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Preface

Many statistics departments offer a one semester undergraduate–graduate
course in Reliability and Survival Analysis using texts such as Allison (2010),
Collett (2014), and Hosmer et al. (2008). More advanced texts include Harrell
(2015), Kalbfleisch and Prentice (2002), Klein and Moeschberger (2003), Law-
less (2002), Miller (1981), and Smith (2002). Also see Kleinbaum and Klein
(2012), Lee and Wang (2003), Leemis (1995), Meeker and Escobar (1998),
and Tableman and Kim (2003).

The prerequisite for this text is a calculus based course in statistics at
the level of Chihara and Hesterberg (2011), Hogg et al. (2015), Larsen and
Marx (2017), Wackerly, Mendenhall and Scheaffer (2008) or Walpole et al.
(2016). Linear algebra and knowledge of regression would be useful. See Olive
(2017a) and Cook and Weisberg (1999).

Some highlights of this text follow.

• The response plot is useful for checking the model.

Downloading the book’s R functions survpack.txt and data files surv-
data.txt into R: The commands

source("http://parker.ad.siu.edu/Olive/survpack.txt")

source("http://parker.ad.siu.edu/Olive/survdata.txt")

The R software is used in this text. See R Core Team (2023). Some packages
used in the text include
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Chapter 1

Univariate Survival Analysis

This chapter considers univariate survival analysis: there is a response vari-
able but no predictors. In the analysis of “time to event” data, there are n
individuals and the time until an event is recorded for each individual. Typ-
ical events are failure of a product or death of a person or reoccurrence of
cancer after surgery, but other events such as first use of cigarettes or the
time that baboons come down from trees (early in the morning) can also
be modeled. The data is typically right skewed and censored data is often
present.

Censoring occurs because of time and cost constraints. A product such as
light bulbs may be tested for 1000 hours. Perhaps 30% fail in that time but
the remaining 70% are still working. These are censored: they give partial
information on the lifetime of the bulbs because it is known that about 70%
last longer than 1000 hours. Handling censoring and time dependent covari-
ates is what makes the analysis of time to event data different from other
fields of statistics.

Reliability analysis is used in engineering to study the lifetime (time until
failure) of manufactured products, while survival analysis is used in actuarial
sciences, statistics, and biostatistics to study the lifetime (time until death)
of humans, often after contracting a deadly disease. In the social sciences,
the study of the time until the occurrence of an event is called the analysis
of event time data or event history analysis. In economics, the study is called
duration analysis or transition analysis. Hence reliability data = failure time
data = lifetime data = survival data = event time data.

1.1 Functions Related to the Survival Function

In this text log(t) = ln(t) = loge(t) while exp(t) = et. One of the difficulties
with survival analysis is that the response Y = survival time is usually not
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2 1 Univariate Survival Analysis

observed, instead the censored response is observed. In this chapter the data
will be right censored, and “right” will often be omitted. In the following
definition, note that both T ≥ 0 and Y ≥ 0 are nonnegative.

Definition 1.1. Let Y ≥ 0 be the time until an event occurs. Then Y is
called the survival time or time until event. The survival time is censored
if the event of interest has not been observed. Let Yi be the ith survival time.
Let Zi be the time the ith observation (possibly an individual or machine)
leaves the study for any reason other than the event of interest. Then Zi is the
time until the ith observation is censored. Then the right censored survival
time Ti of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti is (right)
censored (Ti = Zi) and let δi = 1 if Ti is not censored (Ti = Yi). Then the
univariate survival analysis data is (T1, δ1), (T2, δ2), ..., (Tn, δn). Alternatively,
the data is T1, T

∗
2 , T3, ..., T

∗
n−1, Tn where the * means that the case was (right)

censored. Sometimes the asterisk * is replaced by a plus +, and Yi, yi or ti
can replace Ti.

In this chapter we will assume that the censoring mechanism is indepen-
dent of the time to event: Yi and Zi are independent. Often censoring occurs
because of cost and time constraints.

For example, in a study breast cancer patients who receive a lumpectomy,
suppose the researchers want to keep track of 100 patients for five years after
receiving a lumpectomy (tumor removal). The response is time until death
after a lumpectomy. Patients who are lost to the study (move or eventually
refuse to cooperate), and patients who are still alive after the study are
censored. Perhaps 15% die, 5% move away and so leave the study, and 80%
are still alive after 5 years. Then 85% of the cases are (right) censored. The
actual study may take two years to recruit patients, follow each patient for
5 years, but end 5 years after the end of the two year recruitment period. So
patients enter the study at different times, but the censored response is the
time until death or censoring from the time the patient entered the study.

Definition 1.2. i) The cumulative distribution function (cdf) of Y
is F (t) = P (Y ≤ t). Since Y ≥ 0, F (0) = 0, F (∞) = 1, and F (t) is nonde-
creasing.

ii) The probability density function (pdf) of Y is f(t) = F ′(t).
iii) The survival function of Y is S(t) = P (Y > t). S(0) = 1, S(∞) = 0

and S(t) is nonincreasing.

iv) The hazard function of Y is h(t) =
f(t)

1 − F (t)
for t > 0 and F (t) < 1.

Note that h(t) ≥ 0 if F (t) < 1.

v) The cumulative hazard function of Y is H(t) =
∫ t

0 h(u)du for t > 0.
It is true that H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.
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Assume Y ≥ 0. Then F (0) = 0, S(0) = 1, and H(0) = 1. Note that
S(∞) = 0 implies that H(∞) = ∞ where limt→∞H(t) = H(∞). Memorize
that 0 ≤ F (t) ≤ 1, 0 ≤ S(t) ≤ 1, f(t) ≥ 0, h(t) ≥ 0, and H(t) ≥ 0.

Given one of F (t), f(t), S(t), h(t) or H(t), the following theorem shows
how to find the other 4 quantities for t > 0. Each of these five quanities
completely determines the distribution of the random variable. In reliability
analysis, the reliability function R(t) = S(t), and in economics, Mill’s ratio
= 1/h(t). In actuarial sciences, h(t) is the force of mortality.

Theorem 1.1.
A) F (t) =

∫ t

0
f(u)du = 1− S(t) = 1− exp[−H(t)] = 1− exp[−

∫ t

0
h(u)du].

B) f(t) = F ′(t) = −S′(t) = h(t)[1−F (t)] = h(t)S(t) = h(t) exp[−H(t)] =
H ′(t) exp[−H(t)].

C) S(t) = 1 − F (t) = 1 −
∫ t

0
f(u)du =

∫∞
t
f(u)du = exp[−H(t)] =

exp[−
∫ t

0
h(u)du].

D)

h(t) =
f(t)

1 − F (t)
=
f(t)

S(t)
=

F ′(t)

1 − F (t)
=

−S′(t)

S(t)
= − d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S(t)] = − log[1 − F (t)].

Tips: i) If F (t) = 1 − exp[G(t)] for t > 0, then H(t) = −G(t) and S(t) =
exp[G(t)].

ii) For S(t) > 0, note that S(t) = exp[log(S(t))] = exp[−H(t)]. Finding
exp[log(S(t))] and setting H(t) = − log[S(t)] is easier than integrating h(t).

Next an interpretation for the hazard function is given. If P (B) > 0, then

P (A|B) =
P (A

⋂
B)

P (B)
and P (A|B) =

P (A)

P (B)

if A ⊆ B. Suppose the time until event is the time until death. Note that

P [t < Y < t+∆t|Y > t] =
P [t < Y ≤ t+∆t]

P (Y > t)
=
F (t+∆t) − F (t)

1 − F (t)
.

So

lim
∆t→0

1

∆t
P [t < Y ≤ t+∆t|Y > t] = lim

∆t→0

F (t+∆t)−F (t)
∆t

1 − F (t)

=
f(t)

1 − F (t)
= h(t).

So for small ∆t, it follows that h(t)∆t ≈ P [t < Y < t+∆t|Y > t] ≈ P(person
dies in interval (t, t + ∆t] given that the person has survived up to time t).
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Larger h(t) implies that the hazard of death is higher. The hazard function
takes into account the aging of the observation (person or product).

For example, an 80 year old white male has about a 50% chance of living
to 85 while a 100 year old white male has about a 50% chance of living to
101, although the percentage of white males living to 101 is tiny.

Example 1.1. Suppose Y ∼ EXP (λ) where λ > 0, then h(t) = λ for
t > 0, f(t) = λe−λt for t > 0, F (t) = 1 − e−λt for t > 0, S(t) = e−λt for
t > 0, H(t) = λt for t > 0 and E(Y ) = 1/λ. The exponential distribu-
tion can be a good model if failures are due to random shocks that follow
a Poisson process (light bulbs, electrical components), but constant hazard
means that a used product is as good as a new product: aging has no ef-
fect on the probability of failure of the product. The exponential distribution
is the only distribution of a continuous random variable Y with a constant
hazard function since h(t) completely determines the distribution of the ran-
dom variable Y . Derive H(t), S(t), F (t), and f(t) from the constant hazard
function h(t) = λ for t > 0 and some λ > 0.

Solution: H(t) =
∫ t

0
h(u)du =

∫ t

0
λdu = λt for t > 0.

S(t) = e−H(t) = e−λt, for t > 0.
F (t) = 1 − S(t) = 1 − e−λt for t > 0.
Finally, f(t) = h(t)S(t) = λe−λt = F ′(t) for t > 0.

Suppose the observed survival times T1, ..., Tn are a censored data set
from an exponential EXP (λ) distribution. Let Ti = Y ∗

i . Let δi = 0 if the
case is censored and let δi = 1, otherwise. Let r =

∑n
i=1 δi = the number

of uncensored cases. Then the maximum likelihood estimator (MLE) λ̂ =

r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y
∗
i . A 95% confidence interval (CI) for λ is

λ̂± 1.96λ̂/
√
r. See Section 1.2.

Example 1.2. If Y ∼ Weibull(γ, λ) where γ > 0 and λ > 0, then h(t) =
λγtγ−1 for t > 0, f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1 − exp(−λtγ)
for t > 0, S(t) = exp(−λtγ) for t > 0, H(t) = λtγ for t > 0. The Weibull(
λ, γ = 1) distribution is the EXP(λ) distribution. The hazard function can
be increasing, decreasing or constant. Hence the Weibull distribution of-
ten fits reliability data well, and the Weibull distribution is an important
distribution in reliability analysis. Derive H(t), S(t), F (t), and f(t) if Y ∼
Weibull(λ, γ).

Solution:

H(t) =

∫ t

0

h(u)du =

∫ t

0

λγuγ−1du = λγ
uγ

γ

∣∣∣∣
t

0

= λtγ for t > 0.

S(t) = exp[−H(t)] = exp[−λtγ ], for t > 0.
F (t) = 1 − S(t) = 1 − exp[−λtγ ] for t > 0.
Finally, f(t) = h(t)S(t) = λγtγ−1 exp[−λtγ ] for t > 0.
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Recall from the central limit theorem that the sample mean X =∑n
i=1Xi/n is approximately normal for many distributions. For many dis-

tributions, min(X1, ..., Xn) is approximately Weibull. Suppose a product is
made of m components with iid failure times Xim. Suppose the product fails
as soon as one of the components fails, eg a chain of links fails when the
weakest link fails. Then often the failure time Yi = min(Xim, ..., Xim) is
approximately Weibull.

Notation: The set {t : f(t) > 0} is the support of Y . Often the support
of Y is (0,∞) = t > 0, and the formulas will omit the t > 0.

Theorem 1.2. E(Y ) =
∫∞
0
yf(y)dy =

∫∞
0
tf(t)dt =

∫∞
0
S(t)dt if

limt→∞ tS(t) = 0.

1.2 Estimating the Survival Function

Notation: Let the indicator variable IA(Yi) = 1 if Yi ∈ A and IA(Yi) = 0
otherwise. Often write I(t,∞)(Yi) as I(Yi > t).

Definition 1.3. If none of the survival times are censored, then the em-
pirical survival function ŜE(t) = (number of individual with survival times
> t)/(number of individuals) = a/n. So

ŜE(t) =
1

n

n∑

i=1

I(Yi > t) = p̂t =

sample proportion of lifetimes > t.

Assume Y1, ..., Yn are iid with Yi ≥ 0. Fix t > 0. Then I(Yi > t) are iid
binomial(1,p = P (Yi > t)). So nŜE(t) ∼ binomial(n,p = P (Yi > t)). Hence
E[nŜE(t)] = nP (Y > t) and V [nŜE(t)] = nS(t)F (t). Thus E[ŜE(t)] = S(t)
and V [ŜE(t)] = S(t)F (t)/n = [S(t)(1−S(t))]/n ≤ 0.25/n.Thus SD[ŜE (t)] =√
V [ŜE(t)] ≤ 0.5/

√
n. So need n ≈ 100 for SD[ŜE(t)] < 0.05.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (=
lifetimes = death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the
distinct survival times. Let di = number of deaths at time ti. If m = n and
di = 1 for i = 1, ..., n then there are no ties. If m < n and some di ≥ 2, then
there are ties.

Then ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for
ti−1 ≤ t < ti. Note that

∑m
i=1 di = n. Know how to compute and plot ŜE(t)

given the t(i) or given the ti and di. Use a table like the one below. Let
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a0 = n and ai =
∑n

k=1 I(Ti > ti) = # of cases t(j) > ti for i = 1, ..., m. Then

ŜE(ti) = ai/n =
∑n

k=1 I(Ti > ti)/n = ŜE(ti−1) −
di

n
.

ti di ŜE(ti) = ŜE(ti−1) −
di

n
= ai/n

t0 = 0 ŜE(0) = 1 =
n

n
=
a0

n

t1 d1 ŜE(t1) = ŜE(t0) −
d1

n
=
a0 − d1

n
=
a1

n

t2 d2 ŜE(t2) = ŜE(t1) −
d2

n
=
a1 − d2

n
=
a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) −
dj

n
=
aj−1 − dj

n
=
aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) −
dm−1

n
=
am−2 − dm−1

n
=
am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) −
dm

n
=
am−1 − dm

n
=
am

n

Let Ŝ(t) be the estimated survival function. Let t(p) be the pth percentile
of Y : P (Y ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (Y > t(p)). Then
t̂(p), the estimated time when 100 p % have died, can be estimated from a
graph of Ŝ(t) with “over” and “down” lines. a) Find 1−p on the vertical axis
and draw a horizontal “over” line to Ŝ(t). Draw a vertical “down” line until
it intersects the horizontal axis at t̂(p). Usually want p = 0.5 but sometimes
p = 0.25 and p = 0.75 are used.

Example 1.3. Smith (2002, p. 68) gives steroid induced remission times
for leukemia patients. The t(j), t− i and di are given in the following table.

The ai and ŜE(t) needed to be computed. Note that ai = # of cases with
t(j) > ti. For the following table, the 2nd column t(j) gives the 21 ordered
survival times. The 3rd column ti gives the distinct ordered survival times.
Often just the number is given, so t1 = 1 would be replaced by 1. The 4th
column di tells how many events (remissions) occurred at time ti and the
last column computes ŜE(ti). A good check is that the 1st column entry
divided by n is equal to ai/n = ŜE(ti) = last column entry. A graph of the
estimated survival function would be a step function with times 0, 1, ..., 23
on the horizontal axis and ŜE(t) on the vertical axis. A convention is to draw
vertical lines at the jumps (at the ti). So the step function would be 1 on
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(0,1), 19/21 on (1,2), ..., 1/21 on (22,23) and 0 for t > 23. The vertical lines
connecting the steps are at t = 1, 2, ..., 23.

ai t(j) ti di ŜE(ti) = ŜE(ti−1) −
di

n
21 t0 = 0 ŜE(0) = 1 = 21/21

1

19 1 t1 = 1 2 ŜE(1) = (21 − 2)/21 = 19/21
2

17 2 t2 = 2 2 ŜE(2) = (19 − 2)/21 = 17/21

16 3 t3 = 3 1 ŜE(3) = (17 − 1)/21 = 16/21
4

14 4 t4 = 4 2 ŜE(4) = (16 − 2)/21 = 14/21
5

12 5 t5 = 5 2 ŜE(5) = (14 − 2)/21 = 12/21
8
8
8

8 8 t6 = 8 4 ŜE(8) = (12 − 4)/21 = 8/21
11

6 11 t7 = 11 2 ŜE(11) = (8 − 2)/21 = 6/21
12

4 12 t8 = 12 2 ŜE(12) = (6 − 2)/21 = 4/21

3 15 t9 = 15 1 ŜE(15) = (4 − 1)/21 = 3/21

2 17 t10 = 17 1 ŜE(17) = (3 − 1)/21 = 2/21

1 22 t11 = 22 1 ŜE(22) = (2 − 1)/21 = 1/21

0 23 t12 = 23 1 ŜE(23) = (1 − 1)/21 = 0 good check

Example 1.4. If di = 1, 1, 1, 1 and if ti = 1, 3, 5, 7, then a1 = 3, a2 = 2
and a3 = 1. Hence ŜE(1) = 0.75, ŜE(3) = 0.5, ŜE(5) = 0.25, and ŜE(7) = 0,
and the estimated survival function is graphed as below.

ˆ

S_E(t)

___

| |____

| |_____

| |_____

|____________________|_ t

1 2 3 4 5 6 7

Let t1 ≤ t < tm. Then the classical large sample 95% CI for S(tc)
based on ŜE(t) is

ŜE(tc) ± 1.96

√
ŜE(tc)[1− ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)] = [L, U ].
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Use [max(0, L),min(1, U)].
Let 0 < t. Let

p̃tc =
nŜE(tc) + 2

n+ 4
.

Then the plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√
p̃tc [1 − p̃tc ]

n+ 4
= p̃tc ± 1.96SE[p̃tc] = [L, U ].

Use [max(0, L),min(1, U)]. For this CI, four imaginary T ∗
i are added to the

sample, with two of the T ∗
i > tm > tc and two < t1 < tc. See Agresti and

Coull (1998).
The 95% large sample CI ŜE(tc) ± 1.96SE[p̃tc] is also interesting.

Example 1.5. Let n = 21 and ŜE(12) = 4/21.
a) Find the 95% classical CI for ŜE(12).
b) Find the 95% plus four CI for ŜE(12).
Solution: a)

4

21
+ 1.96

√
4
21(1 − 4

21)

21
=

4

21
± 0.16795 = [0.0225, 0.3584].

b)

p̃12 =
21 4

21
+ 2

21 + 4
=

6

25
.

So the 95% CI is

6

25
+ 1.96

√
6
25(1 − 6

25)

25
=

6

25
± 0.16742 = [0.0726, 0.4074].

Note that the CIs are not very short since n = 21 is small.

Let Yi = time to event for ith person. Ti = min(Yi, Zi) where Zi is the
censoring time for the ith person (the time the ith person is lost to the study
for any reason other than the time to event under study). The censored data
is y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored and yi+
means the time was censored. Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the ordered
survival times (so if y4+ is the smallest survival time, then t(1) = y4+). A
status variable will be 1 if the time was uncensored and 0 if censored.

Let [t0, tm) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where
t0 ≥ 0 and tm = ∞ is possible. It is possible that the 1st interval will have left
endpoint t0 > 0 and the last interval will have finite right endpoint tm <∞.
Suppose that the following quantities are known: dj = # deaths in Ij ,
cj = # of censored survival times in Ij , and
nj = # at risk in Ij = # who were alive and not yet censored at the start of
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Ij (at time tj−1). Note that n1 = n and nj = nj−1 − dj−1 − cj−1 for j > 1.
This equation shows how those at risk in the (j − 1)th interval propagate to
the jth interval.

Let n′
j = nj −

cj
2

= average number at risk in Ij .

Definition 1.4. The lifetable estimator or actuarial method estimator
of SY (t) takes ŜL(0) = 1 and

ŜL(tk) =

k∏

j=1

n′
j − dj

n′
j

=

k∏

j=1

p̃j

for k = 1, ..., m− 1. If tm = ∞, ŜL(t) is undefined for t > tm−1. Suppose
tm 6= ∞. Then take ŜL(t) = 0 for t ≥ tm if cm = 0. If cm > 0, then ŜL(t) is
undefined for t ≥ tm. (Some programs use ŜL(t) = 0 for t ≥ tm if tm 6= ∞.)

To graph ŜL(t), use linear interpolation (connect the dots). If n′
j = 0,

take p̃j = 0. Note that

ŜL(tk) = ŜL(tk−1)
n′

k − dk

n′
k

for k = 1, ...,m− 1.

The lifetable estimator is used to estimate SY (t) = P (Y > t) when there
is censoring. Also, the actual event or censoring times are unknown, but the
number of event and censoring times in each interval Ij is known for j =
1, ..., m. Let pj = P(surviving through Ij| alive at the start of Ij) = P (Y >

tj|Y > tj−1) =
P (Y > tj , Y > tj−1)

P (Y > tj−1)
=

S(tj )

S(tj−1)
. Now p1 = S(t1)/S(t0) =

S(t1) since S(0) = S(t0) = 1. Writing S(tk) as a telescoping product gives

S(tk) = S(t1)
S(t2)

S(t1)

S(t3)

S(t2)
· · · S(tk−1)

S(tk−2)

S(tk)

S(tk−1)
= p1p2 · · ·pk =

k∏

j=1

pj .

Let p̂j = 1− (number dying in Ij)/(number with potential to die in Ij). Then
p̃j = 1−dj/n

′
j is the estimate of pj used by the lifetable estimator, assuming

that the censoring is roughly uniform over each interval.

Know how to get the lifetable estimator and SE(ŜL(ti)) from output.

(left output) (right output)

interval survival survival SE or interval survival survival SE

0 50 1.00 0 0 50 0.7594 0.0524

50 100 0.7594 0.0524 50 100 0.5889 0.0608

100 200 0.5889 0.0608 100 200 0.5253 0.0602
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Since ŜL(0) = 1, ŜL(t) is for the left endpoint for the “left output”, and
for the right endpoint for the “right output.” For both cases, ŜL(50) = 0.7594
and SE(ŜL(50)) = 0.0524.

A 95% CI for SY (ti) based on the lifetable estimator is

ŜL(ti) ± 1.96 SE[ŜL(ti)].

Hence for the above output, a 95% CI for SY (50) is 0.7594± 1.96(0.0524) =
[0.6567, 0.8621].

Know how to compute ŜL(t) with a table like the one below. The first 4
entries need to be given but the last 3 columns may need to be filled in. On
an exam you may be given a table with all but a few entries filled.

Ij, dj, cj , nj n′
j

n′

j−dj

n′

j
ŜL(t)

[t0 = 0, t1), d1, c1, n1 n1 − c1

2
n′

1
−d1

n′

1

ŜL(t0) = ŜL(0) = 1

[t1, t2), d2, c2, n2 n2 − c2

2
n′

2
−d2

n′

2

ŜL(t1) = ŜL(t0)
n′

1
−d1

n′

1

[t2, t3), d3, c3, n3 n3 − c3

2
n′

3
−d3

n′

3

ŜL(t2) = ŜL(t1)
n′

2
−d2

n′

2

...
...

...
...

[tk−1, tk), dk, ck, nk nk − ck

2
n′

k−dk

n′

k
ŜL(tk−1) =

ŜL(tk−2)
n′

k−1
−dk−1

n′

k−1

...
...

...
...

[tm−2, tm−1), dm−1, cm−1, nm−1 nm−1 − cm−1

2

n′

m−1
−dm−1

n′

m−1

ŜL(tm−2) =

ŜL(tm−3)
n′

m−2
−dm−2

n′

m−2

[tm−1, tm = ∞), dm, cm, nm nm − cm

2
n′

m−dm

n′

m
ŜL(tm−1) =

ŜL(tm−2)
n′

m−1
−dm−1

n′

m−1

Also get a 95% CI from output like that below. So the 95% CI for S(50)
is [0.65666,0.86213] ≈ [0.6567,0.8621].

time survival SDF_LCL SDF_UCL

0 1.0 1.0 1.0

50 0.7594 0.65666 0.86213

Example 1.6. Allison (1995, p. 49-51) gives time until death after heart
transplant for 68 patients. The 1st 5 columns are given, but the last 3 columns
need to be computed. Use 4 digits in the computations.
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n′
j = p̃j = ŜL(tj) =

Ij tj dj cj nj nj − cj/2
n′

j−dj

n′

j
ŜL(tj−1)p̃j

[0,50) 0 16 3 68 66.5 0.7594 Ŝ(0) = 1

[50,100) 50 11 0 49 49 0.7755 Ŝ(50) = 0.7594

[100,200) 100 14 2 38 37 0.8919 Ŝ(100) = 0.5889

[200,400) 200 5 4 32 30 0.8333 Ŝ(0) = 0.5252

[400,700) 400 2 6 23 20 0.90 Ŝ(400) = 0.4376

[700,1000) 700 4 3 15 13.5 0.7037 Ŝ(700) = 0.7037

[1000,1300) 1000 1 2 8 7 0.8571 Ŝ(1000) = 0.2771

[1300,1600) 1300 1 3 5 3.5 0.7143 Ŝ(1300) = 0.2375

[1600,∞) 1600 0 1 1 0.5 1.0 Ŝ(1600) = 0.1696

Greenwood’s formula is

SE[ŜL(tj)] = ŜL(tj)

√√√√
j∑

i=1

1 − p̃i

p̃in′
i

where j = 1, ..., m− 1. The formula is best computed using software.

Now suppose the data is censored but the event or censoring times Ti are
known with Y ∗

i = Ti = min(Yi, Zi) where Yi and Zi are independent. Let
δi = I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let
t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if
t(j) is uncensored and 0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm
be the distinct survival times corresponding to the t(j) with γj = 1. Let di =
number of events (deaths) at time ti. If m = n and di = 1 for i = 1, ..., n
then there are no ties. If m < n and some di ≥ 2, then there are ties. Let
ni =

∑n
j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet censored just

before ti (and just after ti−1).

Example 1.7. Suppose n = 6, Yi ∼ EXP (1), E(Yi) = 1, Zi ∼ EXP (0.1),
and E(Zi) = 10. In the table below, Yi and Zi are not observed, m = 5, and
the observed data is Ti and δi.

Yi 0.2887 0.1796 1.1301 1.4165 0.2720 0.6667
Zi 0.8967 1.6158 10.5266 1.0520 2.2329 4.2917

Ti = Y ∗
i 0.2887 0.1796 1.1301 1.0520 0.2720 0.6667

δi 1 1 1 0 1 1
t(j) 0.1796 0.2720 0.2887 0.6667 1.0522 1.1301
γj 1 1 1 1 0 1
ti 0.1796 0.2720 0.2887 0.6667 1.1301

Consider intervals I1 = (0, t1], I2 = (t1, t2], ..., Im = (tm−1, tm]. Let nk be
the number at risk for interval Ik, dk = number of deaths in Ik = number of
deaths at tk, and
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p̂k = 1 − dk

nk
= 1 − number dying in Ik

number with potential to die in Ik
≈ S(tk)

S(tk−1)
≈

P(survive in interval (tk−1, tk)| alive at start of Ik). Then

ŜK (ti) =

i∏

k=1

p̂k.

Note that individuals who die or are censored at time tk are “at risk at tk.”

Definition 1.5. The Kaplan Meier estimator = product limit esti-
mator of SY (ti) = P (Y > ti) is ŜK (0) = 1 and

ŜK(ti) =

i∏

k=1

(1 − dk

nk
) = ŜK (ti−1)(1 − di

ni
).

ŜK(t) is a step function with ŜK (t) = ŜK(ti−1) for ti−1 ≤ t < ti and i =
1, ..., m. If t(n) is uncensored then tm = t(n) and ŜK (t) = 0 for t > tm. If t(n)

is censored, then ŜK(t) = ŜK (tm) for tm ≤ t ≤ t(n), but ŜK(t) is undefined
for t > t(n).

Know how to compute and plot Ŝk(ti) given the t(j) and γj or given
the ti, ni and di. Use a table like the one below. Let n0 = n. If fi−1 =
number of events (deaths) and number censored in time interval [ti−1, ti),
then ni = ni−1 − fi−1 = number of t(j) ≥ ti.



1.2 Estimating the Survival Function 13

ti ni di ŜK(t)

t0 = 0 ŜK (0) = 1

t1 n1 d1 ŜK (t1) = ŜK(t0)[1 − d1

n1
]

t2 n2 d2 ŜK (t2) = ŜK(t1)[1 − d2

n2
]

...
...

...
...

tj nj dj ŜK(tj) = ŜK (tj−1)[1 − dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK (tm−1) = ŜK (tm−2)[1 − dm−1

nm−1
]

tm nm dm ŜK(tm) = 0 = ŜK (tm−1)[1 − dm

nm
]

Example 1.8. Modifying Smith (2002, p. 113) slightly, suppose that the
ordered censored survival times in days until repair of n = 13 street lights is
36, 38, 38, 38+, 78 112, 112, 114+, 162+, 189, 198, 237, 489+.

fj t(j) γj ti ni di Ŝ(t)

Ŝ(0) = 1

1 36 1 36 13 1 Ŝ(36) = 0.9231

3 38 1 38 12 2 Ŝ(38) = 0.7692
38 1
38 0

1 78 1 78 9 1 Ŝ(78) = 0.6837

4 112 1 112 8 2 Ŝ(112) = 0.5128
112 1
114 0
162 0

1 189 1 189 4 1 Ŝ(189) = 0.3846

1 198 1 198 3 1 Ŝ(198) = 0.2564

1 237 1 237 2 1 Ŝ(36) = 0.1282
489 0

Know how to find a 95% CI for SY (ti) based on ŜK(ti) using out-
put: the 95% CI is ŜK (ti) ± 1.96 SE[ŜK(ti)]. The R output below gives
ti, ni, di, ŜK(ti), SE(ŜK (ti)) and the 95% CI for SY (36) is [0.7782, 1].
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time n.risk n.event survival std.err lower 95% CI upper 95% CI

36 13 1 0.923 0.0739 0.7782 1.000

In general, a 95% CI for SY (ti) is Ŝ(ti) ± 1.96 SE[Ŝ(ti)]. If the lower
endpoint of the CI is negative, round it up to 0. If the upper endpoint of the
CI is greater than 1, round it down to 1. Do not use impossible values
of SY (t). Note that ŜK(36) ± 1.96SE[ŜK(36)] = 0.923 ± 1.96(0.0793) =
0.923± 0.1448 = [0.7782, 1.0678]. So use [0.7782, 1] since S(y) ∈ [0, 1].

Let P (Y ≤ t(p)) = FY (t(p)) = p for 0 < p < 1. Be able to get t(p) and 95%
CIs for t(p) from SAS output for p = 0.25, 0.5, 0.75. For the output below,
the CI for t(0.75) is not given. The 95% CI for t(0.50) ≈ 210 is [63,1296]. The
95% CI for t(0.25) ≈ 63 is [18,195].

Quartile estimates

Percent point estimate lower upper

75 . 220.0 .

50 210.00 63.00 1296.00

25 63.00 18.00 195.00

R plots the KM survival estimator along with the pointwise 95% CIs for
SY (t). If we guess a distribution for Y , say Y ∼ W, with a formula for
SW (t), then the guessed SW (ti) can be added to the plot. If roughly 95%
of the SW (ti) fall within the bands, then Y ∼ W may be reasonable. For
example, if W ∼ EXP (1), use SW (t) = exp(−t). If W ∼ EXP (λ), then
SW (t) = exp(−λt). Recall that E(W ) = 1/λ.

If limt→∞ tSY (t) → 0, then E(Y ) =
∫∞
0
tfY (t)dt =

∫∞
0
SY (t)dt. Hence an

estimate of the mean Ê(Y ) can be obtained from the area under Ŝ(t).
Greenwood’s formula is

SE[ŜK (tj)] = ŜK (tj)

√√√√
j∑

i=1

dj

nj(nj − dj)

where j = 1, ..., m− 1. The formula is best computed using software.

Definition 1.6. The Nelson Aelen estimator of SY (t) is

ŜN (ti) =

i∏

k=1

exp

(−dk

nk

)
= exp

(
−

i∑

k=1

dk

nk

)
= ŜN (ti−1) exp

(
− di

ni

)

where ŜN (0) = 1 and ti, di, and ni are the same as for the Kaplan Meier
estimator.
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1.3 Estimating the (Cumulative) Hazard Function

Two important estimators of the cumulative hazard function use Ĥ(ti) =
− log(Ŝ(ti)).

Definition 1.7. The Kaplan Meier estimator of HY (t) is ĤK(0) = 0,

ĤK(ti) = − log(Ŝk(ti) = −
i∑

k=1

log

(
1 − dk

nk

)
= ĤK(ti−1) − log

(
1 − di

ni

)
.

Definition 1.8. The Nelson Aelen estimator of HY (t) is ĤN(0) = 0,

ĤN(ti) =

i∑

k=1

dk

nk
= ĤK(ti−1) +

di

ni
.

Note that ŜN (ti) = exp(−Ĥn(ti)) and ĤN(ti) = − log(ŜN (ti)).

A 95% CI forHY (ti) is Ĥ(ti)±1.96SE[Ĥ(ti)] = [L, U ]. Use [max(0, L), U ].
Also,

SE[ĤN(ti)] =

√√√√
i∑

k=1

dk

n2
k

=

√
SE[ĤN(ti−1)] +

di

n2
i

.

For the hazard function with t0 = 0,

ĥK(ti) = ĥN(ti) =
di

ni(ti+1 − ti)

for i = 1, ..., m− 1.

Example 1.9.

ti ni di ĥK(ti)

10 18 1
1

18(19− 10)
= 0.00617

19 15 1
1

15(30− 19)
= 0.00606

30 13 1

For the life table estimator with interval Ij = [tj−1, tj), dj, and n′
j,

ĥL(t) =
dj

(n′
j −

dj

2 )(tj − tj−1)

tj−1 ≤ t < tj with ĥL(t) undefined for the last interval [tm−1, tm). Sometime
t∗ = (tj−1 + tj)/2 is used.
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Example 1.10.

Ij t∗ dj n′
j ĥL(t∗)

[0, 50) 25 16 66.5
16

(66.5− 16/2)(50− 0)
= 0.00547

[50, 100) 75 11 49
11

(49 − 11/2)(100− 50)
= 0.005058

Example 1.11. The data is from Klein and Moeschberger (2002, pp.
2, 86). There were 21 children with acute leukemia in complete or partial
remission induced by the drug Prednisone, and the children were given the
drug over a six month period. Note that t0 = 0, t(j) = time until relapse, and
nj =

∑
j t(j) ≥ ti. See the following table for computations. Using that table,

a 95% CI for HY (13) is ĤN(13)±1.96SE[Ĥn(13)] = 0.3517±1.96
√

0.0217 =
0.3517± 0.2888 = [0.0630, 0.6404].

t(j) γj ti ni di ĤN(ti) (SE[ĤN (ti)])
2

t0 = 0 0
6 1 6 21 3 0 + 3/21 = 0.1428 0 + 3/212 = 0.0068
6 1
6 1
6 0
7 1 1 17 1 0.1428 + 1/17 = 0.2017 0.0068 + 1/172 = 0.0103
9 0
10 1 10 15 1 0.2017 + 1/15 = 0.2683 0.0103 + 1/152 = 0.0147
10 0
11 0
13 1 13 12 1 0.2683 + 1/12 = 0.3517 0.0147 + 1/122 = 0.0217
16 1 16 11 1 0.3517 + 1/11 = 0.4426 0.0217 + 1/112 = 0.0299
17 0
19 0
20 0
22 1 22 7 1 0.4426 + 1/7 = 0.5854 0.0299 + 1/72 = 0.2243
23 1 23 6 1 0.5854 + 1/6 = 0.7521 0.2244 + 1/62 = 0.2795
25 0
32 0
32 0
34 0
35 0

1.4 Maximum Likelihood Estimation

Definition 1.9. Let f(y|θ) be the pdf of a sample Y with parameter space
Θ. If Y = y is observed, then the likelihood function is L(θ) ≡ L(θ|y) =
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f(y|θ). For each sample point y = (y1, ..., yn), let θ̂(y) ∈ Θ be a parameter
value at which L(θ) ≡ L(θ|y) attains its maximum as a function of θ with y

held fixed. Then a maximum likelihood estimator (MLE) of the parameter

θ based on the sample Y is θ̂(Y ).

The following remarks are important. I) It is crucial to observe that the
likelihood function is a function of θ (and that y1, ..., yn act as fixed con-
stants). Note that the pdf or pmf f(y|θ) is a function of n variables while
L(θ) is a function of k variables if θ is a 1 × k vector. Often k = 1 or k = 2
while n could be in the hundreds or thousands.

II) If Y1, ..., Yn is an independent sample from a population with pdf or
pmf g(y|θ), then the likelihood function

L(θ) ≡ L(θ|y1, ..., yn) =

n∏

i=1

g(yi|θ). (1.1)

L(θ) =

n∏

i=1

gi(yi|θ)

if the Yi are independent but have different pdfs or pmfs.

III) If the MLE θ̂ exists, then θ̂ ∈ Θ. Hence if θ̂ is not in the parameter

space Θ, then θ̂ is not the MLE of θ.

Theorem 1.3: Invariance Principle. If θ̂ is the MLE of θ, then τ (θ̂)
is the MLE of τ (θ) where τ is a function with domain Θ.

Really just need Θ ∈ dom(τ ) so tau(θ̂) is well defined: can’t have
log(−7.89) or

√
−1.57.

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(θ), the log like-
lihood.

• Potential candidates can be found by differentiating the likelihood L(θ).
• The MLE can sometimes be found by direct maximization of the likelihood
• L(θ).

• Invariance Principle: If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of
τ (θ).

The one parameter case can often be solved by hand with the following
technique. To show that θ̂ is the MLE of θ is equivalent to showing that θ̂ is
the global maximizer of logL(θ) on Θ where Θ is an interval with endpoints
a and b, not necessarily finite. Suppose that logL(θ) is continuous on Θ.

Show that logL(θ) is differentiable on (a, b). Then show that θ̂ is the unique
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solution to the equation d
dθ logL(θ) = 0 and that the 2nd derivative evaluated

at θ̂ is negative:
d2

dθ2
logL(θ)

∣∣∣∣
θ̂

< 0. See Remark 1.1V below.
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Fig. 1.1 The local max in a) is a global max, but the local max at θ = −1 in b) is
not the global max.

Remark 1.1. From calculus, recall the following facts. I) If the function
g is continuous on an interval [a, b] then both the max and min of g exist.
Suppose that g is continuous on an interval [a, b] and differentiable on (a, b).
Solve g′(θ) ≡ 0 and find the places where g′(θ) does not exist. These values
are the critical points. Evaluate g at a, b, and the critical points. One of
these values will be the min and one the max.

