rank model since XT X is nonsingular.

Theorem 2.11, OLS CLT (Least Squares Central Limit Theo-
rem): Consider the MLR model Yi = xT

i β + ei and assume that the zero
mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn)→ 0 in probability as n→∞ and

XT X

n
→W−1

as n→∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ). (2.38)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (2.39)
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Then using the OLS CLT Theorem 2.11 and notation from Section 2.2,

for the full OLS model,
√
n(β̂ − β)

D→ Np(0, σ2W ) ∼ Np(0,V ) where

(XT X)/n
P→ W−1. If S ⊆ Ij , then

√
n(β̂Ij

− βIj
)

D→ Naj (0, σ
2W j) ∼

Naj(0,V j) where n(XT
Ij

XIj)
−1 P→ W j . Let β̂Ij

= (XT
Ij

XIj)
−1XT

Ij
Y =

DjY , Tn = β̂Imin,0, and Tjn = β̂Ij ,0 = Dj,0Y where Dj,0 adds rows of

zeroes to Dj corresponding to the xi not in Ij . Then ujn =
√
n(β̂Ij,0−β)

D→
uj ∼ Np(0, σ

2W j,0) ∼ Np(0,V j,0) where W j,0 adds columns and rows of
zeroes corresponding to the xi not in Ij .

For variable selection with P (S ⊆ Imin) → 1 as n → ∞, let Tn = Tkn =

β̂Ik,0 with probabilities πkn where πkn → πk as n→∞. Denote the πk with

S ⊆ Ik by πj. The other πk = 0. Then Theorem 2.4 holds:
√
n(β̂V S−β)

D→ u.
Note that V j,0 = σ2W j,0 is singular unless Ij corresponds to the full

model. For example, if p = 3 and model Ij uses a constant x1 ≡ 1 and x3

with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

For variable selection, the next section will show that the bootstrap sample
data cloud T ∗

1 , ..., T
∗
B tends to be slightly more variable than the data cloud

of iid T1, ..., TB for large n. This result will hold for the parametric bootstrap,
residual bootstrap, and nonparametric bootstrap, which are discussed in the
next three subsections. Hence by the geometric argument, we expect D2

(UB)

or D2
(UBT ) can be used as D̂2

1−δ.

2.7 Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate Y ∗

and X∗ that would be used to produce β̂
∗

if the full model estimator β̂ was

being bootstrapped. Instead of computing β̂
∗
, compute the variable selection

estimator β̂
∗
V S,1 = β̂

∗C

Ik1
,0. Then generate another Y ∗ and X∗ and compute

β̂
∗
MIX,1 = β̂

∗
Ik1

,0 (using the same subset Ik1
). This process is repeated B

times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn. Then
apply the confidence regions (2.30), (2.31), and (2.32) on the bootstrap sam-

ple T ∗
1 , ..., T

∗
B where T ∗

i = Aβ̂
∗
SEL,i where SEL is V S or MIX.

For Tn = Aβ̂MIX with θ = Aβ, we have
√
n(Tn − θ)

D→ v by (10)
where E(v) = 0, and Σv =

∑
j πjAV j,0A

T . By Theorem 2.10, if we had iid
data T1, ..., TB, then Rc would be a large sample confidence region for θ. If
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√
n(T ∗

n − Tn)
D→ v, then we could use the bootstrap sample and confidence

regions (2.30) to (2.32). This condition holds only under strong regularity
conditions such as πd = 1 or θ = Aβ = BβS if V was diagonal.

Now we will try to explain why the bootstrap confidence regions may
still be useful. By Sections 2.2 and 2.5, we expect the confidence regions to
simulate well (have coverage close to or higher than the nominal level so that
the type I error is close to or less than the nominal level) if πd = 1 or if the
asymptotic covariance matrix for the full model is nonsingular and diagonal,
but these conditions are very strong. In simulations for β̂V S with n ≥ 20p,
if the confidence regions (2.30) and (2.31) simulated well for the full model

bootstrap, then (2.31) and (2.32) also simulated well for β̂V S . The hybrid
confidence region (2.32) had poorer performance, and confidence regions for

β̂V S tended to have less undercoverage than confidence regions for β̂
∗
MIX .

Undercoverage can occur if the bootstrap data cloud is less variable than
the iid data cloud, e.g., if n < 20p. Heuristically, if n ≥ 20p, then coverage can
be higher than the nominal coverage for two reasons: i) the bootstrap data
cloud T ∗

1 , ..., T
∗
B is more variable than the iid data cloud of T1, ..., TB, and

ii) zero padding. In the simulations for H0 : Aβ = BβS = θ, the simulated
coverage for confidence intervals and confidence regions (2.30) and (2.31) was
roughly 2% less than to 2% higher than the nominal 95% coverage due to
i). In the simulations for H0 : Aβ = BβE = 0, the simulated coverage
for confidence intervals and confidence regions (2.30) and (2.31) tended to
be close to 99% when the nominal coverage was 95%, but the nominal 95%
confidence intervals tended to be shorter than those for the full model, and
the confidence region volumes were often much smaller than those for the
full model. See Pelawa Watagoda and Olive (2021a) for more on why zero
padding tends to increase the coverage while decreasing the volume of the
confidence regions and confidence intervals. The simulations also used B ≥
max(200, 50p) so that S∗

T is a good estimator of Cov(T ∗).
The matrix S∗

T can be singular due to one or more columns of zeros
in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the

full model estimator β̂
∗

= β̂
∗
FULL to the bootstrap sample. For example,

take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (2.30), (2.31), and (2.32). Using the confidence interval
[max(Ln, T

∗
(1)),min(Un, T

∗
(B))] can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable
than the iid data cloud. Let Bjn count the number of times T ∗

i = T ∗
ij in the

bootstrap sample. Then the bootstrap sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J .

Denote T ∗
1j, ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap sample

with sample mean T
∗
j and sample covariance matrix S∗

T,j. Similarly, we can
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define the jth component of the iid sample T1, ..., TB to have sample mean
T j and sample covariance matrix ST,j.

Let Tn = β̂MIX . If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)

D→ Naj (0,V j) and
√
n(β̂

∗
Ij
− β̂Ij

)
D→ Naj (0,V j). Then by Equation (2.3),

√
n(β̂Ij ,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗
Ij,0−β̂Ij,0)

D→ Np(0,V j,0). (2.40)

If Equation (2.38) holds, then the component clouds have the same variability
asymptotically, and the confidence regions will shrink to a point at β as n→
∞, giving good test power, asymptotically. The iid data component clouds are
all centered at β. If the bootstrap data component clouds were all centered
at the same value β̃, then the bootstrap cloud would be like an iid data cloud
shifted to be centered at β̃, and (2.31) and (2.32) would be confidence regions
for θ = β by Theorem 2.10. Instead, the bootstrap data component clouds
are shifted slightly from a common center, and are each centered at a β̂Ij,0.
Geometrically, the shifting of the bootstrap component data clouds makes the
bootstrap data cloud more variable than the iid data cloud, asymptotically
(we want n ≥ 20p). The shifting also makes the T ∗

i further from T
∗

than

if there is no shifting. A similar argument can be given for Tn = Aβ̂MIX

and θ = Aβ. Region (2.30) has the same volume as region (2.32), but tends

to have higher coverage since empirically, the bagging estimator T
∗

tends
to estimate θ at least as well as Tn for a mixture distribution. See Breiman
(1996) and Yang (2003).

The above argument is heuristic since we have not been able to prove
that the coverage is ≥ 1− δ, asymptotically, except under strong regularity
conditions. Then the type I error ≤ δ, asymptotically. Confidence region
(2.31) rejects H0 if (Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB ,T ). If an iid data

cloud was available, the cutoff D2
(UB)(Tn,S

∗
T ) could be computed from D2

i =

(Ti−θ0)
T [S∗

T ]−1(Ti−θ0) for i = 1, ..., B. Hence the type I error is controlled
if D2

(UB,T ) tends to be larger than D2
(UB)(Tn,S

∗
T ).

The bootstrap component clouds for β̂
∗
V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗
S,V S is roughly similar to β̂

∗
S,MIX . Typically the distributions of β̂

∗
E,V S and

β̂
∗
E,MIX are not similar, but use the same zero padding.
Next we will examine when Equation (2.38) holds. If S ⊆ Ij, then

√
n(β̂Ij

− βIj
)

D→ Naj (0,V j) by the large sample theory (2.3) for the es-

timator. Bootstrap theory should show that
√
n(β̂

∗ − β̂)
D→ Np(0,V ), but

showing
√
n(β̂

∗
Ij
− β̂Ij

)
D→ Naj (0,V j) is often difficult.
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2.7.1 The Parametric Bootstrap

For the parametric regression model Yi|xi ∼ D(xT
i β, γ), assume

√
n(β̂ −

β)
D→ Np(0,V (β)), and that V (β̂)

P→ V (β) as n → ∞. These assumptions

tend to be mild for a parametric regression model where the MLE β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix. For GLMs, see,
for example, Sen and Singer (1993, p. 309). For the parametric regression

model, we regress Y on X to obtain (β̂, γ̂) where the n× 1 vector Y = (Yi)
and the ith row of the n× p design matrix X is xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b
does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (2.41)

as n→∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI (0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

Then showing
√
n(β̂

∗
Ij
− β̂Ij

)
D→ Naj (0,V j) is often difficult.

For the multiple linear regression model, Y = Xβ +e, assume a constant
x1 is in the model, and the zero mean ei are iid with variance V (ei) = σ2. Let
H = X(XT X)−1XT . For each I with S ⊆ I, assume the maximum leverage
maxi=1,...,n xT

iI(X
T
I XI)

−1xiI → 0 in probability as n→∞. For least squares

with S ⊆ I, √n(β̂I −βI)
D→ NaI (0,V I) where (XT

I XI)/(nσ
2)

P→ V −1
I . See,

for example, Sen and Singer (1993, p. 280).
Consider the parametric bootstrap for the above model with Y ∗ ∼

Nn(Xβ̂, σ̂2
nI) ∼ Nn(HY , σ̂2

nI) where we are not assuming that the
ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i

where the residuals are from the full OLS model. Then MSE is a
√
n

consistent estimator of σ2 under mild conditions by Su and Cook (2012).

Thus β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ ∼ NaI (β̂I , σ̂
2
n(XT

I XI)
−1) since E(β̂

∗
I) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗
I) = σ̂2

n(XT
I XI)

−1.
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Hence √
n(β̂

∗
I − β̂I) ∼ NaI (0, nσ̂

2
n(XT

I XI)
−1)

D→ NaI (0,V I)

as n, B →∞ if S ⊆ I. Hence Equation (2.38) holds under mild conditions.

When V is diagonal,
√
n(β̂S,full − βS)

D→ NaS (0,V S) where V S is
a diagonal matrix using the relevant diagonal elements of V . For multi-

ple linear regression with the parametric bootstrap, the full model β̂
∗ ∼

Np(β̂, σ̂
2
n(XT X)−1) ≈ Np(β̂,V /n). If the columns of X are orthogonal

and S ⊆ I, then β̂
∗
S,I = β̂

∗
S,full and β̂S,I = β̂S,full . Hence

√
n(β̂

∗
S,MIX −

β̂S,full)
D→ NaS (0,V S). When V is diagonal, the columns of X are asymp-

totically orthogonal. Hence if S ⊆ I, β̂S,I ≈ β̂S,full ≈ T
∗
, and the bootstrap

component clouds have the same asymptotic variability as the iid data clouds.

Hence we expect the bootstrap cutoffs for Aβ̂
∗
S,MIX to be near χ2

g,1−δ.
The weighted least squares formulation of the GLM maximum likelihood

estimator, given for example by Hillis and Davis (1994) and Sen and Singer
(1993, p. 307), suggests that similar results hold for the GLM when V is
diagonal.

2.7.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi),
and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0, it is often useful to replace ri by εi = ri − r, and r∗ij by ε∗ij.

Example 2.8. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with
ith element Ŷi = m̂(xi) = xT

i β̂. For j = 1, ..., B, regress Y ∗
j on X to form

β̂
∗
1,n, ..., β̂

∗
B,n using the residual bootstrap.

Now examine the OLS model with a constant in the model so the OLS
residuals sum to 0. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the fitted val-
ues from the OLS full model. Let rW denote an n × 1 random vector of
elements selected with replacement from the OLS full model residuals. Fol-
lowing Freedman (1981) and Efron (1982, p. 36),
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Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rW
i of rW are iid from

the empirical distribution of the OLS full model residuals ri. Hence

E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2i =
n− p
n

MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XT X)−1XT Y ∗ with Cov(β̂
∗
) = σ2

n(XT X)−1 =
n− p
n

MSE(XT X)−1, and E(β̂
∗
) = (XT X)−1XTE(Y ∗) =

(XT X)−1XT HY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant. One dif-

ference from the usual OLS MLR model is that σ2
n

P→ σ2 depends on n. The
usual model has V (ei) = σ2 which does not depend on n.

For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗
) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗
i ) ≈

√
n− p
n

SE(β̂i) for i = 1, ..., p where

β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The OLS CLT Theorem 2.11 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2W )

where n(XT X)−1 →W . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞
nĈov(β̂

∗
)) ∼ Np(0, σ

2W ). (2.42)

Imagine for large fixed n = N we get the OLS residuals. Then we use these

residuals for n > N to get β̂
∗
n,N . Then by the OLS CLT,

√
n(β̂

∗
n,N−β̂OLS)

D→
Np(0, σ

2
NW ) as n→∞, andNp(0, σ2

NW )
D→ Np(0, σ2W ) as N →∞. Hence

Theorem 2.8 is satisfied, and Equation (2.42) holds. See Freedman (1981) for
an alternative proof.

For the above residual bootstrap, β̂
∗
Ij

= (XT
Ij

XIj)
−1XT

Ij
Y ∗ = DjY

∗

with Cov(β̂
∗
Ij

) = σ2
n(XT

Ij
XIj)

−1 and E(β̂
∗
Ij

) = (XT
Ij

XIj )
−1XT

Ij
E(Y ∗) =

(XT
Ij

XIj)
−1XT

Ij
HY = β̂Ij

since HXIj = XIj . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗
I ) = β̂I and nCov(β̂

∗
I) = n[(n− p)/n]σ̂2

n(XT
I XI)

−1 P→ V I



132 2 Prediction and Variable Selection When n >> p

as n → ∞ with σ̂2
n = MSE. Hence β̂

∗
I − β̂I

P→ 0 as n → ∞ by Lai et al.

(1979). Note that β̂
∗
I = β̂

∗
I,n and β̂I = β̂I,n depend on n.

Remark 2.23. The Cauchy Schwartz inequality says |aT b| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if

√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence

√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Remark 2.24. Note that both the residual bootstrap and parametric
bootstrap for OLS are robust to the unknown error distribution of the iid
ei. For the residual bootstrap with S ⊆ I where I is not the full model, we

conjecture that
√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I ) as n→∞ since OLS estimators
tend to be asymptotically normal with a distribution that depends on the
covariance matrix of the estimator. For the model Y = Xβ+e, the ei are iid
from a distribution that does not depend on n, and βE = 0 where E denotes

the terms in the full model that are not in I. For Y ∗ = Xβ̂ + rW , the
distribution of the rW

i depends on n and β̂E 6= 0 although
√
nβ̂E = OP (1).

2.7.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, and the pairs bootstrap) draws a sample of n cases (Y ∗

i ,x
∗
i )

with replacement from the n cases (Yi,xi), and regresses the Y ∗
i on the

x∗
i to get β̂

∗
V S,1, and then draws another sample to get β̂

∗
MIX,1. This pro-

cess is repeated B times to get the two bootstrap samples for i = 1, ..., B. If√
n(β̂

∗−β̂)
D→ Np(0,V ) for the full model, then

√
n(β̂

∗
Ij
−β̂Ij

)
D→ Naj (0,V j)

when S ⊆ Ij : just use Ij as the new full model. Thus Equation (2.38) should
hold when the full model bootstrap works. The method is used for multiple
linear regression, Cox proportional hazards regression with right censored
Yi, and GLMs. See, for example, Burr (1994), Efron and Tibshirani (1986),
Freedman (1981), and Shao and Tu (1995, pp. 335-349).

Then for the full MLR model,
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Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rW

I .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ). Hence if S ⊆ I,
√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I)

as n→∞. (Treat I as if I is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uT
i )T , then the wi = (Yi uT

i )T are iid from some population with a
nonsingular covariance matrix.

The nonparametric bootstrap uses w∗
1, ...,w

∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 2.3, E(w∗) = w, and

Cov(w∗) =
1

n

n∑

i=1

(wi −w)(wi −w)T = Σ̃w =

[
S̃2

Y Σ̃Y u
Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then it can be shown that

β̂
∗

=

[
β̂∗

1

β̂
∗
u

]
=

[
Y

∗ − β̂
∗T

u u∗

Σ̃
−1∗

u Σ̃
∗
uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.

2.8 Examples and Simulations

Example 2.9. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set
on 82 mussels sampled off the coast of New Zealand. Let the response variable
be the logarithm log(M) of the muscle mass, and the predictors are the length
L and height H of the shell in mm, the logarithm log(W ) of the shell width
W, the logarithm log(S) of the shell mass S, and a constant. Inference for the
full model is shown below along with the shorth(c) nominal 95% confidence
intervals for βi computed using the nonparametric and residual bootstraps.
As expected, the residual bootstrap intervals are close to the classical least
squares confidence intervals ≈ β̂i ± 1.96SE(β̂i).

large sample full model inference
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Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel FS

Est. SE 95% shorth CI 95% shorth CI

int -0.9573 0.1519 [-3.294, 0.495] [-2.769, 0.460]

L 0 [-0.005, 0.004] [-0.004, 0.004]

logW 0 [ 0.000, 1.024] [-0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016] [ 0.000, 0.016]

logS 0.6530 0.1160 [ 0.322, 0.901] [ 0.324, 0.913]

for forward selection for all subsets

The minimum Cp model from all subsets variable selection and forward
selection both used a constant, H , and log(S). The shorth(c) nominal 95%
confidence intervals for βi using the residual bootstrap are shown. Note that
the intervals for H are right skewed and contain 0 when closed intervals
are used instead of open intervals. Some least squares output is shown, but
should only be used for inference if the model was selected before looking at
the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
the Imin model selected by all subsets variable selection. (Of course this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2 , β3, β4)

T = 0. Using the prediction region method with the

full model gave an interval [0,2.930] with D0 = 1.641. Note that
√
χ2

3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0.

Then we redid the bootstrap with the full model and forward selection. The
full model had [0, D(UB)] = [0, 2.908] with D0 = 1.577. So fail to reject H0.
Using the prediction region method with the Imin forward selection model
had [0, D(UB)] = [0, 3.258] whileD0 = 1.245. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.392. (Use
(2.33) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test. Some R code used
to produce the above output is shown below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)
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tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs

outfs <- fselboot(x,y,B=1000) #get bootstrap CIs

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3) #for all subsets

apply(outfs$betas,2,shorth3) #for forward selection

ls.print(outvs$full)

ls.print(outvs$sub)

ls.print(outfs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #full model

#prediction region method with residual bootstrap

out<-predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin all subsets

outvs <- predreg(Abeta)

Abeta <- outfs$betas[,2:4]

#prediction region method with Imin forward sel.

outfs<-predreg(Abeta)

#ratio of volumes for forward selection and full model

(sqrt(det(outfs$cov))*outfs$D0ˆ3)/(sqrt(det(out$cov))*out$D0ˆ3)

Example 2.10. Consider the Gladstone (1905) data set that has 12 vari-
ables on 267 persons after death. The response variable was brain weight.
Head measurements were breadth, circumference, head height, length, and
size as well as cephalic index and brain weight. Age, height, and two categor-
ical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also
given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II ) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 2.8

Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]

age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]

breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]

cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]

circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]

headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]

height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]

len 13.475 9.422 1.43 0.154 [ -5.519,32.605]
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sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]

output and shorth intervals for the min Cp submodel

Estimate SE t Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]

age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]

breadth 0 [-32.992, 8.148]

cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]

headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]

height 0 [ -2.859, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,30.508]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]

output and shorth for I_I model

Estimate Std.Err t-val Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]

age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]

breadth 0 [-31.012, 6.567]

cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]

headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]

height 0 [ -2.173, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,28.819]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]

The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]

y<-cbrainy

library(leaps)

out <- regboot(x,y,B=1000)

outvs <- fselboot(x,cbrainy) #get bootstrap CIs,

apply(out$betas,2,shorth3)

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

outvs <- modIboot(x,cbrainy) #get bootstrap CIs,

apply(outvs$betas,2,shorth3)

ls.print(outvs$sub)

tem<-regsubsets(x,y,method="forward")

tem2<-summary(tem)

tem2$which

tem2$cp
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2.8.1 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal

and not highly skewed. Then the plotted points in the response and residual
plots should scatter in roughly even bands about the identity line (with unit
slope and zero intercept) and the r = 0 line, respectively. See Figure 1.1. If
the error distribution is skewed or multimodal, then much larger sample sizes
may be needed.

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are Cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p − k − 1 zeros. The zero mean errors ei were iid from
five distributions: i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v)
0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal
value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 2.2 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 2.2 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
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confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (2.30),
hybrid region (2.32), and Bickel and Ren region (2.31). The 0 indicates the
test was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1.
The length and coverage = P(fail to reject H0) for the interval [0, D(UB)] or
[0, D(UB,T )] where D(UB) or D(UB,T ) is the cutoff for the confidence region.

The cutoff will often be near
√
χ2

g,0.95 if the statistic T is asymptotically nor-

mal. Note that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression

bootstrap tests.
Volume ratios of the three confidence regions can be compared using (2.33),

but there is not enough information in Table 2.2 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.

Table 2.2 Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

The inference for forward selection was often as precise or more precise
than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then from Section 2.2, β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (2.31) cutoffs and coverages were at least as high as those of the
hybrid region (2.32).

For ψ > 0 and Imin, the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often
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occurred for β̂∗
j for j = 3, 4. The average CI lengths were shorter for Imin

than for the OLS full model for β3 and β4. Note that for Imin, the coverage
for testing H0 : βS = 1 was higher than that for the OLS full model.

Table 2.3 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317

Results for other values of n, p, k, and distributions of ei were similar. For
forward selection with ψ = 0.9 and Cp, the hybrid region (2.32) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S∗

T was singular.
For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(2.30) and (2.31) worked for much smaller n, but tended to be longer than
the shorth CIs.

See Table 2.3 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (2.30), and
(2.31), respectively. In Table 2.3, k = 8 and the two nonzero πj correspond

to the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0.
Hence confidence intervals for β10 had the highest coverage and usually the
shortest average length (for i 6= 1) due to zero padding. Theory in Section
2.2 showed that the CI lengths are proportional to 1/

√
n. When n = 25000,

the shorth CI uses the 95.16th percentile while CI (2.30) uses the 95.00th
percentile, allowing the average CI length of (2.30) to be shorter than that of

the shorth CI, but the distribution for β̂∗
i is likely approximately symmetric

for i 6= 10 since the average lengths of the three confidence intervals were
about the same for each i 6= 10.
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When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (2.30) and (2.31). BIC
also occasionally had 100% coverage since BIC produces more zeroes than
Cp.

Some R code for the simulation is shown below.

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1

regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410

0.9368 0.9362 0.9370

$avelen

[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521

[8] 2.4496 2.4496 2.4508

$beta

[1] 1 1 0 0

$k

[1] 1

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914

0.9384 0.9394 0.9402

$avelen

[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020

[8] 2.4497 2.4497 2.4570

$beta

[1] 1 1 0 0

$k

[1] 1

2.9 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
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enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. Forward selection with the Chen and Chen (2008)
EBIC criterion and lasso are useful for finding a reasonable fitted model.
BIC and the Hurvich and Tsai (1989) AICC criterion can be useful if n ≥
max(2p, 10ad). For example, if n = 500000 and p = 90, using n1 = 900 would
result in a much smaller loss of efficiency than n1 = 250000.

2.10 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1

vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→∞.

2) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI (0,V I) where (XT
I XI)/(nσ

2)
P→ V −1

I .
3) Theorem 2.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let Tn = β̂Imin,0 and Tjn = β̂Ij ,0. Let Tn = Tkn = β̂Ik,0

with probabilities πkn where πkn → πk as n → ∞. Denote the πk with
S ⊆ Ik by πj. The other πk = 0 since P (S ⊆ Imin) → 1 as n → ∞. Assume
√
n(β̂Ij

−βIj
)

D→ Naj (0,V j) and ujn =
√
n(β̂Ij,0−β)

D→ uj ∼ Np(0,V j,0).
a) Then √

n(β̂Imin,0 − β)
D→ w

where the cdf of u is Fw(z) =
∑

j πjFwj (z). Thus w is a mixture distribu-
tion of the wj with probabilities πj.

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

√
n(Aβ̂Imin,0 −Aβ)

D→ Aw = v

where Aw has a mixture distribution of the Awj with probabilities πj.

4) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is
in this region if Dxf

≤ h. A large sample 100(1− δ)% prediction region is a



142 2 Prediction and Variable Selection When n >> p

set An such that P (xf ∈ An) is eventually bounded below by 1−δ as n→∞
where 0 < δ < 1. A large sample 100(1−δ)% confidence region for a vector of
parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1− δ as n→∞.

5) Let qn = min(1− δ + 0.05, 1− δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If
(T,C) is a consistent estimator of (µ, dΣ), then {z : Dz(T,C) ≤ h} is a large
sample 100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth
sample quantile of the Di. The large sample 100(1 − δ)% nonparametric
prediction region {z : D2

z (x,S) ≤ D2
(Un)} uses (T,C) = (x,S). We want

n ≥ 10p for good coverage and n ≥ 50p for good volume.
6) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known

g × 1 vector. Make a confidence region and reject H0 if θ0 is not in the
confidence region. Let qB and UB be as in 5) with n replaced by B and p

replaced by g. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. a) The prediction region method

large sample 100(1−δ)% confidence region for θ is {w : (w−T ∗
)T [S∗

T ]−1(w−
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding

test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample

quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

For some data sets, S∗
T may be singular due to one or more columns of

zeroes in the bootstrap sample for β1, ..., βp. The variables corresponding to
these columns are likely not needed in the model given that the other predic-
tors are in the model if n and B are large enough. Let βO = (βi1 , ..., βig)

T ,

and consider testing H0 : AβO = 0. If Aβ̂
∗
O,i = 0 for greater than Bδ of the

bootstrap samples i = 1, ..., B, then fail to reject H0. (If S∗
T is nonsingular,

the 100(1− δ)% prediction region method confidence region contains 0.)

7) Theorem 2.10: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u
withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B →∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1− δ)% confidence

region for θ.
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8) Applying the nonparametric prediction region (2.22) to the iid data
T1, ..., TB results in the 100(1−δ)% confidence region {w : (w−Tn)T S−1

T (w−
Tn) ≤ D2

(UB)(Tn,ST )} where D2
(UB)(Tn,ST ) is computed from the (Ti −

Tn)T S−1
T (Ti − Tn) provided the ST = STn are “not too ill conditioned.”

For OLS variable selection, assume there are two or more component clouds.
The bootstrap component data clouds have the same asymptotic covariance
matrix as the iid component data clouds, which are centered at θ. The jth
bootstrap component data cloud is centered at E(T ∗

ij) and often E(T ∗
jn) =

Tjn. Confidence region (2.30) is the prediction region (2.22) applied to the
bootstrap sample, and (2.30) is slightly larger in volume than (2.22) applied
to the iid sample, asymptotically. The hybrid region (2.32) shifts (2.30) to be
centered at Tn. Shifting the component clouds slightly and computing (2.22)
does not change the axes of the prediction region (2.22) much compared
to not shifting the component clouds. Hence by the geometric argument, we
expect (2.32) to have coverage at least as high as the nominal, asymptotically,
provided the S∗

T are “not too ill conditioned.” The Bickel and Ren confidence

region (2.31) tends to have higher coverage and volume than (2.32). Since T
∗

tends to be closer to θ than Tn, (2.30) tends to have good coverage.
9) Suppose m independent large sample 100(1 − δ)% prediction regions

are made where x1, ...,xn,xf are iid from the same distribution for each of
the m runs. Let Y count the number of times xf is in the prediction region.
Then Y ∼ binomial (m, 1− δn) where 1− δn is the true coverage. Simulation
can be used to see if the true or actual coverage 1−δn is close to the nominal
coverage 1− δ. A prediction region with 1− δn < 1− δ is liberal and a region
with 1− δn > 1− δ is conservative. It is better to be conservative by 3% than
liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

10) For the bootstrap, perform variable selection on Y ∗
i and X (or X∗

for the nonparametric bootstrap), fit the model that minimizes the criterion,
and add 0s corresponding to the omitted variables, resulting in estimators

β̂
∗
1, ..., β̂

∗
B where β̂

∗
i = β̂

∗
Imin,0,i.

11) Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order
statistics, and let c be a positive integer. Compute Z(c) − Z(1), Z(c+1) −
Z(2), ..., Z(n) − Z(n−c+1). Let shorth(c) = [Z(d),Z(d+c−1)] correspond to the
interval with the shortest length.

The large sample 100(1−δ)% shorth(c) CI uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2),

T ∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here c = min(B, dB[1 − δ +

1.12
√
δ/B ] e). The shorth CI is computed by applying the shorth PI to the

bootstrap sample.
12) OLS CLT. Suppose that the ei are iid and

XT X

n
→W−1.
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Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ).

Also,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip).

2.11 Complements

This chapter followed Olive (2017b, ch. 5), Pelawa Watagoda and Olive
(2021ab), and Rathnayake and Olive (2023) closely. Also see Olive (2013a,

2018). For MLR, Olive (2017a: p. 123, 2017b: p. 176) showed that β̂Imin,0

is a consistent estimator. Olive (2014: p. 283, 2017ab, 2018) recommended
using the shorth(c) estimator for the percentile method. Olive (2017a: p. 128,
2017b: p. 181, 2018) showed that the prediction region method can simulate

well for the p×1 vector β̂Imin,0. Hastie et al. (2009, p. 57) noted that variable
selection is a shrinkage estimator: the coefficients are shrunk to 0 for the omit-
ted variables. Olive (2013a) shows how to visualize some prediction regions
while Welagedara and Olive (2023) shows how to visualize some bootstrap
confidence regions.

Good references for the bootstrap include Efron (1982), Efron and Hastie
(2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen (2016)
and Hesterberg (2014). One of the sufficient conditions for the bootstrap
confidence region is that T has a well behaved Hadamard derivative. Fréchet
differentiability implies Hadamard differentiability, and many statistics are
shown to be Hadamard differentiable in Bickel and Ren (2001), Clarke (1986,
2000), Fernholtz (1983), Gill (1989), Ren (1991), and Ren and Sen (1995).
Bickel and Ren (2001) showed that their method can work when Hadamard
differentiability fails.

There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2005, 2006, 2008), Leeb et al. (2015), Tibshirani et al. (2016), and Tibshi-
rani et al. (2018). Knight and Fu (2000) have some results on the residual
bootstrap that uses residuals from one estimator, such as full model OLS,
but fit another estimator, such as lasso.

Inference techniques for the variable selection model, other than data split-
ting, have not had much success. For multiple linear regression, the methods
are often inferior to data splitting, often assume normality, or are asymptot-
ically equivalent to using the full model, or find a quantity to test that is not
Aβ. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality,
needs p no more than about 30, assumes σ2 can be estimated independently
of the data, and Leeb et al. (2015) say the method does not work. The

bootstrap confidence region (2.30) is centered at T
∗ ≈ ∑j ρjnTjn, which is
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closely related to a model averaging estimator. Wang and Zhou (2013) show
that the Hjort and Claeskens (2003) confidence intervals based on frequentist
model averaging are asymptotically equivalent to those obtained from the
full model. See Buckland et al. (1997) and Schomaker and Heumann (2014)
for standard errors when using the bootstrap or model averaging for linear
model confidence intervals.

Efron (2014) used the confidence interval T
∗ ± z1−δSE(T

∗
) assuming T

∗

is asymptotically normal and using delta method techniques, which require
nonsingular covariance matrices. There is not yet rigorous theory for this
method. Section 2.2 proved that T

∗
is asymptotically normal: under regular-

ity conditions: if
√
n(Tn − θ)

D→ Ng(0,ΣA) and
√
n(T ∗

i − Tn)
D→ Ng(0,ΣA),

then under regularity conditions
√
n(T

∗ − θ)
D→ Ng(0,ΣA). If g = 1,

then the prediction region method large sample 100(1 − δ)% CI for θ has

P (θ ∈ [T
∗ − a(UB), T

∗
+ a(UB)]) → 1− δ as n → ∞. If the Frey CI also has

coverage converging to 1−δ, than the two methods have the same asymptotic
length (scaled by multiplying by

√
n), since otherwise the shorter interval will

have lower asymptotic coverage.
For the mixture distribution with two or more component groups,

√
n(Tn−

θ)
D→ v by Theorem 2.3 b). If

√
n(T ∗

i − cn)
D→ u then cn must be a value

such as cn = T
∗
, cn =

∑
j ρjnTjn, or cn =

∑
j πjTjn. Next we will examine

T
∗
. If S ⊆ Ij , then

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0), and for the parametric

and nonparametric bootstrap,
√
n(β̂

∗
Ij,0 − β̂Ij,0)

D→ Np(0,V j,0). Let Tn =

Aβ̂Imin,0 and Tjn = Aβ̂Ij,0 = ADj0Y using notation from Section 2.6. Let

θ = Aβ. Hence from Section 2.5.3,
√
n(T

∗
j − Tjn)

P→ 0. Assume ρ̂in
P→ ρi as

n→∞. Then
√
n(T

∗ − θ) =

∑

i

ρ̂in

√
n(T

∗
i − θ) =

∑

j

ρ̂jn

√
n(T

∗
j − θ) +

∑

k

ρ̂kn

√
n(T

∗
k − θ)

= dn + an where an
P→ 0 since ρk = 0. Now

dn =
∑

j

ρ̂jn

√
n(T

∗
j − Tjn + Tjn − θ) =

∑

j

ρ̂jn

√
n(Tjn − θ) + cn

where cn = oP (1) since
√
n(T

∗
j − Tjn) = oP (1). Hence under regularity con-

ditions, if
√
n(T

∗ − θ)
D→ w then

∑
j ρj
√
n(Tjn − θ)

D→ w.
To examine the last term and w, let the n×1 vector Y have characteristic

function φY , E(Y ) = Xβ, and Cov(Y ) = σ2I. Let Z = (Y T , ...,Y T )T be a

Jn× 1 vector with J copies of Y stacked into a vector. Let t = (tT
1 , ..., t

T
J )T .

Then Z has characteristic function φZ (t) = φY (
∑J

j=1 ti) = φY (s). Now

assume Y ∼ Nn(Xβ, σ2I). Then tT Z = sT Y ∼ N(sT Xβ, σ2sT s). Hence
Z has a multivariate normal distribution by Definition 1.7 with E(Z) =
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(XβT , ...,XβT )T , and Cov(Z) a block matrix with J × J blocks each equal
to σ2I . Then

∑

j

ρjTjn =
∑

j

ρjADj0Y = BY ∼ Ng(θ, σ2BBT ) =

Ng(θ, σ2
∑

j

∑

k

ρjρkADj0D
T
k0A)

since E(Tjn) = E(Aβ̂Ij,0) = Aβ = θ if S ⊆ Ij . Since (TT
1n, ..., T

T
jn)T =

diag(AD10, ...,ADJ0)Z, then (TT
1n, ..., T

T
jn)

T is multivariate normal and

∑

j

ρjTjn ∼ Ng[θ,
∑

j

∑

k

πjπkCov(Tjn, Tkn)].

Now assume nDj0D
T
k0

P→W jk as n→∞. Then

∑

j

ρj

√
n(Tjn − θ)

D→ w ∼ Ng(0, σ
2
∑

j

∑

k

ρjρkAW jkA).

We conjecture that this result may hold under milder conditions than
Y ∼ Nn)Xβ, σ2I), but even the above results are not yet rigorous. If
√
n(Tjn − θ)

D→ wj ∼ Ng(0,Σj), then a possibly poor approximation is

T
∗ ≈∑j ρjTjn ≈ Ng[θ,

∑
j

∑
k ρjρkCov(Tjn, Tkn)], and estimating∑

j

∑
k ρjρkCov(Tjn, Tkn) with delta method techniques may not be possible.

The double bootstrap technique may be useful. See Hall (1986) and Chang

and Hall (2015) for references. The double bootstrap for T
∗

= T
∗
B says that

Tn = T
∗

is a statistic that can be bootstrapped. Let Bd ≥ 50gmax where
1 ≤ gmax ≤ p is the largest dimension of θ to be tested with the double
bootstrap. Draw a bootstrap sample of size B and compute T

∗
= T ∗

1 . Repeat
for a total of Bd times. Apply the confidence region (2.30), (2.31), or (2.32) to

the double bootstrap sample T ∗
1 , ..., T

∗
Bd

. If D(UBd
) ≈ D(UBd

,T ) ≈
√
χ2

g,1−δ,

then T
∗

may be approximately multivariate normal. The CI (2.30) applied
to the double bootstrap sample could be regarded as a modified Frey CI
without delta method techniques. Of course the double bootstrap tends to
be too computationally expensive to simulate.

We can get a prediction region by randomly dividing the data into two
half sets H and V where H has nH = dn/2e of the cases and V has the
remaining m = nV = n − nH cases. Compute (xH ,SH) from the cases in
H . Then compute the distances D2

i = (xi − xH)T S−1
H (xi − xH) for the m

vectors xi in V . Then a large sample 100(1− δ)% prediction region for xF is
{x : D2

x(xH ,SH) ≤ D2
(km)} where km = dm(1 − δ)e. This prediction region
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may give better coverage than the nonparametric prediction region (2.22) if
5p ≤ n ≤ 20p.

The iid sample T1, ..., TB has sample mean T . Let Tin = Tijn if Tjn is

chosen Djn times where the random variables Djn/B
P→ πjn. The Djn follow

a multinomial distribution. Then the iid sample can be written as

T1,1, ..., TD1n,1, ..., T1,J, ..., TDJn,J ,

where the Tij are not iid. Denote T1j, ..., TDjn,j as the jth component of the

iid sample with sample mean T j and sample covariance matrix ST,j. Thus

T =
1

B

B∑

i=1

Tijn =
∑

j

Djn

B

1

Djn

Djn∑

i=1

Tij =
∑

j

π̂jnT j.

Hence T is a random linear combination of the T j . Conditionally on the Djn,
the Tij are independent, and T is a linear combination of the T j . Note that
Cov(T ) = Cov(Tn)/B.

Software. The simulations were done in R. See R Core Team (2016). We
used several R functions including forward selection as computed with the
regsubsets function from the leaps library. Several slpack functions were
used. The function predrgn makes the nonparametric prediction region and
determines whether xf is in the region. The function predreg also makes
the nonparametric prediction region, and determines if 0 is in the region. For
multiple linear regression, the function regboot does the residual bootstrap
for multiple linear regression, regbootsim simulates the residual bootstrap
for regression, and the function rowboot does the empirical nonparametric
bootstrap. The function vsbootsim simulates the bootstrap for all subsets
variable selection, so needs p small, while vsbootsim2 simulates the pre-
diction region method for forward selection. The functions fselboot and
vselboot bootstrap the forward selection and all subsets variable selec-
tion estimators that minimize Cp. See Examples 2.9 and 2.10. The shorth3
function computes the shorth(c) intervals with the Frey (2013) correction
used when g = 1. Table 2.2 was made using regbootsim3 for the OLS full
model and vsbootsim4 for forward selection. The functions bicboot and
bicbootsim are useful if BIC is used instead of Cp. For forward selection
with Cp, the function vscisim was used to make Table 2.3, and can be used
to compare the shorth, prediction region method, and Bickel and Ren CIs for
βi.
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2.12 Problems

2.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

2.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

2.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

2.4. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.

actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

2.5. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

2.6. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
bootstrap samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5

2.7. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith bootstrap
sample. bootstrap samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:
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b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B∑

i=1

T ∗
i where B = 4 is the number of

bootstrap samples.

2.8. Consider the output for Example 2.9 for the minimum Cp forward
selection model based on the residual bootstrap.

a) What is β̂Imin
?

b) What is β̂Imin,0?
c) The large sample 95% shorth CI for H is [0,0.016]. Is H needed is the

minimum Cp model given that the other predictors are in the model?
d) The large sample 95% shorth CI for log(S) is [0.324,0.913] for all subsets.

Is log(S) needed is the minimum Cp model given that the other predictors
are in the model?

e) Suppose x1 = 1, x4 = H = 130, and x5 = log(S) = 5.075. Find

Ŷ = (x1 x4 x5)β̂Imin
. Note that Y = log(M).

R Problems
Use the command source(“G:/slpack.txt”) to download the func-

tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the linmodpack func-
tion, e.g. regbootsim2, will display the code for the function. Use the args

command, e.g. args(regbootsim2), to display the needed arguments for the
function. For the following problem, the R command can be copied and pasted
from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

2.9. a) Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n→∞.

b) Were the three coverages near 90%?

2.10. Consider the multiple linear regression model Yi = β1 + β2xi,2 +
β3xi,3 + β4xi,4 + ei where β = (1, 1, 0, 0)T . The function regbootsim2

bootstraps the regression model, finds bootstrap confidence intervals for βi

and a bootstrap confidence region for (β3 , β4)
T corresponding to the test

H0 : β3 = β4 = 0 versus HA: not H0. See the R code near Table 2.3. The
lengths of the CIs along with the proportion of times the CI for βi contained
βi are given. The fifth interval gives the length of the interval [0, D(c)] where
H0 is rejected if D0 > D(c) and the fifth “coverage” is the proportion of times
the test fails to reject H0. Since nominal 95% CIs were used and the nominal
level of the test is 0.05 when H0 is true, we want the coverages near 0.95.
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The CI lengths for the first 4 intervals should be near 0.392. The residual
bootstrap is used.

Copy and paste the commands for this problem into R, and include the
output in Word.



Chapter 3

Statistical Learning Alternatives to OLS

This chapter considers several alternatives to OLS for the multiple linear
regression model. Large sample theory is give for p fixed, but the prediction
intervals can have p > n.

3.1 The MLR Model

From Definition 1.34, the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (3.1)

for i = 1, ..., n. This model is also called the full model. Here n is the
sample size and the random variable ei is the ith error. Assume that the ei

are iid with expected value E(ei) = 0 and variance V (ei) = σ2. In matrix
notation, these n equations become Y = Xβ +e where Y is an n× 1 vector
of dependent variables, X is an n×p matrix of predictors, β is a p×1 vector
of unknown coefficients, and e is an n× 1 vector of unknown errors. In this
chapter, we will often use the MLR model

Yi = α+ xi,1β1 + · · ·+ xi,pβp + ei = α+ xT
i β + ei (3.2)

for i = 1, ..., n. For this model, we may use φ = (α,βT )T with Y = Xφ + e.
Ordinary least squares (OLS) large sample theory will be useful for this

chapter. Also see Theorem 2.11. Let X = (1 X1). For model (3.1), the
ith row of X is (1, xi,2, ..., xi,p) while for model (3.2), the ith row of X is
(1, xi,1, ..., xi,p), and Y = α1 + X1β + e = Xφ + e.

Definition 3.1. Using the above notation for model (3.2), let xT
i =

(xi1, ..., xip), let α be the intercept, and let the slopes vector β = (β1, ..., βp)
T .

Let the population covariance matrices

151
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Cov(x) = E[(x− E(x))(x− E(x))T ] = Σx, and

Cov(x, Y ) = E[(x−E(x))(Y −E(Y ))] = ΣxY .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx
is nonsingular, then the population coefficients from an OLS regression of Y
on x (even if a linear model does not hold) are

α = αOLS = E(Y )− βTE(x) and β = βOLS = Σ−1
x ΣxY .

Definition 3.2. Let the sample covariance matrices be

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n− 1

n∑

i=1

(xi − x)(Yi − Y ).

Let the method of moments estimators be Σ̃x =
1

n

n∑

i=1

(xi−x)(xi−x)T and

Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The method of moment estimators are often called the maximum likelihood
estimators, but are the MLE if the (Yi,x

T
i )T are iid from a multivariate

normal distribution, a very strong assumption. In Theorem 3.1, note that

D = XT
1 X1 − nx xT = (n− 1)Σ̂

−1

x .

Theorem 3.1: Seber and Lee (2003, p. 106). Let X = (1 X1). Then

XT Y =

(
nY

XT
1 Y

)
=

(
nY∑n

i=1 xiYi

)
, XT X =

(
n nxT

nx XT
1 X1

)
,

and (XT X)−1 =

(
1
n

+ xT D−1x −xT D−1

−D−1x D−1

)

where the p× p matrix D−1 = [(n− 1)Σ̂x]−1 = Σ̂
−1

x /(n− 1).

Under model (3.2), φ̂ = φ̂OLS = (XT X)−1XT Y .

Theorem 3.2: Second way to compute φ̂:

a) If Σ̂
−1

x exists, then α̂ = Y − β̂
T
x and

β̂ =
n

n− 1
Σ̂

−1

x Σ̃xY = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi,x
T
i )T are iid random vectors such that σ2

Y , Σ−1
x , and

ΣxY exist. Then α̂
P→ α and
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β̂
P→ β as n→∞

where α and β are given by Definition 3.1.
Proof. Note that

Y T X1 = (Y1 · · ·Yn)




xT
1
...

xT
n


 =

n∑

i=1

Yix
T
i

and

XT
1 Y = [x1 · · ·xn]



Y1

...
Yn


 =

n∑

i=1

xiYi.

So [
α̂

β̂

]
=

[
1
n + xT D−1x −xT D−1

−D−1x D−1

] [
1T

XT
1

]
Y =

[
1
n

+ xT D−1x −xT D−1

−D−1x D−1

] [
nY

XT
1 Y

]
.

Thus β̂ = −nD−1x Y + D−1XT
1 Y = D−1(XT

1 Y − nx Y ) =

D−1

[
n∑

i=1

uiYi − nx Y

]
=

Σ̂
−1

x
n − 1

nΣ̂xY =
n

n− 1
Σ̂

−1

x Σ̂xY . Then

α̂ = Y + nxT D−1x Y − xT D−1XT
1 Y = Y + [nY xT D−1 − Y T X1D

−1]x

= Y − β̂
T
x. The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

It is important to note that the convergence in probability results are
for iid (Yi,x

T
i )T with second moments and nonsingular Σx: a linear model

Y = Xβ + e does not need to hold. When the linear model does hold, the
second method for computing β̂ is still valid even if X is a constant matrix,

and β̂
P→ β by Theorem 3.3 b). Note that for Theorem 3.3 b) with iid cases

and µx = E(x),

n(XT X)−1 P→ V =

[
1 + µT

xΣ−1
x µx −µT

xΣ−1
x

−Σ−1
x µx Σ−1

x

]

There are many large sample theory results for ordinary least squares. The
following theorem is important. See, for example, Sen and Singer (1993, p.
280).
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Theorem 3.3, OLS CLTs. Consider the MLR model and assume that
the zero mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are
random vectors, assume that the cases (xi, Yi) are independent, and that the
ei and xi are independent. Also assume that maxi(h1, ..., hn)→ 0 and

XT X

n
→ V −1

as n→∞ where the convergence is in probability if the xi are random vectors
(instead of nonstochastic constant vectors).

a) For equation (3.1), the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 V ). (3.3)

b) For equation (3.2), the OLS estimator φ̂ satisfies

√
n(φ̂− φ)

D→ Np+1(0, σ
2 V ). (3.4)

c) Suppose the cases (xi, Yi) are iid from some population and the equation
(3.2) MLR model Yi = α+xT

i β+ei holds. Assume that Σ−1
x and Σx,Y exist.

Then equation (3.4) holds and

√
n(β̂ − β)

D→ Np(0, σ
2 Σ−1

x ) (3.5)

where β = βOLS = Σ−1
x Σx,Y .

Remark 3.1. Consider Theorem 3.3. For a) and b), the theory acts as if
the xi are constant even if the xi are random vectors. The literature says
the xi can be constants, or condition on xi if the xi are random vectors.
The main assumptions for a) and b) are that the errors are iid with second
moments and the n(XT X)−1 is well behaved. The strong assumptions for c)
are much stronger than those for a) and b), but the assumption of iid cases
is often reasonable if the cases come from some population.

Remark 3.2. Consider MLR model (3.2). Let wi = Anxi for i = 1, ..., n
where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗
w = AnΣ∗

xAT
n and Σ∗

wY = AnΣ∗
xY .

b) If An is a constant matrix, then Σw = AnΣxAT
n and

ΣwY = AnΣxY .
c) Let β̂(u, Y ) and β(u, Y ) be the estimator and parameter from the OLS

regression of Y on u. The constant parameter vector should not depend on
n. Suppose the cases are iid and A is a constant matrix that does not depend

on n. By Theorem 3.2, β̂(w, Y ) = Σ̂
−1

w Σ̂wY = [AnΣ̂xAn]−1AnΣ̂xY =

[AnΣ̂xAn]−1AnΣ̂xβ̂(x, Y ). If An
P→ A, Σ̂x

P→ Σx, and β̂(x, Y )
P→

β(x, Y ), then β̂(w, Y )
P→ β(w, Y ) = [AΣxA]−1AΣxβ(x, Y ).
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A problem with OLS, is that V generally can’t be estimated if p > n since
typically (XT X)−1 does not exist. If p > n, using φ̂ = (XT X)−XT Y is a
poor estimator that interpolates the data, where A− is a generalized inverse
of A. Often the software will not compute φ̂ if p > n.

There are many MLR methods, including OLS for the full model, forward
selection with OLS, the marginal maximum likelihood estimator (MMLE),
elastic net, principal components regression (PCR), partial least squares
(PLS), lasso, lasso variable selection, and ridge regression (RR). For the last
six methods, it is convenient to use centered or scaled data. Suppose U has
observed values U1, ..., Un. For example, if Ui = Yi then U corresponds to
the response variable Y . The observed values of a random variable V are
centered if their sample mean is 0. The centered values of U are Vi = Ui − U
for i = 1, ..., n. Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U
σ̂g

.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (3.6)

Remark 3.3. Let Y = α+xT β +e. Let wT
i = (wi,1, ..., wi,p) be the stan-

dardized vector of nontrivial predictors for the ith case. Since the standard-
ized predictors are also centered, w = 0. Let the n×p matrix of standardized
nontrivial predictors W g = (Wij) when the predictors are standardized using
σ̂g. Then the ith row of W g is wT

i . Thus,
∑n

i=1Wij = 0 and
∑n

i=1W
2
ij = n−g

for j = 1, ..., p. Hence

Wij =
xi,j − xj

σ̂j
where σ̂2

j =
1

n − g

n∑

i=1

(xi,j − xj)
2

is σ̂g for the jth variable xj. Then the sample covariance matrix of the wi is
the sample correlation matrix of the xi:

ρ̂x = Rx = (rij) =
W T

g W g

n− g



156 3 Statistical Learning Alternatives to OLS

where rij is the sample correlation of xi and xj. Thus the sample correlation
matrix Rx does not depend on g. Let Z = Y −Y where Y = Y 1. Since the
R software tends to use g = 0, let W = W 0. Note that n×p matrix W does
not include a vector 1 of ones. Then regression through the origin is used for
the model

Z = Wη + ε (3.7)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp)
T . The vector of fitted values

Ŷ = Y + Ẑ.

Remark 3.4. i) Interest is in model (3.2): estimate Ŷf and β̂. For many
regression estimators, a method is needed so that everyone who uses the
same units of measurements for the predictors and Y gets the same (Ŷ , β̂).
Equation (3.7) is a commonly used method for achieving this goal. Suppose
g = 0. The method of moments estimator of the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (3.7)
are used. Linear combinations of the wi are linear combinations of the xi.
Thus the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear
transformation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units
of measurements for the xi and Y . Hence everyone using the same units of
measurements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Remark 3.5. Let σ̂j be the sample standard deviation of variable xj (often

with g = 0) for j = 1, ...., p. Let Ŷi = α̂+ xi,1β̂1 + · · ·+ xi,pβ̂p = α̂+ xT
i β̂. If

standardized nontrivial predictors are used, then

Ŷi = γ̂ + wi,1η̂1 + · · ·+ wi,pη̂p = γ̂ +
xi,1 − x1

σ̂1
η̂1 + · · ·+ xi,p − xp

σ̂p
η̂p

= γ̂ + wT
i η̂ = γ̂ + Ẑi (3.8)

where
η̂j ≈ σ̂jβ̂j (3.9)

for j = 1, ..., p with equality for OLS. (See Remark 3.6.) Often γ̂ = Y so that

Ŷi = Y if xi,j = xj for j = 1, ..., p. Then Ŷ = Y + Ẑ where Y = Y 1. Note
that
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γ̂ ≈ α̂+
x1

σ̂1
η̂1 + · · ·+ xp

σ̂p
η̂p.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Most regression methods attempt to find an estimate β̂ of β which
minimizes some criterion function Q(b) of the residuals. As in Definition
1.38, given an estimate b of β, the corresponding vector of fitted values is
Ŷ ≡ Ŷ (b) = Xb, and the vector of residuals is r ≡ r(b) = Y − Ŷ (b). See
Definition 1.39 for the OLS model for Y = Xβ + e. The following model is
useful for the centered response and standardized nontrivial predictors, or if
Z = Y , W = XI , and η = βI corresponds to a submodel I.

Definition 3.3. Consider model (3.1) Y = xT β + e. If Z = Wη + ε,
where the n× q matrix W has full rank q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
R

p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I −H)Z.

For model (3.1) Y = xT β + e, let x = (1 u)T , and let Z = Wη + ε.
Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (3.10)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

The following remark examines whether the OLS estimator satisfies

un =
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (3.11)

Remark 3.6. a) First consider centered data Yi − Y = β∗
1 + (xi,2 −

x2)β2 + · · · + (xi,p − xp)βp + ei or Zi = β∗
1 + wi,2β2 + · · · + wi,pβp + ei.

Do the OLS regression. Since the sample means of the centered response
and centered predictors are 0, β̂∗

1 = 0. In terms of the original predictors,

Ŷi = β̃1 +xi,2β̃2 + · · ·+xi,pβ̃p where β̃1 = Y − β̃2x2−· · ·− β̃pxp. Then β̃ = β̂

since OLS estimators minimize the sum of squared residuals (if β̃ 6= β̂, then
one of the estimators has a smaller sum of squared residuals, contradicting the
fact that both estimators are OLS estimators). Hence centering the response
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and predictors gives an equivalent method for computing β̂, and the large
sample theory for the equivalent estimators is unchanged.

b) Next consider scaling the predictors. If Y = Xβ(X ,Y )+e, the model
with scaled predictors is Y = Wβ(W ,Y ) + ε where β(X,Y ) denotes the

population coefficients from the OLS regression of Y on X . Here W = XÂn

where the p × p matrix Ân = diag(1, 1/s2, ..., 1/sp) where sj = σ̂j. Since

OLS is affine equivariant and Ân is nonsingular, β̂(W ,Y ) = β̂(XÂn,Y ) =

Â
−1

n β̂(X ,Y ). Then HW = W (W T W )−1W T = X(XT X)−1XT = HX ,
and the residuals and fitted values are the same for both models. If X is a
constant matrix, then W is a constant matrix, but we will show that (3.11)
often does not hold.

Assume Ân
P→ A = diag(1, 1/σ2, ..., 1/σp) where each σi > 0. Let β =

β(X ,Y ). Then

√
n(β̂(W ,Y ) −A−1β) =

√
n(Â

−1

n β̂ − Â
−1

n β + Â
−1

n β −A−1β)

=
√
nÂ

−1

n (β̂ − β) +
√
n(Â

−1

n −A−1)β = zn + bn

where zn =
√
nÂ

−1

n (β̂ − β)
D→ Np(0, σ2A−1V xA−1) if

√
n(β̂ − β)

D→
Np(0, σ

2V x). Note that Â
−1

n β̂
P→ A−1β = β(W ,Y ). Now

bn =




0√
n(σ̂2 − σ2)β2

...√
n(σ̂p − σp)βp


 =




0
b2,n

...
bp,n


 = Op(1)

if
√
n(σ̂i − σi)

D→ N(0, τ2
i ). Then bi,n

D→ N(0, β2
i τ

2
i ) for i = 2, ..., p.

Thus
√
n(β̂(W ,Y ) − A−1β) does not converge in distribution to z ∼

Np(0, σ
2A−1V xA−1) unless bn

P→ 0. Note that tests of the form H0 : βI = 0
can still be performed, but confidence intervals for ηi 6= 0 will not have the
desired coverage if z is used as the asymptotic distribution. The convergence
fails since Y = XAA−1β + e = XÂnA−1β + ε which means

ε = XAA−1β −XÂnA−1β + e = X(A− Ân)β(W ,Y ) + e

is no longer a vector of iid random variables.
c) If W = (1 W 1), then the W in (3.11) is equal to W 1 in b) above.

Since centering does not affect the large sample theory of the OLS estimator
by a), often (3.11) does not hold.

d) From the above results, un = zn + bn where zn
D→ z ∼ Np−1(0, σ

2V ).
Suppose H0 : ηI = 0 is true where ηI = (ηi1, ..., ηik)

T = Cη where the jth
row of C has a 1 in the ij position, and zeroes elsewhere. Then Cbn = 0, and
√
nC(η̂ − η)

D→ Nk(0, σ2CV CT ). Hence if the (Z,W ) is used as the data,



3.1 The MLR Model 159

then the OLS output gives correct standard errors for testing H0 : ηj = 0,
but the standard errors are incorrect for obtaining a large sample confidence
interval for ηj 6= 0.

Remark 3.7: Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p is
large (and the search for a useful subset of predictors if n/p is not large). Refer
to Chapter 2 for variable selection and Equation (2.1) where xT β = xT

SβS +
xT

EβE = xT
S βS . Let p be the number of predictors in the full model, including

a constant. Let q = p − 1 be the number of nontrivial predictors in the full
model. Let a = aI be the number of predictors in the submodel I, including
a constant. Let k = kI = aI − 1 be the number of nontrivial predictors
in the submodel. For submodel I, think of I as indexing the predictors in
the model, including the constant. Let A index the nontrivial predictors in
the model. Hence I adds the constant (trivial predictor) to the collection
of nontrivial predictors in A. In Equation (2.1), there is a “true submodel”
Y = XSβS + e where all of the elements of βS are nonzero but all of the
elements of β that are not elements of βS are zero. Then a = aS is the
number of predictors in that submodel, including a constant, and k = kS is
the number of active predictors = number of nonnoise variables = number
of nontrivial predictors in the true model S = IS . Then there are p− a noise
variables (xi that have coefficient βi = 0) in the full model. The true model
is generally only known in simulations. For Equation (2.1), we also assume
that if xT β = xT

I βI , then S ⊆ I. Hence S is the unique smallest subset of
predictors such that xT β = xT

SβS . Two alternative variable selection models
were given by Remark 2.24.

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) lasso variable selection which is OLS applied
to the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 3.2–3.7 and James et al. (2013, ch. 6).

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). See Section 3.13. The
number of models M depends on the method. Often one of the models is the
full model (3.1) that uses all p − 1 nontrivial predictors. The full model is
(approximately) fit with (ordinary) least squares. For one of the M models,
some of the methods use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y
that uses none of the nontrivial predictors. Forward selection, PCR, and PLS



160 3 Statistical Learning Alternatives to OLS

use variables v1 = 1 (the constant or trivial predictor) and vj = γT
j x that are

linear combinations of the predictors for j = 2, ..., p. Model Ii uses variables
v1, v2, ..., vi for i = 1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then
M models Ii are used. (For forward selection and PCR, OLS is used to regress
Y (or Z) on v1, ..., vi.) Then a criterion chooses the final submodel Id from
candidates I1, ..., IM.

Remark 3.8. Prediction interval (2.14) used a number d that was often
the number of predictors in the selected model. For forward selection, PCR,
PLS, lasso, and lasso variable selection, let d be the number of predictors
vj = γT

j x in the final model (with nonzero coefficients), including a constant
v1. For forward selection, lasso, and lasso variable selection, vj corresponds
to a single nontrivial predictor, say vj = x∗j = xkj . Another method for
obtaining d is to let d = j if j is the degrees of freedom of the selected model
if that model was chosen in advance without model or variable selection.
Hence d = j is not the model degrees of freedom if model selection was used.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n > p, X is not invertible,
but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y regardless of

how bad the predictors are. If n < p, then the OLS program fails or Ŷ = Y :
the fitted regression plane interpolates the training data response variables
Y1, ..., Yn. The following rule of thumb is useful for many regression methods.
Note that d = p for the full OLS model.

Rule of thumb 3.1. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 3.9. Use Zn ∼ ANr (µn,Σn) to indicate that a normal approx-
imation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k × r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 3.3 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
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closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.

Definition 3.4. Let Q(η) be a real valued function of the k× 1 vector η.
The gradient of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : R
k → R

k. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.

As a mnemonic (memory aid) for the following lemma, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 3.4. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 3.1. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z −Wη‖22 = (Z −Wη)T (Z −Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 3.4 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 3.2. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
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number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

ls.print(out)

Residual Standard Error=392.8709

R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

3.2 Forward Selection

Variable selection methods such as forward selection were covered in Chapter
2 where model Ij uses j predictors x∗1, ..., x

∗
j including the constant x∗1 ≡ 1. If

n/p is not large, forward selection can be done as in Chapter 2 except instead
of forming p submodels I1, ..., Ip, form the sequence ofM submodels I1, ..., IM
where M = min(dn/Je, p) for some positive integer J such as J = 5, 10, or 20.
Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Then for each submodel
Ij, OLS is used to regress Y on 1, x∗2, ..., x

∗
j. Then a criterion chooses which

model Id from candidates I1, ..., IM is to be used as the final submodel.

Remark 3.10. Suppose n/J is an integer. If p ≤ n/J , then forward
selection fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where
p − i models are fit at step i for i = 1, ..., (p− 1). If n/J < p, then forward
selection uses (n/J)−1 steps and fits ≈ (p−1)+(p−2)+· · ·+(p−(n/J)+1) =
p((n/J)− 1)− (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1)−

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2
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models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.

#regsubsets works if p < n, e.g. p = n-1, and works

#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (2.14)

vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595
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tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,

228.3175, 224.4362, 221.5456, 218.7368, 212.8099,

210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 3.2, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175
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X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem for estimating the full model β. Let Yi = xT

I,iβI + eI,i. Then

V (eI,i) may not be a constant σ2: V (eI,i) could depend on case i, and the
model may no longer be linear. Check model I with response and residual
plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 3.5, 3.6, and 3.8.

Definition 3.5. A fitted or population regression model is sparse if a of
the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression
model is abundant or dense if the regression information is spread out among
the p predictors (nearly all of the predictors are active). Hence an abundant
model is a nonsparse model.

Suppose the population model has βS an aS × 1 vector, including a con-
stant. Then a = aS − 1 for the population model. Note that a = aS if the
model does not include a constant. See equation (2.1).

3.3 Principal Components Regression

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, posi-
tive definite matrices, and positive semidefinite matrices will be useful before
defining principal components regression, which is also called principal com-
ponent regression.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if
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Ax = λx. (3.12)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖2 =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthonormal: eT

i ei = 1 and eT
i ej = 0 for i 6=

j. The symmetric matrix A is positive definite iff all of its eigenvalues are
positive, and positive semidefinite iff all of its eigenvalues are nonnegative.
If A is positive semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive
definite, then λp > 0.

Theorem 3.5. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p∑

i=1

1

λi
eie

T
i .

Theorem 3.6. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Let Y = α + xT β + e. Consider the correlation matrix Rx of the p
nontrivial predictors x1, ..., xp. Suppose Rx has eigenvalue eigenvector pairs

(λ̂1, ê1), ..., (λ̂K, êK) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0 where K = min(n, p).

Then Rxêi = λ̂iêi for i = 1, ..., K. Since Rx is a symmetric positive semidef-
inite matrix, the λ̂i are real and nonnegative.

The eigenvectors êi are orthonormal: êT
i êi = 1 and êT

i êj = 0 for i 6= j.
If the eigenvalues are unique, then êi and −êi are the only orthonormal
eigenvectors corresponding to λ̂i. For example, the eigenvalue eigenvector
pairs can be found using the singular value decomposition of the matrix
W g/

√
n− g where W g is the data matrix of standardized cases: the ith row

of W g is wT
i , the sample covariance matrix
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Σ̂w =
W T

g W g

n− g =
1

n− g

n∑

i=1

(wi −w)(wi −w)T =
1

n− g

n∑

i=1

wiw
T
i = Rx,

and usually g = 0 or g = 1. If n > K = p, then the spectral decomposition of
Rx is

Rx =

p∑

i=1

λ̂iêiê
T
i = λ̂1ê1ê

T
1 + · · ·+ λ̂pêpê

T
p ,

and
∑p

i=1 λ̂i = p.
Let w1, ...,wn denote the n standardized cases of nontrivial predictors.

See Remark 3.3. Then the K principal components corresponding to the jth
case wj are Pj1 = êT

1 wj, ..., PjK = êT
Kwj. Let the transformed case, that

uses K principal components, corresponding to wj be vj = (Pj1, ..., PjK)T .
Following Hastie et al. (2009, p. 66), the ith eigenvector êi is known as the
ith principal component direction or Karhunen Loeve direction of W g.

Principal components have a nice geometric interpretation if n > K = p.
If n > K and Rx is nonsingular, then the hyperellipsoid

{w|D2
w(0,Rx) ≤ h2} = {w : wT R−1

x w ≤ h2}

is centered at 0. The volume of the hyperellipsoid is

2πK/2

KΓ (K/2)
|Rx|1/2hK .

Then points at squared distance wT R−1
x w = h2 from the origin lie on the

hyperellipsoid centered at the origin whose axes are given by the eigenvectors

êi where the half length in the direction of êi is h
√
λ̂i. Let j = 1, ..., n. Then

the first principal component Pj1 is obtained by projecting the wj on the
(longest) major axis of the hyperellipsoid, the second principal component Pj2

is obtained by projecting the wj on the next longest axis of the hyperellipsoid,
..., and the (p)th principal component Pj,p is obtained by projecting the wj

on the (shortest) minor axis of the hyperellipsoid. Examine Figure 2.3 for
two ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid are
a rotation of the usual axes about the origin.