II) Assume g is continuous. Then g has a local max at the critical point
θo if g is increasing for θ < θo in a neighborhood of θo and if g is decreasing
for θ > θo in a neighborhood of θo (and θo is a global max if you can remove
the phrase “in a neighborhood of θo”). The first derivative test is often used:
if g is continuous at θo and if there exists some δ > 0 such that g′(θ) > 0 for
all θ in (θo − δ, θo) and g′(θ) < 0 for all θ in (θo, θo + δ), then g has a local
max at θo.

III) If g is strictly concave (
d2

dθ2
g(θ) < 0 for all θ ∈ Θ), then any local max

of g is a global max.
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IV) Suppose g′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
g(θo) < 0,

then g has a local max at θo.

V) If g(θ) is a continuous function on an interval with endpoints a < b (not
necessarily finite), differentiable on (a, b) and if the critical point is unique,
then the critical point is a global maximum if it is a local maximum. To
see this claim, note that if the critical point is not the global max then there
would be a local minimum and the critical point would not be unique. Let
a = −2 and b = 4. In Figure 1.1 a), the critical point for g(θ) = −θ2 + 25 is
at θ = 0, is unique, and is both a local and global maximum. In Figure 1.1
b), h(θ) = θ3 − 1.5θ2 − 6θ + 11, the critical point θ = −1 is not unique and
is a local max but not a global max.

VI) If g is strictly convex (
d2

dθ2
g(θ) > 0 for all θ ∈ Θ), then any local min

of g is a global min. If g′(θo) = 0, then the 2nd derivative test states that if
d2

dθ2
g(θo) > 0, then θo is a local min.

VII) If g(θ) is a continuous function on an interval with endpoints a < b
(not necessarily finite), differentiable on (a, b) and if the critical point is
unique, then the critical point is a global minimum if it is a local minimum.
To see this claim, note that if the critical point is not the global min then
there would be a local maximum and the critical point would not be unique.

Tips: a) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural loga-
rithm.
b) log(ab) = b log(a) and log(eb) = b.
c) log(

∏n
i=1 ai) =

∑n
i=1 log(ai).

d) logL(θ) = log(
∏n

i=1 f(yi|θ)) =
∑n

i=1 log(f(yi |θ)).
e) If t is a differentiable function and t(θ) 6= 0, then d

dθ log(|t(θ)|) = t′(θ)
t(θ)

where t′(θ) = d
dθ
t(θ). In particular, d

dθ
log(θ) = 1/θ.

f) Any additive term that does not depend on θ is treated as a constant with
respect to θ and hence has derivative 0 with respect to θ.

With censoring and truncation, the likelihood function changes. Often
L(θ) = L(θ|y1, ..., yn) =

∏n
i=1 L(θ|yi). Note that 1 − F (w) = S(w).

a) For iid individual data, L(θ|yi) = f(yi) if Y has pdf f(y).
b) For iid individual data, L(θ|yi) = p(xi) if Y has pmf p(y).
c) If it is only known that yi is in some interval (cj−1, cj], then

L(θ|yi) = P (yi ∈ (cj−1, cj]) = F (cj) − F (cj−1).
The endpoints can be open or closed if Y is from a continuous distribution.

d) If yi is right censored at ui, then the interval is [ui,∞), and L(θ|yi) =
1− F (ui).
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e) For grouped data from the table below, L(θ) =

m∏

j=1

[F (cj)−F (cj−1)]
nj .

interval number
(c0, c1] n1

(c1, c2] n2

(c2, c3] n3

...
...

(cm−2, cm−1] nm−1

(cm−1, cm] nm

f) If yi is left truncated at di, then L(θ|yi) =
f(yi)

1 − F (di)
.

g) If yi is left truncated at di and right censored at ui, then L(θ|yi) =
1− F (ui)

1 − F (di)
.

h) If the data are left truncated at d with n − k uncensored cases yi and

k cases right censored at u, then L(θ) =
[
∏n−k

i=1 f(yi)][1− F (u)]k

[1 − F (d)]n
.

i) (Rare, the interval is (0, d].): If yi is censored below at d,L(θ|yi) = F (d).

j) (Rare): If yi is truncated above at u, L(θ|xi) =
f(yi)

F (u)
.

Note that left truncated = truncated below = truncated, and right cen-
sored = censored above = censored are often used.

1.5 Simulations for KM Confidence Intervals

Section 1.2 described confidence intervals for the Kaplan Meier estimator.
We will describe another CI, and two more CIs are easy to compute with R.
Then we will simulate the four CIs.

The Agresti and Coull (1998) plus four 95% CI adds two successes (deaths)
and two failures (survives) to the data set from a binomial distribution, and
then computes the classical binomial 95% CI from the modified data set. For
t ∈ [t1, tm], Olive (2010, problem 16.45) modifies this procedure by adding two
artificial deaths just before time t1 and two artificial censored observations
after the largest death time tm. Then the classical 95% CI for the Kaplan
Meier estimator is computed from the modified data set.

Hence

S̃K (ti) =

(
1 − 1

n+ 4

)(
1 − 1

n+ 3

) i∏

k=1

(
1 − dk

nk + 2

)
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for i = 1, ..., m where the first two terms are due to the two artificial deaths
at the just before t1 and nk +2 is used in the product due to the two artificial
cases censored at time tm. Also [SE(S̃K (ti)]

2 =

[S̃K(ti)]
2

(
i∑

k=1

dk

(nk + 2)(nk + 2 − dk)
+

1

(n+ 4)(n+ 4 − 1)
+

1

(n+ 3)(n+ 3 − 1)

)

for i = 1, ..., m− 1.
If the CI is initially [L,U], then the CI [max(0, L),min(1, U)] is used. In ad-

dition to the classical Kaplan Meier CI, there is a log CI that uses log(Ŝ) and
a log–log CI that uses log(−log(Ŝ)) that are easy to compute with software.

Simulations were done in R. The function kmsim2 simulates the classical,
log, log–log, and plus four CIs for the Kaplan Meier estimator and is in the
collection of R functions survpack. See Yang (2016) for a bigger simulation.
The plus four CI worked well for S(t(1)) and S(t(n)).

The program kmsim2 computes censored data T = min(Y, Z) where Y ∼
EXP (1). Then a 95% CI is made for SY (t(j)) for each of the n t(j). This is
done for runs=5000 data sets and the program computes the proportion of
times the CI contains SY (t(j)) = exp(−t(j)). The average scaled CI lengths
(the average of

√
n CI length) are also computed. The ccov is the proportion

for the classical Ŝ± 1.96SE(Ŝ) interval while p4cov is for the plus 4 CI. The
lcov is based on a CI that uses log(Ŝ) and llcov is based on a CI that uses
log(−log(Ŝ)). The three classical CIs are not made if the last case is censored
so NA is given. The plus four CI seems to be good at t(1) and t(n). With 5000
runs, coverage between 0.94 and 0.96 would not give much evidence that the
coverage is different from the nominal covarage of 0.95.

library(survival)

kmsim2(n=10,runs=5000)

$ccov

[1] 0.8852 0.9604 0.9736 0.9720 0.9666 0.9544 0.9380

0.9062 0.8404 NA

$lcov

[1] 0.8772 0.9470 0.9564 0.9618 0.9632 0.9670 0.9702

0.9800 0.9828 NA

$llcov

[1] 0.7694 0.8886 0.9130 0.9222 0.9242 0.9230 0.9258

0.9246 0.9208 NA

$p4cov

[1] 0.9978 0.9082 0.9090 0.9132 0.9200 0.9236 0.9330

0.9410 0.9550 0.9734
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$clen

[1] 0.8213907 1.3221304 1.7054981 1.8938355 1.9760212

1.9803150 1.9032412 1.5986898 1.0969514 NA

$llen

[1] 0.7698268 1.2214843 1.5940815 1.9111395 2.0769800

2.1522128 2.1692379 2.1519330 2.2099754 NA

$lllen

[1] 1.471560 1.679038 1.776042 1.826047 1.832765

1.791306 1.692973 1.526673 1.264845 NA

$p4len

[1] 1.327469 1.471418 1.569004 1.632534 1.665829

1.669772 1.641687 1.578521 1.470567 1.189487

The above output is for n = 10 with 5000 runs. The table below summa-
rizes the CI coverages and scaled lengths for t1, t3, tn−2, and tn−1.

Table 1.1 Simulated CI Coverages and Scaled Lengths

n ti cov/len clas log loglog plus4
10 t1 cov 0.885 0.877 0.769 0.998

len 0.821 0.770 1.471 1.327
10 t3 cov 0.974 0.956 0.913 0.909

len 1.705 1.594 1.776 1.569
10 tn−2 cov 0.906 0.980 0.925 0.941

len 1.599 2.512 1.527 1.579
10 tn−1 cov 0.840 0.983 0.921 0.955

len 1.097 2.210 1.265 1.470

1.6 Summary

Let Y ≥ 0 be a nonnegative random variable.
Then the cumulative distribution function (cdf) F (t) = P (Y ≤ t).

Since Y ≥ 0, F (0) = 0, F (∞) = 1, and F (t) is nondecreasing.
The probability density function (pdf) f(t) = F ′(t).
The survival function S(t) = P (Y > t). S(0) = 1, S(∞) = 0 and S(t) is

nonincreasing.

The hazard function h(t) =
f(t)

1 − F (t)
for t > 0 and F (t) < 1. Note that

h(t) ≥ 0 if F (t) < 1.
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The cumulative hazard function H(t) =
∫ t

0
h(u)du for t > 0. It is true

that H(0) = 0, H(∞) = ∞, and H(t) is nondecreasing.

1) Given one of F (t), f(t), S(t), h(t) or H(t), be able to find the other 4
quantities for t > 0.

A) F (t) =
∫ t

0
f(u)du = 1− S(t) = 1− exp[−H(t)] = 1− exp[−

∫ t

0
h(u)du].

B) f(t) = F ′(t) = −S′(t) = h(t)[1−F (t)] = h(t)S(t) = h(t) exp[−H(t)] =
H ′(t) exp[−H(t)].

C) S(t) = 1 − F (t) = 1 −
∫ t

0
f(u)du =

∫∞
t
f(u)du = exp[−H(t)] =

exp[−
∫ t

0
h(u)du].

D)

h(t) =
f(t)

1 − F (t)
=
f(t)

S(t)
=

F ′(t)

1 − F (t)
=

−S′(t)

S(t)
= − d

dt
log[S(t)] = H ′(t).

E) H(t) =
∫ t

0
h(u)du = − log[S(t)] = − log[1 − F (t)].

Tip: if F (t) = 1 − exp[G(t)] for t > 0, then H(t) = −G(t) and S(t) =
exp[G(t)].

Tip: For S(t) > 0, note that S(t) = exp[log(S(t))] = exp[−H(t)]. Finding
exp[log(S(t))] and setting H(t) = − log[S(t)]is easier than integrating h(t).

Know that if Y ∼ EXP (λ) where λ > 0, then h(t) = λ for t > 0,
f(t) = λe−λt for t > 0, F (t) = 1 − e−λt for t > 0, S(t) = e−λt for t > 0,
H(t) = λt for t > 0 and E(T ) = 1/λ. The exponential distribution can
be a good model if failures are due to random shocks that follow a Poisson
process, but constant hazard means that a used product is as good as a new
product.

2) Suppose the observed survival times T1, ..., Tn are a censored data set
from an exponential (λ) distribution. Let Ti = Y ∗

i . Let δi = 0 if the case
is censored and let δi = 1, otherwise. Let r =

∑n
i=1 δi = the number of

uncensored cases. Then the MLE λ̂ = r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y
∗
i . A

95% CI for λ is λ̂± 1.96λ̂/
√
r.

Know that if Y ∼ Weibull(λ, γ) where λ > 0 and γ > 0, then h(t) = λγtγ−1

for t > 0, f(t) = λγtγ−1 exp(−λtγ) for t > 0, F (t) = 1− exp(−λtγ) for t > 0,
S(t) = exp(−λtγ) for t > 0, H(t) = λtγ for t > 0. The Weibull(λ, γ = 1) dis-
tribution is the EXP(λ) distribution. The hazard function can be increasing,
decreasing or constant. Hence the Weibull distribution often fits reliability
data well, and the Weibull distribution is the most important distribution in
reliability analysis.
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3) Let Ŝ(t) be the estimated survival function. Let t(p) be the pth per-
centile of Y : P (Y ≤ t(p)) = F (t(p)) = p so 1 − p = S(t(p)) = P (Y > t(p)).
Then t̂(p), the estimated time when 100 p % have died, can be estimated
from a graph of Ŝ(t) with “over” and “down” lines. a) Find 1− p on the ver-
tical axis and draw a horizontal “over” line to Ŝ(t). Draw a vertical “down”
line until it intersects the horizontal axis at t̂(p). Usually want p = 0.5 but
sometimes p = 0.25 and p = 0.75 are used.

The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A and 0, otherwise.
Sometimes an indicator function such as I(0,∞)(y) will be denoted by I(y >
0).

If none of the survival times are censored, then the empirical survival
function = (number of individual with survival times > t)/(number of indi-
viduals) = a/n =

ŜE(t) =
1

n

n∑

i=1

I(Ti > t) = p̂t = sample proportion of lifetimes > t.

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times (=
lifetimes = death times). Let t0 = 0 and let 0 < t1 < t2 < · · · < tm be the
distinct survival times. Let di = number of deaths at time ti. If m = n and
di = 1 for i = 1, ..., n then there are no ties. If m < n and some di ≥ 2, then
there are ties.
ŜE(t) is a step function with ŜE(0) = 1 and ŜE(t) = ŜE(ti−1) for ti−1 ≤

t < ti. Note that
∑m

i=1 di = n.

4) Know how to compute and plot ŜE(t) given the t(i) or given the ti and
di. Use a table like the one below. Let a0 = n and ai =

∑n
k=1 I(Ti > ti) = #

of cases t(j) > ti for i = 1, ..., m. Then ŜE(ti) = ai/n =
∑n

k=1 I(Ti > ti)/n =

ŜE(ti−1) − di

n .
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ti di ŜE(ti) = ŜE(ti−1) − di

n

t0 = 0 ŜE(0) = 1 = n
n = a0

n

t1 d1 ŜE(t1) = ŜE(t0) − d1

n = a0−d1

n = a1

n

t2 d2 ŜE(t2) = ŜE(t1) − d2

n
= a1−d2

n
= a2

n

...
...

...

tj dj ŜE(tj) = ŜE(tj−1) − dj

n =
aj−1−dj

n =
aj

n

...
...

...

tm−1 dm−1 ŜE(tm−1) = ŜE(tm−2) − dm−1

n =
am−2−dm−1

n =
am−1

n

tm dm ŜE(tm) = 0 = ŜE(tm−1) − dm

n =
am−1−dm

n = am

n

5) Let t1 ≤ t < tm. Then the classical large sample 95% CI for S(tc)
based on ŜE(t) is

ŜE(tc) ± 1.96

√
ŜE(tc)[1− ŜE(tc)]

n
= ŜE(tc) ± 1.96SE[ŜE(tc)].

6) Let 0 < t. Let

p̃tc =
nŜE(tc) + 2

n+ 4
.

Then the plus four 95% CI for S(tc) based on ŜE(t) is

p̃tc ± 1.96

√
p̃tc [1 − p̃tc ]

n+ 4
= p̃tc ± 1.96SE[p̃tc].

Let Yi = time to event for ith person. Ti = min(Yi, Zi) where Zi is the
censoring time for the ith person (the time the ith person is lost to the study
for any reason other than the time to event under study). The censored data
is y1, y2+, y3, ..., yn−1, yn+ where yi means the time was uncensored and yi+
means the time was censored. t(1) ≤ t(2) ≤ · · · ≤ t(n) are the ordered survival
times (so if y4+ is the smallest survival time, then t(1) = y4+). A status
variable will be 1 if the time was uncensored and 0 if censored.

Let [0,∞) = I1 ∪ I2 ∪ · · · ∪ Im = [t0, t1) ∪ [t1, t2) · · · ∪ [tm−1, tm) where
to = 0 and tm = ∞. It is possible that the 1st interval will have left endpoint
> 0 (t0 > 0) and the last interval will have finite right endpoint (tm < ∞).
Suppose that the following quantities are known: dj = # deaths in Ij ,
cj = # of censored survival times in Ij ,
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nj = # at risk in Ij = # who were alive and not yet censored at the start of
Ij (at time tj−1).
Let n′

j = nj − cj

2 = average number at risk in Ij .

7) The lifetable estimator or actuarial method estimator of SY (t) takes
ŜL(0) = 1 and

ŜL(tk) =

k∏

j=1

n′
j − dj

n′
j

=

k∏

j=1

p̃j

for k = 1, ..., m− 1. If tm = ∞, ŜL(t) is undefined for t > tm−1. Suppose
tm 6= ∞. Then take ŜL(t) = 0 for t ≥ tm if cm = 0. If cm > 0, then ŜL(t) is
undefined for t ≥ tm. To graph ŜL(t), use linear interpolation (connect the
dots). If n′

j = 0, take p̃j = 0. Note that

ŜL(tk) = ŜL(tk−1)
n′

k − dk

n′
k

for k = 1, ...,m− 1.

8) Know how to get the lifetable estimator and SE(ŜL(ti)) from output.

(left output) (right output)

interval survival survival SE or interval survival survival SE

0 50 1.00 0 0 50 0.7594 0.0524

50 100 0.7594 0.0524 50 100 0.5889 0.0608

100 200 0.5889 0.0608 100 200 0.5253 0.0602

Since ŜL(0) = 1, ŜL(t) is for the left endpoint for the “left output,” and
for the right endpoint for the “right output.” For both cases, ŜL(50) = 0.7594
and SE(ŜL(50)) = 0.0524.

9) A 95% CI for SY (ti) based on the lifetable estimator is

ŜL(ti) ± 1.96 SE[ŜL(ti)].

10) Know how to compute ŜL(t) with a table like the one below. The first
4 columns need to be given but the last 3 columns may need to be filled in.
On an exam you may be given a table with all but a few entries filled.
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Ij, dj, cj , nj n′
j

n′

j−dj

n′

j
ŜL(t)

[t0 = 0, t1), d1, c1, n1 n1 − c1

2
n′

1
−d1

n′

1

ŜL(to) = ŜL(0) = 1

[t1, t2), d2, c2, n2 n2 − c2

2
n′

2
−d2

n′

2

ŜL(t1) = ŜL(t0)
n′

1
−d1

n′

1

[t2, t3), d3, c3, n3 n3 − c3

2
n′

3
−d3

n′

3

ŜL(t2) = ŜL(t1)
n′

2
−d2

n′

2

...
...

...
...

[tk−1, tk), dk, ck, nk nk − ck

2
n′

k−dk

n′

k
ŜL(tk−1) =

ŜL(tk−2)
n′

k−1
−dk−1

n′

k−1

...
...

...
...

[tm−2, tm−1), dm−1, cm−1, nm−1 nm−1 − cm−1

2

n′

m−1
−dm−1

n′

m−1

ŜL(tm−2) =

ŜL(tm−3)
n′

m−2
−dm−2

n′

m−2

[tm−1, tm = ∞), dm, cm, nm nm − cm

2
n′

m−dm

n′

m
ŜL(tm−1) =

ŜL(tm−2)
n′

m−1
−dm−1

n′

m−1

11) Also get a 95% CI from output like that below. So the 95% CI for
S(50) is (0.65666,0.86213).

time survival SDF_LCL SDF_UCL

0 1.0 1.0 1.0

50 0.7594 0.65666 0.86213

Let Y ∗
i = Ti = min(Yi, Zi) where Yi and Zi are independent. Let δi =

I(Yi ≤ Zi) so δi = 1 if Ti is uncensored and δi = 0 if Ti is censored. Let
t(1) ≤ t(2) ≤ · · · ≤ t(n) be the observed ordered survival times. Let γj = 1 if
t(j) is uncensored and 0, otherwise. Let t0 = 0 and let 0 < t1 < t2 < · · · < tm
be the distinct survival times corresponding to the t(j) with γj = 1. Let di =
number of deaths at time ti. If m = n and di = 1 for i = 1, ..., n then there
are no ties. If m < n and some di ≥ 2, then there are ties.

12) Let ni =
∑n

j=1 I(t(j) ≥ ti) = # at risk at ti = # alive and not yet
censored just before ti. Let di = # of events (deaths) at ti. The Kaplan
Meier estimator = product limit estimator of SY (ti) = P (Y > ti) is

ŜK(0) = 1 and ŜK(ti) =
∏i

k=1(1 − dk

nk
) = ŜK (ti−1)(1 − di

ni
). ŜK (t) is a step

function with ŜK(t) = ŜK (ti−1) for ti−1 ≤ t < ti and i = 1, ..., m. If t(n) is

uncensored then tm = t(n) and ŜK (t) = 0 for t > tm. If t(n) is censored, then

ŜK(t) = ŜK(tm) for tm ≤ t ≤ t(n), but ŜK (t) is undefined for t > t(n).

13) Know how to compute and plot Ŝk(ti) given the t(j) and γj or given
the ti, ni and di. Use a table like the one below.
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ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

t1 n1 d1 ŜK(t1) = ŜK (t0)[1− d1

n1

]

t2 n2 d2 ŜK(t2) = ŜK (t1)[1− d2

n2

]

...
...

...
...

tj nj dj ŜK(tj) = ŜK (tj−1)[1 − dj

nj
]

...
...

...
...

tm−1 nm−1 dm−1 ŜK (tm−1) = ŜK (tm−2)[1 − dm−1

nm−1

]

tm nm dm ŜK(tm) = 0 = ŜK (tm−1)[1 − dm

nm
]

14) Know how to find a 95% CI for SY (ti) based on ŜK (ti) using out-
put: the 95% CI is ŜK (ti) ± 1.96 SE[ŜK(ti)]. The R output below gives
ti, ni, di, ŜK(ti), SE(ŜK (ti)) and the 95% CI for SY (36) is (0.7782, 1).

time n.risk n.event survival std.err lower 95% CI upper 95% CI

36 13 1 0.923 0.0739 0.7782 1.000

15) In general, a 95% CI for SY (ti) is Ŝ(ti) ± 1.96 SE[Ŝ(ti)]. If the lower
endpoint of the CI is negative, round it up to 0. If the upper endpoint of the
CI is greater than 1, round it down to 1. Do not use impossible values
of SY (t).

16) Let P (Y ≤ t(p)) = p for 0 < p < 1. Be able to get t(p) and 95% CIs
for t(p) from SAS output for p = 0.25, 0.5, 0.75. For the output below, the CI
for t(0.75) is not given. The 95% CI for t(0.50) ≈ 210 is (63,1296). The 95%
CI for t(0.25) ≈ 63 is (18,195).

Quartile estimates

Percent point estimate lower upper

75 . 220.0 .

50 210.00 63.00 1296.00

25 63.00 18.00 195.00

17) R plots the KM survival estimator along with the pointwise 95% CIs
for SY (t). If we guess a distribution for Y , say Y ∼ W, with a formula for
SW (t), then the guessed SW (ti) can be added to the plot. If roughly 95%
of the SW (ti) fall within the bands, then Y ∼ W may be reasonable. For
example, if W ∼ EXP (1), use SW (t) = exp(−t). If W ∼ EXP (λ), then
SW (t) = exp(−λt). Recall that E(W ) = 1/λ.
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18) If limt→∞ tSY (t) → 0, then E(Y ) =
∫∞
0
tfY (t)dt =

∫∞
0
SY (t)dt. Hence

an estimate of the mean Ê(Y ) can be obtained from the area under Ŝ(t).

19) Let Y = (Y1, ..., Yn). If y = (y1, ..., yn) is the data then the likelihood

function L(θ) = L(θ|y). For each sample point y = (y1, ..., yn), let θ̂(y) be
a parameter value at which L(θ|y) attains its maximum as a function of
θ with y held fixed. Then a maximum likelihood estimator (MLE) of the

parameter θ based on the sample Y is θ̂(Y ). Note: it is crucial to observe
that the likelihood function is a function of θ (and that y1, ..., yn act as fixed
constants). Often θ = θ is a scalar.

20) If the MLE θ̂ exists, then θ̂ ∈ Θ. If the MLE θ̂ = (θ̂1, ..., θ̂k), then the

MLE of θi is θ̂i, the MLE of (θ1 , θ5) is (θ̂1, θ̂5), etc.

21) Invariance Principle: If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of
τ (θ). Here τ is a function of θ with domain Θ.

22) For individual data, Y1, ..., Yn are iid, usually with pdf f(y) or pmf
p(y). Let y = (y1, ..., yn) be the observed data. Then the likelihood func-
tion L(θ) ≡ L(θ|y) =

∏n
i=1 g(yi) where g(y) is f(y) or p(y). The log like-

lihood function log(L(θ)) =
∑n

i=1 log(g(xi)). Usually use 22) to find the
MLE.

23) For this class, assume that the maximum likelihood estimator (MLE)

is a solution to
∂

∂θi
logL(θ)

set
= 0 for i = 1, ..., k where usually k = 1 or 2. (We

will not use second derivatives to show that the MLE was the global max.)
Tips: a) exp(a) = ea. b) log(ab) = b log(a) and log(eb) = b. c)

log(
∏n

i=1 ai) =
∑n

i=1 log(ai).
d) Often log[L(θ)] = log(

∏n
i=1 f(xi|θ)) =

∑n
i=1 log(f(xi|θ)). e) If t is a differ-

entiable function and t(θ) 6= 0, then d
dθ ln(|t(θ)|) = t′(θ)

t(θ) where t′(θ) = d
dθ t(θ).

In particular, d
dθ ln(θ) = 1/θ. f) Anything that does not depend on θ is

treated as a constant with respect to θ and hence has derivative 0 with re-
spect to θ.

24) For small n, if given y it can be easier to plug in the yi to find the
MLE. Sometimes you will solve for the MLE as a statistic, then plug x into
the statistic.

25) Let g(x|θ) be the pmf or pdf of a sample Y . If Y = y is observed,
then the likelihood function L(θ) = g(y|θ).

26) Often L(θ) = L(θ|y1, ..., yn) =
∏n

i=1 L(θ|yi). Note that 1 − F (w) =
S(w).

a) For iid individual data, L(θ|yi) = f(yi) if Y has pdf f(y).
b) For iid individual data, L(θ|xi) = p(yi) if Y has pmf p(y).
c) If it is only known that yi is in some interval (cj−1, cj], then

L(θ|yi) = P (yi ∈ (cj−1, cj]) = F (cj) − F (cj−1).
The endpoints can be open or closed if Y is from a continuous distribution.

d) If yi is right censored at ui, then the interval is [ui,∞), and L(θ|yi) =
1− F (ui).
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e) For grouped data from the table below, L(θ) =

m∏

j=1

[F (cj)−F (cj−1)]
nj .

interval number
(c0, c1] n1

(c1, c2] n2

(c2, c3] n3

...
...

(cm−2, cm−1] nm−1

(cm−1, cm] nm

f) If yi is left truncated at di, then L(θ|yi) =
f(yi)

1 − F (di)
.

g) If yi is left truncated at di and right censored at ui, then L(θ|yi) =
1− F (ui)

1 − F (di)
.

h) If the data are left truncated at d with n − k uncensored cases yi and

k cases right censored at u, then L(θ) =
[
∏n−k

i=1 f(yi)][1− F (u)]k

[1 − F (d)]n
.

i) (Rare, the interval is (0, d].): If yi is censored below at d,L(θ|yi) = F (d).

j) (Rare): If yi is truncated above at u, L(θ|yi) =
f(yi)

F (u)
.

Note that left truncated = truncated below = truncated, and right cen-
sored = censored above = censored are often used.

1.7 Complements

For some of the MLE rules, see Klugman et al. (2008) and Kellison and Lon-
don (2011). Olive (2014, pp. 145-147) gives a correct proof of the invariance
principle (most “proofs” in the literature are not valid).

Important papers include Aalen (1978), Kaplan and Meier (1958), Nel-
son (1969, 1972). For Greenwood’s formula, see Kaplan and Meier (1958).
Advanced works use theory from counting processes and martingales.

1.8 Problems

Problems with an asterisk * are especially important.
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1.1. Suppose H(t) =
λ

θ
[eθt − 1] for t > 0 where λ > 0 and θ > 0. Find

a)h(t), b)S(t), c) F (t) and d) f(t) for t > 0.

1.2. Suppose T ∼ EXP(λ). Show P (T > t+ s|T > s) = P (T > t) for any
t > 0 and s > 0. This property is known as the memoryless property and
implies that the future survival of the product does not depend on the past
if the lifetime T of the product is exponential.

1.3. Suppose F (t) = 1 − exp[−at − (bt)2] where a > 0, b > 0 and t > 0.
Find a)S(t), b)f(t), c) h(t) and d) H(t) for t > 0.

1.4. Suppose F (t) = 1 − exp[−at − (ct)3] where a > 0, c > 0 and t > 0.
Find the following quantities for t > 0.

a) S(t)

b)f(t)

c) h(t)

d) H(t)

1.5. Suppose H(t) = α+ βt2 for t > 0 where α > 0 and β > 0.

a) Find h(t).

b) Find S(t).

c) Find F (t).

1.6. Suppose

F (t) = 1 − exp

(−t2
2σ2

)

where σ > 0 and t > 0. Find the following quantities for t > 0.

a) S(t)

b)f(t)

c) h(t)

d) H(t)

1.7. Eleven death times from Collett (2003b, p. 16) are given below. The
patients had malignant bone tumours.

11 13 13 13 13 13 14 14 15 15 17

a) Following Example 1.3, make a table with headers
t(j), ti, di, ŜE(t) =

∑
(Ti > t)/n.

b) Plot ŜE(t).

c) Find the 95% classical CI for S(13) based on ŜE(t).

d) Find the 95% plus four CI for S(13) based on ŜE(t).

1.8. Find the 95% classical CI for SY (32) if n = 9 and ŜE(32) = 4/9.

1.9. Find the 95% plus four CI for SY (32) if n = 9 and ŜE(32) = 4/9.
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1.10. Find the 95% plus four CI for SY (32) if n = 9 and ŜE(32) = 6/9.

1.11. Find the 95% classical CI for SY (32) if n = 9 and ŜE(32) = 6/9.

1.12. Survival times for nine electrical components are given below.
8, 8, 23, 32, 32, 46, 57, 88, 109
Compute the empirical survival function ŜE(ti) by filling in the table below.
Then plot the function.

t(j) ti di ŜE(t)

t0 = 0 ŜE(0) = 1 = 9
9

8

8 8 2 ŜE(8) =

23 ŜE(23) =

32

32 ŜE(32) =

46 ŜE(46) =

57 ŜE(57) =

88 ŜE(88) =

109 ŜE(109) =
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1.13. The Klein and Moeschberger (1997, p. 141-142) data set consists of
information from 927 1st born children to mothers who chose to breast feed
their child. The event was time in weeks until weaned (instead of death).
Complete the following table used to produce the lifetable estimator (on a
separate sheet of paper).

Ij dj cj nj n′
j

n′

j−dj

n′

j
ŜL(t)

[0, 2) 77 2 927 926 0.9168 1.0000
[2, 3) 71 3 848 846.5 0.9161 0.9168
[3, 5) 119 6 774 771 0.8457 0.8399
[5, 7) 75 9 649 644.5 0.8836 0.7103
[7, 11) 109 7 565 561.5 0.8059 0.6276
[11, 17) 148 5 449 446.5 0.6685 0.5058
[17, 25) 107 3 296 0.3381
[25, 37) 74 0 186
[37, 53) 85 0 112
[53,∞) 27 0 27

time n.risk n.event survival std.err lower 95% CI upper 95% CI

9 11 1 0.909 0.0867 0.7392 1.000

13 10 1 0.818 0.1163 0.5903 1.000

18 8 1 0.716 0.1397 0.4422 0.990

23 7 1 0.614 0.1526 0.3145 0.913

31 5 1 0.491 0.1642 0.1691 0.813

34 4 1 0.368 0.1627 0.0494 0.687

48 2 1 0.184 0.1535 0.0000 0.485

1.14. The length of times of remission (time until relapse) in acute myel-
ogeneous leukemia under maintenance chemotherapy for 11 patients is
9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+. See Miller (1981, p. 49). From
the output above what is the 95% CI for SY (34)?
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1.15. The Lindsey (2004, p. 280) data set is for survival times for 110
women with stage 1 cervical cancer studied over a 10 year period. Use the
life table estimator to compute the estimated survival function ŜL(ti) by
filling in the table below. Then plot the function.

Ij dj cj nj n′
j

n′

j−dj

n′

j
ŜL(t)

[0, 1) 5 5 110 107.5 0.9535 1.0000
[1, 2) 7 7 100 96.5 0.9275 0.9535
[2, 3) 7 7 86 82.5 0.9152 0.8843
[3, 4) 3 8 72 68 0.9559 0.8093
[4, 5) 0 7 61 57.5 1.0 0.7736
[5, 6) 2 10 54 49 0.9591 0.7736
[6, 7) 3 6 42 39 0.9230 0.7420

[7, 8) 0 5 33

[8, 9) 0 4 28

[9, 10) 1 8 24

[10,∞) 15 0 15
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1.16. Survival times for 13 women with tumors from breast cancer that
were negatively stained with HPA are given below.
23, 47, 69, 70+, 71+, 100+, 101+, 148, 181, 198+, 208+, 212+, 224+
See Collett (2003b, p. 6). Compute the Kaplan Meier survival function ŜK(ti)
by filling in the table below. Then plot the function.

t(j) γj ti ni di ŜK(t)

t0 = 0 ŜK(0) = 1

23 1 23 13 1 ŜK (23) =

47 1 47 ŜK (47) =

69 1 69 ŜK (69) =

70 0

71 0

100 0

101 0

148 1 148 ŜK(148) =

181 1 181 ŜK(181) =

198 0

208 0

212 0

224 0
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1.17. The Lindsey (2004, p. 280) data is for survival times for 234 women
with stage 2 cervical cancer studied over a 10 year period. Use the life table
estimator to compute the estimated survival function ŜL(ti) by filling in the
table below. Show what you multiply to find ŜL(ti). Then plot the function.

Ij dj cj nj n′
j

n′

j−dj

n′

j
ŜL(t)

[0, 1) 24 3 234 232.5 0.8968 1.0000
[1, 2) 27 11 207 201.5 0.8660 0.8968
[2, 3) 31 9 169 164.5 0.8116 0.7766
[3, 4) 17 7 129 125.5 0.8645 0.6302
[4, 5) 7 13 105 98.5 0.9289 0.5448
[5, 6) 6 6 85 82 0.9268 0.5061
[6, 7) 5 6 73 70 0.9286 0.4691

[7, 8) 3 10 62

[8, 9) 2 13 49

[9, 10) 4 6 34

[10,∞) 24 0 24
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1.18. Times (in weeks) until relapse below are for 12 patients with acute
myelogeneous leukemia who reached a state of remission after chemotherapy.
See Miller (1981, p. 49).
5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
Compute the Kaplan Meier survival function ŜK(ti) by filling in the table
below. Show what you multiply to find Ŝk(ti). Then plot the function.

t(j) γj ti ni di ŜK (t)

t0 = 0 ŜK (0) = 1

5 1 5 12 2 ŜK (5) =

5 1

8 1 8 ŜK (8) =

8 1

12 1 12 ŜK(12) =

16 0

23 1 23 ŜK(23) =

27 1 27 ŜK(27) =

30 1 30 ŜK(30) =

33 1 33 ŜK(33) =

43 1 43 ŜK(43) =

45 1 45 ŜK(45) =
1.19. Suppose the random variable Y has probability density function

(pdf) f(y) where f(y) = 0 for y < 0 and the expected value E(Y ) exists.
One way to get a new pdf g(y) is to use

g(y) =
yf(y)

E(Y )
.

See Cox (1962, p. 65). Show
∫∞
0 g(y)dy = 1.

SAS Problems



38 1 Univariate Survival Analysis

SAS is a statistical software package that will be used in this course. You
will need a disk. There are SAS manuals and books at the library, but they
are not needed in this course. To use SAS on windows (PC), use the following
steps.

i) Click the lower left icon to see programs in the icons Window. You can
click on the desktop icon to escape. If your computer does not have SAS,
go to another computer. If you click on something and can’t get out of the
information window, there is a Windows key that looks like 4 rectangles and
is on the lower left of the keyboard near the Ctrl key. This Windows key can
get you back to icons Windows.

ii) Use the homework link or (http://parker.ad.siu.edu/Olive/survhw.txt)
to copy and paste the program for Problem 1.20 into SAS. Highlight the pro-
gram for problem 1.20. Hit Ctrl–c. Click the lower left icon to see programs.
Double click the SAS 9.4 icon. The editor window is the lower window. Click
on that window,then hit Ctrl–v to paste in the program. Then run>submit.
Output will appear in a few minutes.

( You can copy and paste the program from (http://parker.ad.siu.edu/
Olive/M473hw.txt) or (http://parker.ad.siu.edu/Olive/regsas.txt) problem
16.36. The ls stands for linesize so l is a lowercase L, not the number one.)

If you were not successful, look at the log window for hints on errors.
A single typo can cause failure. Reopen your file in Word or Notepad and
make corrections. Occasionally you can not find your error. Then find your
instructor or wait a few hours and reenter the program. Word seems to make
better looking tables, and copying from Notepad to Word can completely ruin
the table.

iii) To copy and paste relevant output into Word, click on the output
window and use the top menu commands “Edit>Select All” and then the
menu commands “Edit>Copy”.

(In Notepad use the commands “Edit>Paste”. Then use the mouse to
highlight the relevant output (the table and statistics for the table).
Then use the commands “Edit>Copy”.)

Finally, in Word, use the commands “Edit>Paste”.

iv) This point explains the SAS commands. The semicolon “;” is used to
end SAS commands and the “options ls = 70;” command makes the output
readable. (An “*” can be used to insert comments into the SAS program.
Try putting an * before the options command and see what it does to the
output.) The next step is to get the data into SAS. The command “data
heart;” gives the name “heart” to the data set. The command “input time
status number;” says the first entry is the censored variable time, the 2nd
variable status (0 if censored 1 if uncensored) and the third variable number
(= number of deaths or number of cases censored, depending on status).
The command “cards;” means that the data is entered below. Then the data
in entered and the isolated semicolon indicates that the last case has been
entered. The next 4 lines make perform the lifetable estimates for S(t) and
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the corresponding confidence intervals. Also plots of the estimated survival
and hazard functions are given. The command “run;” tells SAS to execute
the program.

You may want to save your SAS output as the file hw1d20.doc It may
be easier to save output from each problem as a Word document, but you
may get an extra page printed whenever you use the printer.

1.20. The following problem gets the lifetable estimator using SAS. The
data is on 68 patients that received heart transplants at about the time when
getting a heart transplant was new. The following problem gets the lifetable
estimator using SAS. See Allison (1995, p. 49-50).

a) Do i) through iii) above, and look at iv).

b) From the 1st page of output, Number Failed = di, Number Censored
= ci, Effective Sample Size = n′

i, Survival = ŜL(ti−1) = estimated survival for

the left endpoint of the interval and Survival Standard Error = SE[ŜL(ti−1)].

What is SE[ŜL(200)]?

c) From the 2nd page of output, SDF LCL SDF UCL gives a 95% CI for
S(ti−1).

What is the 95% CI for S(200) using output?

d) Compute the 95% CI for S(200) using the formula and SE[ŜL(200)].

e) The SAS program (with plots(s,h)) plots both the survival and the
hazard function (scroll down!). From the 2nd page of output, plot MIDPOINT
vs HAZARD (so the first point is (25,0.0055)) by hand. Connect the dots
to make an estimated hazard function. Notice that the estimated hazard
function decreases sharply to about 200 days after surgery and then is fairly
stable.

1.21. This problem examines the Allison (1995, p. 31-34) myelomatosis
data (a cancer causing tumors in the bone marrow) with SAS using the Ka-
plan Meier product limit estimator. Obtain the SAS program for this problem
from (http://parker.ad.siu.edu/Olive/survhw.txt). Obtain the output from
the program in the same manner as i) through iv) above Problem 1.20.

a) The output should be roughly 3 pages and a graph. Include this output
in Word.

b) From the summary statistics of the first page of output, about when do
50% of the patients die?

c) From the first page of output (perhaps), what is the 95% CI for the
time when 50% of the patients die?

d) From the 3rd page of output (perhaps), what is the 95% CI for SY (13).
This is the log log transformed CI, so will differ from the CI in e).

e) Make the CI using ŜK(13) and SE(ŜK (13)) obtained from the 1st page
of output (perhaps). If the interval is (L, U), use [max(0, L),min(U, 1)] as the
final interval.
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f) From the plot of ŜK (t) for the KM estimator, briefly explain survival
for days 0–250 and for days 250–2250.

1.22. This Miller (1981, p. 49-50) data set is on remission times in weeks
for leukemia patients. Twenty patients received treatment A and 20 received
treatment B. The predictor group was 0 for A and 1 for B.

a) Obtain the SAS program for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt). Obtain the output from the
program in the same manner as i) through iv) above Problem 1.20.

b) Do a 4 step test for Ho : β = 0.

c) Do a 4 step PLRT for Ho : β = 0 (for β = 0). (The PLRT is better
than the Wald test in b).)

R Problems

R is the free version of Splus. Click on the Rgui icon to get into R. Then
typing q() gets you out of R.

Use the command source(“G:/survdata.txt”) to download the data.
See Preface or Section 5.1. For the following problems, the R command
can be copied and pasted from (http://parker.ad.siu.edu/Olive/survhw.txt)
into R.

1.23. Miller (1981, p. 49) gives the length of times of remission (time until
relapse) in acute myelogeneous leukemia under maintenance chemotherapy
for 11 patients is
9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+.

a) Following Example 1.3, make a table with headers t(j), γj , ti, ni, di and

ŜK(ti). Then compute the Kaplan Meier estimator. (You can check it with
the R output obtained in b).)

b) Get into R. Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Hit Enter and a plot
should appear. Copy and paste the R output with header (time ... upper
95% CI) into Word. Following the R handout, click on the plot and hold
down the Ctrl and c buttons simultaneously. Then in the Word Edit menu,
select “paste.”

Include this output with the homework. The center step function is the
Kaplan Meier estimator ŜK(t) while the lower and upper limits correspond
to the confidence interval for SY (t).

c) Write down the 95% CI for SY (23) and then verify the CI by computing
ŜK(23) ± 1.96SE(ŜK(23)).

1.24. Copy and paste commands for parts a) and b) for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R.

The commands make the KM estimator for censored data T = min(Y, Z)
where Y ∼ EXP (1). The KM estimator attempts to estimate SY (t) =
exp(−t). The points in the plot are SY (t(j)) = exp(−t(j)), and the points
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should be within the confidence intervals roughly 95% of the time (actually,
if you make many plots the points should be in the intervals about 95% of
the time, but for a given plot you could get a “bad data set” and then the
rather more than 5% of the points are outside of the intervals).

a) Copy and paste the commands for a) and hit Enter. Then copy and
paste the plot into Word.

b) Copy and paste the commands for b) and hit Enter. Then copy and
paste the plot into Word.

c) As the sample size increases from n = 20 to n = 200, the CIs should
become more narrow. Can you see this in the two plots? Are about 95% of
the plotted points within the CIs?

1.25. Go to (http://parker.ad.siu.edu/Olive/survhw.txt) and copy and
paste the source command near the top of the file into R.

Type the command kmsim2(n=10), hit Enter and include the output
in Word.

This program computes censored data T = min(Y, Z) where Y ∼ EXP (1).
Then a 95% CI is made for SY (t(j)) for each of the n = 10 t(j). This is done
for 100 data sets and the program counts how many times the CI contains
SY (t(j)) = exp(−t(j)). The scaled lengths are also computed. The ccov is the

count for the classical Ŝ ± 1.96SE(Ŝ) interval while p4cov is for the plus 4
CI. The lcov is based on a CI that uses log(Ŝ) and llcov is based on a CI that
uses log(−log(Ŝ)). The 1st 3 CIs are not made if the last case is censored so
NA is given. The plus 4 CI seems to be good at t(1) and t(n).
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Problems from Quizzes and Exams
1.40. Suppose

F (t) = 1 − 1

1 + t

where t > 0. Find the following quantities for t > 0.

a) S(t)
b) f(t)
c) h(t)
d) H(t)

1.41. A survival function for treatment A is plotted below.

1.0|_______

.9 | |

.8 | |

.7 | |_____________

.6 | |_________

.5 | |

.4 | |___

.3 | |

.2 | |

.1 | |___________________

0 |_______________________________________________________|___

| | | | | | | | | | | | | |

10 20 30 40 50 60 70 80 90 100 110 120 130 140

a) Estimate when 50% of the patients from treatment A have died. Show the
over and down lines.

b) Suppose treatment B had lower hazard than treatment A for 0 < t <
140. Would you expect the survivor function for treatment B to be lower or
higher that that for treatment A in the above plot?



Chapter 2

Cox Proportional Hazards Regression

This chapter give the first 1D regression model for survival analysis. The
survival 1D regression models differ from the multiple linear regression, ex-
perimental design models, and generalized linear models in that the condi-
tional mean function is no longer of primary interest. Instead, the conditional
survival function and the conditional hazard functions are of interest. For sur-
vival regression, the ith case will often be (Ti = Y ∗

i , δi,x
T
i )T for i = 1, ..., n

where xi = (xi1, ..., xip)
T is a p × 1 vector of predictors. Predictors are also

called independent variables, risk factors, or explanatory variables.

Definition 2.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Definition 2.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (2.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = βT x = xT β where ESP = β̂
T
x. This class of models includes several

important survival regression models.

One of the simplest examples of a regression model has x = (x1) = x1 = x
where x = 1 for a new treatment and x = 0 for a standard treatment or for
a placebo = sham treatment. Then Ŝ(t|x = 1) and Ŝ(t|x = 0) are of interest.

Suppose S(t|xj) is of interest. If there was enough data at xj, say
Y ∗

1 (xj), ..., Y
∗
m(xj), then you could make, for example, the Kaplan Meier es-

43
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timator for various values of xj and plot the survival curves, e.g, Ŝk(t|x1), ...,

Ŝk(t|xJ ).
Often there is only one censored survival time Y ∗

i |xi for each vector of
predictors xi. The training data set is (Y ∗

i , δi,x
T
i )T for i = 1, ..., n. Often

interest is in estimating the conditional hazard function hi(t) = h(t|xi) =
hYi|xi

(t) = h
Yi|β

T xi
(t).

2.1 Proportional Hazards Regression

Definition 2.3. The Cox proportional hazards regression (PH) model
is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βT xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio. The sufficient predictor SP = βT xi =

∑p
j=1 βjxij.

The Cox PH model (= Cox PH regression model = Cox regression model
= Cox proportional hazards regression model) is a 1D regression model since
the conditional distribution Y |x is completely determined by the hazard func-
tion, and the hazard function only depends on x through βT x. Inference for
the PH model uses computer output that is used almost exactly as the out-
put for generalized linear models such as the logistic and Poisson regression
models. The Cox PH model is semiparametric: the conditional distribution
Y |x depends on the sufficient predictor βT x, but the parametric form of
the hazard function hY |x(t) is not specified. The Cox PH model is the most
widely used survival regression model in survival analysis. For the Cox PH
model, often we will use β = βC.

Regression models are used to study the conditional distribution Y |x given
the p × 1 vector of nontrivial predictors x. In survival regression, Y is the
time until an event such as death. Many of the most important survival
regression models are 1D regression models with SP = βT x: the nonnegative
response variable Y is independent of x given βT x, written Y x|βT x. Let
the sufficient predictor SP = βT x, and the estimated sufficient predictor

ESP = β̂
T
x. The ESP is sometimes called the estimated risk score. The

sufficient predictor is also called a linear component or linear predictor.
The conditional distribution Y |x is completely determined by the prob-

ability density function fx(t), the distribution function Fx(t), the survival
function

Sx(t) ≡ SY |SP (t) = P (Y > t|SP = βT x),

the cumulative hazard functionHx(t) = − log(Sx(t)) for t > 0, or the hazard
function hx(t) = d

dtHx(t) = fx(t)/Sx(t) for t > 0. High hazard implies low
survival times while low hazard implies long survival times.
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Survival data is usually right censored so Y is not observed. Instead, the
survival time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time.
Also δi = 0 if Ti = Zi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi,xi) for i = 1, ..., n.

The Cox proportional hazards regression model (Cox 1972) is a semipara-
metric model with SP = βT

Cx and

hx(t) ≡ hY |SP (t) = exp(βT
Cx)h0(t) = exp(SP )h0(t)

where the baseline hazard function h0(t) is left unspecified. Note that

hY |SP (t)

h0(t)
= eSP , and SP = log

(
hY |SP (t)

h0(t)

)
.

The survival function is

Sx(t) ≡ SY |SP (t) = [S0(t)]
exp(βT

Cx) = [S0(t)]
exp(SP). (2.2)

If x = 0 is within the range of the predictors, then the baseline survival and
hazard functions correspond to the survival and hazard functions of x = 0.
First βC is estimated by the maximum partial likelihood estimator β̂C , then

estimators ĥ0(t) and Ŝ0(t) can be found (see Breslow 1974), and

Ŝx(t) = [Ŝ0(t)]
exp(

ˆβ
T

Cx) = [Ŝ0(t)]
exp(ESP), (2.3)

ĥx(t) = exp(xT β̂)ĥ0(t), and Ĥx(t) = exp(xT β̂)Ĥ0(t).

Let hi(t) = hx(t) = ex
T βh0(t) = exp(x1β1 + · · · + xiβi + · · ·xpβp)h0(t).

Suppose xi changes by r units while the other xj are held fixed. Then SP (xi+
r) = x1β1 + · · ·+ (xi + r)βi + · · ·xpβp = SP + rβi, and

hi|xi+r(t) = exp(rβi) exp(xT β)h0(t) = exp(rβi)hi(t).

Then the hazard ratio

hi|xi+r(t)

h0(t)
= exp(rβi)

hi(t)

h0(t)

changes by a factor of exp(rβi). The log hazard ratio

log

(
hi|xi+r(t)

h0(t)

)
= rβi + log

(
hi(t)

h0(t)

)
= rβi + xT β.

Thus βi is the change in the log hazard ratio when xi is changed by r = 1
unit with all other xj held fixed.
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2.2 Visualizing the Cox PH Regression Model

Grambsch and Therneau (1994) give a useful graphical check for whether the
PH model is a reasonable approximation for the data. Suppose the ith case
had an uncensored survival time ti. Let the scaled Schoenfeld residual for the
ith observation and jth variable xj be r∗P,j(ti). For each variable, plot the

ti versus the r∗P,j(ti) + β̂j and add the loess curve. If the loess curve is ap-
proximately horizontal for each of the p plots, then the proportional hazards
assumption is reasonable. Alternatively, fit a line to each plot and test that
each of the p slopes is equal to 0. The R function cox.zph makes both the
plots and tests. See MathSoft (1999b, p. 267, 275). Hosmer and Lemeshow
(1999, p. 211) suggest also testing whether the interactions xi log(t) are sig-
nificant for i = 1, ..., p.

Definition 2.4. The slice survival plot divides the ESP into J groups
of roughly the same size. For each group j with nj cases, the model estimated

survival function Ŝj(t) is computed using the x corresponding to the “median
ESP” of the group (the kth order statistic of the ESP in group j, where
k = 1 + floor[(nj − 1)/2]). Let ŜKMj(t) be the Kaplan Meier estimator
computed from the survival times (Ti, δi) in the jth group. For each group,
Ŝj(t) is plotted and ŜKMj(ti) is plotted as circles at the uncensored event

times ti. The survival regression model is reasonable if the circles “track Ŝj

well” in each of the J plots.

If the slice widths go to zero, but the number of cases per slice increases
to ∞ as n → ∞, then the Kaplan Meier estimator and the model estimator
converge to SY |SP (t) if the model holds. Simulations suggest that the two
survival functions are “close” for moderate n and nine slices. For small n and
skewed predictors, some slices may be too wide in that the model is correct
but ŜKMj(t) is not a good approximation of SY |SP (t) where SP corresponds

to the x used to compute Ŝj(t).
For the Cox model, if pointwise confidence interval (CI) bands are added

to the plot, then ŜKMj “tracks Ŝj well” if most of the plotted circles do not
fall very far outside the pointwise CI bands since these pointwise bands are
not as wide as simultaneous bands. Collett (2003, p. 241-243) places several
observed Kaplan Meier curves with fitted curves on the same plot.

Survival regression is the study of the conditional survival SY |SP (t), and
the slice survival plot is a useful tool for visualizing SY |SP (t) in the back-
ground of the data. Suppose the jth slice is narrow so that ESP ≈ wj. If
the model is reasonable, ESP ≈ SP , and the number of uncensored cases in
the jth slice is not too small, then SY |SP=wj

(t) ≈ Ŝj(t) ≈ ŜKMj(t). (These

quantities approximate [Ŝ0(t)]
exp(wj) for the Cox model.) Thus the nonpara-

metric Kaplan Meier estimator is used to check the model estimator Ŝj(t) in
each slice.
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Fig. 2.1 Censored Response Plot for R Lung Cancer Data

The slice survival plot tailored to the Cox model is closely related to the
May and Hosmer (1998) test. Also, van Houwelingen et al. (2006) use similar
ideas, but place the J Kaplan Meier curves on one plot and the J Cox survival
curves on another plot. For a 1D regression model, the ESP is a scalar while x

is a p×1 vector. Using the ESP instead of x in plots is an important dimension
reduction technique (and is similar to using a scalar valued minimal sufficient
statistic instead of the p-dimensional sufficient statistic x.) Inferior plots have
been suggested by several authors with x divided into J groups instead of the
ESP. For example, see Miller (1981, p. 168). Hosmer and Lemeshow (1999,
p. 141–145) suggests making plots based on the quartiles of the ith predictor
xi, and note that a problem with Cox survival curves (2.3) is that they may
use inappropriate extrapolation. Using the ESP results in narrow slices with
many cases, and adding Kaplan Meier curves shows if there is extrapolation.
The main use of the next plot is to check for cases with unusual survival
times. Hazard increases and survival decreases as ESP increases if ESP ≈
SP.

Definition 2.5. A censored response plot is a plot of the ESP versus
T with plotting symbol 0 for censored cases and + for uncensored cases. Slices
in this plot correspond to the slices used in the slice survival plot.



4
8

2
C

o
x

P
r
o
p
o
r
tio

n
a
l
H

a
z
a
r
d
s

R
e
g
r
e
ssio

n

0
2

0
0

4
0

0
6

0
0

0.0 0.4 0.8

T
im

e

Estimated S(t)

0
2

0
0

4
0

0
6

0
0

0.0 0.4 0.8

T
im

e

Estimated S(t)

0
2

0
0

4
0

0
6

0
0

0.0 0.4 0.8

T
im

e

Estimated S(t)

0
2

0
0

4
0

0
6

0
0

0.0 0.4 0.8

T
im

e

Estimated S(t)

F
ig

.
2
.2

S
lice

S
u
rv

iv
a
l
P

lo
ts

fo
r

R
L
u
n
g

C
a
n
cer

D
a
ta

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

T
im

e

Estimated S(t)

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

T
im

e

Estimated S(t)

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

T
im

e

Estimated S(t)

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

T
im

e

Estimated S(t)

m
a
le

s

F
ig

.
2
.3

S
lice

S
u
rv

iv
a
l
P

lo
ts

fo
r

R
L
u
n
g

C
a
n
cer

D
a
ta

-M
a
les



2.2 Visualizing the Cox PH Regression Model 49

Suppose the ESP is a good estimator of the SP. Consider a narrow vertical
slice taken in the censored response plot about ESP = w. The points in
the slice are a censored sample with SY |SP (t) ≈ SY |w(t). For proportional
hazards models, hY |SP (t) ≈ exp(ESP )h0(t), and the hazard increases while
the survival decreases as the ESP increases.

Example 2.1. R and Splus contain a data set lung where the response
variable Y is the time until death for patients with lung cancer. See MathSoft
(1999b, p. 268). Consider the data set for males with predictors ph.ecog =
Ecog performance score 0-4, ph.karno = a competitor to ph.ecog, pat.karno
= patient’s assessment of their karno score and wt.loss = weight loss in last 6
months. Figure 2.1 shows the censored response plot. Notice that the survival
times decrease rapidly as the ESP increases and that there is one time that is
unusually large for ESP ≈ 1.8. If the Cox regression model is a good approx-
imation to the data, then the response variables corresponding to the cases
in a narrow vertical strip centered at ESP = w are approximately a cen-
sored sample from a distribution with hazard function hx(t) ≈ exp(w)h0(t).
Figure 2.2 shows the slice survival plots. The ESP was divided into 4 groups
and the ESP increases from the upper left, upper right, lower left and lower
right corners of the plot where Ŝ(400) ≈ (0.70, 0.60, 0.55, 0.30). The circles
corresponding to the Kaplan Meier estimator are “close” to the Cox survival
curves in that the circles do not fall very far outside the pointwise CI bands.

Figure 2.3 shows the slice survival plots for males. See Problem 2.19. Some
versions of R add the poinwise confidence interval bands for the Kaplan Meier
estimator to the plot. Then there are three curves of circles. The center curve
of circles is the Kaplan Meier estimator while the two outer curves of cirlces
are the pointwise CI bands. The pointwise CI bands for the PH survival curve
are narrower than those for the Kaplan Meier estimator since the PH survival
curve is based on all n cases while the Kaplan Meier estimator is based on
the ni cases corresponding to the ith slice. The center curve does not fall very
far outside the Cox PH pointwise survival bands, although the lower right
plot looks the worst.

Example 2.2. R contains a data set nwtco where the response variable Y
is the time until relapse with n = 4028. The model used predictors histol =
tumor histology from central lab, instit = tumor histology from local institu-
tion, age in months, and stage of disease from 1 to 4 (treated as a continuous
variable). In Figure 2.4, the Grambsch and Therneau (1994) plots suggest
that the Cox model is not valid since not all of the loess curves are flat, and
the global test has p-value ≈ 5.66× 10−11. The slice survival plot in Figure
2.5 shows that the Cox survival estimators and Kaplan Meier estimators are
nearly identical in the six slices, suggesting that the Cox model is a reason-
able approximation to the data. The greatest contributors to lack of fit seem
to be the predictors age and stage corresponding to the bottom two plots of
Figure 2.4, and survival for small ESP corresponding to the upper left plot
in Figure 2.5.
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Fig. 2.4 Grambsch and Therneau Plots for NWTCO Data

Residuals are quantities calculated for each individual or case, and the
residual behavior is roughly known with the fitted model is satisfactory. Let
Ti = ti be the observed death or censoring time of individual i.

Definition 2.6. a) The Cox Snell residual rci = exp(xT β̂)Ĥ0(ti) =
Ĥx(ti) for i = 1, ..., n.

b) Let γi = 1 if ti is uncensored and γi = 0 if ti is censored. Then the
Martingale residual rmi = γi − rci.

The Martingale residual has mean 0 for uncensored cases and rmi < 0
if γi = 0 if case i is censored. Also, −∞ < rmi ≤ 1. It can be shown that
− log(S(Y )) ∼ EXP (1). So if Ŝ(t) is a good approximation to S(t), then
− log(Ŝxi (ti)) = Ĥxi(ti) = rci should behave like n observations from a
censored EXP (1) distribution.

2.3 Testing

For regression models, we want to test i) whether the predictors x are needed
in the model: H0 : β = 0 versus H1 : β 6= 0, ii) whether a reduced model
that that does not use predictors xi1, ..., xik is good: H0 : (βi1, ..., βik)

T = 0
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Fig. 2.5 Slice Survival Plot for NWTCO Data: Horizontal Axis is the Estimated
Survival Function S(t)

versus H1 : (βi1, ..., βik)
T 6= 0, and iii) whether predictor xi is needed in the

model given that the other predictors are needed in the model H0 : βi = 0
versus H1 : βi 6= 0. Note that tests i) and iii) are special cases of test ii). We

also want confidence intervals for βi. We also want to find ESP = β̂
T

Cxi and

ĥi(t) = eESP ĥ0(t) given xi. Often the hypothesis H1 = HA.
Computer output will be needed, and shown below is output in symbols

from SAS and R. The estimated coefficient is β̂j . The Wald chi square = X2
0,j

while p and “pr > chisqu” are both p-values. Sometimes “Std. Err.” replaces
“SE.” Note that z2

0,j = X0,j where z0,j ≈ N(0, 1), a standard normal random
variable.
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variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) z0,p = β̂p/se(β̂p) X2
0,p = z2

0,p H0 : βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu

age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

The estimated sufficient predictor ESP = β̂
′
xj =

∑p
i=1 β̂ixij. Given β̂

from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
′
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. The hypothesis H0 is
rejected if the p–value < δ. A p–value between 0.07 and 1.0 provides little
evidence thatH0 should be rejected, a p–value between 0.01 and 0.07 provides
moderate evidence and a p–value less than 0.01 provides strong statistical
evidence that H0 should be rejected. Statistical evidence is not necessarily
practical evidence, and reporting the p–value along with a statement of the
strength of the evidence is more informative than stating that the p–value is
less than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

The Wald confidence interval (CI) for βj can also be obtained from the
output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j ).

Investigators often test whether a predictor xj is needed in the model given
that the other p− 1 predictors x1, ..., xi−1, xi+1, ..., xp are in the model with
a 4 step Wald test of hypotheses:
i) State the hypotheses H0 : βj = 0 H1 : βj 6= 0.

ii) Find the test statistic z0,j = β̂j/se(β̂j) or X2
0,j = z2

0,j or obtain it from
output.

iii) The p–value = 2P (Z < −|z0j|) = P (χ2
1 > X2

0,j). Find the p–value from
output or use the standard normal table.
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iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that xj is needed in the PH survival model
given that the other p − 1 predictors are in the model. If you fail to reject
Ho, then conclude that the values of xj do not (significantly) affect the PH
survival model given that the other p − 1 predictors are in the model. (Or
state that there is not enough evidence to conclude that the values of xj

affect the PH survival model.)

Typically the “p-value” is actually an estimated p-value called pval. When
a normal table is used, if −|z0,j| < −3.9, then take pval = 0.

Remark 2.1. Suppose the test fails to reject Ho. Then xj could be a very
useful PH survival predictor, but may not be needed if other predictors are
added to the model (often due to correlation with other predictors). Also,
xj could be needed in the survival model, but survival does not depend on
the observed values of xj . This result can be extremely important if xj is
treatment. For example, suppose that there are two different, but equally
effective treatments, where xj = 1 for treatment 1 and xj = 0 for treatment
2. Then the test may fail to reject Ho for Ho: βj = 0, but not giving either
treatment may greatly reduce survival. If treatment 2 is a placebo = sham
treatment, then failing to reject Ho suggests that treatment 1 in not effective.
It is also possible that the sample size is not large enough to determine
whether the values of xj affect the survival model.

Example 2.3. Allison (1995, p. 120) considers one of the first heat trans-
plant studies with Y = days from acceptance until death, x1 = trans = 1 if
the patient received a heart transplant with x1 = 0, otherwise, x2 = surg =
1 if the transplant was before the date of acceptance with x2 = 0, otherwise,
and x3 = ageaccept = age at date of acceptance. Using the following output,

a) find ESP β̂
T
x if x = (1, 0, 64)T , b) find ĥi(t), c) find a 95% Wald CI for

β2, d) perform a 4 step test of hypotheses for β2 = 0 without using output to
find the test statistic and p–value, e) perform the 4 step test of hypotheses
of β3 = 0 using output.

variable df estimate SE Wald chisquare pr > chisq risk
X2

0,j = z2
0,j pval ratio

trans 1 −1.70814 0.2786 37.59 0.0001 0.181
surg 1 −0.42140 0.3710 1.29 0.2560 0.656

ageaccpt 1 0.05861 0.0151 15.16 0.0001 1.060

Solution: a) ESP = β̂
T
x = −1.70814(1) − 0.170814(0) + 0.05861(64) =

2.0429

b) ĥi(t) = e
ˆβ

T

xĥ0(t) = e2.0429ĥ0(t) = 7.7129 ĥ0(t)
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c) β̂2 ± 1.96SE(β̂2) = −0.4214 ± 1.96(0.3710) = −0.4214 ± 0.72716 =
[−1.1486, 0.3058]

Note that the 95% CI gives reasonable values for β2 and includes 0. thus
x2 may not be important given that x1 and x2 are in the model.

d) i) H0 : β2 = 0, H1 : β2 6= 0
ii)

z0,2 =
−0.4214

0.3710
= −1.136

iii) Using a normal table and rounding z0,2 to 2 digits, pval = 2P (Z <
−|z0,2|) = 2P (Z < −1.14) = 2(0.1271) = 0.2542. From the t-table near the
back of Chapter 5, line Z and the last line “two tail” gives 0.1 < pval < 1.

iv) Since pval > δ = 0.05, fail to reject H0. Hence the values of surg do
not affect the survival model given that trans and ageaccpt are in the model.

e) i) H0 : β3 = 0, H1 : β3 6= 0
ii) X2

0,3 = 15.16
iii) pval = 0.001 < δ = 0.05
iv) Since pval < δ, reject H0. Hence ageaccpt is needed in the survival

model given that trans and surg are in the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R,x
T
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors. The null model
has hi(t) ≡ h0(t) regardless of the value of xi.

The partial likelihood ratio test (PLRT) is used to test whether β = 0.
If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If H0 : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If H0 is rejected, use the PH model.

Know that the 4 step PLRT is
i) H0 : β = 0 H1 : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject H0 if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value≥ δ, then fail to reject
H0 and conclude that the values of the predictors x do not (significantly)
affect the PH survival model. (Or state that there is not enough evidence to
conclude that the values of x affect the PH survival model.)

Remark 2.2. Suppose the test fails to reject Ho. Then it is possible that
predictors are not useful for predicting survival. It is also possible that that
the predictors are very useful for increasing survival, but survival does not
depend on the observed values of the predictors. For example, there could be
two or more equally effective treatments, but if no treatment was given, then
survival would decrease greatly. It is also possible that the sample size is not
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large enough to determine whether the values of x affect the survival model.

Output in symbols is often given in three ways.

variables in model −2 log L̂

none −2 log L̂(none)
...

...

x1, ..., xp −2 log L̂(full)

or
Model Fit Statistics
test chisq DF pr > chisq

likelihood ratio X2(N |F ) p pval = P (χ2
p > X2(N |F ))

or
Testing Global Null Hypotheses: BETA = 0
criterion without with model chisq

likelihood ratio covariates covariates

−2 logL −2 log L̂(none) −2 log L̂(full) X2(N |F )

R output for the PLRT uses a line like
Likelihood ratio test=14.3 on 2 df, p=0.000787.
Some SAS output for the PLRT is shown next.

Model Fit Statistics or

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square with

-2 LOG L 596.651 551.1888 45.463 3 DF (p=0.0001)

x1, ..., xp −2 log L̂(full)

none −2 log L̂(none)

Example 2.4.
x1, ..., x5 −2 logL = 162.479

none −2 logL = 177.667

or R output: likelihood ratio test = 15.188 on 5 df p = 0.00959
or

SAS Testing Global Null Hypotheses: BETA = 0

Test chisq DF pr > chisq

likelihood ratio 15.188 5 0.00959

Using the above output, shown in 3 different formats, do a 4 step test for
β = 0.

Solution: i) H0 : β = 0 H1 : β 6= 0
ii) X2(N |F ) = 15.188 = 177.667− 162.479
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iii) pval = 0.00959
iv) Reject H0, there is a PH survival relationship between survival times

Y and the predictors x1, ..., x5.

Example 2.5. Suppose there are treatments A and B for leukemia pa-
tients in remission. Let x = 0 for treatment A and x = 1 for treatment B.
Then β = β is a scalar since p = 1. Do a 4 step test for β = 0 i n = 40 and
the output is R likelihood ration test = 1.32 on 1 df, p=0.025.

Solution: i) H0 : β = 0 H1 : β 6= 0
ii) X2(N |F ) = 1.32
iii) pval = 0.25
iv) Fail to reject H0: the values of x do not affect the PH model for relapse

times (so no difference between treatments A and B for survival (relapse)
times).

Let the full model be

SP = SP (F ) = β1x1 + · · ·+ βpxp = βT x = βT
RxR + βT

OxO.

let the reduced model

SP = SP (R) = βR1xR1 + · · ·+ βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test H0: the reduced
model is good (can be used instead of the full model, so the values of xO do
not affect the survival model given xR is in the model) versus HA: use the
full model (the full model is significantly better than the reduced model). Fit
the full model and the reduced model to get X2(N |F ) and X2(N |R) where
X2(N |F ) is used in the PLRT to test whether β = 0 and X2(N |R) is used in
the PLRT to test whether βR = 0 (treating the reduced model as the model
in the PLRT).

Shown below in symbols is output for the full model and output for the
reduced model. The output shown on can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F )−X2(N |R) =

[−2 logL(none)] − [−2 logL(full)] − ([−2 logL(none)] − [−2 logL(red)]) =

[−2 logL(red)] − [−2 logL(full)] = −2 log

(
L(red)

L(full)

)
.
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variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) z0,p = β̂p/se(β̂p) X2
0,p = z2

0,p Ho H0 : βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for H0 : β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) z0,1 = β̂1/se(β̂1) X2
0,1 = z2

0,1 H0 : β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) z0,r = β̂r/se(β̂r) X2
0,r = z2

0,r H0 : βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

Know that the 4 step change in PLR test is
i) H0: the reduced model is good H1: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject H0 if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject H0 and conclude that the reduced
model is good (the values of xO do not (significantly) affect the survival
model, or there is not enough evidence to conclude that the values of xO

affect the survival model).

Remark 2.3. Suppose the test fails to reject Ho. Then it is possible that
predictors xO are not useful for predicting survival. It is also possible that
that the predictors xO are very useful for increasing survival, but survival
does not depend on the observed values of the predictors. For example, there
could be two or more equally effective treatments, but if no treatment was
given, then survival would decrease greatly. It is also possible that the sample
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size is not large enough to determine whether the values of xO affect the
survival model.

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes H0 : βi = 0 versus H1 : βi 6= 0. This change in partial
likelihood ratio test is a competitor of the Wald test. The change in PLRT
is usually better than the Wald test if the sample size n is not large, but the
Wald test is often easier for software to produce. For large n the test statistics
from the two tests tend to be very similar (asymptotically equivalent tests).

Example 2.6. Data is from Smith (2002, pp. 179-180). Aids patients
received low dose or high dose of a drug or a placebo. Let v1 = 1 for low dose
and v1 = 0, else. Let v2 = 1 for high dose and v2 = 0, else. The time until
a blood test was positive was measured, and the bood test was taken each
day for a month. Note that (v1, v2) = (0, 0) means a placebo was given to
the patient. Let the full model output be as below.

R coef se coef z p

SAS parameter standard chisquare Pr > chisq

estimate error

v1 -1.51 0.528 -2.86 8.1796 0.0043

v2 -1.03 0.455 -2.26 5.1076 0.0240

R: likelihood ratio test = 8.99 on 2 df, p = 0.0111

SAS Test chisq df Pr > chisq

Likelihood ratio 8.99 2 0.0111

Let the reduced model have v1 alone with the following output.

R: likelihood ratio test = 3.88 on 1 df, p =

SAS Test chisq df Pr > chisq

Likelihood ratio 3.88 1

Test whether the reduced model is good.
Solution: i) H0 : the reduced model is good H1 : use the full model
ii) X2(R|F ) = X2(N |F ) −X2(N |F ) = 8.99− 3.88 = 5.11
iii) pval = P (χ2

2−1 > 5.11) with 0.01 < pval < 0.025 using a χ2 table as
below

df | 0.025 0.01

-----------------

1 | 5.02 6.63

iv) Reject H0, use the full model.

Example 2.7. Data is from Collett (2003, p. 79). Test whether the reduced
model is good using the following output.
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model variables in model -2 log L

reduced A2, A3, N 165.508

full A2, A3, N, A2N, A3N 162.479

Solution: i) H0: the reduced model is good H1: use the full model
ii) X2(R|F ) = X2(N |F ) −X2(N |F ) = 165.508− 162.479 = 3.029
iii) The df = 5 − 3 = 2 = number of terms left out of full model. Hence

pval = P (χ2
2 > 3.029) with 0.1 < pval < 0.25 using a χ2 table as below

df | 0.25 0.1

-----------------

2 | 2.77 4.61

iv) Fail to reject H0, the reduced model is good.

If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should have plotted points that cluster tightly about

the identity line with unit slope and zero intercept.

In R, there is a useful shortcut for doing the change in PLR test. In the
code below let “fit” be for the full model and “fitR” be for the reduced model.
The anova command gives the following output in symbols. Values left blank
are not needed for the test.

loglik chisq df P (> |chi|)
1
2 X2(R|F ) for test pval for test

Then for the output below, X2(R|F ) = 2.0469 = 8.08− 6.03 up to round-
ing, the df = 1, and the pval = 0.01525. So fail to reject H0 and conclude
that the reduced model is good.

fit <- coxph(Surv(time,status)˜x1*x2 + x3, data = dat)

fitR <- coxph(Surv(time,status)˜x1 + x2 + x3, data = dat)

full coef exp(coef) SE(coef) Z P

x1 4.236 2.326 1.79 0.073

x2 2.674 2.556 1.05 0.296

x3 0.473 0.592 0.80 0.424

x1:x2 -1.936 1.421 -1.38 0.167

LRT = 8.08 on 4 df p = 0.0888

reduced coef exp(coef) SE(coef) Z P

x1 1.347 0.680 1.98 0.048

x2 -0.749 0.595 -1.26 0.208

x3 0.453 0.590 0.77 0.443

LRT = 6.03 on 3 df p = 0.011
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anova(fitR, fit, test = "Chisq")

loglik chisq df P( > |chi|)

1 -31.970

2 -30.494 2.0469 1 0.1525

Remark 2.4. This remark summarizes Remarks 2.1, 2.2, and 2.3. For
testing, β = 0 means changing values of x, within the observed range of x

or of β̂
T
x, does not affect survival. For example, suppose p = 1 and x = 1

for treatment 1 and x = 0 for treatment 0. If treatments 1 and 0 are both
very and equally effective, then h1(t) = h0(t) = eβxh0(t) with β = 0. For
this example, x is important for survival times Y , in that survival could be
poor if neither treatment were given, but the value of x, 0 or 1, did not
affect the value of Y . Hence β = 0 could imply that the survival relationship

between x and Y is the same for all observed values of β̂
T
x. Hence concluding

β = 0 does not necessarily mean that the predictors x are not important for
survival times. Similarly, βi = 0 means changing values of xi, within the
observed range of xi, does not affect the survival times. If β = (βT

R,β
T
O)T ,

then βO = 0 means changing the values of xO, within the observed values of

xO or β̂
T

OxO, does not affect the survival times. Then the reduced model is
good in that you get the “same survival model” regardless of the xO values.
So “no survival relationship” between Y and x or xO or xi means within
the observed range of x, or xO, or xi. This remark for testing applies to the
other models in Chapters 2 and 3.

A factor A is a qualitative variable that takes on K categories called
levels. Suppose A has a categories c1, ..., cK. Then the factor is incorporated
into the PH model by using a − 1 indicator variables xjA = 1 if A = cj
and xAj = 0 otherwise, where the 1st indicator variable is omitted, eg, use
x2A, ..., xaA. Each indicator has 1 degree of freedom. Hence the degrees of
freedom of the K− 1 indicator variables associated with the factor is K − 1.

Example 2.8. Let factor A have levels squamous, adeno, and small cell
with respective indicator variables x1A, x2A, and X3A. Then (x2A, x3A) =
(1, 0) corresponds to adeno, (x2A, x3A) = (0, 0) corresponds to squamous,
and (x2A, x3A) = (0, 1) corresponds to small cell.

The xj corresponding to variates (quantitative variables that take on nu-
merical values) or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a fac-
tor include products for the K − 1 indicator variables of the factor. Hence
an interaction between a variate x1 and a factor A with indicator variables
x2A, ..., xKA is incorporated into the model with x1x2A, ..., x1xKA. An inter-
action between factor A and factor B with indicators x2B, ..., xbB is incorpo-
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rated into the model with the (K − 1)(b− 1) pairs
x2Ax2B, ..., x2AxbB

...
xKAxKB, ..., xKAxbB.

If an interaction is in the full or reduced model, also include the corre-
sponding main effects in the model. For example, if x1x3 is in the model, also
include the main effects x1 and x2. In Example 2.7, A2N and A3N are interac-
tions. Sometimes an interaction is denoted by x12 = x1x2 and x123 = x1x2x3.

Suppose x1 is quantitative and x2 is qualitative with 2 levels and x2 = 1
for level c2 and x2 = 0 for level c1. Then a first order model with interaction
is SP = β1x1 + β2x2 + β3x1x2. This model yields two unrelated lines in the
sufficient predictor depending on the value of x2: SP = β2 + (β1 + β3)x1 if
x2 = 1 and SP = β1x1 if x2 = 0. If β3 = 0, then there are two parallel lines:
SP = β2 + β1x1 if x2 = 1 and SP = β1x1 if x2 = 0. If β2 = β3 = 0, then
the two lines are coincident: SP = β1x1 for both values of x2. If β2 = 0,
then the two lines both have the intercept at the origin: SP = (β1 + β3)x1 if
x2 = 1 and SP = β1x1 if x2 = 0. In general, as factors have more levels and
interactions have more terms, e.g. x1x2x3x4, the interpretation of the model
rapidly becomes very complex.

A scatterplot is a plot of xi versus xj. A scatterplot matrix is an
array of scatterplots. It is used to examine the marginal relationships of the
predictors. Variables with outliers, missing values or strong nonlinearities
may be so bad that they should not be included in the full model.