Let the random variable Vi correspond to the ith principal component, and
let the ith principal component vector ci = (P1i, ..., Pni)

T = (V1i, ..., Vni)
T

be the observed data for Vi. Let g = 1. Then the sample mean

V i =
1

n

n∑

k=1

Vki =
1

n

n∑

k=1

êT
i wk = êT

i w = êT
i 0 = 0,

and the sample covariance of Vi and Vj is Cov(Vi, Vj) =
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1

n

n∑

k=1

(Vki − V i)(Vkj − V j) =
1

n

n∑

k=1

êT
i wkwT

k êj = êT
i Rxêj

= λ̂j ê
T
i êj = 0 for i 6= j since the sample covariance matrix of the standard-

ized data is
1

n

n∑

k=1

wkwT
k = Rx

and Rxêj = λ̂j êj. Hence Vi and Vj are uncorrelated.

In the following definition, note that cT
i cj = êT

i W T Wêj = nêiRxêj =

nλjê
T
i êj = 0 for i 6= j. Thus ci and cj are orthogonal: ci⊥cj for i 6= j. Also,

cT
i 1 = (

∑n
k=1 wk)êi = 0T êi = 0 since the standardized predictor variables

sum to 0. The ith principle component vector ci corresponds to the derived
predictor Vi, for i = 1, ..., p− 1.

Definition 3.6. Consider the standardized model Z = WβOLS +ε where
Y = α+ xT β + e. Let

vi = Âk,nwi =




wT
i ê1

...
wT

i êk


 =




êT
1 wi

...

êT
k wT

i


 where Âk,n =




êT
1
...

êT
k


 .

Let

ci = Wêi =




wT
1 êi

...
wT

n êi




be the ith principle component vector for i = 1, ..., p. Principal components
regression (PCR) uses OLS regression on the principal component vectors
of the correlation matrix Rx. Hence PCR uses linear combinations of the
standardized data as predictors. Let

V k = (c1, ..., ck) =




vT
1
...

vT
n


 = W Â

T

k,n

for k = 1, ..., p. Let the working OLS model

Z = V kγk + ε = WβkPCR + ε

where ε depends on the model. Then β̂kPCR is the k-component PCR es-
timator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MSPCR.
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Remark 3.11. a) The set of p× 1 vectors {(1, 0, ..., 0)T , (0, 1, 0, ..., 0)T,
(0, ...0, 1)T} is the standard basis for R

p. The set of vectors {ê1, ..., êp} is also
a basis for R

p.
b) Let γ̂k = (γ̂1, ..., γ̂k)

T . Since the columns of V k are orthogonal, ci⊥cj

for i 6= j,

γ̂i =
cT

i Z

cT
i ci

=
cT

i Y

cT
i ci

.

c) Since Ẑ = V kγ̂k +r = WÂ
T

k,nγ̂k +r = Wβ̂kPCR +r, where β̂kPCR =

Â
T

k,nγ̂k. By Remark 3.2,

γ̂k = Σ̂
−1

v Σ̂vZ = [Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wZ =

[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Thus

β̂kPCR = Â
T

k,nγ̂k = Â
T

k,n[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Note that β̂pPCR = β̂OLS(w, Z).

d) Let ei = ei(ρ̂x) be the ith eigenvector of the population correlation

matrix ρ̂x of the x, and let

Ak =




eT
1
...

eT
i


 .

It is possible that êi,n is arbitrarily close to ei for some values of n and
arbitrarily close to −ei for other values of n so that êi ≡ êi,n oscillates and
does not converge in probability to either ei or −ei. Hence we can not say

that the ith eigenvector êi = êi,n
P→ ei or that Ak,n

P→ Ak. If Σ̂
P→ cΣ

for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of Σ are
unique, then the absolute value of the correlation of êj with ej converges to

1 in probability: |corr(êj, ej)| P→ 1. See Olive (2017b, p. 190). Let γk be
the population vector from the OLS regression on the principal component
vectors of the population correlation matrix ρx. Then γk and Ak are not
unique since columns of Ak and elements of γk can be multiplied by −1
(an orthonormal eigenvector can be ei or −ei), but if a column ej of Ak is

multiplied by −1 then the jth element of γk,j is multiplied by −1 so AT
k γk

is unique. Thus Â
T

k,nγ̂k
P→ AT

k γk. Let Σ̂w
P→ ρu. Then

βkPCR = AT
k φk = AT

k [AkρxAT
k ]−1AkρxβOLS(w, Z).

See Helland and Almøy (1994).
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e) In general, β̂kPCR estimates βkPCR 6= βOLS(w, Z) unless k = p. Using
standardized predictors and estimated eigenvectors likely causes problems for
finding a CLT, as in Remark 3.6.

f) Generally there is no reason why the “predictors” should be ranked from
best to worst by V1, V2, ..., Vk. For example, the last few principal component
vectors (and a constant) could be much better for prediction than the other
principal component vectors. See Jolliffe (1983) and Cook and Forzani (2008).

g) Suppose
∑J

i=1 λ̂i ≥ q(p) where 0.5 ≤ q ≤ 1, e.g. q = 0.8 where J is a lot
smaller than p. Then the J predictors V1, ..., VJ capture much of the infor-
mation of the standardized nontrivial predictors w1, ..., wp. Then regressing
Y on 1, V1, ..., VJ may be competitive with regressing Y on w1, ..., wp. PCR
is equivalent to OLS on the full model when Y is regressed on a constant
and all K = p of the principal components. PCR can also be useful if X is
singular or nearly singular (ill conditioned).

h) See section 9.1 for computing a classical principal component analysis
on the standardized data when n < p.

Example 3.2, continued. The PCR output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-pcr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 449479706 8181251 371775 197132

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

3.4 Partial Least Squares

Consider the MLR model Yi = α+ xT
i β + ei = α+ xi,1β1 + · · ·+ xi,pβp + ei

for i = 1, ..., n. Principal components regression (PCR) and partial least
squares (PLS) models use p linear combinations ηT

1 x, ...,ηT
p x. Then there

are p conditional distributions
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Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) and a constant gives the k-component estima-

tor, e.g. the k-component PLS estimator β̂kPLS or the k-component PCR
estimator, for k = 1, ..., J where J ≤ p and the p-component estimator is
the OLS estimator β̂OLS . Denote the one component PLS (OPLS) estimator

by β̂OPLS . The model selection estimator chooses one of the k-component
estimators, e.g. using a holdout sample or cross validation, and will be de-
noted by β̂MSPLS . For the OPLS estimator, η1 = ΣxY and η̂1 = Σ̂xY . See
Sections 3.9 and 3.10 for more on the OPLS estimator.

Remark 3.12. Olive and Zhang (2023) showed that β̂kPLS estimates
βkPLS , and in general, βkPLS 6= βOLS for k < p. In particular, βOPLS 6=
βOLS except under very strong regularity conditions. The PLS literature
incorrectly suggests that βkPLS = βOLS , under mild regularity conditions,
for 1 ≤ k < p if p is fixed. Also see Chun and Keleş (2010), Cook (2018),
Cook et al. (2013), and Cook and Forzani (2018, 2019).

Now consider the MLR model Y = xT β+e = β1 +x2β2 + · · ·+xpβ−p+e.
Then PLS uses variables v1 = 1 (the constant or trivial predictor) and “PLS
components” vj = γT

j x for j = 2, ..., p. Next let the response Y be used

with the standardized predictors Wj. Let the “PLS components” Vj = ĝT
j w.

Let model Ji contain V1, ..., Vi. Often k–fold cross validation is used to pick
the PLS model from J1, ..., JM. PLS seeks directions ĝj such that the PLS
components Vj are highly correlated with Y , subject to being uncorrelated
with other PLS components Vi for i 6= j. Note that PCR components are
formed without using Y .

Following Hastie et al. (2009, pp. 80-81), let W = [s1, ..., sp−1] so sj is
the vector corresponding to the standardized jth nontrivial predictor. Let
b̂1i = sT

i Y be n times the least squares coefficient from regressing Y on

si. Then the first PLS direction b̂1 = (b̂11, ..., b̂1,p−1)
T . Note that Wb̂1 =

(V11, ..., V1n)T = p1 is the 1st PLS component. This process is repeated using
matrices W k = [sk

1 , ..., s
k
p−1] where W 0 = W and W k is orthogonalized with

respect to pk for k = 1, ..., p− 2. So sk
j = sk−1

j − [pT
k sk−1

j /(pT
k pk)]pk for j =

1, ..., p−1. Note that Wb̂i = (Vi1, ..., Vin)T = pi is the ith PLS component. If

the PLS model Ii uses a constant and PLS components V1, ..., Vi−1, let Ŷ Ii be

the predicted values from the PLS model using Ii. Then Ŷ Ii = Ŷ Ii−1
+ θ̂ipi

where Ŷ I0
= Y 1 and θ̂i = pT

i Y /(pT
i pi). Since linear combinations of w are

linear combinations of x, Ŷ = Xβ̂PLS,Ij
where Ij uses a constant and the
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first j − 1 PLS components. If j = p − 1, then the PLS model Ip is the OLS
full model.

Example 3.2, continued. The PLS output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-plsr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 256433719 6301482 249366 206508

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

Let Y = α + xT βkPLS + ε be a working model. Let X = (1 X1).
An equivalent way to formulate PLS is to form bj iteratively where bk =

arg maxb{[corr(Y ,X1b)]2V (X1b)} subject to bT b = 1 and bT Σxbj = 0

for j = 1, ..., k− 1. Let the b̂j be the estimates of bj, and perform the OLS

regression of Y on X1Ĉk,n and a constant where Ĉk,n = [b̂1, ..., b̂k] to find

γ̂k. Then β̂kPLS = Ĉk,nγ̂k.
Again let Y = α + xT βkPLS + ε be a working model. From Naik and

Tsai (2000), Helland and Almøy (1994), and Helland (1990), let Â
T

k,n =

[Σ̂xY , Σ̂xΣ̂xY , Σ̂
2

xΣ̂xY , ..., Σ̂
k−1

x Σ̂xY ]. Let w = Âk,nx with

Y = α+ wT γk + ε the working model so β̂kPLS = Â
T

k,nγ̂k. Then β̂kPLS =

Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xY = Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xβ̂OLS(x, Y ).

The Mevik et al. (2015) pls library is useful for computing PLS and PCR.

3.5 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression uses the centered
response Zi = Yi − Y and standardized nontrivial predictors in the model
Z = Wη +ε. Then Ŷi = Ẑi +Y . Note that in Definition 3.7, λ1,n is a tuning
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parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ . Refer to
Definition 3.3 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 3.6. Consider the MLR model Z = Wη + ε. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 3.7. a) Consider fitting the MLR model Y = Xβ + e using
Z = Wη + ε. Let λ ≥ 0 be a constant. The ridge regression estimator η̂R

minimizes the ridge regression criterion

QR(η) =
1

a
(Z −Wη)T (Z −Wη) +

λ1,n

a

p−1∑

i=1

η2
i (3.13)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (3.14)

The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .
b) Consider fitting the MLR model Y = Xβ+e. Let λ ≥ 0 be a constant.

One ridge regression estimator β̂R minimizes the ridge regression criterion

QR(β) =
1

a
(Y −Xβ)T (Y −Xβ) +

λ1,n

a

p∑

i=1

β2
i (3.15)

over all vectors β ∈ R
p. Then

β̂R = (XT X + λ1,nIp)
−1XT Y . (3.16)

The residual sum of squares RSS(β) = (Y −Xβ)T (Y −Xβ), and λ1,n = 0

corresponds to the OLS estimator β̂OLS . The ridge regression vector of fitted

values is Ŷ = Ŷ R = Xβ̂R, and the ridge regression vector of residuals

rR = r(β̂R) = Y − Ŷ R.
c) Another ridge regression estimator β̃RR minimizes the ridge regression

criterion

QRR(β) =
1

a
(Y −Xβ)T (Y −Xβ) +

λ1,n

a

p∑

i=2

β2
i

over all vectors β ∈ R
p.
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The estimators b) and c) agree when a) is used. Using a vector of param-
eters η and a dummy vector η in QR is common for minimizing a criterion
Q(η), often with estimating equations. See the paragraphs above and below
Definition 3.4. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b

where the minimization is over all vectors b ∈ R
p−1. Note that

∑p−1
i=1 η

2
i =

ηT η = ‖η‖22. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 3.13. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)( W√
λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 3.13 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry

is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
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act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 3.13 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.

The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− gW T
g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.

Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(3.17)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and

df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1
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u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119

svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (3.18)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(3.9).

The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is

usually used, for example, after 10-fold cross validation. The fact that β̂R =

An,λβ̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 3.7 for the ridge regression central limit theorem.
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Remark 3.13. Ridge regression has a simple relationship with OLS if
n > p and (XT X)−1 exists. Then β̂R = (XT X + λ1,nIp)

−1XT Y =

(XT X + λ1,nIp)−1(XT X)(XT X)−1XT Y = An,λβ̂OLS where An,λ ≡
An = (XT X + λ1,nIp)

−1XT X . By the OLS CLT Equation (3.3) with

V̂ /n = (XT X)−1, a normal approximation for OLS is

β̂OLS ∼ ANp(β,MSE (XT X)−1).

Hence a normal approximation for ridge regression is

β̂R ∼ ANp(Anβ,MSE An(XT X)−1AT
n ) ∼

ANp[Anβ,MSE (XT X + λ1,nIp)
−1(XT X)(XT X + λ1,nIp)

−1].

If Equation (3.3) holds and λ1,n/n→ 0 as n→∞, then An
P→ Ip.

Remark 3.14. The ridge regression criterion from Definition 3.7 can also
be defined by

QR(η) = ‖Z −Wη‖22 + λ1,nηT η. (3.19)

Then by Theorem 3.4, the gradient5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z −Wη̂R) + λ1,nη̂R = 0. (3.20)

Following Efron and Hastie (2016, pp. 381-382, 392), this means η̂R = W T a
for some n× 1 vector a. Hence −W T (Z −WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(XT X + λ1,nIp)

−1XT Y

= (XT X + λ1,nIp)
−1XT X(XT X)−1XT Y

= (XT X + λ1,nIp)
−1XT Xβ̂OLS = Anβ̂OLS =

[Ip − λ1,n(XT X + λ1,nIp)
−1]β̂OLS = Bnβ̂OLS =
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β̂OLS −
λ1n

n
n(XT X + λ1,nIp)

−1β̂OLS

since An −Bn = 0, where An = (XT X + λ1,nIp)
−1(XT X) = Bn

= Ip − λ1,n(XT X + λ1,nIp)
−1. See Problem 3.3. Assume

XT X

n
→ V −1

as n→∞. If λ1,n/n→ 0 then

XT X + λ1,nIp

n

P→ V −1, and n(XTX + λ1,nIp)−1 P→ V .

Note that

An = An,λ =

(
XT X + λ1,nIp

n

)−1
XT X

n

P→ V V −1 = Ip

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 3.7, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂R − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

β̂R = [Ip − λ̂1,n(XT X + λ̂1,nIp)
−1]β̂OLS .

Hence √
n(β̂R − β) =

√
n(β̂R − β̂OLS + β̂OLS − β) =
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√
n(β̂OLS − β)−√nλ̂1,n

n
n(XT X + λ̂1,nIp)

−1β̂OLS

D→ Np(0, σ
2V ) − τV β ∼ Np(−τV β, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that β̂R is a consistent estimator
of β if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n→ 0 as n→∞, iii) ridge regression

is a
√
n consistent estimator of β if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n→ τ ≥ 0, then

√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (2.1) and Remark
3.5 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Sections 3.9, 3.10, 3.11, and 3.13.

Warning. Although the R functions glmnet and cv.glmnet appear to
do ridge regression, getting the fitted values, λ̂1,n, and degrees of freedom to
match up with the formulas of this section can be difficult.

Example 3.2, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
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need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x

diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)

M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

3.6 Lasso

Consider the MLR model Y = Xβ + e. Lasso uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+ε
as described in Remark 3.3. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.
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Definition 3.8. a) Consider fitting the MLR model Y = Xβ + e using
Z = Wη + ε. The lasso estimator η̂L minimizes the lasso criterion

QL(η) =
1

a
(Z −Wη)T (Z −Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (3.21)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z −Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.

The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

b) The lasso estimator β̂L minimizes the lasso criterion

QL(β) =
1

a
(Y −Xβ)T (Y −Xβ) +

λ1,n

a

p∑

i=2

|βi| (3.22)

over all vectors β ∈ R
p. The residual sum of squares RSS(β) = (Y −

Xβ)T (Y −Xβ), and λ1,n = 0 corresponds to the OLS estimator β̂OLS =

(XT X)−1XT Y if X has full rank p. The lasso vector of fitted values is

Ŷ = Ŷ L = Xβ̂L, and the lasso vector of residuals r(β̂L) = Y − Ŷ L.

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 3.4. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (3.23)

where the minimization is over all vectors b ∈ R
p−1. The literature often uses

λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,

then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.
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The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
XT (Y −Xβ̂L) +

λ1,n

2n
sn = 0 or −XT(Y −Xβ̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(β̂i,L) if β̂i,L 6= 0. Here sign(βi) = 1 if

βi > 0 and sign(βi) = −1 if βi < 0. Note that sn = s
n,

ˆβL

depends on β̂L.

Thus β̂L

= (XT X)−1XT Y − λ1,n

2n
n(XT X)−1 sn = β̂OLS −

λ1,n

2n
n(XT X)−1 sn.

If none of the elements of β are zero, and if β̂L is a consistent estimator of β,

then sn
P→ s = sβ. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that β̂λM
= 0. Hence β̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(β̂L − β̂OLS) = op(1).

Theorem 3.8, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂L − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(β̂L − β)

D→ Np

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(β̂L − β) =

√
n(β̂L − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β)−

√
n
λ1,n

2n
n(XT X)−1sn

D→ Np(0, σ
2V ) − τ

2
V s

∼ Np

(−τ
2

V s, σ2V

)

since under the OLS CLT, n(XT X)−1 P→ V .
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Part a) does not need sn
P→ s as n→∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that β̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n→∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n →∞ too slowly as n→∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of β if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 3.8 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:

QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.

The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (3.24)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (3.21).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 3.8, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 3.9. The active set A is the index set of the nontrivial predic-
tors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
values
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ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (3.24), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (3.25)

See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.

Example 3.2, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.
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3.7 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the active predictors
that have nonzero lasso η̂i (model I = Imin). Lasso variable selection is called
relaxed lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator
with φ = 0 by Meinshausen (2007). The method is also called OLS-post lasso
and post model selection OLS.

Theory for lasso variable selection was given in Chapter 2. Also see Pelawa
Watagoda and Olive (2021b) and Rathnayake and Olive (2023). Lasso vari-
able selection will often be better than lasso when the model is sparse or if
n ≥ 10(k+1). Lasso can be better than lasso variable selection if (XT

I XI) is
ill conditioned or if n/(k+ 1) < 10. Lasso variable selection used a grid of K
λi values for i = 1, ..., K where λ1 < λ2 < · · · < λK . If K = 100, then lasso
variable selection can be much faster than forward selection if p is large. If
n/p is not large, using K > 100 is likely a good idea due to the multitude

of MLR models result. See Section 3.17. When p is fixed, λ̂1,n/
√
n

P→ τ does

not do variable selection well. For variable selection, want λ̂1,n/
√
n → ∞,

but λ̂1,n/n→ 0. See Fan and Li (2001). Let λ1 = 2nλ. Guan and Tibshirani
(2020) (and likely glmnet) use λ < Cn−1/4 for some large constant C. Hence
λ1,n = λ1 ∝ n3/4, and the consistency rate of the lasso algorithm is as best
n1/4, but variable selection lasso has the

√
n rate (if λk is selected by lasso,

make λ̂ = min(λk, n/log(n) so that λ̂/n→ 0 as n→∞.)
Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The

following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##lasso variable selection =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin
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#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) #lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 3.2, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ1 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Remark 2.5 and Theorem 2.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 3.2, forward selection selected the model with the
minimum Cp while the other methods used 10-fold CV. PLS and PCR used
the OLS full model with PI length 2395.74, forward selection used a constant
and mmen with PI length 2114.72, ridge regression had PI length 20336.58,
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d) Relaxed Lasso

Fig. 3.1 Marry Data Response Plots

lasso and lasso variable selection used a constant, mmen, and pop with lasso
PI length 8482.62 and lasso variable selection PI length 2226.53. PI (2.14)
was used. Figure 3.1 shows the response plots for forward selection, ridge
regression, lasso, and lasso variable selection (labeled relaxed lasso). The plots
for PLS=PCR=OLS full model were similar to those of forward selection and
lasso variable selection. The plots suggest that the MLR model is appropriate
since the plotted points scatter about the identity line. The 90% pointwise
prediction bands are also shown, and consist of two lines parallel to the
identity line. These bands are very narrow in Figure 3.1 a) and d).
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3.8 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y −Xβ)T (Y −Xβ) = ‖Y −Xβ‖22.

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖22 = ηT η =
∑k

i=1 η
2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 3.10. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1− α)‖βS‖22 + α‖βS‖1

]
, or (3.26)

Q2(β) = RSS(β) + λ1‖βS‖22 + λ2‖βS‖1 (3.27)

where 0 ≤ α ≤ 1, λ1 = (1− α)λ1,n and λ2 = 2αλ1,n.

Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y
where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (3.28)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖22 + λ2‖η‖1 (3.29)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA−W Aη‖22. Then
η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes
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QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (3.30)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA −W Aη‖22 = (ZA −W Aη)T (ZA −W Aη) =

ZT
AZA −ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =

ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)( Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z −ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =

RSS(η) + λ1‖η‖22 + λ2‖η‖1 = QEN(η). �

Remark 3.15. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (3.30) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 3.9. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (3.30). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (3.30) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
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nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker (KKT)

conditions for convex optimality for Equation (3.27), β̂EN is optimal if

2XT Xβ̂EN − 2XT Y + 2λ1β̂EN + λ2sn = 0, or

(XT X + λ1Ip)β̂EN = XT Y − λ2

2
sn, or

β̂EN = β̂R − n(XT X + λ1Ip)
−1 λ2

2n
sn. (3.31)

Hence

β̂EN = β̂OLS −
λ1

n
n(XT X + λ1Ip)

−1 β̂OLS −
λ2

2n
n(XT X + λ1Ip)

−1 sn

= β̂OLS − n(XT X + λ1Ip)
−1 [

λ1

n
β̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(β̂EN −β) =

√
n(β̂OLS − β)− n(XT X + λ̂1Ip)

−1 [
λ̂1√
n

β̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2021b).

Theorem 3.9, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂EN − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sβ, then

√
n(β̂EN − β)

D→ Np

(
−V [(1− ψ)τβ + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 3.7,

√
n(β̂EN −β) =

√
n(β̂EN − β̂R + β̂R −β) =

√
n(β̂R −β)+

√
n(β̂EN − β̂R)

D→ Np

(
−(1 − ψ)τV β, σ2V

)
− 2ψτ

2
V s
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∼ Np

(
−V [(1− ψ)τβ + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 3.2, continued. The slpack function enet does elastic net
using 10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am= 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph

[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid

The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net η̂i. Hence elastic net is used
as a variable selection method. Let XA denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is β̂ENV = (XT

AXA)−1XT
AY , and elastic net

variable selection is an alternative to forward selection. Let k be the number
of active (nontrivial) predictors so β̂ENV is (k+ 1)× 1. Let Imin correspond

to the elastic net variable selection estimator and β̂ENV,0 = β̂Imin,0 to the
zero padded elastic net variable selection estimator. Then by Remark 2.5
where p is fixed, β̂ENV,0 is

√
n consistent when elastic net is consistent, with

the limiting distribution for β̂ENV,0 given by Theorem 2.4. Hence, elastic
net variable selection can be bootstrapped with the same methods used for
forward selection in Chapter 2. Elastic net variable selection will often be
better than elastic net when the model is sparse or if n ≥ 10(k + 1). The
elastic net can be better than elastic net variable selection if (XT

AXA) is ill
conditioned or if n/(k + 1) < 10. Also see Rathnayake and Olive (2023).

3.9 OPLS

Definition 3.11. Denote the one component PLS (OPLS) estimator by

β̂OPLS .

For estimation with OLS, let the covariance matrix of x be Cov(x) =
Σx = E[(x−E(x))(x−E(x))T = E(xxT )−E(x)E(xT ) and η = Cov(x, Y )
= ΣxY = E[(x− E(X)(Y − E(Y ))] = E(xY ) −E(x)E(Y ) =
E[(x−E(x))Y ] = E[x(Y −E(Y ))]. Let
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η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators are α̂OLS = Y − β̂
T

OLSx and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.

For a multiple linear regression model with independent, identically dis-
tributed (iid) cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY

under mild regularity conditions, while α̂OLS is a consistent estimator of
E(Y )− βT

OLSE(x).

Cook, Helland, and Su (2013) showed that β̂OPLS = λ̂Σ̂xY estimates
λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(3.32)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Let η̂OPLS = Σ̂xY . Large
sample theory for OPLS is given by Olive and Zhang (2023).

Chun and Keleş (2010) suggested that β̂OPLS only estimates βOLS under
very strong regularity conditions. Cook and Forzani (2018, 2019) showed that

the regularity condition is Σ−1
x Σx,Y = λΣx,Y , in which case

√
n(β̂OPLS −

βOLS)
D→ Np(0,C). Cook and Forzani (2018, 2019) also showed that under

very strong regularity conditions for high dimensions, β̂OPLS is a consistent
estimator of βOLS . Also see Basa et al. (2022).

In the literature, there is a tendency (perhaps a common Statistical
paradigm) to assume that if the estimated model fits the data well, then the
model corresponding to the estimator is the model for Y |x. For example, in
much of the OPLS literature, an assumption is Y |x = αOPLS +βT

OPLSx+e.
Then βOPLS = βOLS by the OLS CLT, and the results in Table 3.1 hold.

The above tendency leads to problems that have perhaps not yet been
observed in the literature. To see some problems, consider multiple linear
regression with Cov(x) = diag(1, 2, ..., p). First consider OPLS with βOLS =
βOPLS . Then at most one element of Cov(x, Y ) = Σx,Y is nonzero since
Σx,Y is an eigenvector of Cov(x). Hence at most one predictor is correlated
with Y , regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y |x =
αOLS + βT

OLSx + e and Y |βT
OPLSx = αOPLS + βT

OPLSx + e are both lin-
ear models by Section 3.17 where e depends on the model. Since βOPLS =
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Table 3.1 OPLS Results

General βOLS = Σ
−1
x Σx,Y = λΣx,Y = βOP LS

βOLS = Σ
−1
x Σx,Y =

1

λ
[Cov(x)]−1βOP LS βOLS is an eigenvector of Σx

βOP LS = λΣx,Y = λCov(x)βOLS βOPLS is an eigenvector of Σx
Σx,Y = Cov(x)βOLS Σx,Y is an eigenvector of Σx

β̂kP LS estimates βkP LS β̂kP LS estimates βOLS

βOLS forces βOLS to be an eigenvector of Σx, if βOLS is not an eigen-
vector of Σx, then βOPLS 6= βOLS. For a computational example, let
x ∼ Np(0, diag(1, 2, 3, 4)) with Σx = diag(1, 2, 3, 4), and let the popula-
tion generating model be Yi = xi1 + xi2 + ei for i = 1, ..., n where the ei

are iid N(0, 1) and independent of the xi. Then α = 0 and β = (1, 1, 0, 0)T .
Hence βOLS = β = (1, 1, 0, 0)T , Σx,Y = ΣxβOLS = (1, 2, 0, 0)T , and

λ =
ΣT

x,Y Σx,Y

ΣT
x,Y ΣxΣx,Y

= 5/9.

Thus βOPLS = λΣx,Y = λΣxβOLS = (5/9, 10/9, 0, 0)T 6= βOLS .
Thus OLS and OPLS usually give different valid population multiple linear

regression models with βOPLS 6= βOLS . However, model iii) Y |βT
OPLSx =

αOPLS + βT
OPLSx + e is often a useful multiple linear regression model with

large sample theory given in Olive and Zhang (2023). The claims in the
OPLS literature that βOLS = βOPLS = an eigenvector of Σx under mild
regularity conditions are incorrect. See, for example, Basa et al. (2022), Cook
and Forzani (2018, 2019), and Cook, Helland and Su (2013). The regularity
conditions for βOLS = βOPLS are very strong. In the OLS literature βOLS

can be any vector in R
p. If βOLS , Σx,Y , and βOPLS were restricted to be

eigenvectors of Σx, then the OLS and OPLS estimators would often not fit
the data well.

3.10 The MMLE

The marginal maximum likelihood estimator (MMLE or marginal least
squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010).
This estimator computes the marginal regression of Y on xi resulting in the
estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .
For multiple linear regression, the marginal estimators are the simple linear
regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y .
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If the wi are the predictors standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = I−1Σ̂w,Y = η̂OPLS(w, Y )

where (w, Y ) denotes that Y was regressed on w, and I is the p× p identity
matrix. See, for example, James et al. (2021, p. 260).

The MMLE is also used for variable selection. For example, standardize
the predictors and take the K − 1 variables corresponding to the largest
|β̂i| where β̂MMLE = (β̂1, ..., β̂p)T . Then perform the regression on these
variables (perhaps not standardized) and a constant. This variable selection
method is useful for very large p since the method is fast, but the selected
predictors are often highly correlated. Hence it may be useful to perform lasso
variable selection or forward selection using the variables selected by MMLE
variable selection. Choosing K near min(n/J, p) for J = 1, 5 or 10 may be
useful.

MMLE variable selection can also be useful when the predictors are or-
thogonal. See Goh and Dey (2019) for references. This result may be useful
for PCR, PLS, and wavelets.

3.11 k-Component Regression Estimators

Consider the MLR model Y = α + xT β + e. The k-component regression
estimators, such as PCR and PLS, use p linear combinations ηT

1 x, ...,ηT
p x.

Then there are p conditional distributions

Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) gives the k-component estimator, e.g. the k-

component PLS estimator β̂kPLS or the k-component PCR estimator, for
k = 1, ..., J where J ≤ p and the p-component estimator is the OLS estimator
β̂OLS .

Definition 3.12. Consider the MLR model Y = α + xT β + e. Let X =
(1 X1). Let

vi = Âk,nxi =




xT
i η̂1
...

xT
i η̂k


 =




η̂T
1 xi

...

η̂T
k xi


 where Âk,n =




η̂T
1
...

η̂T
k


 .

Let
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ci = X1η̂i =




xT
1 η̂i
...

xT
n η̂i




be the ith component vector for i = 1, ..., p. Let

V k = (c1, ..., ck) =




vT
1
...

vT
n


 = X1Â

T

k,n

for k = 1, ..., p. Let the working OLS model

Y = αk1 + V kγk + ε

where ε depends on the model. Then β̂kE = Â
T

k,nγ̂k is the k-component
estimator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MSE.

The OLS regression of Y on w = Âk,nx gives

γ̂k = Σ̂
−1

w Σ̂w,Y = (Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y .

Thus

β̂kE = Â
T

k,nγ̂k = Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y = Λ̂kΣ̂x,Y

= Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂xβ̂OLS(x, Y ) = Λ̂kΣ̂xβ̂OLS(x, Y ).

If η̂i
P→ ηi, and

Âk,n
P→ Ak =




ηT
1
...

ηT
k


 ,

then

β̂kE
P→ βkE = AT

k (AkΣxAT
k )−1AkΣxβOLS(x, Y ) = ΛkΣxβOLS(x, Y ).

This convergence can also occur if η̂i = êi are orthonormal eigenvectors such

that Â
T

k,nγ̂k
P→ AT

k γk, which happened for PCR.
The regularity conditions for βkE = βOLS(x, Y ) tend to be strong, at

least for k near 1. Note that βpE = βOLS(x, Y ) if the inverse matrices exist
(and if p = 1), and βkE = βOLS(x, Y ) if βOLS(x, Y ) = 0. Suppose βOLS =∑

j=1 cijηij
for some m where 1 ≤ m ≤ p and the cij 6= 0. If k is large

enough to include the m ηij
, then βkE = βOLS(x, Y ). Under this regularity
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condition, γd = cij if γd corresponds to ηij
. This regularity condition becomes

weaker as m increases, and βkE can become very highly correlated with
βOLS(x, Y ) as k increases.

In the high dimensional setting, the regularity conditions for η̂i
P→ ηi tend

to be very strong.

3.12 Prediction Intervals

This section will use the prediction intervals from Section 2.3 applied to the
MLR model with m̂(x) = xT

I β̂I and I corresponds to the predictors used by
the MLR method. We will use the six methods forward selection with OLS,
PCR, PLS, lasso, lasso variable selection, and ridge regression. When p > n,
results from Hastie et al. (2015, pp. 20, 296, ch. 6, ch. 11) and Luo and Chen
(2013) suggest that lasso, lasso variable selection, and forward selection with
EBIC can perform well for sparse models: the subset S in Equation (2.1) and
Remark 3.7 has aS small.

Consider d for the prediction interval (2.14). As in Chapter 2, with the
exception of ridge regression, let d be the number of “variables” used by the
method, including a constant. Hence for lasso, lasso variable selection, and
forward selection, d− 1 is the number of active predictors while d− 1 is the
number of “components” used by PCR and PLS.

Many things can go wrong with prediction. It is assumed that the test
data follows the same MLR model as the training data. Population drift is a
common reason why the above assumption, which assumes that the various
distributions involved do not change over time, is violated. Population drift
occurs when the population distribution does change over time.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if the training data set and test data set are drawn from
different populations. For example, the training data set could be drawn
from three hospitals, and the test data set could be drawn from two more
hospitals. These two populations of three and two hospitals may differ.

A third thing that can go wrong is extrapolation: if xf is added to
x1, ...,xn, then there is extrapolation if xf is not like the xi, e.g. xf is an
outlier. Predictions based on extrapolation are not reliable. Check whether
the Euclidean distance of xf from the coordinatewise median MED(X) of
the x1, ...,xn satisfies Dxf

(MED(X), Ip) ≤ maxi=1,...,nDi(MED(X), Ip).
Alternatively, use the ddplot5 function, described in Chapter 1, applied to
x1, ...,xn,xf to check whether xf is an outlier.

When n ≥ 10p, let the hat matrix H = X(XT X)−1XT . Let hi = hii

be the ith diagonal element of H for i = 1, ..., n. Then hi is called the
ith leverage and hi = xT

i (XT X)−1xi. Then the leverage of xf is hf =

xT
f (XT X)−1xf . Then a rule of thumb is that extrapolation occurs if hf >



3.12 Prediction Intervals 197

max(h1, ..., hn). This rule works best if the predictors are linearly related in
that a plot of xi versus xj should not have any strong nonlinearities. If there
are strong nonlinearities among the predictors, then xf could be far from the
xi but still have hf < max(h1, ..., hn). If the regression method, such as lasso
or forward selection, uses a set I of a predictors, including a constant, where
n ≥ 10a, the above rule of thumb could be used for extrapolation where xf ,
xi, and X are replaced by xI,f , xI,i, and XI .

For the simulation from Pelawa Watagoda and Olive (2021b), we used
several R functions including forward selection (FS) as computed with the
regsubsets function from the leaps library, principal components regres-
sion (PCR) with the pcr function and partial least squares (PLS) with the
plsr function from the pls library, and ridge regression (RR) and lasso with
the cv.glmnet function from the glmnet library. Lasso variable selection
(LVS) was applied to the selected lasso model.

Table 3.2 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772

len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
100 200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922

len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412
100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000

len 22.067 6.8345 6.8092 7.7234 4.2141 38.904
200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786

len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610
200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792

len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616
200 200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000

len 4.8835 5.7714 4.5465 22.351 2.1451 51.896
400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536

len 4.5121 10.609 4.5619 10.663 4.0017 3.9771
400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646

len 4.5682 14.670 4.8656 14.481 4.0070 4.3797
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764
400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000

len 78.411 37.541 20.408 244.28 1.1749 305.93
400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554

len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
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entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)
for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then

ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ..., 1)T. Let Yi = 1+1xi,2+
· · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k+ 1 ones
and p− k− 1 zeros. The zero mean errors ei were iid from five distributions:
i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) +
0.1 N(0,100). Normal distributions usually appear in simulations, and the
uniform distribution is the distribution where the shorth undercoverage is
maximized by Frey (2013). Distributions ii) and v) have heavy tails, and
distribution iii) is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The split conformal PI (2.16) is not asymptotically optimal
for iii), and for iii) PI (2.16) has asymptotic length 2(1.966) = 3.992. The
simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no
reason to doubt that the PI has the nominal coverage of 0.95. The simulation
used p = 20, 40, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and k = 1, 19, or p−1. The

OLS full model fails when p = n and p = 2n, where regularity conditions
for consistent estimators are strong. The values k = 1 and k = 19 are sparse
models where lasso, lasso variable selection, and forward selection with EBIC
can perform well when n/p is not large. If k = p−1 and p ≥ n, then the model
is dense. When ψ = 0, the predictors are uncorrelated, when ψ = 1/

√
p,

the correlation goes to 0.5 as p increases and the predictors are moderately
correlated. For ψ = 0.9, the predictors are highly correlated with 1 dominant
principal component, a setting favorable for PLS and PCR. The simulated
data sets are rather small since the some of the R estimators are rather slow.

The simulations were done in R. See R Core Team (2016). The results
were similar for all five error distributions, and we show some results for
the normal and shifted exponential distributions. Tables 3.1 and 3.2 show
some simulation results for PI (2.14) where forward selection used Cp for
n ≥ 10p and EBIC for n < 10p. The other methods minimized 10-fold CV. For
forward selection, the maximum number of variables used was approximately
min(dn/5e, p). Ridge regression used the same d that was used for lasso.

For n ≥ 5p, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p. Cp

and EBIC produced good PIs for forward selection, and 10-fold CV produced
good PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV pro-
duced good PIs if ψ = 0 or if k was small, but if both k ≥ 19 and ψ ≥ 0.5,
then 10-fold CV tended to shrink too much and the PI lengths were often
too long. Lasso did appear to select S ⊆ Imin since lasso variable selection
was good.
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For n/p not large, good performance needed stronger regularity condi-
tions, and all six methods can have problems. PLS tended to have severe
undercoverage with small average length, but sometimes performed well for
ψ = 0.9. The PCR length was often too long for ψ = 0. If there was k = 1
active population predictor, then forward selection with EBIC, lasso, and
lasso variable selection often performed well. For k = 19, forward selection
with EBIC often performed well, as did lasso and lasso variable selection for
ψ = 0. For dense models with k = p− 1 and n/p not large, there was often
undercoverage. Here forward selection would use about n/5 variables. Let
d − 1 be the number of active nontrivial predictors in the selected model.
For N(0, 1) errors, ψ = 0, and d < k, an asymptotic population 95% PI has
length 3.92

√
k − d+ 1. Note that when the (Yi,u

T
i )T follow a multivariate

normal distribution, every subset follows a multiple linear regression model.
EBIC occasionally had undercoverage, especially for k = 19 or p − 1, which
was usually more severe for ψ = 0.9 or 1/

√
p.

Table 3.3 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ EXP (1)−1

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724

len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065
2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542

len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220
200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612

len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844
200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592

len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374
200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596

len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994
400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574

len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Tables 3.3 and 3.4 show some results for PIs (2.15) and (2.16). Here forward
selection using the minimum Cp model if nH > 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CRL used PI (2.16). For
lasso variable selection, the program sometimes failed to run for 5000 runs,
e.g., if the number of variables selected d = nH . In Table 3.3, PIs (2.15) and
(2.16) are asymptotically equivalent, but PI (2.16) had shorter lengths for
moderate n. In Table 3.4, PI (2.15) is shorter than PI (2.16) asymptotically,
but for moderate n, PI (2.16) was often shorter.

Table 3.5 shows some results for PIs (2.14) and (2.15) for lasso and ridge
regression. The header lasso indicates PI (2.14) was used while vlasso indi-
cates that PI (2.15) was used. PI (2.15) tended to work better when the fit
was poor while PI (2.14) was better for n = 2p and k = p − 1. The PIs are
asymptotically equivalent for consistent estimators.
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Table 3.4 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ N(0,1)

n,p,ψ,k FS CFS LVS CRL Lasso CL RR CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430

len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569
200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404

len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348
200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394

len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321
400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426

len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054
400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410

len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118
400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408

len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578
400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446

len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323

Table 3.5 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ EXP (1)− 1

n,p,ψ,k FS CFS LVS CRL Lasso CL RR CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438

len 4.6055 4.2617 4.5984 4.2302 4.5899 4.2301 4.6807 4.2863
2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462

len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943
200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418

len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509
200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420

len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394

len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251
400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466

len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

3.13 Cross Validation

For MLR variable selection there are many methods for choosing the final
submodel, including AIC, BIC, Cp, and EBIC. See Section 2.1. Variable se-
lection is a special case of model selection where there are M models a a final
model needs to be chosen. Cross validation is a common criterion for model
selection.

Definition 3.12. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
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Table 3.6 PIs (2.14) and (2.15): Simulated Large Sample 95% PI Coverages and
Lengths

n p ψ k dist lasso vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606

len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)−1 0.9728 0.9582 0.9546 0.9612

len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618

len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)−1 0.9716 0.9618 0.9814 0.9608

len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548

len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)−1 0.8446 0.9586 1.0000 0.9558

len 37.5185 78.0564 243.7929 69.5474

for j = 1, ..., k. Leave out the first fold, fit the statistical method to the k− 1
remaining folds, and then compute some criterion for the first fold. Repeat
for folds 2, ..., k.

Following James et al. (2013, p. 181), if the statistical method is an MLR
method, we often compute Ŷi(j) for each Yi in the fold j left out. Then

MSEj =
1

nj

nj∑

i=1

(Yi − Ŷi(j))
2 ,

and the overall criterion is

CV(k) =
1

k

k∑

j=1

MSEj .

Note that if each nj = n/k, then

CV(k) =
1

n

n∑

i=1

(Yi − Ŷi(j))
2.

Then CV(k) ≡ CV(k)(Ii) is computed for i = 1, ...,M , and the model Ic with
the smallest CV(k)(Ii) is selected.

Assume that model (2.1) holds: Y = xT β +e = xT
SβS +e where βS is an

aS × 1 vector. Suppose p is fixed and n→ ∞. If β̂I is a × 1, form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. If
P (S ⊆ Imin)→ 1 as n→∞, then Theorem 2.4 and Remark 2.5 showed that

β̂Imin,0 is a
√
n consistent estimator of β under mild regularity conditions.
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Note that if aS = p, then β̂Imin,0 is asymptotically equivalent to the OLS full

model β̂ (since S is equal to the full model).

Choosing folds for k-fold cross validation is similar to randomly allocating
cases to treatment groups. The following code is useful for a simulation. It
makes copies of 1 to k in a vector of length n called tfolds. The sample
command makes a permutation of tfolds to get the folds. The lengths of the
k folds differ by at most 1.

n<-26

k<-5

J<-as.integer(n/k)+1

tfolds<-rep(1:k,J)

tfolds<-tfolds[1:n] #can pass tfolds to a loop

folds<-sample(tfolds)

folds

4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3

Example 3.2, continued. The slpack function pifold uses k-fold CV to
get the coverage and average PI lengths. We used 5-fold CV with coverage
and average 95% PI length to compare the forward selection models. All
4 models had coverage 1, but the average 95% PI lengths were 2591.243,
2741.154, 2902.628, and 2972.963 for the models with 2 to 5 predictors. See
the following R code.

y <- marry[,3]; x <- marry[,-3]

x1 <- x[,2]

x2 <- x[,c(2,3)]

x3 <- x[,c(1,2,3)]

pifold(x1,y) #nominal 95% PI

$cov

[1] 1

$alen

[1] 2591.243

pifold(x2,y)

$cov

[1] 1

$alen

[1] 2741.154

pifold(x3,y)

$cov

[1] 1

$alen

[1] 2902.628

pifold(x,y)

$cov
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[1] 1

$alen

[1] 2972.963

#Validation PIs for submodels: the sample size is

#likely too small and the validation PI is formed

#from the validation set.

n<-dim(x)[1]

nH <- ceiling(n/2)

indx<-1:n

perm <- sample(indx,n)

H <- perm[1:nH]

vpilen(x1,y,H) #13/13 were in the validation PI

$cov

[1] 1.0

$len

[1] 116675.4

vpilen(x2,y,H)

$cov

[1] 1.0

$len

[1] 116679.8

vpilen(x3,y,H)

$cov

[1] 1.0

$len

[1] 116312.5

vpilen(x,y,H)

$cov

[1] 1.0

$len #shortest length

[1] 116270.7

Some more code is below.

n <- 100

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)
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$cov

[1] 0.96

$alen

[1] 4.2884

pifold(x2,y)

$cov

[1] 0.98

$alen

[1] 4.625284

pifold(x3,y)

$cov

[1] 0.98

$alen

[1] 4.783187

pifold(x,y)

$cov

[1] 0.98

$alen

[1] 4.713151

n <- 10000

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.9491

$alen

[1] 3.96021

pifold(x2,y)

$cov

[1] 0.9501

$alen

[1] 3.962338

pifold(x3,y)

$cov

[1] 0.9492

$alen
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[1] 3.963305

pifold(x,y)

$cov

[1] 0.9498

$alen

[1] 3.96203

3.14 Hypothesis Testing after Model Selection, n/p
Large

Section 2.6 showed how to use the bootstrap for hypothesis test H0 : θ =
Aβ = θ0 versus H1 : θ = Aβ 6= θ0 with the statistic Tn = Aβ̂Imin,0

where β̂Imin,0 is the zero padded OLS estimator computed from the variables
corresponding to Imin. The theory needs P (S ⊆ Imin) → 1 as n → ∞, and
hence applies to OLS variable selection with AIC, BIC, and Cp, and to lasso
variable selection and elastic net variable selection if lasso and elastic net are
consistent.

Assume n ≥ 20p and that the error distribution is unimodal and not highly
skewed. The response plot and residual plot are plots with Ŷ = xT β̂ on the
horizontal axis and Y or r on the vertical axis, respectively. Then the plotted
points in these plots should scatter in roughly even bands about the identity
line (with unit slope and zero intercept) and the r = 0 line, respectively.
See Figure 1.1. If the plots for the OLS full model suggest that the error
distribution is skewed or multimodal, then much larger sample sizes may be
needed.

Let p be fixed. Then lasso is asymptotically equivalent to OLS if λ̂1n/
√
n→

0, and hence should not have any β̂i = 0, asymptotically. If aS < p, then
lasso tends not be

√
n consistent if lasso selects S with high probability by

Ewald and Schneider (2018), but then lasso variable selection tends to be√
n consistent. If λ̂1n/n → 0, then lasso is consistent so P (S ⊆ I) → 1 as

n→∞. Hence often if lasso has more than one β̂i = 0, then lasso is not
√
n

consistent.
Suppose we use the residual bootstrap where Y ∗ = Xβ̂OLS +rW follows a

standard linear model where the elements rW
i of rW are iid from the empirical

distribution of the OLS full model residuals ri. In Section 2.6 we used forward
selection when regressing Y ∗ on X , but we could use lasso or ridge regression
instead. Since these estimators are consistent if λ̂1n/n → 0 as n → ∞, we

expect β̂
∗
L and β̂

∗
R to be centered at β̂OLS . If the variabliity of the β̂

∗
is similar

to or greater than that of β̂OLS , then by the geometric argument Theorem
2.5, we might get simulated coverage close to or higher than the nominal.

If lasso or ridge regression shrink β̂
∗

too much, then the coverage could be
bad. In limited simulations, the prediction region method only simulated well
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for ridge regression with ψ = 0. Results from Ewald and Schneider (2018, p.
1365) suggest that the lasso confidence region volume is greater than OLS
confidence region volume when lasso uses λ1n =

√
n/2.

A small simulation was done for confidence intervals and confidence re-
gions, using the same type of data as for the variable selection simula-
tion in Section 2.6 and the prediction interval simulation in Section 3.9,
with B = max(1000, n, 20p) and 5000 runs. The regression model used
β = (1, 1, 0, 0)T with n = 100 and p = 4. When ψ = 0, the design matrix
X consisted of iid N(0,1) random variables. See Table 3.6 which was taken
from Pelawa Watagoda (2017). The residual bootstrap was used. Types 1)–
5) correspond to types i)–v), and the ε value only applies to the type 5)
error distribution. The function lassobootsim3 uses the prediction region
method for lasso and ridge regression. The function lassobootsim4 can
be used to simulate confidence intervals for the βi is S∗

T is singular for lasso.
The test was for H0 : (β3, β4)

T = (0, 0)T .

Table 3.7 Bootstrapping Lasso, ψ = 0

n ε type β1 β2 β3 β4 test
100 1 cov 0.9440 0.9376 0.9910 0.9946 0.9790

len 0.4143 0.4470 0.3759 0.3763 2.6444
2 cov 0.9468 0.9428 0.9946 0.9944 0.9816

len 0.6870 0.7565 0.6238 0.6226 2.6832
3 cov 0.9418 0.9408 0.9930 0.9948 0.9840

len 0.4110 0.4506 0.3743 0.3746 2.6684
4 cov 0.9468 0.9370 0.9938 0.9948 0.9838

len 0.2392 0.2578 0.2151 0.2153 2.6454
0.5 5 cov 0.9438 0.9344 0.9988 0.9970 0.9924

len 2.9380 2.5042 2.4912 2.4715 2.8536
0.9 5 cov 0.9506 0.9290 0.9974 0.9976 0.9956

len 3.9180 3.2760 3.7356 3.2739 2.8836

3.15 What if n is not >> p?

When p > n, the fitted model should do better than i) interpolating the
data or ii) discarding all of the predictors and using the location model of
Section 1.4.1 for inference. If p > n, forward selection, lasso, lasso variable
selection, elastic net, and elastic net variable selection can be useful for sev-
eral regression models. Ridge regression, partial least squares, and principal
components regression can also be computed for multiple linear regression.
Sections 2.3, 3.9, and 4.7 give prediction intervals.

One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
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the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

Building a regression model from data is one of the most challenging regres-
sion problems. The “final full model” will have response variable Y = t(Z), a
constant x1, and predictor variables x2 = t2(w2, ..., wr), ..., xp = tp(w2, ..., wr)
where the initial data consists of Z, w2, ..., wr. Choosing t, t2, ..., tp so that
the final full model is a useful regression approximation to the data can be
difficult.

As a rule of thumb, if strong nonlinearities are apparent in the predictors
w2, ..., wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of w2, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 1, such as the DD plot, can also be useful. A scatterplot
matrix of the wi is an array of scatterplots of wi versus wj . A scatterplot is
a plot of wi versus wj.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning
is that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same
as the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]:
there is simply a change of labelling. Certainly if Y |x = 9 ∼ N(0, 1), then
Y |√x = 3 ∼ N(0, 1). To see that the above rule of thumb does not always
work, suppose that Y = β1 + β2x2 + · · · + βpxp + e where the xi are iid
lognormal(0,1) random variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p
and the scatterplot matrix of the wi will be linear while the scatterplot matrix
of the xi will show strong nonlinearities if the sample size is large. However,
there is an MLR relationship between Y and the xi while the relationship
between Y and the wi is nonlinear: Y = β1+β2e

w2+· · ·+βpe
wp +e 6= βT w+e.

Given Y and the wi with no information of the relationship, it would be
difficult to find the exponential transformation and to estimate the βi. The
moral is that predictor transformations, especially the log transformation, can
and often do greatly simplify the MLR analysis, but predictor transformations
can turn a simple MLR analysis into a very complex nonlinear analysis.

3.15.1 Sparse Models

When n/p → 0 as n → ∞, consistent estimators generally cannot be found
unless the model has a simplifying structure. A sparse model is one such
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structure. For Equation (4.1), a population regression model is sparse if aS

is small. We want n ≥ 10aS.
For multiple linear regression with p > n, results from Hastie et al. (2015,

pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models. Least angle regression, elastic net, and elastic net variable
selection can also be useful.

Suppose the selected model is Id, and βId
is ad × 1. For multiple linear

regression, forward selection with Cp and AIC often gives useful results if
n ≥ 5p and if the final model I has n ≥ 10ad. For p < n < 5p, forward
selection with Cp and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989)
AICC criterion can be useful for MLR and time series if n ≥ max(2p, 10ad).
If n ≥ 5p, AIC and BIC are useful for many regression models, and forward
selection with EBIC can be used for some models if n/p is small. See Section
2.1 and Chen and Chen (2008).

3.16 Data Splitting

A common method for data splitting randomly divides the data set into two
half sets. On the first half set, fit the model selection method, e.g. forward
selection or lasso, to get the a predictors. Use this model as the full model
for the second half set: use the standard OLS inference from regressing the
response on the predictors found from the first half set. This method can
be inefficient if n ≥ 10p, but is useful for a sparse model if n ≤ 5p, if the
probability that the model underfits goes to zero, and if n ≥ 20a. A model is
sparse if the number of predictors with nonzero coefficients is small.

For lasso, the active set I from the first half set (training data) is found,

and data splitting estimator is the OLS estimator β̂I,D computed from the
second half set (test data). This estimator is not the lasso variable selection

estimator. The estimator β̂I,D has the same large sample theory as if I was
chosen before obtaining the data.

If n/p is not large, data splitting is useful for many regression models when
the n cases are independent, including multiple linear regression, multivariate
linear regression where there are m ≥ 2 response variables, generalized linear
models (GLMs), the Cox (1972) proportional hazards regression model, and
parametric survival regression models.

Consider a regression model with response variable Y and a p × 1 vector
of predictors x. This model is the full model. Suppose the n cases are inde-
pendent. To perform data splitting, randomly divide the data into two sets
H and V where H has nH of the cases and V has the remaining nV = n−nH

cases i1, ..., inV . Find a model I, possibly with data snooping or model se-
lection, using the data in the training set H . Use the model I as the full
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model to perform inference using the data in the validation set V . That is,
regress YV on XV,I and perform the usual inference for the model using the
j = 1, ..., nV cases in the validation set V . If βI uses a predictors, we want
nV ≥ 10a and we want P (S ⊆ I)→ 1 as n→∞ or for (YV ,XV,I) to follow
the regression model.

In the literature, often nH ≈ dn/2e. For model selection, use the training
data set to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the test set, use the standard regression inference
from regressing the response on the predictors found from the training set.
This method can be inefficient if n ≥ 10p, but is useful for a sparse model
if n ≤ 5p, if the probability that the model underfits goes to zero, and if
n ≥ 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Y V ,XV,I). The regression model needs to hold for (Y V ,XV,I) and we want
nV ≥ 10a if I uses a predictors. The regression model can hold if S ⊆ I
and the model is sparse. Let x = (x1, ...,xp)

T where x1 is a constant. If
(Y,x2, ...,xp)T follows a multivariate normal distribution, then (Y,xI ) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 3.16. i) One use of data splitting is to try to transform the
p ≥ n problem into an n ≥ 10k problem. This method can work if the
model is sparse. For multiple linear regression, this method can work if Y ∼
Nn(Xβ, σ2I), since then all subsets I satisfy the MLR model: Yi = xT

I,iβI +

eI,i. See Remark 1.3. If βI is k × 1, we want n ≥ 10k and V (eI,i) = σ2
I to

be small. For binary logistic regression, the discriminant function model of
Definition 4.8 can be useful if xI |Y = j ∼ Nk(µj ,Σ) for j = 0, 1. Of course,
the models may not be sparse, and the multivariate normal assumptions for
MLR and binary logistic regression rarely hold.

ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
λ1,n1

/(2n1) = λ2,n2
/(2n2). Data splitting is much easier for variable selection

methods such as forward selection, lasso variable selection, and elastic net
variable selection. Find the variables x∗1, ..., x

∗
k indexed by I from the training

set, and use model I as the full model for the validation set.
iii) Another use of data splitting is that data snooping can be used on the

training set: use the model as the full model for the validation set.
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3.17 The Multitude of MLR Models

This chapter showed that the OPLS model and OLS typically estimate dif-
ferent quantities. There are often a multitude of valid MLR models. For ex-
ample, if the cases (Yi xT

i )T are iid from a nonsingular multivariate normal
distribution, then Y |ηT x satisfies a MLR model for any linear combination
ηT x. See Olive and Zhang (2023).

3.18 Summary

1) The MLR model is Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei for

i = 1, ..., n. This model is also called the full model. In matrix notation,
these n equations become Y = Xβ + e. Note that xi,1 ≡ 1.

2) The ordinary least squares OLS full model estimator β̂OLS minimizes
QOLS(β) =

∑n
i=1 r

2
i (β) = RSS(β) = (Y −Xβ)T (Y −Xβ). In the estimat-

ing equations QOLS(β), the vector β is a dummy variable. The minimizer

β̂OLS estimates the parameter vector β for the MLR model Y = Xβ + e.

Note that β̂OLS ∼ ANp(β,MSE(XT X)−1).
3) Given an estimate b of β, the corresponding vector of predicted values

or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. A response plot for MLR is a

plot of Ŷi versus Yi. A residual plot is a plot of Ŷi versus ri. If the ei are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r = 0 line.

4)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.
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5) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e
where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS)× 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7) Let Q(η) be a real valued function of the k × 1 vector η. The gradient
of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of estimat-
ing equations f(η) is minimized or maximized where η is a dummy variable
vector in the function f : R

k → R
k.

8) As a mnemonic (memory aid) for the following results, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

a) If Q(η) = aT η = ηT a for some k× 1 constant vector a, then 5Q = a.
b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

9) Forward selection with OLS generates a sequence of M models I1, ..., IM
where Ij uses j predictors x∗1 ≡ 1, x∗2, ..., x

∗
M. Often M = min(dn/Je, p) where

J is a positive integer such as J = 5.
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10) For the model Y = Xβ +e, methods such as forward selection, PCR,
PLS, ridge regression, lasso variable selection, and lasso each generate M
fitted models I1, ..., IM, where M depends on the method. For forward selec-
tion the simulation used Cp for n ≥ 10p and EBIC for n < 10p. The other
methods minimized 10-fold CV. For forward selection, the maximum number
of variables used was approximately min(dn/5e, p).

11) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z −Wη)T (Z −Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (3.33)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z −Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖22 = ηT η =
∑k

i=1 η
2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

12) The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖22 + λ2‖η‖1 (3.34)

where λ1 = (1− α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
13) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

14) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS −
λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .
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ii) η̂L = η̂OLS −
λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

15) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) LS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

16) Under the conditions of 15), lasso variable selection and elastic net
variable selection are

√
n consistent under much milder conditions than lasso

and elastic net, since the variable selection estimators are
√
n consistent when

lasso and elastic net are consistent. Let Imin correspond to the predictors
chosen by lasso, elastic net, or forward selection, including a constant. Let
β̂Imin

be the OLS estimator applied to these predictors, let β̂Imin,0 be the

zero padded estimator. The large sample theory for β̂Imin,0 (from forward
selection, lasso variable selection, and elastic net variable selection) is given

by Theorem 2.4. Note that the large sample theory for the estimators β̂ is
given for p × 1 vectors. The theory for η̂ is given for (p − 1) × 1 vectors In
particular, the theory for lasso and elastic net does not cast away the η̂i = 0.

17) Under Equation (2.1) with p fixed, if lasso or elastic net are consistent,
then P (S ⊆ Imin) → 1 as n → ∞. Hence when lasso and elastic net do
variable selection, they are often not

√
n consistent.

18) Refer to 6). a) The OLS full model tends to be useful if n ≥ 10p with
large sample theory better than that of lasso, ridge regression, and elastic
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net. Testing is easier and the Olive (2007) PI tailored to the OLS full model
will work better for smaller sample sizes than PI (2.14) if n ≥ 10p. If n ≥ 10p
but XT X is singular or ill conditioned, other methods can perform better.

Forward selection, lasso variable selection, and elastic net variable selection
are competitive with the OLS full model even when n ≥ 10p and XT X is
well conditioned. If n ≤ p then OLS interpolates the data and is a poor
method. If n = Jp, then as J decreases from 10 to 1, other methods become
competitive.

b) If n ≥ 10p and kS < p − 1, then forward selection can give more pre-
cise inference than the OLS full model. When n/p is small, the PI (2.14) for
forward selection can perform well if n/kS is large. Forward selection can be
worse than ridge regression or elastic net if kS > min(n/J, p). Forward selec-
tion can be too slow if both n and p are large. Forward selection, lasso variable
selection, and elastic net variable selection tend to be bad if (XT

AXA)−1 is
ill conditioned where A = Imin.

c) If n ≥ 10p, lasso can be better than the OLS full model if XT X is ill
conditioned. Lasso seems to perform best if kS is not much larger than 10
or if the nontrivial predictors are orthogonal or uncorrelated. Lasso can be
outperformed by ridge regression or elastic net if kS > min(n, p− 1).

d) If n ≥ 10p ridge regression and elastic net can be better than the OLS
full model if XT X is ill conditioned. Ridge regression (and likely elastic net)
seems to perform best if kS is not much larger than 10 or if the nontrivial
predictors are orthogonal or uncorrelated. Ridge regression and elastic net
can outperform lasso if kS > min(n, p− 1).

e) The PLS PI (2.14) can perform well if n ≥ 10p if some of the other five
methods used in the simulations start to perform well when n ≥ 5p. PLS may
or may not be inconsistent if n/p is not large. Ridge regression tends to be
inconsistent unless P (d → p) → 1 so that ridge regression is asymptotically
equivalent to the OLS full model.

19) Under strong regularity conditions, lasso and lasso variable selection
with k–fold CV, and forward selection with EBIC can perform well even if
n/p is small. So PI (2.14) can be useful when n/p is small.

20) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

21) Suppose xT β = xT
SβS +xT

EβE = xT
SβS where βS is an aS ×1 vector.

A regression model is sparse if aS is small. We want n ≥ 10aS.
22) Assume the cases are independent. To perform data splitting, randomly

divide the data into two half sets H and V where H has nH of the cases and
V has the remaining nV = n−nH cases i1, ..., inV . Build the model, possibly
with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H .
Use the model I as the full model to perform inference using the data in the
validation set V .
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3.19 Complements

Good references for forward selection, PCR, PLS, ridge regression, and lasso
are Hastie et al. (2009, 2015), James et al. (2013), and Pelawa Watagoda
and Olive (2021b). Also see Efron and Hastie (2016). An early reference for
forward selection is Efroymson (1960). Under strong regularity conditions,
Gunst and Mason (1980, ch. 10) covers inference for ridge regression (and a
modified version of PCR) when the iid errors ei ∼ N(0, σ2).

Xu et al. (2011) notes that sparse algorithms are not stable. Belsley (1984)
shows that centering can mask ill conditioning of X .

Classical principal component analysis based on the correlation matrix can
be done using the singular value decomposition (SVD) of the scaled matrix

W S = W g/
√
n− 1 using êi and λ̂i = σ2

i where λ̂i = λ̂i(W
T
SW S) is the ith

eigenvalue of W T
SW S . Here the scaling is using g = 1. For more information

about the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).
Variable Selection and Post-Selection Inference:
There is massive literature on variable selection and a fairly large literature

for inference after variable selection. See, for example, Bertsimas et al. (2016),
Fan and Lv (2010), Ferrari and Yang (2015), Fithian et al. (2014), Hjort and
Claeskins (2003), Knight and Fu (2000), Leeb and Pötscher (2005, 2006),
Lockhart et al. (2014), Qi et al. (2015), and Tibshirani et al. (2016).

For post-selection inference, the methods in the literature are often for
multiple linear regression assuming normality (an assumption that is too
strong), or are asymptotically equivalent to using the full model, or find a
quantity to test that is not Aβ. Typically the methods have not been shown to
perform better than data splitting. See Ewald and Schneider (2018). Leeb et
al. (2015) suggests that the Berk et al. (2013) method does not really work.
Kivaranovic and Leeb (2021) show that E(CI length) tends to be infinity
for a method proposed by Lee et al. (2016). Also see Lu et al. (2017), and
Tibshirani et al. (2016).

Warning: For n < 5p, validate sparse fitted models with response and
residual plots. PIs can also help.

High Dimensional Testing and Confidence Intervals:
As of 2023, testing sparse fitted models with data splitting and the tests

of Olive and Zhang (2023) appear to be backed by theory under reasonable
regularity conditions. Assuming that (Yi,x

T
i )T are iid Np+1(µ,Σ) is not a

reasonable regularity conditions. For data splitting, forward selection with
EBIC, lasso variable selection, and MMLE variable selection can be useful.
Chetverikov, Liao and Chernozhukov (2022) show that k-fold CV with lasso
often picks an MLR model good for prediction.

Also see Basa et al. (2022), Dezeure et al. (2015), Javanmard and Mon-
tanari (2014), Rinaldo, Wasserman, and G’Sell (2019), van de Geer et al.
(2014), and Zhang and Cheng (2017). Fan and Lv (2010) gave large sample
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theory for some methods if p = o(n1/5). The method of Ning and Liu (2017)
needs a log likelihood.

Full OLS Model: A sufficient condition for β̂OLS to be a consistent

estimator of β is Cov(β̂OLS) = σ2(XT X)−1 → 0 as n → ∞. See Lai et
al. (1979). For more OLS large sample theory, see Eicker (1963) and White
(1984).

Forward Selection: See Olive and Hawkins (2005), Pelawa Watagoda
and Olive (2021ab), and Rathnayake and Olive (2023).

The Oracle Property:
The oracle property says P (Imin = S) → 1 as n→∞. A necessary condi-

tion for the oracle property is that S is in the search path with probability
going to 1 as n → ∞. For “fast methods” like lasso and forward selection,
this requires the predictors to be nearly orthogonal. Hence the regularity con-
ditions for the oracle property are much too strong if the predictors are mod-
erately or highly correlated. The oracle property may be useful for wavelets
and PCR. See Su (2018), Su, Bogdan, and Candés (2017), and Wieczorek
and Lei (2022).