Suppose that all values of the variable x are positive. The log rule says
add log(x) to the full model if max(xi)/min(xi) > 10.

2.4 Variable Selection

Variable selection, also called subset selection, is the search for a subset of
predictor variables that can be deleted with little loss of information if n/p is
large. Consider the 1D regression model where Y x|SP where SP = xT β.
See Definition 2.2. A model for variable selection can be described by

xT β = xT
SβS + xT

EβE = xT
SβS (2.4)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS) × 1 vector. Given that xS is in the model, βE = 0 and
E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then
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xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (2.4) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

Definition 2.7. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI . Underfitting occurs if submodel I does not contain S. Fitting
unnecessary predictors is sometimes called fitting noise or overfitting.

Definition 2.8. An EE plot for variable selection is a plot of ESP (I)

versus ESP where ESP (I) = β̂
T

I xI and ESP = β̂
T
x.

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selection.
The relaxed lasso or relaxed elastic net estimator fits the regression method,
such as a Cox (1972) proportional hazards regression, to the predictors than
had nonzero lasso or elastic net coefficients. Underfitting occurs if submodel
I does not contain S: a PH model may not hold for submodel I even if the
PH model does hold for the full model.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin with the smallest AIC
(among models considered) are always of interest. Create a full model. The
full model has a −2 log(L) at least as small as that of any submodel.

Backward elimination starts with the full model with p variables and
the predictor that optimizes some criterion is deleted. Then there are p − 1
variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p− 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p− 2 and p − 1 predictors. Both
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forward selection and backward elimination result in a sequence of p models
{x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} = full model.

Consider models I with aI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2aI . For
forward selection and backward elimination, these two criterion generate the
same sequence of models if each variable has 1 degree of freedom (no factors
with more than 2 levels since a factor with K ≥ 2 levels uses K − 1 indica-
tor variables with df = K − 1). To see this, let model Ii have i predictors
{x∗1, ..., x∗i} with aIi = i. Forward selection moves from Ii−1 to Ii while back-
ward elimination moves from Ii+1 to Ii, but all models I being considered
for Ii have i predictors with aIi = i a constant.

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4 (if
the predictor has 1 degree of freedom) may be troubling in that a good pre-
dictor may have been deleted. In practice, the backward elimination program
may delete the variable such that the submodel I with i predictors has 1)

the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest p–value
(preferably from a change in PLR test but possibly from a Wald test) in the
test Ho βj = 0 versus HA βj 6= 0 where the current model with i+1 variables
is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with i predictors has 1) the smallest AIC(I), 2) the

smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 6= 0 where the current model with i− 1 terms plus the predictor xj is
treated as the full model (for all variables xj not yet in the model).

Rule of thumb: a) If an interaction (e.g. x3x7x9) is in the submodel,
then the main effects (x3, x7, and x9) should be in the submodel.

b) If xi+1, xi+2, ..., xi+K−1 are the K − 1 indictor variables corresponding
to factor A, submodel I should either contain none or all of the K−1 indicator
variables.

Given a list of submodels along with the number of predictors and AIC, be
able to find the “initial submodel to examine” II . Let Imin be the minimum
AIC model. Then II is the submodel with the fewest predictors such that
AIC(II) ≤ AIC(Imin)+2. It is possible that II = Imin = Ifull . Also look at
submodels I with fewer predictors than II such that AIC(I) ≤ AIC(Imin)+
7.

Submodels I with more predictors than II should not be used.
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Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than II .
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs. ESP cluster tightly about
the identity line.
v) Want p-value ≥ 0.01 for the change in PLR test that uses I as the reduced
model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors aI ≤ n/10.

vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.

But for factors with K − 1 indicators, modify ix) and x) so that the indi-
cator with the smallest p-value is examined.

Suppose that the full model is good and is stored in M1. Let M2, M3, M4,
and M5 be candidate submodels found after forward selection, backward elim-
ination, etc. Typically one of the submodels is the min(AIC) model. Given a
list of properties of each submodel, be able to pick out “good submodels.”
Tips: i) submodels with more predictors then II have too many predictors.
ii) The initial submodel to look at is II which has AIC(II ) ≤ AIC(Imin)+2.
iii) Submodels I with AIC(I) > AIC(Imin) + 7 are not good submodels.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model Ifull may be the best starting submodel if Ifull = II and
M2–M5 satisfy iii). Similarly, the min(AIC) model Imin may be the best
starting submodel if Imin = II and models with fewer predictors satisfy iii).
vi) Submodels I with fewer predictors than II and AIC(I) ≤ AIC(Imin)+7
are worth considering. For fixed a, take the candidate that minimizes AIC.

Example 2.9. Given a list of variables with their AIC, be able to find II ,
Imin, and candidate submodels. The list below comes from Collett (2003, p.
86). For this list, Imin = II = {size, index} since the model I with the fewest
predictors aI ≤ 2 = aImin and smallest AIC(I) ≤ AIC(Imin) + 2 = 29.533
is II = Imin. A candidate submodel is I = {size} since AIC(I) = 31.042 ≤
AIC(Imin)+7 = 34.533 and aI = 1 < aImin . This model also has the smallest
AIC for models with a = 1. Note that there are four models with a = 1, six
with a = 2, four with a = 3 and one with a = 1. For each value of a, the
model with the lowest −2logL is also the one with the lowest AIC. Note that
adding predictors does not increase −2 logL.
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variables -2 log L AIC= -2 log L + 2a

none 36.349 36.349

age 36.269 38.269

shb 36.196 38.196

size 29.042 31.042 candidate

index 29.127 31.127

age,shb 36.151 40.151

age,size 28.854 32.854

age,index 28.760 32.760

shb,size 29.019 33.019

shb,index 27.981 31.981

size,index 23.533 27.533 Imin= I_I

age,shb,size 28.852 34.853

age,shb,index 27.893 33.893

age,size,index 23.269 29.269

shb,size,index 23.508 29.508

age,shb,size,index 23.231 31.231

Example 2.10. Given summaries on several models, be able to pick out
the “best starting model” II . In the table below, M1 is the full model and
M3 is the minimum AIC model Imin. M2 and M2 have more predictors than
the minimum AIC model and the AIC for M4 is to large to be the starting
model. So use M3 as the starting model.

If M4 has −2logL = 27.042, AIC = 29.042 and p-value = 0.283, then M4
would be the starting value. Any model p-value < 0.01 in the last row has a
p-value that is too small.

M1 M2 M3 M4

# of predictors 4 3 2 1
# with 0.01 ≤ p-value ≤ 0.05 1 2 1 0

# with p-value > 0.05 2 1 0 0
−2 log(L) 23.231 23.269 23.533 29.042
AIC(I) 31.231 29.269 27.533 31.042

p-value for change in PLR test 1.0 0.8454 0.8598 0.12

If there are important predictors such as treatment that must be in the
submodel, either force the variable selection procedures to contain the im-
portant predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

Suppose the PH model contains x1, ..., xp. Leave out xj, find the martingale
residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If the curve
is linear then xj has the correct functional form. If the curve looks like t(xj)
(e.g. (xj)

2), then replace xj by t(xj), find the martingale residuals, plot t(xj)
vs the residuals and check that the loess curve is linear.
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Warning: A common mistake is to act as if the variable selection model
Imin as the reduced model and to use inference for the reduced model. This
type of inference is not valid: the pvalue for the change in PLRT that used
xImin as the reduced model is too high and the pvalues for H0 : βi = 0 are
too small if xi is a variable in Imin. A reduced model needs to be chosen
before looking at the data. The variable selection model fits the data a bit to
well since many submodels are examined. Chapter 5 will explain how to do
inference after variable selection.

Lasso also does variable selection. Below is R code for backward elimi-
nation, forward selection, and lasso for the Lawless (1982, p. 286) alung
data.

source("http://parker.ad.siu.edu/Olive/survdata.txt")

library(MASS)

library(survival)

alung<-as.data.frame(alung)

zc <- coxph(Surv(alung[,1],alung[,2])˜perf+age+ttoent+

size+type+ttype+trt,data=alung)

outb<-stepAIC(zc) #default is backward

fit1 <- coxph(Surv(time,status) ˜ ., data=alung)

fit2 <- coxph(Surv(time,status) ˜ 1, data=alung)

#fit1 <- coxph(Surv(alung[,1],alung[,2]) .,data=alung)

#fails because it uses time and status as predictors

outb<-stepAIC(fit1,direction="backward")

Start: AIC=189.22

Surv(time, status) ˜ perf + age + ttoent + size + type + ttype +

trt

Df AIC

- type 1 187.22

- ttoent 1 187.22

- age 1 187.63

- size 1 187.78

- trt 1 188.21

<none> 189.22

- ttype 1 190.28

- perf 1 206.73

Step: AIC=187.22

Surv(time, status) ˜ perf + age + ttoent + size + ttype + trt

Df AIC

- ttoent 1 185.22



2.4 Variable Selection 67

- age 1 185.63

- size 1 185.87

- trt 1 186.22

<none> 187.22

- ttype 1 188.71

- perf 1 204.93

Step: AIC=185.22

Surv(time, status) ˜ perf + age + size + ttype + trt

Df AIC

- age 1 183.63

- size 1 184.00

- trt 1 184.29

<none> 185.22

- ttype 1 186.79

- perf 1 205.16

Step: AIC=183.63

Surv(time, status) ˜ perf + size + ttype + trt

Df AIC

- trt 1 182.41

- size 1 182.53

<none> 183.63

- ttype 1 184.92

- perf 1 203.18

Step: AIC=182.41

Surv(time, status) ˜ perf + size + ttype

Df AIC

- size 1 181.52

<none> 182.41

- ttype 1 183.27

- perf 1 203.14

Step: AIC=181.52

Surv(time, status) ˜ perf + ttype

Df AIC

<none> 181.52

- ttype 1 183.12

- perf 1 203.16
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#Imin has perf and ttype

outf<-stepAIC(fit2,direction="forward",scope=

list(upper=fit1,lower=fit2))

Start: AIC=204.69

Surv(time, status) ˜ 1

Df AIC

+ perf 1 183.12

+ ttype 1 203.16

+ size 1 203.58

<none> 204.69

+ type 1 205.09

+ ttoent 1 205.30

+ trt 1 205.45

+ age 1 206.50

Step: AIC=183.12

Surv(time, status) ˜ perf

Df AIC

+ ttype 1 181.52

<none> 183.12

+ size 1 183.27

+ trt 1 184.59

+ ttoent 1 185.09

+ age 1 185.10

+ type 1 185.12

Step: AIC=181.52

Surv(time, status) ˜ perf + ttype

Df AIC

<none> 181.52

+ size 1 182.41

+ trt 1 182.53

+ type 1 183.28

+ age 1 183.41

+ ttoent 1 183.52

#The following code also works.

fit1 <- zc #full model

fit2 <- coxph(Surv(alung[,1],alung[,2])˜ 1,data=alung) #null model

#fit2 <- coxph(Surv(alung[,1],alung[,2])˜ NULL,data=alung) #null model

outb<-stepAIC(fit1,direction="backward")
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outf<-stepAIC(fit2,direction="forward",scope=list(upper=fit1,lower=fit2))

outboth<-stepAIC(fit2,direction="both",scope=list(upper=fit1,lower=fit2))

library(glmnet)

y <- as.matrix(alung[,1:2])

x <- as.matrix(alung[,3:9])

outlasso<-cv.glmnet(x,y,family="cox")

lam <- outlasso$lambda.min

betahat <- as.vector(predict(outlasso,

type="coefficients",s=lam))

betahat

-0.04331 0.0 0.0 -0.09863 0.0 0.43485 0.0

#perf, size, ttype have nonzero lasso coefficients

2.5 Stratified Proportional Hazards Regression

Definition 2.9. The stratified proportional hazards regression (SPH)
model is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′xi
(t) = exp(β′xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the
J strata. The same β is used for each group = stratum, but the baseline
hazard functions differ. Stratification can be useful if there are clusters of
cases such that the observations within the clusters are not independent. A
common example is the variable study sites and the stratification should be
on site. For example, the sites could be hospitals where the hospitals are
fixed by the design of the study, rather than being a random sample of sites
(hospitals). Sometimes stratification is done on a categorical variable such as
gender. Sometimes stratification is done on a continuous varaible by grouping
the variable and using the groups as strata. For example, use low, medium
and high incomes as the strata for the variable income.

Inference is done almost exactly as done for the PH model. Except the
conclusion is changed slightly: replace “PH” by “SPH”.

Let A be a categorical variable with the J levels corresponding to the
J groups for the SPH model. This categorical variable is not included as a
predictor variable for the SPH model. A Cox PH regression model would
use J − 1 indicator variables as predictor variable for a categorical variable
included in the Cox PH regression.

Since J Cox PH regression models are fit for SPH , one for each group,
check each Cox PH model with graphs. Another useful method is to divide
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the ESP β̂
T
x into k groups where 4 ≤ k ≤ 9. Choose an xi from near the

center of each group. Then plot t versus Ŝxi,j(t) for j = 1, ..., J on the same
graph for xi. Make such graphs for x1, ...,xk.

2.6 Generalized Cox Regression

In the Cox PH regression model, the predictors xj are not allowed to depend
on time.

Definition 2.10. In the generalized Cox regression (GCR) model, the
predictors xj(t) do depend on time for at least one j. These predictors are
called time dependent variables. Let xi(t) = (xi1(t), ..., xip(t))

T . If xj is not
a time dependent variable, then interpret xj(t) ≡ xj(0) = xj. Then xij(t) ≡
xij(0). Then the generalized Cox regression model has

h
Y |βT xi(t)

= hi(t) = hx(t)(t) = exp(βT xi(t))h0(t).

The GCR model is not a PH model, but h0(t) is still the baseline function.
Note that β does not depend on t. If subjects can have xi(t) ≡ xi(0) = 0
∀t > 0, so that the subject’s predictor variables are 0 at the time of the origin
and remain at 0 regardless of the time t > 0, then h0(t) is the hazard function
for such subjects.

Note that
hi(t)

h0(t)
= exp(βT xi(t))

depends on time. Also hi(t) 6= c h0(t) for some constant c that does not
depend on time. These results again show that the GCR model is not a PH
model.

Often patients are monitored for the duration of the study, and some
variables are recorded on a regular basis. Some examples are size of tumor,
PSA levels for prostate cancel, white blood cell count, and weight. If xj(t)
is the value of xj measured at time t, the time t is the study time, not the
calendar time. Hence if subject 1 began on May 1 and subject 2 on July 1,
and both are measured weekly, then the time in days will be 7, 14, 21, ... .

There are two types of time dependent variables. An internal time depen-
dent variable is suject specific and requires the subject to be under periodic
observation. An external time dependent variable does not require the subject
to be under direct observation, and often only needs one initial measurement.
For example, if the patient’s birthdate is known, then the patient’s age can
be computed at any time after the patient enters the study.
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Example 2.11.

presence of side effect internal
xj ∗ log(time) interaction external

age measured yearly external
environmental variables such as pollen count internal
serum cholesterol level measured monthly internal
white blood cell count measured monthly internal

Know: Inference is almost the same as that for the Cox PH regression
model, but in the conclusions, replace “PH” by “GCR.”

Data management and computing the GCR model is much more difficult
than that for the Cox PH model. For the GCR model, xj(t) needs to be
known for “all individuals” who are in the risk set at time ti for i = 1, ..., m
if there are m distinct death times, or there are missing values.

One type of time dependent covariate that is easy to work with is an
interaction like xj ∗ time or xj ∗ log(time). As an application, suppose a
Cox PH model is fit with predictor variables x1, ..., xp. To test the Cox PH
assumption, add the variables x1∗ log(time), ..., xp∗ log(time), and fit a GCR
model. Want the pvalues for the interactions to be larger than 0.05. This
procedure uses multiple testing. So if p = 20, βp+i = 0 is the coefficient for
xi ∗ log(time) for i = 1, ..., 20, then about 1 in 20 will have pvalue < 0.05.

2.7 Summary

1) The Cox proportional hazards regression (PH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βT xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio.

For now, assume that the PH model is appropriate, although
this assumption should be checked before performing inference.

2) The sufficient predictor SP = βT xj =
∑p

i=1 βixij.

variable Est. SE Est./SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

SAS Wald pr >

variable df Estimate SE chi square chisqu
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age 1 0.1615 0.0499 10.4652 0.0012

ecog.ps 1 0.0187 0.5991 0.00097 0.9800

R coef exp(coef) se(coef) z p

age 0.1615 1.18 0.0499 3.2350 0.0012

ecog.ps 0.0187 1.02 0.5991 0.0312 0.9800

Likelihood ratio test=14.3 on 2 df, p=0.000787 n= 26

Shown above is output in symbols from and SAS and R. The estimated
coefficient is β̂j . The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

3) The estimated sufficient predictor ESP = β̂
T
xj =

∑p
i=1 β̂ixij. Given β̂

from output and given x, be able to find ESP and ĥi(t) = exp(ESP )ĥ0(t) =

exp(β̂
T
x)ĥo(t) where exp(β̂

′
x) is the estimated hazard ratio.

For tests, the p–value is an important quantity. Recall that Ho is rejected if
the p–value< δ. A p–value between 0.07 and 1.0 provides little evidence that
Ho should be rejected, a p–value between 0.01 and 0.07 provides moderate
evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

4) The Wald confidence interval (CI) for βj can also be obtained from the
output: the large sample 95% CI for βj is

β̂j ± 1.96 se(β̂j ).

5) Investigators also sometimes test whether a predictor xj is needed in
the model given that the other k − 1 nontrivial predictors are in the model
with a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or X2
o,j = z2

o,j or obtain it from
output.

iii) The p–value = 2P (Z < −|zoj |) = P (χ2
1 > X2

o,j). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that xj is needed in the PH survival model
given that the other p−1 predictors are in the model. If you fail to reject Ho,
then conclude the values of xj do not affect the PH survival model given that
the other p−1 predictors are in the model. (Or state that there is not enough
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evidence to conclude that the values of xj affect the PH survival model.) Note
that xj could be a very useful PH survival predictor, but the observed values
of xj may not affect survival or xj may not be needed if other predictors are
added to the model.

For a PH, often 3 models are of interest: the full model that uses all p of
the predictors xT = (xT

R,x
T
O), the reduced model that uses the r predictors

xR, and the null model that uses none of the predictors.
The partial likelihood ratio test (PLRT) is used to test whether β = 0.

If this is the case, then the predictors are not needed in the PH model (so
survival times Y x). If Ho : β = 0 is not rejected, then the Kaplan Meier
estimator should be used. If Ho is rejected, use the PH model.

6) The 4 step PLRT is
i) Ho : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value < δ and conclude that there is a PH survival

relationship between Y and the predictors x. If p–value≥ δ, then fail to reject
H0 and conclude that the values of the predictors x do not (significantly)
affect the PH survival model. (Or state that there is not enough evidence to
conclude that the values of x affect the PH survival model.)

Some SAS output for the PLRT is shown next. R output is above 20).

SAS Testing Global Null Hypotheses: BETA = 0

without with

criterion covariates covariates model Chi-square

-2 LOG L 596.651 551.1888 45.463 with 3 DF (p=0.0001)

Let the full model be

SP = β1x1 + · · ·+ βpxp = βT x = α+ βT
RxR + βT

OxO .

let the reduced model

SP = βR1xR1 + · · ·+ βRrxRr = βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model.

Assume that the full model is useful. Then we want to test Ho: the reduced
model is good (can be used instead of the full model, so xO is not needed in
the model given xR is in the model) versus HA: use the full model (the full
model is significantly better than the reduced model). Fit the full model and
the reduced model to get X2(N |F ) and X2(N |R) where X2(N |F ) is used in
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the PLRT to test whether β = 0 and X2(N |R) is used in the PLRT to test
whether βR = 0 (treating the reduced model as the model in the PLRT).

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho β1 = 0
...

...
...

...
...

...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho βp = 0

R: Likelihood ratio test = X2(N |F ) on p df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |F ) p pval for Ho: β = 0

variable Est. SE Est/SE or (Est/SE)2 pvalue for

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

...

xr β̂r se(β̂r) zo,r = β̂r/se(β̂r) X2
o,r = z2

o,r Ho: βr = 0

R: Likelihood ratio test = X2(N |R) on r df

SAS: Testing Global Null Hypotheses: BETA = 0

Test Chi-Square DF Pr > Chisq

Likelihood ratio X2(N |R) r pval for Ho: βR = 0

The output shown above in symbols, can be used to perform the change
in PLR test. For simplicity, the reduced model used in the output is xR =
(x1, ..., xr)

T .

Notice that X2(R|F ) ≡ X2(N |F )−X2(N |R) =

[−2 logL(none)] − [−2 logL(full)] − ([−2 logL(none)] − [−2 logL(red)]) =

[−2 logL(red)] − [−2 logL(full)] = −2 log

(
L(red)

L(full)

)
.

7) The 4 step change in PLR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
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iii) The p–value = P (χ2
p−r > X2(R|F )) where χ2

p−r has a chi–square
distribution with p − r degrees of freedom.

iv) Reject Ho if the p–value < δ and conclude that the full model should
be used. If p–value ≥ δ, then fail to reject H0 and conclude that the reduced
model is good (the values of xO do not affect the survival model, or there
is not enough evidence to conclude that the values of xO affect the survival
model).

If the reduced model leaves out a single variable xi, then the change in
PLR test becomes Ho : βi = 0 versus HA : βi 6= 0. This change in partial
likelihood ratio test is a competitor of the Wald test. The change in PLRT
is usually better than the Wald test if the sample size n is not large, but
the Wald test is currently easier for software to produce. For large n the test
statistics from the two tests tend to be very similar (asymptotically equivalent
tests).

8) If the reduced model is good, then the EE plot of ESP (R) = β̂
T

RxRi

versus ESP = β̂
T
xi should be highly correlated with the identity line with

unit slope and zero intercept.

A factor A is a variable that takes on a categories called levels. Suppose
A has a categories c1, ..., ca. Then the factor is incorporated into the PH
model by using a − 1 indicator variables xjA = 1 if A = cj and xAj = 0
otherwise, where the 1st indicator variable is omitted, eg, use x2A, ..., xaA.
Each indicator has 1 degree of freedom. Hence the degrees of freedom of the
a− 1 indicator variables associated with the factor is a− 1.

The xj corresponding to variates (variables that take on numerical values)
or to indicator variables from a factor are called main effects.

An interaction is a product of two or more main effects, but for a factor
include products for all indicator variables of the factor.

If an interaction is in the model, also include the corresponding main
effects. For example, if x1x3 is in the model, also include the main effects x1

and x2.
A scatterplot is a plot of xi vs. xj. A scatterplot matrix is an array of

scatterplots. It is used to examine the marginal relationships of the predictors.
Variables with outliers, missing values or strong nonlinearities may be so bad
that they should not be included in the full model.

9) Suppose that all values of the variable x are positive. The log rule says
add log(x) to the full model if max(xi)/min(xi) > 10.

Variable selection is closely related to the change in PLR test for a
reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model with the smallest AIC are
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always of interest. Create a full model. The full model has a −2 log(L) at
least as small as that of any submodel. The full model is a submodel.

Backward elimination starts with the full model with p variables and
the predictor that optimizes some criterion is deleted. Then there are p − 1
variables left and the predictor that optimizes some criterion is deleted. This
process continues for models with p − 2, p− 3, ..., 3 and 2 predictors.

Forward selection starts with the model with 0 variables and the pre-
dictor that optimizes some criterion is added. Then there is p variable in
the model and the predictor that optimizes some criterion is added. This
process continues for models with 2, 3, ..., p− 2 and p − 1 predictors. Both
forward selection and backward elimination result in a sequence of p models
{x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} = full model.

Consider models I with rI predictors. Often the criterion is the minimum
value of −2 log(L(β̂I)) or the minimum AIC(I) = −2 log(L(β̂I)) + 2rI .

Heuristically, backward elimination tries to delete the variable that will
increase the −2 log(L) the least. An increase in −2 log(L) greater than 4 (if
the predictor has 1 degree of freedom) may be troubling in that a good pre-
dictor may have been deleted. In practice, the backward elimination program
may delete the variable such that the submodel I with k predictors has 1)

the smallest AIC(I), 2) the smallest −2 log(L(β̂I)) or 3) the biggest p–value
(preferably from a change in PLR test but possibly from a Wald test) in the
test Ho βi = 0 versus HA βi 6= 0 where the current model with k+1 variables
is treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the −2 log(L) the most. An decrease in −2 log(L) less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with k predictors has 1) the smallest AIC(I), 2) the

smallest −2 log(L(β̂I)) or 3) the smallest p–value (preferably from a change
in PLR test but possibly from a Wald test) in the test Ho βi = 0 versus
HAβi 6= 0 where the current model with k − 1 terms plus the predictor xi is
treated as the full model (for all variables xi not yet in the model).

10) If an interaction (e.g. x3x7x9) is in the submodel, then the main effects
(x3, x7, and x9) should be in the submodel.

11) If xi+1, xi+2, ..., xi+a−1 are the a − 1 indictor variables corresponding
to factor A, submodel I should either contain none or all of the a−1 indictor
variables.

12) Given a list of submodels along with the number of predictors and
AIC, be able to find the “initial submodel to examine” II . Let Imin be the
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minimum AIC model. Then II is the submodel with the fewest predictors
such that AIC(II ) ≤ AIC(Imin) + 2. It is possible that II = Imin = Ifull .
Also look at submodels I with fewer predictors than II such that AIC(I) ≤
AIC(Imin) + 7.

13) Submodels I with more predictors than II should not be used.

14) Submodels I with AIC(I) > AIC(Imin) + 7 should not be used.

15) Let the survival times Ti = min(Yi, Zi), and let γi = 1 if Ti = Yi

(uncensored) and γi = 0 if Ti = Zi (censored). For PH models, an censored
response plot is a plot of the ESP vs T with plotting symbol 0 for censored
cases and + for uncensored cases. If the ESP is a good estimator of the SP
and hSP (t) = exp(SP )h0(t), then the hazard increases and survival decreases
as the ESP increases.

16) The slice survival plot divides the ESP into J groups of roughly the
same size. For each group j, ŜPHj(t) is computed using the x corresponding

to the “median ESP” of the group. The Kaplan Meier estimator ŜKMj(t) is

computed from the survival times in the jth group. For each group, ŜPHj (t)

is plotted and ŜKMj(ti) as circles at the deaths ti. The proportional hazards
assumption is reasonable if the circles track the curve well in each of the J
plots. If pointwise CI bands are added to the plot, then ŜKMj tracks ŜPHj

well if most of the plotted circles do not fall very far outside the pointwise
CI bands.

17) Assume n > 5p, that the full PH model is reasonable and all predictors
are equally important. The following rules of thumb for a good PH submodel
I are in roughly decreasing order of importance.
i) Do not use more predictors than II .
ii) The slice survival plots for I looks like the slice survival plot for the full
model.
iii) corr(ESP,ESP(I))≥ 0.95.
iv) The plotted points in the EE plot of ESP(I) vs ESP cluster tightly about
the identity line.
v) Want pvalue ≥ 0.01 for the change in PLR test that uses I as the reduced
model. (So for variable selection use δ = 0.01 instead of δ = 0.05.)
vi) Want the number of predictors rI ≤ n/10.

vii) Want −2 log(L(β̂I)) ≥ −2 log(L(β̂full)) but close.
viii) Want AIC(I) ≤ AIC(Imin) + 7.
ix) Want hardly any predictors with pvalues > 0.05.
x) Want few predictors with pvalues between 0.01 and 0.05.

But for factors with a−1 indicators, modify ix) and x) so that the indicator
with the smallest pvalue is examined.
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18) Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Typically one of the submodels is the min(AIC) model.
Given a list of properties of each submodel, be able to pick out “good sub-
models.”
Tips: i) submodels with more predictors then II have too many predictors.
ii) The initial submodel to look at is II which has AIC(II ) ≤ AIC(Imin)+2.
iii) Submodels I with AIC(I) > AIC(Imin) + 7 are not good submodels.
iv) Submodels I with a pvalue < 0.01 for the change in PLR test have too
few predictors.
v) The full model Ifull may be the best starting submodel if Ifull = II and
M2–M5 satisfy iii). Similarly, the min(AIC) model Imin may be the best
starting submodel if Imin = II and models with fewer predictors satisfy iii).
vi) Submodels I with fewer predictors than II and AIC(I) ≤ AIC(Imin)+7
are worth considering.

19) If there are important predictors such as treatment that must be in
the submodel, either force the variable selection procedures to contain the
important predictors or do variable selection on the less important predictors
and then add the important predictors to the submodel.

20) Suppose the PH model contains x1, ..., xp. Leave out xj, find the mar-
tingale residuals rm(j), plot xj vs rm(j) and add the lowess or loess curve. If
the curve is linear then xj has the correct functional form. If the curve looks
like t(xj) (eg (xj)

2), then replace xj by t(xj), find the martingale residuals,
plot t(xj) vs the residuals and check that the loess curve is linear.

21) Let the scaled Schoenfeld residual for the jth variable xj be r∗pj + β̂j .
Plot the death times ti vs the scaled residuals and add the loess curve. If the
loess curve is approximately horizontal for each of the p plots, then the PH
assumption is reasonable. Alternatively, fit a line to each plot and test that
each of the p slopes is equal to 0. The R function cox.zph makes both the
plots and tests.

22) The stratified proportional hazards regression (SPH) model
is

hx,j(t) = hYi|x,j(t) = h
Yi|β

′xi
(t) = exp(β′xi)h0,j(t)

where h0,j(t) is the unknown baseline function for the jth stratum, j =
1, ..., J where J ≥ 2.

A SPH model is not a PH model, but a PH model is fit to each of the J
strata. The same β is used for each group = stratum, but the baseline hazard
functions differ. Stratification can be useful if there are clusters of cases such
that the observations within the clusters are not independent. A common
example is the variable study sites and the stratification should be on site.
Sometimes stratification is done on a categorical variable such as gender.
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23) Inference is done exactly as for the PH model. See points 3), 4), 5), 6),
and 7). Except the conclusion is changed slightly: in 5) and 6) replace “PH”
by “SPH”.

2.8 Complements

Sometimes the Cox PH regression model does not fit the data set, but there
is a categorical variable A with J levels such that a Cox PH regression model
fits each group corresponding to the levels of A. Then each group has a βj for
j = 1, ..., J . For example, men and women could follow a different Cox PH
regression model. The stratified proportional hazards regression model is a
special case where βg ≡ β for j = 1, ..., J , but the baseline hazard functions
h0j(t) differ.

For multiple linear regression, the ANOVA F test is like the PLRT and
the partial F test is like the change in PLR test.

Oakes (2000) notes that the proportional hazards model is not preserved
when variables are added or deleted from the model, eg by variable selection.
Any 1D regression model can be invalidated by adding or deleting variables
with nonzero coefficients. Variable selection is a search for variables xO where
x = (xT

I ,x
T
O)T and β = (βT

I ,β
T
O). If variable selection is successful to a

useful approximation, so that βO = 0, then the 1D regression model and
proportional hazards is preserved.

From the CRAN website, e.g. (https://cran.r-project.org/), click on pack-
ages, then survival, then survival.pdf to obtain the R reference manual on
the survival package. Much of this material is also in MathSoft (1999b, Ch.
8–13).

For SAS, see the SAS Institute (1999). The chapters on PHREG, LIF-
EREG and LIFETEST procedures are useful. These chapters can be found
online at (www.google.com) with a search of the keywords SAS/STAT User’s
Guide.

The most used survival regression models satisfy Y x|SP , and the slice
survival plot is useful for visualizing SY |SP (t) in the background of the data.
Simultaneous or pointwise CI bands are needed to determine whether the
nonparametric Kaplan Meier estimator is close to the model estimator. If
the two estimators are close for each slice, then the graph suggests that the
model is giving a useful approximation to SY |SP (t) for the observed data if
the number of uncensored cases is large compared to the number of predictors
p. The plots are also useful for teaching survival regression to students and
for explaining the models to consulting clients.

The slice survival, censored response, LCR, and EE plots are due to Olive
(2011). Emphasis was on proportional hazards models since pointwise CI
bands are available for the Cox proportional hazards model. Thus the slice
survival plot can be made for the Cox model, and then the estimated sur-
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vival function from a parametric proportional hazards model can be added as
crosses for each slice if points in the EE plot cluster tightly about the identity
line. Stratified proportional hazards models can be checked by making one
slice survival plot per stratum. EE plots can be made for parametric mod-
els if software for a semiparametric analog is available. For some parametric
survival models, see Chapter 3, Bennett (1983), Yang and Prentice (1999),
Wei (1992), and Zeng and Lin (2007).

The censored response plot and LCR plot can be regarded as special cases
of the model checking plots of Cook and Weisberg (1997) applied to censored
data.

If pointwise bands are not available for the parametric or semiparametric
model, but the number of cases in each slice is large, then simultaneous or
pointwise CI bands for the Kaplan Meier estimator could be added for each
slice.

Plots were made in R and the function coxph produces the survival curves
for Cox regression. The collection of R functions survpack available from
(http://parker.ad.siu.edu/Olive/survpack.txt) contains functions for repro-
ducing simulations and some of the plots. The functions vlung2, vovar,
and vnwtco were used to produce Figures 2.1, 2.2, and 2.5. The function
bphsim3 shows that the Kaplan Meier estimator was close to the Cox sur-
vival curves for 2 groups (a single binary predictor) when censoring was light
and n = 10.

Zhou (2001) shows how to simulate Cox proportional hazards regres-
sion data. Simulated Weibull proportional hazards regression data was made
following Zhou (2001) but with three iid N(0,1) covariates. The function
phsim5 showed that for 9 groups and p = 3, the Kaplan Meier and Cox
curves were close (with respect to the pointwise CI bands) for n ≥ 80. The
function wphsim showed a similar result for Kaplan Meier curves (circles),
and the function wregsim2 shows that for n ≥ 30, the plotted points in an
EE plot cluster tightly about the identity line with correlation greater than
0.99 with high probability.

2.9 Problems

Problems with an asterisk * are especially important.

2.1. Suppose that a proportional hazards model holds so that hx(t) =
exp(βT x)h0(t) where h0(t) is the baseline hazard function. Let f0(t), S0(t)
F0(t) and H0(t) denote the baseline pdf, survival function, distribution func-
tion and cumulative hazard function.

a) Show
Hx(t) = exp(βT x)H0(t).

b) Show
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Sx(t) = [S0(t)]
exp(βT x).

c) Show

fx(t) = f0(t) exp(βT x)[S0(t)]
exp(βT x) − 1.

2.2. Suppose that h0(t) = 1 for t > 0. This corresponds to the exponential
proportional hazards model hx(t) = exp(βT x)h0(t) = exp(βT x).

a) Find H0(t).

b) Find Hx(t).

Data for 2.3

Variables in model -2 log L

none 36.349

size 29.042

size, index 23.533

size, index, treatment 22.572

2.3. The Collett (2003b, p. 86) data studies the time until death from
prostate cancer from the date the patient was randomized to a treatment.
The variable treatment was a 0 for a placebo and a 1 for DES (a drug). The
variable size was tumor size, and index the Gleason index. Let the full model
contain size, index and treatment. Use the table above.

a) If the reduced model uses size and index, test whether the reduced
model is good.

b) If the reduced model uses size, test whether the reduced model is good.

data for 2.4

full model coef exp(coef) se(coef) z p

age 0.00318 1.003 0.0111 0.285 0.78

sex -1.48314 0.227 0.3582 -4.140 0.000035

diseaseGN 0.08796 1.092 0.4064 0.216 0.83

diseaseAN 0.35079 1.420 0.3997 0.878 0.38

diseasePKD -1.43111 0.239 0.6311 -2.268 0.023

Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76

reduced model coef exp(coef) se(coef) z p

age 0.00203 1.002 0.00925 0.220 0.8300

sex -0.82931 0.436 0.29895 -2.774 0.0055

Likelihood ratio test=7.12 on 2 df, p=0.0285 n= 76

2.4. The R kidney data is on the recurrence times Y to infection, at the
point of insertion of the catheter, for kidney patients. Predictors are age, sex
(M=1,F=2), and the factor disease (0=GN, 1=AN, 2=PKD, 3=Other).
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a) For the reduced model, test β = 0.

b) For the reduced model, test β = 0 using δ = 0.01.

c) Test whether the reduced model is good.

Output for 2.5

coef exp(coef) se(coef) z p

rxLev -0.0423 0.959 0.1103 -0.384 0.70000

rxLev+5FU -0.3787 0.685 0.1189 -3.186 0.00140

extent 0.4930 1.637 0.1117 4.412 0.00001

node4 0.9154 2.498 0.0968

Likelihood ratio test=122 on 4 df, p=0 n= 929

2.5. The R colon data from one of the first successful trials of adjuvant
chemotherapy for colon cancer. Levamisole is a low-toxicity compound, 5-
FU is a moderately toxic chemotherapy agent. The treatment was nothing,
levamisole, or levamisole and 5-FU. Y is time until death. The 4 predictors are
x1 = 1 if treatment was levamisole, x2 = 1 if the treatment was levamisole
and 5-FU, extent of local spread (treated as a variate with 1=submucosa,
2=muscle, 3=serosa, 4=contiguous structures), and node4 = 1 for more than
4 positive lymph nodes.

a) Find the ESP and ĥi(t) if x = (0, 1, 2, 1).

b) Find a 95% CI for β1.

c) Do a 4 step test for Ho : β1 = 0.

d) Do a 4 step test for Ho : β4 = 0.

Output for 2.6.

full model coef exp(coef) se(coef) z p

trt 0.295 1.343 0.20755 1.4194 0.16

celltypesmallcell 0.862 2.367 0.27528 3.1297 0.017

celltypeadeno 1.20 3.307 0.30092 3.9747 0.000

celltypelarge 0.401 1.494 0.28269 1.4196 0.16

karno -0.0328 0.968 0.00551 -5.9580 0.000

diagtime 0.000081 1.000 0.00914 0.0089 0.99

age -0.00871 0.991 0.00930 -0.9361 0.35

prior 0.00716 1.007 0.02323 0.3082 0.76

Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137

reduced model coef exp(coef) se(coef) z p

trt 0.2617 1.30 0.20092 1.30 0.19

celltypesmallcell 0.8250 2.28 0.26891 3.07 0.022

celltypeadeno 1.1540 3.17 0.29504 3.91 0.0009

celltypelarge 0.3946 1.48 0.28224 1.40 0.16

karno -0.0313 0.97 0.00517 -6.05 0.000
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Likelihood ratio test=61.1 on 5 df, p=7.3e-12 n= 137

2.6. The R veteran lung cancer data has Y = survival time. The predic-
tors are trt (1=standard, 2=test), the factor celltype (1=squamous, 2=small-
cell, 3=adeno, 4=large), karno = Karnofsky performance score
(100=good), diagtime = months from diagnosis to randomization, age in
years, and prior = prior therapy (0=no, 1=yes).

a) For the full model, test Ho β = 0.

b) Test whether the reduced model is good.