Principal Components Regression: Principal components are Karhunen
Loeve directions of centered X. See Hastie et al. (2009, p. 66). A useful PCR
paper is Cook and Forzani (2008).

Partial Least Squares: An important PLS paper is Wold (1975). Also see

Wold (1985, 2006). Olive and Zhang (2023) showed β̂OPLS is a
√
n consistent

estimator of βOPLS if the cases (xi, Yi) are iid with a few moments, p is fixed,
and n→∞. Olive and Zhang (2023) also suggested that much of the theory
for OPLS and PLS appears to be incorrect, except under regularity conditions
that are much too strong. See, for example, Basa, et al. (2022), Cook et al.
(2013), Cook (2018), Cook and Forzani (2018, 2019), Cook and Su (2016),
and Chun and Keleş (2010). Denham (1997) suggested a PI for PLS that
assumes the number of components is selected in advance.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

Lasso: Lasso was introduced by Tibshirani (1996). Efron et al. (2004)
and Tibshirani et al. (2012) are important papers. Su et al. (2017) note some
problems with lasso. If n/p is large, see Knight and Fu (2000) for the residual
bootstrap with OLS full model residuals. Camponovo (2015) suggested that
the nonparametric bootstrap does not work for lasso. Chatterjee and Lahiri
(2011) stated that the residual bootstrap with lasso does not work. Hall et
al. (2009) stated that the residual bootstrap with OLS full model residuals
does not work, but the m out of n residual bootstrap with OLS full model
residuals does work. Rejchel (2016) gave a good review of lasso theory. Fan
and Lv (2010) reviewed large sample theory for some alternative methods.
See Lockhart et al. (2014) for a partial remedy for hypothesis testing with
lasso. The Ning and Liu (2017) method needs a log likelihood. Knight and
Fu (2000) gave theory for fixed p.
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Regularity conditions for testing are strong. Often lasso tests assume that
Y and the nontrivial predictors follow a multivariate normal (MVN) distri-
bution. For the MVN distribution, the MLR model tends to be dense not
sparse if n/p is small.

lasso variable selection:
Applying OLS on a constant and the k nontrivial predictors that have

nonzero lasso η̂i is called lasso variable selection. We want n ≥ 10(k + 1).
If λ1 = 0, a variant of lasso variable selection computes the OLS submodel
for the subset corresponding to λi for i = 1, ...,M . If Cp is used, then this
variant has large sample theory given by Theorem 2.4.

Lasso can also be used for other estimators, such as generalized linear
models (GLMs). Then lasso variable selection is the “classical estimator,”
such as a GLM, applied to the lasso active set. For prediction, lasso variable
selection is often better than lasso, but sometimes lasso is better.

See Meinshausen (2007) for the relaxed lasso method with R package
relaxo for MLR: apply lasso with penalty λ to get a subset of variables
with nonzero coefficients. Then reduce the shrinkage of the nonzero elements
by applying lasso again to the nonzero coefficients but with a smaller penalty
φ. This two stage estimator could be used for other estimators. Lasso variable
selection corresponds to the limit as φ→ 0.

Dense Regression or Abundant Regression: occurs when most of the
predictors contribute to the regression. Hence the regression is not sparse. See
Cook et al. (2013).

Other Methods: Consider the MLR model Z = Wη + e. Let λ ≥ 0 be
a constant and let q ≥ 0. The estimator η̂q minimizes the criterion

Qq(b) = r(b)T r(b) + λ

p−1∑

j=1

|bi|q, (3.35)

over all vectors b ∈ R
p−1 where we take 00 = 0. Then q = 1 corresponds

to lasso and q = 2 corresponds to ridge regression. If q = 0, the penalty
λ
∑p−1

j=1 |bi|0 = λk where k is the number of nonzero components of b. Hence
the q = 0 estimator is often called the “best subset” estimator. See Frank
and Friedman (1993). For fixed p, large sample theory is given by Knight and
Fu (2000). Following Hastie et al. (2009, p. 72), the optimization problem is
convex if q ≥ 1 and λ is fixed.

Suppose model Ik contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor x∗k+1 that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: xT

i xi = 1 for the nontrivial predictors), and adds the scaled
predictor x∗k+1 that maximizes |x∗T

k+1rk| where the maximization is over vari-
ables not yet selected and the rk are the OLS residuals from regressing Y
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on X∗
Ik

. Fan and Li (2001) and Candes and Tao (2007) gave competitors to
lasso. Some fast methods seem similar to the first PLS component.

If n ≤ 400 and p ≤ 3000, Bertsimas et al. (2016) give a fast “all subsets”
variable selection method. Lin et al. (2012) claim to have a very fast method
for variable selection. Lee and Taylor (2014) suggest the marginal screening
algorithm: let W be the matrix of standardized nontrivial predictors. Com-
pute W T Y = (c1, ..., cp−1)

T and select the J variables corresponding to the
J largest |ci|. These are the J standardized variables with the largest absolute
correlations with Y . Then do an OLS regression of Y on these J variables
and a constant. A slower algorithm somewhat similar but much slower than
the Lin et al. (2012) algorithm follows. Let a constant x1 be in the model, and
let W = [a1, ...,ap−1] and r = Y −Y . Compute W T r and let x∗2 correspond
to the variable with the largest absolute entry. Remove the corresponding
aj from W to get W 1. Let r1 be the OLS residuals from regressing Y on

x1 and x∗2. Compute W T r1 and let x∗3 correspond to the variable with the
largest absolute entry. Continue in this manner to get x1, x

∗
2, ..., x

∗
J where

J = min(p, dn/5e). Like forward selection, evaluate the J − 1 models Ij con-
taining the first j predictors x1, x

∗
2, ..., x

∗
J for j = 2, ..., J with a criterion such

as Cp.
Following Sun and Zhang (2012), let (3.6) hold and let

Q(η) =
1

2n
(Z −Wη)T (Z −Wη) + λ2

p−1∑

i=1

ρ

( |ηi|
λ

)
where ρ is scaled such

that the derivative ρ′(0+) = 1. As for lasso and elastic net, let sj = sgn(η̂j)
where sj ∈ [−1, 1] if η̂j = 0. Let ρ′j = ρ′(|η̂j|/λ) if η̂j 6= 0, and ρ′j = 1 if

η̂j = 0. Then η̂ is a critical point of Q(η) iff wT
j (Z −Wη̂) = nλsjρ

′
j for

j = 1, ..., n. If ρ is convex, then these conditions are the KKT conditions. Let
dj = sjρ

′
j . Then W T Z −W T Wη̂ = nλd, and η̂ = η̂OLS − nλ(W T W )−1d.

If the dj are bounded, then η̂ is consistent if λ → 0 as n → ∞, and η̂ is
asymptotically equivalent to η̂OLS if n1/2λ→ 0. Note that ρ(t) = t for t > 0
gives lasso with λ = λ1,n/(2n).

Gao and Huang (2010) give theory for a LAD–lasso estimator, and Qi et
al. (2015) is an interesting lasso competitor.

Multivariate linear regression has m ≥ 2 response variables. See Olive
(2017ab: ch. 12). PLS also works if m ≥ 1, and methods like ridge regression
and lasso can also be extended to multivariate linear regression. See, for ex-
ample, Haitovsky (1987) and Obozinski et al. (2011). Sparse envelope models
are given in Su et al. (2016).

Model Building:
When the entire data set is used to build a model with the response vari-

able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
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used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

AIC and BIC Type Criterion:
Olive and Hawkins (2005) and Burnham and Anderson (2004) are useful

reference when p is fixed. Some interesting theory for AIC appears in Zhang
(1992). Zheng and Loh (1995) show that BICS can work if p = pn = o(log(n))
and there is a consistent estimator of σ2. For the Cp criterion, see Jones (1946)
and Mallows (1973).

AIC and BIC type criterion and variable selection for high dimensional re-
gression are discussed in Chen and Chen (2008), Fan and Lv (2010), Fujikoshi
et al. (2014), and Luo and Chen (2013). Wang (2009) suggests using

WBIC(I) = log[SSE(I)/n] + n−1|I|[log(n) + 2 log(p)].

See Bogdan et al. (2004), Cho and Fryzlewicz (2012), and Kim et al. (2012).
Luo and Chen (2013) state that WBIC(I) needs p/na < 1 for some 0 < a <
1.

If n/p is large and one of the models being considered is the true model
S (shown to occur with probability going to one only under very strong
assumptions by Wieczorek and Lei (2021)), then BIC tends to outperform
AIC. If none of the models being considered is the true model, then AIC
tends to outperform BIC. See Yang (2003).

Robust Versions: Hastie et al. (2015, pp. 26-27) discuss some modifica-
tions of lasso that are robust to certain types of outliers. Robust methods
for forward selection and LARS are given by Uraibi et al. (2017, 2019) that
need n >> p. If n is not much larger than p, then Hoffman et al. (2015)
have a robust Partial Least Squares–Lasso type estimator that uses a clever
weighting scheme.

A simple method to make an MLR method robust to certain types of
outliers is to find the covmb2 set B of Chapter 1 applied to the quantitative
predictors. Then use the MLR method (such as elastic net, lasso, PLS, PCR,
ridge regression, or forward selection) applied to the cases corresponding to
the xj in B. Make a response and residual plot, based on the robust estimator

β̂B , using all n cases.
Prediction Intervals:
Lei et al. (2018) and Wasserman (2014) suggested prediction intervals for

estimators such as lasso. The method has interesting theory if the (xi, Yi) are
iid from some population. Also see Butler and Rothman (1980) and Stein-
berger and Leeb (2023).

Let p be fixed, d be for PI (2.14), and n → ∞. For elastic net, forward
selection, PCR, PLS, ridge regression, lasso variable selection, and lasso, if
P (d→ p) → 1 as n→ ∞ then the seven methods are asymptotically equiv-
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alent to the OLS full model, and the PI (2.14) is asymptotically optimal on
a large class of iid unimodal zero mean error distributions. The asymptotic
optimality holds since the sample quantile of the OLS full model residuals are
consistent estimators of the population quantiles of the unimodal error distri-

bution for a large class of distributions. Note that d
P→ p if P (λ̂1n → 0)→ 1

for elastic net, lasso, and ridge regression, and d
P→ p if the number d− 1 of

components (γT
j x or γT

j w) used by the method satisfies P (d−1→ p−1)→ 1.

Consistent estimators β̂ of β also produce residuals such that the sample
quantiles of the residuals are consistent estimators of quantiles of the error
distribution. See Remark 2.21, Olive and Hawkins (2003), and Rousseeuw
and Leroy (1987, p. 128).

Degrees of Freedom:
A formula for the model degrees of freedom df tend to be given for a model

when there is no model selection or variable selection. For many estimators,
the degrees of freedom is not known if model selection is used. A d for PI
(2.14) is often obtained by plugging in the degrees of freedom formula as if
model selection did not occur. Then the resulting d is rarely an actual degrees
of freedom. As an example, if Ŷ = HλY , then often df = trace(Hλ) if λ is

selected before examining the data. If model selection is used to pick λ̂, then
d = trace(H λ̂) is not the model degrees of freedom.

3.20 Problems

3.1. For ridge regression, suppose V = ρ−1
u . Show that if p/n and λ/n =

λ1,n/n are both small, then

η̂R ≈ η̂OLS −
λ

n
V η̂OLS .

3.2. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z −Wη)T (Z −Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and lasso
variable selection.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?
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3.3. a) For ridge regression, let An = (XT X +λ1,nIp)
−1XT X and Bn =

[Ip − λ1,n(XT X + λ1,nIp)−1]. Show An −Bn = 0.

b) For ridge regression, let An = (W T W +λ1,nIp−1)
−1W T W and Bn =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An −Bn = 0.

3.4. Suppose Ŷ = HY where H is an n × n hat matrix. Then the de-
grees of freedom df(Ŷ ) = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.

a) Find df(Ŷ ) if Ŷ = Y 1 which uses H = (hij) where hij ≡ 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Ŷi for i = 1, ..., n.

b) Find df(Ŷ ) if Ŷ = Y = InY which uses H = In where hii = 1. This
bad flexible estimator interpolates the response variable.

3.5. Suppose Y = Xβ + e, Z = Wη + e, Ẑ = Wη̂, Z = Y − Y , and
Ŷ = Ẑ + Y . Let the n × p matrix W 1 = [1 W ] and the p × 1 vector
η̂1 = (Y η̂T )T where the scalar Y is the sample mean of the response

variable. Show Ŷ = W 1η̂1.

3.6. Let Z = Y − Y where Y = Y 1, and the n× (p− 1) matrix of stan-
dardized nontrivial predictors G = (Gij). For j = 1, ..., p− 1, let Gij denote
the (j + 1)th variable standardized so that

∑n
i=1Gij = 0 and

∑n
i=1G

2
ij = 1.

Note that the sample correlation matrix of the nontrivial predictors ui is
Ru = GT G. Then regression through the origin is used for the model

Z = Gη + e (3.36)

where the vector of fitted values Ŷ = Y +Ẑ . The standardization differs from
that used for earlier regression models (see Remark 3.3), since

∑n
i=1G

2
ij =

1 6= n =
∑n

i=1W
2
ij . Note that

G =
1√
n

W .

Following Zou and Hastie (2005), the naive elastic net η̂N estimator is the
minimizer of

QN(η) = RSS(η) + λ∗2‖η‖22 + λ∗1‖η‖1 (3.37)

where λ∗i ≥ 0. The term “naive” is used because the elastic net estimator

is better. Let τ =
λ∗2

λ∗1 + λ∗2
, γ =

λ∗1√
1 + λ∗2

, and ηA =
√

1 + λ∗2 η. Let the

(n+p−1)×(p−1) augmented matrix GA and the (n+p−1)×1 augmented
response vector ZA be defined by
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GA =

(
G√

λ∗2 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p−1)×1 zero vector. Let η̂A =
√

1 + λ∗2 η̂ be obtained from
the lasso of ZA on GA: that is η̂A minimizes

QN(ηA) = ‖ZA −GAηA‖22 + γ‖ηA‖1 = QN(η).

Prove QN (ηA) = QN(η).
(Then

η̂N =
1√

1 + λ∗2
η̂A and η̂EN =

√
1 + λ∗2 η̂A = (1 + λ∗2)η̂N .

The above elastic net estimator minimizes the criterion

QG(η) =
ηT GT Gη

1 + λ∗2
− 2ZT Gη +

λ∗2
1 + λ∗2

‖η‖22 + λ∗1‖η‖1,

and hence is not the elastic net estimator corresponding to Equation (3.22).)

3.7. Let β = (β1,β
T
S )T . Consider choosing β̂ to minimize the criterion

Q(β) = RSS(β) + λ1‖βS‖22 + λ2‖βS‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression?
b) Which values of λ1 and λ2 correspond to lasso?
c) Which values of λ1 and λ2 correspond to elastic net?
d) Which values of λ1 and λ2 correspond to the OLS full model?

3.8. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂Imin,0?

Selection Algorithm: forward #output for Problem 3.8

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000
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3.9. Consider the output for Example 2.7 for the OLS full model. The
column resboot gives the large sample 95% CI for βi using the shorth applied
to the β̂∗

ij for j = 1, ..., B using the residual bootstrap. The standard large

sample 95% CI for βi is β̂i±1.96SE(β̂i). Hence for β2 corresponding to L, the
standard large sample 95% CI is −0.001± 1.96(0.002) = −0.001± 0.00392 =
[−0.00492, 0.00292] while the shorth 95% CI is [−0.005, 0.004].

a) Compute the standard 95% CIs for βi corresponding to log(W), H, and
log(S). Also write down the shorth 95% CI. Are the standard and shorth 95%
CIs fairly close?

b) Consider testing H0 : βi = 0 versus HA : βi 6= 0. If the corresponding
95% CI for βi does not contain 0, then reject H0 and conclude that the
predictor variable Xi is needed in the MLR model. If 0 is in the CI then fail
to reject H0 and conclude that the predictor variable Xi is not needed in the
MLR model given that the other predictors are in the MLR model.

Which variables, if any, are needed in the MLR model? Use the standard
CI if the shorth CI gives a different result. The nontrivial predictor variables
are L, log(W), H, and log(S).

3.10. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.

Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e
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1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
e) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

3.11. Table 3.7 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)

a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 3.8 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.
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Were the three values in the test column for reg within 0.1 of 2.795?

3.12. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

3.13. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large

sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

3.14. Table 3.8 below shows simulation results for bootstrapping OLS
(reg), lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T .
The βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise.
(If one method had coverage ≥ 0.89 and the other had coverage < 0.89, we
will say the method with coverage ≥ 0.89 was more precise.) The results
for the lasso test were omitted since sometimes S∗

T was singular. (Lengths
for the test column are not comparable unless the statistics have the same
asymptotic distribution.)

Table 3.9 Bootstrapping lasso and RR, n = 100, ψ = 0.9, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.942 0.951 0.949 0.943 0.943

len 0.658 5.447 5.444 5.438 2.490
RR cov 0.97 0.02 0.11 0.10 0.05

len 0.681 0.329 0.334 0.334 2.546
reg cov 0.947 0.955 0.950 0.951 0.952

len 0.658 5.511 5.497 5.500 2.491
lasso cov 0.93 0.91 0.92 0.99

len 0.698 3.765 3.922 3.803

a) For β3 and β4 which method, ridge regression or the OLS full model,
was better?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

3.15. Suppose n = 15 and 5-fold CV is used. Suppose observations are
measured for the following people. Use the output below to determine which
people are in the first fold.

folds: 4 3 4 2 1 4 3 5 2 2 3 1 5 5 1
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1) Athapattu, 2) Azizi, 3) Cralley 4) Gallage, 5) Godbold, 6) Gunawar-
dana, 7) Houmadi, 8) Mahappu, 9) Pathiravasan, 10) Rajapaksha, 11)
Ranaweera, 12) Safari, 13) Senarathna, 14) Thakur, 15) Ziedzor

3.16. Table 3.9 below shows simulation results for a large sample 95% pre-
diction interval. Since 5000 runs were used, a cov in [0.94, 0.96] is reasonable
for a nominal value of 0.95. If the coverage for a method ≥ 0.94, the method
with the shorter average PI length was more precise. Ignore methods with
cov < 0.94. The MLR model had β = (1, 1, ..., 1, 0, ..., 0)T where the first
k+1 coefficients were equal to 1. If ψ = 0 then the nontrivial predictors were
uncorrelated, but highly correlated if ψ = 0.9.

Table 3.10 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso RL RR PLS PCR
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

a) Which method was most precise, given cov ≥ 0.94, when n = 100?
b) Which method was most precise, given cov ≥ 0.94, when n = 400?

3.17. When doing a PI or CI simulation for a nominal 100(1− δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑
i Yi/m. The

variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈
√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?

R Problem
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Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the slpack function,
e.g. vsbootsim3, will display the code for the function. Use the args com-
mand, e.g. args(vsbootsim3), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

3.18. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
j for j = 1, ..., 5.

c) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j . Copy and paste the output into Word. Is T

∗
close

to β̂OLS found in a)?
d) The commands for this part bootstrap the forward selection using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
Imin,0,j for j = 1, ..., 5. The last two variables may have a few 0s.

e) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

3.19. This simulation is similar to that used to form Table 2.2, but 1000
runs are used so coverage in [0.93,0.97] suggests that the actual coverage is
close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for vs (forward selection with Imin).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.93, then the shorter CI length is more precise. Were the CIs
for forward selection more precise than the CIs for the OLS full model for β3

and β4?
To get the output, copy and paste the source commands from

(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.
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If you are person j then copy and paste the R code for person j for this
problem into R.

3.20. This problem is like Problem 3.19, but ridge regression is used in-
stead of forward selection. This simulation is similar to that used to form
Table 2.2, but 100 runs are used so coverage in [0.89,1.0] suggests that the
actual coverage is close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for ridge regression (with 10 fold CV).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.89, then the shorter CI length is more precise. Were the CIs for
ridge regression more precise than the CIs for the OLS full model for β3 and
β4?

To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

3.21. This is like Problem 3.20, except lasso is used. If you are person j in
Problem 3.20, then copy and paste the R code for person j for this problem
into R. Make a table with 4 lines: two for OLS and 2 for lasso. Were the CIs
for lasso more precise than the CIs for the OLS full model for β3 and β4?



Chapter 4

1D Regression Models Such as GLMs

... estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.

Brillinger (1977, p. 509)

After computing β̂, one may go on to prepare a scatter plot of the points
(β̂xj, yj), j = 1, ..., n and look for a functional form for g(·).

Brillinger (1983, p. 98)

This chapter considers 1D regression models including additive error re-
gression (AER), generalized linear models (GLMs), and generalized additive
models (GAMs). Multiple linear regression is a special case of these four
models.

See Definition 1.2 for the 1D regression model, sufficient predictor (SP =

h(x)), estimated sufficient predictor (ESP = ĥ(x)), generalized linear model
(GLM), and the generalized additive model (GAM). When using a GAM to
check a GLM, the notation ESP may be used for the GLM, and EAP (esti-
mated additive predictor) may be used for the ESP of the GAM. Definition
1.3 defines the response plot of ESP versus Y .

Suppose the sufficient predictor SP = h(x). Often SP = xT β. If u only
contains the nontrivial predictors, then SP = β1 + uT β2 = α+ uT η is often
used where β = (β1 ,β

T
2 )T = (α,ηT )T and x = (1,uT )T .

4.1 Introduction

First we describe some regression models in the following three definitions.
The most general model uses SP = h(x) as defined in Definition 1.2. The
GAM with SP = AP will be useful for checking the model (often a GLM)
with SP = xT β. Thus the additive error regression model with SP = AP
is useful for checking the multiple linear regression model. The model with
SP = βT x = xT β tends to have the most theory for inference and variable

229



230 4 1D Regression Models Such as GLMs

selection. For the models below, the model estimated mean function and
often a nonparametric estimator of the mean function, such as lowess, will
be added to the response plot as a visual aid. For all of the models in the
following three definitions, Y1, ..., Yn are independent, but often the subscripts
are suppressed. For example, Y = SP + e is used instead of Yi = Yi|xi =
Yi|SPi = SPi + ei = h(xi) + ei for i = 1, ..., n.

Definition 4.1. i) The additive error regression (AER) model
Y = SP + e has conditional mean function E(Y |SP ) = SP and conditional
variance function V (Y |SP ) = σ2 = V (e). See Section 4.2. The response plot
of ESP versus Y and the residual plot of ESP versus r = Y − Ŷ are used
just as for multiple linear regression. The estimated model (conditional) mean
function is the identity line Y = ESP . The response transformation model
is Y = t(Z) = SP + e where the response transformation t(Z) can be found
using a graphical method similar to Section 1.2.

ii) The binary regression model is Y ∼ binomial

(
1, ρ =

eSP

1 + eSP

)
.

This model has E(Y |SP ) = ρ = ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

Then ρ̂ =
eESP

1 + eESP
is the estimated mean function. See Section 4.3.

iii) The binomial regression model is Yi ∼ binomial

(
mi, ρ =

eSP

1 + eSP

)
.

Then E(Yi|SPi) = miρ(SPi) and V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)), and

Ê(Yi|xi) = miρ̂ =
mie

ESP

1 + eESP
is the estimated mean function. See Section 4.3.

iv) The Poisson regression (PR) model Y ∼ Poisson
(
eSP
)

has
E(Y |SP ) = V (Y |SP ) = exp(SP ). The estimated mean and variance func-
tions are Ê(Y |x) = eESP . See Section 4.4.

v) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and
V (Y ) = νλ2. The Gamma regression model Y ∼ G (ν, λ = µ(SP )/ν)
has E(Y |SP ) = µ(SP ) and V (Y |SP ) = [µ(SP )]2/ν. The estimated mean
function is Ê(Y |x) = µ(ESP ). The choices µ(SP ) = SP , µ(SP ) = exp(SP )
and µ(SP ) = 1/SP are common. Since µ(SP ) > 0, Gamma regression mod-
els that use the identity or reciprocal link run into problems if µ(ESP ) is
negative for some of the cases.

Alternatives to the binomial and Poisson regression models are needed
because often the mean function for the model is good, but the variance
function is not: there is overdispersion. See Section 4.8.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti
(2002, pp. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and
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θ = 1/(δ+ν). Let B(δ, ν) =
Γ (δ)Γ (ν)

Γ (δ + ν)
. If Y has a beta–binomial distribution,

Y ∼ BB(m, ρ, θ), then the probability mass function of Y is P (Y = y) =(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)
for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1 + (m− 1)θ/(1 + θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ). As θ → 0, it can be shown that V (π) → 0, and the
beta–binomial distribution converges to the binomial distribution.

Definition 4.2. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ). Hence E(Yi|SPi) =
miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1− ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. As θ → 0, it can be shown that the
BBR model converges to the binomial regression model.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(µ, κ), then the probability mass function of Y is

P (Y = y) =
Γ (y+ κ)

Γ (κ)Γ (y+ 1)

(
κ

µ + κ

)κ (
1− κ

µ+ κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) =
µ+µ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution where ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 4.3. The negative binomial regression (NBR) model is
Y |SP ∼ NB(exp(SP), κ). Thus E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

The NBR model has the same mean function as the PR model but allows
for overdispersion. Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can
be shown that the NBR model converges to the PR model.

Several important survival regression models are 1D regression models
with SP = xT β, including the Cox (1972) proportional hazards regression
model. The following survival regression models are parametric. The accel-
erated failure time model has log(Y ) = α + SPA + σe where SPA = uT βA,
V (e) = 1, and the ei are iid from a location scale family. If the Yi are log-
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normal, the ei are normal. If the Yi are loglogistic, the ei are logistic. If the
Yi are Weibull, the ei are from a smallest extreme value distribution. The
Weibull regression model is a proportional hazards model using Yi and an
accelerated failure time model using log(Yi) with βP = βA/σ. Let Y hav a
Weibull W (γ, λ) distribution if the pdf of Y is

f(y) = λγyγ−1 exp[−λyγ ]

for y > 0. Prediction intervals for parametric survival regression models are
for survival times Y , not censored survival times. See Sections 4.10 and 4.11.

Definition 4.4. The Weibull proportional hazards regression model is

Y |SP ∼W (γ = 1/σ, λ0 exp(SP )),

where λ0 = exp(−α/σ).

Generalized linear models are an important class of parametric 1D regres-
sion models that include multiple linear regression, logistic regression, and
Poisson regression. Assume that there is a response variable Y and a q × 1
vector of nontrivial predictors x. Before defining a generalized linear model,
the definition of a one parameter exponential family is needed. Let f(y) be
a probability density function (pdf) if Y is a continuous random variable,
and let f(y) be a probability mass function (pmf) if Y is a discrete random
variable. Assume that the support of the distribution of Y is Y and that the
parameter space of θ is Θ.

Definition 4.5. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (4.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by m.
Many other parameterizations are possible. If h(y) = g(y)IY (y), then usually
k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY (y) (4.2)

where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.
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Definition 4.6. Assume that the data is (Yi,xi) for i = 1, ..., n. An impor-
tant type of generalized linear model (GLM) for the data states that the
Y1, ..., Yn are independent random variables from a 1-parameter exponential
family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (4.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(xT

i β). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The GLM
also states that g(µ(xi)) = xT

i β where the link function g is a differen-
tiable monotone function. Then the canonical link function is g(µ(xi)) =
c(µ(xi)) = βT xi, and the quantity βT x is called the linear predictor.

The GLM parameterization (4.3) can be written in several ways. By Equa-
tion (4.2), f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY (y) =

exp

[
c(θ(xi))

a(φ)
yi −

b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi −

b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(xT
i β). (4.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,

and notice that the value of the parameter θ(xi) = η(xT
i β) depends on the

value of xi. Since the model depends on x only through the linear predictor
xT β, a GLM is a 1D regression model. Thus the linear predictor is also a
sufficient predictor.

The following three sections illustrate three of the most important gen-
eralized linear models. Inference and variable selection for these GLMs are
discussed in Sections 4.5 and 4.6. Their generalized additive model analogs
are discussed in Section 4.7.
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4.2 Additive Error Regression

The linear regression model Y = SP + e = xT β + e includes multiple linear
regression (MLR) and many experimental design models as special cases. See
Chapter 3 for MLR.

If Y is quantitative, a useful extension is the additive error regression
(AER) model Y = SP + e where SP = h(x). See Definition 4.1 i). If e ∼
N(0, σ2), then Y ∼ N(SP, σ2). If e ∼ N(0, σ2) and SP = xT β, then the
resulting multiple linear regression model is also a GLM and an additive
error regression model. The normality assumption is too restrictive since the
error distribution is rarely normal. If m is a smooth function, the additive
error single index model, where SP = h(x) = m(xT β), is an important
special case.

Response plots, residual plots, and response transformations for the addi-
tive error regression model are very similar to those for the multiple linear
regression model. See Olive (2004). To avoid overfitting, assume n ≥ 10d
where d is the model degrees of freedom, possibly estimated. Hence d = p for
multiple linear regression with OLS. Prediction intervals are given in Section
2.3.

The GAM additive error regression model is useful for checking the mul-
tiple linear regression (MLR) model. Let ESP = xT β̂ be the ESP for MLR
where x = (1, x2, ..., xp)

T . Let ESP = EAP = α̂+
∑p

j=2 Ŝj(xj) be the ESP
for the GAM additive error regression model.

After making the usual checks on the MLR model, there are two useful
plots that use the GAM. If the plotted points of the EE plot of EAP versus
ESP cluster tightly about the identity line, then the MLR and the GAM
produce similar fitted values. A plot of xj versus Ŝj(xj) can be useful for
visualizing whether a predictor transformation tj(xj) is needed for the jth
predictor xj. If the plot is linear then no transformation may be needed. If the
plot is nonlinear, the shape of the plot, along with the graphical methods of
Section 1.2, may be useful for suggesting the transformation tj. The additive
error regression GAM can be fit with all p of the Sj unspecified, or fit p GAMs
where Si is linear except for unspecified Sj where j = 2, ..., p. Some of these
applications for checking GLMs with GAMs will be discussed in Section 4.7.

Suppose n/p is large and SP = m(xT β). Olive (2008: ch. 12, 2010: ch.
15), Olive and Hawkins (2005), and Chang and Olive (2010) show that vari-
able selection methods using Cp and the partial F test, originally meant for
multiple linear regression, can be used (under regularity conditions) for the
additive error single index model.
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4.3 Binary, Binomial, and Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as a
1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, e.g., if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1 if the
subject is male and Y = 0 if the subject is female. If females are counted then
this labelling is reversed. For a binary response variable, a binary regression
model is often appropriate.

Definition 4.7. The binomial regression model states that Y1, ..., Yn

are independent random variables with Yi ∼ binomial(mi, ρ(xi)). The binary
regression model is the special case where mi ≡ 1 for i = 1, ..., n while the
logistic regression (LR) model is the special case of binomial regression
where

P (success|xi) = ρ(xi) =
exp(h(xi))

1 + exp(h(xi))
. (4.5)

If the sufficient predictor SP = h(x) = xT β, then the most used binomial
regression models are such that Y1, ..., Yn are independent random variables
with Yi ∼ binomial(mi, ρ(x

Tβ)), or

Yi|SPi ∼ binomial(mi, ρ(SPi)). (4.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)).

Thus the binary logistic regression model says that

Y |SP ∼ binomial(1, ρ(SP))

where

ρ(SP ) =
exp(SP )

1 + exp(SP )

for the LR model. Note that the conditional mean function E(Y |SP ) =
ρ(SP ) and the conditional variance function V (Y |SP ) = ρ(SP )(1− ρ(SP )).
For the LR model, the Y are independent and

Y |x ≈ binomial

(
1,

exp(ESP)

1 + exp(ESP)

)
,

or Y |SP ≈ Y |ESP ≈ binomial(1, ρ(ESP)).
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Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1− ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary re-
gression, ρ(x) = P (Y = 1|x) = 1−P (Y = 0|x). If this population proportion
ρ = ρ(h(x)), then the model is a 1D regression model. The model is a GLM if
the link function g is differentiable and monotone so that g(ρ(xT β)) = xT β
and g−1(xT β) = ρ(xT β). Usually the inverse link function corresponds to
the cumulative distribution function of a location scale family. For example,
for logistic regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the
logistic L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the
cdf of the normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1− ρ(x))] = xT β.

Another important binary regression model is the discriminant function
model. See Hosmer and Lemeshow (2000, pp. 43–44). Assume that πj =
P (Y = j) and that x|Y = j ∼ Nk(µj,Σ) for j = 0, 1. That is, the conditional
distribution of x given Y = j follows a multivariate normal distribution with
mean vector µj and covariance matrix Σ which does not depend on j. Notice
that Σ = Cov(x|Y ) 6= Cov(x). Then as for the binary logistic regression
model with x = (1,uT )T and β = (α,ηT )T ,

P (Y = 1|x) = ρ(x) =
exp(α+ uT η)

1 + exp(α+ uT η)
=

exp(xT β)

1 + exp(xT β)
.

Definition 4.8. Under the conditions above, the discriminant function
parameters are given by

η = Σ−1(µ1 − µ0) (4.7)

and α = log

(
π1

π0

)
− 0.5(µ1 − µ0)

T Σ−1(µ1 + µ0).

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y = 1 cases can be perfectly or nearly perfectly classified by the ESP. Let
the logistic regression ESP = xT β̂. Consider the response plot of the ESP
versus Y . If the Y = 0 values can be separated from the Y = 1 values by
the vertical line ESP = 0, then there is perfect classification. See Figure 4.1
b). In this case the maximum likelihood estimator for the logistic regression
parameters β does not exist because the logistic curve can not approximate
a step function perfectly. See Atkinson and Riani (2000, pp. 251-254). If only
a few cases need to be deleted in order for the data set to have perfect clas-
sification, then the amount of “overlap” is small and there is nearly “perfect
classification.”
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Ordinary least squares (OLS) can also be useful for logistic regression.
The ANOVA F test, partial F test, and OLS t tests are often asymptotically
valid when the conditions in Definition 4.8 are met, and the OLS ESP and
LR ESP are often highly correlated. See Haggstrom (1983). For binary data
the Yi only take two values, 0 and 1, and the residuals do not behave very
well. Hence the response plot will be used both as a goodness of fit plot and
as a lack of fit plot.

Definition 4.9. For binary logistic regression, the response plot or esti-
mated sufficient summary plot is the plot of the ESP = ĥ(xi) versus Yi with
the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid.

A scatterplot smoother such as lowess is also added as a visual aid. Alter-
natively, divide the ESP into J slices with approximately the same number
of cases in each slice. Then compute the sample mean = sample proportion
in slice s: ρ̂s = Y s =

∑
s Yi/

∑
s mi where mi ≡ 1 and the sum is over the

cases in slice s. Then plot the resulting step function.
Suppose that x = (1,uT )T is a p × 1 vector of predictors where q =

p − 1, N1 =
∑
Yi = the number of 1s and N0 = n − N1 = the number of

0s. Also assume that q ≤ min(N0, N1)/5. Then if the parametric estimated
mean function ρ̂(ESP ) looks like a smoothed version of the step function,
then the LR model is likely to be useful. In other words, the observed slice
proportions should scatter fairly closely about the logistic curve ρ̂(ESP ) =
exp(ESP )/[1 + exp(ESP )].

The response plot is a powerful method for assessing the adequacy of the
binary LR regression model. Suppose that both the number of 0s and the
number of 1s is large compared to the number of predictors q, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y |ESP ≈ binomial(1, ρ̂(ESP ). Unlike the response plot
for multiple linear regression where the mean function is always the identity
line, the mean function in the response plot for LR can take a variety of
shapes depending on the range of the ESP. For LR, the (estimated) mean
function is

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )
.

If the ESP = 0 then Y |SP ≈ binomial(1,0.5). If the ESP = −5, then Y |SP ≈
binomial(1,ρ ≈ 0.007) while if the ESP = 5, then Y |SP ≈ binomial(1,ρ ≈
0.993). Hence if the range of the ESP is in the interval (−∞,−5) then the
mean function is flat and ρ̂(ESP ) ≈ 0. If the range of the ESP is in the
interval (5,∞) then the mean function is again flat but ρ̂(ESP ) ≈ 1. If
−5 < ESP < 0 then the mean function looks like a slide. If −1 < ESP < 1
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then the mean function looks linear. If 0 < ESP < 5 then the mean function
first increases rapidly and then less and less rapidly. Finally, if−5 < ESP < 5
then the mean function has the characteristic “ESS” shape shown in Figure
4.1 c).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Y s in each slice and add the resulting
step function to the response plot. This is done in Figure 4.1 c) with J = 4
slices. This step function is a simple nonparametric estimator of the mean
function ρ(SP ). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, pp. 147–156).

The deviance test described in Section 4.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
binary LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator

ρ̂(xi) =
exp(xT

i β̂)

1 + exp(xT
i β̂)

.

If the logistic curve clearly fits the step function better than the line Y = Y ,
then H0 will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
See Figure 4.1 a).

For binomial logistic regression, the response plot needs to be modified
and a check for overdispersion is needed.

Definition 4.10. Let Zi = Yi/mi. Then the conditional distribution Zi|xi

of the LR binomial regression model can be visualized with a response plot

of the ESP = β̂
T
xi versus Zi with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Divide the ESP into J slices with approximately the
same number of cases in each slice. Then compute ρ̂s =

∑
s Yi/

∑
smi where

the sum is over the cases in slice s. Then plot the resulting step function
or the lowess curve. For binary data the step function is simply the sample
proportion in each slice.

Both the lowess curve and step function are simple nonparametric estima-
tors of the mean function ρ(SP ). If the lowess curve or step function tracks
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the logistic curve (the estimated mean) closely, then the LR mean function
is a reasonable approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1, ...,m if m ≥ 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good approx-
imation to the data, the LR MLE is a consistent estimator of β, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)).
This phenomenon is called overdispersion. The BBR model of Definition 4.2
is a useful alternative to LR.

For both the LR and BBR models, the conditional distribution of Y |x can
still be visualized with a response plot of the ESP versus Zi = Yi/mi with the
estimated mean function Ê(Zi|xi) = ρ̂(SP ) = ρ(ESP ) and a step function
or lowess curve added as visual aids.

Since the binomial regression model is simpler than the BBR model, graph-
ical diagnostics for the goodness of fit of the LR model would be useful. The
following plot was suggested by Olive (2013b) to check for overdispersion.

Definition 4.11. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the LR model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi))
and Ê(Yi|SP ) = miρ(ESPi).

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R2

is used for multiple linear regression. When the mi are small, G2 may not be
reliable but the response plot is still useful. If the Yi are not too close to 0
or mi, if the response and OD plots look good, and the deviance G2 satisfies
G2/(n−p) ≈ 1, then the LR model is likely useful. If G2 > (n−p)+3

√
n− p,

then a more complicated count model may be needed.
Combining the response plot with the OD plot is a powerful method for

assessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too close to 0 or m, then a normal approximation is good
for the binomial distribution. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ),

then [Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and
estimated variance functions are good approximations, and if the counts are
not too close to 0 or mi, then the plotted points in the OD plot will scatter
about a wedge formed by the V̂ = 0 line and the line through the origin
with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should
be above this line.

When the counts are small, the OD plot is not wedge shaped, but if the LR
model is correct, the least squares (OLS) line should be close to the identity
line through the origin with unit slope. If the data are binary, the response
plot is enough to check the binomial regression assumption.
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Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line, and OLS line will be added to the plot
as visual aids. It is easier to use the OD plot to check the variance function
than the response plot since judging the variance function with the straight
lines of the OD plot is simpler than judging the variability about the logistic
curve. Also outliers are often easier to spot with the OD plot. For the LR
model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi)) and Ê(Yi|SP ) = miρ(ESPi).
The evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta–binomial re-
gression model, then V̂mod = V̂ (Yi|SP ) ≈ miρ(ESP )(1−ρ(ESP )) while V̂ =
[Yi −miρ(ESP )]2 ≈ (Yi − E(Yi))

2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 −
ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should

scatter about a line with slope ≈ 1 + (m− 1)
θ

1 + θ
=

1 +mθ

1 + θ
.
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Fig. 4.1 Response Plots for Museum Data

The first example is for binary data. For binary data, G2 is not approxi-
mately χ2 and some plots of residuals have a pattern whether the model is
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correct or not. For binary data the OD plot is not needed, and the plotted
points follow a curve rather than falling in a wedge. The response plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability of
success. For example, when ESP = 0, the estimated probability is 0.5. The
following three examples used SP = xT β.

Example 4.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The response plot in Figure 4.1a) uses
the predictor face length. The model fits very poorly since the probability
of a 1 decreases then increases. The response plot in Figure 4.1b) uses the
predictor head height and perfectly classifies the data since the ape skulls can
be separated from the human skulls with a vertical line at ESP = 0. The
response plot in Figure 4.1c uses predictors lower jaw length, face length, and
upper jaw length. None of the predictors is good individually, but together
provide a good LR model since the observed proportions (the step function)
track the model proportions (logistic curve) closely. The OD plot in Figure
4.1d) is curved and is not needed for a binary response.
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Fig. 4.2 Visualizing the Death Penalty Data

Example 4.2. Abraham and Ledolter (2006, pp. 360-364) describe death
penalty sentencing in Georgia. The predictors are aggravation level from 1 to
6 (treated as a continuous variable) and race of victim coded as 1 for white
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and 0 for black. There were 362 jury decisions and 12 level race combinations.
The response variable was the number of death sentences in each combination.
The response plot (ESSP) in Figure 4.2a shows that the Yi/mi are close to
the estimated LR mean function (the logistic curve). The step function based
on 5 slices also tracks the logistic curve well. The OD plot is shown in Figure
4.2b with the identity, slope 4, and OLS lines added as visual aids. The
vertical scale is less than the horizontal scale, and there is no evidence of
overdispersion.
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Fig. 4.3 Plots for Rotifer Data

Example 4.3. Collett (1999, pp. 216-219) describes a data set where the
response variable is the number of rotifers that remain in suspension in a
tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1
for polyarthra major and 0 for keratella cochlearis. Figure 4.3a shows the
response plot (ESSP). Both the observed proportions and the step function
track the logistic curve well, suggesting that the LR mean function is a good
approximation to the data. The OD plot suggests that there is overdispersion
since the vertical scale is about 30 times the horizontal scale. The OLS line
has slope much larger than 4 and two outliers seem to be present.
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4.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a region
is divided into subregions and Yi is the number of a specified type of animal
found in the subregion.

Definition 4.12. The Poisson regression (PR) model states that
Y1, ..., Yn are independent random variables with Yi ∼ Poisson(µ(xi)) where
µ(xi) = exp(h(xi)). Thus Y |SP ∼ Poisson(exp(SP)). Notice that Y |SP =
0 ∼ Poisson(1). Note that the conditional mean and variance functions are
equal: E(Y |SP ) = V (Y |SP ) = exp(SP ).

In the response plot for Poisson regression, the shape of the estimated
mean function µ̂(ESP ) = exp(ESP ) depends strongly on the range of the
ESP. The variety of shapes occurs because the plotting software attempts
to fill the vertical axis. Hence if the range of the ESP is narrow, then the
exponential function will be rather flat. If the range of the ESP is wide, then
the exponential curve will look flat in the left of the plot but will increase
sharply in the right of the plot.

Definition 4.13. The estimated sufficient summary plot (ESSP) or re-

sponse plot, is a plot of the ESP = ĥ(xi) versus Yi with the estimated mean
function

µ̂(ESP ) = exp(ESP )

added as a visual aid. A scatterplot smoother such as lowess is also added as
a visual aid.

This plot is very useful as a goodness of fit diagnostic. The lowess curve
is a nonparametric estimator of the mean function and is represented as a
jagged curve to distinguish it from the estimated PR mean function (the
exponential curve). See Figure 4.4 a). If the number of notrivial predictors
q < n/10, if there is no overdispersion, and if the lowess curve follows the
exponential curve closely (except possibly for the largest values of the ESP),
then the PR mean function may be a useful approximation for E(Y |x). A
useful lack of fit plot is a plot of the ESP versus the deviance residuals
that are often available from the software.

The deviance test described in Section 4.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
PR model is a good approximation to the data but β = 0, then the predictors
x are not needed in the model and µ̂(xi) ≡ µ̂ = Y (the sample mean) should
be used instead of the PR estimator

µ̂(xi) = exp(xT
i β̂).
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If the exponential curve clearly fits the lowess curve better than the line
Y = Y , then H0 should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if
the exponential curve is approximately linear with a small slope), then Y
may be independent of the predictors. See Figure 4.6 a).

Warning: For many count data sets where the PR mean function is
good, the PR model is not appropriate but the PR MLE is still a con-
sistent estimator of β. The problem is that for many data sets where
E(Y |x) = µ(x) = exp(SP ), it turns out that V (Y |x) > exp(SP ). This
phenomenon is called overdispersion. Adding parametric and nonparamet-
ric estimators of the standard deviation function to the response plot can
be useful. See Cook and Weisberg (1999, pp. 401-403). The NBR model of
Definition 4.3 is a useful alternative to PR.

Since the Poisson regression model is simpler than the NBR model, graph-
ical diagnostics for the goodness of fit of the PR model would be useful. The
following plot was suggested by Winkelmann (2000, p. 110).

Definition 4.14. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the PR model, V̂ (Y |SP ) = exp(ESP ) = Ê(Y |SP ) and
V̂ = [Y − exp(ESP )]2.

Numerical summaries are also available. The deviance G2, described in
Section 4.5, is a statistic used to assess the goodness of fit of the Poisson
regression model much asR2 is used for multiple linear regression. For Poisson
regression, G2 is approximately chi-square with n − p degrees of freedom.
Since a χ2

d random variable has mean d and standard deviation
√

2d, the 98th

percentile of the χ2
d distribution is approximately d+3

√
d ≈ d+2.121

√
2d. If

the response and OD plots look good, and G2/(n−p) ≈ 1, then the PR model
is likely useful. If G2 > (n − p) + 3

√
n− p, then a more complicated count

model than PR may be needed. A good discussion of such count models is in
Simonoff (2003).

For PR, Winkelmann (2000, p. 110) suggested that the plotted points in
the OD plot should scatter about the identity line through the origin with unit
slope and that the OLS line should be approximately equal to the identity
line if the PR model is appropriate. But in simulations, it was found that the
following two observations make the OD plot much easier to use for Poisson
regression.

First, recall that a normal approximation is good for both the Poisson
and negative binomial distributions if the count Y is not too small. Notice
that if Y = E(Y |SP ) + 2

√
V (Y |SP ), then [Y − E(Y |SP )]2 = 4V (Y |SP ).

Hence if both the estimated mean and estimated variance functions are good
approximations, the plotted points in the OD plot for Poisson regression will
scatter about a wedge formed by the V̂ = 0 line and the line through the
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origin with slope 4: V̂ = 4V̂ (Y |SP ). If the normal approximation is good,
only about 5% of the plotted points should be above this line.

Second, the evidence of overdispersion increases from slight to high as the
scale of the vertical axis increases from 4 to 10 times that of the horizontal
axis. (The scale of the vertical axis tends to depend on the few cases with
the largest V̂ (Y |SP ), and P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be ap-
proximated with a normal approximation or Chebyshev’s inequality.) There
is considerable evidence of overdispersion if the scale of the vertical axis is
more than 10 times that of the horizontal, or if the percentage of points above
the slope 4 line through the origin is much larger than 5%. Hence the identity
line and slope 4 line are added to the OD plot as visual aids, and one should
check whether the scale of the vertical axis is more than 10 times that of the
horizontal.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the Poisson regression model. It is easier to use the
OD plot to check the variance function than the response plot since judging
the variance function with the straight lines of the OD plot is simpler than
judging two curves. Also outliers are often easier to spot with the OD plot.

For Poisson regression, judging the mean function from the response plot
may be rather difficult for large counts since the mean function is curved
and lowess does not track the exponential function very well for large counts.
Definition 4.16 will give some useful plots. Since P (Yi = 0) > 0, the estima-
tors given in the following definition are used. Let Zi = Yi if Yi > 0, and let
Zi = 0.5 if Yi = 0. Let x = (1,uT )T .

Definition 4.15. The minimum chi–square estimator of the param-
eters β = (α,ηT )T in a Poisson regression model are (α̂M , η̂M ), and are
found from the weighted least squares regression of log(Zi) on ui with weights
wi = Zi. Equivalently, use the ordinary least squares (OLS) regression (with-
out intercept) of

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

The minimum chi–square estimator tends to be consistent if n is fixed
and all n counts Yi increase to ∞, while the Poisson regression maximum
likelihood estimator β̂ = (α̂, η̂T )T tends to be consistent if the sample size
n → ∞. See Agresti (2002, pp. 611-612). However, the two estimators are
often close for many data sets.

The basic idea of the following two plots for Poisson regression is to trans-
form the data towards a linear model, then make the response plot of Ŵ
versus W and residual plot of the residuals W − Ŵ for the transformed re-
sponse variable W . The mean function is the identity line and the vertical
deviations from the identity line are the WLS residuals. If ESP = xT

i β̂, The
plots are based on weighted least squares (WLS) regression. Use the equiva-
lent OLS regression (without intercept) ofW =

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

Then the plot of the “fitted values” Ŵ =
√
Zi(α̂M + η̂T

Mui) versus the “re-
sponse”

√
Zi log(Zi) should have points that scatter about the identity line.
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These results and the equivalence of the minimum chi–square estimator to
an OLS estimator suggest the following diagnostic plots.

Definition 4.16. For a Poisson regression model, a weighted fit re-
sponse plot is a plot of

√
ZiESP versus

√
Zi log(Zi). The weighted

residual plot is a plot of
√
ZiESP versus the “WLS” residuals rWi =√

Zi log(Zi)−
√
ZiESP .

If the Poisson regression model is appropriate and the PR estimator is
good, then the plotted points in the weighted fit response plot should follow
the identity line. When the counts Yi are small, the “WLS” residuals can
not be expected to be approximately normal. Often the larger counts are fit
better than the smaller counts and hence the residual plots have a “left open-
ing megaphone” shape. This fact makes residual plots for Poisson regression
rather hard to use, but cases with large “WLS” residuals may not be fit very
well by the model. Both the weighted fit response and residual plots perform
better for simulated PR data with many large counts than for data where all
of the counts are less than 10. The following three examples use SP = xT β.

Example 4.4. For the Ceriodaphnia data of Myers et al. (2002, pp.
136-139), the response variable Y is the number of Ceriodaphnia organisms
counted in a container. The sample size was n = 70, and the predictors were
a constant (x1), seven concentrations of jet fuel (x2), and an indicator for
two strains of organism (x3). The jet fuel was believed to impair reproduc-
tion so high concentrations should have smaller counts. Figure 4.4 shows the
4 plots for this data. In the response plot of Figure 4.4a, the lowess curve is
represented as a jagged curve to distinguish it from the estimated PR mean
function (the exponential curve). The horizontal line corresponds to the sam-
ple mean Y . The OD plot in Figure 4.4b suggests that there is little evidence
of overdispersion. These two plots as well as Figures 4.4c and 4.4d suggest
that the Poisson regression model is a useful approximation to the data.

Example 4.5. For the crab data, the response Y is the number of satellites
(male crabs) near a female crab. The sample size n = 173 and the predictor
variables were the color, spine condition, caparice width, and weight of the
female crab. Agresti (2002, pp. 126-131) first uses Poisson regression, and
then uses the NBR model with κ̂ = 0.98 ≈ 1. Figure 4.5a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 4.5b suggests that
overdispersion is present since the vertical scale is about 10 times that of
the horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 4.5c also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y , an alternative model to the NBR model may fit
the data better. In later chapters, Agresti uses binomial regression models
for this data.
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Fig. 4.4 Plots for Ceriodaphnia Data
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Fig. 4.5 Plots for Crab Data
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Fig. 4.6 Plots for Popcorn Data

Example 4.6. For the popcorn data of Myers et al. (2002, p. 154), the
response variable Y is the number of inedible popcorn kernels. The sample
size was n = 15 and the predictor variables were temperature (coded as 5,
6, or 7), amount of oil (coded as 2, 3, or 4), and popping time (75, 90, or
105). One batch of popcorn had more than twice as many inedible kernels
as any other batch and is an outlier. Ignoring the outlier in Figure 4.6a
suggests that the line Y = Y will fit the data and lowess curve better than
the exponential curve. Hence Y seems to be independent of the predictors.
Notice that the outlier sticks out in Figure 4.6b and that the vertical scale is
well over 10 times that of the horizontal scale. If the outlier was not detected,
then the Poisson regression model would suggest that temperature and time
are important predictors, and overdispersion diagnostics such as the deviance
would be greatly inflated. However, we probably need to delete the high
temperature, low oil, and long popping time combination, to conclude that
the response is independent of the predictors.

4.5 GLM Inference, n/p Large

This section gives a very brief discussion of inference for the logistic regression
(LR) and Poisson regression (PR) models. Inference for these two models is
very similar to inference for the multiple linear regression (MLR) model. For
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all three of these models, Y is independent of the p × 1 vector of predictors
x = (x1, x2, ..., xp)

T given the sufficient predictor xT β where the constant
x1 ≡ 1.

To perform inference for LR and PR, computer output is needed. Shown
below is output using symbols and output from a real data set with p = 3
nontrivial predictors. This data set is the banknote data set described in Cook
and Weisberg (1999, p. 524). There were 200 Swiss bank notes of which 100
were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the analysis
was to determine whether a selected bill was genuine or counterfeit from
physical measurements of the bill.

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β2 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for H0 : βp = 0

Number of cases: n

Degrees of freedom: n - p

Pearson X2:

Deviance: D = Gˆ2

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169

Point estimators for the mean function are important. Given values of
x = (x1, ..., xp)

T , a major goal of binary logistic regression is to estimate the
success probability P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(xT β̂)

1 + exp(xT β̂)
. (4.8)
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Similarly, a major goal of Poisson regression is to estimate the mean
E(Y |x) = µ(x) with the estimator

µ̂(x) = exp(xT β̂). (4.9)

For tests, pval, the estimated p–value, is an important quantity. Again
what output labels as p–value is typically pval. Recall that H0 is rejected if
the pval ≤ δ. A pval between 0.07 and 1.0 provides little evidence that H0

should be rejected, a pval between 0.01 and 0.07 provides moderate evidence
and a pval less than 0.01 provides strong statistical evidence that H0 should
be rejected. Statistical evidence is not necessarily practical evidence, and
reporting the pval along with a statement of the strength of the evidence is
more informative than stating that the pval is less than some chosen value
such as δ = 0.05. Nevertheless, as a homework convention, use δ = 0.05 if
δ is not given.

Investigators also sometimes test whether a predictor xj is needed in the
model given that the other p−1 predictors are in the model with the following
4 step Wald test of hypotheses.
i) State the hypotheses H0 : βj = 0 HA : βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j ) or obtain it from output.
iii) The pval = 2P (Z < −|zoj |) = 2P (Z > |zoj |). Find the pval from output
or use the standard normal table.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If H0 is rejected, then conclude that xj is needed in the GLM model for
Y given that the other p− 1 predictors are in the model. If you fail to reject
H0, then conclude that xj is not needed in the GLM model for Y given that
the other p− 1 predictors are in the model. (Or there is not enough evidence
to conclude that xj is needed in the model.) Note that xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained using the

output: the large sample 100 (1− δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j ).

The Wald test and CI tend to give good results if the sample size n is large.
Here 1− δ refers to the coverage of the CI. A 90% CI uses z1−δ/2 = 1.645, a
95% CI uses z1−δ/2 = 1.96, and a 99% CI uses z1−δ/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all
p of the predictors xT = (xT

R,x
T
O), the reduced model that uses the r

predictors xR, and the saturated model that uses n parameters θ1, ..., θn

where n is the sample size. For the full model the p parameters β1, ..., βp are
estimated while the reduced model has r+1 parameters. Let lSAT (θ1 , ..., θn)
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be the likelihood function for the saturated model and let lFULL(β) be the

likelihood function for the full model. Let LSAT = log lSAT (θ̂1 , ..., θ̂n) be the
log likelihood function for the saturated model evaluated at the maximum
likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let LFULL = log lFULL(β̂) be the

log likelihood function for the full model evaluated at the MLE (β̂). Then
the deviance D = G2 = −2(LFULL − LSAT ). The degrees of freedom for
the deviance = dfFULL = n− p where n is the number of parameters for the
saturated model and p is the number of parameters for the full model.

The saturated model for logistic regression states that for i = 1, ..., n, the
Yi|xi are independent binomial(mi, ρi) random variables where ρ̂i = Yi/mi.
The saturated model is usually not very good for binary data (all mi = 1)
or if the mi are small. The saturated model can be good if all of the mi are
large or if ρi is very close to 0 or 1 whenever mi is not large.

The saturated model for Poisson regression states that for i = 1, ..., n,
the Yi|xi are independent Poisson(µi) random variables where µ̂i = Yi. The
saturated model is usually not very good for Poisson data, but the saturated
model may be good if n is fixed and all of the counts Yi are large.

If X ∼ χ2
d then E(X) = d and VAR(X) = 2d. An observed value of

X > d + 3
√
d is unusually large and an observed value of X < d − 3

√
d is

unusually small.

When the saturated model is good, a rule of thumb is that the logistic or
Poisson regression model is ok if G2 ≤ n − p (or if G2 ≤ n − p+ 3

√
n− p).

For binary LR, the χ2
n−p approximation for G2 is rarely good even for large

sample sizes n. For LR, the response plot is often a much better diagnostic
for goodness of fit, especially when ESP = xT

i β takes on many values and
when p << n. For PR, both the response plot and G2 ≤ n − p + 3

√
n− p

should be checked.

Response = Y
Terms = (x1, ..., xp)
Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones n− 1 = dfo G2
o

x2 n− 2 1
x3 n− 3 1
...

...
...

...
xp n− p = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance



252 4 1D Regression Models Such as GLMs

Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484

The above output, shown in symbols and for a real data set, is used for the
deviance test described below. Assume that the response plot has been made
and that the logistic or Poisson regression model fits the data well in that the
nonparametric step or lowess estimated mean function follows the estimated
model mean function closely and there is no evidence of overdispersion. The
deviance test is used to test whether β2 = 0 where β = (β1 ,β

T
2 )T = (α,ηT )T .

If this is the case, then the nontrivial predictors are not needed in the GLM
model. IfH0 : β2 = 0 is not rejected, then for Poisson regression the estimator

µ̂ = Y should be used while for logistic regression ρ̂ =

n∑

i=1

Yi/

n∑

i=1

mi should

be used. Note that ρ̂ = Y for binary logistic regression since mi ≡ 1 for
i = 1, ..., n. This test is similar to the ANOVA F test for multiple liner
regression.

The 4 step deviance test is
i) H0 : β2 = 0 HA : β2 6= 0,
ii) test statistic G2(o|F ) = G2

o −G2
FULL.

iii) The pval = P (χ2 > G2(o|F )) where χ2 ∼ χ2
q has a chi–square dis-

tribution with q = p − 1 degrees of freedom. Note that q = q + 1 − 1 =
dfo − dfFULL = n− 1− (n− q − 1).

iv) Reject H0 if the pval≤ δ and conclude that there is a GLM relationship
between Y and the predictors X2, ..., Xp. If pval> δ, then fail to reject H0 and
conclude that there is not a GLM relationship between Y and the predictors
X2, ..., Xp. (Or there is not enough evidence to conclude that there is a GLM
relationship between Y and the predictors.)

This test can be performed in R by obtaining output from the full and
null model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outn <- glm(Y˜1,family = binomial)

anova(outn,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** k Gˆ2(0|F) pvalue

The output below, shown both in symbols and for a real data set, can be
used to perform the change in deviance test. If the reduced model leaves out
a single variable xi, then the change in deviance test becomes H0 : βi = 0
versus HA : βi 6= 0. This test is a competitor of the Wald test. This change in
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deviance test is usually better than the Wald test if the sample size n is not
large, but the Wald test is often easier for software to produce. For large n
the test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = xT
Riβ̂R

versus ESP = xT
i β̂ should be highly correlated with the identity line with

unit slope and zero intercept.

Response = Y Terms = (x1, ..., xp) (Full Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for H0 : β1 = 0
...

...
...

...
...

xp β̂q se(β̂p) zo,p = β̂p/se(β̂p) for H) : βp = 0
Degrees of freedom: n− p = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (x1, ..., xr) (Reduced Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β1 = 0
...

...
...

...
...

xr β̂r se(β̂r) zo,r = β̂k/se(β̂r) for H0 : βr = 0
Degrees of freedom: n− r = dfRED

Deviance: D = G2
RED

(Full Model) Response = Status,

Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000
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Degrees of freedom: 198

Deviance: 21.109

After obtaining an acceptable full model where

SP = β1 + β2x2 + · · ·+ βpxp = xT β = xT
RβR + xT

OβO

try to obtain a reduced model

SP (red) = β1 + βR2xR2 + · · ·+ βRrxRr = xT
RβR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for Poisson regression the reduced
model is Yi|xRi ∼ independent Poisson(µ(xRi)) for i = 1, ..., n.

Assume that the response plot looks good. Then we want to test H0: the
reduced model is good (can be used instead of the full model) versus HA:
use the full model (the full model is significantly better than the reduced
model). Fit the full model and the reduced model to get the deviances G2

FULL

and G2
RED. The next test is similar to the partial F test for multiple linear

regression.

The 4 step change in deviance test is
i) H0: the reduced model is good HA: use the full model,
ii) test statistic G2(R|F ) = G2

RED −G2
FULL.

iii) The pval = P (χ2 > G2(R|F )) where χ2 ∼ χ2
p−r has a chi–square

distribution with p− r degrees of freedom. Note that p− 1 is the number of
nontrivial predictors in the full model while r− 1 is the number of nontrivial
predictors in the reduced model. Also notice that p− r = dfRED − dfFULL =
n− r − (n− p) = (p− 1)− (r − 1).

iv) Reject H0 if the pval ≤ δ and conclude that the full model should be
used. If pval > δ, then fail to reject H0 and conclude that the reduced model
is good.

This test can be performed in R by obtaining output from the full and
reduced model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outr <- glm(Y˜ x4 + x6 + x8,family = binomial)

anova(outr,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** p-r Gˆ2(R|F) pvalue

Interpretation of coefficients: if x2, ..., xi−1, xi+1, ..., xp can be held fixed,
then increasing xi by 1 unit increases the sufficient predictor SP by βi units.
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As a special case, consider logistic regression. Let ρ(x) = P (success|x) = 1−
P(failure|x) where a “success” is what is counted and a “failure” is what is not
counted (so if the Yi are binary, ρ(x) = P (Yi = 1|x)). Then the estimated

odds of success is Ω̂(x) =
ρ̂(x)

1− ρ̂(x)
= exp(xT β̂). In logistic regression,

increasing a predictor xi by 1 unit (while holding all other predictors fixed)

multiplies the estimated odds of success by a factor of exp(β̂i).

Output for Full Model, Response = gender, Terms =

(age log[age] breadth circum headht

height length size log[size])

Number of cases: 267, Degrees of freedom: 257,

Deviance: 234.792

Logistic Regression Output for Reduced Model,

Response = gender, Terms = (height size)

Label Estimate Std. Error Est/SE p-value

Constant -6.26111 1.34466 -4.656 0.0000

height -0.0536078 0.0239044 -2.243 0.0249

size 0.0028215 0.000507935 5.555 0.0000

Number of cases: 267, Degrees of freedom: 264

Deviance: 313.457

Example 4.7. Let the response variable Y = gender = 0 for F and 1 for
M. Let x2 = height (in inches) and x3 = size of head (in mm3). Logistic
regression is used, and data is from Gladstone (1905). There is output above.

a) Predict ρ̂(x) if height = x2 = 65 and size = x3 = 3500.

b) The full model uses the predictors listed above to the right of Terms.
Perform a 4 step change in deviance test to see if the reduced model can be
used. Both models contain a constant.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 = −6.26111 − 0.0536078(65) +
0.0028215(3500) = 0.1296. So

ρ̂(x) =
eESP

1 + eESP
=

1.1384

1 + 1.1384
= 0.5324.

b) i) H0: the reduced model is good HA: use the full model
ii) G2(R|F ) = 313.457− 234.792 = 78.665
iii) Now df = 264− 257 = 7, and comparing 78.665 with χ2

7,0.999 = 24.32
shows that the pval = 0 < 1− 0.999 = 0.001.

iv) Reject H0, use the full model.

Example 4.8. Suppose that Y is a 1 or 0 depending on whether the
person is or is not credit worthy. Let x2 through x7 be the predictors and
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use the following output to perform a 4 step deviance test. The credit data is
available from the text’s website as file credit.lsp, and is from Fahrmeir and
Tutz (2001).

Response = y

Sequential Analysis of Deviance

All fits include an intercept.

Total Change

Predictor df Deviance | df Deviance

Ones 999 1221.73 |

x2 998 1177.11 | 1 44.6148

x3 997 1176.55 | 1 0.561629

x4 996 1168.33 | 1 8.21723

x5 995 1168.20 | 1 0.137583

x6 994 1163.44 | 1 4.75625

x7 993 1158.22 | 1 5.21846

Solution: i) H0 : β2 = · · · = β7 HA: not H0

ii) G2(0|F ) = 1221.73− 1158.22 = 63.51
iii) Now df = 999 − 993 = 6, and comparing 63.51 with χ2

6,0.999 = 22.46
shows that the pval = 0 < 1− 0.999 = 0.001.

iv) Reject H0, there is a LR relationship between Y = credit worthiness
and the predictors x2, ..., x7.

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -5.84211 1.74259 -3.353 0.0008

jaw ht 0.103606 0.0383650 ? ??

Example 4.9. A museum has 60 skulls, some of which are human and
some of which are from apes. Consider trying to estimate whether the skull
type is human or ape from the height of the lower jaw. Use the above logistic
regression output to answer the following problems. The museum data is
available from the text’s website as file museum.lsp, and is from Schaaffhausen
(1878). Here x = x2.

a) Predict ρ̂(x) if x = 40.0.
b) Find a 95% CI for β2.
c) Perform the 4 step Wald test for H0 : β2 = 0.