Full model Output for 2.7

variable coef std._err. z pval

age -0.029 0.008 -3.53 0.000

bectota 0.008 0.005 1.68 0.094

ndrugtx 0.028 0.008 3.42 0.001

herco_2 0.065 0.150 0.44 0.663

herco_3 -0.094 0.166 -0.57 0.572

herco_4 0.028 0.160 0.18 0.861

ivhx_2 0.174 0.139 1.26 0.208

ivhx_3 0.281 0.147 1.91 0.056

race -0.203 0.117 -1.74 0.082

treat -0.240 0.094 -2.54 0.011

site -0.102 0.109 -0.94 0.348

Likelihood ratio test = 24.436 on 11 df, p = 0.011

Reduced model

variable coef std._err. z pval

age -0.026 0.008 -3.25 0.001

bectota 0.008 0.005 1.70 0.090

ndrugtx 0.029 0.008 3.54 0.000

ivhx_3 0.256 0.106 2.41 0.016

race -0.224 0.115 -1.95 0.051

treat -0.232 0.093 -2.48 0.013

site -0.087 0.108 -0.80 0.422

Likelihood ratio test = 21.038 on 7 df, p = 0.004

2.7. The Hosmer and Lemeshow (1999, p. 165 - 170) data studies time
until illegal drug use relapse. Variables were age, becktota, ndrugtx, herco2 =
1 if heroin user and 0 else, herco3 = 1 if cocaine user and 0 else, herco4 = 1
if used neither heroin nor cocaine and 0 else, ivhx2 = 1 if previous but not
recent IV drug use and 0 else, ivhx3 = 1 if recent IV drug use and 0 else, race
= 1 for white and 0 else, treat = 1 for short treatment and 0 for long and
site.
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Using the output for the full and reduced model above, test whether the
reduced model is good.

output for 2.8 variables AIC

trt sex race pburn bhd bbut btor bupleg blowleg bresp 439.470

trt sex race pburn bhd bbut btor bupleg blowleg 437.479

trt sex race pburn bbut btor bupleg blowleg 435.540

trt sex race pburn bbut bupleg blowleg 433.677

trt sex race bbut bupleg blowleg 431.952

trt sex race bbut bupleg 430.281

trt sex race bbut 429.617

trt sex race 428.708

trt race 429.704

race 431.795

2.8. Data from Klein and Moeschberger (1997, p. 7) is on severely burned
patients. The response variable is time until infection. Predictors include
treatment (0-routine bathing 1-Body cleansing), sex (0=male 1=female), race
(0=nonwhite 1=white), pburn = percent of body burned. The remaining
variables are burn cite indicators. For example, bhd is head (1 yes 0 no).
Results from backward elimination are shown.

a) What is the minimum AIC submodel Imin?

b) What is the submodel II?

c) Are there any other good candidate submodels? Explain briefly.

M1 M2 M3 M4
# of predictors 10 3 2 1

# with 0.01 ≤ p-value ≤ 0.05 2 2 1 1
# with p-value > 0.05 8 1 0 0

−2 log(L) 419.470 422.708 425.704 429.795
AIC(I) 439.470 428.708 429.704 431.795

p-value for change in PLR test 1.0 0.862 0.304 0.325

2.9. Data from Klein and Moeschberger (1997, p. 7) is on severely burned
patients. The above table gives summary statistics for 4 PH regression models
considered as final submodels after performing variable selection. Assume
that the PH assumptions hold for all 4 models. The full model was M1, and
M2 was the minimum AIC model found. Which submodel is the initial model
to examine II? Explain briefly why each of the other 3 submodels should not
be used as the starting submodel.

2.10. Suppose that the survival times are plotted versus the scaled Schoen-
feld residuals for variable x1. Sketch the loess curve if the PH assumption is
reasonable.

SAS Problems
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2.11. Data is from SAS Institute (1999) and is from a study on mul-
tiple myeloma (bone cancer) in which researchers treated 65 patients with
alkylating agents. The variable Time is the survival time in months from di-
agnosis. The predictor variables are LogBUN (blood urea nitrogen), HGB
(hemoglobin at diagnosis), Platelet (platelets at diagnosis: 0=abnormal,
1=normal), Age at diagnosis in years, LogWBC, Frac (fractures at diagno-
sis: 0=none, 1=present), LogPBM (log percentage of plasma cells in bone
marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at
diagnosis).

a) Obtain the SAS program for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt).

b) First backward elimination is considered. From the SAS output window,
copy and paste the output for the full model that uses all 9 variables into
Word. That is, scroll to the top of the output and copy and paste the following
output.

Step 0. The model contains the following variables:

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

.

.

.

SCalc 1 0.12595 0.10340 1.4837 0.2232 1.134

c) At step 7 of backward elimination, the final model considered uses
LogBUN and HGB. Copy and paste the output for this model (similar to the
output for b) into Word.

d) Backward elimination will consider 8 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc 310.588

LogBUN HGB Age LogWBC Frac LogPBM Protein SCalc 308.827

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 4 models considered by stepwise selection.

g) For all subsets selection, complete the following table.

variables chisq

2 LogBUN HGB

9 full

h) Perform a change in PLR test if the full model uses 9 variables and the
reduced model uses LogBUN and HGB. (Use the output from b) and c).)

i) Are there any other good candidate models?
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SAS forward selection, backward elimination, and stepwise se-
lection produces too much output. Only submit some of the produced
output. The AIC line in the With Covariates column is important.

2.12. Data is from Allison (1995, p. 270). The response variable week is
time in weeks until arrest after release from prison (right censored if week =
52). The 7 variables are Fin (1 for those who received financial aid, 0 else),
Age at time of release, Race (1 if black, 0 else), Wexp(1 if inmate had full
time work experience prior to conviction, 0 else), Mar (1 if married at time
of release, 0 else), Paro (1 if released on parole, 0 else), Prio (the number of
prior convictions).

a) Obtain the SAS program for this problem from (http://parker.ad.siu.
edu/Olive/survhw.txt). To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful. Warning: if
you do not have the recid.txt file on e drive, then you need to
change the infile command in the SAS code to the drive that you are using,
e.g. change infile “e:redic.txt”; to infile “f:recid.txt”; if you are using the f
drive.

b) Obtain the SAS program for this problem from (http://parker.ad.siu.
edu/Olive/survhw.txt). To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful. Warning: if
you do not have the recid.txt file on e drive, then you need to
change the infile command in the SAS code to the drive that you are using,
eg change infile “e:redic.txt”; to infile “f:recid.txt”; if you are using the f drive.

c) First backward elimination is considered. Scroll to the top of the copy
and paste the 1st 2 pages of output for the full model into Word.

d) Backward elimination will consider 5 models. Write down the variables
used for each model as well as the AIC. The first two models are shown below.

variables AIC

fin age race wexp mar paro prio 1332.241

fin age race wexp mar prio 1330.429

e) Repeat d) for the 4 models considered by forward selection.

f) Repeat d) for the 5 models considered by stepwise selection.

g) For all subsets selection, complete the following table (get the 2 chisq
entries).

variables chisq

3 fin age prio

7 full

2.13. This problem considers the ovarian data from Collett (2003b, p.
344-346).
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a) Obtain the SAS program for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt). Print the output.

b) Find the ESP if age = 40 and treat 1 = 1. (Comment: treatment takes on
2 levels so only one indicator is needed. SAS output includes a 2nd indicator
treat 2 but its coefficient is β̂3 = 0 and hence can be ignored. In general if the
category takes on J levels, SAS will give nonzero output for the first J − 1
levels and a line of 0s for the Jth level. This means level J was omitted and
the line of 0s should be ignored.)

c) Give a 95% CI for β1 corresponding to age from output and the CI
using the formula.

d) Give a 95% CI for β2 corresponding to treat 1 from output and the CI
using the formula.

e) If the model statement in the SAS program is changed to
model survtime*status(0)=;
then the null model is fit and the SAS output says
Log Likelihood −29.76723997.

Test β = 0 with the LR test.
(Hint: The full model log likelihood log(L) = −20.56313339. Want −2 log(L)
for both the full and null models for the LR test.)

f) Suppose the reduced model does not include treat. Then SAS output
says Log Likelihood −21.7830. Test whether the reduced model is good.
(Hint: The log likelihood for the full model is log(L) = −20.56313339. Want
−2 log(L) for the full and reduced models for the change in LR test.)

2.14. Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) for this problem into SAS. The
myelomatosis data is from Allison (1995, p. 31, 158-161, 269). The 25 patients
have tumours in the bone marrow. The patients were randomly assigned 2
drug treatments treat. The variable renal is 1 if renal (kidney) functioning is
normal and 0 otherwise.

A stratified proportional hazards (SPH) model makes sense if the effect of
Renal varies with time since randomization (if there is a time–Renal inter-
action). In this situation the PH model would be inappropriate since time–
variable interactions are not allowed in the PH model. Notice that the results
in a) and b) below are different. The analysis does need to control for the
variable Renal to obtain good estimates of the treatment effect, but both the
SPH model in a) and the PH model in c) may be adequate

a) The SAS program produces output for 3 models. The first model is a
SPH model with stratification on Renal. Perform a Wald test on β1 corre-
sponding to treat. (In the output, β̂1 = 1.463986.)

b) The 2nd model is a PH model with the predictor treat. Perform a Wald

test on β1 corresponding to treat. (In the output, β̂1 = 0.56103.)
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c) The 3rd model is a PH model with the predictors treat and Renal.

Perform a Wald test on β1 corresponding to treat. (In the output, β̂1 =
1.22191.)

R Problems
2.15. This data is from a study on ovarian cancer. There were 26 patients.

The variable futime was the time until death or censoring in days, the variable
fustat was 1 for death and 0 for censored, age is age and ecog.ps is a measure
of status ranging from 0 (fully functional) to 4 (completely disabled). Level
4 subjects are usually considered too ill to enter a study such as this one.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Hit Enter and a plot
should appear. Copy and paste the R output into Word. The output is similar
to that of Problem 2.16 but also contains the variable ecog.ps.

Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.” The plot is the Cox regression
estimated survival function at the average age (56.17) and average ecog.ps
(1.462).

b) Now copy and paste the command for b) and place the plot in Word as
described in a). This plot is for the Cox regression estimated survival function
at the (age,ecog.ps) = (66,4). Is survival better for (56.17,1.462) or (66,4)?

c) Find the ESP and ĥi(t) if x = (56.17, 1.462).

d) Find the ESP and ĥi(t) if x = (66, 4).

e) Find a 95% CI for β1.

f) Find a 95% CI for β2.

g) Do a 4 step test for H0 : β1 = 0.

h) Do a 4 step test for H0 : β2 = 0.

i) Do a 4 step PLRT for H0 : β = 0.

coef exp(coef) se(coef) z p

age 0.162 1.18 0.0497

Likelihood ratio test=14.3 output for 2.16

2.16. Use the output above which is for the same data as in 2.15 but only
the predictor age is used.

a) Find a 95% CI for β.

b) Do a 4 step test for Ho : β = 0.

c) Do a 4 step PLRT for Ho : β = 0 (for β = 0). (The PLRT is better
than the Wald test in b).)

2.17. The R lung cancer data has the time until death or censoring and
status = 0 for censored and 1 for uncensored. Then the covariates are age,
sex = 1 for M and 2 for F, ph.ecog = Ecog performance score 0-4, ph.karno
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= a competitor to ph.ecog, pat.karno = patient’s assessment of their karno
score, meal.cal = calories consumed at meals excluding beverages and snacks
and wt.loss = weight loss in last 6 months. A stratified proportional hazards
model with stratification on sex will be used.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R.

Type zfull, then zred1 then zred2. Copy and paste the resulting output into
Word. The full model uses age, ph.ecog, ph.karno, pat.karno and wt.loss.

b) Test whether the reduced model that omits age can be used.

c) Test whether the reduced model that omits age and ph.karno can be
used.

2.18. Go to (http://parker.ad.siu.edu/Olive/survhw.txt) and copy and
paste the source command source(“http://parker.ad.siu.edu/Olive/
survpack.txt”) near the top of the file into R. This problem will use the pro-
gram bphgfit to check the PH model with the Kaplan Meier KM estimator.

a) Copy and paste commands from (http://parker.ad.siu.edu/Olive/
survhw.txt) for this problem into R. Copy and paste the output into Word.
(You may need to press Enter to get the plot.)

b) Click on the plot and hold down the Ctrl and c buttons simultaneously.
Then in the Word Edit menu, select “paste.”

c) The data is remission time in weeks for leukemia patients receiving
treatments A (x = 0) or B (x = 1). See Smith (2002, p. 174). The indicator
variable x (leuk[,3]) is the single covariate. Do a PLRT to test whether β = 0.
Is there a difference in the effectiveness of the 2 treatments?

d) The solid lines in the plot correspond to the estimated PH survival
function for each treatment group. The plotted points correspond to the
estimated Kaplan Meier estimator for each group. If the PH model is good,
then the plotted points should track the solid lines fairly well. Is the PH
model good? (When β = 0, the PH model for this data is h0(t) = h1(t),
but the PH model could fail, e.g. if the survival function for treatment A is
higher than that of treatment B until time tA and then the survival function
for treatment B is higher: the survival functions cross at exactly one point
tA > 0.)

With some versions of R, there are three curves of circles. The center curve
is the Kaplan Meier estimator while the two outer bands are pointwise CI
bands.

2.19. An extension of the PH model is the stratified PH model where
hx,j = exp(βT x)h0,j(t) for j = 1, ..., K where K ≥ 2 is the number of
strata (groups). Testing is done in exactly the same manner as for the PH
model, and the same β is used for each strata, only the baseline function
changes. The regression in Problem 2.17 used gender, male and female, as
strata. If the model was good, then a PH model should hold for males and a
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PH model should hold for females. For the lung cancer data, females had a
higher survival curve than males for x set to the average values.

A censored response plot (ESSP) is a plot of the ESP = β̂
T
x versus T ,

the survival times, where the symbol “0” means the time was censored and
“+” uncensored. If the PH model holds, the variability of the plotted points
should decrease rapidly as ESP increases.

a) Copy and paste commands from (http://parker.ad.siu.edu/Olive/
survhw.txt) for this problem into R. Click on the plot and hold down the Ctrl
and c buttons simultaneously. Then in the Word Edit menu, select “paste.”

b) Repeat a) except use the commands for 2.19b.
How does the variability in the plot for a narrow vertical strip at ESP =

0.5 compare to the variability for a narrow vertical strip at ESP = −1.5?

c) Copy and paste the commands for this part into R, and include the
resulting plot in Word.

d) Copy and paste the commands for this part into R, and include the
resulting plot in Word.

vlung2(2)

title("females")

e) The plots in c) and d) divide the ESP into 4 slices. The estimated PH
survival function is evaluated at the last point in the first 3 slices and at the
first point in the 4th slice. Pointwise confidence intervals are also included
(dashed upper and lower lines). The plotted circles correspond to the Kaplan
Meier estimator for the points in each slice. The 1st slice is in the NW corner,
the 2nd slice in the NE, the 3rd slice in the SW and the 4th slice in the SE.
Confidence bands that would include an entire reasonable survival function
would be much wider. Hence if the plotted circles are not very far outside
the pointwise CI bands, then the PH model is reasonable.

Is the PH model reasonable for males? Is the PH model reasonable for
females?

With some versions of R, there are three curves of circles. The center curve
is the Kaplan Meier estimator while the two outer bands are pointwise CI
bands.

2.20. The lung cancer data is the same as that described in 2.17, but the
PH model is stratified on sex with variables ph.ecog, ph.karno, pat.karno and
wt.loss.

a) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Click on the left window
and hit Enter. Then 4 plots should appear. Include the plot in Word.

b) The plots are of xj versus the martingale residuals when xj is omitted.
The loess curve should be roughly linear (or at least not taking on some
simple shape such as a quadratic) if xj is the correct functional form. If the
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loess curve looks like t(xj) for some simple t (eg t(xj) = x2
j ), then t(xj) should

be used instead of xj . Are the loess curves in the 4 plots roughly linear?

c) Copy and paste commands for this problem from
(http://parker.ad.siu.edu/Olive/survhw.txt) into R. Click on the left window
and hit Enter. Then 4 plots should appear. Include the plot in Word. Also
include the output from cox.zph(lungfit2) in Word.

d) The plots are of survival times vs scaled Schoenfeld residuals for each
of the 4 variables. The loess curves should be approximately horizontal (0
slope) lines if the PH assumption is reasonable. Alternatively, the pvalue for
Ho slope = 0 from cox.zph should be greater than 0.05 for each of the 4
variables. Is the PH assumption is reasonable? Explain briefly.

2.21. Copy and paste the R commands for this problem into R. This
problem shows how to do backward elimination for the PH model in R using
the Leemis (1995, p. 249-250) and Lawless (1982, p. 286) lung survival data.
List the AIC for the model chosen in each step. Some entries are below.

model AIC

perf, age, ttoent, size, type, ttype, trt 189.22 full model

perf, age, ttoent, size, ttype, trt 187.22

.

.

.

perf, ttype 181.52

perf 183.12

2.22. Copy and paste the R command

source("http://parker.ad.siu.edu/Olive/survpack.txt")

from near the top of (http://parker.ad.siu.edu/Olive/survhw.txt) into R.
(Do not give any plots for this problem.)

a) In R, type “library(survival)” if necessary. Then type “phsim(k=1)”.
Hit the up arrow to repeat this command several times. Repeat for “ph-
sim(k=0.5)” and “” to make ET plots. The simulated data follows a PH
Weibull regression model with h0(t) = ktk−1. For k = 1 the data follows a
PH exponential regression model. Did the survival times decrease rapidly as
ESP increases?

b) The function phsim2 slices the ESP into 9 groups and computes the
Kaplan Meier estimator for each group. If the PH model is reasonable and n
is large enough, the 9 plots should have approximately the same shape. Type
“phsim2(n=100,k=1)”, then “phsim2(n=200,k=1)” and keep increasing n by
100 until the nine plots look similar (assuming survival decreases from 1 to 0,
and ignoring the labels on the horizontal axis and the + signs that correspond
to censored times). We will say that the plots look similar if n = 800. What
value of n did you get?
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c) The function bphsim3 makes the slice survival plots when the single
covariate is an indicator for 2 groups. The PH assumption is reasonable if
the plotted circles corresponding to the Kaplan Meier estimator track the
solid line corresponding to the PH estimated survival function. Type “bph-
sim3(n=10,k=1)” and repeat several times (use the up arrow). Do the plotted
circle track the solid line fairly well?

d) The function phsim5 is similar but the ESP takes on many values and is
divided into 9 groups. Type “phsim5(n=50,k=1)”, then “phsim5(n=60,k=1)”
and keep increasing n by 10 until the circles track the solid lines well. We will
say that the circles track the solid lines well if they are within or not very far
outside the pointwise CI bands. What value of n do you get?

2.23. This problem produces output for the Stanford Heart Transplant
data, but R is used instead of SAS. Obtain the R program for Problem
2.23 from (http://parker.ad.siu.edu/Olive/survhw.txt). The time dependent
variable x1(t) = transplant = 1 if the patient has had a transplant by time
t and is 0 otherwise. The variable x2 = surgery = 1 if the patient has had
previous heart surgery and is 0 otherwise. The variable x3 = age is the
patient’s age at time of acceptance into the program. The R program fits a
generalized Cox regression (GCR) model. The SAS and R heart data sets
seem to differ slightly and do not give the exact same answers.

a) Print the output. (Put into Word.)
b) Test β1 = 0.
c) Test β = 0.

Problems from Quizzes and Exams

Output for Problem 2.24 full model, n = 26

coef exp(coef) se(coef) z p

age 0.121 1.13 0.0484 2.500 0.012

resid.ds 0.792 2.21 0.8078 0.980 0.330

ecog.ps 0.087 1.09 0.6592 0.132 0.890

Likelihood ratio test= 13.7 on 3 df, p=0.00333

coef exp(coef) se(coef) z p reduced model

age 0.137 1.15 0.0474 2.9 0.0038

Likelihood ratio test= 12.7 on 1 df, p=0.000368

2.24. The R ovarian data gives survival times for patients with ovar-
ian cancer. Predictors are age in years, resid.ds (residual disease present
1=no,2=yes), and ecog.ps (ECOG performance status: 1 is better than 2).
A stratified proportional hazards model is fit where the stratification vari-
able rx is the treatment group.

a) Test whether β3 = 0.
b) Test whether β = 0 for the full model.
c) Test whether the reduced model is good.
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Output for Problem 2.25

Value Std. Error z p

(Intercept) 5.32632 0.66298 8.03 9.44e-16

age -0.00891 0.00711 -1.25 0.210

sex 0.37019 0.12796 2.89 0.00382

ph.karno 0.00926 0.00446 2.08 0.0379

Log(scale) -0.28085 0.06171 -4.55 5.33e-06

Scale= 0.755

Weibull distribution

Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5

Chisq= 17.59 on 3 degrees of freedom, p= 0.00053

n=227 (1 observation deleted due to missingness)

2.25. A Weibull regression model was fit to the R lung data resulting in
the above output.

a) Test whether β = 0.
b) Test whether β1 = 0.
c) Test whether β2 = 0.
d) Sketch the Weibull EE plot if the Weibull model is good.





Chapter 3

Parametric Survival Regression

Definition 3.1. In a 1D regression model, the response variable Y is condi-
tionally independent of the p × 1 vector of predictors x given the sufficient
predictor SP = h(x), written

Y x|SP or Y x|h(x), (3.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = xT β where ESP = xT β̂.

An important class of parametric 1D regression models has Y |x ∼
D(xT β, γ) where D is a parametric distribution that depends on the p × 1
vector of predictors x only through SP = xT β, and γ is a q × 1 vector of
parameters. Several important survival regression models, including Weibull
regression and accelerated failure time models, have this form, and will be
covered in this chapter. Weibull regression and Exponential regression are
parametric proportional hazards regression models.

3.1 Univariate Parametric Models

Assume that Y1, ..., Yn are iid from a parametric distribution such as the
Weibull or Exponential distribution. Let T1, ..., Tn be the observed right cen-
sored data. Often the parameters of the parametric distribution can be esti-
mated by maximum likelihood.

Example 3.1. Suppose the observed survival times T1, ..., Tn are a cen-
sored data set from an Exponential (λ) distribution. Let Ti = Y ∗

i . Let δi = 0
if the case is censored and let δi = 1, otherwise. Let r =

∑n
i=1 δi = the num-

95
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ber of uncensored cases. Then the MLE λ̂ = r/
∑n

i=1 Ti. So λ̂ = r/
∑n

i=1 Y
∗

i .

A 95% CI for λ is λ̂± 1.96λ̂/
√
r.

Remark 3.1. It can be shown that a better CI than the one given in
Example 3.1 is [

λ̂ χ2(2r, 1− δ/2)

2r
,
λ̂ χ2(2r, δ/2)

2r

]

where P [X ≤ χ2(k, δ)] = δ if X ∼ χ2
k has a chi-square distribution with k

degrees of freedom.

3.2 Weibull and Exponential Regression

Definition 3.2. For parametric proportional hazards regression models,
the baseline function is parametric and the parameters are estimated via
maximum likelihood. Then as a 1D regression model, SP = βT

P x, and

hY |SP (t) ≡ hx(t) = exp(βT
P x)h0,P (t) = exp(SP )h0,P (t)

where the parametric baseline function h0,P depends on k unknown param-
eters but does not depend on the predictors x. The survival function is

Sx(t) ≡ SY |SP (t) = [S0,P (t)]exp(βT

P x) = [S0,P (t)]exp(SP), (3.2)

and

Ŝx(t) = [Ŝ0,P (t)]exp(
ˆβ

T

P x) = [Ŝ0,P (t)]exp(ESP). (3.3)

The following univariate results will be useful for Exponential and Weibull
regression. If Y has a Weibull distribution, Y ∼ W (γ, λ), then SY (t) =
exp(−λtγ) where t, λ and γ are positive. If γ = 1, then Y has an Exponential
distribution, Y ∼ EXP (λ) where E(Y ) = 1/λ. See Examples 1.1 and 1.2.
Now V has a smallest extreme value distribution, V ∼ SEV (θ, σ), if

SV (t) = P (V > t) = exp

(
− exp

(
t− θ

σ

))

where σ > 0 while t and θ are real. If Z ∼ SEV (0, 1), then V = θ + σZ ∼
SEV (θ, σ) since the SEV distribution is a location scale family. Also, V =
log(Y ) ∼ SEV (θ = −σ log(λ), σ = 1/γ), and Y = eV ∼ W (γ = 1/σ, λ =
e−θ/σ).
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If Yi follows a Weibull regression model, then log(Yi) follows an accelerated
failure time (AFT) model: log(Yi) = α + βT

Axi + σei where the ei are iid
SEV (0, 1), and log(Y )|x ∼ SEV (α+ βT

Ax, σ). See Section 3.3.

Definition 3.3. The Weibull proportional hazards regression (WPH)
model or Weibull regression model is a parametric proportional hazards
model with Y |x ∼W (γ = 1/σ, λx) where

λx = exp

[
−
(
α

σ
+

βT
Ax

σ

)]
= λ0 exp(βT

P x)

with λ0 = exp(−α/σ) and βP = −βA/σ. Thus for t > 0, P (Y > t|x) =

Sx(t) = exp(−λxtγ) = exp(−λ0 exp(βT
P x)tγ) = [exp(−λ0t

γ)]exp(βT

Px) =

[S0,P (t)]exp(βT

P x).

As a 1D regression model, Y |SP ∼W (γ, λ0 exp(SP )). Also,

hi(t) = hYi|xi
(t) = h

Yi|β
T

P
xi

(t) = exp(βT
P xi)h0(t)

where h0(t) = h0(t|θ) = λ0γt
γ−1 is the Weibull baseline function. Expo-

nential regression is the special case of Weibull regression where σ = 1.
Hence Y |x ∼W (1, λx) ∼ EXP (λx).

Since Weibull regression and Exponential regression are proportional haz-
ards regression models, the plots from Chapter 2 can be used to check the
models. The Weibull proportional hazard model is valid iff the Weibull ac-
celerated failure time (AFT) model is valid. Similarly, the Exponential PH
model is valid iff the Exponential AFT model is valid. Hence the following
two plots are useful.

Definition 3.4. Let Ti = min(Yi, Zi) be the censored survival times,

and let log(Ti) = α̂ + β̂
T

Axi + ri. For accelerated failure time models, a

log censored response (LCR) plot is a plot of α̂+ β̂
T

Axi versus log(Ti)
with plotting symbol 0 for censored cases and + for uncensored cases. The
identity line with unit slope and zero intercept is added to the plot, and the
vertical deviations from the identity line = ri. Collett (2003b, p. 231) defines
a standardized residual rSi = ri/σ̂.

The least squares line based on the +’s could be added to the plot and
should have slope not too far from 1, especially if γ ≥ 1 for the Weibull
AFT. The plotted points should be linear with roughly constant variance.
The censoring and long left tails of the smallest extreme value distribution
make judging linearity and detecting outliers from the left tail difficult. Try
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to ignore the bottom of the plot where there are few cases when assessing
linearity.

Definition 3.5. For parametric proportional hazards models, an EE plot

is a plot of the parametric ESP β̂
T

P x versus the Cox semiparametric ESP

β̂
T

Cx.

If the parametric proportional hazards model is good, then the plotted
points in the EE plot should track the identity line with unit slope and zero
intercept. As n → ∞, the correlation of the plotted points goes to 1 in
probability for any finite interval, e.g., from the 1st percentile to the 99th

percentile of β̂
T

Cx. Lack of fit is suggested if the plotted points do not cluster
tightly about the identity line.

Software typically fits Exponential and Weibull regression models as ac-
celerated failure time models: log(Yi) = α+βT

Axi +σei. For the Exponential
regression model, σ = 1 and βC = −βA, and the Exponential EE plot is a
plot of

ESPE = −β̂
T

Ax versus ESPC = β̂
T

Cx.

For the Weibull regression model, βC = −βA/σ, and the Weibull EE plot is
a plot of

ESPW =
−1

σ̂
β̂

T

Ax versus ESPC = β̂
T

Cx.

Suppose the plotted points cluster tightly about the identity line in the EE

plot with corr(β̂
T

Cxi, β̂
T

P xi) > 0.99. Thus β̂
T

Cx ≈ β̂
T

P x for the observed xi,
and slicing on the Cox ESP is nearly the same as slicing on the parametric
ESP. Make the slice survival plot for the Cox model and add the estimated
parametric survival function (3.3) as crosses. If the parametric proportional
hazards model holds, then (2.2) = (3.2). Thus if (2.3) ≈ (3.3) for any xi,
then S0,P (t) ≈ S0(t), (2.3) ≈ (3.3) for all xi, and the parametric proportional
hazards model is reasonable.

Remark 3.2. Checking parametric proportional hazards models has 3
steps: i) check that the proportional hazards assumption is reasonable, e.g.
with the slice survival plot for the Cox model, ii) check that the parametric

and semiparametric ESPs are approximately the same, β̂
T

P x ≈ β̂
T

Cx with the
EE plot, and iii) using the slice survival plot, check that (2.3) ≈ (3.3) for the
x used in each of the J slices. Since the Weibull proportional hazards model
(Def. 3.3) is valid for (Y,x) if and only if the Weibull accelerated failure time
model (Def. 3.7) is valid for (log(Y ),x), the above procedure can be used to
simultaneously check the goodness of fit of both models.

This technique avoids the mistake of comparing quantities from the semi-
parametric and parametric proportional hazards models without checking
that the proportional hazards assumption is reasonable. The slice survival
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Fig. 3.1 LCR Plot for Ovarian Cancer Data

plot for the Cox model is used because of the ease of making pointwise CI
bands.

Example 3.2. The ovarian cancer data is from Collett (2003b, p. 187-
190) and Edmunson et al. (1979). The response variable is the survival time
of n = 26 patients in days with predictors age in years and treat (1 for
cyclophosphamide alone and 2 for cyclophosphamide combined with adri-
amycin). Figure 3.1 shows that most of the plotted points in the LCR plot
for the ovarian cancer data are below the identity line. If a Weibull regres-
sion model is a good approximation to the data, then the plotted points in a

narrow vertical slice centered at α̂+ β̂
T
x = w are approximately a censored

sample from an SEV (w, σ̂) distribution. Figure 3.2 shows the Weibull and
Exponential regression EE plots. Notice that the estimated risk scores from
the Cox regression and Weibull regression are nearly the same with corre-
lation = 0.997. The points from the Exponential regression do not cluster
about the identity line. Hence Exponential regression should not be used.
Figure 3.3 gives the slice survival plot for the Cox model with the Weibull

survival function Ŝx(t) = exp[− exp(−γ̂β̂
T

Ax) exp(−γ̂α̂) tγ̂ ] represented by
crosses where γ̂ = 1/σ̂. Notice that the Weibull and Cox estimated survival
functions are close and thus similar. Again the circles corresponding to the
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Fig. 3.3 Slice Survival Plots for Ovarian Cancer Data
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Kaplan Meier estimator are “close” to the Cox survival curves in that the
circles do not fall very far outside the pointwise CI bands.

Output for the Weibull and Exponential regression models is shown below.
The output is often from software for accelerated failure time models. The
tests are the same for the parametric PH model and the equivalent AFT
model, but for Weibull regression the ESP and confidence intervals tend to
be for β̂A = (βi), which differs from β̂P by a constant. Output for AFT
models will include an intercept α̂ and an estimate of scale σ̂. SAS and R
give output for the AFT.

For SAS or R.

variable Est. SE Est/SE or (Est/SE)2 pvalue for

intercept

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho: βp = 0
scale or log scale

Weibull shape or scale
Output for the null model for SAS is shown below.
log likelihood log L(none)

variable Est. SE Est/SE or (Est/SE)2 pvalue

intercept
scale

Weibull shape

For the full model, SAS will have Log Likelihood = log L(full).
For the full model, R will have log L(full), log L(none) and

chisq = [-2 log L(none)] - [-2 log L(full)] on p degrees of freedom with pvalue.

Replace full by reduced for the reduced model.

The SAS and R log likelihood, log L, differ by a constant.

SAS Log Likelihood = -29.7672 null model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.1110 0.2927 590.12 < 0.0001

Weibull Scale 1 1225.4 358.7

Weibull Shape 1 1.1081 0.2810

SAS Log Likelihood = -29.1775 reduced model

variable df Estimate SE chi square pr > chisqu
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intercept 1 7.3838 0.4370 285.45 < 0.0001

treat 1 -0.5593 0.5292 1.12 0.2906

Scale 1 0.8857 0.2227

Weibull Shape 1 1.1291 0.2840

SAS Log Likelihood = -20.5631 full model

variable df Estimate SE chi square pr > chisqu

intercept 1 11.5483 1.1970 93.07 < 0.0001

age 1 -0.0790 0.0198 15.97 < 0.0001

treat 1 -0.5615 0.3399 2.73 0.0986

Scale 1 0.5489 0.1291

Weibull Shape 1 1.8218 0.4286

R reduced model Value Std. Error z p

(Intercept) 7.384 0.437 16.895 4.87e-64

treat -0.559 0.529 -1.057 2.91e-01

Log(scale) -0.121 0.251 -0.483 6.29e-01

Scale= 0.886

Loglik(model)= -97.4 Loglik(intercept only)= -98

Chisq= 1.18 on 1 degrees of freedom, p= 0.28

R full model Value Std. Error z p

(Intercept) 11.548 1.1970 9.65 5.04e-22

treat -0.561 0.3399 -1.65 9.86e-02

age -0.079 0.0198 -4.00 6.43e-05

Log(scale) -0.600 0.2353 -2.55 1.08e-02

Scale= 0.549

Loglik(model)= -88.7 Loglik(intercept only)= -98

Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

Shown above is output in symbols from and SAS and R. The estimated
coefficient is β̂j . The Wald chi square = X2

0,j while p and “pr > chisqu” are
both p-values.

Inference from output is much like that for the Cox PH regression model.
Find the ESP, h0(t), 95% CI for βi, do a Wald test for H0 : βi = 0, do a
likelihood ratio test (LRT) for H0 : β = 0versus HA : β 6= 0, and do a change
in LRT for H0: the reduced model is good versus HA: use the full model. The
Cox PH regression model used a PLRT and a change in PLRT.

Given β̂ from output and given x, be able to find ESP = β̂
T
x =∑p

i=1 β̂ixi = β̂1x1 + · · ·+ β̂pxp.

A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j ).

4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.
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ii) Find the test statistic z0,j = β̂j/se(β̂j) or X2
0,j = z2

0,j or obtain it from
output.

iii) The p–value = 2P (Z < −|z0j|) = P (χ2
1 > X2

0,j). Find the p–value from
output or use the standard normal table.
iv) If pval < δ, reject Ho and conclude that xj is needed in the Weibull
survival model given that the other p− 1 predictors are in the model. If pval
≥ δ, fail to reject Ho, and conclude that the values of xj do not (significantly)
affect the WPH survival model given that the other p − 1 predictors are in
the model. (Or state that there is not enough evidence to conclude that the
values of xj affect the WPH survival model.)

The 4 step likelihood ratio test LRT is
i) H0 : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject H0 if the p–value< δ and conclude that there is a WPH survival

relationship between Y and the predictors x. If p–value≥ δ, then fail to reject
H0, and conclude that the values of the predictors x do not (significantly)
affect the WPH survival model. (Or state that there is not enough evidence
to conclude that the values of x affect the WPH survival model.)

For the above test, X2(N |F ) is Chisq from R. Both R and SAS give logL,
but for R, logLR = logL + dR and for SAS, logLSAS = logL + dSAS. So
logL differs by a constant for R and SAS, but the constant cancels with
subtraction.

Also note that there could be a PH survival relationship but not a WPH
survival relationship. Check WPH assumptions before doing inference.

The 4 step change in LR test is
i) H0: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject H0 if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject H0 and conclude that the reduced
model is good (the values of xO do not (significantly) affect the survival
model, or there is not enough evidence to conclude that the values of xO

affect the survival model).

Example 3.3. Between points 1) and 2) in the summary Section 3.5, is
output for the ovarian cancer data of Example 3.2. This output is also shown
in this section.

a) Find ESP if treat = 1 and age = 60.

Solution: ESP = β̂
T
x = −0.561(1)− 0.079(60) = −5.301.
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b) Find a 95% CI for β1 corresponding to treat.

Solution: Using output for the R full model, the 95% CI is β̂1±1.96 se(β̂1 =
−0.561 ± 1.96(0.3399) = −0.561 ± 0.662 = [−1.2272, 0.1052]. SAS and R
output differs slightly.

c) Test β1 = 0 corresponding to treat.
Solution: i) H0 : β1 = 0 H1 : β1 6= 0

ii) Z01 =
−0.561

0.3399
= −1.6504 or use output

or X2
01 = Z2

01 = 2.7241 (2.73 from output)
iii) pval = 2P (Z < 1.65) = 2(0.0495) = 0.099 (0.0986 from output)
or pval = P (χ2

1 > 2.72)

df| .100 .05

---------------

1| 2.71 3.84

so 0.05 < pval < 0.100
iv) Fail to reject H0. The values of Treatment do not affect the Weibull

survival model given age is in the model.
d) Test β2 = 0 corresponding to age.
Solution: i) H0 : β2 = 0 H1 : β2 6= 0
ii) Z02 = −4.00
or X2

02 = 15.97
iii) pval = 0.0000643 or pval < 0.001
iv) Reject H0. Age is needed in the Weibull survival model given treat is

in the model.
e) Test β = 0.
Solution: i) H0 : β = 0 H1 : β 6= 0
ii) R: X2(N |F ) = 18.41 or
X2(N |F ) = [−2 log(L(none)]−[−2 logL(Full)] = [−2(−98)]−[−2(−88.7)] =

196− 177.4 = 18.6 due to rounding
or SAS: X2(N |F ) = [−2(−29.7672)] − [−2(−20.5631)] = 59.5344 −

41.1262 = 18.4082
iii) pval = P (χ2

2 > 18.41)

df| .001

----------

2| 13.82

so pval < 0.001 (0.0001 from output)
iv) Reject H0: there is a WPH survival relationship between time Y and

the predictors age and treat.
f) Test whether the reduced model with treat is good.
Solution: i) H0 : the reduced model is good H1 : use the full model
ii) R: X2(R|F ) = X2(N |F )−X2(N |R) = 18.41− 1.18 = 17.23 or
X2(R|F ) = [−2 log(L(Red)]−[−2 logL(Full)] = [−2(−97.4)]−[−2(−88.7)] =

194.8− 177.4 = 17.4 due to rounding
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SAS: X2(R|F ) = [−2(−29.1775)]− [−2(−20.5631)] = 58.355− 41.1262 =
17.2288

iii) pval = P (χ2
1 > 17.23)

df| .001

----------

1| 10.83

so pval < 0.001
iv) Reject H0: use the full model.