Solution: a) exp[ESP ] = exp[β̂1+β̂2(40)] = exp[−5.84211+0.103606(40)] =
exp[−1.69787] = 0.1830731. So

ρ̂(x) =
eESP

1 + eESP
=

0.1830731

1 + 0.1830731
= 0.1547.

b) β̂2 ± 1.96SE(β̂2) = 0.103606± 1.96(0.03865) = 0.103606± 0.0751954 =
[0.02841, 0.1788].
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c) i) H0 : β2 = 0 HA : β2 6= 0

ii) Z0 =
β̂2

SE(β̂2)
=

0.103606

0.038365
= 2.7005.

iii) Using a standard normal table, pval = 2P (Z < −2.70) = 2(0.0035) =
0.0070.

iv) Reject H0, jaw height is a useful LR predictor for whether the skull is
human or ape (so is needed in the LR model).

Label Estimate Std. Error Est/SE p-value

Constant -0.406023 0.877382 -0.463 0.6435

bombload 0.165425 0.0675296 2.450 0.0143

exper -0.0135223 0.00827920 -1.633 0.1024

type 0.568773 0.504297 1.128 0.2594

Example 4.10. Use the above output to perform inference on the num-
ber of locations where aircraft was damaged. The output is from a Poisson
regression. The variable exper = total months of aircrew experience while
type of aircraft was coded as 0 or 1. There were n = 30 cases. Data is from
Montgomery et al. (2001).

a) Predict µ̂(x) if bombload = x2 = 7.0, exper = x3 = 80.2, and type
= x4 = 1.0.

b) Perform the 4 step Wald test for H0 : β3 = 0.

c) Find a 95% confidence interval for β4.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 + β̂4x4 = −0.406023+0.165426(7)−
0.0135223(80.2)+0.568773(1) = 0.2362. So µ̂(x) = exp(ESP ) = exp(0.2360) =
1.2665.

b) i) H0 : β3 = 0 HA : β3 6= 0
ii) t03 = −1.633.
iii) pval = 0.1024
iv) Fail to reject H0, exper in not needed in the PR model for number of

locations given that bombload and type are in the model.
c) β̂4 ± 1.96SE(β̂4) = 0.568773± 1.96(0.504297) = 0.568773± 0.9884 =

[−0.4196, 1.5572].

4.6 Variable and Model Selection

4.6.1 When n/p is Large

This subsection gives some rules of thumb for variable selection for logistic
and Poisson regression when SP = xT β. Before performing variable selection,
a useful full model needs to be found. The process of finding a useful full
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model is an iterative process. Given a predictor x, sometimes x is not used
by itself in the full model. Suppose that Y is binary. Then to decide what
functions of x should be in the model, look at the conditional distribution of
x|Y = i for i = 0, 1. The rules shown in Table 4.1 are used if x is an indicator
variable or if x is a continuous variable. Replace normality by “symmetric
with similar spreads” and “symmetric with different spreads” in the second
and third lines of the table. See Cook and Weisberg (1999, p. 501) and Kay
and Little (1987).

The full model will often contain factors and interactions. If w is a nominal
variable with K levels, make w into a factor by using K − 1 (indicator or)
dummy variables x1,w, ..., xK−1,w in the full model. For example, let xi,w = 1
if w is at its ith level, and let xi,w = 0, otherwise. An interaction is a product
of two or more predictor variables. Interactions are difficult to interpret.
Often interactions are included in the full model, and then the reduced model
without any interactions is tested. The investigator is often hoping that the
interactions are not needed.

Table 4.1 Building the Full Logistic Regression Model

distribution of x|y = i variables to include in the model
x|y = i is an indicator x
x|y = i ∼ N(µi, σ2) x
x|y = i ∼ N(µi, σ2

i ) x and x2

x|y = i has a skewed distribution x and log(x)
x|y = i has support on (0,1) log(x) and log(1 − x)

A scatterplot matrix is used to examine the marginal relationships of
the predictors and response. Place Y on the top or bottom of the scatterplot
matrix. Variables with outliers, missing values, or strong nonlinearities may
be so bad that they should not be included in the full model. Suppose that
all values of the variable x are positive. The log rule says add log(x) to the
full model if max(xi)/min(xi) > 10. For the binary logistic regression model,
it is often useful to mark the plotted points by a 0 if Y = 0 and by a + if
Y = 1.

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1s and

N0 = n−N1 = the number of 0s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
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For Poisson regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection is the search for a subset of predictor variables that
can be deleted without important loss of information. A model for variable
selection for many models, including GLMs, is given is Section 2.1. Let ESP
correspond to the full model and let ESP (I) correspond to the submodel I.

Definition 4.17. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin found with the smallest
AIC are always of interest. Burnham and Anderson (2004) suggest that if
∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, models
with 4 ≤ ∆(I) ≤ 7 are borderline, and models with ∆(I) > 10 should not be
used as the final submodel. Create a full model. The full model has a deviance
at least as small as that of any submodel. The final submodel should have an
EE plot that clusters tightly about the identity line. As a rough rule of thumb,
a good submodel I has corr(ESP (I), ESP ) ≥ 0.95. Find the submodel II
with the smallest number of predictors such that ∆(II) ≤ 2. Then submodel
II is the initial submodel to examine. Also examine submodels I with fewer
predictors than II with ∆(I) ≤ 7.

Backward elimination starts with the full model with q = p − 1 non-
trivial variables, and the predictor that optimizes some criterion is deleted. A
constant x∗1 = x1 ≡ 1 is always in the model. Then there are q− 1 nontrivial
variables left, and the predictor that optimizes some criterion is deleted. This
process continues for models with q − 2, q − 3, ..., 2, and 1 predictors.

Forward selection starts with the model with a constant x∗1 = x1 ≡ 1,
and the predictor that optimizes some criterion is added. Then there are 2
variables in the model, and the predictor that optimizes some criterion is
added. This process continues for models with 2, 3, ..., p−1, and p predictors.
Both forward selection and backward elimination result in a sequence, often
different, of p models {x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} =
full model.

All subsets variable selection can be performed with the following pro-
cedure. Compute the ESP of the GLM and compute the OLS ESP found by
the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.This
high correlation will exist for many data sets. Then perform multiple linear
regression and the corresponding all subsets OLS variable selection with the
Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2r where the subset
I has r variables including a constant, then corr(OLS ESP, OLS ESP(I))
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will be high by Olive and Hawkins (2005), and hence corr(ESP, ESP(I))
will be high. In other words, if the OLS ESP and GLM ESP are highly
correlated, then performing multiple linear regression and the corresponding
MLR variable selection (e.g. forward selection, backward elimination, or all
subsets selection) based on the Cp(I) criterion may provide many interesting
submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 12 rules of thumb to hold simultaneously. Let submodel
I have rI predictors, including a constant. Do not use more predictors than
submodel II , which has no more predictors than the minimum AIC model.
It is possible that II = Imin = Ifull . Assume the response plot for the full
model is good. Then the submodel I is good if
i) the response plot for the submodel looks like the response plot for the full
model.
ii) corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the pval ≥ 0.01 for the change in deviance test that uses I as the
reduced model.
v) For binary LR want rI ≤ min(N1 , N0)/10. For PR, want rI ≤ n/10.
vi) Fit OLS to the full and reduced models. The plotted points in the plot of
the OLS residuals from the submodel versus the OLS residuals from the full
model should cluster tightly about the identity line.
vii) Want the deviance G2(I) ≥ G2(full) but close. (G2(I) ≥ G2(full) since
adding predictors to I does not increase the deviance.)
viii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
ix) Want hardly any predictors with pvals > 0.05.
x) Want few predictors with pvals between 0.01 and 0.05.
xi) Want G2(I) ≤ n− rI + 3

√
n− rI .

xii) The OD plot should look good.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with j nontrivial predictors has a) the smallest
AIC(I), b) the smallest deviance G2(I), or c) the smallest pval (preferably
from a change in deviance test but possibly from a Wald test) in the test
H0 : βi = 0 versus HA : βi 6= 0 where the current model with j terms plus
the predictor xi is treated as the full model (for all variables xi not yet in
the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
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elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4,
M5, and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y .

The final submodel should have few predictors, few variables with large
Wald pvals (0.01 to 0.05 is borderline), a good response plot, and an EE plot
that clusters tightly about the identity line. If a factor has K − 1 dummy
variables, either keep all K − 1 dummy variables or delete all K − 1 dummy
variables, do not delete some of the dummy variables.

Some logistic regression output can be unreliable if ρ̂(x) = 1 or ρ̂(x) = 0
exactly. Then ESP = ∞ or ESP = −∞ respectively. Some binary logistic
regression output can also be unreliable if there is perfect classification of 0s
and 1s so that the 0s are to the left and the 1s to the right of ESP = 0 in
the response plot. Then the logistic regression MLE β̂LR does not exist, and
variable selection rules of thumb may fail. Note that when there is perfect
classification, the logistic regression model is very useful, but the logistic
curve can not approximate a step function rising from 0 to 1 at ESP = 0,
arbitrarily closely.

Example 4.11. The following output is for forward selection. All models
use a constant. For forward selection, the min AIC model uses {F}LOC,
TYP, AGE, CAN, SYS, PCO, and PH. Model II uses {F}LOC, TYP, AGE,
CAN, and SYS. Let model I use {F}LOC, TYP, AGE, and CAN. This model
may be good, so for forward selection, models II and I are the first models
to examine. {F}LOC is notation used for a factor with K − 1 = 3 dummy
variables, while k is the number of variables in I, including a constant. Output
is from the Cook and Weisberg (1999) Arc software.

Forward Selection comment

Base terms: ({F}LOC TYP)

Deviance Pearson X2 | k AIC > min AIC + 7

Add:AGE 141.873 187.84 | 5 151.873

Base terms: ({F}LOC TYP AGE)

Deviance Pearson X2| k AIC < min AIC + 7

Add:CAN 134.595 170.367 | 6 146.595

({F}LOC TYP AGE CAN) could be a good model

Base terms: ({F}LOC TYP AGE CAN)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:SYS 128.441 179.753 | 7 142.441
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({F}LOC TYP AGE CAN SYS) could be a good model

Base terms: ({F}LOC TYP AGE CAN SYS)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:PCO 126.572 186.71 | 8 142.572

PCO not important since AIC < min AIC + 2

Base terms: ({F}LOC TYP AGE CAN SYS PCO)

Deviance Pearson X2 | k AIC

Add:PH 123.285 191.264 | 9 141.285 min AIC

PH not important since AIC < min AIC + 2

B1 B2 B3 B4

df 255 258 259 263
# of predictors 11 8 7 3

# with 0.01 ≤ Wald p-value ≤ 0.05 2 1 0 0
# with Wald p-value > 0.05 4 0 0 0

G2 233.765 237.212 243.482 278.787
AIC 257.765 255.212 259.482 286.787

corr(ESP,ESP(I)) 1.0 0.99 0.97 0.80
p-value for change in deviance test 1.0 0.328 0.045 0.000

Example 4.12. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. One pre-
dictor was a factor, and a factor was considered to have a bad Wald p-value
> 0.05 if all of the dummy variables corresponding to the factor had p-values
> 0.05. Similarly the factor was considered to have a borderline p-value with
0.01 ≤ p-value ≤ 0.05 if none of the dummy variables corresponding to the
factor had a p-value < 0.01 but at least one dummy variable had a p-value
between 0.01 and 0.05. The response was binary and logistic regression was
used. The response plot for the full model B1 was good. Model B2 was the
minimum AIC model found. There were 267 cases: for the response, 113 were
0’s and 154 were 1’s.

Which two models are the best candidates for the final submodel? Explain
briefly why each of the other 2 submodels should not be used.

Solution: B2 and B3 are best. B1 has too many predictors with rather
large p-values. For B4, the AIC is too high and the corr and p-value are too
low.

Example 4.13. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also
see Hosmer and Lemeshow (2000, pp. 23-25). The survival of 200 patients
following admission to an intensive care unit was studied with logistic regres-
sion. The response variable was STA (0 = Lived, 1 = Died). Predictors were
AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black, 3 =
Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN=
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Is cancer part of the present problem? (0 = No, 1 = Yes), CRN= History
of chronic renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU
admission (0 = No, 1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1
= Yes), SYS= Systolic blood pressure at ICU admission (in mm Hg), HRA=
Heart rate at ICU admission (beats/min), PRE= Previous admission to an
ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 =
Elective, 1 = Emergency), FRA= Long bone, multiple, neck, single area, or
hip fracture (0 = No, 1 = Yes), PO2= PO2 from initial blood gases (0 if >60,
1 if ≤ 60), PH= PH from initial blood gases (0 if ≥ 7.25, 1 if <7.25), PCO=
PCO2 from initial blood gases (0 if ≤ 45, 1 if >45), Bic= Bicarbonate from
initial blood gases (0 if ≥ 18, 1 if <18), CRE= Creatinine from initial blood
gases (0 if ≤ 2.0, 1 if >2.0), and LOC= Level of consciousness at admission
(0 = no coma or stupor, 1= deep stupor, 2 = coma).
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Fig. 4.9 EE Plot Suggests Race is an Important Predictor

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 4.7 shows that the logistic regression
model using the 19 predictors is useful for predicting survival, although the
output has ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases. Note that the
step function of slice proportions tracks the model logistic curve fairly well.
Variable selection, using forward selection and backward elimination with
the AIC criterion, suggested the submodel using AGE, CAN, SYS, TYP, and
LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 4.8. The
plotted points in the EE plot should cluster tightly about the identity line
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if the full model and the submodel are good. Since this clustering did not
occur, the submodel seems to be poor. The lowest cluster of points and the
case on the right nearest to the identity line correspond to black patients.
The main cluster and upper right cluster correspond to patients who are not
black.

Figure 4.9 shows the EE plot when RACE is added to the submodel.
Then all of the points cluster about the identity line. Although numerical
variable selection did not suggest that RACE is important, perhaps since
output had ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases, the two EE plots
suggest that RACE is important. Also the RACE variable could be replaced
by an indicator for black. This example illustrates how the plots can be
used to quickly improve and check the models obtained by following logistic
regression with variable selection even if the MLE β̂LR does not exist.

P1 P2 P3 P4

df 144 147 148 149
# of predictors 6 3 2 1

# with 0.01 ≤ Wald p-value ≤ 0.05 1 0 0 0
# with Wald p-value > 0.05 3 0 1 0

G2 127.506 131.644 147.151 149.861
AIC 141.506 139.604 153.151 153.861

corr(ESP,ESP(I)) 1.0 0.954 0.810 0.792
p-value for change in deviance test 1.0 0.247 0.0006 0.0

Example 4.14. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. Poisson
regression was used. The response plot for the full model P1 was good. Model
P2 was the minimum AIC model found.

Which model is the best candidate for the final submodel? Explain briefly
why each of the other 3 submodels should not be used.

Solution: P2 is best. P1 has too many predictors with large pvalues and
more predictors than the minimum AIC model. P3 and P4 have corr and
pvalue too low and AIC too high.

Warning. Variable selection for GLMs is very similar to that for multiple
linear regression. Finding a model II from variable selection, and using GLM
output for model II does not give valid tests and confidence intervals. If there
is a good full model that was found before examining the response, and if II
is the minimum AIC model, then Section 4.9 describes how to do inference
after variable selection. If the model needs to be built using the response, use
data splitting. A pilot study can also be useful.
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4.6.2 When n/p is Not Necessarily Large

Forward selection with EBIC, lasso, and/or elastic net can be used for the
Cox proportional hazards regression model and for some GLMs, including
binomial and Poisson regression. The relaxed lasso = VS-lasso and relaxed
elastic net = VS-elastic net estimators apply the GLM or Cox regression
model to the predictors with nonzero lasso or elastic net coefficients. As
with multiple linear regression, the population number of active nontrivial
predictors = kS, but for a GLM, model I with SP = xT

I βI has k active
nontrivial predictors. See Section 2.1.

Remark 4.1. Most of the plots in this chapter that use ESP = xT β̂, and
can also be made using ESP (I) = xT

I β̂I . Obtaining a good ESP becomes
more difficult as n/p becomes smaller.

Remark 4.2. Suppose the 1D regression model, such as a GLM, has SP =
xT β. If n > 10p, then fit the model using Chapter 3 MLR type methods, such
as relaxed lasso and forward selection (using Cp), to find a subset of predictors
I. If n < 10p, fit the model with MLR lasso. (Limited experience suggests that
MLR with EBIC leads to severe underfitting if n < 10p if the 1D regression
model is not MLR.) Then fit the 1D regression with Y and xI . Check the
model with the response plot and the EE plot of the MLR ESP versus the 1D
regression ESP. High correlation in the EE plot suggests MLR model selection
may be useful for the 1D regression model selection. For some GLMs, make
the OD plot. If xI is an a × 1 vector, we want n ≥ Ja where J ≥ 5 and
preferably J ≥ 10. For binary logistic regression, we want a ≥ J min(N0, N1).
Note that if n < 5p, the EE plot of the submodel ESP versus the full model
ESP should not be used since the full model is overfitting. This method should
be best when the predictors are linearly related: there should be no strong
nonlinear relationships. See Olive and Hawkins (2005) for this method when
n > 10p.

Some R commands for GLM lasso and Remark 4.2 are shown below. Note
that the family command indicates whether a binomial regression (including
binary regression) or a Poisson regression is being fit. The default for GLM
lasso uses 10-fold CV with a deviance criterion.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y

vars <- 1:q
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beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

(Inter) V2 V3 V4 V5 V6

0.2103 1.0037 1.4304 0.6208 1.8805 0.3831

V7 V8 V9 V10 V11 V12

0.8971 0.4716 0.5196 0.8900 0.6673 -0.7611

V13 V14

-0.5918 0.6926

lrplot3(tem=tem,x=x[,vin]) #binary response plot

#now use MLR lasso

outm<-cv.glmnet(x,y)

lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0] #1 more variable than GLM lasso

vm

[1] 1 2 3 4 5 6 16 35 59 61 74 75 76 96

vin

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vm]) #binary response plot

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit
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[1] 4

inm <- as.data.frame(cbind(y,x[,vin]))

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vin]) #binary response plot

#Poisson regression, using same x and beta as above

y <- rpois(n,lambda=exp(SP))

out<-cv.glmnet(x,y,family="poisson")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

vin

[1] 1 2 3 4 5 7 9 10 13 16 17 18 21 23 25

26 27 30 37 39 40 42 44 46 51 53 57 59 62 71 74 84 85 93 95 97 99

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=ind)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots

#now use MLR lasso

outm<-cv.glmnet(x,y)

lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0]

vm #much less overfit than GLM lasso

[1] 1 2 3 4 5 9 17 21 22 27 29 60 75 95

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vm],y) #response and OD plots

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit causes poor fit and overdispersion

[1] 5

inm <- as.data.frame(cbind(y,x[,vin]))

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots
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4.7 Generalized Additive Models

There are many alternatives to the binomial and Poisson regression GLMs.
Alternatives to the binomial GLM of Definition 4.7 include the discriminant
function model of Definition 4.8, the quasi-binomial model, the binomial gen-
eralized additive model (GAM), and the beta-binomial model of Definition
4.2.

Alternatives to the Poisson GLM of Definition 4.12 include the quasi-
Poisson model, the Poisson GAM, and the negative binomial regression model
of Definition 4.3. Other alternatives include the zero truncated Poisson model,
the zero truncated negative binomial model, the hurdle or zero inflated Pois-
son model, the hurdle or zero inflated negative binomial model, the hurdle or
zero inflated additive Poisson model, and the hurdle or zero inflated additive
negative binomial model. See Zuur et al. (2009), Simonoff (2003), and Hilbe
(2011).

Many of these models can be visualized with response plots. An interesting
research project would be to make response plots for these models, adding
the conditional mean function and lowess to the plot. Also make OD plots to
check whether the model handled overdispersion. This section will examine
several of the above models, especially GAMs. A GAM is a 1D regression
model with SP=AP and ESP=EAP. We may use ESP for a GLM and EAP
for a GAM.

Definition 4.18. In a 1D regression, Y is independent of x given the
sufficient predictor SP = h(x) where SP = xT β for a GLM. In a general-
ized additive model, Y is independent of x = (x1, ..., xp)

T given the additive
predictor AP = α +

∑p
j=2 Sj(xj) for some (usually unknown) functions Sj .

The estimated sufficient predictor ESP = ĥ(x) and ESP = xT β̂ for a GLM.
The estimated additive predictor EAP = α̂+

∑p
j=2 Ŝj(xj). An ESP–response

plot is a plot of ESP versus Y while an EAP–response plot is a plot of EAP
versus Y .

Note that a GLM is a special case of the GAM using Sj(xj) = βjxj for j =
2, ..., p with α = β1. A GLM with SP = α+β2x2 +β3x3 +β4x1x2 is a special
case of a GAM with x4 ≡ x1x2. A GLM with SP = α+ β2x2 + β3x

2
2 + β4x3

is a special case of a GAM with S2(x2) = β2x2 + β3x
2
2 and S3(x3) = β4x3.

A GLM with p terms may be equivalent to a GAM with k terms w1, ..., wk

where k < p.
The plotted points in the EE plot defined below should scatter tightly

about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP–response plot,
then examine the Ŝj of the GAM to see if some simple terms such as x2

i can
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be added to the GLM so that the modified GLM has a good ESP–response
plot. (This technique is easiest if the GLM and GAM have the same p terms
x1, ..., xp. The technique is more difficult, for example, if the GLM has terms
x1, x2, x

2
2, and x3 while the GAM has terms x1, x2 and x3.)

Definition 4.19. An EE plot is a plot of EAP versus ESP.

Definition 4.20. Recall the binomial GLM

Yi|SPi ∼ binomial
(
mi,

exp(SPi)

1 + exp(SPi)

)
.

Let ρ(w) = exp(w)/[1 + exp(w)].

i) The binomial GAM is Yi|APi ∼ binomial

(
mi,

exp(APi)

1 + exp(APi)

)
. The

EAP–response plot adds the estimated mean function ρ(EAP ) and a step
function to the plot as done for the ESP–response plot of Section 4.3.

ii) The quasi-binomial model is a 1D regression model with E(Yi|xi) =
miρ(SPi) and V (Yi|xi) = φ mi ρ(SPi)(1 − ρ(SPi)) where the dispersion
parameter φ > 0. Note that this model and the binomial GLM have the
same conditional mean function, and the conditional variance functions are
the same if φ = 1.

Definition 4.21. Recall the Poisson GLM Y |SP ∼ Poisson(exp(SP )).
i) The Poisson GAM is Y |AP ∼ Poisson(exp(AP )). The EAP–response

plot adds the estimated mean function exp(EAP ) and lowess to the plot as
done for the ESP–response plot of Section 4.4.

ii) The quasi-Poisson model is a 1D regression model with E(Y |x) =
exp(SP ) and V (Y |x) = φ exp(SP ) where the dispersion parameter φ > 0.
Note that this model and the Poisson GLM have the same conditional mean
function, and the conditional variance functions are the same if φ = 1.

For the quasi-binomial model, the conditional mean and variance functions
are similar to those of the binomial distribution, but it is not assumed that
Y |SP has a binomial distribution. Similarly, it is not assumed that Y |SP
has a Poisson distribution for the quasi-Poisson model.

Next, some notation is needed to derive the zero truncated Poisson re-
gression model. Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),

if the probability mass function (pmf) of Y is f(y) =
e−µ µy

(1− eµ) y!
for

y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distri-
bution where y = 0 values are truncated, so not allowed. If W ∼ Poisson(µ)
with pmf fW (y), then P (W = 0) = e−µ, so

∑∞
y=1 fW (y) = 1 − e−µ =∑∞

y=0 fW (y) −∑∞
y=1 fW (y). So the ZTP pmf f(y) = fW (y)/(1 − eµ) for

y 6= 0.
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Now E(Y ) =
∑∞

y=1 yf(y) =
∑∞

y=0 yf(y) =
∑∞

y=0 yfW (y)/(1 − e−µ) =

E(W )/(1− e−µ) = µ/(1− e−µ).
Similarly, E(Y 2) =

∑∞
y=1 y

2f(y) =
∑∞

y=0 y
2f(y) =

∑∞
y=0 y

2fW (y)/(1 −
e−µ) = E(W 2)/(1− e−µ) = [µ2 + µ]/(1− e−µ). So

V (Y ) = E(Y 2)− (E(Y ))2 =
µ2 + µ

1− e−µ
−
(

µ

1− e−µ

)2

.

Definition 4.22. The zero truncated Poisson regression model has Y |SP ∼
ZTP (exp(SP )). Hence the parameter µ(SP ) = exp(SP ),

E(Y |x) =
exp(SP )

1− exp(− exp(SP ))
and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1− exp(− exp(SP ))
−
(

exp(SP )

1− exp(− exp(SP ))

)2

.

The quasi-binomial, quasi-Poisson, and zero truncated Poisson regression
models have GAM analogs that replace SP by AP. Definitions 4.1, 4.2, and
4.3 give important GAM models where SP = AP. Several of these models are
GAM analogs of models discussed in Sections 4.2, 4.3, and 4.4.

4.7.1 Response Plots

For a 1D regression model, there are several useful plots using the ESP. A
GAM is a 1D regression model with ESP = EAP . It is well known that the
residual plot of ESP or EAP versus the residuals (on the vertical axis) is
useful for checking the model. Similarly, the response plot of ESP or EAP
versus the response Y is useful. Assume that the ESP or EAP takes on many
values. For a GAM, substitute EAP for ESP for the plots in Definitions 4.9,
4.10, 4.11, 4.13, 4.14, and 4.16.

The response plot for the beta-binomial GAM is similar to that for the
binomial GAM. The plots for the negative binomial GAM are similar to
those of the Poisson regression GAM, including the plots in Definition 4.16.
See Examples 4.4, 4.5, and 4.6.

4.7.2 The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted
without important loss of information. Olive and Hawkins (2005) make an
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EE plot of ESP (I) versus ESP where ESP (I) is for a submodel I and ESP
is for the full model. This plot can also be used to complement the hypothesis
test that the reduced model I (which is selected before gathering data) can
be used instead of the full model. The obvious extension to GAMs is to make
the EE plot of EAP (I) versus EAP . If the fitted full model and submodel
I are good, then the plotted points should follow the identity line with high
correlation (use correlation ≥ 0.95 as a benchmark).

To justify this claim, assume that there exists a subset S of predictor
variables such that if xS is in the model, then none of the other predictors
is needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning x = (xT

S ,x
T
E)T . Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj)+
∑

k∈E

Sk(xk) = α+
∑

j∈S

Sj(xj). (4.10)

The extraneous terms that can be eliminated given that the subset S is in
the model have Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I.
Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj) = α+
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset
I that includes all relevant predictors, the correlation corr(AP,AP(I)) = 1.
Hence if the full model and submodel are reasonable and if EAP and EAP(I)
are good estimators of AP and AP(I), then the plotted points in the EE plot
of EAP(I) versus EAP will follow the identity line with high correlation.

4.7.3 An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding
GLM has the correct form of the predictors xj in the model. Suppose a GLM
and the corresponding GAM are both fit with the same link function where
at least one general Sj(xj) was used. Since the GLM is a special case of the
GAM, the plotted points in the EE plot of EAP versus ESP should follow
the identity line with very high correlation if the fitted GLM and GAM are
roughly equivalent. If the correlation is not very high and the GAM has some
nonlinear Ŝj(xj), update the GLM, and remake the EE plot. For example,
update the GLM by adding terms such as x2

j and possibly x3
j , or add log(xj)

if xj is highly skewed. Then remake the EAP versus ESP plot.
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4.7.4 Examples

For the binary logistic GAM, the EAP will not be a consistent estimator
of the AP if the estimated probability ρ̂(AP ) = ρ(EAP ) is exactly zero or
one. The following example will show that GAM output and plots can still
be used for exploratory data analysis. The example also illustrates that EE
plots are useful for detecting cases with high leverage and clusters of cases.
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Fig. 4.10 Visualizing the ICU GAM

Example 4.15. For the ICU data of Example 4.13, a binary general-
ized additive model was fit with unspecified functions for AGE, SYS, and
HRA, and linear functions for the remaining 16 variables. Output suggested
that functions for SYS and HRA are linear but the function for AGE may
be slightly curved. Several cases had ρ̂(AP ) equal to zero or one, but the
response plot in Figure 4.10 suggests that the full model is useful for predict-
ing survival. Note that the ten slice step function closely tracks the logistic
curve. To visualize the model with the response plot, use Y |x ≈ binomial[1,
ρ(EAP ) = eEAP /(1+eEAP )]. When x is such that EAP < −5, ρ(EAP ) ≈ 0.
If EAP > 5, ρ(EAP ) ≈ 1, and if EAP = 0, then ρ(EAP ) = 0.5. The logistic
curve gives ρ(EAP ) ≈ P (Y = 1|x) = ρ(AP ). The different estimated bi-
nomial distributions have ρ̂(AP ) = ρ(EAP ) that increases according to the
logistic curve as EAP increases. If the step function tracks the logistic curve
closely, the binary GAM gives useful smoothed estimates of ρ(AP ) provided
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Fig. 4.11 GAM and GLM give Similar Success Probabilities

that the number of 0s and 1s are both much larger than the model degrees
of freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 4.11 shows the plot of
EAP versus ESP. The plot shows that the near zero and near one probabilities
are handled differently by the GAM and GLM, but the estimated success
probabilities for the two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ). Hence we
used the GLM and perform variable selection as in Example 4.13. Some R
code is below.

##ICU data from Statlib or URL

#http://parker.ad.siu.edu/Olive/ICU.lsp

#delete header of ICU.lsp and delete last parentheses

#at the end of the file. Save the file on F drive as

#icu.txt.

icu <- read.table("F:\\icu.txt")

names(icu) <- c("ID", "STA", "AGE", "SEX", "RACE",

"SER", "CAN", "CRN", "INF", "CPR", "SYS", "HRA",

"PRE", "TYP", "FRA", "PO2", "PH", "PCO", "Bic",

"CRE", "LOC")

icu[,5] <- as.factor(icu[,5])
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icu[,21] <- as.factor(icu[,21])

icu2<-icu[,-1]

outf <- glm(formula=STA˜.,family=binomial,data=icu2)

ESP <- predict(outf)

library(mgcv)

outgam <- gam(STA ˜ s(AGE)+SEX+RACE+SER+CAN+CRN+INF+

CPR+s(SYS)+s(HRA)+PRE+TYP+FRA+PO2+PH+PCO+Bic+CRE+LOC,

family=binomial,data=icu2)

EAP <- predict.gam(outgam)

plot(EAP,ESP)

abline(0,1)

#Figure 4.11

Y <- icu2[,1]

lrplot3(ESP=EAP,Y,slices=18)

#Figure 4.10

lrplot3(ESP,Y,slices=18)

#Figure 4.7

Example 4.16. For binary data, Kay and Little (1987) suggest examining
the two distributions x|Y = 0 and x|Y = 1. Use predictor x if the two
distributions are roughly symmetric with similar spread. Use x and x2 if the
distributions are roughly symmetric with different spread. Use x and log(x)
if one or both of the distributions are skewed. The log rule says add log(x)
to the model if min(x) > 0 and max(x)/min(x) > 10. The Gladstone (1905)
data is useful for illustrating these suggestions. The response was gender with
Y = 1 for male and Y = 0 for female. The predictors were age, height, and
the head measurements circumference, length, and size. When the GAM was
fit without log(age) or log(size), the Ŝj for age, height, and circumference
were nonlinear. The log rule suggested adding log(age), and log(size) was
added because size is skewed. The GAM for this model had plots of Ŝj(xj)
that were fairly linear. The response plot is not shown but was similar to
Figure 4.10, and the step function tracked the logistic curve closely. When
EAP = 0, the estimated probability of Y = 1 (male) is 0.5. When EAP > 5
the estimated probability is near 1, but near 0 for EAP < −5. The response
plot for the binomial GLM, not shown, is similar.

Example 4.17. Wood (2017, pp. 125-130) describes heart attack data
where the response Y is the number of heart attacks for mi patients suspected
of suffering a heart attack. The enzyme ck (creatine kinase) was measured for
the patients and it was determined whether the patient had a heart attack
or not. A binomial GLM with predictors x1 = ck, x2 = [ck]2, and x3 = [ck]3

was fit and had AIC = 33.66. The binomial GAM with predictor x1 was fit
in R, and Figure 4.12 shows that the EE plot for the GLM was not too good.
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Fig. 4.13 EE plot with log(ck) in the GLM
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Fig. 4.14 Response Plot for Heart Attack Data

The log rule suggests using ck and log(ck), but ck was not significant. Hence
a GLM with the single predictor log(ck) was fit. Figure 4.13 shows the EE
plot, and Figure 4.14 shows the response plot where the Zi = Yi/mi track the
logistic curve closely. There was no evidence of overdispersion and the model
had AIC = 33.45. The GAM using log(ck) had a linear Ŝ, and the correlation
of the plotted points in the EE plot, not shown, was one. See Problem 4.8.

4.8 Overdispersion

Definition 4.23. Overdispersion occurs when the actual conditional vari-
ance function V (Y |x) is larger than the model conditional variance function
VM (Y |x).

Overdispersion can occur if the model underfits, if the response variables
are correlated, if the population follows a mixture distribution, or if outliers
are present. Typically it is assumed that the model is correct so V (Y |x) =
VM (Y |x). Hence the subscript M is usually suppressed. A GAM has condi-
tional mean and variance functions EM(Y |AP ) and VM (Y |AP ) where the
subscript M indicates that the function depends on the model. Then overdis-
persion occurs if V (Y |x) > VM (Y |AP ) where E(Y |x) and V (Y |x) denote
the actual conditional mean and variance functions. Then the assumptions
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that E(Y |x) = EM(Y |x) ≡ m(AP ) and V (Y |x) = VM (Y |AP ) ≡ v(AP )
need to be checked.

First check that the assumption E(Y |x) = m(SP ) is a reasonable approx-
imation to the data using the response plot with lowess and the estimated
conditional mean function ÊM(Y |x) = m̂(SP ) added as visual aids. Overdis-
persion can occur even if the model conditional mean function E(Y |SP )
is a good approximation to the data. For example, for many data sets
where E(Yi|xi) = miρ(SPi), the binomial regression model is inappropriate
since V (Yi|xi) > miρ(SPi)(1− ρ(SPi)). Similarly, for many data sets where
E(Y |x) = µ(x) = exp(SP ), the Poisson regression model is inappropriate
since V (Y |x) > exp(SP ). If the conditional mean function is adequate, then
we suggest checking for overdispersion using the OD plot.

Definition 4.24. For 1D regression, the OD plot is a plot of the estimated
model variance V̂M (Y |SP ) versus the squared residuals
V̂ = [Y − ÊM(Y |SP )]2. Replace SP by AP for a GAM.

The OD plot has been used by Winkelmann (2000, p. 110) for the Poisson
regression model where V̂M (Y |SP ) = ÊM(Y |SP ) = exp(ESP ). For binomial
and Poisson regression, the OD plot can be used to complement tests and
diagnostics for overdispersion such as those given in Cameron and Trivedi
(2013), Collett (1999, ch. 6), and Winkelmann (2000). See discussion below
Definitions 4.11 and 4.14 for how to interpret the OD plot with the identity
line, OLS line, and slope 4 line added as visual aids, and for discussion of the
numerical summaries G2 and X2 for GLMs.

Definition 4.1, with SP = AP, gives EM(Y |AP ) = m(AP ) and VM (Y |AP )
= v(AP ) for several models. Often m̂(AP ) = m(EAP ) and v̂(AP ) =
v(EAP ), but additional parameters sometimes need to be estimated. Hence

v̂(AP ) = miρ(EAPi)(1−ρ(EAPi))[1+(mi−1)θ̂/(1+θ̂)], v̂(AP ) = exp(EAP )+
τ̂ exp(2 EAP ), and v̂(AP ) = [m(EAP )]2/ν̂ for the beta-binomial, nega-
tive binomial, and gamma GAMs, respectively. The beta-binomial regres-
sion model is often used if the binomial regression is inadequate because of
overdispersion, and the negative binomial GAM is often used if the Poisson
GAM is inadequate.

Since the Poisson regression (PR) model is simpler than the negative bi-
nomial regression (NBR) model, and the binomial logistic regression (LR)
model is simpler beta-binomial regression (BBR) model, the graphical di-
agnostics for the goodness of fit of the PR and LR models are very useful.
Combining the response plot with the OD plot is a powerful method for as-
sessing the adequacy of the Poisson and logistic regression models. NBR and
BBR models should also be checked with response and OD plots. See Ex-
amples 4.2–4.6 and the R code at the end of Section 4.6 (where q = p − 1).

Example 4.18. The species data is from Cook and Weisberg (1999,
pp. 285-286) and Johnson and Raven (1973). The response variable is the
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total number of species recorded on each of 29 islands in the Galápagos
Archipelago. Predictors include area of island, areanear = the area of the
closest island, the distance to the closest island, the elevation, and endem =
the number of endemic species (those that were not introduced from else-
where). A scatterplot matrix of the predictors suggested that log transfor-
mations should be taken. Poisson regression suggested that log(endem) and
log(areanear) were the important predictors, but the deviance and Pear-
son X2 statistics suggested overdispersion was present since both statistics
were near 71.4 with 26 degrees of freedom. The residual plot also suggested
increasing variance with increasing fitted value. A negative binomial regres-
sion suggested that only log(endem) was needed in the model, and had a
deviance of 26.12 on 27 degrees of freedom. The residual plot for this model
was roughly ellipsoidal. The negative binomial GAM with log(endem) had
an Ŝ that was linear and the plotted points in the EE plot had correlation
near 1.
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Fig. 4.15 Response Plot for Negative Binomial GAM

The response plot with the exponential and lowess curves added as vi-
sual aids is shown in Figure 4.15. The interpretation is that Y |x ≈ negative
binomial with E(Y |x) ≈ exp(EAP ). Hence if EAP = 0, E(Y |x) ≈ 1. The
negative binomial and Poisson GAM have the same conditional mean func-
tion. If the plot was for a Poisson GAM, the interpretation would be that
Y |x ≈ Poisson(exp(EAP )). Hence if EAP = 0, Y |x ≈ Poisson(1).
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Fig. 4.16 OD Plot for Negative Binomial GAM

Figure 4.16 shows the OD plot for the negative binomial GAM with the
identity line and slope 4 line through the origin added as visual aids. The
plotted points fall within the “slope 4 wedge,” suggesting that the negative
binomial regression model has successfully dealt with overdispersion. Here
Ê(Y |AP ) = exp(EAP ) and V̂ (Y |AP ) = exp(EAP ) + τ̂ exp(2EAP ) where
τ̂ = 1/37.

4.9 Inference After Variable Selection for GLMs

Inference after variable selection for GLMs is very similar to inference after
variable selection for multiple linear regression. AIC, BIC, EBIC, lasso, and
elastic net can be used for variable selection. Read Section 4.2 for the large
sample theory for β̂Imin,0. We assume that n >> p. Theorem 4.4, the Vari-
able Selection CLT, still applies, as does Remark 4.4. Hence if lasso or elastic
net is consistent, then relaxed lasso or relaxed elastic net is

√
n consistent.

The geometric argument of Theorem 4.5 also applies. We follow Rathnayake
and Olive (2019) closely. Read Sections 4.2, 4.5, and 4.6 before reading this
section. We will describe the parametric bootstrap, and then consider boot-
strapping variable selection.
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4.9.1 The Parametric and Nonparametric Bootstrap

Consider a parametric 1D regression model Y |x ∼ D(xT β, γ) where D is a
parametric distribution that depends on the p×1 vector of predictors x only
through SP = xT β, and γ is a q × 1 vector of parameters.

Suppose Yi|xi ∼ D(xT
i β, γ),

√
n(β̂ − β)

D→ Np(0,V (β)), and that

V (β̂)
P→ V (β) as n→∞. These assumptions tend to be mild for a parametric

regression model where the maximum likelihood estimator (MLE) β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix. If In(β) is the

Fisher information matrix based on a sample of size n, then In(β)/n
P→ I(β).

For GLMs, see, for example, Sen and Singer (1993, p. 309). For the paramet-

ric regression model, we regress Y on X to obtain (β̂, γ̂) where the n × 1
vector Y = (Yi) and the ith row of the n× p design matrix X is xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b
does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (4.11)

as n→∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI (0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

However, under regularity conditions, E(β̂
∗
I) ≈ β̂I and Cov(β̂

∗
I)− Cov(β̂I)→

0 as n, B →∞.
To see the above claim for GLMs, consider a GLM with ηi = SPi = xT

i β =
g(µi) where µi = E(Yi|xi) = g−1(ηi). Let Vi = V (Yi|xi). Let

zi = g(µi) + g′(µi)(Yi − µi) = ηi +
∂ηi

∂µi
(Yi − µi), Z = (zi),

wi =

(
∂µi

∂ηi

)2
1

Vi
, W = diag(wi), Ŵ = W | ˆβ , and Ẑ = Z| ˆβ .

Then

β̂ = (XT ŴX)−1XT Ŵ Ẑ and β̂I = (XT
I Ŵ IXI)

−1XT
I Ŵ IẐI
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while
β̂
∗
I = (XT

I Ŵ
∗
IXI)

−1XT
I Ŵ

∗
IẐ

∗
I (4.12)

where β̂
∗
I is fit as if (Y ∗,XI) follows the GLM with parameters (β̂(I), γ̂).

If S ⊆ I, then this approximation is correct asymptotically since
√
nβ̂(O) =

OP (1). Hence η∗iI = xT
iI β̂(I) = g(µ∗

iI), and V ∗
iI = VM (Y ∗

i |xiI) where VM

is the model variance from the GLM with parameters (β̂(I), γ̂). Also, the
estimated asymptotic covariance matrices are

Ĉov(β̂) = (XT ŴX)−1 and Ĉov(β̂I) = (XT
I Ŵ IX I)

−1.

See, for example, Agresti (2002, pp. 138, 147), Hillis and Davis (1994),
and McCullagh and Nelder (1989). From Sen and Singer (1994, p. 307),

n(XT
I Ŵ IXI)

−1 P→ I−1(βI) as n→∞ if S ⊆ I.
Let β̃ = (XT WX)−1XT WZ. Then E(β̃) = β since E(Z) = Xβ, and

Cov(Y ) = Cov(Y |X) = diag(Vi). Since

∂µi

∂ηi
=

1

g′(µi)
and

∂ηi

∂µi
= g′(µi),

Cov(Z) = Cov(Z|X) = W−1. Thus Cov(β̃) = (XWX)−1. Although

β̂ − β = OP (n−1/2), we have n(XT ŴX)−1 − n(XT WX)−1 P→ I−1(β) −
I−1(β) = 0 as n→∞.

Let β̃
∗
I = (XT

I W ∗
IXI)

−1XT
I W ∗

IZ
∗
I where W ∗

i and Z∗
I are evaluated using

β̂(I). Then Cov(Y ∗) = diag(V ∗
i )→ diag(V ∗

iI). Hence Cov(Z∗
I)→W ∗−1

I and

Cov(β̃
∗
I)→ (XT

I W ∗
IXI)

−1 as n, B →∞. Hence Cov(β̂
∗
I)− Cov(β̂I)→ 0 as

n, B →∞ if S ⊆ I.
As an example, consider the Poisson regression model from Section 4.4.

Then µ∗
iI = exp(xT

iI β̂(I)) = exp(η∗iI) = V ∗
iI . Hence

∂µ∗
iI

∂η∗iI
= exp(η∗iI) = µ∗

iI = V ∗
iI ,

w∗
iI = exp(xT

iI β̂(I)), and ŵ∗
iI = exp(xT

iIβ̂
∗
I). Similarly, η∗iI = log(µ∗

iI),

z∗iI = η∗iI +
∂η∗iI
∂µ∗

iI

(Y ∗
i − µ∗

iI) = η∗iI +
1

µ∗
iI

(Y ∗
i − µ∗

iI), and

ẑ∗iI = xT
iI β̂

∗
I +

1

exp(xT
iI β̂

∗
I)

(Y ∗
i − exp(xT

iI β̂
∗
I)).

Note that for (Y ,XI ), the formulas are the same with the asterisks removed
and µiI = exp(xT

iIβI).
The nonparametric bootstrap samples cases (Yi,xi) with replacement to

form (Y ∗
j ,X

∗
j ), and regresses Y ∗

j on X∗
j to get β̂

∗
j for j = 1, ..., B. The
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nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a very
strong assumption.

4.9.2 Bootstrapping Variable Selection

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. Let the
variable selection estimator Tn = Aβ̂Imin,0 with θ = Aβ. Recall Tn is equal
to the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known

full rank g × p matrix with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by (2.6)
where E(v) = 0, and Σv =

∑
j πjAV j,0A

T . Hence geometric argument
Theorem 2.5 holds: if we had iid data T1, ..., TB, then the prediction region
applied to the iid data and centered at a randomly chosen Tn would be a
large sample confidence region for θ.

Next use the argument for multiple linear regression in Section 2.6.4. For
the bootstrap, suppose that T ∗

i is equal to T ∗
ij with probability ρjn for j =

1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count the
number of times T ∗

i = T ∗
ij in the bootstrap sample. Then the bootstrap

sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Suppose the jth component of an iid sample T1, ..., TB and the jth compo-
nent of the bootstrap sample T ∗

1 , ..., T
∗
B have the same variability asymptot-

ically. Since E(Tjn) ≈ θ, each component of the iid sample is approximately
centered at θ. The bootstrap components are centered at E(T ∗

jn), and often
E(T ∗

jn) = Tjn. Geometrically, separating the component clouds so that they
are no longer centered at one value makes the overall data cloud larger. Thus
the variability of T ∗

n is larger than that of Tn for a mixture distribution,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives coverage

close to or higher than the nominal coverage for confidence regions (2.30)
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and (2.32), using the geometric argument. The deviation T ∗
i − Tn tends to

be larger in magnitude than the deviation and T ∗
i − T

∗
. Hence the cutoff

D̂2
2,1−δ = D2

(UB,T ) tends to be larger than D2
(UB), and region (2.31) tends to

have higher coverage than region (2.32) for a mixture distribution.
The full model should be checked with the response plot before do-

ing variable selection inference. Assume p is fixed and n ≥ 20p. Assume
P (S ⊆ Imin) → 1 as n → ∞, and that S ⊆ Ij . For multiple linear re-
gression with the residual bootstrap that uses residuals from the full OLS
model, Chapter 2 showed that the components of the iid sample and boot-
strap sample have the same variability asymptotically. The components of the
iid sample are centered at Aβ while the components of the bootstrap sample
are centered at Aβ̂Ij ,0. Now consider regression models with Y x|xT β.

Assume
√
nA(β̂Ij,0−β)

D→ Naj (0,Σj) where Σj = AV j,0A
T . For the non-

parametric bootstrap, assume
√
n(Aβ̂

∗
Ij ,0−Aβ̂Ij,0)

D→ Naj (0,Σj). Then the
components of the iid sample and bootstrap sample have the same variability
asymptotically. The components of iid sample are centered at Aβ while the
components of the bootstrap sample are centered at Aβ̂Ij ,0. For the nonpara-

metric bootstrap, the above results tend to hold if
√
n(β̂ − β)

D→ Np(0,V )

and if
√
n(β̂

∗ − β̂)
D→ Np(0,V ). Assumptions for the nonparametric boot-

strap tend to be rather strong: often one assumption is that the n cases
(Yi,x

T
i )T are iid from some population. See Shao and Tu (1995, pp. 335-349)

for the nonparametric bootstrap for GLMs, nonlinear regression, and Cox’s
proportional hazards regression. Also see Burr (1994), Efron and Tibshirani
(1993), Freedman (1981), and Tibshirani (1997).

For the parametric bootstrap, Section 4.9.1 showed that under regular-

ity conditions, Cov(β̂
∗
I)− Cov(β̂I) → 0 as n, B → ∞ if S ⊆ I. Hence

Cov(Tjn) − Cov(T ∗
jn) → 0 as n, B → ∞ if S ⊆ I. Here Tn = Aβ̂Imin,0,

Tjn = Aβ̂Ij,0, T
∗
n = Aβ̂

∗
Imin,0, and T ∗

jn = Aβ̂
∗
Ij ,0. Then E(Tjn) ≈ Aβ = θ

while the E(T ∗
jn) are more variable than the E(Tjn) with E(T ∗

jn) ≈ Aβ̂(Ij , 0),

roughly, where β̂(Ij , 0) is formed from β̂(Ij) by adding zeros corresponding
to variables not in Ij . Hence the jth component of an iid sample T1, ..., TB

and the jth component of the bootstrap sample T ∗
1 , ..., T

∗
B have the same

variability asymptotically.
In simulations for n ≥ 20p for H0 : AβS = θ0, the coverage tended to

get close to 1 − δ for B ≥ max(200, 50p) so that S∗
T is a good estimator of

Cov(T ∗). In the simulations where S is not the full model, inference with
backward elimination with Imin using AIC was often more precise than in-
ference with the full model if n ≥ 20p and B ≥ 50p. It is possible that S∗

T is
singular if a column of the bootstrap sample is equal to 0. If the regression
model has a q× 1 vector of parameters γ , we may need to replace p by p+ q.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
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higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in (2.1) so that H0 is true. Suppose a
nominal 95% confidence region is used and UB is the 96th percentile. Hence
the confidence region (2.30) or (2.31) covers at least 96% of the bootstrap

sample. If β̂
∗
O,j = 0 for more than 4% of the β̂

∗
O,1, ..., β̂

∗
O,B, then 0 is in the

confidence region and the bootstrap test fails to reject H0. If this occurs for
each run in the simulation, then the observed coverage will be 100%.

Now suppose β̂
∗
O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (2.30),
(2.31), or (2.32) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗
O,j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from variable selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, and B ≥ 50p. (Since the pvalue is one, this technique
may be useful for data snooping: applying MLE theory to submodel I may
have negligible selection bias.)

Remark 4.3. As in Chapter 2, another way to look at the bootstrap con-
fidence region for variable selection estimators is to consider the estimator
T2,n that chooses Ij with probability equal to the observed bootstrap propor-
tion ρ̂jn. The bootstrap sample T ∗

1 , ..., T
∗
B tends to be slightly more variable

than an iid sample T2,1, ..., T2,B, and the geometric argument suggests that
the large sample coverage of the nominal 100(1− δ)% confidence region will
be at least as large as the nominal coverage 100(1− δ)%.

4.9.3 Examples and Simulations

Pelawa Watagoda and Olive (2019a) have an example and simulations for
multiple linear regression using the residual bootstrap. See Chapter 2. We
will use Poisson and binomial regression.

Example 4.19. Lindenmayer et al. (1991) and Cook and Weisberg (1999,
p. 533) give a data set with 151 cases where Y is the number of possum
species found in a tract of land in Australia. The predictors are acacia=basal
area of acacia + 1, bark=bark index, habitat=habitat score, shrubs=number
of shrubs + 1, stags= number of hollow trees + 1, stumps=indicator for
presence of stumps, and a constant. Inference for the full Poisson regression
model is shown along with the shorth(c) nominal 95% confidence intervals for
βi computed using the parametric bootstrap with B = 1000. As expected, the
bootstrap intervals are close to the large sample GLM confidence intervals
≈ β̂i ± 2SE(β̂i).
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The minimum AIC model from backward elimination used a constant,
bark, habitat, and stags. The shorth(c) nominal 95% confidence intervals for
βi using the parametric bootstrap are shown. Note that most of the confidence
intervals contain 0 when closed intervals are used instead of open intervals.
The Poisson regression output is also shown, but should only be used for
inference if the model was selected before looking at the data.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -1.0428 0.2480 -4.205 0.0000 [-1.562,-0.538]

acacia 0.0166 0.0103 1.612 0.1070 [-0.004, 0.035]

bark 0.0361 0.0140 2.579 0.0099 [ 0.007, 0.065]

habitat 0.0762 0.0375 2.032 0.0422 [-0.003, 0.144]

shrubs 0.0145 0.0205 0.707 0.4798 [-0.028, 0.056]

stags 0.0325 0.0103 3.161 0.0016 [ 0.013, 0.054]

stumps -0.3907 0.2866 -1.364 0.1727 [-1.010, 0.171]

output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -0.8994 0.2135 -4.212 0.0000 [-1.438,-0.428]

acacia 0 [ 0.000, 0.037]

bark 0.0336 0.0121 2.773 0.0056 [ 0.000, 0.060]

habitat 0.1069 0.0297 3.603 0.0003 [ 0.000, 0.156]

shrubs 0 [ 0.000, 0.060]

stags 0.0302 0.0094 3.210 0.0013 [ 0.000, 0.054]

stumps 0 [-0.970, 0.000]

We tested H0 : β2 = β5 = β7 = 0 with the Imin model selected by
backward elimination. (Of course this test would be easy to do with the
full model using GLM theory.) Then H0 : Aβ = (β2 , β5, β7)

T = 0. Using
the prediction region method with the full model had [0, D(UB)] = [0, 2.836]

with D0 = 2.135. Note that
√
χ2

3,0.95 = 2.795. So fail to reject H0. Using

the prediction region method with the Imin backward elimination model had
[0, D(UB)] = [0, 2.804] while D0 = 1.269. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.322. (Use
(3.35) with S∗

T and D from backward elimination for the numerator, and
from the full model for the denominator.) Hence the backward elimination
bootstrap test was more precise than the full model bootstrap test.

Example 4.20. For binary logistic regression, the MLE tends to converge
if max(|xT

i β̂|) ≤ 7 and if the Y values of 0 and 1 are not nearly perfectly

classified by the rule Ŷ = 1 if xT
i β̂ > 0.5 and Ŷ = 0, otherwise. If there

is perfect classification, the MLE does not exist. Let ρ̂(x) = P̂ (Y = 1|x)

under the binary logistic regression. If |xT
i β̂|) ≥ 10, some of the ρ̂(xi) tend

to be estimated to be exactly equal to 0 or 1, which causes problems for
the MLE. The Flury and Riedwyl (1988, pp. 5-6) banknote data consists of
100 counterfeit and 100 genuine Swiss banknote. The response variable is
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an indicator for whether the banknote is counterfeit. The six predictors are
measurements on the banknote: bottom, diagonal, left, length, right, and top.
When the logistic regression model is fit with these predictors and a constant,
there is almost perfect classification and backward elimination had problems.
We deleted diagonal, which is likely an important predictor, so backward
elimination would run. For this full model, classification is very good, but
the xT

i β̂ run from −20 to 20. In a plot of xT
i β̂ versus Y on the vertical axis

(not shown), the logistic regression mean function is tracked closely by the
lowess scatterplot smoother. The full model and backward elimination output
is below. Inference using the logistic regression normal approximation appears
to greatly underestimate the variability of β̂ compared to the parametric full
model bootstrap variability. We tested H0 : β2 = β3 = β4 = 0 with the Imin

model selected by backward elimination. Using the prediction region method
with the full model had [0, D(UB)] = [0, 1.763] with D0 = 0.2046. Note that√
χ2

3,0.95 = 2.795. So fail to reject H0. Using the prediction region method

with the Imin backward elimination model had [0, D(UB)] = [0, 1.511] while
D0 = 0.2297. So fail to reject H0. The ratio of the volumes of the bootstrap
confidence regions for this test was 16.2747. Hence the full model bootstrap
inference was much more precise. Backward elimination produced many zeros,
but also produced many estimates that were very large in magnitude.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -475.581 404.913 -1.175 0.240 [-83274.99,1939.72]

length 0.375 1.418 0.265 0.791 [ -98.902,137.589]

left -1.531 4.080 -0.375 0.708 [ -364.814,611.688]

right 3.628 3.285 1.104 0.270 [ -261.034,465.675]

bottom 5.239 1.872 2.798 0.005 [ 3.159,567.427]

top 6.996 2.181 3.207 0.001 [ 4.137,666.010]

output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -472.999 269.271 -1.757 0.079 [-168131.6,35623.9]

length 0 [ -110.850,286.265]

left 0 [ -752.695,724.702]

right 2.725 2.050 1.329 0.184 [-656.1549,906.136]

bottom 5.005 1.657 3.020 0.003 [ 2.985,1428.346]

top 6.821 2.071 3.294 0.001 [ 4.333,1957.107]

Binary regression data sets like the one in Example 4.20 are common: the
response plot of xT

i β̂ versus Y suggests that the logistic regression mean

function is good, but the range of xT
i β̂ is such that the GLM normal ap-

proximation to the MLE β̂ is likely invalid. Since the parametric bootstrap
produces datasets very similar to the actual dataset, the bootstrap distri-
bution of the logistic regression MLE may be superior to the GLM normal
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approximation. For Example 4.20, the GLM and bootstrap inference for the
full model both suggest that bottom and top are important predictors.

The results of the following simulation are similar to those of Chapter 2
for multiple linear regression using the residual bootstrap with residuals from
the OLS full model. This simulation was for Poisson regression and binomial
regression, using B = max(200, n/10, 50p) and 5000 runs. The simulation
used p = 4, 6, 7, 8, and 10; n = 25p, n = 50p; ψ = 0, 1/

√
p, and 0.9; and

k = 1 and p − 2 where k and ψ are defined in the following paragraph. A
larger simulation study is in Rathnayake (2019). In the simulations, we used
θ = Aβ = βi, θ = Aβ = βS = (β1, 1, ..., 1)T and θ = Aβ = βE = 0.

Let x = (1,uT )T where u is the (p−1)×1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
q = p − 1 elements of the vector wi are iid N(0,1). Let the q × q matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal
entries σii = [1+(q−1)ψ2] and the off diagonal entries σij = [2ψ+(q−2)ψ2].
Hence the correlations are cor(zi, zj) = ρ = (2ψ+ (q− 2)ψ2)/(1 + (q− 1)ψ2)

for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii+k(k−1)σij) = N(0, v2). Let u = az/v.
Then cor(xi, xj) = ρ for i 6= j where xi and xj are nontrivial predictors. If
ψ = 1/

√
cp, then ρ→ 1/(c+ 1) as p→∞ where c > 0. As ψ gets close to 1,

the predictor vectors ui cluster about the line in the direction of (1, ..., 1)T .
Let SP = xT β = β1 +1xi,2 + · · ·+1xi,k+1 ∼ N(β1, a

2) for i = 1, ..., n. Hence
β = (β1 , 1, ..., 1, 0, ..., 0)

T with β1, k ones, and p − k − 1 zeros. Binomial
regression used β1 = 0, a = 5/3, and mi = m with m = 1 or 20. Poisson
regression used β1 = 1 = a and β1 = 5 with a = 2.

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = (β1, 1, ..., 1)T where β2 =
· · · = βk+1 = 1, and H0 : βE = 0 (whether the last p − k − 1 βi = 0). The
nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94
and 0.96 would suggest coverage is close to the nominal value. The parametric
bootstrap was used with AIC.

In the tables, there are two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for backward
elimination. The last six columns give results for the tests. The terms pr,
hyb, and br are for the prediction region method (2.30), hybrid region (2.32),
and Bickel and Ren region (2.31). The 0 indicates the test was H0 : βE = 0,
while the 1 indicates that the test was H0 : βS = (β1, 1..., 1)T. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests for βS if k = 1.
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Volume ratios of the three confidence regions can be compared using (2.35),
but there is not enough information in the tables to compare the volume of
the confidence region for the full model regression versus that for the variable
selection regression since the two methods have different determinants |S∗

T |.
The inference for backward elimination was often as precise or more precise

than the inference for the full model. The coverages tended to be near 0.95
for the parametric bootstrap on the full model. Variable selection coverage
tended to be near 0.95 unless the β̂i could equal 0. An exception was binary
logistic regression with m = 1 where variable selection and the full model
often had higher coverage than the nominal 0.95 for the hypothesis tests,
especially for n = 25p. Compare Tables 4.2 and 4.3. For binary regression,
the bootstrap confidence regions using smaller a and larger n resulted in
coverages closer to 0.95 for the full model, and convergence problems caused
the programs to fail for a > 4. The Bickel and Ren (2.31) average cutoffs
were at least as high as those of the hybrid region (2.32).

If βi was a component of βE , then the backward elimination confidence
intervals had higher coverage but were shorter than those of the full model
due to zero padding. The zeros in β̂E tend to result in higher than nominal
coverage for the variable selection estimator, but can greatly decrease the
volume of the confidence region compared to that of the full model.

For the simulated data, when ψ = 0, the asymptotic covariance matrix
I−1(β) is diagonal. Hence β̂S has the same multivariate normal limiting
distribution for Imin and the full model by Remark 2.4. For Tables 4.2-4.5,
βS = (β1, β2)

T , and βp−1 and βp are components of βE . For Table 4.6,
βS = (β1, ..., β9)

T . Hence β1 , β2, and βp−1 are components of βS , while
βE = β10. For the n in the tables and ψ = 0, the coverages and “lengths”
did tend to be close for the βi that are components of βS , and for pr1, hyb1,
and br1.