Warning: Remarks 2.1–2.4 also apply for the models in this chapter.

3.3 Accelerated Failure Time Models

Definition 3.6. For a parametric accelerated failure time model,

log(Yi) = α+ βT
Axi + σei (3.4)

where the ei are iid from a location scale family. Let SP = βT
Ax. Then as

a 1D regression model, log(Y )|SP = α+ SP + e. The parameters are again
estimated by maximum likelihood and the survival function is

Sx(t) ≡ SY |x(t) = S0

(
t

exp(βT
Ax)

)
,

and

Ŝx(t) = Ŝ0

(
t

exp(β̂
T

Ax)

)

where Ŝ0(t) depends on α̂ and σ̂.

For the AFT model, hi(t) = hx(t) = e−SPh0(t/e
SP ) and Si(t) = Sx(t) =

S0(t/ exp(SP )) where SP = βT
Ax. If Sx(tx(ρ)) = 1 − ρ for 0 < ρ < 1, then

tx(ρ) is the ρth percentile. For the accelerated failure time model,

tx(ρ) = t0(ρ) exp(βT
Ax)

where t0(ρ) = exp(σei(ρ) + α) and Sei (ei(ρ)) = P (ei > ei(ρ)) = 1 − ρ. Note
that the estimated percentile ratio is free of ρ, σ̂ and α̂

t̂x1
(ρ)

t̂x2
(ρ)

= exp(β̂
T

A(x1 − x2)).

The acceleration factor = e−SP and t0,ρ = e−SP tx,ρ. The median survival
times are related by t0,0.5 = e−SP tx,0.5. If e−SP < 1, then the median survival
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time of x > the median survival time of 0, a result that is good if the event
is death, but bad if the event is time until recovery. Note that Hx(t) =
− logSx(t) = − log(S0(t/e

SP )) = H0(t/e
SP ).

Remark 3.3. Assume xi > 0. Then βi > 0 increases log(Yi) and Yi, while
βi < 0 decreases log(Yi) and Yi. For the Cox PH regression model, hx(t) =
exp(βT x)h0(t). Hence βi > 0 increases hazard and decreases Yi, while βi < 0
decreases hazard and increases Yi. In the WPH model, βP = −βA/σ.

The LCR plot of Definition 3.4 is still useful for finding influential cases for
AFT models. If the Weibull PH regression model holds for Yi, then log(Yi) =
α+ βT

Axi + σei where ei ∼ SEV (0, 1). Thus log(Y )|x ∼ SEV (α+ βT
Ax, σ),

and the log(Yi) follows a parametric accelerated failure time model. Two other
important AFTs are i) the lognormal AFT where log(Y )|x ∼ N(α+βT

Ax, σ2)
where the Yi are lognormal and the ei ∼ N(0, 1) are normal, and ii) the loglo-
gistic AFT where log(Y )|x ∼ L(α+ βT

Ax, σ) where the Yi are loglogistic and
the ei ∼ L(0, 1) are logistic. For the loglogistic AFT, Y follows a proportional
odds model. Y does not follow a proportional hazards regression model for the
loglogistic and lognormal AFTs. The residuals ri are the vertical deviations
from the identity line in the LCR plot, and should behave like a censored
sample from the distribution of σei. Hence the ri are like a censored sample
from i) a SEV (0, σ) distribution for a Weibull AFT, ii) a N(0, σ2) distri-
bution for a lognormal AFT, and iii) a L(0, σ) distribution for a loglogistic
distribution. The normal and logistic distributions are symmetric.

Definition 3.7. The Weibull AFT satisfies log(Y )|(α+βT
Ax) ∼ SEV (α+

βT
Ax, σ). Thus points in a narrow vertical slice about α̂+β̂

T

Ax = w in the LCR
plot are approximately a censored sample from an SEV (w, σ̂) distribution if
the fitted model is a good approximation to the data. The Exponential AFT
is the special case with σ = 1.

Theorem 3.1. Weibull regression models, including Exponential regres-
sion models, are the only models where Y follows a proportional hazards
regression model and log(Y ) follows an accelerated failure time model.

Censoring causes the bulk of the data to be below the identity line in the
LCR plot. For example, Hosmer and Lemeshow (1999, p. 226) state that for
the Exponential regression model, α̂ forces

n∑

i=1

δi =

n∑

i=1

Ti

exp(α̂+ β̂
T

Axi)
.

Hence T̂i = exp(α̂ + β̂
T

Axi) ≈ (n/
∑n

i=1 δi)Ti (roughly). With no censoring,
the bulk of the data will still be lower than the identity line if the ei are left
skewed as for the Weibull regression model where the ei ∼ SEV (0, 1).
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Remark 3.4. Since the Weibull proportional hazards model is valid for
(Y,x) if and only if the Weibull accelerated failure time model is valid for
(log(Y ),x), fit the data using Cox regression. Then the graphical procedure
described in Remark 3.2 can be used to simultaneously check the goodness
of fit of both the Weibull PH and AFT models. Similarly, the Exponential
proportional hazards model is valid for (Y,x) if and only if the Exponential
accelerated failure time model is valid for (log(Y ),x).

For Weibull and Exponential regression, instead of fitting a PH model, R
and SAS fit an accelerated failure time model log(Yi) = α+βT

Axi +σei where
the ei are iid from a smallest extreme value distribution. The Exponential
AFT is the special case of the Weibull AFT with σ = 1. As in Definition 3.10,
λ0 = exp(−α/σ) and βP = −βA/σ where βP is the vector of coefficients for
the WPH model and βA is the vector of coefficients for the Weibull AFT

model. Since the AFT is parametric, α̂ and β̂A are MLEs found from the
censored data (Ti, δi,xi), not from (Yi,xi).

If the Yi|xi are Weibull, the ei are from a smallest extreme value distribu-
tion. The statement that “the Weibull regression model is both a proportional
hazards model and an accelerated failure time model” means that the Yi|xi

follow a Weibull PH model while the log(Yi)|xi follow a Weibull AFT, al-
though the log(Yi) are actually from a smallest extreme value distribution.
If a Weibull or Exponential AFT is a useful model for the log(Yi)|xi, then
the Weibull or Exponential PH model is a good approximation for the Yi|xi.
Hence to check the goodness of fit for the Weibull AFT, transform the Weibull
AFT into the Weibull PH model. Then use the LCR, EE and slice survival
plots as in Example 3.2.

Inference for the AFT model is performed almost in the same way as
for the WPH or Weibull AFT. See Section 3.2. But the conclusions change
slightly if the AFT is not the Weibull AFT. Change (if necessary) “Weibull
survival model” to the appropriate model, e.g. “lognormal survival model”.
In the LRT, replace “WPH” by “AFT.” Given β̂ ≡ β̂A from output and

given x, know how to find ESP = β̂
T
x =

∑p
i=1 β̂ixi = β̂1x1 + · · ·+ β̂pxp.

A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j ).

Know how to do the 4 step Wald test of hypotheses:
i) State the hypotheses H0 : βj = 0 H1 : βj 6= 0.

ii) Find the test statistic z0,j = β̂j/se(β̂j) or X2
0,j = z2

0,j or obtain it from
output.

iii) The p–value = 2P (Z < −|z0j|) = P (χ2
1 > X2

0,j). Find the p–value from
output or use the standard normal table.
iv) If p-value < δ, reject H0 and conclude that xj is needed in the AFT
survival model given that the other p− 1 predictors are in the model. If pval
≥ δ, fail to reject Ho, and conclude that the values of xj do not (significantly)
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affect the AFT survival model given that the other p − 1 predictors are in
the model. (Or state that there is not enough evidence to conclude that the
values of xj affect the AFT survival model.)

Know how to do the 4 step likelihood ratio test LRT:
i) H0 : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) RejectH0 if the p–value< δ and conclude that there is an AFT survival

relationship between Y and the predictors x. If p–value≥ δ, then fail to reject
H0, and conclude that the values of the predictors x do not (significantly)
affect the AFT survival model. (Or state that there is not enough evidence
to conclude that the values of x affect the AFT survival model.)

Know how to do the 4 step change in LR test:
i) H0: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject H0 if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject H0, and conclude that the reduced
model is good (the values of xO do not (significantly) affect the survival
model, or there is not enough evidence to conclude that the values of xO

affect the survival model).

3.4 Variable Selection

Since the Weibull proportional hazards model is valid for (Y,x) if and only
if the Weibull accelerated failure time model is valid for (log(Y ),x), fit the
data using Cox PH regression and perform variable selection such as for-
ward selection, backward elimination, and lasso variable selection. Then fit
each candidate submodel with WPH software and check the WPH assump-
tions. Transform the PH model to a Weibull AFT if the AFT is desired. The
following chapter shows how to do inference after variable selection.

3.5 A Nonparametric Alternative

For many survival regression data sets,

Z = log(Y ) = αZ + βT
Zx + e (3.5)
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follows a multiple linear regression model. The AFT models are a special case
where the model is fit using the MLE. If the chosen model is incorrect, e.g.
a Weibull AFT is fit when a lognormal AFT should have been used, then
a nonparametric method will often perform better than the incorrect para-
metric model. The Buckley and James (1979) estimator is a nonparametric
competitor for the parametric AFTs. When there is no censoring, this esti-
mator is equivalent to the ordinary least squares (OLS) estimator for multiple
linear regression.

Definition 3.8. The Buckley James estimator (α̂BJ , β̂BJ)is a nonpara-
metric survival regression method for models of the form (3.5).

Let the log transformation Zi = log(Yi) where Yi > 0 is the survival time.
This transformation often results in a linear model with heterogeneity:

Zi = αZ + xT
i βZ + ei (3.6)

where the ei are independent with expected value E(ei) = 0 and variance
V (ei) = σ2

i . For the AFT and the Buckley James estimator, the variance is
constant: V (ei) = σ2 does not depend on i.

For more on estimators for model (3.6), see, for example, Heller and Si-
monoff (1990), Lai and Ying (1991), Lin and Wei (1992), and Yu, Liu, and
Chen (2024).

The Harrell (2015) rms library is useful for the Buckley James estimator.
See the R code below.

#download R version 4.4.4 2024

install.packages("rms")

#lognormal AFT = OLS model without censoring if z=log(y)

p<- 5

k<-2

n<-100

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

beta <- c(1,b)

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

z <- 1 + x %*% b + rnorm(n)

#beta = (1,1,0,0)

#z = log(y)

y <- exp(z) #lognormal so positive

status <- 0*1:n + 1 #uncensored

tdata <- as.data.frame(cbind(x,y,status))

names(tdata) #renamed y as V5,

#likely incorrectly uses V5 as a predictor

"V1" "V2" "V3" "V4" "V5" "status"
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names(tdata) <- c("V1","V2","V3","V4","y","status")

library(rms)

#bj(Surv(y,status)˜.,data=tdata) gives an error

bj(Surv(y,status)˜V1+V2+V3+V4,data=tdata)

Buckley-James Censored Data Regression

bj(formula = Surv(y, status) ˜ V1 + V2 + V3 + V4, data = tdata)

Discrimination

Indexes

Obs 100 Regression d.f.4 g 1.375

Events 100 sigma1.0172 gr 3.956

d.f. 95

Coef S.E. Wald Z Pr(>|Z|)

Intercept 0.9659 0.1039 9.30 <0.0001

V1 0.8462 0.1055 8.02 <0.0001

V2 0.8732 0.1053 8.30 <0.0001

V3 -0.1606 0.1022 -1.57 0.1159

V4 -0.1441 0.1138 -1.27 0.2053

lsfit(x,z)$coef

Intercept X1 X2 X3 X4

0.9659463 0.8461943 0.8731705 -0.1606320 -0.1441290

#same with uncensored data

Let ΣxZ = Cov(x, Z) = E[(x −E(x))(Z − E(Z))]. Let Σx = Cov(x) =
E[(x−E(x))(x−E(x))T ] be the covariance matrix of x. Suppose the cases
(xi, Yi) are iid from some population. Let the ordinary least squares (OLS)

estimator be β̂OLS . Since model (3.6) is a multiple linear regression (MLR)
model, under mild regularity conditions, βZ = βOLS = Σ−1

x ΣxZ . Thus
ΣxZ = Cov(x)βZ = ΣxβZ . When the response Yi is censored, several

models give consistent estimators β̂Z of βZ . Hence

Σ̂xZ = Σ̂xβ̂Z . (3.7)

If a Weibull regression data set is generated with parameter vector βP ,
then the Weibull AFT parameter vector β = βZ = βA = −σβP = −(1/γ)βp.
Hence ΣxZ = −γCov(x)βP . The survpack function BJcovxz generates a
Weibull regression data set with right censored survival times using a method
similar to that of Zhou (2001). Then βA = −(1/γ, ..., 1/γ, 0, ..., 0)T with p−k
zeroes and βP = (1, ..., 1, 0, ..., 0)T with k ones and p−k zeroes. The popula-

tion ΣxZ = ΣxβA is computed, as well as Σ̂xZ using the uncensored Zi that

are known since the data was simulated. The estimators Σ̂xZ(A) = Σ̂xβ̂A

and Σ̂xZ(B) = Σ̂xβ̂BJ were also computed. The output below illustrates
the estimators.

library(rms)

library(survival)
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BJcovxz(n=100,p=4,k=1,psi=0)

$k

[1] 1

$betaA

[1] -1 0 0 0

$bhatwaft #Weibull AFT

V1 V2 V3 V4

-1.08161987 -0.12461451 0.18940525 0.03343348

$bhatbj #Buckley James estimator

V1 V2 V3 V4

-1.04721364 -0.21876873 0.26093084 -0.09383167

$C pop cov(x,z) AFT est BJ est

[,1] [,2] [,3] [,4]

[1,] -1 -1.17851098 -1.177787472 -1.12324943

[2,] 0 -0.21657094 -0.163023329 -0.24175567

[3,] 0 0.05959813 0.005348028 0.09104925

[4,] 0 -0.01629190 0.098819495 -0.03343374

BJcovxz(n=100,p=4,k=1,psi=0.9)

$k

[1] 1

$betaA

[1] -1 0 0 0

$bhatwaft #not too godd for psi > 0.8

V1 V2 V3 V4

1.0725896 -3.7225410 0.6832606 0.8570338

$bhatbj

V1 V2 V3 V4

2.190735 -3.996070 1.308376 -0.705631

$C pop cov(x,z) AFT est BJ est

[,1] [,2] [,3] [,4]

[1,] -1.0000000 -1.205574 -1.158267 -1.259813

[2,] -0.9970845 -1.229621 -1.183020 -1.289138

[3,] -0.9970845 -1.219214 -1.172632 -1.276607

[4,] -0.9970845 -1.220622 -1.168735 -1.277573

The last two estimators of Σ̂xZ are nonparametric, but require consistent
estimators of βZ = Σ−1

x ΣxZ , which occurs, for example, if the the cases
(xi, Yi) are iid from some population with covariance matrix Σx and co-
variance vector ΣxZ. The survival times Yi can be right censored, but the
predictor variables x1, ..., xp are not censored. Note that the predictor vari-
ables hat have the highest absolute correlation with Z have the highest values

of |Ĉov(xi, Z)|/
√
V̂ (xi).
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In the literature, there are several estimators for the correlation cor(X, Y )
where X and Y are survival times. These estimators usually use the MLE
or multiple imputation assuming that (X, Y ) are iid from a bivariate normal
distribution. See, for example, Barchard and Russell (2024), Li, Gillespie,
Shedden, and Gillespie (2018), and Lyles, Fan, and Chuachoowong (2001).

Another application of the Buckley James estimator is to check AFTs. Mae

an EE plot of ESPBJ = β̂
T

BJx versus ESPA = β̂
T

AFT x. For the Weibull

AFT, also plot ESPPH = σ̂β̂
T

PHx versus the above two ESPs. See Figure
3.4 for the three EE plots for the ovarian cancer data, where ESPW=ESPA.
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Fig. 3.4 Three EE Plots for the Ovarian Cancer Data

#models for the ovarian cancer data

library(survival)

library(rms)

source("http://parker.ad.siu.edu/Olive/survdata.txt")

z <- survreg(Surv(ovar[,1],ovar[,2])˜ovar[,3]+ovar[,4],

dist="weibull")

zc <- coxph(Surv(ovar[,1],ovar[,2])˜ovar[,3]+ovar[,4])

sighat<-z$scale

zx <- cbind(ovar[,3],ovar[,4])
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ESPPH <- -sighat*zx%*%zc$coef

ESPW <- zx%*%z$coef[-1]

ovardatf <- as.data.frame(ovar)

names(ovardatf)

[1] "time" "status" "treat" "age"

outbj <- bj(formula = Surv(time, status) ˜ treat + age,

data = ovardatf)

ESPBJ <- zx%*%outbj$coef[-1]

par(mfrow = c(3, 1))

plot(ESPPH,ESPW)

abline(0,1)

plot(ESPBJ,ESPW)

abline(0,1)

plot(ESPBJ,ESPPH)

abline(0,1)

par(mfrow=c(1,1))

3.6 Summary

1) The Weibull proportional hazards regression (WPH) model is

hi(t) = hYi|xi
(t) = h

Yi|β
T

P xi
(t) = exp(βT

P xi)h0(t)

where h0(t) = h0(t|θ) = λ0γt
γ−1 is the baseline function. So Y |SP ∼

W (γ, λ0 exp(SP )).

Assume that the WPH model is appropriate.

For SAS only.
log likelihood log L(none)

variable Est. SE Est/SE or (Est/SE)2 pvalue

intercept
scale

Weibull shape

For SAS or R
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variable Est. SE Est/SE or (Est/SE)2 pvalue for

intercept

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) X2
o,1 = z2

o,1 Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) X2
o,p = z2

o,p Ho: βp = 0
scale or log scale

Weibull shape or scale

For the full model, SAS will have Log Likelihood = log L(full).
For the full model, R will have log L(full), log L (none) and

chisq = [-2 log L(none)] - [-2 log L(full)] on p degrees of freedom with pvalue

Replace full by reduced for the reduced model.

The SAS and R log likelihood, log L, differ by a constant.

SAS Log Likelihood = -29.7672 null model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.1110 0.2927 590.12 < 0.0001

Weibull Scale 1 1225.4 358.7

Weibull Shape 1 1.1081 0.2810

SAS Log Likelihood = -29.1775 reduced model

variable df Estimate SE chi square pr > chisqu

intercept 1 7.3838 0.4370 285.45 < 0.0001

treat 1 -0.5593 0.5292 1.12 0.2906

Scale 1 0.8857 0.2227

Weibull Shape 1 1.1291 0.2840

SAS Log Likelihood = -20.5631 full model

variable df Estimate SE chi square pr > chisqu

intercept 1 11.5483 1.1970 93.07 < 0.0001

age 1 -0.0790 0.0198 15.97 < 0.0001

treat 1 -0.5615 0.3399 2.73 0.0986

Scale 1 0.5489 0.1291

Weibull Shape 1 1.8218 0.4286

R reduced model Value Std. Error z p

(Intercept) 7.384 0.437 16.895 4.87e-64

treat -0.559 0.529 -1.057 2.91e-01

Log(scale) -0.121 0.251 -0.483 6.29e-01

Scale= 0.886

Loglik(model)= -97.4 Loglik(intercept only)= -98
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Chisq= 1.18 on 1 degrees of freedom, p= 0.28

R full model Value Std. Error z p

(Intercept) 11.548 1.1970 9.65 5.04e-22

treat -0.561 0.3399 -1.65 9.86e-02

age -0.079 0.0198 -4.00 6.43e-05

Log(scale) -0.600 0.2353 -2.55 1.08e-02

Scale= 0.549

Loglik(model)= -88.7 Loglik(intercept only)= -98

Chisq= 18.41 on 2 degrees of freedom, p= 1e-04

Shown above is output in symbols from and SAS and R . The estimated
coefficient is β̂j . The Wald chi square = X2

o,j while p and “pr > chisqu” are
both p-values.

2) Instead of fitting the WHP model of 1), R and SAS fit an accelerated
failure time model log(Yi) = α + βT

Axi + σεi where Var(εi) = 1 and the εi
are iid from a smallest extreme value distribution. Also βA 6= βP from 1).

α̂ and β̂ are MLEs found from the censored data (Ti, δi,xi) not from
(Yi,xi).

3) Let log(Ti) = α̂ + β̂
T

Axi + ri. A log censored response (LCR) plot is a

plot of α̂+ β̂
T

Axi vs log(Ti) with plotting symbol 0 for censored cases and +
for uncensored cases. The vertical deviations from the identity line = ri. The
least squares line based on the +’s can be added to the plot, and should have
slope not too far from 1 for the Weibull AFT if γ ≥ 1. The plotted points
should be linear with roughly constant variance. The censoring and long left
tails of the smallest extreme value distribution make judging linearity and
detecting outliers from the left tail difficult. Try to ignore the bottom of the
plot where there are few cases when assessing linearity.

4) Given β̂ from output and given x, be able to find ESP = β̂
T
x =∑p

i=1 β̂ixi = β̂1x1 + · · ·+ β̂pxp.

5) A large sample 95% CI for βj is β̂j ± 1.96 se(β̂j ).

6) 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.

ii) Find the test statistic z0,j = β̂j/se(β̂j) or X2
0,j = z2

0,j or obtain it from
output.

iii) The p–value = 2P (Z < −|z0j|) = P (χ2
1 > X2

0,j). Find the p–value from
output or use the standard normal table.
iv) If pval < δ, reject Ho and conclude that xj is needed in the Weibull
survival model given that the other p− 1 predictors are in the model. If pval
≥ δ, fail to reject Ho, and conclude that the values of xj do not (significantly)
affect the WPH survival model given that the other p − 1 predictors are in
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the model. (Or state that there is not enough evidence to conclude that the
values of xj affect the WPH survival model.)

7) The 4 step likelihood ratio test LRT is
i) Ho : β = 0 HA : β 6= 0
ii) test statistic X2(N |F ) = [−2 logL(none)] − [−2 logL(full)] is often

obtained from output.
iii) The p–value = P (χ2

p > X2(N |F )) where χ2
p has a chi–square distribu-

tion with p degrees of freedom. The p–value is often obtained from output.
iv) Reject Ho if the p–value< δ and conclude that there is a WPH survival

relationship between Y and the predictors x. If p–value≥ δ, then fail to reject
H0, and conclude that the values of the predictors x do not (significantly)
affect the WPH survival model. (Or state that there is not enough evidence
to conclude that the values of x affect the WPH survival model.)

8) The 4 step change in LR test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic X2(R|F ) = X2(N |F ) − X2(N |R) = [−2 logL(red)] −

[−2 logL(full)].
iii) The p–value = P (χ2

p−r > X2(R|F )) where χ2
p−r has a chi–square

distribution with p − r degrees of freedom.
iv) Reject Ho if the p–value < δ and conclude that the full model should

be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good (the values of xO do not (significantly) affect the survival
model, or there is not enough evidence to conclude that the values of xO

affect the survival model).

9) R and SAS programs do not have a variable selection option, but the
WPH model is a PH model, so use SAS Cox PH variable selection to suggest
good submodels. Then fit each candidate with WPH software and check the
WPH assumptions.

10) The accelerated failure time (AFT) model has log(Yi) = α +
βT

Axi + σei where the ei are iid from a location scale family.

If the Yi are Weibull, the ei are from a smallest extreme value distribution.
The Weibull regression model is often said to be “both a proportional hazards
model and an accelerated failure time model.” Actually the Yi follow a PH
models and the log(Yi) follow an AFT model.

If the Yi are lognormal, the ei are normal.
If the Yi are loglogistic, the ei are logistic.

11) Still use the log censored response (LCR) plot of 42). The LCR plot
is easier to use when the εi are normal or logistic since these are symmetric
distributions.

12) For the AFT model, hi(t) = e−SPho(t/e
SP ) and Si(t) = S0(t/ exp(SP )).
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13) Inference for the AFT model is performed exactly in the same way
as for the WPH or Weibull AFT. See points 43) – 47). But the conclusion
change slightly if the AFT is not the Weibull AFT. In point 45, change (if
necessary) “Weibull survival model” to the appropriate model, eg “lognormal
survival model”. In point 46, change (if necessary) “WPH” to the appropriate
model, eg “lognormal AFT”.

In principle, the slice survival plot can be made for parametric AFT mod-
els, but the programming may be difficult.

The loglogistic and lognormal AFT models are not PH models. The loglo-
gistic AFT is a proportional odds model.

14) Let βC correspond to the Cox regression and βA correspond to the
AFT. An EE plot is a plot of the parametric ESP vs a semiparamtric ESP
with the identity line added as a visual aid. The plotted points should follow
the identity line with a correlation tending to 1.0 as n → ∞.

15) For the Exponential regression model, σ = 1, and βC = −βA. The

Exponential EE plot is a plot of −ESPE = −β̂
′
Ax vs ESPC = β̂

′
Cx.

16) For the Weibull regression model, σ = 1, and βC = −βA/σ. The
Weibull EE plot is a plot of

−ESPW/σ̂ = − 1

σ̂
β̂
′
Ax vs ESPC = β̂

′
Cx.

3.7 Complements

The Weibull PH regression model is the most widely used parametric PH
regression model, but the Cox semiparametric PH regression model is used
much more often for survival analysis. When the Weibull PH regression model
holds, the parametric inference is slightly better than the Cox PH regression
model inference, but the Cox PH regression model gives good results for many
data sets where the Weibull PH regression model does not hold.

A Weibull stratified PH regression model can be used where a Weibull PH
regression model with the same β is used for each of the J strata. Then the
αj and σj depend on the strata for j = 1, ..., J .

For survival regression plots, see Olive (2011). Inference after variable se-
lection and prediction intervals will be covered in Chapter 4.

A proportional odds (PO) regression model has

Sx(t)

1 − Sx(t)
= eSP S0(t)

1 − S0(t)



118 3 Parametric Survival Regression

where SP = βT
POx. The logogistic regression model is the only model where

log(Y ) follows an AFT and Y follows a proportional odds regression model.
For the loglogistic model, βPO = βA/σ.

For a proportional odds regression model, note that

Sx(t)

1 − Sx(t)
=

P (Y > t|x)

1 − P (Y > t|x)
=

odds of survival beyond time t. Then the log odds ratio is

log




(
Sx(t)

1−Sx(t)

)

(
S0(t)

1−S0(t)

)


 = βT

POx.

Wei (1992) and Zeng and Lin (2007) give nonparametric methods for
AFTs. These methods could be used to check a parametric AFT much like
the Cox PH regression model can be used to check a parametric PH regression
model like the Weibull PH regression model. Similarly, Bennett (1983) and
Yang and Prentice (1999) give nonparametric methods for the proportional
odds (PO) regression model, and these method could be used to check the
parametric loglogistic PO regression model.

3.8 Problems

Problems with an asterisk * are especially important.

3.1. Leemis (1995, p. 190, 205-6) gives data on n = 21 leukemia patients
taking the drug 6-MP. Suppose that the remission times given below follow
an exponential (λ) distribution.

6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+,
19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

a) Find λ̂.

b) Find a 95% CI for λ.

3.2. Suppose that the lifetimes of a certain brand of lightbulb follow an
exponential (λ) distribution. 20 light bulbs are tested for 1000 hours. The
failure times are below.

71, 88, 254, 339, 372, 403, 498, 499, 593, 774, 935,
1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+, 1000+

a) Find λ̂.

b) Find a 95% CI for λ.
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3.3. The following output is from a Weibull Regression for the Allison
(1995, p. 270) recidivism data. The response variable week is time in weeks
until arrest after release from prison (right censored if week = 52). The 7
variables are Fin (1 for those who received financial aid, 0 else), Age at time
of release, Race (1 if black, 0 else), Wexp(1 if inmate had full time work
experience prior to conviction, 0 else), Mar (1 if married at time of release,
0 else), Paro (1 if released on parole, 0 else), Prio (the number of prior
convictions).

a) For the reduced model, find a 95% CI for β1 .

b) Test whether the reduced model is good.

Output for Problem 3.3 Null Model

Log Likelihood -336.08436 Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 4.8177 0.1079 4.6062 5.0291 1994.47 <.0001

Scale 1 0.7325 0.0661 0.6138 0.8742

Weib Scale 1 123.6771 13.3417 100.1072 152.7964

Weib Shape 1 1.3651 0.1232 1.1438 1.6293

Full Model Log Likelihood -319.3765238

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.9901 0.4191 3.1687 4.8115 90.65 <.0001

fin 1 0.2722 0.1380 0.0018 0.5426 3.89 0.0485

age 1 0.0407 0.0160 0.0093 0.0721 6.47 0.0110

race 1 -0.2248 0.2202 -0.6563 0.2067 1.04 0.3072

wexp 1 0.1066 0.1515 -0.1905 0.4036 0.49 0.4820

mar 1 0.3113 0.2733 -0.2244 0.8469 1.30 0.2547

paro 1 0.0588 0.1396 -0.2149 0.3325 0.18 0.6735

prio 1 -0.0658 0.0209 -0.1069 -0.0248 9.88 0.0017

Scale 1 0.7124 0.0634 0.5983 0.8482

Weib. Shape 1 1.4037 0.1250 1.1789 1.6713

Reduced Model Log Likelihood -321.5012378

Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.7738 0.3581 3.0720 4.4755 111.08 <.0001

fin 1 0.2495 0.1372 -0.0194 0.5184 3.31 0.0690

age 1 0.0478 0.0154 0.0176 0.0779 9.66 0.0019

prio 1 -0.0698 0.0201 -0.1092 -0.0304 12.08 0.0005

Scale 1 0.7141 0.0637 0.5995 0.8506

Weib. Shape 1 1.4004 0.1250 1.1756 1.6681
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Output for Problem 3.4

Log Likelihood -321.50124 Standard 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr>ChiSq

Intercept 1 3.7738 0.3581 3.0720 4.4755 111.08 <.0001

fin 1 0.2495 0.1372 -0.0194 0.5184 3.31 0.0690

age 1 0.0478 0.0154 0.0176 0.0779 9.66 0.0019

prio 1 -0.0698 0.0201 -0.1092 -0.0304 12.08 0.0005

Scale 1 0.7141 0.0637 0.5995 0.8506

Weibull Shape 1 1.4004 0.1250 1.1756 1.6681

3.4. Above is output from a Weibull Regression for the Allison (1995, p.
270) recidivism data described in Problem 3.3. The full model has 3 predic-
tors, fin, age and prio.

a) Suppose that the log likelihood for the null model is −336.08436. Test
whether β = 0.

b) Test whether β1 = 0.

c) Test whether β2 = 0.

Output for 3.5

Value Std. Error z p

(Intercept) 5.32632 0.66298 8.03 9.44e-16

age -0.00891 0.00711 -1.25 0.210

sex 0.37019 0.12796 2.89 0.00382

ph.karno 0.00926 0.00446 2.08 0.0379

Log(scale) -0.28085 0.06171 -4.55 5.33e-06

Scale= 0.755

Weibull distribution

Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5

Chisq= 17.59 on 3 degrees of freedom, p= 0.00053

n=227 (1 observation deleted due to missingness)

3.5. A Weibull regression model was fit to the R lung data resulting in
the above output.

a) Test whether β = 0.

b) Test whether β1 = 0.

c) Test whether β2 = 0.

d) Sketch the Weibull EE plot if the Weibull model is good.

Output for 3.6, n = 26

coef exp(coef) se(coef) z p full model

age 0.121 1.13 0.0484 2.500 0.012

resid.ds 0.792 2.21 0.8078 0.980 0.330
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ecog.ps 0.087 1.09 0.6592 0.132 0.890

Likelihood ratio test= 13.7 on 3 df, p=0.00333

coef exp(coef) se(coef) z p reduced model

age 0.137 1.15 0.0474 2.9 0.0038

Likelihood ratio test= 12.7 on 1 df, p=0.000368

3.6. The R ovarian data gives survival times for patients with ovar-
ian cancer. Predictors are age in years, resid.ds (residual disease present
1=no,2=yes), and ecog.ps (ECOG performance status: 1 is better than 2).
A stratified proportional hazards model is fit where the stratification vari-
able rx is the treatment group.

a) Test whether β3 = 0.

b) Test whether β = 0 for the full model.

c) Test whether the reduced model is good.

3.7. The R lung cancer data has the time until death or censoring. ph.ecog
= Ecog performance score 0-4, pat.karno = patient’s assessment of their karno
score and wt.loss = weight loss in last 6 months. A stratified proportional
hazards model is used and stratification is on sex.

a) Find the ESP and ĥi(t) if x = (1.0, 80.0, 7.0) and sex = F .

b) Find a 95% CI for β2.

c) Do a 4 step test for Ho : β2 = 0.

d) Do a 4 step test for Ho : β3 = 0.
e) R output says Likelihood ratio test=22.8.
Do a 4 step test for Ho : β = 0.

output for f)

coef exp(coef) se(coef) z p

age 0.01444 1.01 0.010508 1.374 0.17

meal.cal -0.00016 1.00 0.000240 -0.666 0.51

Likelihood ratio test=2.97 on 2 df, p=0.227 n=181

(47 observations deleted due to missingness)

f) Now the SPH model uses the predictors age and meal.cal = calories
consumed at meals excluding beverages and snacks.

Do a 4 step test for Ho : β = 0.

R Problems
3.8. This problem considers the ovarian data from Collett (2003, p. 344-

346).

a) Obtain the R code for 3.8 from (http://parker.ad.siu.edu/Olive/
survhw.txt). Click on the left screen then hit Enter. Copy and paste both the
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output. (It should be very similar to that on Section 3.5 between points 1)
and 2).) Also copy and paste the plot into Word.

b) The plot is a log censored response plot. The top line is the identity line
and the bottom line the least squares line. Is the slope of the least squares
line near 1?

3.9. Use the source commands near the top of (http://parker.ad.
siu.edu/Olive/survhw.txt) to get survpack into R. The programs phdata,
weyp and wregsim will be used.

The program wregsim generates Weibull proportional hazards regression
data with baseline hazard function h0(t) = γtγ−1.

a) Type the command wregsim(gam=1) 5 times (or use the “up arrow”
after typing the command once). This gives 5 simulated Weibull regression
data sets with γ = 1. Hence the Weibull regression is also an exponential
regression. Include the last plot in Word.

b) Type the command wregsim(gam=5) 5 times. To judge linearity, ignore
the cases on the bottom of the plot with low density (points with log(time)
less than −2). (These tend to be censored cases because time Y = W 1/γ

where W ∼ EXP (λ = exp(SP )) where E(W ) = 1/λ. Z ∼ EXP (0.1) has
mean 10 and if Zi < Yi then Zi is usually very small.) Do the plots seem
linear ignoring the cases on the bottom of the plot? Do not include the plot.

c) Type the command wregsim(gam=0.5) 5 times. (Now censored cases
tend to be large because time Y = W 1/γ = W 2 where W ∼ EXP (λ).
Z ∼ EXP (0.1) has mean 10 and if Zi < Yi then Yi > 10, usually.) Do the
plots seem linear (ignoring cases on the bottom of the plot)? (The plot is
linear if it is roughly box shaped or ellipsoidal, possibly ignoring some of the
points with log(time) < −9. Since the error distribution is left skewed, most
of the plotted points will fall below the identity line, even if the plot is linear.)
Do not include the plot.

3.10. This problem considers the ovarian data from Collett (2003, pp. 189,
344-346).

a) Obtain the R code for 3.10a from (http://parker.ad.siu.edu/Olive/
survhw.txt). Copy and paste the plot into Word.

b) Now obtain the R code for 3.10b and put the plot into Word.

c) Can the Exponential regression model be used or should the more com-
plicated Weibull regression model be used?

3.11. Copy and paste the two source commands from the top of (http://
parker.ad.siu.edu/Olive/survhw.txt) to get programs phdata and
wregsim2 into R.

Make the left window small by moving the cursor to the lower right corner
of the window, then hold the right mouse button down and drag the window
to the left.
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The program wregsim2 generates Weibull proportional hazards regres-
sion data with baseline hazard function h0(t) = γtγ−1 .

a) Type the command wregsim2(n=10, gam=1) 5 times (or use the “up
arrow” after typing the command once). This gives 5 simulated Weibull re-
gression data sets with γ = 1. Increase n by 10 until the plotted points cluster
tightly about the identity line in at least 4 out of 5 times. How big is n?

b) Type the command wregsim2(n =10, gam=5) 5 times. Increase n by
10 until the plotted points cluster tightly about the identity line in at least
4 out of 5 times. How big is n?

c) Type the command wregsim2(n=10, gam=0.5) 5 times. Increase n by
10 until the plotted points cluster tightly about the identity line in at least
4 out of 5 times. How big is n?

3.12. If necessary copy and paste the two source commands as done for
Problem 3.11 to get programs phdata and wregsim3 into R.

Make the left window small by moving the cursor to the lower right corner
of the window, then hold the right mouse button down and drag the window
to the left.

The program wregsim3 generates Weibull proportional hazards regres-
sion data with baseline hazard function h0(t) = γtγ−1 . This is also an AFT
model with α = 0, β′ = −(1/γ, ..., 1/γ) and σ = 1/γ. The program generate

100 Weibull AFT data sets and for each run i computes α̂i, β̂i and σ̂i. Then
the averages are reported. Want mnint ≈ 0, mncoef ≈ −(1/γ, ..., 1/γ) and
mnscale ≈ 1/γ.

a) Make a table (by hand) with headers

n gamma mnint mncoef mnscale

Fill in the table for n = 20, γ = 1;n = 100, γ = 1;n = 200, γ = 1;n =
20, γ = 5;n = 100, γ = 5;n = 200, γ = 5;n = 20, γ = 0.5;n = 100, γ =
0.5;n = 200, γ = 0.5 by using the commands wregsim3(n=20, gam=1), ...,
wregsim3(n=200, gam=0.5).

b) Are the estimators close to parameters α,β and σ for n = 20? How
about for n = 100?

3.13. If necessary copy and paste the two source commands as done for
problem 3.11 to get programs wphsim and swhat into R. Type the command
wphsim(n=999) to make a slice survival plot based on the WPH survival
function. Are the KM curve and Weibull estimated survival function close
for the plot in the bottom right corner? Include the plot in Word. Recent
versions of R may make 3 curves of cirles. The center curve is the KM curve
while the 2 outer curves are pointwise CI bands. (When 3 curves of cirles are
made, if the plusses are near or within the circles, then the plots suggest that
the WPH model is good.)
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3.14. The R lung cancer data has the time until death or censoring and
status = 0 for censored and 1 for uncensored. Then the covariates are age,
sex = 1 for M and 2 for F, ph.ecog = Ecog performance score 0-4, ph.karno
= a competitor to ph.ecog, pat.karno = patient’s assessment of their karno
score, meal.cal = calories consumed at meals excluding beverages and snacks
and wt.loss = weight loss in last 6 months. The R output will use a stratified
proportional hazards model that is stratified on sex with variables ph.ecog,
pat.karno and wt.loss.

a) Copy and paste commands from (http://parker.ad.siu.edu/Olive/
survhw.txt) for this problem into R. Click on the left window and hit Enter.
Include the plot in Word. Also include the R output in Word.

b) Test whether β = 0.

c) Based on the plot, do females or males appear to have better survival
rates?