Table 4.2 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 200, n = 100, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9516 0.9328 0.9524 0.9504 0.9724 0.9872 0.9920 0.9802 0.9838 0.9888
len 1.1605 1.0953 0.7171 0.7151 2.5225 2.5225 2.5476 2.5173 2.5173 2.6893
vs,0 0.9564 0.9322 0.9976 0.9976 0.9960 0.9964 0.9988 0.9774 0.9794 0.9948
len 1.1483 1.0798 0.6143 0.6204 2.7329 2.7329 3.0386 2.5160 2.5160 2.6899

reg,0.5 0.9538 0.9428 0.9440 0.9544 0.9680 0.9854 0.9896 0.9724 0.9828 0.9858
len 1.1622 1.6737 1.4547 1.4588 2.5221 2.5221 2.5475 2.5165 2.5165 2.6037

vs,0.5 0.9528 0.9662 0.9978 0.9982 0.9948 0.9918 0.9978 0.9760 0.9756 0.9872
len 1.1462 1.6714 1.2879 1.2883 2.7230 2.7230 3.0170 2.5379 2.5379 2.6860

reg,0.9 0.9662 0.9578 0.9520 0.9500 0.9690 0.9846 0.9884 0.9724 0.9848 0.9876
len 1.1606 9.4523 9.4241 9.4379 2.5220 2.5220 2.5454 2.5142 2.5142 2.5389

vs,0.9 0.9566 0.9422 0.9960 0.9974 0.9958 0.9972 0.9982 0.9866 0.9932 0.9956
len 1.1502 8.4654 8.4806 8.4951 2.7700 2.7700 3.0182 2.6176 2.6176 2.7644
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Table 4.3 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 200, n = 200, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9504 0.9440 0.9552 0.9544 0.9584 0.9662 0.9674 0.9580 0.9662 0.9728
len 0.7539 0.6771 0.4583 0.4587 2.4884 2.4884 2.4992 2.4846 2.4846 2.5745
vs,0 0.9552 0.9490 0.9986 0.9978 0.9954 0.9908 0.9968 0.9600 0.9698 0.9762
len 0.7510 0.6736 0.3909 0.3926 2.7226 2.7226 3.0310 2.4814 2.4814 2.5740

reg,0.5 0.9538 0.9508 0.9550 0.9578 0.9590 0.9686 0.9690 0.9578 0.9658 0.9714
len 0.7548 1.0543 0.9337 0.9309 2.4858 2.4858 2.4958 2.4828 2.4828 2.5266

vs,0.5 0.9538 0.9602 0.9984 0.9974 0.9930 0.9922 0.9958 0.9708 0.9786 0.9828
len 0.7501 1.0607 0.8064 0.8047 2.7022 2.7023 2.9948 2.5004 2.5004 2.6164

reg,0.9 0.9462 0.9536 0.9522 0.9496 0.9548 0.9642 0.9658 0.9496 0.9610 0.9626
len 0.7546 6.0844 6.0691 6.0800 2.4888 2.4888 2.4990 2.4860 2.4860 2.4967

vs,0.9 0.9562 0.9520 0.9958 0.9954 0.9936 0.9922 0.9968 0.9822 0.9870 0.9896
len 0.7502 5.3338 5.3737 5.3847 2.7934 2.7934 3.0392 2.5873 2.5873 2.7225

Table 4.4 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 500, n = 250, p = 10, k = 1, and m = 20

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9576 0.9502 0.9520 0.9548 0.9500 0.9528 0.9530 0.9480 0.9496 0.9502
len 0.1428 0.1232 0.0860 0.0860 3.9837 3.9837 3.9876 2.4538 2.4538 2.4653
vs,0 0.9510 0.9510 0.9992 0.9978 0.9980 0.9982 0.9998 0.9412 0.9458 0.9478
len 0.1424 0.1229 0.0706 0.0707 4.3081 4.3081 4.7454 2.4531 2.4531 2.4747

reg,0.32 0.9536 0.9534 0.9514 0.9548 0.9496 0.9524 0.9530 0.9474 0.9490 0.9506
len 0.1426 0.1833 0.1609 0.1610 3.9840 3.9840 3.9884 2.4528 2.4528 2.4589

vs,0.32 0.9534 0.9620 0.9966 0.9976 0.9968 0.9976 0.9988 0.9534 0.9544 0.9582
len 0.1424 0.1837 0.1347 0.1352 4.2607 4.2607 4.6891 2.4527 2.4527 2.5042

reg,0.9 0.9514 0.9432 0.9552 0.9498 0.9434 0.9448 0.9446 0.9430 0.9440 0.9450
len 0.1427 2.2178 2.2170 2.2175 3.9846 3.9846 3.9887 2.4530 2.4530 2.4553

vs,0.9 0.9590 0.9656 0.9982 0.9986 0.9982 0.9978 0.9996 0.9532 0.9478 0.9654
len 0.1425 2.0342 1.8778 1.8862 4.2368 4.2368 4.6742 2.4449 2.4449 2.5661

Table 4.5 Bootstrapping Poisson Regression, Backward Elimination with AIC, B =
500, n = 250, p = 10, k = 1, a = 1, β1 = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9480 0.9526 0.9526 0.9520 0.9502 0.9512 0.9524 0.9432 0.9454 0.9472
len 0.1752 0.1325 0.1275 0.1276 3.9859 3.9859 3.9901 2.4528 2.4528 2.4740
vs,0 0.9552 0.9574 0.9982 0.9982 0.9984 0.9982 0.9998 0.9524 0.9574 0.9628
len 0.1752 0.1323 0.1051 0.1047 4.3004 4.3004 4.7408 2.4543 2.4543 2.5009

reg,0.32 0.9552 0.9518 0.9520 0.9536 0.9538 0.9536 0.9538 0.9510 0.9532 0.9552
len 0.1752 0.2419 0.2390 0.2386 3.9852 3.9852 3.9894 2.4518 2.4518 2.4689

vs,0.32 0.9562 0.9632 0.9986 0.9992 0.9980 0.9982 0.9992 0.9630 0.9644 0.9712
len 0.1750 0.2419 0.2005 0.2004 4.2618 4.2618 4.6811 2.4520 2.4520 2.5384

reg,0.9 0.9478 0.9530 0.9570 0.9554 0.9458 0.9478 0.9484 0.9448 0.9448 0.9476
len 0.1754 3.2873 3.2859 3.2912 3.9831 3.9831 3.9872 2.4536 2.4536 2.4691

vs,0.9 0.9500 0.9574 0.9984 0.9994 0.9970 0.9966 0.9984 0.9638 0.9626 0.9742
len 0.1752 2.8710 2.7922 2.7879 4.2597 4.2597 4.6886 2.4809 2.4809 2.6402
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Table 4.6 Bootstrapping Poisson Regression, Backward Elimination with AIC, B =
500, n = 250, p = 10, k = 8, a = 2, β1 = 5

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9522 0.9468 0.9540 0.9518 0.9496 0.9492 0.9488 0.9474 0.9464 0.9478
len 0.0210 0.0146 0.0146 0.0142 1.9593 1.9593 1.9609 4.1633 4.1633 4.1675
vs,0 0.9544 0.9546 0.9518 0.9980 0.9966 0.9374 0.9966 0.9534 0.9524 0.9552
len 0.0210 0.0146 0.0146 0.0117 2.1470 2.1470 2.3955 4.1655 4.1655 4.1880

reg,0.32 0.9522 0.9510 0.9486 0.9540 0.9494 0.9504 0.9516 0.9460 0.9468 0.9472
len 0.0210 0.0664 0.0664 0.0663 1.9595 1.9595 1.9614 4.1636 4.1636 4.1684

vs,0.32 0.9508 0.9596 0.9496 0.9992 0.9986 0.9434 0.9986 0.9634 0.9646 0.9696
len 0.0210 0.0663 0.0662 0.0541 2.1434 2.1434 2.3960 4.1970 4.1970 4.2703

reg,0.9 0.9536 0.9580 0.9550 0.9584 0.9538 0.9538 0.9548 0.9496 0.9512 0.9524
len 0.0210 1.0357 1.0361 1.0336 1.9585 1.9585 1.9605 4.1603 4.1603 4.1643

vs,0.9 0.9486 0.9484 0.9492 0.9988 0.9982 0.9492 0.9982 0.9688 0.9546 0.9676
len 0.0212 1.0742 1.0745 0.8793 2.1387 2.1387 2.3860 4.2883 4.2883 4.3818

4.10 Prediction Intervals

We use two prediction intervals from Olive et al. (2019). The first predic-
tion interval for Yf applies the shorth prediction interval of Section 2.3 to
the parametric bootstrap sample Y ∗

1 , ..., Y
∗
B where the Y ∗

i are iid from the

distribution D(ĥ(xf ), γ̂). If the regression method produces a consistent es-

timator (ĥ(x), γ̂) of (h(x), γ), then this new prediction interval is a large
sample 100(1− δ)% PI that is a consistent estimator of the shortest popula-
tion interval [L, U ] that contains at least 1− δ of the mass as B, n→∞. The
new large sample 100(1− δ)% PI using Y ∗

1 , ..., Y
∗
B uses the shorth(c) PI with

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (4.13)

For models with a linear predictor xT β, we will want prediction intervals
after variable selection or model selection. Refer to Equation (2.1) and Section
4.6.1. Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for GLM variable
selection. The Chen and Chen (2008) EBIC criterion can be useful, especially
if n/p is not large. GLM model selection with lasso and the elastic net is
also common. See Hastie et al. (2015, ch. 3), Tibshirani (1996), Friedman et
al. (2007), and Friedman et al. (2010). Relaxed lasso applies the regression
method, such as a GLM, to the active predictors with nonzero coefficients
selected by lasso. For n ≥ 10p, Olive and Hawkins (2005) suggested using
multiple linear regression variable selection software with the Mallows (1973)
Cp criterion to get a subset I, then fit the GLM using Y and xI . If the
regression model contains a q × 1 vector of parameters γ , then we may need
n ≥ 10(p+ q).
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The prediction interval (4.13) can have undercoverage if n is small com-
pared to the number of estimated parameters. The modified shorth PI (4.14)
inflates PI (4.13) to compensate for parameter estimation and model selec-
tion. Let d be the number of variables x∗1, ..., x

∗
d used by the full model, for-

ward selection, lasso, or relaxed lasso. (We could let d = j if j is the degrees
of freedom of the selected model if that model was chosen in advance without
model or variable selection. Hence d = j is not the model degrees of freedom
if model selection was used. For a GAM full model, suppose the “degrees of
freedom” di for S(xi) is bounded by k. We could let d = 1 +

∑p
i=2 di with

p ≤ d ≤ pk.) We want n ≥ 10d, and the prediction interval length will be
increased (penalized) if n/d is not large. Let qn = min(1−δ+0.05, 1−δ+d/n)
for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the
shorth PI with

cmod = min(B, dB[qn + 1.12
√
δ/B ] e). (4.14)

Olive (2007, 2018) and Pelawa Watagoda and Olive (2019b) used similar
correction factors since the maximum simulated undercoverage was about
0.05 when n = 20d. If a q × 1 vector of parameters γ is also estimated, we
may need to replace d by dq = d+ q.

If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T is the

estimator that minimized the variable selection criterion, then β̂Imin,0 =

(β̂1, 0, β̂3, 0)T .
Hong et al. (2018) explain why classical PIs after AIC variable selection

may not work. Fix p and let Imin correspond to the predictors used after
variable selection, including AIC, BIC, and relaxed lasso. Suppose P (S ⊆
Imin) → 1 as n → ∞. See Charkhi and Claeskens (2018), Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232), Hastie et al. (2015, pp. 295-302)
and Haughton (1988, 1989) for more information and references about this
assumption. For relaxed lasso, the assumption holds if lasso is a consistent
estimator. Suppose model (2.1) holds, and that if S ⊆ Ij , then

√
n(β̂Ij

−
βIj

)
D→ Naj (0,V j). Hence

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (4.15)

where V j,0 adds columns and rows of zeros corresponding to the xi not

in Ij . Then β̂Imin,0 is a
√
n consistent estimator of β under model (2.1)

if the variable selection criterion is used with forward selection, backward
elimination, or all subsets. Hence (4.13) and (4.14) are large sample PIs.
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Rathnayake and Olive (2019) gave the limiting distribution of
√
n(β̂Imin,0 −

β), generalizing the Pelawa Watagoda and Olive (2019a) result for multiple
linear regression. See Theorem 2.4. Regularity conditions for (4.13) and (4.14)
to be large sample PIs when p > n are much stronger.

Prediction intervals (4.13) and (4.14) often have higher than the nominal
coverage if n is large and Yf can only take on a few values. Consider binary
regression where Yf ∈ {0, 1} and the PIs (4.13) and (4.14) are [0,1] with
100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI, coverage tends to be
higher than nominal coverage unless P (Yf = 1|xf ) is near δ or 1− δ, e.g., if
P (Yf = 1|xf) = 0.01, then [0,0] has coverage near 99% even if 1− δ < 0.99.

Example 4.21. For the Ceriodaphnia data of Example 4.4, Figure 4.17
shows the response plot of ESP versus Y for this data. In this plot, the lowess
curve is represented as a jagged curve to distinguish it from the estimated
Poisson regression mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y . The circles correspond to the Yi and the
×’s to the PIs (4.13) with d = p = 3. The n large sample 95% PIs contained
97% of the Yi. There was no evidence of overdispersion: see Example 4.4.
There were 5 replications for each of the 14 strain–species combinations,
which helps show the bootstrap PI variability when B = 1000. This example
illustrates a useful goodness of fit diagnostic: if the model D is a useful
approximation for the data and n is large enough, we expect the coverage on
the training data to be close to or higher than the nominal coverage 1 − δ.
For example, there may be undercoverage if a Poisson regression model is
used when a negative binomial regression model is needed.

Example 4.22. For the banknote data of Example 4.20, after variable
selection, we decided to use a constant, right, and bottom as predictors. The
response plot for this submodel is shown in the left plot of Figure 4.18 with
Z = Zi = Yi/mi = Yi and the large sample 95% PIs for Zi = Yi. The circles
correspond to the Yi and the ×’s to the PIs (4.13) with d = 3, and 199 of the
200 PIs contain Yi. The PI [0,0] that did not contain Yi corresponds to the
circle in the upper left corner. The PIs were [0,0], [0,1], or [1,1] since the data
is binary. The mean function is the smooth curve and the step function gives
the sample proportion of ones in the interval. The step function approximates
the smooth curve closely, hence the binary logistic regression model seems
reasonable. The right plot of Figure 4.18 shows the GAM using right and
bottom with d = 3. The coverage was 100% and the GAM had many [1,1]
intervals.

Example 4.23. For the species data of Examples 4.18, we used a constant
and log(endem), log(area), log(distance), and log(areanear). The response
plot looks good, but the OD plot (not shown) suggests overdispersion. When
the response plot for the Poisson regression model was made, the n large
sample 95% PIs (4.13) contained 89.7% of the Yi.
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Fig. 4.17 Ceriodaphnia Data Response Plot.
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Fig. 4.18 Banknote Data GLM and GAM Response Plots.
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For the simulations, generating xT β is important. For example, for bino-
mial logistic regression, typically −5 ≤ xT β ≤ 5 or there can be problems
with the MLE. We used the same simulated data as that used for variable
selection in Section 4.9.3. Thus SP = xT β = β1 + 1xi,2 + · · · + 1xi,k+1 ∼
N(β1, a

2) for i = 1, ..., n. Hence β = (β1 , 1, .., 1, 0, ..., 0)T with β1, k ones and
p − k − 1 zeros. The default settings for Poisson regression use β1 = 1 = a.
The default settings for binomial regression use β1 = 0 and a = 5/3.

Table 4.7 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 4, β1 = 1 = a

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9712 0.9714 0.9810 0.9800 0.9792 0.9734

len 6.6448 6.6118 7.2770 7.2004 7.0680 6.6632
400 0 1 cov 0.9692 0.9694 0.9728 0.9714 0.9722 0.9665

len 6.6392 6.6474 6.7996 6.7722 6.7588 6.6778
100 0.5 1 cov 0.9642 0.9644 0.9796 0.9786 0.9760 0.9689

len 6.6922 6.6806 7.3136 7.2824 7.1160 6.7767
400 0.5 1 cov 0.9668 0.9670 0.9722 0.9716 0.9702 0.9754

len 6.6720 6.6896 6.8342 6.8140 6.7992 6.7802
100 0.9 1 cov 0.9672 0.9674 0.9766 0.9768 0.9738 0.9665

len 6.6038 6.6186 7.1480 7.1214 7.0002 6.5789
400 0.9 1 cov 0.9660 0.9662 0.9734 0.9700 0.9692 0.9798

len 6.5838 6.5746 6.7526 6.7196 6.7004 6.7443
100 0 3 cov 0.9696 0.9698 0.9848 0.9834 0.9818 0.9654

len 6.7080 6.7084 7.5632 7.5442 7.5348 6.7408
400 0 3 cov 0.9728 0.9730 0.9750 0.9746 0.9748 0.9657

len 6.5718 6.5684 6.7690 6.7356 6.7406 6.7063
100 0.5 3 cov 0.9672 0.9674 0.9842 0.9838 0.9736 0.9592

len 6.6992 6.7044 7.5804 7.5494 7.3810 6.7128
400 0.5 3 cov 0.9682 0.9684 0.9730 0.9722 0.9702 0.9772

len 6.6794 6.6890 6.8726 6.8520 6.8466 6.7504
100 0.9 3 cov 0.9664 0.9666 0.9804 0.9810 0.9750 0.9678

len 6.6704 6.6646 7.2880 7.2672 7.0722 6.7635
400 0.9 3 cov 0.9690 0.9692 0.9744 0.9742 0.9736 0.9667

len 6.7960 6.8092 6.9696 6.9682 6.9120 6.6987

The simulation used 5000 runs, so an observed coverage in [0.94, 0.96]
gives no reason to doubt that the PI has the nominal coverage of 0.95. The
simulation used B = 1000; p = 4, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and

k = 1, 19, or p − 1. The simulated data sets are rather small since the R
estimators are rather slow. For binomial and Poisson regression, we only
computed the GAM for p = 4 with SP = AP = α+S2(x2)+S2(x3)+S4(x4)
and d = p = 4. We only computed the full model GLM if n ≥ 5p. Lasso and
relaxed lasso were computed for all cases. The regression model was computed
from the training data, and a prediction interval was made for the test case
Yf given xf . The “length” and “coverage” were the average length and the
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Table 4.8 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 4, β1 = 5, a = 2

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9500 0.9440 0.7730 0.9664 0.9654 0.9520

len 77.6072 77.6306 84.1066 81.8374 82.4752 84.1432
400 0 1 cov 0.9580 0.9564 0.7566 0.9622 0.9628 0.9534

len 82.0126 82.0212 85.5704 83.2692 83.4374 80.9897
100 0.5 1 cov 0.9456 0.9424 0.7646 0.9634 0.9408 0.9512

len 83.0236 82.9034 90.5822 88.3060 88.6700 79.6887
400 0.5 1 cov 0.9530 0.9500 0.7584 0.9604 0.9566 0.9678

len 83.8588 83.8292 87.4336 85.1042 85.1434 79.9855
100 0.9 1 cov 0.9492 0.9452 0.7688 0.9646 0.7712 0.9654

len 78.3554 78.3798 87.0086 84.6072 83.4980 81.5432
400 0.9 1 cov 0.9550 0.9574 0.7606 0.9606 0.7928 0.9513

len 76.7028 76.7594 80.5070 78.2308 78.2538 80.1298
100 0 3 cov 0.9544 0.9466 0.7798 0.9708 0.9404 0.9487

len 80.1476 80.1362 92.1372 89.8532 90.3456 79.4565
400 0 3 cov 0.9560 0.9548 0.7514 0.9582 0.9566 0.9567

len 80.7868 80.8976 85.0642 82.7982 82.7912 79.4522
100 0.5 3 cov 0.9516 0.9478 0.7848 0.9694 0.3324 0.9515

len 77.1120 77.1130 88.9346 86.4680 85.8634 81.5643
400 0.5 3 cov 0.9568 0.9558 0.7534 0.9636 0.5214 0.9528

len 80.4226 80.4932 84.7646 82.5590 83.7526 79.9786
100 0.9 3 cov 0.9492 0.9456 0.7882 0.9620 0.7510 0.9554

len 79.5374 79.6172 91.2052 89.0692 84.5648 81.8544
400 0.9 3 cov 0.9544 0.9546 0.7638 0.9554 0.7384 0.9586

len 79.7384 79.6906 83.8318 81.6862 81.0882 80.7521

Table 4.9 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 50, β1 = 5, a = 2

n ψ k GLM lasso RL OHFS BE
500 0 1 cov 0.9352 0.7564 0.9598 0.9640 0.9476

len 81.2668 84.3188 81.8934 85.2922 81.1010
500 0.14 1 cov 0.9370 0.7508 0.9580 0.9628 0.9458

len 81.1820 84.4530 82.1894 85.2304 81.1146
500 0.9 1 cov 0.9368 0.7630 0.9620 0.8994 0.9456

len 80.4568 86.3506 84.4942 84.1448 80.4202
500 0 19 cov 0.9388 0.7592 0.9756 0.3778 0.9472

len 81.6922 96.8546 94.6350 99.7436 81.7218
500 0.14 19 cov 0.9368 0.7556 0.9730 0.2770 0.9438

len 80.0654 95.2964 93.2748 87.3814 80.1276
500 0.9 19 cov 0.9350 0.7544 0.9536 0.9480 0.9352

len 79.7324 86.3448 84.0674 83.2958 79.6172
500 0 49 cov 0.9386 0.7104 0.9666 0.1004 0.9364

len 81.1422 96.4304 94.8818 108.0518 81.2516
500 0.14 49 cov 0.9396 0.7194 0.9558 0.2858 0.9402

len 79.7874 94.8908 93.2538 86.4234 79.8692
500 0.9 49 cov 0.9380 0.7640 0.9480 0.9512 0.9430

len 78.8146 85.5786 83.2812 82.4104 78.8316
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proportion of the 5000 prediction intervals that contained Yf . Two rows per
table were used to display these quantities.

Tables 4.7 to 4.9 show some simulation results for Poisson regression. Lasso
minimized 10-fold cross validation and relaxed lasso was applied to the se-
lected lasso model. The full GLM, full GAM and backward elimination (BE
in the tables) used PI (4.13) while lasso, relaxed lasso (RL in the tables),
and forward selection using the Olive and Hawkins (2005) method (OHFS
in the tables) used PI (4.14). For n ≥ 10p, coverages tended to be near or
higher than the nominal value of 0.95, except for lasso and the Olive and
Hawkins (2005) method in Tables 4.8 and 4.9. In Table 4.7, coverages were
high because the Poisson counts were small and the Poisson distribution is
discrete. In Table 4.8, the Poisson counts were not small, so the discreteness
of the distribution did not affect the coverage much. For Table 4.9, p = 50,
and PI (4.13) has slight undercoverage for the full GLM since n = 10p. Table
4.9 helps illustrate the importance of the correction factor: PI (4.14) would
have higher coverage and longer average length. Lasso was good at choosing
subsets that contain S since relaxed lasso had good coverage. The Olive and
Hawkins (2005) method is partly graphical, and graphs were not used in the
simulation.

Tables 4.10 and 4.11 are for binomial regression where only PI (4.13)
was used. For large n, coverage is likely to be higher than the nominal if the
binomial probability of success can get close to 0 or 1. For binomial regression,
neither lasso nor the Olive and Hawkins (2005) method had undercoverage
in any of the simulations with n ≥ 10p.

For n ≤ p, good performance needed stronger regularity conditions, and
Table 4.12 shows some results with n = 100 and p = 200. For k = 1, relaxed
lasso performed well as did lasso except in the second to last column of
Table 4.12. With k = 19 and ψ = 0, there was undercoverage since n <
10(k + 1). For the dense models with k = 199 and ψ = 0, there was often
severe undercoverage, lasso sometimes picked 100 predictors including the
constant, and then relaxed lasso caused the program to fail with 5000 runs.
Coverage was usually good for ψ > 0 except for the second to last column
and sometimes the last column of Table 4.12. With ψ = 0.9, each predictor
was highly correlated with the one dominant principal component.

4.11 Survival Analysis

Regression methods for survival analysis focus on the survival function rather
than the mean function, and the data can be right censored.

Definition 10.25. Let Y ≥ 0 be the time until an event occurs. Then Y is
called the survival time or time until event. The survival time is censored
if the event of interest has not been observed. Let Yi be the ith survival time.
Let Zi be the time the ith observation (possibly an individual or machine)
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Table 4.10 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 4, m = 40

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9786 0.9788 0.9774 0.9744 0.9720 0.9726

len 10.7696 10.7656 10.5332 10.4430 10.1990 10.2016
400 0 1 cov 0.9708 0.9700 0.9696 0.9708 0.9702 0.9688

len 9.8374 9.8426 9.8292 9.7866 9.7518 9.7548
100 0.5 1 cov 0.9792 0.9720 0.9742 0.9750 0.9724 0.9708

len 10.6668 10.6426 10.3790 10.3282 10.1060 10.1012
400 0.5 1 cov 0.9678 0.9676 0.9692 0.9670 0.9668 0.9656

len 9.8352 9.8452 9.8196 9.7890 9.7612 9.7590
100 0.9 1 cov 0.9780 0.9766 0.9762 0.9742 0.9704 0.9714

len 10.7324 10.7222 10.3774 10.3186 10.1438 10.1602
400 0.9 1 cov 0.9688 0.9672 0.9680 0.9674 0.9684 0.9672

len 9.7554 9.7646 9.7392 9.7012 9.6778 9.6790
100 0 3 cov 0.9790 0.9750 0.9782 0.9772 0.9780 0.9776

len 10.6974 10.6960 10.7388 10.7030 10.6956 10.7020
400 0 3 cov 0.9652 0.9652 0.9654 0.9656 0.9650 0.9626

len 9.7838 9.7878 9.8244 9.7864 9.7800 9.7722
100 0.5 3 cov 0.9780 0.9734 0.9776 0.9766 0.9770 0.9784

len 10.7224 10.7034 10.7482 10.7042 10.7162 10.7134
400 0.5 3 cov 0.9686 0.9688 0.9726 0.9702 0.9704 0.9706

len 9.7250 9.7170 9.7460 9.7172 9.7152 9.7290
100 0.9 3 cov 0.9800 0.9798 0.9802 0.9786 0.9698 0.9720

len 10.6978 10.6994 10.5820 10.5414 10.0660 10.1802
400 0.9 3 cov 0.9682 0.9684 0.9696 0.9674 0.9678 0.9676

len 9.8146 9.8074 9.8364 9.8190 9.7594 9.7764

Table 4.11 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 50, m = 7

n ψ k GLM lasso RL OHFS BE
1000 0 1 cov 0.9896 0.9838 0.9802 0.9798 0.9798

len 4.0008 3.6666 3.5744 3.5838 3.5842
1000 0.14 1 cov 0.9868 0.9818 0.9782 0.9774 0.9770

len 4.0422 3.6836 3.6158 3.6226 3.6312
1000 0.9 1 cov 0.9894 0.9794 0.9796 0.9800 0.9798

len 4.0214 3.5994 3.5794 3.6122 3.6114
1000 0 19 cov 0.9888 0.9870 0.9848 0.9814 0.9812

len 4.0294 3.9730 3.8438 3.7110 3.7030
1000 0.14 19 cov 0.9872 0.9846 0.9852 0.9804 0.9806

len 4.0376 3.8350 3.7834 3.7170 3.7066
1000 0.9 19 cov 0.9884 0.9804 0.9808 0.9802 0.9772

len 4.0348 3.6170 3.5948 3.6226 3.6216
1000 0 49 cov 0.990 0.9904 0.9904 0.9900 0.9904

len 4.0428 4.0726 4.0528 4.0490 4.0460
1000 0.14 49 cov 0.9866 0.9866 0.9856 0.9806 0.9796

len 4.0396 3.9044 3.8640 3.7046 3.6988
1000 0.9 49 cov 0.9874 0.9808 0.9792 0.9790 0.9772

len 4.0660 3.6444 3.6230 3.6556 3.6490
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Table 4.12 Simulated Large Sample 95% PI Coverages and Lengths, n = 100, p =
200

BR m=7 BR m=40 PR,a=1 β1 = 1 PR,a=2 β1 = 5
ψ,k lasso RL lasso RL lasso RL lasso RL
0 cov 0.9912 0.9654 0.9836 0.9602 0.9816 0.9612 0.7620 0.9662
1 len 4.2774 3.8356 11.3482 11.001 7.8350 7.5660 93.7318 91.4898

0.07 cov 0.9904 0.9698 0.9796 0.9644 0.9790 0.9696 0.7652 0.9706
1 len 4.2570 3.9256 11.4018 11.1318 7.8488 7.6680 92.0774 89.7966

0.9 cov 0.9844 0.9832 0.9820 0.9820 0.9880 0.9858 0.7850 0.9628
1 len 3.8242 3.7844 10.9600 10.8716 7.6380 7.5954 98.2158 95.9954
0 cov 0.9146 0.8216 0.8532 0.7874 0.8678 0.8038 0.1610 0.6754
19 len 4.7868 3.8632 12.0152 11.3966 7.8126 7.5188 88.0896 90.6916

0.07 cov 0.9814 0.9568 0.9424 0.9208 0.9620 0.9444 0.3790 0.5832
19 len 4.1992 3.8266 11.3818 11.0382 7.9010 7.7828 92.3918 92.1424
0.9 cov 0.9858 0.9840 0.9812 0.9802 0.9838 0.9848 0.7884 0.9594
19 len 3.8156 3.7810 10.9194 10.8166 7.6900 7.6454 97.744 95.2898

0.07 cov 0.9820 0.9640 0.9604 0.9390 0.9720 0.9548 0.3076 0.4394
199 len 4.1260 3.7730 11.2488 10.9248 8.0784 7.9956 90.4494 88.0354
0.9 cov 0.9886 0.9870 0.9822 0.9804 0.9834 0.9814 0.7888 0.9586
199 len 3.8558 3.8172 10.9714 10.8778 7.6728 7.6602 97.0954 94.7604

leaves the study for any reason other than the event of interest. Then Zi

is the time until the ith observation is censored. Then the right censored
survival time Ti of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti

is (right) censored (Ti = Zi) and let δi = 1 if Ti is not censored (Ti = Yi).

We will assume that the censoring mechanism is independent of the time to
event: Yi and Zi are independent. Often censoring occurs because of cost and
time constraints. In the definition below, F (t) is the cdf and f(t) is the pdf
of a univariate survival time random variable Y that satisfies P (Y ≥ 0) = 1.

Definition 10.26. i) The survival function of Y is S(t) = P (Y > t) =
1− F (t). S(0) = 1, S(∞) = 0 and S(t) is nonincreasing.

ii) The hazard function of Y is h(t) =
f(t)

1− F (t)
for t > 0 and F (t) < 1.

Note that h(t) ≥ 0 if F (t) < 1.

Next, we will consider an important class of survival regression models.

Definition 10.27. The Cox proportional hazards regression (PH)
model is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βT xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio. The sufficient predictor SP = βT xi =

∑p
j=1 βjxij.

The Cox PH model (= Cox PH regression model = Cox regression model
= Cox proportional hazards regression model) is a 1D regression model since
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the conditional distribution Y |x is completely determined by the hazard func-
tion, and the hazard function only depends on x through βT x. Inference for
the PH model uses computer output that is used almost exactly as the out-
put for generalized linear models such as the logistic and Poisson regression
models. The Cox PH model is semiparametric: the conditional distribution
Y |x depends on the sufficient predictor βT x, but the parametric form of
the hazard function hY |x(t) is not specified. The Cox PH model is the most
widely used survival regression model in survival analysis. For the Cox PH
model, often we will use β = βC.

Survival data is usually right censored so Y is not observed. Instead, the
survival time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time.
Also δi = 0 if Ti = Zi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi,xi) for i = 1, ..., n.

The Weibull PH regression model of Definition 4.4 is an important para-
metric PH regression model. Theorem 4.4 still holds for the Cox PH regression
model with AIC. The relaxed lasso estimator is the lasso variable selection
model that fits the Cox PH regression model to the predictors with nonzero
lasso coefficients. The relaxed lasso estimator is

√
n consistent by Theorem

4.4 if the lasso estimator is consistent.

4.11.1 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Next, we describe a small simulation study that was done using B =

max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np(0, I) where the
p elements of the vector wi are iid N(0,1). Let the p × p matrix A = (aij)
with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector

zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal entries
σii = [1+(p−1)ψ2] and the off diagonal entries σij = [2ψ+(p−2)ψ2 ]. Then∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let x = az/v. Hence the

correlations are Cor(xi, xj) = ρ = (2ψ+(p− 2)ψ2)/(1 + (p− 1)ψ2) for i 6= j.
If ψ = 1/

√
cp, then ρ→ 1/(c+1) as p→∞ where c > 0. As ψ gets close to 1,

the predictor vectors cluster about the line in the direction of (1, ..., 1)T. Let
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SP = xT
i β = 1xi,1 + · · ·+ 1xi,k ∼ N(0, a2) for i = 1, ..., n. The simulations

use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones and p− k zeros.
Then the Yi were generated such that Y |x follows a Weibull proportional

hazards regression model with the above β. We used R code similar to that
of Zhou (2001) to obtain (Zi, δi,xi) where some of the Zi are right censored.
Some functions from survpack were useful. The function phdata2 generates
a data set as described above. We used the nonparametric bootstrap and the
Cox PH model. The function PHboot bootstraps the full Cox PH model.
The function PHbootsim is used to simulate the bootstrap for the full Cox
PH model. The functions LPHboot and RLPHboot bootstraps a Cox PH
model with lasso and relaxed lasso. The function RLPHbootsim is used to
simulate the bootstrap for relaxed lasso. The shorth3 function computes
the shorth(c) intervals with the Frey (2013) correction used when g = 1.
Some R code is shown below.

library(survival)

library(MASS)

library(glmnet)

out<- phdata2(n=100,p=4,k=1,psi=0,a=1,gam=1,clam = 0.1)

out$beta

$betaP

[1] 1 0 0 0

#out$x gives the matrix of predictors

out$time

$time

[1] 10.5015 2.5748 2.1266 0.4238 0.4454

[6] 0.1165 0.0233 0.3108 0.0856 0.3908

.

.

.

[96] 5.4669 0.1603 0.1510 0.1206 0.6356

out$status

$status #0 means right censored

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1

RLPHbootsim(nruns=100,B=200,k=2) #slow 3 runs per minute

$mndd

[1] 3.01 #relaxed lasso used 3 predictors on average

$cicov

[1] 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95

$avelen
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[1] 0.8642748 0.8473142 0.7334978 0.7219106 2.5561583

2.5561583 2.6622667 2.5124382 2.5124382 2.6253967

$beta

[1] 1 1 0 0

$k

[1] 2

PHbootsim(nruns=100,B=200,k=2) #fairly fast

$cicov

[1] 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99

$avelen

[1] 0.8571470 0.8582906 0.7541797 0.7416362 2.5247451

2.5247451 2.5558537 2.5021201 2.5021201 2.6243971

$beta

[1] 1 1 0 0

$k

[1] 2

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = 1 (whether first k βi = 1) and
H0 : βE = 0 (whether the last p− k βi = 0). The nominal coverage was 0.95
with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests coverage
is close to the nominal value. The number of runs = 100 is tiny since the
relaxed lasso simulation is slow. Using 5000 runs would be much better.

The regression models used the nonparamtric bootstrap on the relaxed
lasso estimator β̂Imin,0. Table 4.13 gives results with n = 100, p = 4, and
k = 1. Table 4.13 shows two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for variable
selection with relaxed lasso. The last six columns give results for the tests.
The terms pr, hyb, and br are for the prediction region method (2.30), hybrid
region (2.32), and Bickel and Ren region (2.31). The 0 indicates the test was
H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests.
Volume ratios of the three confidence regions can be compared using (2.35),

but there is not enough information in Table 4.13 to compare the volume of
the confidence region for the full model regression versus that for the relaxed
lasso since the two methods have different determinants |S∗

T |. Table 4.13
corresponds to the above R output with k = 2.

The inference for forward selection was often as precise or more precise
than the inference for the full model. The coverages were near 0.95 for the
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Table 4.13 Bootstrapping Cox PH Regression With Relaxed Lasso

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99
len 0.857 0.858 0.754 0.742 2.525 2.525 2.556 2.502 2.502 2.624
vs,0 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95
len 0.864 0.847 0.733 0.722 2.556 2.556 2.662 2.512 2.512 2.625

regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then it may be true that β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (2.31) cutoffs and coverages were at least as high as those of the
hybrid region (2.32).

See Olive (2020) for results on survival analysis that are similar to the
results given in these online notes for MLR and GLMS. In particular, graphs
for checking and visualizing the model, prediction intervals, inference, and
inference after variable selection, including lasso variable selection, are given.
See Tibshirani (1997) and Simon et al. (2011) for lasso and elastic net with
the Cox PH regression model.

4.12 Regression Trees

A regression tree is a flexible method for Y = m(x)+e or for Yi = m(xi)+σiei

where the zero mean errors ei are iid. The method produces a graph called a
tree. Each branch has a label like xi > 7.56 if xi is quantitative, or xj ∈ {a, c}
(written xj = ac) where xj is a factor taking on values a, b, c, d, e, f, say.
Unless told otherwise, go to the left branch if the condition is true, go to
the right branch if the condition is false. (Some software switches this. Check
the story problem.) The bottom of the tree has leaves that give Ŷ = Ŷ |x.
The root is the top node, a leaf is a terminal node, and a split is a rule for
creating new branches. Each node has a left and right branch.

Example 4.19. Given a tree and x values, find Ŷ . The Venables and
Ripley (1997, p. 420) and Ein-Dor and Feldmesser (1987) cpu data has Y =
perf = central processing unit (CPU) performance with predictor variables
x1 = cach = cache size in kilobytes, x2 = mmax = maximum main memory
in kilobytes, x3 = syct = cycle time in nanoseconds, and x4 = chmin =
minimum number of channels. The regression tree is shown on the following
page.

a) Predict Y if cach = 30 and mmax = 25000.
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|
cach < 27

mmax < 6100

mmax < 1750 syct < 360

chmin < 5.5

mmax < 28000

cach < 56

1.089 1.427
1.699 1.974

1.280

2.062
2.268 2.667

Fig. 4.19 Regression Tree for Example 4.19.

Solution: Since cach = 30, the cach < 27 condition is false. Go to the right
branch. Since mmax = 25000, the condition for the next node is true. Go to
the left branch where Ŷ = 2.062.

b) Predict Y if cach = 25, mmax = 7000, syct = 200, and chmin = 5.
Solution: Go to the left, then right, then left, then left where Ŷ = 1.699.

Regression trees have some advantages. Trees can be easier to interpret
than competing methods when some predictors are numerical and some are
categorical. Trees are invariant to monotone (increasing or decreasing) trans-
formations of the predictor variable xi. Regression trees can handle missing
values better than MLR and can beat MLR if there is nonadditive behavior.
Trees can handle complex unknown interactions. Regression trees i) give pre-
diction rules that can be rapidly and repeatedly evaluated, ii) are useful for
screening predictors (interactions, variable selection), iii) can be used to as-
sess the adequacy of linear models, and iv) can summarize large multivariate
data sets.

Trees that use recursive partitioning for classification and regression trees
use the CART algorithm. (Classification trees are very similar to regression
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trees. See Section 5.9.) In growing a tree, the binary partitioning algorithm
recursively splits the data in each node until either the node is homogeneous
(Y ≈ constant for a regression tree) or the node contains too few observations
(default ≤ 5). The deviance is a measure of node homogeneity, and deviance
= 0 for a perfectly homogeneous node. For a regression tree, often Ŷ is the
mean of the node observations.

Trees divide the predictor space (set of possible values of the training
data xi) into J distinct and nonoverlapping regions R1, ..., RJ that are high
dimensional boxes. Then for every observation that falls in Rj, make the same

prediction. Hence ŶRj = sample mean of training data Yi in Rj. Choose Rj

so RSS =
∑J

j=1

∑
i∈Rj

(yi − ŶRj)
2 is small. Let {x|xj < s} be the region in

the predictor space such that xj < s where x = (x1, ..., xp)
T . Define 2 regions

R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s}. Then seek cutpoint s and
variable xj to minimize

∑

i:xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i:xi∈R2(j,s)

(yi − ŷR2
)2.

This can be done “quickly” if p is small (could use order statistics). Then
repeat the process looking for the best predictor and the best cutpoint in
order to split the data further so as to minimize the RSS within each of the
resulting regions. Only split one of the regions, R1, R2, and R3. Continue this
process until a stopping criterion is reached such as no region contains more
than 5 observations (and stop if the region is homogeneous). If J is too large,
the tree overfits.

Since a regression tree uses J regions, the response plot of ESP = Ŷ =
m̂(x) versus Y consists of J dot plots that scatter about the identity line.
A dot plot of z1, ..., zm consists of an axis and m points corresponding to
the vaules of zi. The regression tree response plot has a dotplot of nm cases
with Ŷ = ŶRm for each of the J regions. The residual plot consists of J
dot plots that scatter about the r = 0 line. If Y = m(x) + e, we can make
prediction intervals for Yf with the regression tree using Ŷ = ESP = m̂(x)

and r = Y − Ŷ as before.
If Y = α +

∑
j = 1pSj(xj) + e or Y = g(α + βT x) + e, then slicing

the ESP α̂+
∑
j = 1pŜj(xj) or α̂+ β̂

T
x is more effective than partitioning

the predictor space with hyperboxes Rk. Consider the response plot of ESP
versus Y with the identity line or lowess added as a visual aid.

4.12.1 Boosting

This subsection follow James et al. (2013) closely. Techniques that can be used
to improve both regression and classification trees are discussed in Section



306 4 1D Regression Models Such as GLMs

5.9. A technique for improving regression trees is boosting. Like bagging,
boosting can be applied to many statistical models, including regression and
classification trees.

The boosting algorithm for regression trees follows. i) Set f̂(x) = 0 and
ri − Yi for i = 1, ..., n. Hence the step i) residuals are the training data. ii)

For b = 1, ..., B repeat: a) fit tree f̂b with d splits (d + 1 teminal nodes) to
the training data (X, r) where the predictors are collected in matrix X . b)

Update f̂(x) by adding a shrunken version of the new tree: f̂(x) ← f̂(x) +

λf̂b(x), and update the residuals ri ← ri − λf̂(x). iii) The boosted model

f̂(x) =

B∑

b=1

λf̂b(x).

The tree is fit to updated residuals rather than Y . This technique slowly
improves f̂ in areas where it does not perform well, and λ slows the learning
process further. As a rule of thumb, iterative techniques that learn slowly
tend to perform well. Often d = 1 is used where a d = 1 tree is called a
“stump. The value d is called the interaction depth. The value λ tends to be
0.01 or 0.001. Very small λ tends to need very large B for good performance.
Using the d = 1 stumps leads to an additive model

f̂(x) =

p∑

j=1

f̂j(xj)

which is a competitor for the additive error regression GAM.

4.13 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
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otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. For example, if n = 500000 and p = 90, using
n1 = 900 would result in a much smaller loss of efficiency than n1 = 250000.

4.14 Complements

This chapter used material from Chang and Olive (2010), Olive (2013b,
2017a: ch. 13), Olive et al. (2020), and Rathnayake and Olive (2019). GLMs
were introduced by Nelder and Wedderburn (1972). Useful references for
generalized additive models include Hastie and Tibshirani (1986, 1990), and
Wood (2017). Zhou (2001) is useful for simulating the Weibull regression
model. Also see McCullagh and Nelder (1989), Agresti (2013, 2015), and Cook
and Weisberg (1999, ch. 21-23). Collett (2003) and Hosmer and Lemeshow
(2000) are excellent texts on logistic regression while Cameron and Trivedi
(2013) and Winkelmann (2008) cover Poisson regression. Alternatives to Pois-
son regression mentioned in Section 4.7 are covered by Zuur et al. (2009),
Simonoff (2003), and Hilbe (2011). Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve GLMs. Some GLM
large sample theory is given by Claeskens and Hjort (2008, p. 27), Cook and
Zhang (2015), and Sen and Singer (1993, p. 309).

Tay, Narasimhan, and Hastie (2021) extend lasso, elastic net, and lasso
variable selection to many regression models, including several GLMs.

An introductions to 1D regression and regression graphics is Cook and
Weisberg (1999a, ch. 18, 19, and 20), while Olive (2010) considers 1D regres-
sion. A more advanced treatment is Cook (1998). Important papers include
Brillinger (1977, 1983) and Li and Duan (1989). Li (1997) shows that OLS F
tests can be asymptotically valid for model (4.18) if u is multivariate normal
and Σ−1

u ΣuY 6= 0.

In Section 4.9, the functions binregbootsim and pregbootsim are
useful for the full binomial regression and full Poisson regression models. The
functions vsbrbootsim and vsprbootsim were used to bootstrap back-
ward elimination for binomial and Poisson regression. The functions LRboot
and vsLRboot bootstrap the logistic regression full model and backward
elimination. The functions PRboot and vsPRboot bootstrap the Poisson
regression full model and backward elimination.

In Section 4.10, table entries for Poisson regression were made with
prpisim2 while entries for binomial regression were made with brpisim.
The functions prpiplot2 and lrpiplot were used to make Figures 4.17
and 4.18. The function prplot can be used to check the full Poisson regres-
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sion model for overdispersion. The function prplot2 can be used to check
other Poisson regression models such as a GAM or lasso.

i) Resistant regression: Suppose the regression model has anm×1 response
vector y, and a p × 1 vector of predictors x. Assume that predictor trans-
formations have been performed to make x, and that w consists of k ≤ p
continuous predictor variables that are linearly related. Find the RMVN set
based on the w to obtain nu cases (yci,xci), and then run the regression
method on the cleaned data. Often the theory of the method applies to the
cleaned data set since y was not used to pick the subset of the data. Effi-
ciency can be much lower since nu cases are used where n/2 ≤ nu ≤ n, and
the trimmed cases tend to be the “farthest” from the center of w.

The method will have the most outlier resistance if k = p (or k = p− 1 if
there is a trivial predictor X1 ≡ 1). If m = 1, make the response plot of Ŷc

versus Yc with the identity line added as a visual aid, and make the residual
plot of Ŷc versus rc = Yc − Ŷc.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example

indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice

a) Resistant additive error regression: An additive error regression model
has the form Y = h(x)+e where there is m = 1 response variable Y , and the
p× 1 vector of predictors x is assumed to be known and independent of the
additive error e. An enormous variety of regression models have this form,
including multiple linear regression, nonlinear regression, nonparametric re-
gression, partial least squares, lasso, ridge regression, etc. Find the RMVN
set (or covmb2 set) based on the w to obtain nU cases (Yci,xci), and then
run the additive error regression method on the cleaned data.

b) Resistant Additive Error Multivariate Regression
Assume y = g(x)+ε = E(y|x)+ε where g : R

p → R
m, y = (Y1, ..., Ym)T ,

and ε = (ε1, ..., εm)T . Many models have this form, including multivariate
linear regression, seemingly unrelated regressions, partial envelopes, partial
least squares, and the models in a) with m = 1 response variable. Clean the
data as in a) but let the cleaned data be stored in (Zc,Xc). Again, the theory
of the method tends to apply to the method applied to the cleaned data since
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the response variables were not used to select the cases, but the efficiency is
often much lower. In the R code below, assume the y are stored in z.

indx <- getu(w)$indx #often w = x

Zc <- z[indx]

Xc <- x[indx,]

#example

ht <- buxy

t <- cbind(buxx,ht);

z <- t[,c(2,5)];

x <- t[,c(1,3,4)]

indx <- getu(x)$indx

Zc <- z[indx,]

Xc <- x[indx,]

mltreg(Xc,Zc) #right click Stop four times

4.15 Problems

Output for problem 4.1: Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -18.3500 3.42582 -5.356 0.0000

circum 0.0345827 0.00633521 5.459 0.0000

4.1. Consider trying to estimate the proportion of males from a population
of males and females by measuring the circumference of the head. Use the
above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if x = 550.0.

b) Find a 95% CI for β.

c) Perform the 4 step Wald test for Ho : β = 0.

Output for Problem 4.2 Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -19.7762 3.73243 -5.298 0.0000

circum 0.0244688 0.0111243 2.200 0.0278

length 0.0371472 0.0340610 1.091 0.2754

4.2∗. Now the data is as in Problem 4.1, but try to estimate the proportion
of males by measuring the circumference and the length of the head. Use the
above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if circumference = x1 = 550.0 and length = x2 = 200.0.
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b) Perform the 4 step Wald test for Ho : β1 = 0.

c) Perform the 4 step Wald test for Ho : β2 = 0.

Output for Problem 4.3

Data set = Possums, Response = possums

Terms = (Habitat Stags)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -0.652653 0.195148 -3.344 0.0008

Habitat 0.114756 0.0303273 3.784 0.0002

Stags 0.0327213 0.00935883 3.496 0.0005

Number of cases: 151 Degrees of freedom: 148

Pearson X2: 110.187

Deviance: 138.685

4.3∗. Use the above output to perform inference on the number of possums
in a given tract of land. The output is from a Poisson regression, and the
possums data is from Cook and Weisberg (1999).

a) Predict µ̂(x) if habitat = x1 = 5.8 and stags = x2 = 8.2.

b) Perform the 4 step Wald test for Ho : β1 = 0.

c) Find a 95% confidence interval for β2.

B1 B2 B3 B4

df 945 956 968 974
# of predictors 54 43 31 25

# with 0.01 ≤ Wald p-value ≤ 0.05 5 3 2 1
# with Wald p-value > 0.05 8 4 1 0

G2 892.96 902.14 929.81 956.92
AIC 1002.96 990.14 993.81 1008.912

corr(B1:ETA’U,Bi:ETA’U) 1.0 0.99 0.95 0.90
p-value for change in deviance test 1.0 0.605 0.034 0.0002

4.4∗. The above table gives summary statistics for 4 models considered as
final submodels after performing variable selection. (Several of the predictors
were factors, and a factor was considered to have a bad Wald p-value > 0.05
if all of the dummy variables corresponding to the factor had p-values > 0.05.
Similarly the factor was considered to have a borderline p-value with 0.01 ≤
p-value ≤ 0.05 if none of the dummy variables corresponding to the factor
had a p-value < 0.01 but at least one dummy variable had a p-value between
0.01 and 0.05.) The response was binary and logistic regression was used. The
response plot for the full model B1 was good. Model B2 was the minimum
AIC model found. There were 1000 cases: for the response, 300 were 0s and
700 were 1s.
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a) For the change in deviance test, if the p-value ≥ 0.07, there is little
evidence that Ho should be rejected. If 0.01 < p-value < 0.07 then there is
moderate evidence that Ho should be rejected. If p-value ≤ 0.01 then there
is strong evidence that Ho should be rejected. For which models, if any, is
there strong evidence that “Ho: reduced model is good” should be rejected.

b) For which plot is “corr(B1:ETA’U,Bi:ETA’U)” (using notation from
Arc: ηT u instead of βT x) relevant?

c) Which model should be used as the final submodel? Explain briefly why
each of the other 3 submodels should not be used.

4.5. The smoothing spline simulation in Problem 4.7 compares the PI
lengths and coverages of 3 large sample 95% PIs for Y = m(x) + e and a
single measurement x. Values for the first PI were denoted by scov and slen,
values for 2nd PI were denoted by ocov and olen, and values for third PI
by dcov and dlen. The average degrees of freedom of the smoothing spline
was recorded as adf. The number of runs was 5000. The len was the average
length of the PI and the cov was the observed coverage. One student got the
following results shown in Table 4.2.

Table 4.14 Results for 3 PIs

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

5 100 18.028 17.300 18.741 0.9438 0.9382 0.9508 9.017

For the PIs with coverage ≥ 0.94, which PI was the most precise (best)?

4.6. James et al. (2013. p.p. 327-328) consider the 1978 Boston housing
data where Yi = median house price (in $1000’s so 74 = 74000) in the ith
suburb. The predictors are x1 = lstat = percentage of individuals with lower
socioeconomic status, and x2 = RM = average number of rooms per dwelling.
The pruned regression tree shown in Figure 4.6 used a training set of half of
the cases.

a) Predict the median price (multiply by 1000) if x1 = 7 and x2 = RM = 8.
b) Predict the median price (multiply by 1000) if x1 > 22.

R Problems

Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the slpack function,
e.g. lrplot2, will display the code for the function. Use the args com-
mand, e.g. args(lrplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.
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|
lstat < 9.715

rm < 7.437

rm < 6.7815

lstat < 21.49

25.52 32.05

46.38

19.16 11.10

Fig. 4.20 Regression Tree for Problem 4.6.
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4.7. The Rousseeuw and Leroy (1987, p. 26) Belgian telephone data has
response Y = number of international phone calls (in tens of millions) made
per year in Belgium. The predictor variable x = year (1950-1973). From 1964
to 1969 total number of minutes of calls was recorded instead, and years 1963
and 1970 were also partially effected. Hence there are 6 large outliers and 2
additional cases that have been corrupted.

a) The simple linear regression model is Y = α + βx + e = SP + e.
Copy and paste the R commands for this part to make a response plot of
ESP = Ŷ = α̂+ β̂x versus Y for this model. Include the plot in Word.

b) The additive model is Y = α + S(x) + e = AP + e where S is some
unknown function of x. The R commands make a response plot of EAP =
α̂+ Ŝ(x) versus Y for this model. Include the plot in Word.

c) The simple linear regression model is a special case of the additive model
with S(x) = βx. The additive model is a special case of the additive error
regression model Y = m(x) + e where m(x) = α+ S(x). The response plots
for these three models are used in the same way as the response plot for the
multiple linear regression model: if the model is good, then the plotted points
should cluster about the identity line with no other pattern. Which response
plot is better for showing that something is wrong with the model? Explain
briefly.

4.8. In a generalized additive model (GAM), Y x|AP where AP =

α +
∑k

i=1 Si(xi). In a generalized linear model (GLM), Y x|SP where

SP = α+βT x. Note that a GLM is a special case of a GAM where Si(xi) =
βixi. A GAM is useful for showing that the predictors x1, ..., xk in a GLM
have the correct form, or if predictor transformations or additional terms
such as x2

i are needed. If the plot of Ŝi(xi) is linear, do not change xi in the

GLM, but if the plot is nonlinear, use the shape of Ŝi to suggest functions of
xi to add to the GLM, such as log(xi), x

2
i , and x3

i . Refit the GAM to check
the linearity of the terms in the updated GLM. Wood (2017, pp. 125-130)
describes heart attack data where the response Y is the number of heart
attacks for mi patients suspected of suffering a heart attack. The enzyme ck
(creatine kinase) was measured for the patients. A binomial logistic regression
(GLM) was fit with predictors x1 = ck, x2 = [ck]2, and x3 = [ck]3. Call this
the Wood model I2. The predictor ck is skewed suggesting log(ck) should
be added to the model. Then output suggested that ck is not needed in the
model. Let the binomial logistic regression model that uses x = log(ck) as the
only predictor be model I1. a) The R code for this problem from the URL
above Problem 4.7 makes 4 plots. Plot a) shows Ŝ for the binomial GAM
using ck as a predictor is nonlinear. Plot b) shows that Ŝ for the binomial
GAM using log(ck) as a predictor is linear. Plot c) shows the EE plot for the
binomial GAM using ck as the predictor and model I1. Plot d) shows the
response plot of ESP versus Zi = Yi/mi, the proportion of patients suffering
a heart attack for each value of xi = ck. The logistic curve = Ê(Zi|xi) is
added as a visual aid. Include these plots in Word.
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Do the plotted proportions fall about the logistic curve closely?
b) The command for b) gives AIC(outw) for model I2 and AIC(out) for

model I1. Include the two AIC values below the plots in a).
A model I1 with j fewer predictors than model I2 is “better” than model

I2 if AIC(I1) ≤ AIC(I2) + 2j. Is model I1 “better” than model I2?

4.9. The smoothing spline simulation compares the PI lengths and cover-
ages of 3 PIs for Y = m(x) + e and a single measurement x. Values for the
first PI were denoted by scov and slen, values for 2nd PI were denoted by
ocov and olen, and values for third PI (2.15) by dcov and dlen. The second PI
replaces d by 1 in PI (2.15). Three model types were used 1) m(x) = x+ x2,
2) m(x) = sin(x) + cos(x) + log(|x|), and 3) m(x) = 3

√
|x|. The smoothing

spline is flexible so the df > p. The estimated df is given by adf. Copy and
paste the R commands for this problem and make a table like the one below.
The pimenlen gives slen, olen, and dlen.

Table 4.15 Table for Problem 4.9: PIs for modt = 1,

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

1 100 4.7095 4.6949 5.0585 0.9660 0.9604 0.9736 6.27

a) For Table 4.15, which PI worked best?
b) For the table you make from the R output, which PI worked best?

4.10. This problem does lasso for binary regression for artificial data
with n = 100, p = 101 and 5 active population nontrivial predictors. If
SP = α + xT β, then the 100 nontrivial predictors are in x and β =
(1, 1, 1, 1, 1, 0, ..., 0)T.

a) Copy and paste the source and library commands into R. Then copy
and paste the commands for this part into R. Relaxed lasso gets the binary
logistic regression model to the predictors corresponding to the nonzero lasso
coefficients. Then the response plot is made. Include the plot in Word.

Does the step function track the logistic curve?
b) Copy and paste the commands for this part into R. These commands

to MLR lasso, then the relaxed lasso gets the binary logistic regression model
to the predictors corresponding to the nonzero lasso coefficients. Then the
response plot is made. For this data set, one more predictor was used than
that in a). Include the plot in Word.

Does the step function track the logistic curve?
c) Copy and paste the commands for this part into R. The commands for

this part use MLR forward selection with EBIC, and only nontrivial predictor
x4 was selected. Then the binary logistic regression if fit using this variable
and the response plot is made. Include the plot in Word.

Is the plot in c) worse than the plots in a) and b)?
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4.11. This problem does lasso for Poisson regression for artificial data
with n = 100, p = 101 and 5 active population nontrivial predictors. If
SP = α + xT β, then the 100 nontrivial predictors are in x and β =
(1, 1, 1, 1, 1, 0, ..., 0)T.

a) Copy and paste the source and library commands into R. Then copy
and paste the commands for this part into R. Relaxed lasso gets the Pois-
son regression model to the predictors corresponding to the nonzero lasso
coefficients. Then the response plot is made. Include the plot in Word. The
horizontal line is Y and the jagged curve is lowess which tracked the expo-
nential curve well until ESP > 3. Lasso overfit using 26 variables instead of
5.

b) Copy and paste the commands for this part into R. These commands
to MLR lasso, then the relaxed lasso gets the Poisson regression model to the
predictors corresponding to the nonzero lasso coefficients. Then the response
plot is made. For this data set, 20 variables were used. Include the plot in
Word.

c) Copy and paste the commands for this part into R. The commands for
this part use MLR forward selection with EBIC, and only nontrivial predictor
x5 was selected. Then the Poisson regression if fit using this variable and the
response plot is made. Include the plot in Word.

If the Poisson regression model is good, we would like the vertical scale to
be not more than 10 times the horizontal scale in the OD plot. (This happened
in a) and b).) Is the vertical scale more than 10 times the horizontal scale in
the OD plot for this model?

4.12. This problem on regression trees is taken from the vignettes for the
R package rpart. See Therneau and Atkinson (2017).

The dataset contains 34 variables on n = 111 cars from April, 1990 Con-
sumer Reports. The variables “tire size” and “model name” were omitted and
“rim size” was also deleted because it was too good a predictor of price. The
response Y = price/1000. The four variables used it the tree construction
were Country, Disp, HP.revs and Type.

a) Use the R code for this part to print the regression tree. Then predict the
car price (in dollars so multiply Ŷ by 1000) ifDisp = 200 and Hp.res = 5000.

b) Predict the car price 1000Ŷ if Disp = 100, Country = a, and Type = a.
Note that you go to the left of the tree branch if the label condition is true,
and to the right of the tree branch if the label condition is not true.

4.13. This problem is like Problem 4.7, except elastic net is used instead
of lasso.

a) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. The identity line passes right through the
outliers which are obvious because of the large gap. Prediction interval (PI)
bands are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. This did elastic net for the cases in the
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covmb2 set B applied to the predictors which included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. (Problem 4.7 c) shows the DD plot for the data.)



Chapter 5

Discriminant Analysis

This chapter considers discriminant analysis: given p measurements w, we
want to correctly classify w into one of G groups or populations. The max-
imum likelihood, Bayesian, and Fisher’s discriminant rules are used to show
why methods like linear and quadratic discriminant analysis can work well
for a wide variety of group distributions.

5.1 Introduction

Definition 5.1. In supervised classification, there are G known groups and
m test cases to be classified. Each test case is assigned to exactly one group
based on its measurements wi.

Suppose there are G populations or groups or classes where G ≥ 2. Assume
that for each population there is a probability density function (pdf) fj(z)
where z is a p×1 vector and j = 1, ..., G.Hence if the random vector x comes
from population j, then x has pdf fj(z). Assume that there is a random sam-
ple of nj cases x1,j, ...,xnj,j for each group. Let (xj ,Sj) denote the sample
mean and covariance matrix for each group. Let wi be a new p×1 (observed)
random vector from one of the G groups, but the group is unknown. Usually
there are many wi, and discriminant analysis (DA) or classification attempts
to allocate the wi to the correct groups. The w1, ...,wm are known as the
test data. Let πk = the (prior) probability that a randomly selected case wi

belongs to the kth group. If x1,1...,xnG,G are a random sample of cases from

the collection of G populations, then π̂k = nk/n where n =
∑G

i=1 ni. Often
the training data x1,1, ...,xnG,G is not collected in this manner. Often the nk

are fixed numbers such that nk/n does not estimate πk. For example, sup-
pose G = 2 where n1 = 100 and n2 = 100 where patients in group 1 have a
deadly disease and patients in group 2 are healthy, but an attempt has been
made to match the sick patients with healthy patients on p variables such as

317
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age, weight, height, an indicator for smoker or nonsmoker, and gender. Then
using π̂j = 0.5 does not make sense because π1 is much smaller than π2. Here
the indicator variable is qualitative, so the p variables do not have a pdf.

Let W i be the random vector and wi be the observed random vector. Let
Y = j if wi comes from the jth group for j = 1, ..., G. Then πj = P (Y = j)
and the posterior probability that Y = k or that wi belongs to group k is

pk(wi) = P (Y = k|W i = wi) =
πkfk(wi)∑G
j=1 πjfj(wi)

. (5.1)

Definition 5.2. a) The maximum likelihood discriminant rule allocates

case wi to group a if f̂a(wi) maximizes f̂j(wi) for j = 1, ..., G.
b) The Bayesian discriminant rule allocates case wi to group a if p̂a(wi)

maximizes

p̂k(wi) =
π̂kf̂k(wi)∑G
j=1 π̂j f̂j(wi)

for k = 1, ..., G.
c) The (population) Bayes classifier allocates case wi to group a if pa(wi)

maximizes pk(wi) for k = 1, ..., G.

Note that the above rules are robust to nonnormality of the G groups. Fol-
lowing James et al. (2013, pp. 38-39, 139), the Bayes classifier has the lowest
possible expected test error rate out of all classifiers using the same p predic-
tor variables w. Of course typically the πj and fj are unknown. Note that
the maximum likelihood rule and the Bayesian discriminant rule are equiva-
lent if π̂j ≡ 1/G for j = 1, ..., G. If p is large, or if there is multicollinearity
among the predictors, or if some of the predictor variables are noise variables
(useless for prediction), then there is likely a subset z of d of the p variables
w such that the Bayes classifier using z has lower error rate than the Bayes
classifier using w.

Several of the discriminant rules in this chapter can be modified to in-
corporate πj and costs of correct and incorrect allocation. See Johnson and
Wichern (1988, ch. 11). We will assume that costs of correct allocation are
unknown or equal to 0, and that costs of incorrect allocation are unknown
or equal. Unless stated otherwise, assume that the probabilities πj that wi is
in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Some rules can
handle discrete predictors.
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5.2 LDA and QDA

Often it is assumed that the G groups have the same covariance matrix Σx.
Then the pooled covariance matrix estimator is

Spool =
1

n−G

G∑

j=1

(nj − 1)Sj (5.2)

where n =
∑G

j=1 nj. The pooled estimator Spool can also be useful if some

of the ni are small so that the Sj are not good estimators. Let (µ̂j , Σ̂j) be
the estimator of multivariate location and dispersion for the jth group, e.g.
the sample mean and sample covariance matrix (µ̂j , Σ̂j) = (xj,Sj). Then a
pooled estimator of dispersion is

Σ̂pool =
1

k −G

G∑

j=1

(kj − 1)Σ̂j (5.3)

where often k =
∑G

j=1 kj and often kj is the number of cases used to compute

Σ̂j.

LDA is especially useful if the population dispersion matrices are equal:
Σj ≡Σ for j = 1, ..., G. Then Σ̂pool is an estimator of cΣ for some constant

c > 0 if each Σ̂j is a consistent estimator of cjΣ where cj > 0 for j = 1, ..., G.
If LDA does not work well with predictors x = (X1, ..., Xp), try adding
squared terms X2

i and possibly two way interaction termsXiXj . If all squared
terms and two way interactions are added, LDA will often perform like QDA.

Definition 5.3. Let Σ̂pool be a pooled estimator of dispersion. Then the
linear discriminant rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw −
1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj ,Spool).

Definition 5.4. The quadratic discriminant rule is allocate w to the group
with the largest value of

Qj(w) =
−1

2
log(|Σ̂j|)−

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj ,Sj).
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Definition 5.5. The distance discriminant rule allocates w to the group

with the smallest squared distance D2
w(µ̂j, Σ̂j) = (w − µ̂j)

T Σ̂
−1

j (w − µ̂j)
where j = 1, ..., G.

Examining some of the rules for G = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a − 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute value
of the z-score. Hence D1(w) ≈ 1.732|w− a| and D2(w) ≈ 0.1732|w|. If w is
from group 1, then w will not be classified very well unless |a| ≥ 10 or if w is
very close to a. In particular, if a = 0 then expect nearly all w to be classified
to group 2 if w is used to classify the groups. On the other hand, if a = 0,
then D1(w) is small for w in group 1 but large for w in group 2. Hence using
z = D1(w) in the distance rule would result in classification with low error
rates.

Similarly if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(µ, Ip) distribution, the maximum likelihood rule will tend
to classify w in group 1 if w is close to µ and to classify w in group 2
otherwise. The two misclassification error rates should both be low. For the
distance rule, the distances Di have an approximate χ2

p distribution if w is
from group i. If covering ellipsoids from the two groups have little overlap,
then the distance rule does well. If µ = 0, then expect nearly all of the w to be
classified to group 2 with the distance rule, butD1(w) will be small for w from
group 1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering hyperellipsoid that has little overlap with
the observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
observations from group 2 do not fall in an hyperellipsoidal region.

Now suppose the G groups come from the same family of elliptically con-
toured EC(µj,Σj, g) distributions where g is a continuous decreasing func-
tion that does not depend on j for j = 1, ..., G. For example, the jth distri-
bution could have w ∼ Np(µj ,Σj). Using Equation (1.16), log(fj(w)) =

log(kp)−
1

2
log(|Σj)|) + log(g[(w − µj)

T Σ−1
j (w −µj)]) =

log(kp) −
1

2
log(|Σj)|) + log(g[D2

w(µj ,Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(µj,Σj) distributions where g(z) = exp(−z/2), and the maximum
likelihood rule leads to the distance rule if the groups have dispersion matrices
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that have the same determinant: det(Σj) = |Σj | ≡ |Σ| for j = 1, ..., k.
This result is true since then maximizing fj(w) is equivalent to minimizing
D2

w(µj ,Σj). Plugging in estimators leads to the distance rule. The same
determinant assumption is a much weaker assumption than that of equal
dispersion matrices. For example, let cXΣj be the covariance matrix of x,
and let Γ j be an orthogonal matrix. Then y = Γ jx corresponds to rotating

x, and cXΓ jΣjΓ
T
j is the covariance matrix of y with |Cov(x)| = |Cov(y)|.

Note that if the G groups come from the same family of elliptically
contoured EC(µj,Σj, g) distributions with nonsingular covariance matrices
cXΣj , then D2

w(xj,Sj) is a consistent estimator of D2
w(µj ,Σj)/cX . Hence

the distance rule using (xj ,Sj) is a maximum likelihood rule if the Σj have
the same determinant. The constant cX is given below Equation (1.19).

Now D2
w(µj ,Σj) = wT Σ−1

j w − wT Σ−1
j µj − µT

j Σ−1
j w + µT

j Σ−1
j µj =

wT Σ−1
j w−2µT

j Σ−1
j w+µT

j Σ−1
j µj = wT Σ−1

j w+µT
j Σ−1

j (−2w+µj). Hence

if Σj ≡ Σ for j = 1, ..., G, then we want to minimize µT
j Σ−1(−2w + µj)

or maximize µT
j Σ−1(2w − µj). Plugging in estimators leads to the linear

discriminant rule.
The maximum likelihood rule is robust to nonnormality, but it is difficult

to estimate f̂j(w) if p > 2. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
G = 2. The distance rule tends to work well when the ellipsoidal covering
regions of the G groups have little overlap. The distance rule can be very
poor if the groups overlap and have very different variability.

Rule of thumb 5.1. It is often useful to use predictor transformations
from Section 1.2 to remove nonlinearities from the predictors. The log rule is
especially useful for highly skewed predictors. After making transformations,
assume that there are 1 ≤ k ≤ p continuous predictors X1, ..., Xk where no
terms like X2 = X2

1 or X3 = X1X2 are included. If nj ≥ 10k for j = 1, ..., G,
then make the G DD plots using the k predictors from each group to check
for outliers, which could be cases that were incorrectly classified. Then use
p predictors which could include squared terms, interactions, and categorical
predictors. Try several discriminant rules. For a given rule, the error rates
computed using the training data xi,j with known groups give a lower bound
on the error rates for the test data wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups for the test data wi are unknown, the error
rates will be higher. If equal covariance matrices are assumed, plotDi(xj,Sj)
versus Di(xj ,Σpool) for each of the G groups, where the xi,j are used for i =
1, ..., nj. If all of the nj are large, say nj ≥ 30p, then the plotted points should
cluster tightly about the identity line in each of the G plots if the assumption
of equal covariance matrices is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices. See
Remark 5.3.
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5.2.1 Regularized Estimators

A regularized estimator reduces the degrees of freedom d of the estimator.
We want n ≥ 10d, say. Often regularization is done by reducing the number
of parameters in the model. For MLR, lasso and ridge regression were regu-
larized if λ > 0. A covariance matrix of a p × 1 vector x is symmetric with
p+ (p − 1) + · · ·+ 2 + 1 = p(p + 1)/2 parameters. A correlation matrix has
p(p− 1)/2 parameters. We want n ≥ 10p for the sample covariance and cor-
relation matrices S and R. If n < 5p, then these matrices are being overfit:
the degrees of freedom is too large for the sample size n.

Hence QDA needs ni ≥ 10p for i = 1, ..., G. LDA need n ≥ 10p where∑G
i=1 ni = n. Hence the pooled covariance matrix can be regarded as a

regularized estimator of the Σi. Hence LDA can be regarded as a regularized
version of QDA. See Friedman (1989, p. 167). Adding squared terms and
interactions to LDA can make LDA perform more like QDA if the ni ≥ 10p,
but increases the LDA degrees of freedom.

For QDA, Friedman (1989) suggested using Σ̂(λ) = Sk(λ)/nk(λ) where
Sk(λ) = (1− λ)Sk + λSpool , 0 ≤ λ ≤ 1, and nk(λ) = (1 − λ)nk + λn. Then
λ = 0 gives QDA, while λ = 1 gives LDA if the covariance matrices are
computed using slightly different divisors such as nk instead of nk − 1. This
regularized QDA method needs n large enough so LDA is useful with Spool .
If further regularization is needed and 0 ≤ γ ≤ 1, then use

Sk(λ, γ) = (1− λ)Sk(λ) +
γ

p
tr[Sk(λ)]Ip.

If n < 5p, the LDA should not be used with Spool , and more regularization
is needed. An extreme amount of regularization would replace Spool by the
identity matrix Ip. Hopefully better estimators are discussed in Chapter 6.

5.3 LR

Definition 5.6. Assume that G = 2 and that there is a group 0 and a group
1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR)
estimate of ρ(w). The logistic regression discriminant rule allocates w to
group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. The training
data for logistic regression are cases (xi, Yi) where Yi = j if the ith case is in
group j for j = 0, 1 and i = 1, ..., n. Logistic regression produces an estimated

sufficient predictor ESP = α̂+ β̂
T
x. Then

ρ̂(x) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
x)

1 + exp(α̂+ β̂
T
x)
.



5.3 LR 323

See Section 4.3 for more on logistic regression. The response plot is an
important tool for visualizing the logistic regression.

An extension of the above binary logistic regression model uses

ρ̂(w) =
eĥ(w)

1 + eĥ(w)
,

and will be discussed below after some notation. Note that ĥ(w) > 0 corre-

sponds to ρ̂(w) > 0.5 while ĥ(w) < 0 corresponds to ρ̂(w) < 0.5. LR uses

ĥ(w) = ESP and the binary logistic GAM defined in Definition 5.7 uses

ĥ(w) = ESP = EAP . These two methods are robust to nonnormality and
are special cases of 1D regression. See Definition 1.2.

Definition 5.7. Let ρ(w) = exp(w)/[1 + exp(w)].
a) For the binary logistic GLM, Y1, ..., Yn are independent with Y |SP ∼

binomial(1, ρ(SP )) where ρ(SP ) = P (Y = 1|SP ). This model has E(Y |SP )
= ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

b) For the binary logistic GAM, Y1, ..., Yn are independent with Y |AP ∼
binomial(1, ρ(AP)) where ρ(AP ) = P (Y = 1|AP ). This model has E(Y |AP )
= ρ(AP ) and V (Y |AP ) = ρ(AP )(1−ρ(AP )). The response plot and discrim-
inant rule are similar to those of Definition 5.6, and the EAP–response plot
adds the estimated mean function ρ(EAP ) and a step function to the plot.
The logistic GAM discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and
allocates w to group 0 if ρ̂(w) < 0.5 where

ρ̂(w) =
eEAP

1 + eEAP

and EAP = α̂+
∑p

j=1 Ŝj(wj).

Lasso for binomial logistic regression can be used as in Section 4.6.2.
Changing the 10-fold CV criterion to classification error might be useful.
For this data from Section 4.6.2, the default deviance criterion had moderate
overfit and gave a better response plot than the classification error crite-
rion, which has severe underfit. Compare the following R code to the code in
Section 4.6.2.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y
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vars <- 1:q

beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial",type.measure="class")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0]

vin #underfit compared to the default in Section 4.6.2

[1] 2 4

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

lrplot3(tem=tem,x=x[,vin]) #binary response plot

5.4 KNN

The K-nearest neighbors (KNN) method identifies the K cases in the train-
ing data that are closest to w. Suppose mj of the K cases are from group
j. Then the KNN estimate of pj(w) = P (Y = j|W = w) = P (w is
from the jth group) is p̂j(w) = mj/K. (Actually mj/K ≈ cpj(w) so
mj/mk ≈ pj(w)/pk(w). See the end of this section.) Applying the Bayesian
discriminant rule to the p̂j(w) gives the KNN discriminant rule.

Definition 5.8. The K-nearest neighbors (KNN) discriminant rule allo-
cates w to group a if ma maximizes mj for j = 1, ..., G.

A couple of examples will be useful. When K = 1, find the case in the
training data closest to w. If that training data case is from group j then
allocate w to group j. Suppose nj is the largest nk for k = 1, ..., G. Hence
group j is the group with the most training data cases. Then if K = n, w
is always allocated to group j. The K = n rule is bad. The K = 1 rule is
surprisingly good, but tends to have low bias and high variability. Generally
values of K > 1 will have smaller test error rates.

For KNN and other discriminant analysis rules, it is often useful to stan-
dardize the data so that all variables have a sample mean of 0 and sample
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standard deviation of 1. The scale function in R can be used to standardize
data. The test data is standardized using means and SDs from the training
data. The jth variable from xi uses (xij − xj)/Sj . Hence the jth variable
from a text case w would use (wj − xj)/Sj . Here xj and Sj are the sample
mean and standard deviation of the jth variable using all of the training data
(so group is ignored).

To see why KNN might be reasonable, let Dε be a hypersphere of radius
ε centered at w. Since the pdf fj(x) is continuous, there exists ε > 0 small
enough such that fj(x) ≈ fj(w) for all x ∈ Dε and for each j = 1, ..., G. If z
is a random vector from a distribution with pdf fj(x), then Pj(z ∈ Dε) =

∫

Dε

fj(x)dx ≈ fj(w)

∫

Dε

1dx = fj(w)V ol(Dε) = fj(w)
2πp/2

pΓ (p/2)
εp.

Here Pj denotes the probability when the distribution has pdf fj(x).
If for i = 1, ..., n, the zi are iid from a distribution with pdf fj(x), ε is

fixed, and if fj(w) > 0, then the number of zi in Dε is proportional to n.
Hence if the number of zi in Dε is proportional to nδ with 0 < δ < 1, then
ε→ 0. So if K/n→ 0 in KNN, then the hypersphere containing the K cases
has radius ε → 0 as n → ∞. Hence the above approximations will be valid
for large n. Note that if p = 1, then Dε is the line segment (w− ε, w+ ε) and
V ol(Dε) = 2ε = length of the line segment. If p = 2, then Dε is the circle of
radius ε centered at w and V ol(Dε) = πε2 = the area of the circle. If p = 3,
then Dε is the sphere of radius ε centered at w and V ol(Dε) = 4πε3/3 = the
volume of the sphere.

Now suppose that the training data x1,1, ...,xnG,G is a random sample

from the G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Then

for ε small and K large, mj/K ≈

P (W ∈ Dε, Y = j) = P (W ∈ Dε|Y = j)P (Y = j) ≈ πjfj(w)V ol(Dε).

Now P (W ∈ Dε) =
∑G

j=1 P (W ∈ Dε, Y = j) =∑G
j=1 P (W ∈ Dε|Y = j)P (Y = j) since the sets {Y = j} form a disjoint

partition. Hence

P (Y = k|W ∈ Dε) =
P (Y = k,W ∈ Dε)

P (W ∈ Dε)
=
P (W ∈ Dε)|Y = k)P (Y = k)

P (W ∈ Dε)

≈ πkfk(w)V ol(Dε)∑G
j=1 πjfj(w)V ol(Dε)

,

which is the quantity used by the Bayes classifier since the constant V ol(Dε)
cancels. This argument can also be used to justify Equation (5.1). Since the
denominator is a constant, allocating w to group a with the largest ma/K,
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or equivalently with the largest ma, approximates the Bayes classifier if n is
very large, K is large, and ε is very small.

This approximation likely needs unrealistically large n, especially if p is
large and w is in a region where there is a lot of group overlap. However,
KNN often works well in practice. Silverman (1986, pp. 96-100) also discusses

using KNN to find an estimator f̂(w) of f(w).
As claimed above Definition 5.8, note, for large K and small ε, that

mj/K ≈ P (W ∈ Dε, Y = j) = P (Y = j|W ∈ Dε)P (W ∈ Dε) ≈

cP (Y = j|W = w) = cpk(w)

where c = P (W ∈ Dε).

5.5 Some Matrix Optimization Results

The following results will be useful for multivariate analysis including Fisher’s
discriminant analysis. Let B > 0 denote that B is a positive definite matrix.
The generalized eigenvalue problem finds eigenvalue eigenvector pairs (λ, g)
such that C−1Ag = λg which are also solutions to the equation Ag =
λCg. Then the pairs are used to maximize or minimize the Rayleigh quotient
aT Aa

aT Ca
. Results from linear algebra show that if C > 0 and A are both

symmetric, then the p eigenvalues of C−1A are real, and the number of
nonzero eigenvalues of C−1A is equal to rank(C−1A) = rank(A). Note that
if a1 = c1g1 is the maximizer and ap = cpgp is the minimizer of the Rayleigh
quotient for any nonzero constants c1 and cp, then there is a vector β that
is the maximizer or minimizer such that ‖β‖ = 1.

Theorem 5.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p × 1 vector and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, pp. 64-65, 184).

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.
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d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0.Then max
a6=0

naT (x−µ)(x− µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x− µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. For a), note that rank(C−1A) = 1, where C = B and
A = ddT , since rank(C−1A) = rank(A) = rank(d) = 1. Hence C−1A has
one nonzero eigenvalue eigenvector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x−µ)(x− µ)T .)

For f), see Mardia et al. (1979, p. 480). �

Suppose A > 0 and C > 0 are p×p symmetric matrices, and let C−1Aa =

λa. Then Aa = λCa, or A−1Ca =
1

λ
a. Hence if (λi(C

−1A),a) are eigen-

value eigenvector pairs of C−1A, then

(
λi(A

−1C) =
1

λi(C
−1A)

,a

)
are

eigenvalue eigenvector pairs of A−1C. Thus we can maximize
aT Aa

aT Ca
with the

eigenvector a corresponding to the smallest eigenvalue of A−1C, and mini-

mize
aT Aa

aT Ca
with the eigenvector a corresponding to the largest eigenvalue

of A−1C.

Remark 5.1. Suppose A and C are symmetric p × p matrices, A >

0, C is singular, and it is desired to make
aT Aa

aT Ca
large but finite. Hence
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aT Ca

aT Aa
should be made small but nonzero. The above result suggests that

the eigenvector a corresponding to the smallest nonzero eigenvalue of A−1C

may be useful. Similarly, suppose it is desired to make
aT Aa

aT Ca
small but

nonzero. Hence
aT Ca

aT Aa
should be made large but finite. Then the eigenvector

a corresponding to the largest eigenvalue of A−1C may be useful.

5.6 FDA

The FDA method of discriminant analysis, a special case of the generalized
eigenvalue problem, finds eigenvalue eigenvector pairs so that the êT

1 xij have

low variability in each group, but the variability of the êT
1 xij between groups

is large. More precisely, let Ŵ be a p× p dispersion matrix used to measure
variability within groups and let B̂ be a p × p symmetric matrix used to
measure variability between classes. Let the eigenvalue eigenvector pairs of a

matrix Ŵ
−1

B̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then from

Theorem 5.1 f), max
a 6=0

aT B̂a

aT Ŵa
= λ̂1, the largest eigenvalue of Ŵ

−1
B̂. The

value of a that achieves the max is the eigenvector ê1. Then ê2 will achieve
the max among all unit vectors orthogonal to ê1. Similarly, ê3 will achieve
the max among all unit vectors orthogonal to ê1 and ê2, et cetera.

Many choices of Ŵ have been suggested. Typically assume rank(Ŵ ) = p

and rank(B̂) = min(p, G − 1). Let q ≤ min(p, G − 1) be the number of

nonzero eigenvalues λ̂i of Ŵ
−1

B̂. Let (Ti,Ci) be an estimator of multivariate

location and dispersion for the ith group. Let T =
1

G

G∑

i=1

Ti. Let B̂T =

∑G
i=1(Ti−T )(Ti−T )T . Note that B̂T /(G−1) is the sample covariance matrix

of the T1, ..., TG. Let Ŵ T =
∑G

i=1 Ci. Typically (Ti,Ci) = (xi,Si) is used

where the notation T = x is used. Let B̂B =
∑G

i=1 π̂i(Ti − T )(Ti − T )T , and

Ŵ B =
∑G

i=1 π̂iCi. Let Ŵ L = GΣ̂pool . See Equation (5.3). Let A = (aij) be
a p × p matrix, and let diag(A) = diag(a11, ..., app) be the diagonal matrix

with the aii along the diagonal. Let Ŵ D = diag(Ŵ A) for any previously

defined Ŵ A, e.g. A = T . Then Ŵ D is nonsingular if all wii > 0 even if
Ŵ A = (wij) is singular. Sometimes TB =

∑
i=1 π̂iTi is used instead of T .

The rule may also use B̂ = c1B̂A and Ŵ = c2Ŵ A for positive constants c1
and c2, e.g. c1 = 1/(G− 1) and c2 = 1/(n−G).

The FDA rule finds ê1 and summarizes the group by the linear combination
êT

1 Ti. Then FDA allocates w to the group a for which êT
1 w is closest to

êT
1 Ta. (We can view êT

1 Ti as a summary of the ni linear combinations of
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the predictors êT
1 xij in the ith group where j = 1, ..., ni.) The FDA method

should work well if the within group variability is small and the between
group variability is large.

Definition 5.9. For Fisher’s discriminant analysis (FDA), the FDA dis-
criminant rule allocates w to group a that minimizes |êT

1 w − êT
1 Ti| for

i = 1, ..., G.

Remark 5.2. a) Often it is suggested to use PCA for DA: findD such that
the first D principal components explain at least 95% of the variance. Then
use the D ≤ min(n, p) principal components as the variables. The problem
with this idea is that principal components are used to explain the structure
of the dispersion matrix of the data, not to be linear combinations of the
data that are good for DA. Using the J linear combinations from FDA such
that

J∑

i=1

λ̂i/

p∑

i=1

λ̂i ≥ 0.95

might be a better choice for DA, especially if the number of nonzero eigen-
values q is not too small.

b) Often DA rules from the other FDA eigenvectors simply replace ê1

with êj . It might be better to consider J rules such that (êT
1 w, ..., êT

k w)T is

closest to (êT
1 Ta, ..., ê

T
k Ta)T for k = 1, ..., J where a ∈ {1, ..., G} and J is as

in Remark 5.2 a). Or let V̂ = [ê1 ê2 · · · êq]. Then allocate w to group a

that minimizes D2
j (w) where D2

j (w) = (w− Tj)
T V̂ V̂

T
(w−Tj)

T − 2 log(π̂j)

where Ŵ B and B̂B are used. See Filzmoser et al. (2006).

c) If Ŵ is singular and B̂ is nonsingular, then the eigenvalue eigenvector

pair(s) corresponding to the smallest nonzero eigenvalue(s) of B̂
−1

Ŵ may
be of interest, as argued below Theorem 5.1.

Following Koch (2014, pp. 120-124) closely, consider the population version
of FDA where the ith group has mean and covariance matrix (µi,Σxi) for
i = 1, ..., G where xi is a random vector from the population corresponding
to the ith group. Let µ = 1

G

∑G
i=1 µi, B =

∑G
i=1(µi − µ)(µi − µ)T , and

W =
∑G

i=1 Σxi
. Then the between group variability

b(a) = aT Ba =
G∑

i=1

|aT (µi −µ)|, (5.4)

and the within group variability =

w(a) = aT Wa =

G∑

i=1

aT Σxia =

G∑

i=1

Var(aTxi) (5.5)
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since Var(aT xi) = E[(aT xi−E(aT xi))
2] = E[aT (xi−E(xi))(xi−E(xi))

T a]
= aT Σxia. Then

max
a 6=0

b(a)

w(a)
= max

a 6=0

aT Ba

aT Wa

is achieved by a = e1, the eigenvector corresponding to the largest eigenvalue
λ1(W

−1B) of W−1B. Hence b(e1) is large while w(e1) is small in that the
ratio is a max.

FDA approximates Equations (5.4) and (5.5) by using B̂T and Ŵ T with
(Ti,Ci) = (xi,Si). Note that W /G tends not to be a good estimator of
dispersion unless the G groups have the same covariance matrix Σxi = Σx
for i = 1, ..., G, but w(a) is a good measure of within group variability even if

the Σxi are not equal. Also, if Ŵ A is such that aT Ŵ Aa can be made small,
then FDA will likely work well with B̂T and Ŵ A if there are no outliers.

Remark 5.3. If G = 2, (Ti,Ci) = (xi,Si), B̂ = B̂T , and Ŵ = 2Spool ,
then LDA and FDA are equivalent. See Koch (2014, p. 129). This result helps
explain why LDA works well on so many data sets.

Two special cases are illustrative. First, let Ŵ = Ip and use B̂T . Then

FDA attempts to find a vector ê1 such that the êT
1 Ti are far from êT

1 T .
Then find group a such that êT

1 w is closer to êT
1 Ta than to êT

1 Ti for i 6= a.
Second, consider G = 2. Then B̂T = (T1 − T2)(T1 − T2)

T /2. Using Theorem

5.1a) with d = (T1 − T2)/
√

2 shows that ê1 =
Ŵ

−1
(T1 − T2)

‖Ŵ−1
(T1 − T2)‖

. If the

Ŵ
−1

xij are “standardized data,” and the Ŵ
−1
Ti are standardized centers

for i = 1, 2, then FDA projects w on the line between the standardized
centers and allocates w to the group with the standardized center closest to
êT

1 w.

library(MASS) ##Use ?lda. Output for Ex. 5.1.

out <- lda(as.matrix(iris[, 1:4]), iris$Species)

names(out); out; plot(out) #plots LD1 versus LD2

Prior probabilities of groups:

setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:

Sep.Len Sep.Wid Pet.Len Pet.Wid

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.8293776 0.02410215

Sepal.Width 1.5344731 2.16452123
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Petal.Length -2.2012117 -0.93192121

Petal.Width -2.8104603 2.83918785

Proportion of trace:

LD1 LD2

0.9912 0.0088

gp <- as.integer(iris$Species)

x <- as.matrix(iris[,1:4]) #AER 0.02

out<- lda(x,gp); 1-mean(predict(out,x)$class==gp)

plot(out) #Get numbers in Figure 5.1.

Example 5.1. The library MASS has a function lda that does FDA. The
famous iris data set has variables x1 = sepal length, x2 = sepal width, x3 =
petal length, and x4 = petal width. There are three groups corresponding
to types of iris: setosa, versicolor, and virginica. The above R code performs
FDA. Figure 5.1 shows the plot of LD1 = ê1 versus LD2 = ê2. Since the
proportion of trace for LD2 is small, LD2 is not needed. Note that LD1
separates setosa from the other two types of iris, and versicolor and virginica
are nearly separated.

Let β̂ = ê1 = LD1 be the first eigenvector from FDA. The func-
tion FDAboot bootstraps β̂ and gives the nominal 95% shorth CIs. Also

shown below is the sample mean vector of the bootstrapped β̂
∗
i where

i = 1, ..., B = 1000. The bootstrap is performed by taking samples of size
ni with replacement from each group for i = 1, ..., G. Perform FDA on the

combined sample to get β̂
∗
j . Since β̂ is an eigenvector, the bootstrapped eigen-

vector could estimate β̂ or −β̂. Pick a β̂j that is large in magnitude, and see

how many times the β̂∗
j have the same sign as β̂j . Multiply the bootstrap vec-

tor by −1 if it has opposite sign. In the output below, all B = 1000 bootstrap
vectors had β̂∗

4 < 0.

#Sample sizes may not be large enough for the

#shorth CI coverage to be close to the nominal 95%.

out<-FDAboot(x,gp)

apply(out$betas,2,mean)

[1] 0.8468 1.5807 -2.2558 -2.9180

sum(out$betas[,4]<0) #all betahatˆ*
[1] 1000 #estimate betahat, not -betahat

ddplot4(out$betas) #right click Stop

#covers the identity line

out$shorci[[1]]$shorth

[1] 0.3148 1.4634

out$shorci[[2]]$shorth

[1] 0.7745 2.3096

out$shorci[[3]]$shorth

[1] -2.9276 -1.6260
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out$shorci[[4]]$shorth

[1] -3.8609 -1.8875

Next, R code is given for robust FDA. The function getUbig gets the
RMVN set Ui for each group for i = 1, ..., G and combines the sets into one
large data set. RMVN is useful when n/p is large. Then RFDA is the classical
FDA applied to this cleaned data set. See the output below. Figure 5.2 only
uses the cleaned cases since outliers could obscure the plot, and this technique
can distort the amount of group overlap.
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Fig. 5.1 Plot of LD1 versus LD2 for the iris data.

tem<-getubig(x,gp) ##Robust FDA

outr<-lda(tem$Ubig,tem$grp)

1-mean(predict(outr,x)$class==gp) #AER 0.03

plot(outr)

outr

Prior probabilities of groups:

1 2 3

0.3206107 0.3282443 0.3511450

Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.026190 3.438095 1.464286 0.2309524

2 5.923256 2.813953 4.234884 1.3093023

3 6.486957 2.950000 5.454348 2.0173913
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Fig. 5.2 RFDA Plot of LD1 versus LD2 for the iris data.

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.4281837 -0.06899442

Sepal.Width 2.5221645 2.01270912

Petal.Length -2.3230167 -1.11944258

Petal.Width -3.2947263 3.25076179

Proportion of trace:

LD1 LD2

0.9942 0.0058

The covmb2 subset B can be found when p < n or p ≥ n. See Section
1.3. The function getBbig gets the set Bi for each group for i = 1, ..., G and
combines the sets into one large data set. Then a robust FDA is the classical
FDA applied to this cleaned data set. For the iris data, using covmb2 did
not discard any cases, so the robust FDA and classical FDA had identical
output. See the R code below.

#Robust FDA with covmb2 set B from each group.

#This subset of cases can be found when p > n.

tem<-getBbig(x,gp)

outr<-lda(tem$Bbig,tem$grp) #AER 0.02

plot(outr); 1-mean(predict(outr,x)$class==gp)

outr #Output is same as that for classical FDA.
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5.7 Estimating the Test Error

Definition 5.10. The test error rate Ln is the population proportion of
misclassification errors made by the DA method on test data.

The Bayes classifier has the smallest expected test error, but the Bayes
classifier generally can’t be computed used since the πk and fk are unknown.
If it was known that π1 = 0.9, a simple DA rule would be to always allocate
w to group 1. Then the test error of this rule would be Ln = 0.1.

Generally the test error Ln needs to be estimated by L̂n. A simple method
for estimating the test error is to apply the DA method to the training data
and find the proportion of classification errors made. To help see why this
method is poor, consider KNN withK = 1. Then the training data is perfectly
classified with a training error rate of 0, although the test error rate may be
quite high.

Definition 5.11. The training error rate or apparent error rate (AER) is

AER = L̂n =
1

n

nj∑

i=1

G∑

j=1

I[Ŷij 6= Yij ]

where Ŷij is the DA estimate of Yij using all n training cases x1,1, ...,xG,nG .
Note that Yij = j since xij comes from the jth group. If mj of the nj group
j cases are correctly classified, then the apparent error rate for group j is

1 − mj/nj. If mA =
G∑

j=1

mj of the n =
G∑

j=1

nj training cases are correctly

classified, then AER = 1−mA/n.

DA methods fit the training data better than test data, so the AER tends
to underestimate the error rate for test data. We want to use a DA method
with a low test error rate. Cross validation (CV) divides the training data
into a big part and a small part, perhaps J times. For each of the J divisions,
the DA rule is computed for the big part and applied to the small part. Hence
the small part is used as a validation set. The proportion of errors made for
the small part is recorded.

For leave one out or delete one cross validation, J = n, the big part uses
n − 1 cases from the training data while the small part uses the 1 case left
out of the big part. This case will either be correctly or incorrectly classified.
The leave one out CV rule can sometimes be rapidly computed, but usually
requires the DA method to be fit n times.

Definition 5.12. An estimator of the test error rate is the leave one out
cross validation error rate
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L̂n =
1

n

nj∑

i=1

G∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is deleted from the n training

cases x1,1, ...,xG,nG. Note that L̂n is the proportion of training cases that
are misclassified by the n leave one out rules. If mC is the number of cases
correctly classified by leave one out classification, then L̂n = 1−mC/n.

For KNN , find the K cases in the training data closest to xi,j not in-
cluding xi,j. Then compute the leave one out cross validation error rate as
in Definition 5.12.

Assume that the training data x1,1, ...,xnG,G is a random sample from the

G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Hence nj/n

is a consistent estimator of πj. Following Devroye and Wagner (1982), when
K = 1 the test error rate Ln of KNN method converges in probability to L
where LB ≤ L ≤ 2LB and LB is the test error rate of the Bayes classifier. If
Kn →∞ and Kn/n→ 0 as n→∞, then the KNN method converges to the

Bayes classifier in that the KNN test error rate Ln
P→ LB . Then the leave one

out cross validation error rate L̂n is a good estimator of Ln in that 2e−2nε2

was usually an upper bound on P [|L̂n− Ln| ≥ ε] for small ε > 0.

For the method below, J = 1 and the validation set or hold-out set is the
small part of the data. Typically 10% or 20% of the data is randomly selected
to be in the validation set. Note that the DA method is only computed once
to compute the error rate.

Definition 5.13. The validation set approach has J = 1. Let the valida-
tion set contain nv cases (x1, Y1), ..., (xnv , Ynv), say. Then the validation set
error rate is

L̂n =
1

nv

nv∑

i=1

I(Ŷi 6= Yi)

where Ŷi is the estimate of Yi computed from the DA method applied to the
n − nv cases not in the validation set. If mL is the number of the nv cases
from the validation set correctly classified, then L̂n = 1−mL/nv.

The k-fold CV has J = k partitions of the data into big and small sets, and
the DA method is computed k times. The values k = 5 and 10 are common
because they have been shown empirically to work well.

Definition 5.14. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the DA method to the k − 1
remaining folds, and then find the proportion of errors for the first fold.
Repeat for folds 2, ..., k. The k-fold CV error rate is
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L̂n =
1

n

nj∑

i=1

G∑

j=1

I(Ŷij 6= Yij)

where Ŷij is the estimate of Yij when xij is in the deleted fold. If mk is the

number of the n training cases correctly classified, then L̂n = 1−mk/n.

Definition 5.15. A truth table or confusion matrix for a G category
classifier is a G × G table with G labels on the top for the “truth” (true
classes) and G labels on the left side for the predicted classes. The cells give
classification counts. The diagonal cells are counts for correctly classified
cases, while the off diagonals are counts for incorrectly classified cases. The
error rate = (sum of off diagonal cells)/(sum of all cells) =
1 - (sum of diagonal cells)/(sum of all cells).

For a binary classifier, consider the following truth table where the counts
TN = true negative, FN = false negative, FP = false positive, and TP = true
positive.

truth total
−1 1

predict −1 TN FN N∗

1 FP TP P ∗

total N P

The true positive rate = TP/P = sensitivity = power = recall = 1−
type II error. The false positive rate = FP/N = 1− specifity ≈ type I
error. The positive predicted value = TP/P ∗ ≈ precison = 1− false dis-
covery proportion. The negative predicted value = TN/N . The error rate
= (FP + FN)/(FP + FN + TN + TP ).

For a binary classifier, sometimes one error is much more important than
the other. For example consider a loan with categories “default” and “does
not default.” Misclassifying “default” should be small compared to misclas-
sifying “does not default.”

A ROC curve is used to evaluate a binary classifier. The horizontal axis is
the false positive rate while the vertical axis is the true positive rate. Both
axes go from 0 to 1, so the total area of the square plot is 1. The overall
performance of the binary classifier is summarized by the area under the
curve (AUC). An ideal ROC curve is close to the top left corner of the plot,
so the larger the AUC, the better the classifier. Note that 0 ≤ AUC ≤ 1. A
classifier with AUC = 0.5 does no better than chance. A ROC from test data
or validation data is better than a ROC from training data.



5.8 Some Examples 337

5.8 Some Examples

Example 5.2. The following output illustrates crude variable selection using
the LDA function. See Problems 5.6 and 5.7. The code deletes predictors as
long as the AER does not increase if the predictor is deleted. Using all of the
data, the AER = 0.0357. Eventually the AER = 0.

library(MASS) #Output for Example 5.2.

group <- pottery[pottery[,1]!=5,1]

group <- (as.integer(group!=1)) + 1

x <- pottery[pottery[,1]!=5,-1]

out<-lda(x,group)

1-mean(predict(out,x)$class==group)

[1] 0.03571429 #AER using all of the predictors.

out<-lda(x[,-c(1)],group)

1-mean(predict(out,x[,-c(1)])$class==group)

out<-lda(x[,-c(1,2)],group)

1-mean(predict(out,x[,-c(1,2)])$class==group)

out<-lda(x[,-c(1,2,3)],group)

1-mean(predict(out,x[,-c(1,2,3)])$class==group)

out<-lda(x[,-c(1,2,3,4)],group)

1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)

out<-lda(x[,-c(1,2,3,4,5)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)

[1] 0.03571429 #Can delete predictors 1-5.

out<-lda(x[,-c(1,2,3,4,5,6)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)

[1] 0.07142857 #Predictor x6 is important.

out<-lda(x[,-c(1,2,3,4,5,7)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])

$class==group)

[1] 0.07142857 #Predictor x11 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)



338 5 Discriminant Analysis

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])

$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

14)])$class==group)

[1] 0.07142857 #Predictor x14 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],

group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

18)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,18)])$class==group)

[1] 0.07142857 #Predictor x18 is important.

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,

19,20)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,

15,16,17,19,20)])$class==group)

[1] 0

#Predictors x6, x11, x14, x18 seem good for LDA.

Example 5.3. This example illustrates that the AER tends to under-
estimate the test error rate compared to the validation set approach. The
validation test error estimates can change greatly when the random number
generator seed is changed. See Definitions 5.11 and 5.13. The men’s basket-
ball data set mbb1415 is described in Problem 7.4, which tells how to get the
data set into R. The KNN method AER is especially poor when K is small
(K < 10, say). The KNN method also depends on a random number seed,
perhaps to handle ties. (If there are three groups and K = 3, it is possible
that the 3 nearest neighbors to w come from groups 1, 2, and 3. How does
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KNN decide which group to allocate w?) The R commands below standard-
ize the variables to have mean 0 and variance 1, puts guards into group 1,
small forwards into group 2, centers and power forwards into group 3, and
individuals with unknown position into group 0. Then individuals who do
not play much (are in the bottom quartile in playing time) are deleted. Next,
players in group 0 are deleted, leaving a data set z with 86 cases, 3 groups,
and 35 predictor variables. The data set z is also divided into a validation
test set ztest of 20 cases and a training set ztrain of 66 cases.

set.seed(1)

z <- mbb1415[,-1]

z <- scale(z) #standardize the variables

grp <- mbb1415[,1]

grp[grp==2]<-1

grp[grp==3]<-2

grp[grp==4]<-3

grp[grp==5]<-3

#Put guards in group 1, small forwards in group 2,

#centers and power forwards in group 3,

#unknowns in group 0.

#Get rid of players who did not play much.

z <- z[mbb1415[,3]>182,]

grp <- grp[mbb1415[,3]>182]

#Get rid of group 0, 86 cases left.

z <- z[grp>0,]

grp<-grp[grp>0]

indx<-sample(1:86,replace=F)

train <- indx[21:86]

test <- indx[1:20]

ztest <- z[test,] #20 test cases

grptest <- grp[test]

ztrain <- z[train,]

grptrain <- grp[train]

Since x1 is used as group, zi = xi+1. Below we use z7 = turnovers, z10 =
stl.pos (stolen possessions, a ball handling rating), z12 = rebounds, z13 =
offensive rebounds, z28 = three point field goal percentage, and z32 = free
throw percentage. With 2 nearest neighbors, the AER is 0.151, but (the
validation error rate) VER = 0.45. With 1 nearest neighbor, the AER = 0
since each training case is its own nearest neighbor. Hence the training cases
are perfectly classified.

#see what the variables are

z[1,c(7,10,12,13,28,32)]

library(class)
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out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=2)

mean(grp!=out) #0.151 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=2)

mean(grptest!=out) #0.45 validation ER

out <- knn(z[,c(7,10,12,13,28,32)],

z[,c(7,10,12,13,28,32)],grp,k=1)

mean(grp!=out) #0.0 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],

ztest[,c(7,10,12,13,28,32)],grptrain,k=1)

mean(grptest!=out) #0.45 validation ER

The output below shows that VER = 0.5 and AER = 0.22 with FDA
(LDA), and VER = 0.45 and AER = 0.13 with QDA.

library(MASS) #three ways to get VER = 0.5

out <- lda(z[,c(7,10,12,13,28,32)],grp, subset=train)

1-mean(predict(out,z[-train,c(7,10,12,13,28,32)])

$class==grp[-train])

1-mean(predict(out,z[test,c(7,10,12,13,28,32)])

$class==grptest)

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-lda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.22

out <- qda(z[,c(7,10,12,13,28,32)],grp, subset=train)

#VER = 0.45

1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])

$class==grptest)

out<-qda(z[,c(7,10,12,13,28,32)],grp)

1-mean(predict(out,z[,c(7,10,12,13,28,32)])

$class==grp) #AER =0.13

5.9 Classification Trees, Bagging, and Random Forests

A classification tree is a flexible method for classification that is very similar
to the regression tree of Section 4.10. The method produces a graph called a
tree. Each branch has a label like xi > 7.56 if xi is quantitative, or xj ∈ {a, c}
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(written xj = ac) where xj is a factor taking on values a, b, c, d, e, f, say.
Unless told otherwise, go to the left branch if the condition is true, go to
the right branch if the condition is false. (Some software switches this. Check
the story problem.) The bottom of the tree has leaves that give a label for a
group such as Ŷ = j for some j = 1, ..., G. The root is the top node, a leaf is
a terminal node, and a split is a rule for creating new branches. Each node
has a left and right branch.

|
Mg < 2.695

Na < 13.785

Al < 1.38 Ba < 0.2

Al < 1.42

RI < −0.93

K < 0.29

Mg < 3.75

Mg < 3.455

WinNF Con

Tabl Head

Veh

WinF

WinF WinNF

WinNF WinNF

Fig. 5.3 Classification Tree for Example 5.4.

Example 5.4.
The Venables and Ripley (2010) fgl data set has fragments of glass clas-

sified by five chemicals x1 = Al, x2 = Ba, x3 = K, x4 = Mg, x5 = Na, and
x6 = RI = refractive index. The categories which occur are window float
glass (WinF), window non-float glass (WinNF), vehicle window glass (Veh),
containers (Con), tableware (Tabl), and vehicle headlamps (Head). In the
second node to the left, the split is NA < 13.785, but the 13.785 is hard to
read.

a) Predict the class Y if Mg = 2, Na = 14 and Ba = 0.35.
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Solution: Go left, right, right to predict class Head.
b) Predict the class Y if Mg = 3.1 and Al = 1.6.
Solution: Go right right left to predict class WinNF.
Note that the tree in Figure 5.3 can be simplified: predict WinNF if Mg ≥

2.65 and i) Al ≥ 1.42 or ii) Al < 1.42 and RI ≥ −0.93.

Classification trees have some advantages. Trees can be easier to interpret
than competing methods when some predictors are numerical and some are
categorical. Trees are invariant to monotone (increasing or decreasing) trans-
formations of the predictor variable xi. Trees can handle complex unknown
interactions. Classification and regression trees i) give prediction rules that
can be rapidly and repeatedly evaluated, ii) are useful for screening predic-
tors (interactions, variable selection), iii) can be used to assess the adequacy
of linear models, and iv) can summarize large multivariate data sets.

Trees that use recursive partitioning for classification and regression trees
use the CART algorithm. In growing a tree, the binary partitioning algorithm
recursively splits the data in each node until either the node is homogeneous
(roughly 0 training data misclassifications for a classification tree) or the
node contains too few observations (default ≤ 5). The deviance is a measure
of node homogeneity, and deviance = 0 for a perfectly homogeneous node.
For a classification tree, Ŷ is often the mode of the node labels (Ŷ is the class
that occurs the most).

Trees divide the predictor space (set of possible values of the training
data xi) into J distinct and nonoverlapping regions R1, ..., RJ that are high
dimensional boxes. Then for every observation that falls in Rj, make the

same prediction. Hence ŶRj = modal class modej of training data Yi in Rj.

Choose Rj so RSS =
∑J

j=1

∑
i∈Rj

I(Yi 6= ŶRj ) is small. Let {x|xj < s} be

the region in the predictor space such that xj < s where x = (x1, ..., xp)
T .

Define 2 regions R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s}. Then seek
cutpoint s and variable xj to minimize

∑

i:xi∈R1(j,s)

I(Yi 6= ŶR1
) +

∑

i:xi∈R2(j,s)

I(Yi 6= ŶR2
).

This can be done “quickly” if p is small (could use order statistics). Then
repeat the process looking for the best predictor and the best cutpoint in
order to split the data further so as to minimize the RSS within each of the
resulting regions. Only split one of the regions, R1, R2, and R3. Continue this
process until a stopping criterion is reached such as no region contains more
than 5 observations (and stop if the region is homogeneous). If J is too large,
the tree overfits.

The null classifier hat Ŷ = d where d is the modal (dominant) class. So if
k% of the test observations belong to the dominant class, then the test error
=

100− k
100

≤ 1− 1

G
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where there are G groups since k ≥ 100/G. Classifiers that do not beat the
null classifier are very bad.

Classification trees are often beat by one of the earlier techniques from this
chapter. Bagging, pruning, and random forests makes trees more competitive.
The following subsections follow James et al. (2013) closely.

5.9.1 Pruning

Trees use regions R1, ..., RJ, and if J is too large, the tree overfits. One
strategy is to grow a large tree T0 with J0 regions, then prune it to get a
subtree Tα with Jα regions.

Next, we describe cost complexity pruning = weakest link pruning. Let T ⊆
T0, α ≥ 0, and |T | = number of terminal nodes of tree T . Each terminal node
corresponds to a hyperbox region Ri. Let Rm be the region corresponding to
the mth terminal node and ŶRm be the predicted response for Rm. For each
value of α > 0, there corresponds a subtree T ⊆ T0 such that

|T |∑

m=1

∑

i:xi∈Rm

I(Yi 6= ŶRm) + α|T | (5.6)

is as small as possible. (Replace I(Yi 6= ŶRm) by (yi − ŷRm)2 for a regression
tree.) Note that α = 0 has T = T0 and (5.16) = RSS(T0) = training data
RSS for T0. Much like lasso, there is a sequence of nested subtrees

Tαm ⊆ · · · ⊆ Tα2
⊆ Tα1

⊆ T0. (5.7)

Branches get “pruned” from T0 in a nested and predictable fashion.
The pruning algorithm is a) build tree T0, stopping when each (region

corresponding to a terminal node has ≤ 5 observations. b) Use (5.6) to obtain
(5.7). c) Use k-fold CV to choose α = αd: for each i ∈ 1, ..., k, i) repeat steps
a) and b) on all but the ith fold. ii) Evaluate the mean squared prediction
error

MSEi =
1

ni

ni∑

j=1

I(Yji 6= Ŷj(i))

on the data Yji in the left out fold i as a function of α. Note that MSEi =
proportion misclassified in the ith fold. Average the results for each value of
α am pick αd to minimize the average error

CV (k) =
1

k

k∑

i=1

MSEi.

d) Use tree Tαd from (5.7). Note that if ni = n/k, then
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CV (k) =
1

n

n∑

j=1

I(Yji 6= Ŷj(i)) =

proportion of misclassified observations. (For a regression tree, use

MSEi =
1

ni

ni∑

j=1

(Yji − Ŷj(i))
2.)

5.9.2 Bagging

Bagging was used before: compute T ∗
1 , ..., T

∗
B with the bootstrap, and the

sample mean

T
∗

=
1

B

B∑

i=1

Ti

is the baggin estimator. For a regression tree, draw a sample of size n with
replacement from the training data x1, ...,xn. Fit the tree and find f̂1(x).

Repeat B times to get T ∗
i = f̂i(x). The trees are not pruned, so terminate

when each terminal node has 5 or fewer observations.
Bagging a classification tree draws a sample of size nj from each group

with replacement. For the ith bootstrap estimator (i = 1, ..., B), fit the clas-

sification tree, and let f̂∗i (x) = ji(x) ∈ {1, ..., G} where Y takes on levels
1, ..., G. That is, determine how the classification tree classifies x. Compute
f̂∗1 (x), ..., f̂∗B(x), and let mk = the number of ji(x) = k for k = 1, ..., G. Take

f̂bag(x) = d where md = max{m1, ..., mG}.
For each bootstrap sample b, let xi1 , ...,xikb

be the kb observations not in
the bootstrap sample. These a the “out of bag” (OOB) observations. Predict
Ŷ for each OOB observation. Doing this for all B bootstraps produces about
e−1b ≈ B/3 predictors for each xi. Let Ŷio = mode level for a classification
tree. Then the OOB MSE =

1

n

n∑

i=1

I(Yi 6= Ŷi0)

is “virtually equivalent” to the leave one out CV estimator for large enoughB.
(For a regression tree, let Ŷio = the average of the Ŷi, and replace I(Yi 6= Ŷi0)
by (Yi − Ŷi0)

2 to get the OOB MSE.)
For classification trees, let ρ̂mk = proportion of training observations in

Rm from the kth class. Then Gini’s index =

G∑

k=1

ρ̂mk(1− ρ̂mk)
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is small if all ρ̂mk are close to 0 or 1.
For bagging with B trees, a measure of variable importance can be com-

puted for each variable using the number of splits for each variable. This
measure can be summarized with a variable importance plot.

For a binary classifier whith Y = 0 or 1, for a fixed test value x, the
bootstrap produces B estimators of P (Y = 1|x). Two common ways to get
Ŷ |x are a) Ŷ |x = mode class of 0 or 1, and b) average the B estimates of
P (Y = 1|x) and set Ŷ |x = 0 if ave. P̂ (Y = 1|x) ≤ 0.5, with Ŷ |x = 1,
otherwise.

5.9.3 Random Forests

For random forests, the bootstrap is used, but each time a split is consid-
ered, a random sample of m = d√pe predictors is chosen as split candidates.
Random forest tend to produce bootstrap trees that are less correlated than
bagged trees (that use m = p), and the random forests estimator tends to
have better test error and OOB error than the bagging estimator. Also, B
around a few hundred seems to work.

If there is a single strong predictor, bagged trees tend to use that predictor
in the first split. For random forests, the strong predictor is not considered
for (p−m)/p splits, on average.

5.10 Support Vector Machines

This section follow James et al. (2013, ch. 9) closely. Logistic regression is used
a lot in biostatistics and epidemiology where the focus is statistical inference.
Support vector machines (SVMs) are used in machine learning where the goal
is classification accuracy.

5.10.1 Two Groups

When p >> n, there is often a hyperplane that perfectly separates two groups
(even if the two groups are iid from the same population: severe overfitting).
The launching point for SVMs was finding the optimal separating hyperplane.
Wide data has p >> n. If n ≤ p + 1, then there is a separating hyperplane
unless there are “exact predictor ties across the class barrier.”

For 2 groups, let SP = β0 + βT x. Classify x in group 1 if ESP > 0 and
in group −1 if ESP < 0. So the classifier Ĉ(x) = sign(ESP ). Note that the
second group now has label −1 instead of 0.
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Suppose two groups of training data can be separated by a hyperplane.
Then there are two parallel separating hyperplanes where the first separating
hyperplane passes through some cases in group 1 and the second hyperplane
passes through some cases in group 2. The distance between the two sepa-
rating hyperplanes is called the margin between classes. The cases that just
touch the two separating hyperplanes are called the support set. Then the
“optimal separating hyperplane” ESP has the largest margin on the training
data, and the optimal separating hyperplane is parallel and equidistant from
the two separating hyperplanes that determine the support set.

As a visual aid, use “0” for cases from group −1 and “+” for cases from
group 1. Draw a plot on a piece of paper where the two groups can be
separated by a line. A separating line that touches one case from each group
has margin 0. Draw two parallel lines such that one line touches at least one
0 and one line touches at least one +. Make the distance between the two
parallel lines as far as possible (biggest margin). Then the parallel line in
the middle of these two parallel lines is the optimal sepparating hyperplane
(line).

Think of the hyperplane β0 +βT xi = β0 +β1xi1+ · · ·+βpxip as separating
R

p into two halves.

Definition 5.16. A separating hyperplane has SP > 0 if x ∈ group 1 and
SP < 0 if x ∈ group −1. So Yi SPi = Yi(β0 + βT xi) > 0 for i = 1, ..., n.

Now let Z = 1 iff Y = 1 and Z = 0 iff Y = −1. Then think of the binary
classifier that uses ESP as a binary regression Z|x ∼ bin(m = 1, ρ(x)) where
ρ(x) = ρ(SP ) = P (Z = 1|x) = P (Y = 1|x) is unknown. Make a response
plot of ESP versus Z with lowess and possibly a step function added as
visual aids. The bootstrap is likely useful if ni ≥ 10p for both groups. a) Use
the bootstrap with with ni cases selected with replacements from each group.
b) Use the bootstrap with Z∗

i = 1 with probability ρ̂(xi) and Z∗
i = 0 with

probability 1− ρ̂(xi). Fit the SVM using Y ∗
j and X for j = 1, ..., B.

Classification and regression trees (CART) splits Rp with regions Rm ∈
Rp while a SVM splits Rp into two regions using ESP ∈ R so there is
dimension reduction. The SVM split tries to make the 2 “halves” or partitions
as homogeneous as possible.

The hyperplanes parallel to the ESP hyperplane that form the boundaries
of the margin are called fences. The fence pass through at least two training
data cases. These cases form the support set S of support vectors. It turns
out that if a separating hyperplane exists, then the optimal margin classifier
β̂M =

∑
i∈S α̂ixi.

Let M be the margin. The optimal margin classifier (β̂0M , β̂M ) maximizes
M subject to

Yi SPi = Yi(β0 + β1xi1 + · · ·+ βpxip) ≥M (5.8)
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for all i = 1, ..., n. This is called a hard margin classifier since no cases from
either group can pass the fences of the classifier. The maximization is over
β0 ∈ R and β ∈ Rp. The maximization is equivalent to minimizing ‖β‖2
subject to (5.8).

A soft margin classifier allows cases from either group to pass the fences or
to be misclassified. This classifier minimizes ‖β‖2 subject to Yi(β0 +βT xi) ≥
1 − εi for i = 1, ..., n where the slack variables εi ≥ 0 and

∑n
i=1 εi ≤ D.

Hastie et al. (2001, p. 380) showed that this minimization is equivalent to
minimizing

n∑

i=1

[1− Yi(β0 + βT xi)]+ + λ‖β‖22 (5.9)

where [w]+ = w if w ≥ 0 and [w]+ = 0 if w < 0. The hinge loss
[1−Yi(β0 +βT xi)]+ = 0 if xi is on the correct side of the margin. Otherwise,
the hinge loss is the cost of xi being on the wrong side of the margin. The
minimization is over β0 ∈ R and β ∈ Rp, and the criterion (5.9) is similar to
the ridge regression criterion.

A support vector machine (SVM) that uses xi minimizes the above cri-

terion. For separable data, (β̂0,SV M , β̂SV M) → (β̂0,M , β̂M ) as λ → 0. A
lasso-SVM minimizes

n∑

i=1

[1− Yi(β0 + βT xi)]+ + λ‖β‖1, (5.10)

and does variable selection. A “ridged logistic regression” with Yi ∈ {−1, 1}
minimizes

n∑

i=1

log[1 + exp(−Yi(β0 + βT xi))] + λ‖β‖22. (5.11)

The criterion (5.9) and (5.11) are similar. It can be shown that the SVM
maximizes M = width of margin subject to

∑p
j=1 β

2
j = 1 such that εi ≥ 0,∑p

i=1 εi ≤ D, and Yi(β0 + βT xi) ≥ M(1 − εi). Compare (5.8). The maxi-
mization is over β0 ∈ R, β ∈ R

p, and ε1, ..., εn.

A slack variable εi = 0 if xi is on the correct side of the margin. If εi > 0,
then xi is on the wrong side of the hyperplane. Yi(β0 + βT xi) ≥ M has
εi = 0 and is necessary for xi to be on the correct side of the margin. If
Yi(β0 + βT xi) ≥ M(1 − εi) with εi > (but not if εi = 0), then xi is on the
wrong side of the hyperplane. See Definition 5.15.

It can be shown that β̂SV M =
∑

i∈S γ̂ixi, and ESP = β̂0,SV M +

xT β̂SV M = β̂0,SV M +
∑

i∈S γ̂ix
T xi. This quantity can ge computed using

the n× n Gram matrix XXT with O(n2p) complexity, or using XT X with
O(np2) complexity. Ridge regression could also be computed this way.

Sometimes one or a few cases shift the maximal margin hyperplane. The
SVM classifier is a soft margin classifier and can do better.
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The SVM that uses xi is like LDA and logistic regression for two groups.
An SVM that uses a kernel function is similar to QDA. Let the kernel function
be k(xi,xj). A linear kernel is k(xi,xj) = xT

i xj. A polynomial kernel of
degree d is k(xi,xj) = (1 + xT

i xj)
d. A radial kernel is k(xi,xj) =

exp

[
−γ

p∑

k=1

(xik − xjk)2

]
= exp[−γ‖xi − xj‖2].

If x is far from xi, then ‖x−xi‖22 is large so k(xi,xj) = exp[−γ‖xi − xj‖2]
is tiny, and xi has almost no contribution to SP = SP (x) =
β0 +

∑n
i=1 αik(x,xi). Compare KNN.

A support vector machine (SVM) uses

SP = SP (x) = β0 +

n∑

i=1

αik(x,xi) = β0 +
∑

i∈S

αik(x,xi)

where S is the index of support vectors. The support vectors determine the
hyperplane and the margin: if the support vectors are moved, then the hy-
perplane moves.

Using k(x,xi) leads o nonlinear decision boundaries if the kernel k is
nonlinear. The kernel is a bivariate transformation. There are

(
n
2

)
= n(n −

1)/2 istinct pairs (xi,xj) that are needed to estimate β0 and the αi. The

SVM with ESP = ESP (x) = β̂0 +
∑n

i=1 α̂ik(x,xi) is a competitor for QDA

while the SVM with ESP = ESP (x) = β̂0 + β̂
T
x is a competitor for LDA.

5.10.2 SVM With More Than Two Groups

There are two common ways to extend binary classifies, such as SVMs and
binary logistic regression, to G > 2 classes. First, the one versus one or all
pairs classifier constructs

(
G
2

)
binary classifiers, one for each pair of groups.

Classify x with fij(x) = ESPij(x), and let mi = number of times x is

predicted to be in class i. Then Ŷ (x) = d where md = max(m1, ..., mG).
Second, the one versus all classifier fitsG binary classifiers (such as SVMs):

group i = 1 versus the G−1 other classes coded as −1 with ESPi(x) = fi(x).
Then Ŷ (x) = d where fd(x) = max(f1(x), ..., fG(x)).

5.11 Summary

1) In supervised classification, there are G known groups or populations and
m test cases. Each case is assigned to exactly one group based on its mea-
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surements wi. Assume that for each population there is a probability density
function (pdf) fj(z) where z is a p × 1 vector and j = 1, ..., G. Hence if the
random vector x comes from population j, then x has pdf fj(z). Assume
that there is a random sample of nj cases x1,j, ...,xnj,j for each group. The

n =
∑G

j=1 nj cases make up the training data. Let (xj ,Sj) denote the sample
mean and covariance matrix for each group. Let the ith test case wi be a new
p × 1 random vector from one of the G groups, but the group is unknown.
Discriminant analysis attempts to allocate the wi to the correct groups for
i = 1, ..., m.

2) The maximum likelihood discriminant rule allocates case w to group a

if f̂a(w) maximizes f̂j(w) for j = 1, ..., G. This rule is robust to nonnormality
and the assumption of equal population dispersion matrices, but fj is hard
to estimate for p > 2.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likeli-
hood discriminant rule.

For the following rules, assume that costs of correct and incorrect alloca-
tion are unknown or equal, and assume that the probabilities πj = ρj(wi)
that wi is in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Often
it is assumed that the G groups have the same covariance matrix Σx. Then
the pooled covariance matrix estimator is

Spool =
1

n−G

G∑

j=1

(nj − 1)Sj

where n =
∑G

j=1 nj . Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, e.g. the sample mean and sample covariance
matrix (µ̂j , Σ̂j) = (xj ,Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for

j = 1, ..., G. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw −
1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j , Σ̂pool) =
(xj ,Spool). LDA is robust to nonnormality and somewhat robust to the as-
sumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of

Qj(w) =
−1

2
log(|Σ̂j|)−

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj ,Sj). QDA has some robustness to nonnormality.
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6) The distance discriminant rule allocates w to the group with the small-

est squared distance D2
w(µ̂j , Σ̂j) = (w−µ̂j)

T Σ̂
−1

j (w−µ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj, but
needs nj ≥ 10p for j = 1, ..., G.

7) Assume that G = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂+ β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂+ β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP ≥ 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is
a plot of ESP versus Yi (on the vertical axis) with ρ̂(x) ≡ ρ̂(ESP ) added
as a visual aid where xi is the vector of predictors for case i. Also divide the
ESP into J slices with approximately the same number of cases in each slice.
Then compute the sample mean = sample proportion in slice s: ρ̂s = Y s =∑

s Yi/ms where ms is the number of cases in slice s. Then plot the resulting
step function as a visual aid. If n0 and n1 are the sample sizes of both groups
and ni ≥ 5p, then the logistic regression model was useful if the step function
of observed slice proportions scatter fairly closely about the logistic curve
ρ̂(ESP ). If the LR response plot is good, n0 ≥ 5p and n1 ≥ 5p, then the
LR rule is robust to nonnormality and the assumption of equal population
dispersion matrices. Know how to tell a good LR response plot from a bad
one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p-value

Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status,Terms = (Bottom Left),Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000
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Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it
is known that xij came from group j where there are G ≥ 2 groups. Use the
discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 −mj/nj. If mA =

∑G
j=1mj of the n =

∑G
j=1 nj cases were correctly

classified, then the apparent error rate AER = 1−mA/n.
11) Get apparent error rates for LDA, and QDA with the following com-

mands.

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the
following commands.

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4, and x5 with
the following commands.

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works better
on the training data than on the new test data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1−mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
nv cases to be left out when computing the discriminant rule. Hence n− nv

cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1−mL/nv. Here nv should be large enough to get a good
rate. Often use nv between 0.1n and 0.5n.
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15) Variable selection is the search for a subset of variables that does a
good job of classification.

16) Crude forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ...,Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ...,Wk are in the model at the end of Step k).
Step p) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
17) Crude backward elimination: suppose X1, ..., Xp are variables.
Step 1) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p− 1 variables

W1, ...,Wp−1 minimizes the AER.
Step 3) Delete variableWp−1 = Xj such that the model with p−2 variables

W1, ...,Wp−2 minimizes the AER.
Step k) W1, ...,Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ...,Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.

18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

5.12 Complements

This chapter followed Olive (2017c: ch. 8) closely. Discriminant analysis has
a massive literature. James et al. (2013) and Hastie et al. (2009) discuss
many other important methods such as trees, random forests, boosting, and
support vector machines. Koch (2014, pp. 120-124) shows that Fisher’s dis-
criminant analysis is a generalized eigenvalue problem. James et al. (2013)
has useful R code for fitting KNN. Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve standard methods
of linear discriminant analysis.

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮
6.1) is a good reference for

nonparametric discriminant analysis. Discrimination when p > n is interest-
ing. See Cai and Liu (2011) and Mai et al. (2012). See Friedman (1989) for
regularized discriminant analysis.

A DA method for two groups can be extended to G groups by performing
the DA method G times where Yij = 1 if xij is in the jth group and Yij = 0
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if xij is not in the jth group for j = 1, ..., G. Then compute ρ̂j = P̂ (w is in
the jth) group, and assign w to group a where ρ̂a is a max.

There are variable selection methods for DA, and some implementations
are needed in R, especially forward selection for when p > n. Witten and
Tibshirani (2011) give a LASSO type FDA method useful for p > n. See
the R package penalizedLDA. An outlier resistant version can be made using
getBbig to find Bbig. See Section 1.3 and Example 5.1.

Olive and Hawkins (2005) suggest that fast variable selection methods orig-
inally meant for multiple linear regression are also often effective for logistic
regression when the Cp criterion is used. See Olive (2010: ch. 10, 2013b, 2017a:
ch. 13) for more information about variable selection and response plots for
logistic regression.

Hand (2006) notes that supervised classification is a research area in statis-
tics, machine learning, pattern recognition, computational learning theory,
and data mining. Hand (2006) argues that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisti-
cated methods such as neural networks and support vector machines.

5.13 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

5.1∗. Assume the cases in each of the G groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., G.

Logistic Regression Output for Problem 5.2

Response = nodal involvement, Terms = (acid size xray)

Label Estimate Std. Error Est/SE p-value

Constant -3.57564 1.18002 -3.030 0.0024

acid 2.06294 1.26441 1.632 0.1028

size 1.75556 0.738348 2.378 0.0174

xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49,

Deviance: 50.660

5.2. Following Collett (1999, p. 11), treatment for prostate cancer de-
pends on whether the cancer has spread to the surrounding lymph nodes.
Let the response variable = group y = nodal involvement (0 for absence, 1
for presence). Let x1 = acid (serum acid phosphatase level), x2 = size (=
tumor size: 0 for small, 1 for large) and x3 = xray (xray result: 0 for negative,
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1 for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0, and x3 = 0. Refer to the above output.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.3. Recall that X comes from a uniform(a,b) distribution, written x ∼
U(a, b), if the pdf of x is f(x) =

1

b− a for a < x < b and f(x) = 0, otherwise.

Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5), and group
3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant rule for
classifying a new observation x.

#Problem 5.4

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

5.4. The above LDA output is for the Minor (2012) state data where gdp
= GDP per capita, povrt = poverty rate, unins = 3 year average uninsured
rate 2007-9, and lifexp = life expectancy for the 50 states. The fifth variable
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

> out <- lda(x,group) #Problem 5.5

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)

[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

5.5. The above output is for LDA on the famous iris data set. The variables
are x1 = sepal length, x2 = sepal width, x3 = petal length, and x4 = petal
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width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa, versicolor, and virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.6.

Logistic Regression Output

Response = survival, Terms = (Age Vel)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -16.9845 5.14715 -3.300 0.0010

Age 0.162501 0.0414345 3.922 0.0001

Vel 0.233906 0.0862480 2.712 0.0067

The survival outcomes of 58 side-impact collisions using crash dummies
was examined. x1 = age is the “age” of the crash dummy while x2 = vel
was the velocity of the automobile at impact. The group = response variable
survival was coded as a 1 if the accident would have been fatal, 0 otherwise.
Assume the case to be classified has x with age = x1 = 60.0 and velocity
= x2 = 50.0.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

5.7.

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

The LDA output above is for the Minor (2012) state data where gdp =
GDP per capita, povrt = poverty rate, unins = 3 year average uninsured rate
2007-9, and lifexp = life expectancy for the 50 states. The fifth variable Y
was a 1 if the state was not worker friendly and a 2 if the state was worker
friendly. With these two groups, what was the apparent error rate (AER) for
LDA?

5.8.

> out <- lda(x,group)

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)
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[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02

The above output is for LDA on the famous iris data set. the variables
are x1 = sepal length, x2 = sepal width, x3 = petal length and x4 = petal
width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa versicolor virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

5.9. The James et al. (2013) ISLR Default data set is simulated data for
predicting which customers will default on their credit card debt. Let Y = 1 if
the customer defaulted and Y = −1 otherwise. The predictors were x1 = Y es
if the customer is a student and X1 = No, otherwise, x2 = balance = the
average monthly balance after the monthly payment, and x3 = income of the
customer.

i) For SVM

truth

predict -1 1 AER =

-1 9667 333

1 0 0

ii) For bagging

truth

predict -1 1 AER =

-1 9566 227

1 101 106

iii) For random forests

truth

predict -1 1 AER =

-1 9625 245

1 42 88

a) Compute the error rate AER for each table.
b) Which method was worst for predicting a default?
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5.10. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1 or z = 0, M for y = 1 = z) using various predictors
including head measurements, brain weight, and height. Some outliers were
removed and the data set was divided into a training set with n = 200 cases
and a test set with m = 61 cases. Compute the VER for each table.

truth

predict -1 1

-1 16 12 bagging VER =

1 3 30

truth

predict -1 1

-1 15 13 random forest VER =

1 4 29

truth

predict -1 1 (10-fold CV) SVM VER =

-1 12 13

1 7 29

truth

predict -1 1

-1 12 18 LDA VER =

1 7 24

truth

predict -1 1

-1 17 21 QDA VER =

1 2 21

truth

predict -1 1

-1 14 14 (K = 7) KNN VER =

1 5 28

R Problems

Warning: Use the command source(“G:/slpack.txt”) to download
the programs. See Preface or Section 8.1. Typing the name of the
slpack function, e.g. ddplot, will display the code for the function. Use the
args command, e.g. args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

5.11. The Wisseman et al. (1987) pottery data has 36 pottery shards
of Roman earthware produced between second century B.C. and fourth cen-
tury A.D. Often the pottery was stamped by the manufacturer. A chemical
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analysis was done for 20 chemicals (variables), and 28 cases were classified as
Arrentine (group 1) or nonArrentine (group 2), while 8 cases were of ques-
tionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA.
Nonetheless, variable selection using QDA will be done. Copy and paste the
R commands for this part into R. The first 9 variables result in no misclas-
sification errors.

c) Now use commands like those shown in Example 5.2 to delete variables
whose deletion does not result in a classification error. You should get four
variables are needed for perfect classification. What are they (e.g. X1, X2,
X3, and X4)?

5.12. Variable selection for LDA used the pottery data described in Prob-
lem 5.11, and suggested that variables X6, X11, X14, and X18 are good. Use
the R commands for this problem to get the apparent error rate AER.

5.13. This problem uses KNN on the same data set as in Problem 5.11.
a) Copy and paste the commands for this part into R to show AER = 0

for KNN if K = 1.
b) Copy and paste the commands for this part into R to get the validation

error rate for KNN if K = 1. Give the rate. The validation set has 12 cases
and KNN is computed from the remaining 16 cases.

c) Use these commands to give the AER if K = 2.
d) Use these commands to give the validation ER if K = 2.
e) Use these commands to give the AER for 2NN using variablesX6, X11, X14,

and X18 that were good for LDA in Problem 5.11.
f) Use these commands to give the validation ER for 2NN using variables

X6, X11, X14, and X18 that were good for LDA.

5.14. For the Gladstone (1905) data, the response variable Y = gender,
gives the group (0-F, 1-M). The predictors are x1 = age, x2 = log(age), x3 =
breadth of head, x4 and x5 are indicators for cause of death coded as a factor,
x6 = cephalic index (a head measurement), x7 = circumference of head, x8 =
height of the head, x9 = height of the person, x10 = length of head, x11 =
size of the head, and x12 = log(size) of head. The sample size is n = 267.

a) The R code for this part does backward elimination for logistic regres-
sion. Backward elimination should only be used if n ≥ Jp with J ≥ 5 and
preferably J ≥ 10.

Include the coefficients for the selected model (given by the summary(back)
command) in Word. (You may need to do some editing to make the table
readable.)

b) The R code for this part gives the response plot for the backward
elimination submodel IB . Does the response plot look ok?

c) Use the R code for this part to give the AER for IB .
d) Use the R code for this part to give a validation ER for IB .
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(Another validation ER would apply backward elimination on the cases not
in the validation set. We just used the variables from the backward elimina-
tion model selected using the full data set. The first method is likely superior,
but the second method is easier to code.)

e) These R commands will use lasso with a classification criterion. We got
rid of the factor (two indicator variables) since cv.glmnet uses a matrix
of predictors. Lasso can handle indicators like gender as a response variable,
but will not keep or delete groups two or more indicators that are needed
for a quantitative variable with 3 or more levels. These commands give the
k-fold CV error rate for the lasso logistic regression. What is it?

f) Use the commands for this part to get the relaxed lasso response plot
where relaxed lasso uses the lasso from part e). Include the plot in Word.

g) Use the commands from this plot to make the EE plot of the ESP from
relaxed lasso (ESPRL) versus the ESP from lasso (ESPlasso).

5.15. This problem creates a classification tree. The vignette Therneau
and Atkinson (2017) and book MathSoft (1999b) were useful. The dataset has
n = 81 children who have had corrective spinal surgery. The variables are Y =
Kyphosis: postoperative deformity is present/absent, and predictors x1 =
Age of child in months, xn = Number vertebrae involved in the operation,
and Start = beginning of the range of vertebrae involved.

a) Use the R code for this part to print the classification tree. Then predict
whether Y = absent or Y = present if Start = 13 and Age = 25.

b) Then predict whether Y = absent or Y = present if Start = 10 and
Age = 120. Note that you go to the left of the tree branch if the label
condition is true, and to the right of the tree branch if the label condition is
not true.

5.16. This is the pottery data of Problem 5.11, but the 28 cases were
classified as Arrentine for y = −1 and nonArrentine for y = 1.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

c) Copy and paste the commands for this part into R. These commands
do SVM with a fixed cost. Copy and paste the truth table into Word. What
is the AER?

d) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

5.17. This problem uses the Gladstone (1905) brain weight data and clas-
sifies gender (F for y = −1, M for y = 1) using various predictors including
head measurements, brain weight, and height. Some outliers were removed
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and the data set was divided into a training set with n = 200 cases and a
test set with m = 61 cases.

a) Copy and paste the commands for this part into R. These commands
make the data and do bagging. Copy and paste the truth table into Word.
What is the AER?

b) Copy and paste the commands for this part into R. These use bagging
on the training data and validation set. Copy and paste the truth table into
Word. What is the bagging validation error rate?

c) Copy and paste the commands for this part into R. These commands
do random forests. Copy and paste the truth table into Word. What is the
AER?

d) Copy and paste the commands for this part into R. These use random
forests on the training data and validation set. Copy and paste the truth
table into Word. What is the random forests validation error rate?

e) Copy and paste the commands for this part into R. These commands
do SVM with a cost chosen by 10-fold CV. Copy and paste the truth table
into Word. What is the AER?

f) Copy and paste the commands for this part into R. These commands do
SVM with a cost chosen by 10-fold CV on the training data and validation
set. Copy and paste the truth table into Word. What is the SVM validation
error rate?