SAS Problem

3.15. This problem considers the ovarian data from Collett (2003, p. 344-
346).

a) Obtain the SAS program for 3.15 from (http://parker.ad.siu.edu/
Olive/survhw.txt). Print the output. (It should be very similar to that on
Section 3.5 between points 1) and 2).)

b) Find the ESP if age = 40 and treat 1 = 1. (Comment: treatment takes on
2 levels so only one indicator is needed. SAS output includes a 2nd indicator
treat 2 but its coefficient is β̂3 = 0 and hence can be ignored. In general if
the category takes on J levels, SAS will give nonzero output for the first J −
1 levels and a line of 0s for the Jth level. This means level J was omitted and
the line of 0s should be ignored.)

c) Give a 95% CI for β1 corresponding to age from output and the CI
using the formula.

d) Give a 95% CI for β2 corresponding to treat 1 from output and the CI
using the formula.

e) If the model statement in the SAS program is changed to
model survtime*status(0)=;
then the null model is fit and the SAS output says Log Likelihood

−29.76723997.
Test β = 0 with the LR test.

(Hint: The full model log likelihood log(L) = −20.56313339. Want −2 log(L)
for both the full and null models for the LR test.)

f) Suppose the reduced model does not include treat. Then SAS output
says Log Likelihood −21.7830. Test whether the reduced model is good.
(Hint: The log likelihood for the full model is log(L) = −20.56313339. Want
−2 log(L) for the full and reduced models for the change in LR test.)

Problems from Quizzes and Exams
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Output for Problem 3.16

Variable Estimate Std Err Chi-Square Pr > ChiSq

Intercept 3.9915 0.4349 84.2322 0.0001

fin 0.2724 0.1401 3.7806 0.0518

age 0.04066 0.01655 6.0398 0.0140

race -0.2255 0.2280 0.9782 0.3226

wexp 0.1073 0.1660 0.4184 0.5177

mar 0.3118 0.2769 1.2679 0.2602

paro 0.05879 0.1398 0.1768 0.6741

prio -0.06586 0.02130 9.5584 0.0020

scale 0.7151 0.2396

shape 0.9943 0.4849

3.16. The recidivism data is from Allison (1995, p. 75). A generalized
gamma AFT is fit and has intercept, scale and shape parameters which are
not predictors (the other AFTs in this class had two extra parameters). The
response variable Y is time until arrest. The testing is like that of the WPH
model, except used “generalized gamma AFT” instead of WPH in the ap-
propriate conclusion.

a) Test β1 = 0 which corresponds to fin.
b) Test β2 = 0 which corresponds to age.
c) An EE plot could be made with the generalized gamma ESP on the

vertical axis and the Weibull AFT ESP on the horizontal axis since the
Weibull distribution is a special case of the genearlized gamma distribution.
Suppose the plotted points cluster about the identity line. Is the Weibull
AFT good (or bad)?

Output for Problem 3.17

Value Std. Error z p

(Intercept) 15.1449 16.0795 0.942 3.46e-01

age -0.1291 0.2186 -0.590 5.55e-01

quant -0.0455 0.0583 -0.782 4.34e-01

Log(scale) 1.7179 0.3103 5.536 3.10e-08

Scale= 5.57 n =20

Loglik(model)= -28.9 Loglik(intercept only)= -29.5

Chisq= 1.1 on 2 degrees of freedom, p= 0.58

3.17. The R data set Tobin Data uses a lognormal AFT. (Handled like a
WPH or Weibull AFT except use “lognormal AFT” instead of WPH in the
appropriate conclusion.) The predictors are age, and quant.

a) Test β = 0.
b) Test β2 = 0.

c) Find the ESP = β̂
T
x if x1 = age = 50 and x2 = quant = 270.





Chapter 4

Inference After Variable Selection

This chapter considers inference after variable selection including prediction
intervals and bootstrap hypothesis testing. Prediction regions and prediction
intervals applied to a bootstrap sample can result in confidence regions and
confidence intervals. The bootstrap confidence regions will be used for infer-
ence after variable selection. Several of the sections of this chapter are much
more technical than the rest of the book.

4.1 Variable Selection

Review Section 2.4 for variable selection. Simpler models are easier to explain
and use than more complicated models, and there are several other important
reasons to perform variable selection.

When there is a sequence of M submodels, the final submodel Id needs
to be selected with ad terms. Let the candidate model I contain a terms,
including a constant, and let xI and β̂I be a × 1 vectors. Then there are
many criteria used to select the final submodel Id. Forward selection or back-
ward elimination with the Akaike (1973) AIC criterion or Schwarz (1978)
BIC criterion are often used for variable selection. The relaxed lasso or re-
laxed elastic net estimator fits the regression method, such as the Cox (1972)
proportional hazards regression, to the predictors than had nonzero lasso or
elastic net coefficients. See Tibshirani (1997) and Simon et al. (2011) for lasso
and elastic net.

Forward selection and backward elimination both form a sequence of sub-
models I1, ..., Ip where Ij uses j predictors. Heuristically, backward elimina-
tion tries to delete the variable that will increase AIC the least, while forward
selection tries to add the variable that will decrease AIC the most. Let Imin

minimize the criterion such as AIC, BIC, or lasso. Often Imin from forward
selection will differ from Imin from backward elimination, especially if the
predictors are correlated.

127
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Now suppose p = 6 and S in Equation (2.4) corresponds to x1, x2, and
x3. Suppose the data set is such that underfitting (omitting a predictor
in S) does not occur. Then there are eight possible submodels that con-
tain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6; v)
x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full model
viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5, or 6.
Suppose Imin = Id. Compared to selecting a model Id before examining the
data, the model Imin fits the data a bit too well. The fact that the selected
model Imin from variable selection cannot be used as the full model for clas-
sical inference is known as selection bias.

If β̂Imin
is a × 1, form the p × 1 vector β̂Imin,0 from β̂Imin

by adding 0s

corresponding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T .

This chapter offers two remedies: i) use the large sample theory of β̂Imin,0

(defined two paragraphs below) and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

4.2 Some Tools for Large Sample Theory

This section gives some tools that are useful for inference after variable selec-
tion. The multivariate normal distribution is important. The last four sub-
sections are more technical than most of this book. They can be omitted on
first reading and refer to relevant theorems as needed.

4.2.1 The Multivariate Normal Distribution

For much of this book, X is an n × p design matrix, but this subsection
will usually use the notation X = (X1, ..., Xp)

T and Y for the random vec-
tors, and x = (x1, ..., xp)

T for the observed value of the random vector. This
notation will be useful to avoid confusion when studying conditional distri-
butions such as Y |X = x. It can be shown that Σ is positive semidefinite
and symmetric.

Definition 4.1: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (4.1)
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where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 4.2. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X −E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) +E(Y ) (4.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (4.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (4.4)

Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch.
8).

Theorem 4.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).
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d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 4.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 4.3. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 4.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean
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E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 4.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 4.1b and Theorem 4.2c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. Examine the
following example from Rohatgi (1976, p. 229). Suppose that the joint pdf
of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 4.2 a), the marginal distribu-
tions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and −ρ

for i = 2, X and Y are uncorrelated, but X and Y are not independent since
f(x, y) 6= fX(x)fY (y).

Remark 4.2. In Theorem 4.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.
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4.2.2 The CLT and the Delta Method

The next three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

Large sample theory, also called asymptotic theory, is used to approxi-
mate the distribution of an estimator when the sample size n is large. This
theory is extremely useful if the exact sampling distribution of the estimator
is complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 4.4: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n

where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000
is needed for moderately skewed distributions. A special case of the CLT is
proven after Theorem 4.17.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 4.3. Similarly, the notation

Y n ≈ N(µ, σ2/n),
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also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 4.2. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ)

D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since
√
n

(
Yn

n
− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 4.5: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ)
D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 4.3. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).
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Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 4.4. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 4.2b gives the limiting distribution of
√
n(X

n − p). Let
g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 4.5. Let Xn ∼ Poisson(nλ) where the positive integer n is large
and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.

Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 4.6. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.
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Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

4.2.3 Modes of Convergence and Consistency

Definition 4.3. Let {Zn, n = 1, 2, ...} be a sequence of random variables with
cdfs Fn, and let X be a random variable with cdf F . Then Zn converges in
distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 4.7. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2 + 1

2 ,
−1
n ≤ x ≤ 1

n
1, x ≥ 1

n .
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Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →





0, x < 0
1
2
x = 0

1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 4.8. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 4.4. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 4.5. A sequence of random variables Xn converges in proba-
bility to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.
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Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 4.6. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 4.7. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Theorem 4.6: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.
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Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 4.7. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 4.6 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
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estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 4.8. a) Let Xθ be a random variable with distribution depend-
ing on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 4.8. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 4.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. �

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 4.9. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that
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P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 4.10. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 4.10. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 4.11. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).
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Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P

(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 4.13 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 4.12: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (4.5)
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Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 4.13. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (4.6)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 4.12,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

4.2.4 Slutsky’s Theorem and Related Results

Theorem 4.14: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 4.15. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).
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f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 4.15. We are assuming that
the function τ does not depend on n.

Example 4.9. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since i)
the SLLN holds (use Theorems 4.9 and 4.15), ii) the WLLN holds, and iii)
the CLT holds (use Theorem 4.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 4.7b. By the delta method
and Theorem 4.8b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 4.15e, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 4.16. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the

function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 4.3. For Theorem 4.15, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 4.16 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.

Example 4.10. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 4.11. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the
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iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
4.15e.

Theorem 4.17: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(

n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =
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lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[

−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2

)
=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

4.2.5 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.

Definition 4.11. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.
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d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 4.18 and 4.19 below are the multivariate extensions of the
limit theorems in subsection 4.2.2. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 4.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ) = g′(θ).

Theorem 4.19: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)ΣDT
g(θ)

)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1

gd(θ) . . . ∂
∂θk

gd(θ)


 .

Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Definition 4.12. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Theorem 4.20. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,
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then g(T n)
P→ g(θ).

Theorem 4.21. If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 4.22: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ R
k.

Theorem 4.23: Cramér Wold Device. Let Xn be a sequence of k× 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

Application: Proof of the MCLT Theorem 4.18. Note that for fixed
t, the tT X i are iid random variables with mean tT µ and variance tT Σt.

Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand side has

distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,
√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 4.24. a) If Xn
P→ X , then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 4.13. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).
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Theorem 4.25: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : R

k → R
j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 4.26. Let Xn = (X1n, ..., Xkn)T be a sequence of k × 1
random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→ XT C−1.

Theorem 4.27. LetWn, Xn, Yn, and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 4.28. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. If (T,C) is a consistent estimator of (µ, s Σ) where s > 0

is some constant, then D2
x(T,C) = (x− T )T C−1(x− T ) = s−1D2

x(µ,Σ) +
oP (1), so D2

x(T,C) is a consistent estimator of s−1D2
x(µ,Σ).

iii) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)T C−1(T − µ)
D→ χ2

p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
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(Note that D2
x(T,C) = s−1D2

x(µ,Σ) +OP (n−δ) if (T,C) is a consistent
estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 4.12. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→
[

x

y

]

by Theorem 4.22. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function

φzn(t) = φxn(t1)φyn
(t2) → φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 4.25.

4.3 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See the second to last paragraph of

Section 4.1 for β̂Imin,0. A random vector u has a mixture distribution if u

equals a random vector uj with probability πj for j = 1, ..., J . See Definition
4.2 for the population mean and population covariance matrix of a random
vector.

Definition 4.14. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =

J∑

j=1

πjFuj (t) (4.7)
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where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj (t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 4.29. Suppose E(h(u)) and the E(h(uj)) exist. Then

E(h(u)) =
J∑

j=1

πjE[h(uj)]. (4.8)

Hence

E(u) =

J∑

j=1

πjE[uj ], (4.9)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (4.10)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and

Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf

fu(t) =

J∑

j=1

πjfuj (t), and E(h(u)) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=

J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj (t)dt =

J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (4.11)
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4.4 Large Sample Theory for Some Variable Selection
Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

−βI) after

variable selection. One reason is that with positive probability, β̂Imin
does

not have the same dimension as βI if AIC is used. Hence Zn is not defined
with positive probability. Also, the dimension of a random vector is k × 1,
say, while the dimension of β̂Imin

is K × 1 where K is a random variable.

Hence the random quantity β̂Imin
is not a random vector and not a statistic.

We will show that large sample theory becomes simple by using zero
padding. If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding
0s corresponding to the omitted variables. For example, if p = 4 and
β̂Imin

= (β̂1, β̂3)
T , then β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . Assume p is fixed, and

n→ ∞.
The Rathnayake and Olive (2019) theory in this section applies to many

regression models including many generalized linear models, some time series
models, some survival regression models such as the Cox (1972) proportional
hazards survival regression model and AFTs, and the multiple linear regres-
sion model where the error distribution is unknown.

Suppose the regression model satisfies Y x|xT β, that model (2.4) holds,

and that if S ⊆ Ij , then
√
n(β̂Ij

− βIj
)

D→ Naj (0,V j). Also assume that a
variable selection criterion, such as AIC or relaxed lasso, is used such that
P (S ⊆ Imin) → 1 as n→ ∞. Hence

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (4.12)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij. Hence V j,0 is singular unless Ij corresponds to the full model. Since fewer
than 2p regression models I contain the true model S, and each such model
gives a

√
n consistent estimator β̂I,0 of β, the probability that Imin picks

one of these models goes to one as n → ∞. Then β̂Imin,0 is a
√
n consistent

estimator of β under model (2.4) if the variable selection criterion is used
with forward selection, backward elimination, or all subsets. This result holds
since picking from a fixed number of

√
n consistent estimators results in a

√
n

consistent estimator by Pratt (1959). See Theorem 4.12 and Theorem 4.13.
This section will use mixture distributions to find the limiting distribution of√
n(β̂Imin,0 − β).
Under regularity conditions, P (S ⊆ Imin) → 1 as n → ∞ if BIC or AIC is

used with forward selection, backward elimination, or all subsets. See Charkhi
and Claeskens (2018), Claeskens and Hjort (2008, pp. 70, 85-86, 101, 102, 114,
232), and Hjort and Claeskens (2006).
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Mixture distributions are useful for variable selection since β̂Imin,0 has a

mixture distribution of the β̂Ij,0. Review mixture distributions from Section
4.3. The following theorem is due to Pelawa Watagoda and Olive (2019a).
Note that the cdf of Tn is FTn(z) =

∑
j πjnFTjn(z) where FTjn(z) is the cdf

of Tjn.

Theorem 4.30, Mixture Distribution CLT. Suppose the g×1 statistic
Tn is equal to the estimator Tjn with probability πjn for j = 1, ..., J where
∑

j πjn = 1, πjn → πj as n → ∞, and ujn =
√
n(Tjn − θ)

D→ uj with
E(uj) = 0 and Cov(uj) = Σj . Then

√
n(Tn − θ)

D→ u (4.13)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z) and Fuj

(z) is the cdf of uj .
Thus, u is a mixture distribution of the uj with probabilities πj, E(u) = 0,
and Cov(u) = Σu =

∑
j πjΣj.

Proof: Note that Tn has a mixture distribution of the Tjn with prob-
abilities πjn. Hence

√
n(Tn − θ) has a mixture distribution of the ujn =√

n(Tjn − θ), and the cdf of
√
n(Tn − θ) is

∑
j πjnFujn(z) →∑

j πjFuj(z)
at continuity points z of the Fuj . �

Applying the above results makes large sample theory for β̂Imin,0 simple.
The following theorem is due to Rathnayake and Olive (2019), generalizing
the Pelawa Watagoda and Olive (2019a) result for multiple linear regression.

Theorem 4.31, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n→ ∞, and let β̂Imin,0 = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj. Assume ujn =
√
n(β̂Ij,0 −β)

D→ uj ∼
Np(0,V j,0). a) Then

un =
√
n(β̂Imin,0 − β)

D→ u (4.14)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z). Thus u is a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂Imin,0 − Aβ)

D→ Au = v (4.15)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .
Proof. a) Since un has a mixture distribution of the ukn with probabilities

πkn, the cdf of un is Fun
(z) =

∑
k πknFukn

(z) → Fu(z) =
∑

j πjFuj
(z) at
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continuity points of the Fuj
(z) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au. �

Remark 4.4. If P (S ⊆ Imin) → 1 as n → ∞ (e.g. for AIC, BIC, or
relaxed lasso), the values of πj depend on the regression variable selection
method such as backward elimination, forward selection, all subsets, and
lasso. Typically the mixture distribution is not asymptotically normal. There
are two exceptions. First, suppose πd = 1 with u ∼ ud ∼ Np(0,V d,0). This
exception occurs if aS = p so S is the full model, and for methods like
BIC that choose IS with probability going to one under strong regularity
conditions.

The second exception occurs for each πj > 0, Auj ∼ Ng(0,AΣjA
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂Imin,0 − Aβ)

D→ Au ∼ Ng(0,AΣAT ). This

exception occurs for β̂S if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S has the same
multivariate normal limiting distribution for Imin and for the full model.

Remark 4.5. This theory has several applications. First, the theory gives
the asymptotic distribution for many variable selection estimators, which are
some of the most used estimators in Statistics. Second, the theory is useful
for explaining why β̂Imin

is not a good estimator, but β̂Imin,0 is a good
estimator. Suppose Imin = Ij is observed. Due to selection bias, the model
using predictors Ij underestimates the variability of the responses Y1, ..., Yn,

and Cov(Aβ̂Ij
) is not the correct covariance matrix for Aβ̂Imin

. Typically

β̂Imin
is not a consistent estimator for any parameter vector βIj

, since in
general P (Imin = Ij) does not go to one as n → ∞, and the dimension of

Imin is a random variable. Selection bias occurs from acting as if β̂Imin
is the

“full model” (using large sample theory as if the “full model” was selected

before gathering the data), when β̂Imin,0 has large sample theory given by
Theorem 4.31.

A third application will be bootstrap inference for hypothesis testing. See
Section 4.8. Fourth, the theory can be used to justify prediction intervals after
variable selection. See Section 4.5, and Olive et al. (2020). Fifth, recall p is
fixed. Suppose a shrinkage method, such as lasso or elastic net, does variable
selection. Let β̂Imin

be the regression estimator, such as a Cox regression,
applied to a constant and the variables with nonzero shrinkage estimator
coefficients. If the shrinkage estimator is consistent, then P (S ⊆ Imin) → 1

as n→ ∞, and thus the relaxed shrinkage estimator β̂Imin,0 is
√
n consistent.

In particular, relaxed lasso and relaxed elastic net are
√
n consistent if lasso

and elastic net are consistent.
Remark 4.6. If πd = 1 corresponds to βd, then β̂Imin

can give useful
information about βd, but information is lost about the parameters estimated
to be zero if S is not the full model. There is a large literature on variable
selection consistency and the oracle property where P (Imin = S) → 1 as n →
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∞. See Claeskens and Hjort (2008, pp. 99-114) for references. A necessary
condition for P (Imin = S) → 1 is that S is one of the models considered with
probability going to one. This condition holds for all subsets regression, but
only under very strong regularity conditions for fast methods such as forward
selection, backward elimination, and lasso.

4.5 Prediction Intervals

Prediction intervals for regression and prediction regions for multivariate data
are important topics. Inference after variable selection will consider bootstrap
hypothesis testing. Applying certain prediction intervals or prediction regions
to the bootstrap sample will result in confidence intervals or confidence re-
gions. The prediction intervals and regions are based on samples of size n,
while the bootstrap sample size is B = Bn. Hence this section and the fol-
lowing section are important.

Definition 4.15. Consider predicting a future test value Yf given a p× 1
vector of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample
size n → ∞. A large sample 100(1 − δ)% PI is asymptotically optimal if
[L̂n, Ûn] → [Ls, Us] as n → ∞ where [Ls, Us] is the population shorth: the
shortest interval covering at least 100(1 − δ)% of the mass.

If Yf |xf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞.
The interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k times where the k trials are independent from the
same population. If Yfi is the ith random variable and PIi is the ith PI,
then the probability that Yfi ∈ PIi for j of the PIs approximately follows a
binomial(k, ρ= 1− δ) distribution. Hence if 100 95% PIs are made, ρ = 0.95
and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This section
will describe PIs for parametric 1D regression models, which include many
parametric survival regression models.

First we will consider the location model, Yi = µ+ ei, where Y1, ..., Yn, Yf

are iid and there are no vectors of predictors xi and xf . Let Z(1) ≤ Z(2) ≤



4.5 Prediction Intervals 155

· · · ≤ Z(n) be the order statistics of n iid random variables Z1, ..., Zn. Let a
future random variableZf be such that Z1, ..., Zn, Zf are iid. Let k1 = dnδ/2e
and k2 = dn(1 − δ/2)e where dxe is the smallest integer ≥ x. For example,
d7.7e = 8. Then a common nonparametric large sample 100(1−δ)% prediction
interval for Zf is

[Z(k1), Z(k2)] (4.16)

where 0 < δ < 1. See Frey (2013) for references.
The shorth(c) estimator of the population shorth is useful for making

asymptotically optimal prediction intervals. With the Zi and Z(i) as in the
above paragraph, let the shortest closed interval containing at least c of the
Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (4.17)

Let
kn = dn(1 − δ)e. (4.18)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n, and used the shorth(c)

estimator as the large sample 100(1− δ)% PI where

c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (4.19)

An interesting fact is that the maximum undercoverage occurs for the family
of uniform U(θ1, θ2) distributions where such a distribution has pdf f(y) =
1/(θ2 − θ1) for θ1 ≤ y ≤ θ2 where f(y) = 0, otherwise, and θ1 < θ2.

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (4.8) using c = kn given by (4.9)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse on
test data. For iid data, Frey (2013) used (4.10) to correct for undercoverage.

Example 4.13. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]
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Fig. 4.1 The 36.8% Highest Density Region is [0,1]

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 4.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

A parametric 1D regression model is Y |x ∼ D(h(x), γ) for some real
valued function, such as h(x) = xT β, where D is a parametric distribution
that depends on the p× 1 vector of predictors x only through h(x), and γ is
a q × 1 vector of parameters.



4.5 Prediction Intervals 157

The first new large sample 100(1−δ)% prediction interval for Yf applies the
shorth(c) prediction interval to the parametric bootstrap sample Y ∗

1 , ..., Y
∗
B

where the Y ∗
i are iid from the distribution D(ĥ(xf), γ̂) with

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (4.20)

If Y |xf ∼ D(h(xf ), γ) and the regression method produces a consistent

estimator (ĥ(xf), γ̂) of (h(xf), γ), then this new prediction interval is a large
sample 100(1 − δ)% PI.

For models with a linear predictor, we will want prediction intervals after
variable selection or model selection. The prediction interval (4.20) can have
undercoverage if n is small compared to the number of estimated parameters.
The modified shorth PI (4.21) inflates PI (4.20) to compensate for parameter
estimation and model selection. Let d be the number of variables x∗1, ..., x

∗
d

used by the full model, forward selection, lasso, or relaxed lasso. We want
n ≥ 10d, and the prediction interval length will be increased (penalized) if
n/d is not large. For the second new prediction interval, let qn = min(1− δ+
0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the
shorth PI with

cmod = min(B, dB[qn + 1.12
√
δ/B ] e). (4.21)

Olive (2007, 2018) and Pelawa Watagoda and Olive (2019b) used similar
correction factors for regression models with an additive error since the max-
imum simulated undercoverage was about 0.05 when n = 20d. If a q×1 vector
of parameters γ is also estimated, we may need to replace d by dq = d+ q.

Hong et al. (2018) explain why classical PIs after AIC variable selection
may not work. Fix p and let Imin correspond to the predictors used after
variable selection. To show that (4.20) and (4.21) are large sample prediction

intervals, we need to show that (β̂Imin,0, γ̂Imin) is a consistent estimator of

(β, γ). Theorem 4.31 shows that β̂Imin,0 is a consistent estimator of β. Sup-
pose P (S ⊆ Imin) → 1 as n → ∞. Suppose model (2.4) holds with S ⊆ Ij .

Then under regularity conditions that are often mild, (β̂Ij
, γ̂Ij) is a consis-

tent estimator of (βIj
, γ). Then γ̂Imin is a consistent estimator of γ. Hence if

P (S ⊆ Imin) → 1 as n → ∞ (AIC, BIC, or relaxed lasso), then (4.20) and
(4.21) are large sample PIs.

As an example, consider the Weibull proportional hazards regression model

Y |SP ∼W (γ = 1/σ, λ0 exp(SP )),

where λ0 = exp(−α/σ), and Y has a Weibull W (γ, λ) distribution if the pdf
of Y is
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f(y) = λγyγ−1 exp[−λyγ ]

for y > 0. Note that the PI is for survival times Y , not censored survival
times.

The survpack function wpisim simulates PI (4.21) for the WPH full model
with d = p. WPH data (x1, T1), ..., (xn, Tn) is generated as described for
variable selection in Section 4.8. The Ti are right censored survival times
corresponding to Yi. Hence for the output below, β = (1, 1, 1, 1, 0, ..., 0)T with
p = 10, and psi = 0.9 means the ten predictor variables are highly correlated.
The Weibull AFT is fit and used to get γ̂ and β̂W for the WPH. Then

B = 1000 values Y ∗
1 , ..., Y

∗
B are generated for Y |xf ∼ W (γ̂, λ̂0 exp(β̂

T

W xf )).
The large sample 95% PI (4.21) is used for Yf with d = p = 10. 5000 WPH
data sets are generated with 5000 values of (xf , Yf). The values of Yf and Y ∗

i

are not censored. Then 94.76% of the 5000 PIs contained Yf , with an average
length of 1.0554.

wpisim(n=1000,p=10,k=4,nruns=5000,psi=0.9,gam=4,B=1000)

$int

(Intercept)

0.0169485

$beta

[1] 1 1 1 1 0 0 0 0 0 0

$fullpicov

[1] 0.9476

$fullpimenlen

[1] 1.0554

4.6 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 4.16. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A
PI is a prediction region where p = 1. Highest density regions are usually
hard to estimate for p much larger than four, but many elliptically contoured



4.6 Prediction Regions 159

distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (4.29). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).

For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.

Definition 4.17. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 4.18. Let x1, ...,xn be the data where xi is a p × 1 vector.
The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij. The classical estima-
tor of multivariate location and dispersion is (T,C) = (x,S). The sample
correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.
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It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix G = I − 1

n
11T , then (n− 1)S = W T GW .

See Definition 4.2 for the population mean and population covariance ma-
trix. The Mahalanobis distance in Definition 4.8 is a random variable that
estimates the population Mahalanobis distance defined after Definition 4.8.

Definition 4.19. The ith Mahalanobis distance Di =
√
D2

i where the ith
squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (4.22)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then

D2
x(T,C) = (x− T )T C−1(x− T ).

Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let
the p × p dispersion matrix be Σ, often the population covariance matrix.
Notice that if x is a random vector, then the population squared Mahalanobis
distance is

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ) (4.23)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an ana-
log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Consider the hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (4.24)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un

where Un decreases to kn, can improve small sample performance. Un will be
defined in the paragraph below Equation (4.28). Olive (2013b) showed that
(4.24) is a large sample 100(1− δ)% prediction region under mild conditions,
although regions with smaller volumes may exist. Note that the result follows
since if Σx and S are nonsingular, then the Mahalanobis distance is a con-

tinuous function of (x,S). Let µ = E(x) and D = D(µ,Σx). Then Di
D→ D
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and D2
i

D→ D2. Hence the sample percentiles of the Di are consistent estima-
tors of the population percentiles of D at continuity points of the cumulative
distribution function of D.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (4.24) for c = kn), is that they have coverage
lower than the nominal coverage of 1 − δ for moderate n. This result is not
surprising since empirically statistical methods perform worse on test data.
Increasing c will improve the coverage for moderate samples. Empirically
for many distributions, for n ≈ 20p, the prediction region (4.24) applied
to iid data using c = kn = dn(1 − δ)e tended to have undercoverage as
high as 5%. The undercoverage decreases rapidly as n increases. Let qn =
min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (4.25)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (4.26)

in (4.24) decreased the undercoverage.
If (T,C) is a

√
n consistent estimator of (µ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x− µ + µ− T )

= d−1D2(µ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(µ,Σ) (at continuity points D1−δ of the cdf of D2(µ,Σ)).
If x ∼ Nm(µ,Σ), then D2

x(µ,Σ) = D2(µ,Σ) ∼ χ2
m.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical estimator
(T,C) = (x,S) satisfies this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (4.27)

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM). (4.28)

A future observation (random vector) xf is in the region (4.27) if Dxf
≤ h.

If (T,C) is a consistent estimator of (µ, dΣ) for some constant d > 0 where
Σ is nonsingular, then (4.27) is a large sample 100(1− δ)% prediction region
if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di where qn

is defined above (4.26). If x1, ...,xn and xf are iid, then prediction region
(4.29) is asymptotically optimal for a large class of elliptically contoured
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distributions since the volume of (4.29) converges in probability to the volume
of the highest density region. (These distributions have a highest density
region which is a hyperellipsoid determined by a population Mahalanobis
distance.)

The Olive (2013a) nonparametric prediction region uses (T,C) = (x,S).
For the classical prediction region, see Johnson and Wichern (1988, pp. 134,
151). Refer to the above paragraph for D(Un).

Definition 4.20. The large sample 100(1− δ)% nonparametric prediction
region for a future value xf given iid data x1, ...,xn is

{z : D2
z(x,S) ≤ D2

(Un)}, (4.29)

while the large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (4.30)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (4.19) and (4.26) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 4.2 where ol = (Eq.
4.26)/n is plotted versus fr = (Eq. 4.19)/n for n = 20, 21, ..., 500. The top
plot is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is
added to each plot as a visual aid. The value of n increases from 20 to 500
from the right of the plot to the left of the plot. Examining the axes of each
plot shows that the correction factors do not differ greatly. R code to create
Figure 4.2 is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)

Remark 4.7. The nonparametric prediction region (4.29) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf, al-
though prediction regions with smaller volume may exist. If the 100(1− δ)th
percentile D1−δ of D is not a continuity point of the distribution of D, then
the asymptotic coverage tends to be ≥ 1 − δ since a sample percentile with
cutoff qn that decreases to 1 − δ is used and a closed region is used. Often
D has a continuous distribution and hence has no discontinuity points for
0 < δ < 1. (If there is a jump in the distribution from 0.9 to 0.96 at disconti-
nuity point a, and the nominal coverage is 0.95, we want 0.96 coverage instead
of 0.9. So we want the sample percentile to decrease to a.) The nonparametric
prediction region (4.29) contains Un of the training data cases xi provided
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Fig. 4.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

that S is nonsingular, even if the model is wrong. For many distributions,
the coverage started to be close to 1 − δ for n ≥ 10p where the coverage is
the simulated percentage of times that the prediction region contained xf .

Remark 4.8. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. Using (4.28), the
ratio of the volumes of regions (4.30) and (4.29) is

(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
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if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1 − p/γ > 0
for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in (4.27)
usually results in prediction regions with volume and coverage that is too
large.

Remark 4.9. The nonparametric prediction region (4.29) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013b)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are error distributions that will have severe
undercoverage.

For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (4.29) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1 − δ + 0.05 for n ≤ 20p and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ and
(T,C) is a consistent estimator of (µ, dΣ) where d > 0 and Σ is nonsingular,
then (4.27) with h = D(Un) is a large sample prediction region, but taking
qn given by (4.25) improves the finite sample performance of the prediction
region. Taking qn ≡ 1 − δ does not take into account variability of (T,C),
and for n = 20p the resulting prediction region tended to have undercoverage
as high as min(0.05, δ/2). Using (4.25) helped reduce undercoverage for small
n ≥ 20p due to the unknown variability of (T,C).
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4.7 Bootstrapping Hypothesis Tests and Confidence
Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 4.6 to a bootstrap sample results in a
confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1 − δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal.

When teaching confidence intervals, it is often noted that by the central
limit theorem, the probability that Y n is within two standard deviations
(2SD(Y n) = 2σ/

√
n) of θ = µ is about 95%. Hence the probability that θ is

within two standard deviations of Y n is about 95%. Thus the interval [θ −
1.96S/

√
n, θ+1.96S/

√
n] is a large sample 95% prediction interval for a future

value of the sample mean Y n,f if θ is known, while [Y n − 1.96S/
√
n, Y n +

1.96S/
√
n] is a large sample 95% confidence interval for the population mean

θ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter θ or the statistic Y n, determines whether the
interval is a prediction or a confidence interval. See Theorem 4.32 for a similar
relationship between confidence regions and prediction regions.

Definition 4.21. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An) → 1 − δ as n→ ∞.

There are several methods for obtaining a bootstrap sample T ∗
1 , ...., T

∗
B

where the sample size n is suppressed: T ∗
i = T ∗

in. The parametric bootstrap,
nonparametric bootstrap, and residual bootstrap will be used. Applying pre-
diction region (4.29) to the bootstrap sample will result in a confidence region
for θ. When g = 1, applying the shorth PI (4.19) or PI (4.16) to the boot-
strap sample results in a confidence interval for θ. Section 4.7.2 will help
clarify ideas.

When g = 1, a confidence interval is a special case of a confidence region.
One sided confidence intervals give a lower or upper confidence bound for θ.
A large sample 100(1−δ)% lower confidence interval (−∞, Un] uses an upper

confidence bound Un and is in the lower tail of the distribution of θ̂. A large
sample 100(1−δ)% upper confidence interval [Ln,∞) uses a lower confidence

bound Ln and is in the upper tail of the distribution of θ̂. These CIs can be
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useful if θ ∈ [a, b] and θ = a or θ = b is of interest for a hypothesis test. For
example, [a, b] = [0, 1] if θ = ρ2, the squared population correlation. Then use
[0, Un] and [Ln, 1] as CIs, e.g. if we expect θ = 0 we might test H0 : θ ≤ 0.05
versus H0 : θ > 0.05, and fail to reject H0 if Un < 0.05. Again we often want
the probability to converge to 1 − δ if the confidence interval is based on a
statistic with an asymptotic distribution that has a pdf.

Definition 4.22. The interval [Ln, Un] is a large sample 100(1 − δ)%
confidence interval for θ if P (Ln ≤ θ ≤ Un) is eventually bounded below by
1 − δ as n → ∞. The interval (−∞, Un] is a large sample 100(1− δ)% lower
confidence interval for θ if P (θ ≤ Un) is eventually bounded below by 1 − δ
as n → ∞. The interval [Ln,∞) is large sample 100(1−δ)% upper confidence
interval for θ if P (θ ≥ Ln) is eventually bounded below by 1− δ as n→ ∞.

Next we discuss bootstrap confidence intervals that are obtained by ap-
plying prediction intervals (4.16) and (4.19) to the bootstrap sample. Some
additional bootstrap CIs are obtained from bootstrap confidence regions
from Section 4.7.2 when g = 1. See Efron (1982) and Chen (2016) for the
percentile method CI. Let Tn be an estimator of a parameter θ such as
Tn = Z =

∑n
i=1 Zi/n with θ = E(Z1). Let T ∗

1 , ..., T
∗
B be a bootstrap sample

for Tn. Let T ∗
(1), ..., T

∗
(B) be the order statistics of the the bootstrap sample.

The CI (4.31) is obtained by applying PI (4.16) to the bootstrap sample with
B used instead of n. Hence (4.31) is also a large sample prediction interval for
a future value of T ∗

f if the T ∗
i are iid from the empirical distribution discussed

in Section 4.5.1.

Definition 4.23. The bootstrap percentile method large sample 100(1−
δ)% confidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1−

δ)e of the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (4.31)

The large sample 100(1− δ)% lower percentile method CI for θ is
(−∞, T ∗

(dB(1−δ)e)]. The large sample 100(1− δ)% upper percentile method CI

for θ is [T ∗
(dBδe),∞).

Definition 4.24. The large sample 100(1 − δ)% lower shorth CI for θ
is (−∞, T ∗

(c)], while the large sample 100(1 − δ)% upper shorth CI for θ is
[T ∗

(B−c+1),∞). The large sample 100(1 − δ)% shorth(c) CI uses the interval
[T ∗

(1), T
∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (4.32)

Applied to a bootstrap sample, the Frey shorth interval can be regarded as
the shortest percentile method confidence interval, asymptotically. Hence the
shorth confidence interval is a practical implementation of the Hall (1988)



4.7 Bootstrapping Hypothesis Tests and Confidence Regions 167

shortest bootstrap interval based on all possible bootstrap samples. See Re-
mark 4.13 for some theory for bootstrap CIs such as (4.31) and (4.32).

4.7.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples.
Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases with

replacement uses the empirical distribution.

Definition 4.25. Suppose that data x1, ...,xn has been collected and
observed. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 4.14. Let w be a random variable having the empirical distri-
bution given by Definition 4.25. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence

E(w) =
n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �

Example 4.15. If W1, ...,Wn are iid from a distribution with cdf FW ,
then the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)
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where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

Suppose there is data w1, ...,wn collected into an n × p matrix W . Let
the statistic Tn = t(W ) = T (Fn) be computed from the data. Suppose the
statistic estimates µ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n indicate that

t was computed from an iid sample from the empirical distribution Fn: a
sample w∗

1, ...,w
∗
n of size n was drawn with replacement from the observed

sample w1, ...,wn. This notation is used for von Mises differentiable statistical
functions in large sample theory. See Serfling (1980, ch. 6). The empirical
distribution is also important for the influence function (widely used in robust
statistics). The nonparametric bootstrap draws B samples of size n from the
rows of W , e.g. from the empirical distribution of w1, ...,wn. Then T ∗

jn is
computed from the jth bootstrap sample for j = 1, ..., B.

Example 4.16. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we
only have one sample of data and one value Tn = T1n of the statistic. Often
Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗
Bn is formed where

T ∗
jn = t(w∗

j1, ...,w
∗
jn). Section 4.7.3 will show that T ∗

1n − Tn, ..., T
∗
Bn − Tn is

pseudodata for T1n − θ, ..., TBn − θ when n is large in that
√
n(Tn − θ)

D→ u

and
√
n(T ∗ − Tn)

D→ u.
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Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (4.33)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n. Fix n, and let E(T ∗

i,n) = θn and Cov(T ∗
i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√
n(Tn − θ)

D→ Ng(0,ΣA)

where ΣA > 0 is positive definite and nonsingular. Often nΣ̂T
P→ ΣA. Sup-

pose the T ∗
i = T ∗

i,n are iid from some distribution with cdf F̃n. For example,

if T ∗
i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the cdf of

t(F ∗
n). With respect to F̃n, both θn and Σn are parameters, but with respect

to F , θn is a random vector and Σn is a random matrix. For fixed n, by the
multivariate central limit theorem,

√
B(T

∗ − θn)
D→ Ng(0,Σn) and B(T

∗ − θn)
T[S∗

T]−1(T
∗ − θn)

D→ χ2
r

as B → ∞.