Chapter 6

Regularizing a Correlation Matrix

This chapter will show how to regularize the correlation and inverse correla-
tion matrices. Many techniques from multivariate analysis, such as classifica-
tion, are based on a covariance or correlation matrix. The inverse covariance
matrix is also known as a precision matrix. A regularized estimator reduces
the degrees of freedom d of the estimator. Often regularization is done by
reducing the number of parameters in the model. For MLR, lasso and ridge
regression were regularized if λ > 0. A covariance matrix of a p× 1 vector x
is symmetric with p + (p− 1) + · · ·+ 2 + 1 = p(p+ 1)/2 parameters. A cor-
relation matrix has p(p− 1)/2 parameters. We want n ≥ 10p for the sample
covariance and correlation matrices S and R. If n < 5p, then these matrices
are being overfit: the degrees of freedom is too large for the sample size n,
and the matrices may be ill conditioned. Too much regularization results in
underfitting. We roughly want d to be such that the matrix is well condi-
tioned for a given n, and the statistical or machine learning technique that
used the matrix, such as classification, performs satisfactorily.

6.1 Correlation and Inverse Correlation Matrices

The sample covariance and correlation matrices S and R are given in Defi-
nitions 1.13 and 1.14.

Rule of Thumb 6.1. Multivariate procedures based on S or R start
to give good results for n ≥ 10p, especially if the distribution is close to
multivariate normal. In particular, we want n ≥ 10p for the sample covariance
and correlation matrices. For procedures with large sample theory on a large
class of distributions, for any value of n, there are always distributions where
the results will be poor, but will eventually be good for larger sample sizes.
Norman and Streiner (1986, pp. 122, 130, 157) gave this rule of thumb and
note that some authors recommend n ≥ 30p. This rule of thumb is much like

361
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the rule of thumb that says the central limit theorem normal approximation
for Y starts to be good for many distributions for n ≥ 30. See the paragraph
below Theorem 1.2.

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp). (6.1)

Then
S = DRD, (6.2)

and
R = D−1SD−1. (6.3)

The inverse covariance matrix or inverse correlation matrix can be used
to find the partial correlation rij,x(ij) between xi and xj where x(ij) is
the vector of predictors with xi and xj deleted where i 6= j. This partial
correlation is the correlation of xi and xj after eliminating the linear effects
of x(ij) from both variables: regress xi and xj on x(ij) and get the two sets
of residuals, then find the correlation of the two sets of residuals. If p ≥ 3
and S−1 = (Sij), then

rij,x(ij) =
−Sij

(SiiSjj)1/2
=

−rij

(riirjj)1/2
.

Srivastava and Khatri (1979, p. 53) proved this result. The second equality
holds since

R−1 = DS−1D = (rij) = (Sij
√
Sii

√
Sjj). (6.4)

The ith diagonal element rii, called a variance inflation factor, is found by
regressing xi on the remaining predictors x1, ..., xi−1, xi+1, ..., xp. Then

rii = V IFi =
1

1− R2
i

where R2
i is the squared multiple correlation from the regression. See Belsley

et al. (1980, p. 93).
Some R code illustrating the result for rij is shown below. The function

lsfit is used to regress x1 on x3 and then regress x2 on x3. Note that
x(i = 1, j = 2) = x3 once x1 and x2 have been deleted since p = 3.

x <- buxx[,1:3]; z<-solve(cor(x))

z #inverse correlation matrix

len nasal bigonal

len 1.02042523 0.13535798 0.06134196
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nasal 0.13535798 1.02358206 0.08336109

bigonal 0.06134196 0.08336109 1.00931453

out1 <- lsfit(x[,3],x[,1])$resid

out2 <- lsfit(x[,3],x[,2])$resid

cor(out1,out2)

[1] -0.1324439

-z[1,2]/sqrt(z[1,1]*z[2,2])

[1] -0.1324439

zz <- solve(var(x)) #inverse covariance matrix

-zz[1,2]/sqrt(zz[1,1]*zz[2,2])

[1] -0.1324439

The slpack function gcor returns a (generalized) correlation matrix R
given a symmetric positive definite matrix C with positive diagonal elements.
The matrix D is such that C = D R D. See the following R code.

> C <- var(buxx)

> R<- cor(buxx)

> R

len nasal bigonal cephalic

len 1.00000000 -0.12815187 -0.05019157 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal -0.05019157 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

> out<-gcor(C)

> out$R

[,1] [,2] [,3] [,4]

[1,] 1.00000000 -0.12815187 -0.05019157 -0.08359332

[2,] -0.12815187 1.00000000 -0.07480324 -0.08261217

[3,] -0.05019157 -0.07480324 1.00000000 0.07204296

[4,] -0.08359332 -0.08261217 0.07204296 1.00000000

> C

len nasal bigonal cephalic

len 118299.9257 -191.084603 -104.718925 -124.477916

nasal -191.0846 18.793905 -1.967121 -1.550533

bigonal -104.7189 -1.967121 36.796311 1.892005

cephalic -124.4779 -1.550533 1.892005 18.743774

> out$D%*%R%*%out$D

[,1] [,2] [,3] [,4]

[1,] 118299.9257 -191.084603 -104.718925 -124.477916

[2,] -191.0846 18.793905 -1.967121 -1.550533

[3,] -104.7189 -1.967121 36.796311 1.892005

[4,] -124.4779 -1.550533 1.892005 18.743774
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6.2 Regularizing a Correlation Matrix

Ridge regression regularizes W T W = nR, which is closely related to regular-
izing a covariance or correlation matrix. For δ ≥ 0, a simple way to regularize
a p× p correlation matrix R = (rij) is to use

Rδ =
1

1 + δ
(R + δIp) = (tij) (6.5)

where tii = 1 and

tij =
rij

1 + δ

for i 6= j. Note that each correlation rij is divided by the same factor 1 + δ.
If λi is the ith eigenvalue of R, then (λi + δ)/(1 + δ) is the ith eigenvalue of
Rδ. The eigenvectors of R and Rδ are the same since if R x = λi x, then

Rδ x =
1

1 + δ
(R + δIp) x =

1

1 + δ
(λi + δ) x.

Note that Rδ = κR + (1 − κ)Ip where κ = 1/(1 + δ) ∈ (0, 1]. See Warton
(2008).

Following Datta (1995, pp. 250-254), the condition number of a symmetric
positive definite p× p matrix A is cond(A) = λ1(A)/λp(A) where λ1(A) ≥
λ2(A) ≥ · · · ≥ λp(A) > 0 are the eigenvalues of A. Note that cond(A) ≥ 1. A
well conditioned matrix has condition number cond(A) ≤ c for some number
c such as 50 or 500. Hence Rδ is nonsingular for δ > 0 and well conditioned
if

cond(Rδ) =
λ1 + δ

λp + δ
≤ c,

or

δ = max

(
0,
λ1 − cλp

c− 1

)
(6.6)

if 1 < c ≤ 500. Taking c = 50 suggests using

δ = max

(
0,
λ1 − 50λp

49

)
.

This type of regularization is simple, but inverting a p × p matrix is ex-
pensive for large p. It would good to be able to do variable selection with r
variables where n ≥ 10r, and then use the correlation matrix of these vari-
ables. Since the tij are between −1 and 1, |tij| < 0.02 are likely unimportant,
and we want a well conditioned matrix, the grid of δ values can be small: e.g.
δ ∈ {0, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, ..., 20, 40, 50}.

The matrix can be further regularized by setting tij = 0 if |tij| ≤ τ where
τ ∈ [0, 1) should be less than 0.5. Denote the resulting matrix by R(δ, τ ).
We suggest using τ = 0.05. Note that Rδ = R(δ, 0). Using τ is known as
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thresholding. We recommend computing Ip,R(δ, 0) and R(δ, 0.05) for c =
50, 100, 200, 300, 400, and 500. Compute R if it is nonsingular. Note that a
regularized covariance matrix can be found using

S(δ, τ ) = D R(δ, τ ) D (6.7)

where D is given by Equation (6.1).
A common type of regularization of a covariance matrix S is to use

SD = diag(S) where the ijth element of SD = 0 and SD(i, i) = S(i, i). The
corresponding correlation matrix is the identity matrix, and Mahalanobis
distances using the identity matrix correspond to Euclidean distances. These
estimators tend to use too much regularization, and underfit. Note that as
δ → ∞, Rδ → Ip, and Ip corresponds to c = 1. Note that SD corresponds
to using R(δ =∞, 0) = Ip in Equation (6.6).

The slpack function corrlar produces the regularized correlation matri-
ces Rd = R(δ, 0) and Rt = R(δ, τ ) given a correlation matrix (e.g. from the
function gcor), condition number c and threshold tau with τ = 0.05 the
default. The value delta = δ depends on c through Equation (6.6). See the
following R code.

R<- cor(buxx)

corrlar(R,tau=0.05) #well conditioned so no regularization

corrlar(R,tau=0.07)

$Rr #no regularization

len nasal bigonal cephalic

len 1.00000000 -0.12815187 -0.05019157 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal -0.05019157 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

$Rt #two entries changed to 0

len nasal bigonal cephalic

len 1.00000000 -0.12815187 0.00000000 -0.08359332

nasal -0.12815187 1.00000000 -0.07480324 -0.08261217

bigonal 0.00000000 -0.07480324 1.00000000 0.07204296

cephalic -0.08359332 -0.08261217 0.07204296 1.00000000

corrlar(R,c=1.2)

$Rr

len nasal bigonal cephalic

len 1.00000000 -0.06378780 -0.02498294 -0.04160871

nasal -0.06378780 1.00000000 -0.03723343 -0.04112034

bigonal -0.02498294 -0.03723343 1.00000000 0.03585950

cephalic -0.04160871 -0.04112034 0.03585950 1.00000000

$Rt #too much regularization
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len nasal bigonal cephalic

len 1.0000000 -0.0637878 0 0

nasal -0.0637878 1.0000000 0 0

bigonal 0.0000000 0.0000000 1 0

cephalic 0.0000000 0.0000000 0 1

It is also common to analyze analogs of the inverse correlation matrix
R−1 = (rij) since the rij are closely related to partial correlations. See the
discussion above and below Equation (6.4).

Here is a simple algorithm. If the condition number cond(R) ≤ 500,
let Rd = R. Otherwise, let Rd = R(δ = 0.01, 0). Let A = R−1

d be
the analog of R−1 to be regularized. Let DA = diag(

√
A11, ...,

√
App).

Hence A acts like a covariance matrix. Then a generalized correlation ma-
trix RI = D−1

A AD−1
A is made and regularized with RI,d = RI(δ, 0) and

RI,t = RI(δ, τ ). Then the regularized analogs of the inverse correlation ma-
trix are RINV,d = DARI,dDA and RINV,t = DARI,tDA. The slpack func-
tion rinvrlar gets the above two matrices.

R<- cor(buxx) #no regularization

rinvrlar(R) #same as solve(R) = Rˆ(-1)

$Rinvd

[,1] [,2] [,3] [,4]

[1,] 1.02906945 0.14379621 0.05564264 0.09389398

[2,] 0.14379621 1.03181920 0.07779758 0.09165646

[3,] 0.05564264 0.07779758 1.01307222 -0.06190635

[4,] 0.09389398 0.09165646 -0.06190635 1.01988077

$Rinvt

[,1] [,2] [,3] [,4]

[1,] 1.02906945 0.14379621 0.05564264 0.09389398

[2,] 0.14379621 1.03181920 0.07779758 0.09165646

[3,] 0.05564264 0.07779758 1.01307222 -0.06190635

[4,] 0.09389398 0.09165646 -0.06190635 1.01988077

If p is large, then matrix inversion should be avoided if possible: the step
A = R−1

d has the expensive O(p3) complexity. See Friedman et al. (2008)
and Hsieh et al. (2011).

Example 6.1. Let

R =

[
1 0.4

0.4 1

]
.

Then

Rδ=1 =

[
1 0.2

0.2 1

]
= R(δ = 1, τ = 0.1), and R(δ = 1, τ = 0.2) =

[
1 0
0 1

]
.

Note that for Rδ=1, the nondiagonal (nonunit) elements of R are divided by
1 + δ = 2.
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6.3 Complements

Note that we can regularize robust covariance and correlation matrices such
as the covmb2 estimator C given by Definition 1.16.

There is a lot of recent work on high dimensional covariance matrix or
inverse covariance matrix estimation. See Pourahmadi (2011) for a review.
Regularizing S−1 = (Sij) needs the inverse covariance matrix to exist, or
a method to compute the Sij directly. It is also possible to regularize a
positive definite analog of S−1. The inverse covariance matrix is also known
as a precision matrix or concentration matrix. Friedman et al. (2008) provides
an interesting method: graphical lasso (Glasso) takes a positive semidefinite
(possibly singular) covariance matrix estimator as an input, and returns a
positive definite one. Then the resulting estimator of the inverse covariance
matrix has many of its elements exactly equal to zero. Also see Hastie et al.
(2015, ch. 9). Again the robust covmb2 estimator could be the input. See
Croux and Öllerer (2016), which has some useful R code.

Also see Cai et al. (2011), Hsieh et al. (2011), Huang et al. (2006), Ledoit
and Wolf (2004), Liu et al. (2003), Naul and Taylor (2017), Rothman et al.
(2008), Schäfer and Strimmer (2007), Yu et al. (2017), and Yuan and Lin
(2007). There are R packages for graphical lasso: glasso and huge. The
second package appears to be better. See Croux and Öllerer (2016).

Some topics from multivariate analysis are discussed next. These topics
often need a covariance or correlation matrix, possibly regularized. Texts on
high dimensional multivariate analysis include Fujikoshi, et al. (2010), Izen-
man (2008), Koch (2014), Pourahmadi (2013), Rish and Grabarnik (2015),
and Yao et al. (2015). Also see Hastie et al. (2015, ch. 7, ch. 8).

For high dimensional clustering, see Jin and Wang (2016).
Discrimination analysis when p > n is interesting. See Cai and Liu (2011),

Hand (2006), Mai et al. (2012), and Mai and Zou (2013). See Friedman (1989)
for regularized discriminant analysis. Witten and Tibshirani (2011) give a
LASSO type FDA method useful for p > n. See the R package penalizedLDA.
Also see Xia (2017).

For high dimensional GLM variable selection, see Guo et al. (2017).
For a high dimensional 1 and 2 sample Hotelling’s T 2 type tests, see Hyodo

and Nishiyama (2017), Gregory et al. (2015), and Feng and Sun (2015).
Methods like ridge regression and lasso can also be extended to multivari-

ate linear regression. See, for example, Obozinski et al. (2011).
For high dimensional outlier detection see section 1.3 of this text, Aggar-

wal (2017), Agostinelli et al. (2015), Boudt et al. (2017), Öllerer and Croux
(2015), and Ro et al. (2015)

For high dimensional principal component analysis, see Croux et al. (2013),
Johnstone and Lu (2009), and Zou et al. (1993). Feng and He (2014) give a
method for the singular value decomposition that may be useful for principal
component analysis.
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6.4 Problems

6.1. Suppose

R =




1 0.4 0.8
0.4 1 0.5
0.8 0.5 1


 .

a) Find Rδ=1.
b) Find R(δ = 1, τ = 0.3).

6.2. Suppose

R =




1 0.6 −0.4
0.6 1 0.9
−0.4 0.9 1


 .

a) Find Rδ=1.
b) Find R(δ = 1, τ = 0.3).

R Problems

For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.



Chapter 7

Clustering

Clustering is used to classify the n cases into k groups. Unlike discriminant
analysis, it is not known to which group the cases in the training data belong,
and often the number of clusters k is unknown. Discriminant analysis is a
type of supervised classification while clustering is a type of unsupervised
classification. Factor analysis groups highly correlated variables Xj together
(columns of the data matrix W ). Clustering groups cases xi together (rows
of the data matrix).

7.1 Hierarchical and k-Means Clustering

Two common methods of clustering are k-means clustering and hierarchical
clustering. A wide variety of distances or similarities have been suggested.
We will focus on Euclidean distances.

For the simplest version of k-means clustering, there are 4 steps.
1) Partition the n cases into k initial groups and find the means of each

group. Alternatively, choose k initial seed points. These are groups of size 1
so the mean is equal to the seed point.

2) Compute distances between each case and each mean. Assign each case
to the cluster whose mean is the nearest.

3) Recalculate the mean of each cluster.
4) Go to 2) and repeat until no more reassignments occur.

Two problems with k-means clustering are i) there could be more or less
than k clusters, and ii) two initial means could belong to the same cluster.
Then the resulting clusters may be poorly differentiated. It is often useful to
run the k-means clustering program with several randomly drawn partitions
or seeds, and to use several values of k.
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Hierarchical clustering also has several steps. A distance is needed. Single
linkage (or nearest neighbor) is the minimum distance between cases in cluster
i and cases in cluster j. Complete linkage is the maximum distance between
cases in cluster i and cases in cluster j. The average distance between clusters
is also sometimes used.

1) Start with m = n clusters. Each case forms a cluster. Compute the
distance matrix for the n clusters. Let dU,V be the smallest distance. Combine
clusters U and V into a single cluster and set m = n − 1.

2) Repeat step 1) with the new m. Continue until there is a single cluster.
3) Plot the resulting clusters as a dendrogram. Use the dendrogram to

select k reasonable clusters of cases.

500 1000 1500
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n
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l

Fig. 7.1 Two Clusters From k-means Clustering With k = 2

Example 7.1. Often the clean data and outliers form two clusters. The
R function kmeans was used on the Buxton (1920) data to produce Figure
7.1. See the R commands below.

x <- cbind(buxx,buxy)

out<-kmeans(x,2,nstart=25)

plot(x, col = out$cluster)

points(out$centers, col = 1:2, pch = 8, cex=2)

Using 5 clusters does not change the appearance of the plot much. Try the
commands below.
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out5<-kmeans(x,5,nstart=25)

plot(x, col = out5$cluster)

points(out5$centers, col = 1:5, pch = 8, cex=2)

Removing the outliers and trying 5 clusters seems to show one cluster. Try
the commands below.

xc <-x[-c(61,62,63,64,65),]

out<-kmeans(xc,5,nstart=25)

plot(xc, col = out$cluster)

points(out$centers, col = 1:5, pch = 8, cex=2)

The following commands suggest that the clustering was done using values
of buxy = height.

plot(xc[,c(1,5)],col = out$cluster)

points(out$centers[,c(1,5)],col=1:5,pch=8,cex=2)

Example 7.2. R functions for hierarchical clustering include hclust and
agnes. See MathSoft (1999b, ch. 4) and Kaufman and Rousseeuw (1990, ch.
5). One problem with hierarchical clustering is that it can be hard to read the
labels on the dendrogram unless n is small. The dendrogram for the Buxton
(1920) data is shown in Figure 7.2. The very top of the dendrogram is a cluster
containing all of the data. Then two clusters are formed, one containing the
5 outlying cases (the five cases furthest to the left on the bottom of the
plot) and one cluster containing all of the remaining cases. Outliers often
appear among the last clusters formed in the dendrogram, corresponding to
the clusters near the top of the dendrogram.

x <- cbind(buxx,buxy)

out <- hclust(dist(x),"complete")

#complete is the default

plot(out)

plot(out,hang=-1)

Following James et al. (2014, pp. 391-392), to interpret the dendrogram,
each leaf on the bottom of Figure 7.2 represents one of the 87 cases of the
Buxton data. As we move up the tree, some leaves begin to fuse into branches
corresponding to cases that are similar to each other. Moving further up the
tree causes branches to fuse with other branches or leaves. The lower in the
tree that the fusions occur, the more similar the group of cases are to each
other. Cases that fuse near the top of the tree can be quite different. The
outliers fused together quickly, and the clean cases fused together quickly.
The outliers and clean cases fused together last since the outliers and clean
cases are quite different.

Example 7.3. Following James et al. (2014, pp. 392-393), observations
that are close together horizontally are not necessarily similar. Case 5 and 7
are similar and cases 1 and 6 are similar since they fuse together at the lowest
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Fig. 7.2 Dendrogram for Buxton (1920) Data

points in the dendrogram shown in Figure 7.3. Cases 9 and 2 are located close
together horizontally, cases 2, 5, 7, and 8 fuse with case 9 at the same height.
Hence case 9 is about as similar to cases 5, 7, and 8 as case 9 is to case
2. Plot the raw data to help see this. See Problem 7.3. The height of the
fusion determines similarity. A horizontal line at 1.5 gives two clusters, while
a horizontal line at 1.0 gives 5 clusters: i) 1, 6, and 4; ii) 3; iii) 2; iv) 5, 7,
and 8; and v) 9. See the R code shown below to produce Figure 7.3.

x1 <- c(-0.6,0.1,-1.5,-1.4,1.1,-0.9,1.4,0.6,0)

x2 <- c(-1,-0.75,-0.4,-1.6,-0.3,-1.2,0,-0.2,0.7)

x <- cbind(x1,x2)
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Fig. 7.3 9 and 2 are close in horizontal distance, but 2, 5, 7, and 8 fuse with 9 at
the same height

##out<-hclust(x) #errors

out <- hclust(dist(x))

plot(out)

plot(x[,1],x[,2])

library(cluster)

out<-agnes(x)

plot(out) #right click twice
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7.2 Complements

This chapter follows Olive (2017b, ch. 13) closely. Atkinson et al. (2004,
ch. 7) has some interesting ideas. Also see Kaufman and Rousseeuw (1990),
Farcomeni and Greco (2015), and Ritter (2014). A good review for robust
methods is Garćıa-Escudero et al. (2010). For high dimensional clustering,
see Jin and Wang (2016).

7.3 Problems

R Problems

For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

7.1. Enter the commands for Example 7.1 to reproduce Figure 7.1.

7.2. Enter the commands for Example 7.2 to reproduce Figure 7.2.

7.3. Enter the commands for Example 7.3 to reproduce Figure 7.3. Also
plot X1 versus X2 to see that case 9 is about as similar to case 2 as case 9 is
to cases 5, 7, and 8.

7.4. a) Obtain the file mbb1415.csv from (http://parker.ad.siu.
edu/Olive/slearnbk.htm), and save it on a flash drive (F, say). This file con-
tains comma separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on male basketball players from the Missouri Valley conference
2014–2015 season. The first variable x1 = position where 0 means position is
unknown, 1 for guard, 2 for guard-forward, 3 for forward, 4 for forward-center,
and 5 for center. The variable x2 is games played, x3 is number of minutes
played, x4 is sst (an efficiency rating), x5 is sst.ex.pts (an efficiency rating
excluding points), x6 is points, x7 is assists, x8 is turnovers, x9 is assists to
turn over ratio, x10 is steals, x11 is stl.pos (stolen possessions, a ball handling
rating), x12 is blocks, x13 is rebounds, x14 is offensive rebounds, x15 is de-
fensive rebounds, x16 is games played = x2, x17 is field goal (FG) attempts,
x18 is field goals made, x19 is FGs missed, x20 is field goal percentage, x21

is adjusted field goal percentage, x22 is two point field goal attempts, x23 is
two point field goals made, x24 is two point FGs missed, x25 is two point
field goal percentage, x26 is three point field goal attempts, x27 is three point
field goals made, x28 is three point FGs missed, x29 is three point field goal
percentage, x30 is free throws attempted, x31 is free throws made, x32 is free
throws missed, x33 is free throw percentage, x34 is related to the number of
“and one plays” (free throw after a made shot), x35 is personal fouls taken,
and x36 is personal fouls committed.
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Note that X will not be full rank since, for example x16 = x2, and offensive
rebounds + defensive rebounds = rebounds.

b) Sometimes the classes are known and you want to see how well clustering
works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i+ 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem deletes about 25% of the players who had the fewest minutes,
and then uses assists and rebounds to form the clusters. Include the plot in
Word.

7.5. a) Obtain the file wbb1415.csv from (http://parker.ad.siu.
edu/Olive/slearnbk.htm), and save it on a flash drive (F, say). This file con-
tains comma separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on female basketball players from the Missouri Valley confer-
ence 2014–2015 season.

The variables are almost the same as those in Problem 7.4. The only differ-
ence is that this file does not have two games played variables. Hence variables
x1, ..., x15 are the same, but xi for the wbb1415 data set are variables xi+1

for the mbb1415 data set for i = 16, ..., 35.
b) Sometimes the classes are known and you want to see how well clustering

works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i+ 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem deletes about 25% of the players who had the fewest minutes,
and then uses assists and rebounds to form the clusters. Include the plot in
Word.





Chapter 8

MLR with Heterogeneity

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (8.1)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i .

In matrix form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) =
diag(σ2

1 , ..., σ
2
n) is an n× n positive definite matrix. In chapters 2 and 3, the

constant variance assumption was used: σ2
i = σ2 for all i. Hence heterogene-

ity means that the constant variance assumption does not hold. A common
assumption is that the ei = σiεi where the εi are independent and identically
distributed (iid) with V (εi) = 1.

Weighted least squares (WLS) would be useful if the σ2
i were known. Since

the σ2
i are not known, ordinary least squares (OLS) is often used, but the

large sample theory differs from that given in Chapter 2.

8.1 OLS Large Sample Theory

The OLS theory for MLR with heterogeneity often assume iid cases. For
the following theorem, see Romano and Wolf (2017), Freedman (1981), and
White (1980).

Theorem 8.1. Assume Yi = xT
i β + ei for i = 1, ..., n where the cases

(Yi,x
T
i )T are iid with “fourth moments,” Y = Xβ + e, the ei = ei(xi)

are independent, E[ei|xi] = 0, V −1 = E[xix
T
i ], E[e2i |xi] = v(xi) = σ2

i ,
Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω = E[v(xi)xix

T
i ] = E[e2i xix

T
i ].
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Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ). (8.2)

Remark 8.1. a) White (1980) showed that the iid cases assumption can
be weakened. Assume the cases are independent,

V n =
1

n

n∑

i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑

i=1

E[e2i xixi]
P→ Ω.

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 8.1,

1

n
XT X =

1

n

n∑

i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1 , ..., σ

2
n) = Σe and D̂ = diag(r21 , ..., r

2
n) where r2i is the

ith residual from OLS regression of Y on X . Then D̂ is not a consistent
estimator of D. The following theorem, due to White (1980), shows that

D̂ can be used to get a consistent estimator of Ω. This result leads to the
sandwich estimators given in the following section.

Theorem 8.2. Under strong regularity conditions,

1

n
(XT D̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence
n(XT X)−1(XT D̂X)(XT X)−1 P→ V ΩV .

8.2 Bootstrap Methods and Sandwich Estimators

Under regularity conditions, the OLS estimator β̂ = β̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of β with E(β̂) = β and

Cov(β̂) = (XT X)−1XT ΣeX(XT X)−1. See, for example, White (1980).

Assume nCov(β̂) → V ΩV as n → ∞. Assume XT X/n → V −1 and
XT ΣeX/n → Ω where convergence in probability is used if the xi are
random vectors. See Theorem 8.2. We assume that a constant β1 correspond-
ing to x1 ≡ 1 is in the model so that the OLS residuals sum to 0.
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A sandwich estimator is Ĉov(β̂OLS) = (XT X)−1XT D̂X(XT X)−1. Of-

ten D̂ is not a consistent estimator of D = Σe, but often XT D̂X/n
P→ Ω

under regularity conditions. For the wild bootstrap, we will use D̂W =
n diag(r21 , ..., r

2
n)/(n − p) where the ri are the OLS residuals. Often D̂ =

diag(d2
i r

2
i ), where D̂W uses d2

i = n/(n− p).
The nonparametric bootstrap = pairs bootstrap samples the cases (Yi,xi)

with replacement, and uses

Y ∗ = X∗β̂ + e∗

with e∗ = r∗ where (Yi,xi, ri) are selected with replacement to form Y ∗,X∗,

and r∗. Then β̂
∗

= (X∗T X∗)−1X∗T Y ∗ = β̂ + (X∗T X∗)−1X∗T r∗ = β̂ +

b∗ is obtained from the OLS regression of Y ∗ on X∗. Thus E(β̂
∗
) = β̂ +

E[(X∗T X∗)−1X∗T r∗] = β̂ + b where the expectation is with respect to
the bootstrap distribution and the bias vector b = E(b∗). Freedman (1981)
showed that the nonparametric bootstrap can be useful for model (8.1) with
the ei independent, suggesting that b∗ = op(n

−1/2) or b∗ = Op(n
−1/2). With

respect to the bootstrap distribution, Cov(β̂
∗
) = Cov[(X∗T X∗)−1X∗T r∗] =

E[(X∗T X∗)−1X∗T r∗r∗T X∗(X∗T X∗)−1] − bbT . This result suggests that

Cov(β̂
∗
) is estimating the sandwich estimator

(XT X)−1XT rrT X(XT X)−1,

which replaces diag(r2i ) by rrT . Also, with respect to the bootstrap distri-
bution, the cases (Y ∗

i ,x
∗T
i )T are iid with V (e∗i ) = V (r∗i ) depending on x∗

i .
A version of the wild bootstrap uses

Y ∗ = Xβ̂ + e∗

with e∗i = Wicnri where P (Wi = ±1) = 0.5, E(Wi) = 0, V (Wi) = 1 and cn =√
n/(n− p). Note that Wi = 2Zi−1 where Zi ∼ binomial(m= 1, p = 0.5) ∼

Bernoulli(p = 0.5). See Flachaire (2005). With respect to the bootstrap dis-
tribution, the cnri are constants, and the e∗i are independent with E(e∗i ) =
E(Wi)cnri = 0, and V (e∗i ) = E(e∗2i ) = E(W 2

i )c2nr
2
i = c2nr

2
i . Thus E(e∗) = 0

and Cov(e∗) = D̂W . Then β̂
∗

= (XT X)−1XT Y ∗ with E(β̂
∗
) = β̂ and

Cov(β̂
∗
) = Ĉov(β̂OLS) = (XT X)−1XT D̂W X(XT X)−1, a sandwich esti-

mator. Note that Cov(β̂
∗
) = Cov(β̂)+(XT X)−1XT [D̂W−Σe]X(XT X)−1.

The following method is due to Rajapaksha and Olive (2022). For the OLS
model of chapter 2, V (ei) = V (Yi|xi) = V (Yi|xT

i β) = σ2. Hence Yi = Yi|xi =
Yi|xT

i β = xT
i β + ei with V (ei) = σ2. For model (8.1), Yi = Yi|xi = xT

i β + ei

with V (ei) = σ2
i , while Yi = Yi|xT

i β = xT
i β + εi with V (εi) = τ2

i . The τ2
i

can be estimated as follows. Make the residual plot of Ŷi = xiβ̂ versus ri

on the vertical axis. Divide the ordered xT
i β̂ into ms slices each containing

approximately n/ms cases, and find the variance of the residuals v2
j in the



380 8 MLR with Heterogeneity

jth slice for j = 1, ..., ms. Then τ̂2
i = nv2

j /(n−p) if case i is in the jth slice. If

the xi are bounded, the maximum slice width → 0, if V (Y |xT β) is smooth,
and the number of cases in each slice→ ∞ as n→∞, then τ̂2

i is a consistent
estimator of τ2

i . This method acts as if the variance τ2
j is constant within

each slice j, and replaces D̂W = n diag(r21 , ..., r
2
n)/(n−p) by diag(τ̂2

1 , ..., τ̂
2
n),

a smoothed version of D̂W . Another option would use a scatterplot smoother
in a plot of Ŷi vs. r2i .

The parametric bootstrap does not assume that the ei are normal, but
uses

Y ∗ = Xβ̂ + e∗

where the e∗i ∼ N(0, τ̂2
i ) are independent. Hence β̂

∗
= (XT X)−1XT Y ∗ ∼

Np[β̂, (X
T X)−1XT diag(τ̂2

1 , ..., τ̂
2
n) X(XT X)−1].

8.3 Simulations

Next, we describe a small simulation study that was done using B =
max(200, 50p) and 5000 runs. The simulation is similar to that for the full
OLS model done by Pelawa Watagoda and Olive (2021). The simulation used
p = 4, 6, 7, 8, and 10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and

p− 2 where k and ψ are defined in the following paragraph.
Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p− k − 1 zeros.
The zero mean iid errors εi were iid from five distributions: i) N(0,1), ii)

t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100).
Only distribution iii) is not symmetric. Then wtype = 1 if ei = εi (the WLS
model is the OLS model), 2 if ei = |xT

i β − 5|εi, 3 if ei =
√

(1 + 0.5x2
i2)εi, 4

if ei = exp[1 + log(|xi2|) + ...+ log(|xip|)]εi, 5 if ei = [1 + log(|xi2|) + ...+
log(|xip|)]εi, 6 if ei = [exp([log(|xi2|) + ...+ log(|xip|)]/(p − 1))]εi, 7 if ei =
[[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]εi, The last four types were special cases
of types suggested by Romano and Wolf (2017). For type 6, the weighting
function is the geometric mean of |xi2|, ..., |xip|.
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When ψ = 0 and wtype = 1, the full model least squares confidence inter-
vals for βi should have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ

when n = 100 and the iid zero mean errors have variance σ2. The simula-
tion computed the Frey shorth(c) interval for each βi and used bootstrap
confidence regions to test H0 : βS = 1 (whether first k + 1 βi = 1) and
H0 : βE = 0 (whether the last p − k − 1 βi = 0). The nominal coverage
was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests
coverage is close to the nominal value.

Table 8.1 shows two rows for each model giving the observed confidence
interval coverages and average lengths of the confidence intervals. The terms
“npar”, “wild”, and “par” are for the nonparametric, wild and parametric
bootstrap. The last six columns give results for the tests. The terms pr, hyb,
and br are for the prediction region method, hybrid region, and Bickel and
Ren region. The 0 indicates the test was H0 : βE = 0, while the 1 indicates
that the test was H0 : βS = 1. The length and coverage = P(fail to reject
H0) for the interval [0, D(UB)] or [0, D(UB,T )] where D(UB) or D(UB,T ) is the

cutoff for the confidence region. The cutoff will often be near
√
χ2

g,0.95 if the

statistic T is asymptotically normal. Note that
√
χ2

2,0.95 = 2.448 is close to

2.45 for the full model regression bootstrap tests.

Table 8.1 Bootstrapping WLS, wtype = 1, etype= N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
npar,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937

len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
wild,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940

len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457
par,0 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

npar,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

wild,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

par,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

Simulations in Rajapaksha (2021) suggest that the nonparametric boot-
strap works better than the other methods used in Section 8.3.
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8.4 OPLS in Low and High Dimensions

Under iid cases, OPLS theory does not depend on whether the error variance
is constant or not. Hence the Olive and Zhang (2023) OPLS theory still
applies. See Olive (2023f).

8.5 Summary

8.6 Complements

There is a large literature on regression with heterogeneity and sandwich
estimators. See, for example, Buja et al. (2019), Eicker (1963, 1967), Hinkley
(1977), Huber (1967), Long and Ervin (2000), MacKinnon and White (1985),
Pötscher and Preinerstorfer (2022), White (1980), and Wu (1986). For more
on the wild bootstrap, see Mammen (1992, 1993) and Wu (1986). Flachaire
(2005) compares the wild and nonparametric bootstrap. Feasible weighted
least squares estimates σ2

i or v(xi), and is a competitor for OLS. See Romano
and Wolf (2017).

Wagener and Dette (2012) give large sample theory for lasso under het-
eroscedasticity (heterogeneity). Also see Das and Lahiri (2019).

8.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1.



Chapter 9

High Dimensional Statistics

This chapter gives some results on high dimensional statistics. Some results
for regression were already covered.

9.1 Introduction

Several statistical methods, covered in previous chapters, can be computed
using an n × n matrix or a p × p matrix, depending on whether n or p is
smaller. See Remark 3.14 for ridge regression and Section 9.1 for principle
components analysis, which is used for principle components regression.

9.2 Principle Components Analysis

Principle components analysis (PCA) was used for PCR. See Chapter 3.
Suppose W is the standardized n × p data matrix and T = W g/

√
n− g.

If n < p, then the correlation matrix R = T T T = W T
g W g/(n− g) does not

have full rank. By singular value decomposition (SVD) theory, the SVD of T
is T = UΛV T where the positive singular values σi are square roots of the
positive eigenvalues of both T T T and of TT T . (The singular values are not
standard deviations.) Also V = (ê1 ê2 · · · êp), and T T T êi = σ2

i êi. Hence
classical principal component analysis on the standardized data can be done
using êi and λ̂i = σ2

i . The SVD of T T is T T = V ΛT UT , and

TT T =
1

n − g




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn
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which is the matrix of scalar products divided by n. Similarly, if W c is the
centered data matrix (subtract the means), then T c = W c/

√
n− g, and the

covariance matrix S = T T
c T c = W T

c W c/(n−g). For more information about
the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).

The following output shows how to do classical PCA with S on a data set
using the SVD and g = 1. The eigenvectors agree up to sign.

x<-cbind(buxx,buxy) # data matrix

mn <- apply(x,2,mean) #sample mean

J <- 0*1:87 + 1 # vector of n ones, n = 87

J <- J%*%t(J)/87 #J%*%x has rows = mn

zc <- x-J%*%x #centered x

yc <- zc/sqrt(87-1) #t(yc) %*% yc = cov(x)

svd(yc)$v #right eigenvectors of Yc

[,1] [,2] [,3] [,4] [,5]

[1,] 0.653883 0.75596 -0.01173 0.00988 0.0268

[2,] -0.001366 0.03980 0.06800 -0.42534 -0.9016

[3,] -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

[4,] -0.000714 0.00251 -0.10890 0.89588 -0.4308

[5,] -0.756594 0.65327 -0.00952 0.00854 0.0252

> svd(t(yc))$u #left eigenvectors of YcˆT

[,1] [,2] [,3] [,4] [,5]

[1,] -0.653883 -0.75596 0.01173 -0.00988 -0.0268

[2,] 0.001366 -0.03980 -0.06800 0.42534 0.9016

[3,] 0.000489 0.01276 0.99161 0.12775 0.0151

[4,] 0.000714 -0.00251 0.10890 -0.89588 0.4308

[5,] 0.756594 -0.65327 0.00952 -0.00854 -0.0252

> prcomp(x)

Standard deviations:

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Rotation:

PC1 PC2 PC3 PC4 PC5

len 0.653883 0.75596 -0.01173 0.00988 0.0268

nasal -0.001366 0.03980 0.06800 -0.42534 -0.9016

bigonal -0.000489 -0.01276 -0.99161 -0.12775 -0.0151

cephalic -0.000714 0.00251 -0.10890 0.89588 -0.4308

buxy -0.756594 0.65327 -0.00952 0.00854 0.0252

svd(yc)$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

svd(t(yc))$d #singular values = sqrt(eigenvalues)

[1] 523.70760 42.50435 6.06073 4.39067 3.80398

Although PCA can be done if p > n, in general need p fixed for the sample
eigenvector to be a good estimator of a population eigenvector.
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9.3 MANOVA Type Tests

This section reviews Wald type tests and Wald type tests with the wrong dis-
persion matrix, and uses results from Rajapaksha and Olive (2022). Consider
testing H0 : θ = θ0 versus H1 : θ 6= θ0 where a g × 1 statistic Tn satisfies√
n(Tn − θ)

D→ u ∼ Ng(0,Σ). If Σ̂
−1 P→ Σ−1 and H0 is true, then

D2
n = D2

θ0
(Tn, Σ̂/n) = n(Tn − θ0)

T Σ̂
−1

(Tn − θ0)
D→ uT Σ−1u ∼ χ2

g

as n → ∞. Then a Wald type test rejects H0 at significance level δ if D2
n >

χ2
g,1−δ where P (X ≤ χ2

g,1−δ) = 1 − δ if X ∼ χ2
g, a chi-square distribution

with g degrees of freedom.
It is common to implement a Wald type test using

D2
n = D2

θ0
(Tn,Cn/n) = n(Tn − θ0)

T C−1
n (Tn − θ0)

D→ uT C−1u

as n → ∞ if H0 is true, where the g × g symmetric positive definite matrix

Cn
P→ C 6= Σ. Hence Cn is the wrong dispersion matrix, and uT C−1u

does not have a χ2
g distribution when H0 is true. Often Cn is a regularized

estimator of Σ, or C−1
n is a regularized estimator of the precision matrix

Σ−1, such as Cn = diag(Σ̂) or Cn = Ig, the g× g identity matrix. Another
example is Cn = Sp, where Sp is a pooled covariance matrix, and it is
assumed that the p groups have the same covariance matrix Σ. When this
assumption is violated, Cn is usually not a consistent estimator of Σ. When
the bootstrap is used, often Cn = nS∗

T where S∗
T is the sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. The assumption that nS∗

T is a
consistent estimator of Σ is strong. See, for example, Machado and Parente
(2005). Rajapaksha and Olive (2022) showed how to bootstrap Wald tests
with the wrong dispersion matrix using the BR and PR bootstrap confidence
regions from Definitions 2.19 and 2.20.

Some examples include the pooled t test and one-way ANOVA test. Ru-
pasinghe Arachchige Don and Pelawa Watagoda (2018) and Rupasinghe
Arachchige Don and Olive (2019) gave Wald type tests for analogs of the
two sample Hotelling’s T 2 and one-way MANOVA tests using a consistent
estimator Σ̂ of Σ. These tests could greatly outperform the classical tests
that used the pooled covariance matrix when the sample sizes were large
enough to give good estimates of the covariance matrix of each group, but
for small sample sizes, the classical tests (with the wrong dispersion matrix)
sometimes did better in the simulations.

The bootstrap is useful since if
√
n(Tn − θ)

D→ u and
√
n(T ∗

n − Tn)
D→ u,

then the percentiles of n(Tn − θ0)
T C−1

n (Tn − θ0) can be estimated with the
sample percentiles of n(T ∗

n − Tn)T C−1
n (T ∗

n − Tn). See Remark 2.20.
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9.3.1 Large Sample Theory

One-way MANOVA type tests give a large class of Wald type tests and Wald
type tests with the wrong dispersion matrix. Using double subscripts will be
useful for describing these models. Suppose there are independent random
samples of size ni from p different populations (treatments), or ni cases are
randomly assigned to p treatment groups. Then n =

∑p
i=1 ni and the group

sample sizes are ni for i = 1, ..., p. Assume that m response variables yij =

(Yij1, ..., Yijm)T are measured for the ith treatment group and the jth case
in the group. Hence i = 1, ..., p and j = 1, ..., ni. Assume the p treatments
have possibly different population location vectors µi, such as E(yij) = µi.
Coordinatewise population medians and coordinatewise population trimmed
means are also useful. Then a one-way MANOVA type test is used to test
H0 : µ1 = µ2 = · · · = µp versus the alternative that not all of the µi are
equal.

Large sample theory can be used to derive Wald type tests, although
large sample theory is not the only solution. Let Cov(yij) = Σi be the
nonsingular population covariance matrix of the ith treatment group or
population. To simplify the large sample theory, assume ni = πin where
0 < πi < 1 and

∑p
i=1 πi = 1. Let Ti be a multivariate location estimator

such that
√
ni(Ti−µi)

D→ Nm(0,Σi), and
√
n(Ti−µi)

D→ Nm

(
0,

Σi

πi

)
. Let

T = (TT
1 , T

T
2 , ..., T

T
p )T , ν = (µT

1 ,µ
T
2 , ...,µ

T
p )T , and A be a full rank r ×mp

matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus
H1 : Aν 6= θ0 uses

A
√
n(T − ν)

D→ u ∼ Nr

(
0,A diag

(
Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)
AT

)
. (9.1)

Let the Wald type statistic

t0 = [AT − θ0]
T

[
A diag

(
Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)
AT

]−1

[AT − θ0]. (9.2)

These results prove the following theorem.

Theorem 9.1. Under the above conditions, t0
D→ χ2

r if H0 is true.

A useful fact for the F and chi-square distributions is dnFg,dn,1−δ → χ2
g,1−δ

as dn → ∞. Here P (X ≤ Fg,dn,1−δ) = 1 − δ if X ∼ Fg,dn . Reject H0 if
t0/r > Fg,dn,1−δ where dn = min(ni) = min(n1, ..., np).

This one-way MANOVA type test was used by Rupasinghe Arachchige
Don and Olive (2019), and a special case was used by Zhang and Liu (2013)

and Konietschke et al. (2015) with Ti = yi and Σ̂i = Si, the sample covari-
ance matrix corresponding to the ith treatment group. The p = 2 case gives
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analogs to the two sample Hotelling’s T 2 test. See Rupasinghe Arachchige
Don and Pelawa Watagoda (2018).

Several tests use the common covariance matrix assumption Σi ≡ Σ for
i = 1, ..., p. These tests are Wald type tests with the wrong dispersion matrix
if the common covariance matrix assumption is wrong. Examples include the
pooled t test with m = p = 1, the one-way ANOVA test with m = 1, the two
sample Hotelling’s T 2 test (with common covariance matrix) with p = 2, and
the one-way MANOVA test.

For the Rupasinghe Arachchige Don and Olive (2019) one-way MANOVA
type test, let A be the m(p − 1) ×mp block matrix

A =




I 0 0 . . . -I
0 I 0 . . . -I
...

...
...

...
0 0 . . . I -I


 .

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let

w = AT =




T1 − Tp

T2 − Tp

...
Tp−2 − Tp

Tp−1 − Tp



. (9.3)

Then
√
nw

D→ Nm(p−1)(0,Σw) if H0 is true with Σw = (Σij) where Σij =
Σp

πp
for i 6= j, and Σii =

Σi

πi
+

Σp

πp
for i = j. Hence

t0 = nwT Σ̂
−1

w w = wT

(
Σ̂w
n

)−1

w
D→ χ2

m(p−1)

as the ni →∞ ifH0 is true. Here
Σ̂w
n

is a block matrix where the off diagonal

block entries equal Σ̂p/np and the ith diagonal block entry is
Σ̂i

ni
+

Σ̂p

np
for

i = 1, ..., (p− 1). Reject H0 if

t0 > m(p − 1)Fm(p−1),dn
(1− δ) (9.4)

where dn = min(n1, ..., np). This Wald type test may start to outperform the
one-way MANOVA test if n ≥ (m+ p)2 and ni ≥ 40m for i = 1, ..., p.

If H0 : Aν = θ0 is true, if the Σi ≡ Σ for i = 1, ..., p, and if Σ̂ is a
consistent estimator of Σ, then by Theorem 9.1
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t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, then we get a bootstrap cutoff by
using

t∗0i = [AT ∗
i −AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ∗
i −AT ] =

D2
AT ∗

i

(
AT ,A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

Let F0 = t0/r. Then we can get a bootstrap cutoff using F ∗
0i = t∗0i/r. For

Ti = yi, let Σ̂ be the usual pooled covariance matrix estimator.

For Theorem 9.2, (n−p)U = t0
D→ χ2

m(p−1) follows trivially from Theorem

9.1, under the equal covariance matrix assumption. Fujikoshi (2002) also

showed (n− p)U D→ χ2
m(p−1). Kakizawa (2009) also gave large sample theory

for some MANOVA tests. Lengthy calculations show (n − p)U = t0. See
Rajapaksha (2021) for details.

Theorem 9.2. For the one-way MANOVA test using θ0 = 0, A as defined
above Equation (9.3), and Ti = yi,

(n− p)U = t0 = [AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ]

where U is the Hotelling Lawley trace statistic. Hence if the Σi ≡ Σ and

H0 : µ1 = · · · = µp is true, then (n − p)U = t0
D→ χ2

m(p−1).

9.3.2 One Sample Hotelling T 2 Type Tests

Suppose there is a random sample x1, ...,xn from a population. A common
multivariate one sample test of hypotheses is H0 : µ = µ0 versus H1 : µ 6= µ0

where µ is a population location measure of the population. When n is much
larger than p, the one sample Hotelling (1931) T 2 test is often used. If the
xi are iid with expected value E(xi) = µ and nonsingular covariance matrix
Cov(xi) = Σ, then by the multivariate central limit theorem

√
n(x−µ)

D→ Np(0,Σ).

If H0 is true, then
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T 2
H = n(x− µ0)

T S−1(x− µ0)
D→ χ2

p.

The one sample Hotelling’s T 2 test rejects H0 if T 2
H > D2

1−δ where D2
1−δ =

χ2
p,δ and P (Y ≤ χ2

p,δ) = δ if Y ∼ χ2
p. Alternatively, use

D2
1−δ =

(n− 1)p

n− p Fp,n−p,1−δ

where P (Y ≤ Fp,d,δ) = δ if Y ∼ Fp,d. The scaled F cutoff can be used since

T 2
H

D→ χ2
p if H0 holds, and

(n− 1)p

n− p Fp,n−p,1−δ → χ2
p,1−δ

as n→∞.
Suppose there is a random sample x1, ...,xn, and that it is desired to

test H0 : µ = µ0 versus H1 : µ 6= µ0 where µ is a p × 1 vector. We will
use µ = E(xi). Let the test statistic Tn = x and the bootstrapped test
statistic T ∗ = x∗ where the nonparametric bootstrap is used. Hence n cases
are drawn with replacement from the sample to form x∗. We will also use
Tn = the coordinatewise median where µ is the population coordinatewise
median. We will use Cn = C−1

n = Ip. Let θ = µ0 = 0.
The first large sample 100(1− δ)% confidence region is

{w : (w − Tn)T C−1
n (w − Tn) ≤ D2

(UB,T )} =

{w : D2
w(Tn, I) ≤ D2

(UB,T )} (9.5)

where the cutoff D2
(UB,T ) is the 100(1− α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i − Tn)T (T ∗
i − Tn). Note that the corresponding

test for H0 : θ = 0 rejects H0 if (Tn − 0)T (Tn − 0) > D2
(UB,T ).

The second large sample 100(1− δ)% confidence region for θ is

{w : (w − T ∗
)T C−1

n (w − T ∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
, I) ≤ D2

(UB)} (9.6)

where the cutoff D2
(UB) is the 100(1 − α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i −T
∗
)T (T ∗

i −T
∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = 0 rejects H0 if (T
∗ − 0)T (T

∗ − 0) > D2
(UB).

The test uses the result that
√
n(x−u)

D→ Np(0,Σx) and
√
n(x∗−x)

D→
Np(0,Σx). Since I is independent of the bootstrap sample, correction factors
for the bootstrap cutoffs were not needed. Since the sample quantile is that
of a random variable, B does not need to be large. If Σx = I , then
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(x− µ)T I−1(x− µ) ≈ 1

n
χ2

p

since
n(x− µ)T I−1(x− µ)

D→ χ2
p

as n → ∞. For high dimensional data with p ≥ n, we still have E(x) = µ,
Cov(x) = Σx/n, E(x∗) = x, and Cov(x∗) = (n− 1)S/n2.

C−1
n = I can be replaced by C−1

n = diag(1/S2
1 , ..., 1/S

2
p) where S2

i = Sii

when the sample covariance matrix S = (Sij). Other choices of Cn can be
used as long as the computational complexity of C−1

n is not too high.
The mpack function hdhot1wsim was used for the simulation.
The argument xtype gives the multivariate distribution of x where y =

Ax. Hence xtype= 1 for x ∼ Np(0, I), xtype= 2 for a mixture distribution
x ∼ 0.6Np(0, I)+0.4Np(0, 25I) for the default argument eps = 0.4, xtype
= 3 for a multivariate t4 distribution for the default argument dd = 4, and
xtype = 4 for a multivariate lognormal distribution where x = (x1, ..., xp)
with wi = exp(Z) where Z ∼ N(0, 1) and xi = wi − E(wi) where E(wi) =
exp(0.5). The argument covtyp = 1 if A = I so, and covtyp = 2 if A =
diag(

√
1, ...,

√
p). When covtyp = 3, cor(Yi, Yj) = ρ where ρ = 0 if ψ = 0,

ρ → 1/(c+ 1) as p→ ∞ if ψ = 1/
√
cp where c > 0, and ρ → 1 as p→ ∞ if

ψ ∈ (0, 1) is a constant. E(x) = δ1 where 1 is the p× 1 vector of ones. Then
the argument delta = δ.

The first three distributions have mean µ = E(x) equal to the population
coordinatewise median since the distributions are elliptically contoured dis-
tributions with center µ. The fourth distribution does not have E(x) = the
population coordinatewise median. Hence if H0 : µ = 0 is true for µ = E(x),
then H0 is false if µ is the population coordinatewise median.

The simulation used 5000 runs, the 4 xtypes, and the 3 covtyps. We used
n = 100 and p = 10, 100, 200, 400. For covty=3, we used ψ = 1/

√
p. We used

delta = 0 and delta = 1. For δ = 0, expect coverage to be less than 0.1 as p
increases.

Consider testing H0 : µ = 0 versus HA : µ 6= 0 using independent and
identically distributed (iid) x1, ...,xn where the xi are p× 1 random vectors
and p may be much larger than n. Replace xi by wi = xi − µ0 to test
H0 : µ = µ0 versus HA : µ 6= µ0.

The next two high dimensional tests are described in Srivastava and Du
(2008). Also see Hu and Bai (2015). Let tr(A) be the trace of square matrix
A. Let R be the sample correlation matrix. Consider testing H0 : µ = 0
versus HA : µ 6= 0. Let D = diag(S). Let

cp,n = 1 +
tr(R2)

p3/2
.

Let n = O(pδ) where 0.5 < δ ≤ n. Then under regularity conditions
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Z1 =
nxT D−1x− (n−1)p

n−3

2
(
tr(R2) − p2

n−1

) D→ N(0, 1)

as n, p → ∞. The next test is attributed to Bai and Saranadasa (1996).
Suppose p/n→ c > 0. Under regularity conditions,

Z2 =
nxT x− tr(S)

[
2(n−1)n

(n−2)(n+1)

(
tr(S2)− 1

n
[tr(S)]2

)]1/2

D→ N(0, 1)

as n, p→ ∞. Both of these test statistics needed p/n→ c > 0 or p/n2 → 0.
Hence p can not be too big.

There are test statistics Tn for testing H0 : µ = 0 where p can be much
larger with

Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute.
The following test is due to Chen and Qin (2010). Also see Hu and Bai (2015).
Let a =

∑n
i=1 xi and let X = (xij) be the data matrix with ith row = xT

i

and ij element = xij. Let vec(A) stack the columns of matrix A so that

c = vec(XT ) = [xT
1 ,x

T
2 , ...,x

T
n ]T . Then

cT c =

n∑

i=1

xT
i xi =

n∑

i=1

‖xi‖2 =

n∑

i=1

p∑

j=1

(xij)
2.

Let Tn =

1

n(n− 1)
[aT a− cT c] =

1

n(n− 1)

∑∑

i 6=j

xT
i xj =

1

n(n− 1)

∑

i 6=j

xT
i xj . (9.7)

The terms in cT c =
∑n

i=1 xT
i xi are the terms that cause the restriction on p

for asymptotic normality for the previous two tests. Under H0 : µ = 0 and
additional regularity conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. Here

s2n =
2

n(n− 1)
tr


∑

i 6=j

(xi − x(i,j))x
T
i (xj − x(i,j))x

T
j




where x(i,j) is the sample mean computed without xi or xj :
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x(i,j) =
1

n− 2

∑

k 6=i,j

xk.

The Tn in Equation (9.7) can be viewed as a modification of ‖x‖2 = xT x
that is a better estimator of µT µ in high dimensions. Note that µ = 0 iff
µT µ = 0 and E(Tn) = E(xT

i xj) = µT µ if xi and xj are iid with E(xi) = µ
and i 6= j.

The bootstrap often works well on such statistics, but the nonparametric
bootstrap fails because terms like xT

j xj need to be avoided, and the non-
parametric bootstrap has replicates: the proportion of cases in the bootstrap
sample that are not replicates is about 1 − e1 ≈ 2/3 ≈ 7/11. The m out
of n bootstrap without replacement draws a sample of size m without re-
placement from the n cases. For B = 1, this is a data splitting estimator,
and T ∗

m ≈ N(0, s2m) for large enough m and p. If B is larger, the data cloud

has correlated T ∗
m,1, ..., T

∗
m,B centered at T

∗∗
with variance σ2

m which may be

less than s2m. Here T
∗∗

is the sample mean of all
(

n
m

)
statistics T ∗

m obtained
by drawing a sample of size m with replacement from n. Theory for the m
out of n bootstrap often has m/n → 0 with m → ∞. Sampling without
replacement is like sampling with replacement when n >> m, and sampling
with replacement leads to iid T ∗

m with respect to the bootstrap distribution.

Heuristically, the T ∗
m may be approximately iid N(T

∗∗
, s2m) if m/n→ 0 and

m→ ∞. The slpack program hdhot1sim uses m = floor(2n/3) and worked
well in simulations. This choice of m gives an ad hoc test unless theory can
be given for the test.

Let Wi be an indicator random variable with Wi = 1 if x∗
i is in the sample

and Wi = 0, otherwise, for i = 1, ..., n. The Wi are binary and identically
distributed, but not independent. Hence P (Wi = 1) = m/n. Let Wij =
WiWj with i 6= j. Again, the Wij are binary and identically distributed.
P (Wij = 1) = P(ordered pair (xi,xj)) was selected in the sample. Hence
P (Wij = 1) = m(m − 1)/[n(n − 1)] since m(m − 1) ordered pairs were
selected out of n(n − 1) possible ordered pairs. Then

T ∗
m =

1

m(m − 1)

∑∑

k 6=d

xT
ik

xid =
1

m(m− 1)

∑∑

i 6=j

WiWjx
T
i xj

where the xi1 , ...,xim are the m vectors xi selected in the sample. The first
double sum has m(m − 1) terms while the second double sum has n(n − 1)
terms. Hence

E(T ∗
m) =

1

m(m− 1)

∑∑

i 6=j

E[WiWj ]x
T
i xj = Tn.

See similar calculations in Buja and Stuetzle (2006). Note that V (T ∗
m) =

E([T ∗
m]2) − [Tn]2 = Cov(T ∗

m, T
∗
m).
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To find the variance V (Tn) from Equation (9.7), let Wij = xT
i xj = Wji,

and note that

Tn =
2

n(n − 1)
Hn where Hn =

∑

i <

∑

j

xT
i xj =

∑

i<j

xT
i xj.

Then V (Hn) = Cov(Hn, Hn) =

Cov(
∑

i <

∑

j

Wij,
∑

k <

∑

d

Wkd) =
∑

i <

∑

j

∑

k <

∑

d

Cov(Wij,Wkd). (9.8)

Let V (Wij) = σ2
W for i 6= j. The covariances are of 3 types. First, if (ij) =

(kd) with i < j, then Cov(Wij ,Wkd) = V (Wij) = σ2
W . Second, if i, j, k, d

are distinct with i < j and k < d, then Wij and Wkd are independent with
Cov(Wij ,Wkd) = 0. Third, there are terms where exactly three of the four
subscripts are distinct, which have Cov(Wij ,Wid) = θ where j 6= d, i < j,
and i < d or Cov(Wij ,Wkj) = θ where i 6= k, i < j, and k < j. These
covariance terms are all equal to the same number θ since Wij = Wji. The
number of ways to get three distinct subscripts is

a− b− c =

(
n

2

)2

−
(
n

2

)(
n− 2

2

)
−
(
n

2

)
= n(n− 1)(n− 2)

since a is the number of terms on the right hand side of (9.8), b is the number
of terms where i, j, k, d are distinct with i < j and k < d, and c is the number
of terms where (ij) = (kd) with i < j. [Note that n(n − 1) terms have i
and j distinct. Half of these terms have i < j and half have i > j. Similarly,
n(n−1)(n−2)(n−3) terms have ijkd distinct, and half of the n(n−1) terms
have i < j, while half of the (n− 2)(n− 3) terms have k < d.] Thus

V (Hn) = 0.5n(n− 1)σ2
W + n(n− 1)(n − 2)θ.

This calculation was taken from Lehmann (1975, pp. 336-337). Thus

V (Tn) =
4

[n(n− 1)]2
V (Hn) =

2σ2
W

n(n− 1)
+

4(n − 2)θ

n(n− 1)
.

It can be shown that θ = 0 if µ = 0. Hence the test based on (9.7) can
be good if

√
2σ2

W/n2 is small where σ2
W does depend on p. Adapting an

argument from Lehmann (1999, pp. 367-368), it can be shown that θ ≥ 0.

The following test has simple large sample theory, and can be good if√
σ2

W /n is small. Hence we expect the test based on (9.7) to be better. Some
notation for the simple test is needed. Assume x1, ...,xn are iid, E(xi) = µ
and the variance V (xT

i xj) = σ2
W for i 6= j. Let m = floor(n/2) = bn/2c

be the integer part of n/2. So floor(100/2) = floor(101/2) = 50. Let the iid
random variables Wi = xT

2i−1x2i for i = 1, ..., m. Hence W1,W2, ...,Wm =
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xT
1 x2,x

T
3 x4, ...,x

T
2m−1x2m. Note that E(Wi) = µT µ and V (Wi) = σ2

W . Let
S2

W be the sample variance of the Wi:

S2
W =

1

m− 1

m∑

i=1

(Wi −W )2.

If σ2
W ∝ τp, then n may not be large enough for the normal approximation to

hold. The following theorem follows from the univariate central limit theorem.

Theorem 9.3. Assume x1, ...,xn are iid, E(xi) = µ, and the variance
V (xT

i xj) = σ2
W for i 6= j. Let W1, ...,Wm be defined as above. Then

a)
√
m(W −µT µ)

D→ N(0, σ2
W).

b)

√
m(W − µT µ)

SW

D→ N(0, 1)

as n→∞.

9.3.3 Two Sample Hotelling T 2 Type Tests

Suppose there are two independent random samples from two populations or
groups. A common multivariate two sample test of hypotheses isH0 : µ1 = µ2

versus H1 : µ1 6= µ2 where µi is a population location measure of the ith
population for i = 1, 2. The two sample Hotelling’s T 2 test is the classical
method for the test.

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from two populations or groups, and that it is desired to test
H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where µi arem×1 vectors. Let n = n1+n2.

The classical test uses

T 2
C = (x1 − x2)

T

[(
1

n1
+

1

n2

)
Σ̂pool

]−1

(x1 − x2)

where

Σ̂pool =
(n1 − 1)S1 + (n2 − 1)S2

n− 2
.

Then reject H0 if T 2
C > mFm,n−2,1−α.

The large sample test uses

T 2
L = (x1 − x2)

T

(
S1

n1
+

S2

n2

)−1

(x1 − x2).

Let dn = min(n1 − p, n2 − p). Then reject H0 if T 2
L > mFm,dn,1−α.
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Note that T 2
C ≈ T 2

L if n1 ≈ n2 ≥ 20m and the two tests are asymptotically
equivalent if ni/n → 0.5 as n1, n2 → ∞. The BR bootstrap cutoff for the
classical test uses

D2
i = (T ∗

i − Tn)T

[(
1

n1
+

1

n2

)
Σ̂pool

]−1

(T ∗
i − Tn)

where Tn = (x1 − x2) and T ∗
i = (x∗

1i − x∗
2i). We also use the PR and BR

bootstrap tests for the test statistic

(x1 − x2)
T (x1 − x2)

that uses Cn = I . These two tests are also used in Section 9.
The data distributions in the simulation are the same as those described

in Section 9.3.2, but ni ≥ 10m. For the classical test, there are distributions
where T 2

C is too large compared to the cutoff, resulting in large type I error,
and there are distributions where T 2

C is too small compared to the cutoff,
resulting in small type I error. For highly skewed data, large ni were often
needed before the large sample test had type I error close to the nominal, but
the type I error tended to be less than 0.12 when the nominal type I error was
0.05. The tests using Cn tended to have type I error close to the nominal, at
the cost of producing a confidence region that has a large volume.

Suppose there are two independent random samples from two populations
or groups. A common multivariate two sample test of hypotheses is H0 : µ1 =
µ2 versus H1 : µ1 6= µ2 where µi is a population location measure of the ith
population for i = 1, 2. The two sample Hotelling’s T 2 test is the classical
method for the test.

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from two populations or groups, and that it is desired to test
H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where µi are m × 1 vectors. We will
use µi = E(xi), and p > ni is possible. Let the test statistic Tn = x1 − x2

and the bootstrapped test statistic T ∗ = x∗
1 − x∗

2 where the nonparametric
bootstrap is used. Hence ni cases are drawn with replacement from sample i
to form x∗

i . We will use Cn = C−1
n = Im. Let θ = µ1 − µ2.

The first large sample 100(1− δ)% confidence region is

{w : (w − Tn)T C−1
n (w − Tn) ≤ D2

(UB,T )} = {w : D2
w(Tn, I) ≤ D2

(UB,T )}
(9.9)

where the cutoff D2
(UB,T ) is the 100(1− α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i − Tn)T (T ∗
i − Tn). Note that the corresponding

test for H0 : θ = 0 rejects H0 if (Tn − 0)T (Tn − 0) > D2
(UB ,T ).

The second large sample 100(1− δ)% confidence region for θ is

{w : (w−T ∗
)T C−1

n (w−T ∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
, I) ≤ D2

(UB)} (9.10)
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where the cutoff D2
(UB) is the 100(1 − α)th sample quantile of the squared

Euclidean distance D2
i = (T ∗

i −T
∗
)T (T ∗

i −T
∗
) for i = 1, ..., B. Note that the

corresponding test for H0 : θ = 0 rejects H0 if (T
∗ − 0)T (T

∗ − 0) > D2
(UB).

The test uses the result that
√
n(x−u)

D→ Np(0,Σx) and
√
n(x∗−x)

D→
Np(0,Σx). Since I is independent of the bootstrap sample, correction factors
for the bootstrap cutoffs were not needed. Since the sample quantile is that
of a random variable, B does not need to be large. If µ1 = µ2, Σxi

= I , and
n1 = n2 = k, then

(x1 − x2)
T I−1(x1 − x2) ≈

2

k
χ2

m

since
(x1 − x2)

T (2I/k)−1(x1 − x2)
D→ χ2

m

as k →∞.
Four types of data distributions wi were considered that were identical

for i = 1, 2. Then x1 = Aw1 + δ1 and x2 = σBw2 where 1 = (1, .., 1)T

is a vector of ones. We used A = B = diag(1,
√

2, ...,
√
m), A = B = I ,

and A = I with B = diag(1,
√

2, ...,
√
m). The wi distributions were the

multivariate normal distributionNp(0, I), the multivariate t distribution with
4 degrees of freedom, the mixture distribution 0.6Nm(0, I) + 0.4Nm(0, 25I),
and the multivariate lognormal distribution shifted to have zero mean. Note
that Cov(x2) = σ2 Cov(x1) when A = B, and E(xi) = E(wi) = 0 if δ = 0.

The mpack function hdhot2wsim was used for the simulation.
There are test statistics Tn for testing H0 : µ1 = µ2 where p can be much

larger with
Tn

sn

D→ N(0, 1)

where Tn is relatively simple to compute while sn is much harder to compute.
Let a =

∑n1

i=1 x1i and let X1 = (x1ij) be the data matrix with ith row =
xT

1i and ij element = x1ij. Let vec(A) stack the columns of matrix A so that

c = vec(XT
1 ) = [xT

11,x
T
12, ...,x

T
1n1

]T . Then

cT c =

n1∑

i=1

xT
1ix1i =

n1∑

i=1

‖x1i‖2 =

n1∑

i=1

p∑

j=1

(x1ij)
2.

Let b =
∑n2

i=1 x2i and let X2 = (x2ij) be the data matrix with ith row =

xT
2i and ij element = x2ij. Let d = vec(XT

2 ) = [xT
21,x

T
22, ...,x

T
2n2

]T . Then

dT d =

n2∑

i=1

xT
2ix2i =

n2∑

i=1

‖x2i‖2 =

n2∑

i=1

p∑

j=1

(x2ij)
2.

Note that ‖a− b‖2 = aT a + bT b− 2aT a, and let
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Tn =
1

n1(n1 − 1)
[aT a − cT c] +

1

n2(n2 − 1)
[bT b− dT d] − 2aT b

n1n2
.

The terms in cT c and dT d are the terms that cause the restriction on
p for asymptotic normality. Under H0 : µ1 = µ2 and additional regularity
conditions,

Tn

sn

D→ N(0, 1)

where sn is rather hard to compute. See Hu and Bai (2015) and Chen and
Qin (2010).

The m out of n bootstrap without replacement draws a sample of size
mi without replacement from the ni cases, i = 1, 2. For B = 1, this is a
data splitting estimator, and T ∗

m ≈ N(0, s2m) for large enough m and p.

If B is larger, the data cloud has correlated T ∗
m,1, ..., T

∗
m,B centered at T

∗∗

with variance σ2
m which may be less than s2m. Here T

∗∗
is the sample mean

of all
(

n1

m1

)
+
(

n2

m2

)
statistics T ∗

m obtained by drawing a sample of size mi

with replacement from ni. Heuristically, the T ∗
m may be approximately iid

N(T
∗∗
, s2m) if mi/n→ 0 and mi →∞.

The slpack program hdhot2sim uses mi = floor(2ni/3) and worked well
in simulations. This choice of mi gives an ad hoc test unless theory can be
given for the test.

9.4 One Way MANOVA Type Tests

9.5 Summary

9.6 Complements

Jolliffe (2010) is an authoritative text on PCA. Mφller et al. (2005) discussed
PCA, principal component regression, and drawbacks of M estimators. Olive
(2017b) discussed outlier resistant PCA methods. Koch (2014) has some in-
teresting results on high dimensional PCA.

Some high dimensional one sample tests include Chen et al. (2011), Hyodo
and Nishiyama (2017), Park and Ayyala (2013), Srivastava and Du (2008),
and Wang, Peng, and Li (2015). Hu and Bai (2015) also describes some tests.

Some high dimensional two sample tests include Feng et al. (2015), Feng
and Sun (2015), and Gregory et al. (2015). Tests that assume Σx1

= Σx2
can

have nice large sample theory, but the equal covariance matrix assumption
is too strong.
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9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

9.1. Consider the data set 6, 3, 8, 5, and 2. Show work.



Chapter 10

Multivariate Linear Regression

This chapter will show that multivariate linear regression with m ≥ 2 re-
sponse variables is nearly as easy to use, at least if m is small, as multiple
linear regression which has 1 response variable. For multivariate linear re-
gression, at least one predictor variable is quantitative. Plots for checking
the model, including outlier detection, are given. Prediction regions that are
robust to nonnormality are developed. For hypothesis testing, it is shown
that the Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s
trace statistic are robust to nonnormality.

10.1 Introduction

Definition 10.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Definition 10.2. The multivariate linear regression model

yi = BT xi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case
is (xT

i , y
T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted. The

model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for
k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB
while E(Yij) = xT

i βj . The εi are assumed to be iid. Multiple linear regres-
sion corresponds to m = 1 response variable, and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m multiple linear regression

399
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models Y j = Xβj +ej for j = 1, ..., mwhere E(ej) = 0. For the multivariate
linear regression model, Cov(ei, ej) = σij In for i, j = 1, ..., m where In is
the n× n identity matrix.

Notation. The multiple linear regression model uses m = 1. See Def-
inition 1.9. The multivariate linear model yi = BT xi + εi for i = 1, ..., n
has m ≥ 2, and multivariate linear regression and MANOVA models are
special cases. See Definition 9.2. This chapter will use x1 ≡ 1 for the multi-
variate linear regression model. The multivariate location and dispersion
model is the special case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT
1
...

yT
n


 .

The n× p design matrix of predictor variables is

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.

The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εT
i .

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it



10.1 Introduction 401

is assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corre-
sponding to the jth response are uncorrelated with variance σ2

j = σjj. Notice
that the same design matrix X of predictors is used for each of the m
models, but the jth response variable vector Y j, coefficient vector βj , and
error vector ej change and thus depend on j.

Now consider the ith case (xT
i , y

T
i ) which corresponds to the ith row of Z

and the ith row of X . Then



Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xT

i βm + εim




or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BT xi =




xT
i β1

xT
i β2
...

xT
i βm


 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E
are independent and that expectations are conditional on X .

Example 10.1. Suppose it is desired to predict the response variables
Y1 = height and Y2 = height at shoulder of a person from partial skeletal
remains. A model for prediction can be built from nearly complete skeletons
or from living humans, depending on the population of interest (e.g. ancient
Egyptians or modern US citizens). The predictor variables might be x1 ≡ 1,
x2 = femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 10.3. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are

B̂ = (XT X)−1XT Z =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values
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Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z −XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n


 =

[
r1 r2 . . . rm

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XT X)−1XT Y j, Ŷ j = Xβ̂j, and rj = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d =
(Z −XB̂)T (Z −XB̂)

n− d =
Ê

T
Ê

n − d =
1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I −X(XT X)−1X ]Z,

and
Ê = [I −X(XT X)−1X ]Z.

The following two theorems show that the least squares estimators are
fairly good. Also see Theorem 10.7 in Section 10.4. Theorem 10.2 can also be

used for Σ̂ε,d =
n− 1

n − dSr.

Theorem 10.1, Johnson and Wichern (1988, p. 304): Suppose X
has full rank p < n and the covariance structure of Definition 10.2 holds. Then
E(B̂) = B so E(β̂j) = βj , Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k = 1, ..., p.

Also Ê and B̂ are uncorrelated, E(Ê) = 0, and

E(Σ̂ε) = E

(
Ê

T
Ê

n− p

)
= Σε.
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Theorem 10.2. Sr = Σε + OP (n−1/2) and 1
n

∑n
i=1 εiε

T
i = Σε +

OP (n−1/2) if the following three conditions hold: B − B̂ = OP (n−1/2),
1
n

∑n
i=1 εix

T
i = OP (1), and 1

n

∑n
i=1 xix

T
i = OP (n1/2).

Proof. Note that yi = BT xi+εi = B̂
T
xi+ε̂i. Hence ε̂i = (B−B̂)T xi+εi.

Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ]

=

n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂) + (B − B̂)T (

n∑

i=1

xiε
T
i )+

(B − B̂)T (
n∑

i=1

xix
T
i )(B − B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) +OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i . �

Sr and Σ̂ε are also
√
n consistent estimators of Σε by Su and Cook (2012,

p. 692). See Theorem 10.7.

10.2 Plots for the Multivariate Linear Regression Model

This section suggests using residual plots, response plots, and the DD plot to
examine the multivariate linear model. The DD plot is used to examine the
distribution of the iid error vectors. The residual plots are often used to check
for lack of fit of the multivariate linear model. The response plots are used
to check linearity and to detect influential cases for the linearity assumption.
The response and residual plots are used exactly as in the m = 1 case corre-
sponding to multiple linear regression and experimental design models. See
Olive (2010, 2017a), Olive et al. (2015), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432).

Notation. Plots will be used to simplify the regression analysis, and in
this text a plot of W versus Z uses W on the horizontal axis and Z on the
vertical axis.
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Definition 10.4. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 10.1. Make the m response and residual plots for any multi-
variate linear regression. In a response plot, the vertical deviations from the
identity line are the residuals rij = Yij − Ŷij. Suppose the model is good,
the jth error distribution is unimodal and not highly skewed for j = 1, ..., m,
and n ≥ 10p. Then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

Rule of thumb 10.1. Use multivariate linear regression if

n ≥ max((m+ p)2, mp+ 30, 10p))

provided that the m response and residual plots all look good. Make the DD
plot of the ε̂i. If a residual plot would look good after several points have
been deleted, and if these deleted points were not gross outliers (points far
from the point cloud formed by the bulk of the data), then the residual plot
is probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good. The
linmodpack function MLRsim simulates response and residual plots for various
distributions when m = 1.

Rule of thumb 10.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 10.2. Residual plots magnify departures from the model while
the response plots emphasize how well the multivariate linear regression model
fits the data.

Definition 10.5. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.
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Definition 10.6. An FF plot is a scatterplot matrix of the m sets of fitted
values of response variables Ŷ 1, ..., Ŷ m. The m response variables Y 1, ...,Y m

can be added to the plot.

Remark 10.3. Some applications for multivariate linear regression need
the m error vectors to be linearly related, and larger sample sizes may be
needed if the error vectors are not linearly related. For example, the asymp-
totic optimality of the prediction regions of Section 10.3 needs the error
vectors to be iid from an elliptically contoured distribution. Make the RR
plot and a DD plot of the residual vectors ε̂i to check that the error vectors
are linearly related. Make a DD plot of the continuous predictor variables to
check for x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers, es-
pecially if it is assumed that the response variables come from an elliptically
contoured distribution.

The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 10.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a, 2017b) and Chapter 7. The RMVN estimator has
not yet been proven to be a consistent estimator when computed from resid-
ual vectors, but simulations suggest that the RMVN DD plot of the residual
vectors is a useful diagnostic plot. The linmodpack function mregddsim can
be used to simulate the DD plots for various distributions.

Predictor transformations for the continuous predictors can be made ex-
actly as in Section 1.2.

Warning: The log rule and other transformations do not always work. For
example, the log rule may fail. If the relationships in the scatterplot matrix are
already linear or if taking the transformation does not increase the linearity,
then no transformation may be better than taking a transformation. For
the Cook and Weisberg (1999) data set evaporat.lsp with m = 1, the log
rule suggests transforming the response variable Evap, but no transformation
works better.

Response transformations can also be made as in Section 1.2, but also
make the response plot of Ŷ j versus Y j , and use the rules of Section 1.2
on Yj to linearize the response plot for each of the m response variables
Y1, ..., Ym.
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10.3 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model,
and then consider the multivariate linear model as a special case. Given n
cases of training or past data (x1, y1), ..., (xn, yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 10.7. A large sample 100(1−δ)% prediction region is a set An

such that P (yf ∈ An)→ 1−δ as n→ ∞, and is asymptotically optimal if the
volume of the region converges in probability to the volume of the population
minimum volume covering region.

The classical large sample 100(1− δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1, yi), ..., (xn, yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ}. See Johnson and Wichern (1988, pp. 134, 151,
312). By Equation (1.36), these regions may work for multivariate normal xi

or εi, but otherwise tend to have undercoverage. Section 4.4 and Olive (2013a)
replaced χ2

p,1−δ by the order statistic D2
(Un) where Un decreases to dn(1−δ)e.

This section will use a similar technique from Olive (2018) to develop possibly
the first practical large sample prediction region for the multivariate linear
model with unknown error distribution. The following technical theorem will
be needed to prove Theorem 10.4.

Theorem 10.3. Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent
estimator of (µ, aΣ).

a) D2
x(µ̂n, Σ̂n)− 1

a
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂n, Σ̂n)− (µ, aΣ) = Op(n
−δ) and aΣ̂

−1

n −Σ−1 =
OP (n−δ), then

D2
x(µ̂n, Σ̂n)− 1

a
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn)→ 1 as n→∞. Now

D2
x(µ̂n, Σ̂n) = (x− µ̂n)T Σ̂

−1

n (x− µ̂n) =

(x− µ̂n)T

(
Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x− µ̂n) =

(x− µ̂n)T

(−Σ−1

a
+ Σ̂

−1

n

)
(x− µ̂n) + (x− µ̂n)T

(
Σ−1

a

)
(x− µ̂n) =
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1

a
(x− µ̂n)T (−Σ−1 + a Σ̂

−1

n )(x− µ̂n) +

(x− µ + µ− µ̂n)T

(
Σ−1

a

)
(x−µ + µ− µ̂n)

=
1

a
(x− µ)T Σ−1(x−µ) +

2

a
(x−µ)T Σ−1(µ− µ̂n)+

1

a
(µ− µ̂n)T Σ−1(µ− µ̂n) +

1

a
(x− µ̂n)T [aΣ̂

−1

n −Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m× 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had

many cases zi = BT xf + εi, then we could use the multivariate prediction
region for m variables from Section 2.2. Instead, Theorem 10.4 will use the

prediction region from Section 4.4 on the pseudodata ẑi = B̂
T
xf + ε̂i =

ŷf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i

and centers the cloud at ŷf . Note that ẑi = (B−B +B̂)T xf +(εi−εi+ε̂i) =

zi+(B̂−B)T xf +ε̂i−εi = zi+(B̂−B)T xf−(B̂−B)T xi = zi+OP (n−1/2).
Hence the distances based on the zi and the distances based on the ẑi have
the same quantiles, asymptotically (for quantiles that are continuity points
of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous de-
creasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BT xf ,Σε) ≤ D1−δ} where P (Dy(BT xf ,Σε) ≤ D1−δ) = 1− δ.
For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =

√
χ2

m,1−δ. If the er-

ror distribution is not elliptically contoured, then the above region still has
100(1− δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate sam-
ples and many error distributions, the natural estimator that covers dn(1−δ)e
of the cases tends to have undercoverage as high as min(0.05, δ/2). This em-
pirical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 10.4.

Theorem 10.4. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n.

Given xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let
ẑi = ŷf + ε̂i and
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D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂
−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1− δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1− δ)% prediction region for yf be given by

{z : (z − ŷf )T Σ̂
−1

ε (z − ŷf ) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz (ŷf , Σ̂ε) ≤ D(Un)}. (10.1)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1− δ as n→∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (10.1) is a
large sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (10.1) is
asymptotically optimal.

Proof. a) Suppose (xf , yf ) = (xi, yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)}
iff ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un

of the ε̂i are in the latter region by construction, if D(Un) is unique. Since
D(Un) is the 100(1− δ)th percentile of the Di asymptotically, Un/n→ 1− δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)] = 1 − δ. Since Σε > 0,

Theorem 10.3 shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε) then D(ŷf , Σ̂ε)

D→
Dz(E(yf ),Σε). Hence the percentiles of the distances converge in distribu-

tion, and the probability that yf is in {z : Dz (ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−δ(E(yf),Σε)} at continuity points D1−δ of the distribution ofD(E(yf ),
Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n → ∞. This region is {z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �
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Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their
corresponding prediction region with xf = xi, and qn → 1−δ even if (ŷi, Σ̂ε)
is not a good estimator or if the regression model is misspecified. Hence the
coverage qn of the training data is robust to model assumptions. Of course the
volume of the prediction region could be large if a poor estimator (ŷi, Σ̂ε) is
used or if the εi do not come from an elliptically contoured distribution. The
response, residual, and DD plots can be used to check model assumptions.
If the plotted points in the RMVN DD plot cluster tightly about some line
through the origin and if n ≥ max[3(m+p)2, mp+30], we expect the volume
of the prediction region may be fairly low for the least squares estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1−δ/2 or qn = 1−δ+0.05 for n ≤ 20p.
At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1− δ as n→∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55.Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n→∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. Let Σ̂ε = Σ̂ε,d=p, ẑi =
ŷf + ε̂i, and D2

i (ŷf ,Sr) = (ẑi − ŷf )T S−1
r (ẑi − ŷf ) for i = 1, ..., n. Then the

large sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz (ŷf ,Sr) ≤ D(Un)}. (10.2)

Theorem 10.5 will show that this prediction region (10.2) can also be found
by applying the nonparametric prediction region (2.24) on the ẑi. Recall that
Sr defined in Definition 10.3 is the sample covariance matrix of the residual
vectors ε̂i. For the multivariate linear regression model, ifD1−δ is a continuity
point of the distribution of D, Assumption D1 above Theorem 10.7 holds,
and the εi have a nonsingular covariance matrix, then (10.2) is a large sample
100(1− δ)% prediction region for yf .

Theorem 10.5. For multivariate linear regression, when least squares is
used to compute ŷf , Sr , and the pseudodata ẑi, prediction region (10.2) is
the nonparametric prediction region (4.24) applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
10.4 by Su and Cook (2012). (See Theorem 10.7.) Let (T,C) be the sample
mean and sample covariance matrix (see Definition 2.7) applied to the ẑi.
The sample mean and sample covariance matrix of the residual vectors is
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(0,Sr) since least squares was used. Hence the ẑi = ŷf + ε̂i have sample
covariance matrix Sr, and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and
the Di(ŷf ,Sr) are used to compute D(Un). �

The RMVN DD plot of the residual vectors will be used to display the
prediction regions for multivariate linear regression. See Example 10.3. The
nonparametric prediction region for multivariate linear regression of Theorem
10.5 uses (T,C) = (ŷf ,Sr) in (10.1), and has simple geometry. Let Rr be
the nonparametric prediction region (10.2) applied to the residuals ε̂i with
ŷf = 0. Then Rr is a hyperellipsoid with center 0, and the nonparametric
prediction region is the hyperellipsoid Rr translated to have center ŷf . Hence
in a DD plot, all points to the left of the line MD = D(Un) correspond to yi

that are in their prediction region, while points to the right of the line are
not in their prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf , yjf) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr .

It is common practice to examine how well the prediction regions work on
the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is in
the region with probability near to 1− δ with a simulation study. Note that
ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric prediction
region (10.2) for the data since the prediction region (10.2) centered at ŷi

contains yi iff Rr, the prediction region centered at 0, contains ε̂i since ε̂i =
yi− ŷi. Thus 100qn% of prediction regions corresponding to the data (yi,xi)
contain yi, and 100qn% → 100(1 − δ)%. Hence the prediction regions work
well on the training data and should work well on (xf , yf ) similar to the
training data. Of course simulation should be done for test data (xf , yf)
that are not equal to training data cases. See Problem 10.11.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi, yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf , yf ) comes from a different population than that of the data.
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10.4 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix.

Definition 10.8. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In −

1

n
11T

)
Z.

Note that T /(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g. if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XT X)−1XT − 1

n
11T

]
Z = ZT XB̂ − 1

n
ZT11T Z.

Let H = B̂
T
LT [L(XT X)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZT Z −ZT XB̂ = ZT [In −X(XT X)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df

Regression or Treatment R p− 1
Error or Residual W e n− p
Total (corrected) T n− 1

Definition 10.9. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.
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The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the paragraphs after the following theorem for the notation used in that
theorem.

Theorem 10.6. The Hotelling-Lawley trace statistic

U(L) =
1

n− p [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (10.3)

Proof. Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA⊗DT ][vec(G)], it follows that

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] = T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XT X)−1LT ]−1, and C = I. Hence (10.3) holds. �

Some notation is useful to show (10.3) and to show that (n−p)U(L)
D→ χ2

rm

under mild conditions if H0 is true. Following Henderson and Searle (1979),
let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns
of A on top of one another so

vec(A) =




a1

a2

...
ap


 .

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... · · ·

...
am1B am2B · · · amnB


 .

An important fact is that if A and B are nonsingular square matrices, then
[A⊗B]−1 = A−1 ⊗B−1. The following assumption is important.
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Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max1≤i≤n hi
P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 10.7: Multivariate Least Squares Central Limit Theo-
rem (MLS CLT). For the least squares estimator, if assumption D1 holds,

then Σ̂ε is a
√
n consistent estimator of Σε and

√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ).

Theorem 10.8. If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Proof. By Theorem 10.7,
√
n vec(B̂−B)

D→ Npm(0,Σε⊗W ). Then un-

der H0,
√
n vec(LB̂)

D→ Nrm(0,Σε ⊗LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗

(LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σε are re-

placed by Ŵ = n(XT X)−1 and Σ̂ε. Hence under H0 and using the proof of
Theorem 10.6,

T = (n−p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing a
linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ −B) =




β̂1 − β1

β̂2 − β2
...

β̂m − βm


 ∼ Npm(0,Σε ⊗ (XT X)−1)

where
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C = Σε⊗(XT X)−1 =




σ11(X
T X)−1 σ12(X

T X)−1 · · · σ1m(XT X)−1

σ21(X
T X)−1 σ22(X

T X)−1 · · · σ2m(XT X)−1

...
... · · ·

...

σm1(X
T X)−1 σm2(X

T X)−1 · · · σmm(XT X)−1


 .

Now let A be an rm×pm block diagonal matrix: A = diag(L, ...,L). Then

A vec(B̂ −B) = vec(L(B̂ −B)) =




L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)


 ∼ Nrm(0,Σε ⊗L(XT X)−1LT )

where D = Σε ⊗L(XT X)−1LT = ACAT =




σ11L(XT X)−1LT σ12L(XT X)−1LT · · · σ1mL(XT X)−1LT

σ21L(XT X)−1LT σ22L(XT X)−1LT · · · σ2mL(XT X)−1LT

...
... · · ·

...

σm1L(XT X)−1LT σm2L(XT X)−1LT · · · σmmL(XT X)−1LT


 .

Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =




Lβ̂1

Lβ̂2
...

Lβ̂m


 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (10.4)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (10.5)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,
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√
n vec(B̂ −B) =

√
n




β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗W )

where
XT X

n

P→W−1.

Then under H0,

√
n vec(LB̂) =

√
n




Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.

Hence (10.4) holds, and (10.5) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 10.8,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n− p)U(L)

D→ χ2
rm, (n− p)V (L)

D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar
(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m+ p)2 for multivariate normal error vectors.

Theorems 10.6 and 10.8 are useful for relating multivariate tests with
the partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003, p.
100) shows that
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FR =
[Lβ̂]T (L(XT X)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since

Σ̂
−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 10.6.

By Theorem 10.8, for example, rFR
D→ χ2

r for a large class of nonnormal

error distributions. If Zn ∼ Fk,dn , then Zn
D→ χ2

k/k as dn → ∞. Hence using
the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn →∞ as n→∞, and
dn = n− pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p
rm

V (L), and
n− p

rm
U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several ap-
proximations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The simulations in Section 10.5 suggest that this approximation is good for
r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s largest
root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n−p−(m−r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for

m2+r2−5 > 0 and t = 1, otherwise. Assume H0 is true. Thus U
P→ 0, V

P→ 0,

and Λ
P→ 1 as n→∞. Then

gt− 2u

rm

1− Λ1/t

Λ1/t
≈ F (rm, gt− 2u) or (n − p)t

1− Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈
t(1− Λ1/t) ≈ t(1− Λ1/t)/Λ1/t. If it can not be shown that
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(n− p)[− log(Λ) − t(1− Λ1/t)/Λ1/t]
P→ 0 as n→∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n− p−m+ 1

m

1− Λ
Λ
∼ F (m, n− p−m+ 1).

For r = 2,

2(n− p−m+ 1)

2m

1− Λ1/2

Λ1/2
∼ F (2m, 2(n− p−m+ 1)).

For m = 2,
2(n− p)

2r

1− Λ1/2

Λ1/2
∼ F (2r, 2(n− p)).

Let s = min(r,m), m1 = (|r −m| − 1)/2 and m2 = (n− p−m− 1)/2. Note
that s(|r −m|+ s) = min(r,m)max(r,m) = rm. Then

n − p
rm

V

1− V/s =
n− p

s(|r −m|+ s)

V

1− V/s ≈
2m2 + s+ 1

2m1 + s+ 1

V

s− V ≈

F (s(2m1+s+1), s(2m2+s+1)) ≈ F (s(|r−m|+s), s(n−p)) = F (rm, s(n−p)).
This approximation is asymptotically correct by Slutsky’s theorem since

1− V/s P→ 1. Finally,
n− p
rm

U =

n− p
s(|r −m|+ s)

U ≈ 2(sm2 + 1)

s2(2m1 + s+ 1)
U ≈ F (s(2m1 + s+ 1), 2(sm2 + 1))

≈ F (s(|r −m|+ s), s(n − p)) = F (rm, s(n− p)).
This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The four step MANOVA test of linear hypotheses is useful.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB 6= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0.
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The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.

The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,

hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p− 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds

to H1 : Bj 6= 0 where BT
j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model
H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1

dj
B̂

T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε




β̂j1

β̂j2

...

β̂jm




where B̂
T

j is the jth row of B̂ and dj = (XT X)−1
jj , the jth diagonal entry of

(XT X)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

The linmodpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so x2 and x4 in the output below with F = 0.77 and pval = 0.614), Fj and
the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the output
below so F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA
F test (in the output below F0 = 3.15 and pval= 0.06). Right click Stop

on the plots m times to advance the plots and to get the cursor back on the
command line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce
a MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890
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[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 10.2

y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 10.2. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then s/he would not be counted. Y1 = number of married civilian
men in the district, Y2 = number of women married to civilians in the district,
x2 = population of the district in 1843, x3 = number of married military men
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in the district, and x4 = number of women married to military men in the
district. The reduced model deletes x3 and x4. The constant uses x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown below.

Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

Solution:
a) i) H0: the nontrivial predictors are not needed in the mreg model

H1: at least one of the nontrivial predictors is needed
ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.

b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.

c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.

d) i) H0: the reduced model is good H1: use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
e) i) H0: the reduced model is good H1: use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

10.5 An Example and Simulations

In the DD plot, cases to the left of the vertical line are in their nonparametric
prediction region. The long horizontal line corresponds to a similar cutoff
based on the RD. The shorter horizontal line that ends at the identity line
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is the parametric MVN prediction region from Section 4.4 applied to the
ẑi. Points below these two lines are only conjectured to be large sample
prediction regions, but are added to the DD plot as visual aids. Note that
ẑi = ŷf + ε̂i, and adding a constant ŷf to all of the residual vectors does not
change the Mahalanobis distances, so the DD plot of the residual vectors can
be used to display the prediction regions.
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Fig. 10.1 Plots for Y1 = log(S).

Example 10.3. Cook and Weisberg (1999, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S)
and Y2 = log(M) where S is the shell mass and M is the muscle mass.
The predictors are X2 = L, X3 = log(W ), and X4 = H : the shell length,
log(width), and height. To check linearity of the multivariate linear regression
model, Figures 10.1 and 10.2 give the response and residual plots for Y1 and
Y2. The response plots show strong linear relationships. For Y1, case 79 sticks
out while for Y2, cases 8, 25, and 48 are not fit well. Highlighted cases had
Cook’s distance > min(0.5, 2p/n). See Cook (1977).

To check the error vector distribution, the DD plot should be used instead
of univariate residual plots, which do not take into account the correlations
of the random variables ε1, ..., εm in the error vector ε. A residual vector
ε̂ = (ε̂ − ε) + ε is a combination of ε and a discrepancy ε̂ − ε that tends
to have an approximate multivariate normal distribution. The ε̂ − ε term
can dominate for small to moderate n when ε is not multivariate normal,
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Fig. 10.2 Plots for Y2 = log(M).
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Fig. 10.3 DD Plot of the Residual Vectors for the Mussels Data.
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incorrectly suggesting that the distribution of the error vector ε is closer to a
multivariate normal distribution than is actually the case. Figure 10.3 shows
the DD plot of the residual vectors. The plotted points are highly correlated
but do not cover the identity line, suggesting an elliptically contoured error
distribution that is not multivariate normal. The nonparametric 90% predic-
tion region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Cases 8, 48, and 79 have especially large distances.

The four Hotelling Lawley Fj statistics were greater than 5.77 with pvalues
less than 0.005, and the MANOVA F statistic was 337.8 with pvalue ≈ 0.

The response, residual, and DD plots are effective for finding influential
cases, for checking linearity, for checking whether the error distribution is
multivariate normal or some other elliptically contoured distribution, and
for displaying the nonparametric prediction region. Note that cases to the
right of the vertical line correspond to cases with yi that are not in their
prediction region. These are the cases corresponding to residual vectors with
large Mahalanobis distances. Adding a constant does not change the distance,
so the DD plot for the residual vectors is the same as the DD plot for the ẑi.
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Fig. 10.4 Plots for Y2 = M .

c) Now suppose the same model is used except Y2 = M . Then the response
and residual plots for Y1 remain the same, but the plots shown in Figure 10.4
show curvature about the identity and r = 0 lines. Hence the linearity condi-
tion is violated. Figure 10.5 shows that the plotted points in the DD plot have
correlation well less than one, suggesting that the error vector distribution
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Fig. 10.5 DD Plot When Y2 = M .

is no longer elliptically contoured. The nonparametric 90% prediction region
for the residual vectors consists of the points to the left of the vertical line
MD = 2.52, and contains 95% of the training data. Note that the plots can
be used to quickly assess whether power transformations have resulted in a
linear model, and whether influential cases are present. R code for producing
the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y) #scatterplot matrix

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z) #right click Stop, DD plot of MLD model

out <- mltreg(x,y) #right click Stop 4 times, Fig. 10.1, 10.2

ddplot4(out$res) #right click Stop, Fig. 10.3

y[,2] <- mussels[,5]

tem <- mltreg(x,y) #right click Stop 4 times, Fig. 10.4

ddplot4(tem$res) #right click Stop, Fig. 10.5
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10.5.1 Simulations for Testing

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace
test, the Hotelling Lawley trace test, and the Roy’s largest root test for the
Fj tests and the MANOVA F test for multivariate linear regression. The first
row of B was always 1T and the last row of B was always 0T . When the null
hypothesis for the MANOVA F test is true, all but the first row corresponding
to the constant are equal to 0T . When p ≥ 3 and the null hypothesis for the
MANOVA F test is false, then the second to last row of B is (1, 0, ..., 0),
the third to last row is (1, 1, 0, ..., 0) et cetera as long as the first row is
not changed from 1T . First m× 1 error vectors wi were generated such that
the m random variables in the vector wi are iid with variance σ2. Let the
m×m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then εi = Awi so that Σε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Hence the correlations are (2ψ+(m−2)ψ2)/(1+(m−1)ψ2 ).
As ψ gets close to 1, the error vectors cluster about the line in the direction
of (1, ..., 1)T. We used wi ∼ Nm(0, I),wi ∼ (1− τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with
d = 7 degrees of freedom, or wi ∼ lognormal - E(lognormal): where the m
components of wi were iid with distribution ez − E(ez) where z ∼ N(0, 1).
Only the lognormal distribution is not elliptically contoured.

Table 10.1 Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018
MVN 300 P 1 0.040 0.038 0.038 0.007
MVN 300 HL 1 0.059 0.058 0.057 0.045
MVN 300 R 1 0.051 0.049 0.048 0.993
MVN 600 W 1 0.048 0.043 0.043 0.034
MVN 600 P 1 0.046 0.042 0.041 0.026
MVN 600 HL 1 0.055 0.052 0.050 0.052
MVN 600 R 1 0.052 0.048 0.047 0.994
MIX 300 W 1 0.042 0.043 0.044 0.017
MIX 300 P 1 0.039 0.040 0.042 0.008
MIX 300 HL 1 0.057 0.059 0.058 0.039
MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020
MVT(7) 300 P 1 0.046 0.032 0.042 0.011
MVT(7) 300 HL 1 0.064 0.049 0.058 0.045
MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020
LN 300 P 1 0.039 0.045 0.037 0.009
LN 300 HL 1 0.057 0.061 0.058 0.041
LN 300 R 1 0.049 0.055 0.050 0.994
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Table 10.2 Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006
30 5 P 0.000 0.000 0.000 0.000 0.000
30 5 HL 0.382 0.694 0.322 0.007 0.579
30 5 R 0.799 0.871 0.549 0.047 0.997
50 5 W 0.984 0.955 0.644 0.017 0.963
50 5 P 0.971 0.940 0.598 0.012 0.871
50 5 HL 0.997 0.979 0.756 0.053 0.991
50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633
105 10 P 0.109 0.812 0.050 0.000 0.000
105 10 HL 0.964 0.997 0.428 0.000 1
105 10 R 1 1 0.892 0.052 1
150 10 W 1 1 0.948 0.032 1
150 10 P 1 1 0.941 0.025 1
150 10 HL 1 1 0.966 0.060 1
150 10 R 1 1 0.965 0.057 1
450 20 W 1 1 0.999 0.020 1
450 20 P 1 1 0.999 0.016 1
450 20 HL 1 1 0.999 0.035 1
450 20 R 1 1 0.999 0.056 1

The simulation used 5000 runs, and H0 was rejected if the F statistic
was greater than Fd1,d2

(0.95) where P (Fd1,d2
< Fd1,d2

(0.95)) = 0.95 with
d1 = rm and d2 = n−mp for the test statistics

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p
rm

V (L), and
n− p

rm
U(L),

while d1 = h = max(r,m) and d2 = n− p− h+ r for the test statistic

n− p− h+ r

h
λmax(L).

Denote these statistics by W , P , HL, and R. Let the coverage be the propor-
tion of times that H0 is rejected. We want coverage near 0.05 when H0 is true
and coverage close to 1 for good power when H0 is false. With 5000 runs,
coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05.
Coverages are tabled for the F1, F2, Fp−1, and Fp test and for the MANOVA
F test denoted by FM . The null hypothesis H0 was always true for the Fp

test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j 6= 1. When the MANOVA F test was
false, H0 was false for the Fj tests with j 6= p, but the Fp−1 test should be
hardest to reject for j 6= p by construction of B and the error vectors.

When the null hypothesisH0 was true, simulated values started to get close
to nominal levels for n ≥ 0.8(m+p)2, and were fairly good for n ≥ 1.5(m+p)2.
The exception was Roy’s test which rejects H0 far too often if r > 1. See
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Table 10.1 where we want values for the F1 test to be close to 1 since H0

is false for the F1 test, and we want values close to 0.05, otherwise. Roy’s
test was very good for the Fj tests but very poor for the MANOVA F test.
Results are shown for m = p = 10. As expected from Berndt and Savin
(1977), Pillai’s test rejected H0 less often than Wilks’ test which rejected H0

less often than the Hotelling Lawley test. Based on a much larger simulation
study, using the four types of error vector distributions and m = p, the tests
had approximately correct level if n ≥ 0.83(m+ p)2 for the Hotelling Lawley
test, if n ≥ 2.80(m+ p)2 for the Wilks’ test (agreeing with Kshirsagar (1972)
n ≥ 3(m + p)2 for multivariate normal data), and if n ≥ 4.2(m + p)2 for
Pillai’s test.

In Table 10.2, H0 is only true for the Fp test where p = m, and we want
values in the Fp column near 0.05. We want values near 1 for high power
otherwise. If H0 is false, often H0 will be rejected for small n. For example,
if n ≥ 10p, then the m residual plots should start to look good, and the
MANOVA F test should be rejected. For the simulated data, the test had
fair power for n not much larger thanmp. Results are shown for the lognormal
distribution.

Some R output for reproducing the simulation is shown below. The linmod-
pack function is mregsim and etype = 1 uses data from a MVN distribution.
The fcov line computed the Hotelling Lawley statistic using Equation (10.3)
while the hotlawcov line used Definition 10.9. The mnull=T part of the com-
mand means we want the first value near 1 for high power and the next three
numbers near the nominal level 0.05 except for mancv where we want all
of the MANOVA F test statistics to be near the nominal level of 0.05. The
mnull=F part of the command means want all values near 1 for high power
except for the last column (for the terms other than mancv) corresponding to
the Fp test where H0 is true so we want values near the nominal level of 0.05.
The “coverage” is the proportion of times that H0 is rejected, so “coverage”
is short for “power” and “level”: we want the coverage near 1 for high power
when H0 is false and we want the coverage near the nominal level 0.05 when
H0 is true. Also see Problem 10.10.

mregsim(nruns=5000,etype=1,mnull=T)

$wilkcov

[1] 1.0000 0.0450 0.0462 0.0430

$pilcov

[1] 1.0000 0.0414 0.0432 0.0400

$hotlawcov

[1] 1.0000 0.0522 0.0516 0.0490

$roycov

[1] 1.0000 0.0512 0.0500 0.0480

$fcov

[1] 1.0000 0.0522 0.0516 0.0490

$mancv

wcv pcv hlcv rcv fcv
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[1,] 0.0406 0.0332 0.049 0.1526 0.049

mregsim(nruns=5000,etype=2,mnull=F)

$wilkcov

[1] 0.9834 0.9814 0.9104 0.0408

$pilcov

[1] 0.9824 0.9804 0.9064 0.0372

$hotlawcov

[1] 0.9856 0.9838 0.9162 0.0480

$roycov

[1] 0.9848 0.9834 0.9156 0.0462

$fcov

[1] 0.9856 0.9838 0.9162 0.0480

$mancv

wcv pcv hlcv rcv fcv

[1,] 0.993 0.9918 0.9942 0.9978 0.9942

See Olive (2017b,
∮

12.5.2) for simulations for the prediction region. Also
see Problem 10.11.

10.6 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. See Chapter 7. The rmreg2 estimator has been shown to be
consistent if the ui are iid from a large class of elliptically contoured distri-
butions, which is a much stronger assumption than having iid error vectors
εi.

Theorem 2.20 gave a second way to compute β̂, and there is a similar result
for multivariate linear regression. Let x = (1,uT )T and let β = (β1,β

T
2 )T =

(α,ηT )T . Now for multivariate linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j =

Y j−η̂T
j u and η̂j = Σ̂

−1

u Σ̂uYj by Theorem 2.20. Let Σ̂uy = 1
n−1

∑n
i=1(wi−

w)(yi − y)T which has jth column Σ̂wYj for j = 1, ..., m. Let

v =

(
u
y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =
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(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy −BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v,Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T,C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µv , cΣv) if the vi

are iid from a large class of ECd(µv ,Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression are
both

√
n consistent estimators of B if the vi are iid from a large class of

elliptically contoured distributions. This assumption is quite strong, but the
robust estimator is useful for detecting outliers. When there are categorical
predictors or the joint distribution of v is not elliptically contoured, it is
possible that the robust estimator is bad and very different from the good
classical least squares estimator. The linmodpack function rmreg2 computes
the rmreg2 estimator and produces the response and residual plots.

Example 10.4. Buxton (1920) gave various measurements of 88 men. Let
Y1 = nasal height and Y2 = height with x2 = head length, x3 = bigonal breadth,
and x4 = cephalic index. Five individuals, numbers 62–66, were reported to
be about 0.75 inches tall with head lengths well over five feet! Thus Y2 and
x2 have massive outliers. Figures 10.6 and 10.7 show that the response and
residual plots corresponding to rmreg2 do not have fits that pass through
the outliers.

These figures can be made with the following R commands.
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Fig. 10.6 Plots for Y1 = nasal height using rmreg2.
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Fig. 10.7 Plots for Y2 = height using rmreg2.
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ht <- buxy; z <- cbind(buxx,ht);

y <- z[,c(2,5)]; x <- z[,c(1,3,4)]

# compare mltreg(x,y) #right click Stop 4 times

out <- rmreg2(x,y) #right click Stop 4 times

# try ddplot4(out$res) #right click Stop

The residual bootstrap for the test H0 : LB = 0 may be useful. Take a
sample of size n with replacement from the residual vectors to form Z∗

1 with
ith row y∗T

i where y∗
i = ŷi + ε∗i . The function rmreg3 gets the rmreg2

estimator without the plots. Using rmreg3, regress Z on X to get vec(LB̂
∗
1).

Repeat B times to get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗
i ).

The nonparametric bootstrap uses n cases drawn with replacement, and may
also be useful. Apply the nonparametric prediction region to the wi and see
if 0 is in the region. If L is r × p, then w is rp × 1, and we likely need
n ≥ max[50rp, 3(m+ p)2].

10.7 Bootstrap

10.7.1 Parametric Bootstrap

The parametric bootstrap for the multivariate linear regression model uses

y∗
i ∼ Nm(B̂

T
xi, Σ̂ε) for i = 1, ..., n where we are not assuming that the

εi ∼ Nm(0,Σε). Let Z∗
j have ith row y∗T

i and regress Z∗
j on X to obtain

B̂
∗
j for j = 1, ..., B. Let S ⊆ I, let B̂I = (XT

I XI)
−1XT

I Z∗, and assume

n(XT
I XI)

−1 P→ W I for any I such that S ⊆ I. Then with calculations
similar to those for the multiple linear regression model parametric bootstrap

of Section 4.6.1, E(B̂
∗
I) = B̂I ,

√
n vec(B̂I −BI)

D→ NaIm(0,Σε ⊗W I),

and
√

n vec(B̂
∗
I − B̂I) ∼ NaIm(0, Σ̂ε ⊗ n(XT

I X I)
−1)

D→ NaIm(0,Σε ⊗W I)

as n, B →∞ if S ⊆ I. Let B̂
∗
I,0 be formed from B̂

∗
I by adding rows of zeros

corresponding to omitted variables.

10.7.2 Residual Bootstrap

The residual bootstrap uses the multivariate linear regression model

Z∗ = XB̂ + Ê
W
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where the rows of Ê
W

are sampled with replacement from the rows of Ê
W

.

Regress Z∗ of X and repeat to get the bootstrap sample B̂
∗
1, ..., B̂

∗
B .

10.7.3 Nonparametric Bootstrap

The nonparametric bootstrap samples cases (yT
i ,x

T
i )T with replacement to

form (Z∗
j ,X

∗
j ), and regresses Z∗

j on X∗
j to get B̂

∗
j for j = 1, ..., B. The

nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a
very strong assumption. See Eck (2018) for using the residual bootstrap and
nonparametric bootstrap to bootstrap multivariate linear regression.

10.8 Data Splitting

The theory for multivariate linear regression assumes that the model is known
before gathering data. If variable selection and response transformations are
performed to build a model, then the estimators are biased and results for
inference fail to hold in that pvalues and coverage of confidence and prediction
regions will be wrong.

Data splitting can be used in a manner similar to how data splitting is
used for MLR and other regression models. A pilot study is an alternative to
data splitting.

10.9 Ridge Regression, PCR, and Other High

Dimensional Methods

Consider models Z = XB + E and Z = α + XB + E where the second
model separates out the constants.

There are many things that can be done for multivariate linear regression.
a) Fit a global estimator such as forward selection, lasso, lasso variable selec-

tion, etc. For example, a ridge estimator is B̂R = (XT X + λ1,nI)−1XT Z,

which uses one value of λ̂.
b) Fit a Chapter 3 method for each Yi, i = 1, ..., m to find β̂i and B̂ =

(β̂1, ..., β̂m). Hence the corresponding ridge estimator would use λ̂i for
i = 1, ..., m. Note that

B̂MMLE = [diag(Σ̂x)]−1Σ̂x,y .
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c) Find k linear combinations ŵi = η̂T
i x, i = 1, ..., k and fit a model using

the ŵi instead of the xj. For example, use ŵi = η̂T
i x with η̂i = Σ̂x,Yi

for i = 1, ..., k = m. If k and m are small enough, an option is to fit the
multivariate linear regression of y on the ŵi with OLS. Taking η̂i = β̂i

where β̂i is from b) is an option.

10.10 Summary

1) The multivariate linear regression model is a special case of the multi-
variate linear model where at least one predictor variable xj is continuous.
The MANOVA model in Chapter 9 is a multivariate linear model where all
of the predictors are categorical variables so the xj are coded and are often
indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and
the data matrix. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
3) Each response variable in a multivariate linear regression model follows

a multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a residual
plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression model
is appropriate, then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is an r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n−p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there

are four commonly used test statistics.
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The Wilks’ Λ statistic is Λ(L) = |(H + W e)
−1W e| = |W−1

e H + I|−1 =
m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.
7) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n− p [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8) Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max(h1, ..., hn)
P→ 0 as n→∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→W−1.

9) Multivariate Least Squares Central Limit Theorem (MLS

CLT): For the least squares estimator, if assumption D1 holds, then Σ̂ε is

a
√
n consistent estimator of Σε, and

√
n vec(B̂ −B)

D→ Npm(0,Σε⊗W ).
10) Theorem: If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

11) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm, (n − p)V (L)

D→ χ2
rm, and (n − p)U(L)

D→ χ2
rm.

These statistics are robust against nonnormality.
12) For the Wilks’ Lambda test,

pval = P

(−[n− p+ 1− 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n − p
rm

V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n− p
rm

U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → δ
as n→∞, under regularity conditions.

13) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude that
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there is a not a mreg relationship between Y1, ..., Ym and the predictors x2,
..., xp. (Get the variable names from the story problem.)

14) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where

the 1 is in the jth position. Let BT
j be the jth row of B. The hypotheses are

equivalent to H0 : BT
j = 0 H1 : BT

j 6= 0. i) State the hypotheses
H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym. If
you fail to reject H0, then conclude that xj is not needed in the mreg model
for Y1, ..., Ym given that the other predictors are in the model.

15) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good
H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

16) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough, and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj will
look like a residual plot if the identity line appears almost horizontal, hence
the range of Ŷj is small.

17) The linmodpack function mltreg produces the m response and resid-

ual plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval cor-
responding to the reduced model that leaves out the variables given by in-
dices (so x2 and x4 in the output below with F = 0.77 and pval = 0.614),
Fj and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in
the output below so F2 = 1.51 with pval = 0.284), and F0 and pval for
the MANOVA F test (in the output below F0 = 3.15 and pval= 0.06).
The command out <- mltreg(x,y,indices=c(2)) would produce a
MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat [,1] [,2] [,3]
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[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

18) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .

19) Σ̂ε =
Ê

T
Ê

n− p =
1

n− p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p
n − 1

Σ̂ε =
Ê

T
Ê

n− 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of distributions for the error vectors εi.
20) The 100(1− δ)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

2.2 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf)T S−1

r (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1− δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1− δ)% nonparametric
prediction region for yf is
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{y : (y − ŷf)T S−1
r (y − ŷf ) ≤ D2

(Un)} = {y : Dy(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1− δ as n→∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε) then the nonpara-
metric prediction region is a large sample 100(1− δ)% prediction region for
yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {y : Dy(0,Σε) ≤ D1−δ}, then the nonparametric prediction
region is asymptotically optimal.

21) On the DD plot for the residual vectors, the cases to the left of the
vertical line correspond to cases that would have yf = yi in the nonpara-
metric prediction region if xf = xi, while the cases to the right of the line
would not have yf = yi in the nonparametric prediction region.

22) The DD plot for the residual vectors is interpreted almost exactly as
a DD plot for iid multivariate data is interpreted. Plotted points clustering
about the identity line suggests that the εi may be iid from a multivariate
normal distribution, while plotted points that cluster about a line through
the origin with slope greater than 1 suggests that the εi may be iid from an
elliptically contoured distribution that is not MVN. Points to the left of the
vertical line corresponds to the cases that are in their nonparamtric prediction
region. Robust distances have not been shown to be consistent estimators of
the population distances, but are useful for a graphical diagnostic.
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23) Multiple Linear Regression Multivariate Linear Regression
Y = Xβ + e Z = XB + E

1) E(Y ) = Xβ E[Z] = XB

2) Yi = xT
i β + ei yi = BT xi + εi

3) E(e) = 0 E[E] = 0

4) H = P = X(XT X)−1XT H = P = X(XT X)−1XT

5) β̂ = (XT X)−1XT Y B̂ = (XT X)−1XT Z

6) Ŷ = P Y Ẑ = P Z

7) r = ê = (I − P )Y Ê = (I −P )Z

8) E[β̂] = β E[B̂] = B

9) E(Ŷ ) = E(Y ) = Xβ E[Ẑ] = XB

10) σ̂2 = rT r
n−p Σ̂ε =

Ê
T
Ê

n− p

11) V (ei) = σ2 Cov(εi) = Σε

12) E(Yi) = βT xi E[yi] = BT xi

H0 : Lβ = 0 H0 : LB = 0

13) rFR
D→ χ2

r (n− p)U(L)
D→ χ2

rm

14) LS CLT MLS CLT
√
n(β̂ − β)

D→ Np(0, σ2W )
√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ).
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23) The table on the previous page compares MLR and MREG.
24) The robust multivariate linear regression method rmreg2 computes

the classical estimator on the RMVN set where RMVN is computed from
the n cases vi = (xi2, ..., xpi, Yi1, ..., Yim)T . This estimator has considerable
outlier resistance but theory currently needs very strong assumptions. The
response and residual plots and DD plot of the residuals from this estimator
are useful for outlier detection. The rmreg2 estimator is superior to the
rmreg estimator for outlier detection.

10.11 Complements

This chapter followed Olive (2017b, ch. 12) closely. Multivariate linear re-
gression is a semiparametric method that is nearly as easy to use as multiple
linear regression if m is small. Section 10.3 followed Olive (2018) closely. The
material on plots and testing followed Olive et al. (2015) closely. The m re-
sponse and residual plots should be made as well as the DD plot, and the
response and residual plots are very useful for the m = 1 case of multiple
linear regression and experimental design. These plots speed up the model
building process for multivariate linear models since the success of power
transformations achieving linearity can be quickly assessed, and influential
cases can be quickly detected. See Cook and Olive (2001).

Work is needed on variable selection and on determining the sample sizes
for when the tests and prediction regions start to work well. Response and
residual plots can look good for n ≥ 10p, but for testing and prediction
regions, we may need n ≥ a(m+p)2 where 0.8 ≤ a ≤ 5 even for well behaved
elliptically contoured error distributions. Variable selection for multivariate
linear regression is discussed in Fujikoshi et al. (2014). R programs are needed
to make variable selection easy. Forward selection would be especially useful.

Often observations (Y1, ..., Ym, x2, ..., xp) are collected on the same person
or thing and hence are correlated. If transformations can be found such that
the DD plot and the m response plots and residual plots look good, and
n is large (n ≥ max[(m + p)2, mp + 30)] starts to give good results), then
multivariate linear regression can be used to efficiently analyze the data.
Examiningm multiple linear regressions is an incorrect method for analyzing
the data.

In addition to robust estimators and seemingly unrelated regressions, en-
velope estimators and partial least squares (PLS) are competing methods for
multivariate linear regression. See recent work by Cook such as Cook (2018),
Cook and Su (2013), Cook et al. (2013), and Su and Cook (2012). Methods
like ridge regression and lasso can also be extended to multivariate linear re-
gression. See, for example, Obozinski et al. (2011). Relaxed lasso extensions
are likely useful. Prediction regions for alternative methods with n >> p
could be made following Section 10.3.
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Plugging in robust dispersion estimators in place of the covariance matri-
ces, as done in Section 10.6, is not a new idea. Maronna and Morgenthaler
(1986) used M–estimators when m = 1. Problems can occur if the error
distribution is not elliptically contoured. See Nordhausen and Tyler (2015).

Khattree and Naik (1999, pp. 91-98) discussed testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.
Johnstone and Nadler (2017) gave useful approximations for Roy’s largest
root test when the error vector distribution is multivariate normal.

10.12 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

10.1∗. Consider the Hotelling Lawley test statistic. Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

10.2. Consider the Hotelling Lawley test statistic. Let T =

[vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

Let L = Lj = [0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be

the jth row of B̂. Let dj = Lj(X
T X)−1LT

j = (XT X)−1
jj , the jth diagonal

entry of (XT X)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic

U = tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]).

Hence if L = Lj , then Uj = 1
dj(n−p) tr(Σ̂

−1

ε b̂j b̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show that
(n− p)Uj = Tj.

10.3. Consider the Hotelling Lawley test statistic. Using the Searle (1982,
p. 333) identity

tr(AGT DGC) = [vec(G)]T [CA ⊗DT ][vec(G)],
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show (n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT[L(XTX)−1LT]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable Fj pvals #Output for problem 10.4.

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

10.4. The output above is for the R Seatbelts data set where Y1 =
drivers = number of drivers killed or seriously injured, Y2 = front = number
of front seat passengers killed or seriously injured, and Y3 = back = num-
ber of back seat passengers killed or seriously injured. The predictors were
x2 = kms = distance driven, x3 = price = petrol price, x4 = van = number
of van drivers killed, and x5 = law = 0 if the law was in effect that month
and 1 otherwise. The data consists of 192 monthly totals in Great Britain
from January 1969 to December 1984, and the compulsory wearing of seat
belts law was introduced in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

10.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

10.6. The output below is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7, and x8.

y<-USJudgeRatings[,c(9,10,12)] #See problem 8.6.
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x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

10.7. Let βi be p× 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
T X)−1

σ21(X
T X)−1 σ22(X

T X)−1

])
.

Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.

10.8. Let y = BT x + ε. Suppose x = (1, x2, ..., xp)
T = (1 wT )T where

w = (x2, ..., xp)
T . Let

B =

(
αT

BS

)
.

Suppose (
y
w

)
∼ Nm+p−1

[(
µy
µw

)
,

(
Σyy Σyw
Σwy Σww

)]
.

Then y|w ∼ Nm(µy + ΣywΣ−1
ww(w−µw),Σyy −ΣywΣ−1

wwΣww),

and ε ∼ Nm(0,Σyy −ΣywΣ−1
wwΣww) = Nm(0,Σε).

Now

y|x = y|
(

1
w

)
= BT x + ε,

and

y|w = BT x+ε =

(
αT

BS

)T (
1
w

)
+ε = (α BT

S )

(
1
w

)
+ε = α+BT

Sw +ε.

Hence E(y|w) = µy + ΣywΣ−1
ww(w − µw) = α + BT

Sw.

a) Show α = µy −BT
Sµw .

b) Show BS = Σ−1
w Σwy where Σw = Σww .

(Hence BT
S = ΣywΣ−1

w .)

R Problems
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Warning: Use the command source(“G:/linmodpack.txt”) to down-
load the programs. See Preface or Section 11.1. Typing the name of
the mpack function, e.g. ddplot, will display the code for the function. Use
the args command, e.g. args(ddplot), to display the needed arguments for
the function. For some of the following problems, the R commands can be
copied and pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into
R.

10.9. This problem examines multivariate linear regression on the Cook
and Weisberg (1999) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ), and X4 = H : the shell length, log(width), and height.

a) The R command for this part makes the response and residual plots
for each of the two response variables. Click the rightmost mouse button and
highlight Stop to advance the plot. When you have the response and residual
plots for one variable on the screen, copy and paste the two plots into Word.
Do this two times, once for each response variable. The plotted points fall in
roughly evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this part
from $partial on. This gives the output needed to do the MANOVA F test,
MANOVA partial F test, and the Fj tests.

c) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 10.3. Place the plot
in Word. Do the residual vectors appear to follow a multivariate normal
distribution? (Right click Stop once.)

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

10.10. This problem examines multivariate linear regression on the SAS
Institute (1985, p. 146) Fitness Club Data with Y1 = chinups, Y2 = situps,
and Y3 = jumps. The predictors are X2 = weight, X3 = waist, and X4 =
pulse.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the three plots into Word. Do this
three times, once for each response variable. Are there any outliers?

b) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 10.3. Place the plot in
Word. Are there any outliers? (Right click Stop once.)

10.11. This problem uses the linmodpack function mregsim to simulate
the Wilks’ Λ test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s
largest root test for the Fj tests and the MANOVA F test for multivariate
linear regression. When mnull = T the first row of B is 1T while the re-
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maining rows are equal to 0T . Hence the null hypothesis for the MANOVA
F test is true. When mnull = F the null hypothesis is true for p = 2, but
false for p > 2. Now the first row of B is 1T and the last row of B is 0T . If
p > 2, then the second to last row of B is (1, 0, ..., 0), the third to last row is
(1, 1, 0, ..., 0) et cetera as long as the first row is not changed from 1T . First
m iid errors zi are generated such that the m errors are iid with variance
σ2. Then εi = Azi so that Σ̂ε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Terms like Wilkcov give the percentage of times the Wilks’
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in Problem 10.3.

5000 runs will be used so the simulation may take several minutes. Sample
sizes n = (m + p)2, n = 3(m + p)2, and n = 4(m+ p)2 were interesting. We
want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m = 2, and p = 4. Here H0 is true except for
the F1 test. Wilks’ and Pillai’s tests had low coverage < 0.05 when H0 was
false. Roy’s test was good for the Fj tests, but why was Roy’s test bad for
the MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m= 2, and p = 4. Here H0 is false except for the
F4 test. Which two tests seem to be the best for this part?

10.12. This problem uses the linmodpack function mpredsim to simulate
the prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation may take several minutes. The R command for this
problem generates iid lognormal errors then subtracts the mean, producing
zi. Then the εi = Azi are generated as in Problem 10.11 with n=100, m=2,
and p=4. The nominal coverage of the prediction region is 90%, and 92%
of the training data is covered. The ncvr output gives the coverage of the
nonparametric region. What was ncvr?





Chapter 11

Stuff for Students

11.1 R

R is available from the CRAN website (https://cran.r-project.org/). As of
January 2020, the author’s personal computer has Version 3.3.1 (June 21,
2016) of R. R is similar to Splus, but is free. R is very versatile since many
people have contributed useful code, often as packages.

Downloading the book’s files into R
Many of the homework problems use R functions contained in the book’s

website (http://parker.ad.siu.edu/Olive/slearnbk.htm) under the file name
slpack.txt. The following two R commands can be copied and pasted into R
from near the top of the file (http://parker.ad.siu.edu/Olive/slrhw.txt).

Downloading the book’s R functions slpack.txt and data files sl-
data.txt into R: the commands

source("http://parker.ad.siu.edu/Olive/slpack.txt")

source("http://parker.ad.siu.edu/Olive/sldata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 70 R functions from slpack.txt should appear. In R, enter the com-
mand q(). A window asking “Save workspace image?” will appear. Click on
No to remove the functions from the computer (clicking on Yes saves the func-
tions in R, but the functions and data are easily obtained with the source
commands).

Citing packages
We will use R packages often in this book. The following R command is

useful for citing the Mevik et al. (2015) pls package.

citation("pls")

Other packages cited in this book include MASS and class: both from Ven-
ables and Ripley (2010), glmnet: Friedman et al. (2015), and leaps: Lumley
(2009).

447
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This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression can be done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simulta-
neously. Then select “Paste” from the Word menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

A data frame is a two-dimensional array in which the values of different
variables are stored in different named columns.
Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.
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Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Store a function as text file, modify the function in Notepad, and copy and
paste the function into R.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() can be are useful.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3− 7, 8 ∗ 4, 8/4, and
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2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
leaps for variable selection, can be found, e.g., with the command
library(help=leaps).

Downloading a library into R
Many researchers have contributed a library or package of R code that can

be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in lregpack may no longer
work in new versions of R.

11.2 Hints for Selected Problems

1.9. See Example 1.7.
3.7 Note that ZT

AZA = ZT Z,
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GA ηA =

(
Gη√
λ∗2 η

)
,

and ZT
AGAηA = ZT Gη. Then

RSS(ηA) = ‖ZA −GAηA‖22 = (ZA −GAηA)T (ZA −GAηA) =

ZT
AZA − ZT

AGAηA − ηT
AGT

AZA + ηT
AGT

AGAηA =

ZT Z −ZT Gη − ηT GT Z +
(
ηT GT

√
λ2 ηT

)( Gη√
λ∗2 η

)
.

Thus

QN (ηA) = ZT Z −ZT Gη − ηT GT Z + ηT GT Gη + λ∗2η
T η + γ‖ηA‖1 =

‖Z −Gη‖22 + λ∗2‖η‖22 +
λ∗1√

1 + λ∗2
‖ηA‖1 =

RSS(η) + λ∗2‖η‖22 + λ∗1‖η‖1 = Q(η). �

11.3 Projects

Straightforward Projects
1) Bootstrap OLS and forward selection with Cp as in Table 2.2, but use

more values of n, p, k, ψ, and error distributions. See some R code for Problem
3.12.

2) Bootstrap OLS and forward selection with BIC in a maaner similar
to bootstrapping OLS and forward selection with Cp as in Table 2.2, but
use more values of n, p, k, ψ, and error distributions. The slpack functions
bicboot and bicbootsim are useful.

3) For a support vector machine (SVM), Y = 1 or Y = −1. Let Z = 1 if

Y = 1 and Z = 0 if Y = −1. Let f(x) = β̂0 +
∑n

i=1 α̂iK(x,xi) = ESP . Plot
ESP versus Z and add lowess as a visual aid. This treats Z‖x as a binary
regression where ρ(ESP ) is not specified. Use the prediction region method
to bootstrap β.

4) Analyze a data set with one or more statistical learning methods. The
UC Irvine Machine Learning Repository website has interesting data sets. See
(http://archive.ics.uci.edu/ml/index.php) and (http://mlearn.ics.uci.edu/
MLRepository.html).

Harder Projects
1) Compare the Bickel and Ren (2001) bootstrap confidence region (2.21)

with the prediction region method bootstrap confidence region (2.22) on a
problem. For example for OLS or forward selection testing H0 : β0 = 0.
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2) A regression tree can be made for the model Y = m(x) + e. Develop a
prediction interval for Yf using (2.7) with d = number of terminal nodes.

3) For multiple linear regression, shrinkage estimators often shrink β̂ and
the ESP too much. See Figure 1.9b for ridge regression. Suppose Y = β1 +
β2x2 + · · ·+ β101x101 + e = x2 + e with n = 100 and p = 101. This model is
sparse and lasso performs well, similar to Figure 1.9a. Ridge regression shrinks
too much, but Ŷ is highly correlated with Y . This suggests regressing Y on
Ŷ to get Y = a + bŶ + ε. Then Ŷ = Xβ̂2 where β̂i2 = b̂β̂iM for i = 2, ..., p

and β̂i1 = â+ b̂β̂iM and M is the shrinkage method such as ridge regression.
If b̂ ≈ 1 or if the response plot using shrinkage method M looks good (the
plotted points are linear and cover the identity line), then the improvement
is not needed.

This technique greatly improves the appearance of the response plot and
the prediction intervals on the training data. Investigate whether the tech-
nique improves the prediction intervals on test data. Consider automating
the procedure by using the improvement if H0 : b = 1 versus H1 : b 6= 1 is
rejected, e.g. if 1 is not in the CI b̂± 2SE(b̂). Some R code is shown below.

(It may be possible to improve shrinkage estimators for regression models
such as Poisson regression. For Poisson regression, we would want

exp(â+ b̂β̂
T

Mx) to track Y well.)

#Possible way to correct shrinkage estimator

#underfitting.

#The response plot looks much better, but is the idea

#useful for prediction? Usually x1 was x2 in

#the formula Y = 0 + x1 + e.

#The corrected version has ‘‘x1" coef approx 0.48.

library(glmnet)

set.seed(13)

par(mfrow=c(2,1))

x <- matrix(rnorm(10000),nrow=100,ncol=100)

Y <- x[,1] + rnorm(100,sd=0.1)

#sparse model, iid predictors

out <- cv.glmnet(x,Y,alpha=1) #lasso

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

title("lasso")

cor(fit,Y) #about 0.997

tem <- lsfit(fit,Y)

tem$coef #changes even if set.seed is used

# Intercept 1
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#0.0009741988 1.0132965955

out <- cv.glmnet(x,Y,alpha=0) #ridge regression

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

#$respi

#[1] -1.276461 1.693856 #PI length about 2.97

title("ridge regression")

par(mfrow=c(1,1))

#ridge regression shrank betahat and ESP too much

cor(fit,Y) #about 0.91

tem <- lsfit(fit,Y)

tem$coef

# Intercept 1

#0.3523725 5.8094443 #Fig. 1.9 has -0.7008187 5.7954084

fit2 <- Y-tem$resid

#Y = yhat + r, fit2 = yhat for scaled RR estimator

plot(fit2,Y) #response plot is much better

abline(0,1)

rrcoef <- predict(out,type="coefficients",s=lam)

plot(rrcoef)

bhat <- tem$coef[2]*rrcoef

bhat[1] <- bhat[1] + tem$coef[1]

#bhat is the betahat for the new ESP fit2

fit3 <- x%*%bhat[-1] + bhat[1]

plot(fit2,fit3)

max(abs(fit2-fit3))

#[1] 1.110223e-15

plot(rrcoef)

plot(bhat)

res2 <- Y - fit2

AERplot2(yhat=fit2,y=Y,res=res2)

$respi

[1] -0.7857706 0.6794579 #PI length about 1.47

title("Response Plot for Scaled Ridge Regression Estimator")

Research Ideas That Have Confounded the Author
1) We want clearer and weaker sufficient conditions for when the bootstrap

methods work. In particular, we want to weaken sufficient conditions for
when the shorth CI and prediction region method confidence region work. See
Remark 2.9, Section 2.3.4, Equation (2.2), and the Warning before Example
2.8. Some heuristics for why these bootstrap methods may work for MLR
forward selection are given in Sections 2.3.5 and 3.11.
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11.4 Tables

Tabled values are F(k,d, 0.95) where P (F < F (k, d, 0.95)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z =∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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