Remark 4.10. For Example 4.14, the bootstrap works but is expensive

compared to large sample theory. Fix n, then T
∗ P→ θn = x and S∗

T
P→

(n−1)S/n as B → ∞, but using (x,S) makes more sense. For Example 4.14,
it is known how the bootstrap sample behaves as B → ∞. The bootstrap

can be very useful when
√
n(Tn − θ)

D→ Ng(0,ΣA), but it not known how
to estimate ΣA without using a resampling method like the bootstrap. The

bootstrap may be useful when
√
n(Tn−θ)

D→ u, but the limiting distribution
(the distribution of u) is unknown.

4.7.2 Bootstrap Confidence Regions for Hypothesis
Testing

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B → ∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known
g × 1 vector. Then reject H0 if θ0 is not in the confidence region An. Let
the g × 1 vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap

sample for Tn. Let A be a full rank g × p constant matrix. For variable
selection, consider testing H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ

where often θ0 = 0. Then let Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for

i = 1, ..., B. The statistic β̂Imin,0 is the variable selection estimator padded
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with zeroes. See Section 4.4. Let T
∗

and S∗
T be the sample mean and sample

covariance matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. See Equation (4.33). A

useful result is dnFg,dn,1−δ → χ2
g,1−δ as dn → ∞. Here P (X ≤ χ2

g,1−δ) = 1−δ
if X ∼ χ2

g , and P (X ≤ Fg,dn,1−δ) = 1− δ if X ∼ Fg,dn . Let kB = dB(1− δ)e.

Definition 4.26. a) The standard bootstrap large sample 100(1 − δ)%
confidence region for θ is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (4.34)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n → ∞. b)

The Bickel and Ren (2001) large sample 100(1− δ)% confidence region for θ

is {w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kB ,T )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kB,T )} (4.35)

where the cutoff D2
(kB,T ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (4.34) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity con-
ditions for this assumption. Bickel and Ren (2001) have interesting sufficient

conditions for (4.35) to be a confidence region when Σ̂A is a consistent esti-
mator of positive definite ΣA. Let the vector of parameters θ = T (F ), the
statistic Tn = T (Fn), and the bootstrapped statistic T ∗ = T (F ∗

n) where F
is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empiri-
cal cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn − θ)

D→ u and
√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ”

and F ∗
n is a perfectly good empirical cdf from Fn = “F .” Thus if n is fixed,

and a sample of size m is drawn with replacement from the empirical distribu-

tion, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn . Now let n → ∞ with m = n. Then

bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn = Ṫ (F )zF ∼ u.

The following three confidence regions will be used for inference after vari-
able selection. The Olive (2017ab, 2018) prediction region method applies
prediction region (4.29) to the bootstrap sample. Olive (2017ab, 2018) also

gave the modified Bickel and Ren confidence region that uses Σ̂A = nS∗
T .

The hybrid confidence region is due to Pelawa Watagoda and Olive (2019).
Let qB = min(1 − δ + 0.05, 1− δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (4.36)
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If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (4.36) as a correction factor for finite
B ≥ 50p.

Definition 4.27. a) The prediction region method large sample 100(1 −
δ)% confidence region for θ is {w : (w − T

∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (4.37)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).) b) The modified Bickel

and Ren (2001) large sample 100(1 − δ)% confidence region is {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB,T )} (4.38)

where the cutoff D2
(UB ,T ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)T [S∗
T ]−1(T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UB ,T ). c) Shift region (4.37) to

have center Tn, or equivalently, change the cutoff of region (4.38) to D2
(UB)

to get the hybrid large sample 100(1 − δ)% confidence region: {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (4.39)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).

Hyperellipsoids (4.37) and (4.39) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (4.37) and (4.38) is

|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UB,T )

)g

=

(
D(UB)

D(UB ,T )

)g

. (4.40)

The volume of confidence region (4.38) tends to be greater than that of (4.37)

since the T ∗
i are closer to T

∗
than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are
special cases of confidence regions. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval that
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contains UB ≈ kB = dB(1−δ)e of the T ∗
i . Let ai = |T ∗

i −T ∗|. Let T
∗

and S2∗
T

be the sample mean and variance of the T ∗
i . Then the squared Mahalanobis

distanceD2
θ = (θ−T ∗

)2/S∗2
T ≤ D2

(UB) is equivalent to θ ∈ [T
∗−S∗

TD(UB), T
∗
+

S∗
TD(UB)] = [T

∗ −a(UB), T
∗
+a(UB)], which is an interval centered at T

∗
just

long enough to cover UB of the T ∗
i . Hence the prediction region method is

a special case of the percentile method if g = 1. See Definition 4.23. Efron
(2014) used a similar large sample 100(1− δ)% confidence interval assuming

that T
∗

is asymptotically normal. The CI corresponding to (4.38) is defined
similarly, and [Tn − a(UB), Tn + a(UB)] is the CI for (4.34). Note that the
three CIs corresponding to (4.37)–(4.39) can be computed without finding
S∗

T or D(UB) even if S∗
T = 0. The Frey (2013) shorth(c) CI (4.27) computed

from the T ∗
i can be much shorter than the Efron (2014) or prediction region

method confidence intervals. See Remark 4.13 for some theory for bootstrap
CIs.

Remark 4.11. We may need n >> p before the S∗
T is a good estimator

of Cov(T ) = ΣT . The distribution of
√
n(Tn − θ) is approximated by the

distribution of
√
n(T ∗ − Tn) or by the distribution of

√
n(T ∗ − T

∗
), but n

may need to be large before the approximation is good.
Suppose the bootstrap sample mean T

∗
estimates θ, and the bootstrap

sample covariance matrix S∗
T estimates cnĈov(Tn) ≈ cnΣT where cn in-

creases to 1 as n→ ∞. For multiple linear regression, this result happens for
the residual bootstrap for least squares (OLS) with cn = (n − p)/n. Then

S∗
T is not a good estimator of Ĉov(Tn) until cn ≈ 1 (n ≥ 100p for OLS β̂),

but the squared Mahalanobis distance D2∗
w(T

∗
,S∗

T ) ≈ D2
w(θ,ΣT )/cn and

D2∗
(UB) ≈ D2

1−δ/cn. Hence the prediction region method has a cutoff D2∗
(UB)

that estimates the cutoff D2
1−δ/cn. Thus the prediction region method may

give good results for much smaller n than a bootstrap method that uses a
χ2

g,1−δ cutoff when a cutoff χ2
g,1−δ/cn should be used for moderate n.

Remark 4.12. For bootstrapping the p× 1 vector β̂Imin,0, we will often
want n ≥ 20p and B ≥ max(100, n, 50p). If Tn is g × 1, we might replace p
by g or replace p by d if d is the model degrees of freedom. Sometimes much
larger n is needed to avoid undercoverage. We want B ≥ 50g so that S∗

T is a
good estimator of Cov(T ∗

n). Prediction region theory uses correction factors
like (4.26) and (4.19) to compensate for finite n. The bootstrap confidence
regions (4.37)–(4.39) and the shorth CI use the correction factors (4.36) and
(4.32) to compensate for finite B ≥ 50g. Note that the correction factors
make the volume of the confidence region larger as B decreases. Hence a test
with larger B will have more power.
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4.7.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator. Since (4.38) is a large sample confidence region by

Bickel and Ren (2001), (4.37) and (4.39) are too, provided
√
n(T

∗−Tn)
P→ 0.

If i)
√
n(Tn−θ)

D→ u, then under regularity conditions, ii)
√
n(T ∗

i −Tn)
D→

u, iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u).
Suppose i) and ii) hold with E(u) = 0 and Cov(u) = Σu. With respect

to the bootstrap sample, Tn is a constant and the
√
n(T ∗

i − Tn) are iid for

i = 1, ..., B. Let
√
n(T ∗

i − Tn)
D→ vi ∼ u where the vi are iid with the same

distribution as u. Fix B. Then the average of the
√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu

B

)

where z ∼ ANg(0,Σ) is an asymptotic multivariate normal approximation.

Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii) and iv) hold. If B is fixed and

u ∼ Ng(0,Σu), then

1

B

B∑

i=1

vi ∼ Ng

(
0,

Σu

B

)
and

√
B
√

n(T
∗ − Tn)

D→ Ng(0,Σu).

Hence the prediction region method gives a large sample confidence region for
θ provided that the sample percentile D̂2

1−δ of the D2
T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −
T

∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
) is a consistent estimator of the percentile D2

n,1−δ

of the random variable D2
θ
(T

∗
,S∗

T ) =
√
n(θ − T

∗
)T (nS∗

T )−1
√
n(θ − T

∗
) in

that D̂2
1−δ −D2

n,1−δ
P→ 0. Since iii) and iv) hold, the sample percentile will

be consistent under much weaker conditions than v) if Σu is nonsingular.
Olive (2017b:

∮
5.3.3, 2018) proved that the prediction region method gives a

large sample confidence region under the much stronger conditions of v) and
u ∼ Ng(0,Σu), but the above Pelawa Watagoda and Olive (2019a) proof is
simpler.

Remark 4.13. Note that if
√
n(Tn−θ) D→ U and

√
n(T ∗

i −Tn)
D→ U where

U has a unimodal probability density function symmetric about zero, then
the confidence intervals from the three confidence regions (4.37)–(4.39), the
shorth confidence interval (4.32), and the “usual” percentile method confi-
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dence interval (4.31) are asymptotically equivalent (use the central proportion
of the bootstrap sample, asymptotically).

Assume nS∗
T

P→ ΣA as n, B → ∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that

√
n (Tn − θ)

D→ u (4.41)

as n → ∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zT z = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (4.42)

as n, B → ∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (4.34) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A .

Remark 4.14. Under reasonable conditions, i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i −Tn)
D→ u, iii)

√
n(T

∗−θ)
D→ u, and iv)

√
n(T ∗

i −T ∗
)

D→ u. Suppose
(nS∗

T )−1 is “not too ill conditioned.” Then

D2
1 = D2

T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
),

D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1√n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1

√
n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1

√
n(T ∗

i − Tn),

are well behaved. If (nS∗
T )−1 P→ Σ−1

T , thenD2
j

D→ D2 = uT Σ−1
T u. If (nS∗

T )−1

is “not too ill conditioned” then D2
j ≈ uT (nS∗

T )−1u for large n, and the
confidence regions (4.37), (4.39), and (4.39) will have coverage near 1 − δ.
The regularity conditions for (4.37)–(4.39) are weaker when g = 1, since S∗

T

does not need to be computed.

The following Pelawa Watagoda and Olive (2019a) theorem is very useful.
Let D2

(UB) be the cutoff for the nonparametric prediction region (4.34) com-
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Fig. 4.3 Confidence Regions for 2 Statistics with MVN Distributions
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puted from the D2
i (T ,ST ) for i = 1, ..., B. Hence n is replaced by B. Since

Tn depends on the sample size n, we need (nST )−1 to be fairly well behaved
(“not too ill conditioned”) for each n ≥ 20g, say. This condition is weaker

than (nST )−1 P→ Σ−1
A . Note that Ti = Tin.

Theorem 4.32: Geometric Argument. Suppose
√
n(Tn−θ)

D→ u with
E(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ where Tn is a randomly selected Ti.
Proof. The region Rc centered at a randomly selected Tn contains T with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 4.22
and 4.23, and see Example 4.12.) For fixed B, the average of these random
vectors is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu

B

)

by Theorem 4.25. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily
close to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1− δ)%
confidence region for θ as n, B → ∞. �

Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u, then the bootstrap
sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid T1, ..., TB shifted

to be centered at Tn. The nonparametric confidence region (4.37) applies the
prediction regon to the bootstrap. Then the hybrid region (4.39) centers that
region at Tn. Hence (4.39) is a confidence region by the geometric argument,

and (4.37) is a confidence region if
√
n(T

∗−Tn)
P→ 0. Since the T ∗

i are closer

to T
∗

than Tn on average, D2
(UB,T ) tends to be greater than D2

(UB). Hence

the coverage and volume of (4.38) tend to be at least as large as the coverage
and volume of (4.39).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
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D2
T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 4.3 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 4.3 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.

If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 4.32, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 4.3. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 4.15. Remark 4.11 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

g , the pre-
diction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
g,1−δ. Theorem 4.32 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
by using D2

(Un). If n is large, by using D2
(UB), the prediction region method

confidence region compensates for undercoverage when B is moderate, say
B ≥ Jg where J = 20 or 50. See Remark 4.12. This result can be useful
if a simulation with B = 1000 or B = 10000 is much slower than a simu-
lation with B = Jg. The price to pay is that the prediction region method
confidence region is inflated to have better coverage, so the power of the
hypothesis test is decreased if moderate B is used instead of larger B.
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4.8 Bootstrapping Variable Selection

This section considers bootstrapping some survival regression models after
variable selection, with emphasis on Cox PH regression. This section will
explain why the bootstrap confidence regions (4.37), (4.38), and (4.39) give
useful results. Much of the theory in Section 4.7.3 does not apply to the
variable selection estimator Tn = Aβ̂Imin,0 with θ = Aβ, because Tn is
not smooth since Tn is equal to the estimator Tjn with probability πjn for
j = 1, ..., J . Here A is a known full rank g × p matrix with 1 ≤ g ≤ p.

We have
√
n(Tn − θ)

D→ v by (4.15) in Theorem 4.31 where E(v) = 0,
and Σv =

∑
j σ

2AV j,0A
T . Hence the geometric argument Theorem 4.32

holds: applying the prediction region (4.29) to an iid sample T1, ..., TB and
then centering the region at Tn gives a large sample confidence region for θ.
Hence if nS∗

T is “not too ill conditioned,” there exists a cutoff D̂2
1−δ such

that {w : (w−Tn)T [S∗
T ]−1(w−Tn) ≤ D̂2

1−δ} has coverage close to or higher
than 1 − δ. See Remark 4.14.

We will denote the ith case by (Zi, δi,xi) where Zi = Yi if δi = 1 so
that the survival time is uncensored, and Zi = Y ∗

i if δi = 0 so that the
survival time is right censored. In R, “time” is often used for the vector of
Zi and “status” for the vector of δi. Sometimes Ti = Zi is used for a possibly
censored survival time, but in this chapter T = Aβ̂Imin,0 is a test statistic.

Suppose the regression model satisfies Y x|xT β, that Equation (2.4)

holds, and that if S ⊆ Ij , then
√
n(β̂Ij

− βIj
)

D→ Naj (0,V j). Also assume
that a variable selection criterion, such as AIC or relaxed lasso, is used such
that P (S ⊆ Imin) → 1 as n→ ∞. Hence

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (4.43)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij. Hence V j,0 is singular unless Ij corresponds to the full model.

For variable selection with P (S ⊆ Imin) → 1 as n → ∞, let Tn = Tkn =

β̂Ik,0 with probabilities πkn where πkn → πk as n → ∞. Denote the πk with

S ⊆ Ik by πj. The other πk = 0. Then Theorem 4.31 holds:
√
n(β̂Imin,0−β)

D→
u.

Note that V j,0 is singular unless Ij corresponds to the full model. For
example, if p = 3 and model Ij uses a constant x1 ≡ 1 and x3 with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

For variable selection, this section will show that the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B tends to be slightly more variable than the data cloud of iid

T1, ..., TB for large n. This result will hold for the parametric bootstrap and
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nonparametric bootstrap, which are discussed in the next two subsections.
Hence by the geometric argument, we expect D2

(UB) or D2
(UB ,T ) can be used

as D̂2
1−δ .

4.8.1 The Parametric Bootstrap

Suppose Yi|xi ∼ D(xT
i β, γ),

√
n(β̂ − β)

D→ Np(0,V (β)), and that V (β̂)
P→

V (β) as n→ ∞. These assumptions tend to be mild for a parametric regres-

sion model where the maximum likelihood estimator (MLE) β̂ is used. Then
V (β) = I−1(β), the inverse Fisher information matrix. If In(β) is the Fisher

information matrix based on a sample of size n, then In(β)/n
P→ I(β). For

the parametric regression model, we regress Y on X to obtain (β̂, γ̂) where
the n × 1 vector Y = (Yi) and the ith row of the n× p design matrix X is
xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b

does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (4.44)

as n → ∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI (0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

However, under regularity conditions, E(β̂
∗
I) ≈ β̂I and Cov(β̂

∗
I)− Cov(β̂I) →

0 as n, B → ∞.
The parametric bootstrap should be useful for bootstrapping parametric

survival regression models such as the Weibull PH regression model or the
Weibull AFT.
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4.8.2 The Nonparametric Bootstrap

Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. This procedure is also

called the empirical bootstrap or naive bootstrap.

Under regularity conditions,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ).

Hence if S ⊆ Ij , √
n(β̂

∗
I − β̂I)

D→ NaI (0,V I)

as n, B → ∞. (Treat Ij as if Ij is the full model.)
One set of regularity conditions is that the survival regression model holds

for Yi|xi, the xi are iid from some population with a nonsingular covariance
matrix, the cases are independent, and the survival times are right censored.
The cases (Zi, δi,xi) are sampled with replacement. This method can be
useful with proportional hazards regression models. See Burr (1994), Efron
and Tibshirani (1986), and Shao, and Tu (1995).

4.8.3 Bootstrapping Variable Selection

Let the g × 1 vector Tn be an estimator of the g × 1 parameter vector θ.
Let T ∗

1 , ..., T
∗
B be the bootstrap sample for Tn. Let A be a full rank g × p

constant matrix. For variable selection, consider testing H0 : Aβ = θ0 versus
H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let Tn = Aβ̂Imin,0

and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B.

The explanation for why the bootstrap confidence regions (4.37), (4.38),
and (4.39) give useful results after variable selection is due to Rathnayake

and Olive (2019). Let the variable selection estimator Tn = Aβ̂Imin,0 with
θ = Aβ. Then Tn is not smooth since Tn is equal to the estimator Tjn with
probability πjn for j = 1, ..., J . Here A is a known full rank g × p matrix

with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by (4.15) where E(v) = 0, and
Σv =

∑
j πjAV j,0A

T . Hence the geometric argument Theorem 4.32 holds:
if we had iid data T1, ..., TB, then Rc would be a large sample confidence
region for θ. For variable selection, this section will show that the bootstrap
sample data cloud T ∗

1 , ..., T
∗
B tends to be slightly more variable than the data

cloud of iid T1, ..., TB for large n. Empirically, for a mixture distribution, the
bagging estimator T

∗
tends to estimate θ at least as well as Tn. See Breiman

(1996) and Yang (2003).
The full model should be checked before doing variable selection inference.

Assume p is fixed and n ≥ 20p. See Chapter 3 and 4. For the bootstrap,
suppose that T ∗

i is equal to T ∗
ij with probability ρjn for j = 1, ..., J where
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∑
j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count the number of times

T ∗
i = T ∗

ij in the bootstrap sample. Then the bootstrap sample T ∗
1 , ..., T

∗
B can

be written as
T ∗

1,1, ..., T
∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Suppose the jth component of an iid sample T1, ..., TB and the jth compo-
nent of the bootstrap sample T ∗

1 , ..., T
∗
B have the same variability asymptot-

ically. Since E(Tjn) ≈ θ, each component of the iid sample is approximately
centered at θ. The bootstrap components are centered at E(T ∗

jn), and often
E(T ∗

jn) = Tjn. Geometrically, separating the component clouds so that they
are no longer centered at one value makes the overall data cloud larger. Thus
the variability of T ∗

n is larger than that of Tn for a mixture distribution,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives coverage

close to or higher than the nominal coverage for confidence regions (4.37)
and (4.38), using the geometric argument. The deviation T ∗

i − Tn tends to

be larger in magnitude than the deviation and T ∗
i − T

∗
. Hence the cutoff

D̂2
2,1−δ = D2

(UB,T ) tends to be larger than D2
(UB), and region (4.38) tends to

have higher coverage than region (4.39) for a mixture distribution.
Assume P (S ⊆ Imin) → 1 as n → ∞, and that S ⊆ Ij. The components

of the iid sample are centered at Aβ while the components of the bootstrap
sample are centered at Aβ̂Ij,0. Consider regression models with Y x|xT β.

Assume
√
nA(β̂Ij,0 −β)

D→ Naj (0,Σj) where Σj = AV j,0A
T . For the non-

parametric bootstrap, assume
√
n(Aβ̂

∗
Ij ,0−Aβ̂Ij,0)

D→ Naj (0,Σj). Then the
components of the iid sample and bootstrap sample have the same variability
asymptotically. The components of iid sample are centered at Aβ while the
components of the bootstrap sample are centered at Aβ̂Ij ,0. For the nonpara-

metric bootstrap, the above results tend to hold if
√
n(β̂ − β)

D→ Np(0,V )

and if
√
n(β̂

∗ − β̂)
D→ Np(0,V ). Assumptions for the nonparametric boot-

strap tend to be rather strong: often one assumption is that the n cases are
iid from some population.
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For the parametric bootstrap, Section 4.8.1 noted that under regular-

ity conditions, Cov(β̂
∗
I)− Cov(β̂I) → 0 as n, B → ∞ if S ⊆ I. Hence

Cov(Tjn) − Cov(T ∗
jn) → 0 as n, B → ∞ if S ⊆ I. Here Tn = Aβ̂Imin,0,

Tjn = Aβ̂Ij,0, T
∗
n = Aβ̂

∗
Imin,0, and T ∗

jn = Aβ̂
∗
Ij ,0. Then E(Tjn) ≈ Aβ = θ

while the E(T ∗
jn) are more variable than the E(Tjn) with E(T ∗

jn) ≈ Aβ̂(Ij , 0),

roughly, where β̂(Ij , 0) is formed from β̂(Ij) by adding zeros corresponding
to variables not in Ij . Hence the jth component of an iid sample T1, ..., TB

and the jth component of the bootstrap sample T ∗
1 , ..., T

∗
B have the same

variability asymptotically.
In simulations for n ≥ 20p for H0 : AβS = θ0, the coverage tended to

get close to 1 − δ for B ≥ max(200, 50p) so that S∗
T is a good estimator of

Cov(T ∗). In the simulations where S is not the full model, inference with the
submodel Imin was often more precise than inference with the full model if
n ≥ 20p and B ≥ 50p. It is possible that S∗

T is singular if a column of the
bootstrap sample is equal to 0. If the regression model has a q × 1 vector of
parameters γ , we may need to replace p by p+ q.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in Equation (2.4) so that H0 is true. Suppose
a nominal 95% confidence region is used and UB is the 96th percentile. Hence
the confidence region (4.37) or (4.38) covers at least 96% of the bootstrap

sample. If β̂
∗
O,j = 0 for more than 4% of the β̂

∗
O,1, ..., β̂

∗
O,B, then 0 is in the

confidence region and the bootstrap test fails to reject H0. If this occurs for
each run in the simulation, then the observed coverage will be 100%.

Now suppose β̂
∗
O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (4.37),
(4.38), or (4.39) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗
O,j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from variable selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, and B ≥ 50p. (Since the pvalue is one, this technique
may be useful for data snooping: applying MLE theory to submodel I may
have negligible selection bias.)

Remark 4.16. Note that there are several important variable selection
models, including the model given by Equation (2.4) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi × 1. For example,
suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
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S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
If n and B are large enough, the singleton set {0} could still be the “100%”
confidence region for a vector βO .

Suppose the predictors xi have been standardized. Then another important
regression model has the βi taper off rapidly, but no coefficients are equal to
zero. For example, βi = e−i for i = 1, ..., p.

Another way to look at the bootstrap confidence region for variable selec-
tion estimators is to consider the estimator T2,n that chooses Ij with proba-
bility equal to the observed bootstrap proportion ρ̂jn. The bootstrap sample
T ∗

1 , ..., T
∗
B tends to be slightly more variable than an iid sample T2,1, ..., T2,B,

and the geometric argument suggests that the large sample coverage of the
nominal 100(1−δ)% confidence region will be at least as large as the nominal
coverage 100(1− δ)%.

4.8.4 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Next, we describe a small simulation study that was done using B =

max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np(0, I) where the
p elements of the vector wi are iid N(0,1). Let the p × p matrix A = (aij)
with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector

zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal entries
σii = [1+(p−1)ψ2] and the off diagonal entries σij = [2ψ+(p−2)ψ2 ]. Then∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let x = az/v. Hence the

correlations are Cor(xi, xj) = ρ = (2ψ+(p− 2)ψ2)/(1 + (p− 1)ψ2) for i 6= j.
If ψ = 1/

√
cp, then ρ→ 1/(c+1) as p → ∞ where c > 0. As ψ gets close to 1,

the predictor vectors cluster about the line in the direction of (1, ..., 1)T. Let
SP = xT

i β = 1xi,1 + · · · + 1xi,k ∼ N(0, a2) for i = 1, ..., n. The simulations
use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones and p− k zeros.
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Then the Yi were generated such that Y |x follows a Weibull proportional
hazards regression model with the above β. We used R code similar to that
of Zhou (2001) to obtain (Zi, δi,xi) where some of the Zi are right censored.
Some functions from survpack were useful. The function phdata2 generates
a data set as described above. We used the nonparametric bootstrap and the
Cox PH model. The function PHboot bootstraps the full Cox PH model.
The function PHbootsim is used to simulate the bootstrap for the full Cox
PH model. The functions LPHboot and RLPHboot bootstraps a Cox PH
model with lasso and relaxed lasso. The function RLPHbootsim is used to
simulate the bootstrap for relaxed lasso. The shorth3 function computes
the shorth(c) intervals with the Frey (2013) correction used when g = 1.
Some R code is shown below.

library(survival)

library(MASS)

library(glmnet)

out<- phdata2(n=100,p=4,k=1,psi=0,a=1,gam=1,clam = 0.1)

out$beta

$betaP

[1] 1 0 0 0

#out$x gives the matrix of predictors

out$time

$time

[1] 10.5015 2.5748 2.1266 0.4238 0.4454

[6] 0.1165 0.0233 0.3108 0.0856 0.3908

.

.

.

[96] 5.4669 0.1603 0.1510 0.1206 0.6356

out$status

$status #0 means right censored

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1

RLPHbootsim(nruns=100,B=200,k=2) #slow 3 runs per minute

$mndd

[1] 3.01 #relaxed lasso used 3 predictors on average

$cicov

[1] 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95

$avelen

[1] 0.8642748 0.8473142 0.7334978 0.7219106 2.5561583

2.5561583 2.6622667 2.5124382 2.5124382 2.6253967
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$beta

[1] 1 1 0 0

$k

[1] 2

PHbootsim(nruns=100,B=200,k=2) #fairly fast

$cicov

[1] 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99

$avelen

[1] 0.8571470 0.8582906 0.7541797 0.7416362 2.5247451

2.5247451 2.5558537 2.5021201 2.5021201 2.6243971

$beta

[1] 1 1 0 0

$k

[1] 2

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = 1 (whether first k βi = 1) and
H0 : βE = 0 (whether the last p− k βi = 0). The nominal coverage was 0.95
with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests coverage
is close to the nominal value. The number of runs = 100 is tiny since the
relaxed lasso simulation is slow. Using 5000 runs would be much better.

The regression models used the nonparamtric bootstrap on the relaxed
lasso estimator β̂Imin,0. Table 4.1 gives results with n = 100, p = 4, and
k = 1. Table 4.1 shows two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for variable
selection with relaxed lasso. The last six columns give results for the tests.
The terms pr, hyb, and br are for the prediction region method (4.37), hybrid
region (4.38), and Bickel and Ren region (4.39). The 0 indicates the test was
H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests.
Volume ratios of the three confidence regions can be compared using (4.40),

but there is not enough information in Table 4.1 to compare the volume
of the confidence region for the full model regression versus that for the
relaxed lasso since the two methods have different determinants |S∗

T |. Table
4.1 corresponds to the above R output with k = 2.

The inference for forward selection was often as precise or more precise
than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.
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Table 4.1 Bootstrapping Cox PH Regression With Relaxed Lasso

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99
len 0.857 0.858 0.754 0.742 2.525 2.525 2.556 2.502 2.502 2.624
vs,0 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95
len 0.864 0.847 0.733 0.722 2.556 2.556 2.662 2.512 2.512 2.625

Then it may be true that β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (4.38) cutoffs and coverages were at least as high as those of the
hybrid region (4.39).

4.9 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. For example, if n = 500000 and p = 90, using
n1 = 900 would result in a much smaller loss of efficiency than n1 = 250000.

4.10 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1
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vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→ ∞.

2) If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s correspond-

ing to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T ,

then β̂Imin,0 = (β̂1 , 0, β̂3, 0)T . If S ⊆ I, then
√
n(β̂I − βI)

D→ NaI (0,V I).
3) Theorem 4.31, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let Tn = β̂Imin,0 and Tjn = β̂Ij ,0. Let Tn = Tkn = β̂Ik,0

with probabilities πkn where πkn → πk as n → ∞. Denote the πk with
S ⊆ Ik by πj. The other πk = 0 since P (S ⊆ Imin) → 1 as n → ∞. Assume
√
n(β̂Ij

−βIj
)

D→ Naj (0,V j) and ujn =
√
n(β̂Ij,0 −β)

D→ uj ∼ Np(0,V j,0).
a) Then √

n(β̂Imin,0 − β)
D→ u

where the cdf of u is Fu(z) =
∑

j πjFuj
(z). Thus u is a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

√
n(Aβ̂Imin,0 − Aβ)

D→ Au = v

where Au has a mixture distribution of the Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

4) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is
in this region if Dxf ≤ h. A large sample 100(1− δ)% prediction region is a
set An such that P (xf ∈ An) is eventually bounded below by 1−δ as n → ∞
where 0 < δ < 1. A large sample 100(1−δ)% confidence region for a vector of
parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

5) Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If
(T,C) is a consistent estimator of (µ, dΣ), then {z : Dz(T,C) ≤ h} is a large
sample 100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth
sample quantile of the Di. The large sample 100(1 − δ)% nonparametric
prediction region {z : D2

z (x,S) ≤ D2
(Un)} uses (T,C) = (x,S). We want

n ≥ 10p for good coverage and n ≥ 50p for good volume.
6) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known

g × 1 vector. Make a confidence region and reject H0 if θ0 is not in the
confidence region. Let qB and UB be as in 5) with n replaced by B and p

replaced by g. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. a) The prediction region method

large sample 100(1−δ)% confidence region for θ is {w : (w−T ∗
)T [S∗

T ]−1(w−
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding
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test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample

quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

For some data sets, S∗
T may be singular due to one or more columns of

zeroes in the bootstrap sample for β1, ..., βp. The variables corresponding to
these columns are likely not needed in the model given that the other predic-
tors are in the model if n and B are large enough. Let βO = (βi1 , ..., βig)

T ,

and consider testing H0 : AβO = 0. If Aβ̂
∗
O,i = 0 for greater than Bδ of the

bootstrap samples i = 1, ..., B, then fail to reject H0. (If S∗
T is nonsingular,

the 100(1− δ)% prediction region method confidence region contains 0.)

7) Theorem 4.32: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u

withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ.
8) Applying the nonparametric prediction region (4.29) to the iid data

T1, ..., TB results in the 100(1−δ)% confidence region {w : (w−Tn)T S−1
T (w−

Tn) ≤ D2
(UB)(Tn,ST )} where D2

(UB)(Tn,ST ) is computed from the (Ti −
Tn)T S−1

T (Ti − Tn) provided the ST = STn are “not too ill conditioned.”
For OLS variable selection, assume there are two or more component clouds.
The bootstrap component data clouds have the same asymptotic covariance
matrix as the iid component data clouds, which are centered at θ. The jth
bootstrap component data cloud is centered at E(T ∗

ij) and often E(T ∗
jn) =

Tjn. Confidence region (4.37) is the prediction region (4.29) applied to the
bootstrap sample, and (4.37) is slightly larger in volume than (4.29) applied
to the iid sample, asymptotically. The hybrid region (4.39) shifts (4.37) to be
centered at Tn. Shifting the component clouds slightly and computing (4.29)
does not change the axes of the prediction region (4.29) much compared
to not shifting the component clouds. Hence by the geometric argument, we
expect (4.39) to have coverage at least as high as the nominal, asymptotically,
provided the S∗

T are “not too ill conditioned.” The Bickel and Ren confidence

region (4.38) tends to have higher coverage and volume than (4.39). Since T
∗

tends to be closer to θ than Tn, (4.37) tends to have good coverage.
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9) Suppose m independent large sample 100(1 − δ)% prediction regions
are made where x1, ...,xn,xf are iid from the same distribution for each of
the m runs. Let Y count the number of times xf is in the prediction region.
Then Y ∼ binomial (m, 1− δn) where 1− δn is the true coverage. Simulation
can be used to see if the true or actual coverage 1−δn is close to the nominal
coverage 1− δ. A prediction region with 1− δn < 1− δ is liberal and a region
with 1− δn > 1− δ is conservative. It is better to be conservative by 3% than
liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

10) For the bootstrap, perform variable selection on Y ∗
i and X (or X∗

for the nonparametric bootstrap), fit the model that minimizes the criterion,
and add 0s corresponding to the omitted variables, resulting in estimators

β̂
∗
1, ..., β̂

∗
B where β̂

∗
i = β̂

∗
Imin,0,i.

11) Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order
statistics, and let c be a positive integer. Compute Z(c) − Z(1), Z(c+1) −
Z(2), ..., Z(n) − Z(n−c+1). Let shorth(c) = [Z(d),Z(d+c−1)] correspond to the
interval with the shortest length.

The large sample 100(1−δ)% shorth(c) CI uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2),

T ∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here c = min(B, dB[1 − δ +

1.12
√
δ/B ] e). The shorth CI is computed by applying the shorth PI to the

bootstrap sample.

4.11 Complements

Some variable selection methods for the Cox PH regression model include
Fan and Li (2002), Huang et al. (2013) who give KKT conditions, Simon
et al. (2013), and Tibshirani (1997). Also see Claeskens and Hjort (2008).
For bootstrapping the Cox PH regression model, see Burr (1994), Efron and
Tibshirani (1986), Rathnayake (2019), Rathnayake and Olive (2019), and
Shao and Tu (1995). For bootstrapping some other survival analysis models,
see Efron (1981), Gross and Lai (1996), and Li and Datta (2001).

This chapter followed Olive (2017b, ch. 5), Pelawa Watagoda and Olive
(2019ab) and Rathnayake and Olive (2020) closely. Also see Olive (2013a,
2018), and Rathnayake (2019). Olive (2014: p. 283, 2017ab, 2018) recom-
mended using the shorth(c) estimator for the percentile method. Olive (2017a:
p. 128, 2017b: p. 181, 2018) showed that the prediction region method can

simulate well for the p × 1 vector β̂Imin,0. Hastie et al. (2009, p. 57) noted
that variable selection is a shrinkage estimator: the coefficients are shrunk to
0 for the omitted variables.

Good references for the bootstrap include Efron (1982), Efron and Hastie
(2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen (2016)
and Hesterberg (2014).
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There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2006, 2008). Inference techniques for the variable selection model, other than
data splitting, have not had much success. The methods are often inferior to
data splitting, or are asymptotically equivalent to using the full model, or
find a quantity to test that is not Aβ. See Ewald and Schneider (2018).

4.12 Problems

4.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

4.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

4.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

4.4. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.

actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

4.5. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

4.6. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
bootstrap samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5
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4.7. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith bootstrap
sample. bootstrap samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:

b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B∑

i=1

T ∗
i where B = 4 is the number of

bootstrap samples.

R Problems
Use the command source(“G:/linmodpack.txt”) to download the

functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. regbootsim2, will display the code for the function. Use the
args command, e.g. args(regbootsim2), to display the needed arguments for
the function. For the following problem, the R command can be copied and
pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

4.8. a) Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞.

b) Were the three coverages near 90%?





Chapter 5

Stuff for Students

5.1 R

R is available from the CRAN website (https://cran.
r-project.org/). As of January 2020, the author’s personal computer has Ver-
sion 3.3.1 (June 21, 2016) of R. R is similar to Splus, but is free. R is very
versatile since many people have contributed useful code, often as packages.

Downloading the book’s files into R
Many of the homework problems use R functions contained in the book’s

website (http://parker.ad.siu.edu/Olive/survbk.htm) under the file name
survpack.txt. The following two R commands can be copied and pasted into
R from near the top of the file (http://parker.ad.siu.edu/Olive/
survhw.txt).

Downloading the book’s R functions survpack.txt and data files lin-
moddata.txt into R: the commands

source("http://parker.ad.siu.edu/Olive/survpack.txt")

source("http://parker.ad.siu.edu/Olive/survdata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 10 R functions from linmodpack.txt should appear. In R, enter the
command q(). A window asking “Save workspace image?” will appear. Click
on No to remove the functions from the computer (clicking on Yes saves the
functions in R, but the functions and data are easily obtained with the source
commands).

Citing packages
We will use R packages often in this book. The following R command

is useful for citing the Friedman et al. (2015) glmnet package. Another
packages cited in this book is MASS from Venables and Ripley (2010).

citation("glmnet")

193



194 5 Stuff for Students

This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression can be done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simulta-
neously. Then select “Paste” from the Word menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

A data frame is a two-dimensional array in which the values of different
variables are stored in different named columns.
Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.
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Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes. (In
Splus, the command Edit(mysquare) may also be used to modify the function
mysquare.)

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
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identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
leaps for variable selection, can be found, e.g., with the command
library(help=leaps).

Downloading a library into R
Many researchers have contributed a library or package of R code that can

be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in survpack may no longer
work in new versions of R.
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5.2 SAS

Allison (1995, 2010) is very useful for using SAS for Survival Analysis. Also
see SAS Institute (1999). SAS (www.sas.com) has a free SAS University Edi-
tion and free tutorials for SAS programming. You can request materials from
the SAS institute as well. They make these available for free for professors to
use in teaching. They have some nice examples and data sets. See SAS Global
Academic Program (http://support.sas.com/learn/ap/prof/index.html) for
information.

There are some nice examples in SAS Statistics 1, this is also now available
free as an e-course for anyone.

(https://support.sas.com/edu/elearning.html?ctry=us&productType=library)

SAS Training in the United States – e-Learning
This includes a SAS programming course.
Google SAS>Ad (www.sas.com) >How to buy>academic

http://www.sas.com/en_us/software/trials-demos.html

5.3 Hints for Selected Problems

Chapter 1
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5.4 Tables

Tabled values are F(k,d, 0.95) where P (F < F (k, d, 0.95)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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